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Abstract: Following a recent work [Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota–Baxter
operators, Int. Math. Res. Not. IMRN (in press), DOI: 10.1093/imrn/rnr266] we define what is a dendriform di-
or trialgebra corresponding to an arbitrary variety Var of binary algebras (associative, commutative, Poisson,
etc.). We call such algebras di- or tri-Var-dendriform algebras, respectively. We prove in general that the operad
governing the variety of di- or tri-Var-dendriform algebras is Koszul dual to the operad governing di- or trialgebras
corresponding to Var!. We also prove that every di-Var-dendriform algebra can be embedded into a Rota–Baxter
algebra of weight zero in the variety Var, and every tri-Var-dendriform algebra can be embedded into a Rota–
Baxter algebra of nonzero weight in Var.
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1. Introduction

In [7], Glen Baxter introduced an identity defining what is now called Rota–Baxter operator in developing works ofF. Spitzer [36] in fluctuation theory. By definition, a Rota–Baxter operator R of weight λ on an algebra A is a linearmap on A such that
R(x)R(y) = R

(
xR(y)+R(x)y) + λR(xy), x, y ∈ A,

where λ is a scalar from the base field.
∗ E-mail: vsevolodgu@mail.ru
† E-mail: pavelsk@math.nsc.ru
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Later, commutative associative algebras with such an operator were studied by G.-C. Rota and P. Cartier [10, 34]. In1980s, these operators appeared in the context of Lie algebras independently in works A.A. Belavin and V.G. Drinfeld [8]and M.A. Semenov-Tian-Shansky [35] in research on solutions of classical Young–Baxter equation named in the honourof Chen Ning Yang and Rodney Baxter.For the present time, numerous connections of Rota–Baxter operators with different areas of mathematics (Young–Baxterequations, operads, Hopf algebras, number theory, etc.) can be found [2, 17, 22, 26]. Also, there is a relation betweenRota–Baxter operators and quantum field theory [13, 14].The notion of a Leibniz algebra introduced by J.-L. Loday [27] originates from cohomology theory of Lie algebras; this isa noncommutative analogue of Lie algebras. Associative dialgebras (now often called diassociative algebras) emerged inthe paper by J.-L. Loday and T. Pirashvili [29], they play the role of universal enveloping associative algebras for Leibnizalgebras. In [24], a general notion of a dialgebra corresponding to an arbitrary variety Var of “ordinary” algebras (suchas associative, alternative, etc.) was introduced (hereinafter, we refer to them as to di-Var-algebras).Later, J.-L. Loday and M. Ronco [30] introduced a generalization of dialgebras  trialgebras (in the associative case). Inthis paper, we generalize the definition from [24] to the case of trialgebras. Given a variety Var of Ω-algebras definedby poly-linear identities, we define a corresponding variety called tri-Var-algebras. By a dialgebra (or trialgebra) wemean a di- (or tri-)Var-algebra for some Var.Dendriform dialgebras were defined by J.-L. Loday [28] in his study of algebraic K-theory. Moreover, they occur to beKoszul-dual to di-As-algebras, where As is the variety of associative algebras. Dendriform trialgebras introduced in [30]are proved to be Koszul-dual to tri-As-algebras. In this paper, we determine what is a di- or tri-Var-dendriform algebra,following [3], for a given variety Var as above. By a dendriform dialgebra (or dendriform trialgebra) we mean a di- (ortri-) Var-dendriform algebra for some Var. The term “dendriform algebra” will stand for either dendriform dialgebra ordendriform trialgebra in contrast to previous works in this topic, where the term “dendriform algebra” means the same as“di-As-dendriform algebra” in this paper. Also, the terms “dendriform trialgebra” or “tridendriform algebra” were usedfor what we call “tri-As-dendriform algebra”.Dendriform dialgebras (trialgebras) are linear spaces with two (three) operations �,≺ (and ·). For their Koszul duals(dialgebras and trialgebras) their operations usually are denoted by `, a, and ⊥. In this paper, we prefer the latternotations for dendriform structures instead of traditional �,≺, and · since our combinatorial approaches to definitionsof corresponding varieties are very much similar.M. Aguiar in [1] was the first who noticed a relation between Rota–Baxter algebras and dendriform algebras. He provedthat an associative algebra with a Rota–Baxter operator R of weight zero relative to operations a a b = aR(b),
a ` b = R(a)b is a di-As-dendriform algebra. Later K. Ebrahimi-Fard [15] generalized this fact to the case of Rota–Baxter algebras of arbitrary weight and obtained as a result both di- and tri-As-dendriform algebras. In the paper byK. Ebrahimi-Fard and L. Guo [18], universal enveloping Rota–Baxter algebras of weight λ for di- and tri-As-dendriformalgebras were defined.The natural question: Whether an arbitrary dendriform algebra can be embedded into its universal enveloping Rota–Baxter algebra of appropriate weight was solved positively in [18] for free dendriform algebras only. Y. Chen and Q.Mo [12]proved that any di-As-dendriform algebra over a field of characteristic zero can be embedded into an appropriate Rota–Baxter algebra of weight zero using the Gröbner–Shirshov bases technique for Rota–Baxter algebras developed in [9].Also, C. Bai, L. Guo and K. Ni [4] introduced the notion of an O-operator, a generalization of Rota–Baxter operator, andproved that every dendriform algebra can be explicitly obtained from an algebra with an O-operator.In a recent paper [3], the results of Aguiar and Ebrahimi-Fard were extended to the case of arbitrary operad of Rota–Baxter algebras and dendriform algebras.In the present work, we completely solve the embedding problem for dendriform algebras: For every di-Var-dendriformalgebra A there exists an algebra B ∈ Var with a Rota–Baxter operator R of weight zero such that A is embeddedinto B in the sense of [1]. For every tri-Var-dendriform algebra A there exists an algebra B ∈ Var with a Rota–Baxteroperator R of nonzero weight such that A is embedded into B in the sense of [15].The idea of the construction can be easily illustrated by the following example. Suppose (A, a, `,⊥) is a tri-As-dendriformalgebra. Then the direct sum of two isomorphic copies of A, the space Â = A ⊕ A′, endowed with a binary operation
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a ∗ b = a a b+ a ` b+ a ⊥ b, a ∗ b′ = (a ` b)′, a′ ∗ b = (a a b)′, a′ ∗ b′ = (a ⊥ b)′,
a, b ∈ A, is an associative algebra. Moreover, the map R(a′) = a, R(a) = −a is a Rota–Baxter operator of weight 1on Â. The embedding of A into Â is given by a 7→ a′, a ∈ A.In the last section, we introduce and explore a modification of the notion of a trialgebra from [30] which we call a gen-eralized trialgebra (or g-trialgebra, for short). For every variety Var of binary algebras defined by poly-linear identitieswe define a corresponding variety of g-tri-Var-algebras. This class of systems naturally appears from differential andΓ-conformal algebras, “discrete analogues” of conformal algebras introduced in [20]. The class of g-tri-As-algebras isrelated with a natural noncommutative analogue of Poisson algebras. The free g-tri-Com-algebra generated by a set
X is isomorphic as a linear space to the free Perm-algebra generated by the algebra of polynomials in X . The op-erad gComTrias governing the variety of g-tri-Com-algebras gives rise to the operads governing the varieties of g-tri-As-and g-tri-Lie-algebras by means of the Manin white product with operads As and Lie, respectively.Throughout the paper, we identify the notations for a variety of algebras and for the corresponding operad.
2. Operads for di- and trialgebras

Our main object of study is the class of dendriform algebras. In this section, we start with objects from the “dual world”in the sense of Koszul duality.The notion of an operad once introduced in [32] has had a renaissance since the beginning of 2000s. We address thereader to either of perfect expositions of this notion and its applications in universal algebra, e.g., [19, 25, 31, 37].Throughout the paper, k is an arbitrary base field. All operads are assumed to be families of linear spaces, compositionsare linear maps, and the actions of symmetric groups are also linear. By an Ω-algebra we mean a linear space equippedwith a family of binary linear operations Ω = {◦i : i ∈ I}. Denote by F the free operad governing the variety of allΩ-algebras. For every natural number n > 1, the space F(n) can be identified with the space spanned by all binarytrees with n leaves marked by x1, . . . , xn, where each vertex (which is not a leaf) has a label from Ω.Let Var be a variety of Ω-algebras defined by a family S of poly-linear identities of any degree (which is greater thanone). An operad governing the variety Var is also denoted by Var. Every algebra from this variety is a functor from Varto Vec, the multi-category of linear spaces with poly-linear maps.Denote by Ω(2) and Ω(3) the sets of binary operations {`i, ai: i ∈ I} and Ω(2) ∪ {⊥i: i ∈ I}, respectively. Similarly, let
F(2) and F(3) stand for the free operads governing the varieties of all Ω(2)- and Ω(3)-algebras, respectively.We will need the following important operads.
Example 2.1.Operad Perm introduced in [11] is governing the variety of Perm-algebras [43, p. 17]. Namely, Perm(n) = kn with astandard basis e(n)

i , i = 1, . . . , n. Every e(n)
i can be identified with an associative and commutative poly-linear monomialin x1, . . . , xn with one emphasized variable xi.

Example 2.2.Operad ComTrias introduced in [40] is governing the variety called commutative triassociative algebras in [43, p. 25].Namely, ComTrias(n) has a standard basis e(n)
H , where ∅ 6= H ⊆ {1, . . . , n}. Such an element (corolla) can be identifiedwith a commutative and associative monomial with several emphasized variables xj , j ∈ H.

2.1. Identities of di- and tri-Var-algebras

Numerous observations made, for example, in [11, 24, 41] lead to the following natural definition.
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Definition 2.3.A di-Var-algebra is a functor from Var⊗Perm to Vec, i.e., an Ω(2)-algebra satisfying the following identities:
(x1 ai x2) `j x3 = (x1 `i x2) `j x3, x1 ai (x2 `j x3) = x1 ai (x2 aj x3), (1)

f(x1, . . . , ẋk , . . . , xn), f ∈ S, n = deg f, k = 1, . . . , n, (2)
where i, j ∈ I, and f(x1, . . . , ẋk , . . . , xn) stands for the Ω(2)-identity obtained from f by means of replacing all products ◦iwith either ai or `i in such a way that all horizontal dashes point to the selected variable xk .
Example 2.4.Let |Ω| = 1, and let As be the operad of associative algebras. The variety of di-As-algebras [29] is given by (1) togetherwith

x1 a (x2 a x3) = (x1 a x2) a x3, x1 ` (x2 a x3) = (x1 ` x2) a x3, x1 ` (x2 ` x3) = (x1 ` x2) ` x3. (3)
Example 2.5.Consider the class of Poisson algebras (|Ω| = 2), where ◦1 is an associative and commutative product (we will denote
x ◦1 y simply by xy) and ◦2 is a Lie product (x ◦2 y = [x, y]) related with ◦1 by means of the following identity:

[x1x2, x3] = [x1, x3]x2 + x1[x2, x3].
Then a di-Poisson algebra is a linear space equipped with four operations (· ∗ ·), [· ∗ ·], ∗ ∈ {`, a}, satisfying (1) and (2).Commutativity of the first product and anticommutativity of the second one allow to reduce these four operations to onlytwo, since (2) implies (x1 a x2) = (x2 ` x1), [x1 a x2] = −[x2 ` x1].With respect to the operations

xy
def= (x ` y), [x, y] def= [x ` y],

the identities (1) and (2) are equivalent to the following system:
x1(x2x3) = (x1x2)x3, ([x1, x2] + [x2, x1])x3 = 0, (x1x2)x3 = (x2x1)x3,[x1, [x2, x3]]− [x2, [x1, x3]] = [[x1, x2], x3],[x1x2, x3] = x1[x2, x3] + x2[x1, x3], [x1, x2x3] = [x1, x2]x3 + x2[x1, x3]. (4)

In [28], a more general class was introduced (without assuming commutativity of the associative product). In [1], theidentities (4) defined the operad which is Koszul-dual to the operad of Pre-Poisson algebras.
A similar approach works for trialgebras. There exists a functor Ψ: F(3) → F⊗ComTrias defined by Ψ(2)(x1 `i x2) =
x1x2⊗e(2)2 , Ψ(2)(x1 ai x2) = x1x2⊗e(2)1 , Ψ(2)(x1 ⊥i x2) = x1x2⊗e(2)1,2. It is easy to note (see also [41]) that each Ψ(n) issurjective.We are going to define a canonical family of inverse maps

Φ(n) : F(n)⊗ComTrias(n)→ F(3)(n), n ≥ 1,
Ψ(n)Φ(n) = idF(n)⊗ComTrias(n). Suppose u = u(x1, . . . , xn) ∈ F(n) is a non-associative Ω-monomial. Fix l indices 1 ≤ k1 <
. . . < kl ≤ n, and denote the monomial u with l emphasized variables xkj , j = 1, . . . , l, by uH , H = {k1, . . . , kl}. Now,identify uH with an element from F(n)⊗ComTrias(n) in the natural way:

uH ≡ u⊗e(n)
k1,...,kl .
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It can be considered as a binary tree from F(n) with l emphasized leaves, see Figure 1.

Figure 1. Binary tree representing u = (x5 ◦1 (x1◦3 x3)) ◦2 (x2 ◦1 x4) with H = {1, 2}. Emphasized leaves are colored in black, others  in white.

Now the task is to mark all vertices of uH with appropriate labels from Ω(3). For n = 1, set Φ(1)(x1⊗e11) = x1. Amonomial u ∈ F(n), n ≥ 2, can be presented as u = u1(xσ (1), . . . , xσ (p)) ◦i u2(xσ (p+1), . . . , xσ (n)), u1 ∈ F(p), u2 ∈ F(n−p),
σ ∈ Sn. Given a nonempty set of emphasized variables H = {k1, . . . , kl} ⊆ {1, . . . , n}, denote

H1 = σ−1(H ∩ {σ (1), . . . , σ (p)}), H2 = {σ−1(j)− p : j ∈ H ∩ {σ (p+1), . . . , σ (n)}}.
Then set

Φ(n)(uH ) =


Comp(x1 `i x2, u`1 , Φ(n−p)(uH22 ))σ , H1 = ∅,Comp(x1 ai x2, Φ(p)(uH11 ), ua2)σ , H2 = ∅,Comp(x1 `i x2, Φ(p)(uH11 ), Φ(n−p)(uH22 ))σ , H1, H2 6= ∅, (5)
where Comp is the composition map in the operad F(3), v` or va (for v ∈ F(m)) denote the same polynomial v(x1, . . . , xm)with all operations ◦j replaced with `j or aj , respectively.Graphically, in order to compute Φ(n) one should assign ⊥ to each vertex which is not a leaf if both left and rightbranches have emphasized leaves. If only left branch contains an emphasized leaf then assign a to this vertex and toall vertices of the right branch. Symmetrically, if only right branch contains an emphasized leaf then assign ` to thisvertex and to all vertices of the left branch, see Figure 2.

Figure 2. Binary tree with marked vertices representing Φ(5)(uH ) = (x5 `1 (x1a3 x3)) ⊥2 (x2 a1 x4) for u and H as on Figure 1.

One may extend Φ(n) by linearity, so, if f(x1, . . . , xn) = ∑
ξ
αξuξ ∈ F(n), then

f(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn) def= ∑
ξ

αξΦ(n)(uHξ ).
It is somewhat similar to the tri-successor procedure from [3].
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Definition 2.6.A tri-Var-algebra is a functor from Var⊗ComTrias to Vec, i.e., an Ω(3)-algebra satisfying the following identities:
(x1 ∗i x2) `j x3 = (x1 `i x2) `j x3, x1 ai (x2 ∗j x3) = x1 ai (x2aj x3), ∗ ∈ {`, a,⊥}, i, j ∈ I, (6)
f(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn), f ∈ S, n = deg f, 1 ≤ k1 < . . . < kl ≤ n, l = 1, . . . , n. (7)

For a variety Var, let us denote by DiVar and TriVar the operads governing di- and tri-Var-algebras, respectively.
Example 2.7.The only defining identity of the variety As turns into seven identities (7) defining tri-As-algebras. Indeed, eachnonempty subset H ⊆ {1, 2, 3} gives rise to an identity of Ω(3)-algebras, Ω(3) = {`, a,⊥}. If |H| = 1 then these are justthe identities of a di-As-algebra (3). For |H| = 2, we obtain three identities, e.g., if H = {1, 3} then the correspondingidentity is x1 ⊥ (x2 ` x3) = (x1 a x2) ⊥ x3. If H = {1, 2, 3} then we obtain the relation of associativity for ⊥. Togetherwith four identities (6), these are exactly the defining identities of what is called triassociative algebras in [43, p. 23].
Example 2.8.Let A be an associative algebra. Then the space A⊗3 with respect to operations

a⊗b⊗c ` a′⊗b′⊗c′ = abca′⊗b′⊗c′, a⊗b⊗c a a′⊗b′⊗c′ = a⊗b⊗ca′b′c′,
a⊗b⊗c ⊥ a′⊗b′⊗c′ = a⊗bca′b′⊗c′

is a tri-As-algebra.
The following construction invented in [33] for dialgebras also works for trialgebras. Let A be a 0-trialgebra, i.e., anΩ(3)-algebra which satisfies (6). Then A0 = Span{a `i b − a ai b, a `i b − a ⊥i b : a, b ∈ A, i ∈ I} is an ideal of A.The quotient A = A/A0 carries a natural structure of an Ω-algebra. Consider the formal direct sum Â = A ⊕ A with(well-defined) operations

a ◦i x = a `i x, x ◦i a = x ai a, a ◦i b = a `i b, x ◦i y = x ⊥i y, (8)
a, b ∈ A, x, y ∈ A.
Proposition 2.9.
A 0-trialgebra A is a tri-Var-algebra if and only if Â is an algebra from the variety Var.
Proof. The claim follows from the following observation. If f(x1, . . . , xn) ∈ F(n) then the value f(a1, . . . , an) in A ⊂ Âis just the image of [Φ(n)(fH )](a1, . . . , an) in A for any subset H; moreover, the value of f(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn)on a1, . . . , an ∈ A is equal to f(a1, . . . , ak1 , . . . , akl , . . . , an) ∈ Â, i.e., one has to add bars to all non-emphasizedvariables.
Assuming x ⊥i y ≡ 0 for all x, y ∈ A, i ∈ I, we obtain the construction from [33]. This construction turns to be useful inthe study of dialgebras, see, e.g., [21, 42].
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2.2. Dialgebras and pseudo-algebras

The structure of a di-Var-algebra may be recovered from a structure of a Var-pseudo-algebra over an appropriatebialgebra H. Let us recall this notion from [6]. Suppose H is a cocommutative bialgebra with a coproduct ∆ and counit
ε. We will use the Swedler notation for ∆, e.g., ∆(h) = h(1)⊗h(2), ∆2(h) = (∆⊗ id)∆(h) = (id⊗∆)∆(h) = h(1)⊗h(2)⊗h(3),
h ∈ H. The operation F ·h = F∆n−1(h), F ∈ H⊗n, h ∈ H, turns H⊗n into a right H-module (the outer product of rightregular H-modules).A unital left H-module C gives rise to an operad (also denoted by C ) such that

C (n) = {f : C⊗n → H⊗n⊗HC | f is H⊗n-linear}.
For example, if dimH = 1 then what we obtain is just a linear space with poly-linear maps. The composition of suchmaps as well as the action of a symmetric group is defined in [6].In these terms, if Var is a variety of Ω-algebras defined by a system of poly-linear identities S then a Var-pseudo-algebra structure on an H-module C is a functor from Var to the operad C . Such a functor is determined by a family of
H⊗2-linear maps

∗i : C ⊗C → H⊗2⊗HC
satisfying the identities f (∗)(x1, . . . , xn) = 0, f ∈ S, deg f = n, c.f. [23], where f (∗) is obtained from f in the following way.Assume a poly-linear Ω-monomial u in the variables x1, . . . , xn turns into a word xσ (1) . . . xσ (n) for some σ = σ (u) ∈ Snafter removing all brackets and symbols ◦i, i ∈ I. Denote by u~ the expression obtained from the monomial u bymeans of replacing all ◦i with ∗i. Then u~ can be considered as a map C⊗n → H⊗n⊗HC , which may not be H⊗n-linear.However, u(∗) = (σ (u)⊗H id)u~ is H⊗n-linear. Finally, if f = ∑

ξ
αξuξ , αξ ∈ k, then

f (∗)(x1, . . . , xn) =∑
ξ

αξu(∗)
ξ .

Example 2.10 (c.f. [6]).Consider an Ω-algebra A, a cocommutative bialgebra H, and define C = H⊗A. Then C is a pseudo-algebra with respectto the operations (f ⊗a) ∗i (h⊗b) = (f ⊗h)⊗H (a ◦i b), f, h ∈ H, a, b ∈ A, i ∈ I.

Such a pseudo-algebra is denoted by CurA (current pseudo-algebra). If A belongs to Var then, obviously, CurA is aVar-pseudo-algebra over H.
Given a pseudo-algebra C with operations ∗i, i ∈ I, one may define operations `i, ai on the same space C as follows:if a ∗i b = ∑

ξ
(hξ⊗fξ )⊗Hdξ then

a `i b =∑
ξ

ε(hξ )fξdξ , a ai b =∑
ξ

hξε(fξ )dξ . (9)
Proposition 2.11.
Let C be a Var-pseudo-algebra. Then C (0) is a di-Var-algebra.

Proof. It is enough to verify (1) & (2) on C (0). Indeed, if a ∗i b = ∑
ξ

(hξ⊗fξ )⊗Hdξ , dξ ∗j c = ∑
η

(h′η⊗f ′η)⊗Heη then
(a `i b) ∗j c =∑

η

(∑
ξ

ε(hξ )fξdξ) ∗j c =∑
η,ξ

(
ε(hξ )fξh′η⊗f ′η)⊗Heη.
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Hence, (a `i b) `j c =∑
η,ξ

ε(hξfξh′η)f ′ηeη.
On the other hand,

(a ai b) ∗j c =∑
η

(∑
ξ

hξε(fξ )dξ) ∗j c =∑
η,ξ

(
hξε(fξ )h′η⊗f ′η)⊗Heη,

so (a `i b) `j c = (a ai b) `j c for all a, b, c ∈ C . The second identity in (1) can be proved in the same way. Considera poly-linear identity f ∈ S. It is straightforward to check, c.f. [24], that if
f (∗)(a1, . . . , an) =∑

ξ

(h1ξ⊗ · · ·⊗hnξ )⊗H cξ
then f(a1, . . . , ȧk , . . . , an) = ∑

ξ
h1ξ · · · ε(hkξ ) · · · hnξcξ in C (0). It is clear that if f (∗) vanishes in C then C (0) satisfies (2).

In particular, if B is a Var-algebra then (CurB)(0) is a di-Var-algebra.
Proposition 2.12.
If H contains a nonzero element T such that ε(T ) = 0 then every di-Var-algebra A embeds into (Cur Â)(0).
Proof. Recall that Â = A⊕A, Cur Â = H⊗Â. Define

ι : A → H⊗Â, ι(a) = 1⊗a+ T ⊗ a. (10)
This map is obviously injective, and

ι(a) ∗i ι(b) = (1⊗1)⊗H (1⊗a `i b) + (T ⊗1)⊗H (1⊗a ai b) + (1⊗T )⊗H (1⊗a `i b).
Since a `i b = a ai b in Â, we have

ι(a) `i ι(b) = 1⊗a `i b+ T ⊗a `i b = ι(a `i b), ι(a) ai ι(b) = 1⊗aai b+ T ⊗aai b = ι(aai b).
3. Dendriform di- and trialgebras

Let us first briefly demonstrate relations between dialgebras, dendriform dialgebras, and Manin products in the casewhen Var = As. The operad Dend in [28] is known to be Koszul dual (see [19] for details on Koszul duality) to theoperad DiAs. Since DiAs = As⊗Perm and it was noticed in [41, Proposition 15] that for Perm (as well as for ComTrias)the Hadamard product ⊗ coincides with the Manin white product ◦, we have Dend = (As⊗Perm)! = As •PreLie, whereAs! = As, PreLie is the operad of pre-Lie algebras which is Koszul dual to Perm, • stands for the Manin black productof operads [19].In general, for a binary operad P the successor procedure described in [3] gives rise to what is natural to call definingidentities of di- or tri-P-dendriform algebras. In addition, if P is quadratic then these P-dendriform algebras are dualto the corresponding di- or tri-P!-algebras. In this case, obviously, (P!⊗Perm)! = P • PreLie for dialgebras, and(P!⊗ComTrias)! = P! • PostLie for trialgebras, where PreLie = Perm!, PostLie = ComTrias!. This observation is closelyrelated with Proposition 3.2 below.In terms of identities, we do not need P to be quadratic (in fact, it is easy to generalize the successor procedure evenfor algebras with n-ary operations, n ≥ 2).
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3.1. Identities of di- and tri-Var-dendriform algebras

Suppose Var is a variety of Ω-algebras defined by a family S of poly-linear identities, as above.
Definition 3.1.A tri-Var-dendriform algebra is an Ω(3)-algebra satisfying the identities

f∗(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn), f ∈ S, n = deg f, 1 ≤ k1 < . . . < kl ≤ n,

for all l = 1, . . . , n, where f∗(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn) is obtained from f by means of the following procedure (thetri-successor procedure from [3]). Consider a family of maps Φ(n)∗ : F(n)⊗ComTrias(n)→ F(3)(n) defined on monomialsin a similar way as in (5), but, instead of va or v`, we have to use v∗ which stands for the linear combination of monomialsobtained when we replace each operation ◦j in v with `j + aj + ⊥j .Extend Φ∗(n) by linearity and set
f∗(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn) def= ∑

ξ

αξΦ∗(n)(uHξ )
for f(x1, . . . , xn) = ∑ξ αξuξ ∈ F(n), αξ ∈ k, H = {k1, . . . , kl}. To get the definition of a di-Var-dendriform algebra, it isenough to set x ⊥ y = 0 and consider |H| = 1 only.
Denote by DendDiVar and DendTriVar the operads governing di- and tri-Var-dendriform algebras, respectively.
Proposition 3.2.
If Var is a quadratic binary operad (and |Ω| < ∞) then (DiVar)! = DendDiVar! and (TriVar)! = DendTriVar!, where Var!
stands for the Koszul-dual operad to Var.
Proof. We consider the trialgebra case in detail since it covers the dialgebra case. Suppose Var = P(E,R) is a binaryquadratic operad, i.e., a quotient operad of F, F(2) = E , with respect to the operad ideal generated by S3-submodule
R ⊆ F(3), see [19] for details.The space E is spanned by µi : x1⊗x2 7→ x1◦i x2 and µ(12)

i : x1⊗x2 7→ x2◦i x1, i ∈ I. Without loss of generality, we mayassume that µi, i ∈ I, are linearly independent and
µ(12)
k = ∑

i∈I

αikµi + ∑
j∈I\I′

βjkµ(12)
j , k ∈ I′ ⊆ I, αik ∈ k,

are the only defining identities of Var of degree two, |I′| = d ≥ 0 (if char k 6= 2, these are just commutativity andanti-commutativity). Denote by N = 2|I| − d the dimension of E .The space F(3) can be naturally identified with the induced S3-module kS3⊗kS2 (E⊗E), where E⊗E is considered asan S2-module via (µ⊗ν)(12) = µ⊗ν(12), µ, ν ∈ E . Namely, the basis of F(3) consists of expressions
σ ⊗kS2 (µ⊗ν), σ ∈ {e, (13), (23)},

µ and ν range over a chosen basis of E . Therefore, dimF(3) = 3N2. In terms of monomials (or binary trees), for example,
e⊗kS2 (µi⊗µj ) corresponds to (x1 ◦j x2) ◦i x3, e⊗kS2 (µ(12)

i ⊗µj ) to x3 ◦i (x1 ◦j x2). A permutation σ ∈ S3 in the first tensorfactor permutes variables, e.g., (13)⊗kS2 (µ(12)
i ⊗µ

(12)
j ) corresponds to x1 ◦i (x2 ◦j x3).Recall that E∨ denotes the dual space to E considered as an S2-module with respect to sgn-twisted action 〈ν(12), µ〉 =

−〈ν, µ(12)〉, ν ∈ E∨, µ ∈ E . If F ∨ is the free binary operad generated by E∨ then (F(3))∨ ' F ∨(3) = kS3⊗kS2 (E∨⊗E∨).
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The Koszul-dual operad Var! is the quotient of F ∨ by the operad ideal generated by R⊥ ⊂ F ∨(3), the orthogonal spaceto R .By the definition, the operad TriVar is equal to P(E (3), R (3)), where the initial data E (3), R (3) are defined as follows. Thespace E (3) is spanned by µ?i , (µ?i )(12), i ∈ I, ? ∈ {`, a,⊥}, with respect to the relations
(µ`k )(12) = ∑

i∈I

αikµai + ∑
j∈I\I′

βjk (µ`j )(12), (µak )(12) = ∑
i∈I

αikµ`i + ∑
j∈I\I′

βjk (µaj )(12),
(µ⊥k )(12) = ∑

i∈I

αikµ⊥i + ∑
j∈I\I′

βjk (µ⊥j )(12), k ∈ I′.

The S3-module R (3) is generated by the defining identities of tri-Var-algebras, i.e.,
R (3) = {Φ(3)(fH ) : f ∈ R, ∅ 6= H ⊆ {1, 2, 3}}⊕O(3),

and O(3) is the S3-submodule of F(3) generated by
µ`j ⊗µai − µ`j ⊗µ`i , µ`j ⊗µ⊥i − µ`j ⊗µ`i ,(µai )(12)⊗µ`j − (µai )(12)⊗µaj , (µai )(12)⊗µ⊥j − (µai )(12)⊗µ⊥j , i, j ∈ I. (11)

It is easy to calculate that dimE (3) = 3N, dimF(3)(3) = 27N2, dimO(3) = 6N2, so dimR (3) = 6N2 + 7 dimR . Denote by
O(3)+ the S3-submodule of F(3) generated by the first summands of all relations from (11).Suppose f ∈ F(3), g ∈ F ∨(3), and let H1, H2 ⊆ {1, 2, 3} be nonempty subsets. It follows from the definition of Φ(3) that〈Φ(3)(fH1 ),Φ(3)(gH2 )〉 = 0 if H1 6= H2. For H1 = H2 = H, orthogonality of f and g implies 〈Φ(3)(fH ),Φ(3)(gH )〉 = 0as well. Moreover, for every f ∈ F(3) we have 〈Φ(3)(fH ), O(3)+ 〉 = 0 since neither of terms from O(3)+ appears in imagesof Φ(3).Now, it is easy to see that if g ∈ R⊥ ⊆ F ∨(3) then 〈f,Φ∗(3)(gH )〉 = 0 for every f ∈ R (3). Hence,

(R⊥)(3∗) def= {Φ∗(3)(gH ) : g ∈ R⊥, ∅ 6= H ⊆ {1, 2, 3}} ⊆ (R (3))⊥.
On the other hand, dimR⊥ = 3N2 − dimR , so dim(R⊥)(3∗) = 21N2 − 7 dimR . Therefore, dim(R⊥)(3∗) + dimR (3) = 27N2and (R⊥)(3∗) = (R (3))⊥. It remains to recall that, by definition, DendTriVar = P(E (3), (R⊥)(3∗)).
Example 3.3.The defining identities of Perm-algebras are (x1x2)x3 − (x2x1)x3 and x1(x2x3) − (x1x2)x3 [11]. The corresponding varietyof di-Perm-algebras is governed by the operad DiPerm = Perm⊗Perm = Perm ◦Perm. Thus, (DiPerm)! = Perm! •Perm! = PreLie •PreLie, where PreLie is the operad governing left-symmetric (pre-Lie) algebras satisfying the identity(x1x2)x3−x1(x2x3) = (x2x1)x3−x2(x1x3). By Proposition 3.2, (DiPerm)! = DendDiPreLie. Defining identities of the varietyof di-PreLie-dendriform algebras are easy to construct by Definition 3.1: They coincide with the defining identities ofL-dendriform algebras [5]. Hence, the operad governing the class of L-dendriform algebras is equal to PreLie • PreLie.
3.2. Embedding into Rota–Baxter algebras

Suppose B is an Ω-algebra. A linear map R : B → B is called a Rota–Baxter operator of weight λ ∈ k if
R(x) ◦i R(y) = R

(
x ◦iR(y) + R(x)◦iy+ λx ◦iy

) (12)
for all x, y ∈ B, i ∈ I.
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Let A be an Ω(3)-algebra. Consider the isomorphic copy A′ of the underlying linear space A (assume a ∈ A is in theone-to-one correspondence with a′ ∈ A′), and define the following Ω-algebra structure on the space Â = A⊕A′:
a ◦i b = a `i b+ a ai b+ a ⊥i b, a ◦i b′ = (a `i b)′, a′ ◦i b = (a ai b)′, a′ ◦i b′ = (a ⊥i b)′, (13)

for a, b ∈ A, i ∈ I.
Lemma 3.4.
Given a scalar λ ∈ k, the linear map R : Â → Â defined by R(a′) = λa, R(a) = −λa, a ∈ A, is a Rota–Baxter operator
of weight λ on the Ω-algebra Â.

Proof. It is enough to check the relation (12). A straightforward computation shows
R(a+b′) ◦i R(x+y′) = λ2(−a+b) ◦i (−x+y)= λ2(a `i x + a ai x + a⊥i x − a `i y − a ai y − a⊥i y − b `i x − b ai x − b⊥i x + b `i y+ b ai y+ b⊥i y

)
.

On the other hand,
R
((a+b′) ◦i R(x+y′) + R(a+b′) ◦i (x+y′) + λ(a+b′) ◦ (x+y′))= λR

((a+b′) ◦i (−x+y) + (−a+b) ◦i (x+y′) + (a+b′) ◦ (x+y′))= λR
(
−a `i x − a ai x − a⊥i x + a `i y+ a ai y+ a⊥i y
− (b ai x)′ + (b ai y)′ − a `i x − a ai x − a⊥i x + b `i x + b ai x + b⊥i x
− (a `i y)′ + (b `i y)′ + a `i x + a ai x + a⊥i x + (a `i y)′ + (b ai x)′ + (b⊥i y)′)= λ2(−a `i y − a ai y − a⊥i y+ b ai y+ a `i x + a ai x + a⊥i x − b `i x − b ai x − b⊥i x + b `i y+ b⊥i y

)
.

Lemma 3.5.
Let A be an Ω(2)-algebra. Then the map R : Â → Â defined by R(a′) = a, R(a) = 0 is a Rota–Baxter operator of weight
λ = 0 on Â.

The proof is completely analogous to the previous one. The following statement is well-known in various particularcases, c.f. [1, 15, 16, 38].
Proposition 3.6.
Let B be an Ω-algebra with a Rota–Baxter operator R of weight λ. Assume B belongs to Var. Then the same linear
space B considered as an Ω(3)-algebra with respect to the operations

x `i y = R(x) ◦i y, x ai y = x ◦i R(y), x ⊥i y = λx ◦i y (14)
is a tri-Var-dendriform algebra.

Proof. Let u = u(x1, . . . , xn) ∈ F(n) be a poly-linear Ω-monomial. The claim follows from the following relation in B:
u∗(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn) = λl−1u(R(x1), . . . , xk1 , . . . , xkl , . . . , R(xn)), (15)

i.e., in order to get a value of an Ω(3)-monomial in B we have to replace every non-emphasized variable xi, i /∈ H =
{k1, . . . , kl}, with R(xi) and multiply the result by λl−1.
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Relation (15) is clear for n = 1, 2. In order to apply induction on n, we have to start with the case when H = ∅. Recallthat u∗(x1, . . . , xn) stands for the expression obtained from u by means of replacing each ◦i with `i + ai + ⊥i. Then
R(u∗(x1, . . . , xn)) = u(R(x1), . . . , R(xn)), n ≥ 2, (16)

in B. Indeed, for n = 2 we have exactly the Rota–Baxter relation. If u = v ◦i w, v = v(x1, . . . , xp), w = w(xp+1, . . . , xn),then, by induction,
R(u∗) = R (v∗ `i w∗ + v∗ ai w∗ + v∗⊥i w∗) = R

(
R(v∗)◦iw∗ + v∗◦i R(w∗) + λv∗◦iw∗

)
= R(v∗) ◦i R(w∗) = v(R(x1), . . . , R(xp)) ◦i w(R(xp+1), . . . , R(xn)) = u(R(x1), . . . , R(xn)).

Now, let us finish proving (15). If u = v ◦i w, deg v = p, H = H1∪̇H2 then there are three cases: (a) H1, H2 6= ∅;(b) H1 = ∅; (c) H2 = ∅.In the case (a), u∗(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn) = Φ∗(n)(uH ) = Φ∗(p)(vH1 ) ⊥i Φ∗(n)(wH2 ), and it remains to apply theinductive assumption and the definition of ⊥i from (14). In the case (b), Φ∗(n)(uH ) = v∗ `i Φ∗(n−p)(wH ), so for any
a1, . . . , an ∈ B we can apply (16) to get

[Φ∗(n)(uH )](a1, . . . , an) = R(v∗(a1, . . . , ap)) ◦i [Φ∗(n−p)(wH )](ap+1, . . . , an)= v(R(a1), . . . , R(ap)) ◦i λl−1w(R(ap+1, . . . , ak1 , . . . , akl , . . . , R(an))= λl−1u(R(a1, . . . , ak1 , . . . , akl , . . . , R(an)).
The case (c) is completely analogous.
Proposition 3.7 (c.f. [1, 38]).
Let B be an Ω-algebra with a Rota–Baxter operator R of weight λ = 0. Assume B belongs to Var. Then the same linear
space B considered as Ω(2)-algebra with respect to x `i y = R(x) ◦i y, x ai y = x ◦i R(y) is a di-Var-dendriform algebra.

Proof. Note that a di-Var-dendriform algebra is the same as tri-Var-dendriform algebra with x ⊥i y = 0 for all x, y,and i. The claim follows from Proposition 3.6.
Given an Ω-algebra B ∈ Var with a Rota–Baxter operator R : B → B of weight λ, denote the tri-Var-dendriform algebraobtained by Proposition 3.6 by B(R). If λ = 0 then B(R) is actually a di-Var-dendriform algebra.
Theorem 3.8.
Let A be an Ω(3)-algebra, and let Â be the Ω-algebra defined by (13). Then the following statements are equivalent:(i) A is a tri-Var-dendriform algebra;(ii) Â belongs to Var.
Proof. (i)⇒ (ii) Assume A is a tri-Var-dendriform algebra, and let S be the set of defining identities of Var. We haveto check that every f ∈ S holds on Â.First, let us compute a monomial in Â = A⊕A′ when all its arguments belong to the first summand.
Lemma 3.9.
Suppose u = u(x1, . . . , xn) ∈ F(n) is a poly-linear Ω-monomial of degree n. Then in the Ω-algebra Â we have

u(a1, . . . , an) = ∑
H

Φ∗(n)(uH )(a1, . . . , an), ai ∈ A, (17)
where H ranges over all nonempty subsets of {1, . . . , n}.

237



Embedding of dendriform algebras into Rota–Baxter algebras

Proof. By the definition of multiplication in Â, u(a1, . . . , an) = u∗(a1, . . . , an), where u∗ means the same as in thedefinition of Φ∗(n). In particular, for n = 1, 2 the statement is clear. Proceed by induction on n = degu. Assume
u = v ◦i w, and, without loss of generality, v = v(x1, . . . , xp), w = w(xp+1, . . . , xn). Then

u(a1, . . . , an) = v∗(a1, . . . , ap) `i (∑
H2

Φ∗(n−p)(wH2 )(ap+1, . . . , an))

+ (∑
H1

Φ∗(p)(vH1 )(a1, . . . , ap)) ⊥i (∑
H2

Φ∗(n−p)(wH2 )(ap+1, . . . , an))

+ (∑
H1

Φ∗(p)(vH1 )(a1, . . . , ap)) ai w∗(ap+1, . . . , an),
(18)

where H1 and H2 range over all nonempty subsets of {1, . . . , p} and {p+ 1, . . . , n}, respectively. It is easy to see thatthe overall sum is exactly the right-hand side of (17): The first (second, third) group of summands in (18) correspondsto H = H2 ⊆ {p+ 1, . . . , n}, (H = H1 ∪ H2, H = H1 ⊆ {1, . . . , p}, respectively).
Next, assume that l > 0 arguments belong to A′.
Lemma 3.10.
Suppose u = u(x1, . . . , xn) ∈ F(n) is a poly-linear Ω-monomial of degree n, H = {k1, . . . , kl} is a nonempty subset of
{1, . . . , n}. Then in the Ω-algebra Â we have

u(a1, . . . , a′k1 , . . . , a′kl , . . . , an) = (Φ∗(n)(uH )(a1, . . . , an))′.
Proof. For n = 1, 2 the statement is clear. If u = v ◦i w for some i ∈ I as above then we have to consider threenatural cases: (a) H ⊆ {1, . . . , p}; (b) H ⊆ {p+ 1, . . . , n}; (c) variables with indices from H appear in both v and w. Inthe case (a), the inductive assumption implies

u(a1, . . . , a′k1 , . . . , a′kl , . . . , an) = v(a1, . . . , a′k1 , . . . , a′kl , . . . , ap) ai w∗(ap+1, . . . , an)= (Φ∗(p)(vH )(a1, . . . , ap) ai w∗(ap+1, . . . , an))′,
and it remains to recall the definition of Φ∗(n). Case (b) is analogous. In the case (c), H = H1∪̇H2 as above and

u(a1, . . . , a′k1 , . . . , a′kl , . . . , an) = Φ∗(p)(vH1 )(a1, . . . , ap) ⊥i Φ∗(n − p)(wH2 )(ap+1, . . . , an)
which proves the claim.
Finally, suppose f ∈ S is a poly-linear identity of degree n. Then Φ∗(n)(fH ) is an identity on the Ω(3)-algebra A, soLemmas 3.9 and 3.10 imply f holds on Â.(ii)⇒ (i) The map ι : A → Â, ι(a) = a′, is an embedding of the Ω(3)-algebra A into Â equipped with operations (14). Letus choose λ = 1 and define a Rota–Baxter operator R on Â by Lemma 3.4. By Proposition 3.6, Â(R) is a tri-Var-dendriformalgebra, therefore so is A.
If λ = 0 then the simple reduction of Theorem 3.8 by means of Lemma 3.5 leads to
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Theorem 3.11.
Suppose A is an Ω(2)-algebra, and let Â stands for an Ω-algebra defined by (13) with x ⊥i y ≡ 0. Then the following
statements are equivalent:(i) A is a di-Var-dendriform algebra;(ii) Â belongs to Var.
Remark 3.12.It is interesting to note that A is a simple di-Var-dendriform algebra if and only if Â is a simple Rota–Baxter algebra.
Corollary 3.13.
For every tri- (or di-)Var-dendriform algebra A there exists an algebra B ∈ Var with a Rota–Baxter operator R of weight
λ 6= 0 (or λ = 0, respectively) such that A ⊆ B(R).
Proof. It is enough to consider the case of trialgebras only. Let λ 6= 0 and let Â(λ) be an algebra with the sameunderlying space as Â but with new operations x ◦(λ)i y = (x ◦i y)/λ. It is clear that Â(λ) ∈ Var and if R is a Rota–Baxteroperator on Â from Lemma 3.4 then so is R for Â(λ). Hence, Â(λ) with respect to the operations (14) is a tri-Var-dendriform algebra by Proposition 3.6. Note that a map ι : A → Â(λ) given by ι(a) = a′ ∈ A′ ⊂ Â(λ) is an embedding ofΩ(3)-algebras.
Given a tri-Var-dendriform algebra A, its universal enveloping Rota–Baxter algebra Uλ(A) of weight λ, c.f. [18], is analgebra in the variety Var with a Rota–Baxter operator R such that• There is a homomorphism φλ : A → Uλ(A)(R) of tri-Var-dendriform algebras;• For every algebra B ∈ Var with a Rota–Baxter operator R ′ of weight λ and for every homomorphism ψ : A → B(R ′)of tri-Var-dendriform algebras there exists a unique homomorphism of Rota–Baxter algebras χ : Uλ(A)→ B suchthat φλ ◦ χ = ψ.
For a di-Var-dendriform algebra A, its universal enveloping Rota–Baxter algebra of weight zero U0(A) is defined analo-gously, see also [12].It follows from standard universal algebra considerations that for every di- or tri-Var-dendriform algebra A there exists aunique (up to isomorphism) universal enveloping Rota–Baxter algebra Uλ(A) (λ = 0 in the case of dendriform dialgebras).Since there exists B = Â (or Â(λ)) such that ψ is injective, the map φλ has to be injective.
Corollary 3.14 (c.f. [12]).
Every di-Var-dendriform algebra embeds into its universal enveloping Rota–Baxter algebra of weight λ = 0 in Var.
Corollary 3.15.
Every tri-Var-dendriform algebra embeds into its universal enveloping Rota–Baxter algebra of weight λ 6= 0 in Var.
Remark 3.16.All these results remain valid for dendriform algebras over a commutative ring with a unit provided that λ is invertible.
In [15], another structure of a dendriform dialgebra on an associative Rota–Baxter algebra B of arbitrary weight λ wasproposed. In our terms, it corresponds to

a `i b = a◦i R(b) + λa◦i b, a ai b = R(a) ◦i b, a, b ∈ B. (19)
Such a construction also admits an embedding of a di-Var-dendriform algebra into an appropriate Rota–Baxter algebra.It is enough to consider the case λ 6= 0. Indeed, an arbitrary di-Var-dendriform algebra A may be considered as atri-Var-dendriform algebra with a ⊥i b = 0 for all a, b ∈ A, i ∈ I. Theorem 3.8 implies A to be embedded into theRota–Baxter algebra Â(λ) ∈ Var of weight λ. Since A′ is the image of A and (A′)2 = 0 in Â and hence in Â(λ), theoperations ai and `i in (19) coincide with those in (14).
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4. Generalized trialgebras

Consider a slightly generalized analogue of trialgebras which we shortly call g-trialgebras.
Definition 4.1.A generalized tri-Var-algebra (or g-tri-Var-algebra) is an Ω(3)-algebra satisfying the identities (1) and (7).
In other words, we exclude the identities x1 ai (x2 ⊥j x3) = x1 ai (x2 aj x3), (x1 ⊥i x2) `j x3 = (x1 `i x2) `j x3 from thedefinition of a tri-Var-algebra.For any Ω(3)-algebra A satisfying 0-identities (1) we can also construct (as in the dialgebra case) the Ω-algebra
Â = A⊕A as follows (similarly as in (8)): A = A/Span{a`i b−aai b : a, b ∈ A, i ∈ I}, a◦i b = a `i b, a◦i b = a `i b,
a ◦i b = a ai b, a ◦i b = a ⊥i b. An analogue of Proposition 2.9 holds for this construction and provides an equivalentdefinition of a g-tri-Var-algebra.
Example 4.2.If Var = Com is the variety of associative and commutative algebras then it is sufficient to consider only two operations `and ⊥ to define g-tri-Com-algebras. Both these operations are associative, ⊥ is commutative, and they also satisfy thefollowing identities:

x1 ` (x2⊥x3) = (x1 ` x2) ⊥ x3, (x1 ` x2) ` x3 = (x2 ` x1) ` x3.Let us denote the corresponding operad by gComTrias. It is easy to derive from the definition that the free algebrain gComTrias generated by a countable set X = {x1, x2, . . . } is isomorphic as a linear space to the free algebra in Permgenerated by the space of polynomials k[X ]. Its linear basis consists of words
u1 ` u1 ` . . . ` uk ` u0, u1 6 . . . 6 uk ,

where ui are basic monomials of the polynomial algebra k[X ] with respect to the operation ⊥ and some linear ordering 6.
Proposition 4.3 (c.f. [1]).(i) Let A be an Ω-algebra in the variety Var with a linear mapping T such that

T (x) ◦i T (y) = T (x ◦i T (y)) = T (T (x) ◦i y), x, y ∈ A, i ∈ I. (20)
Then the space A with respect to operations x `i y = T (x)◦iy, x ai y = x◦iT (y), x ⊥i y = x◦iy is a g-tri-Var-algebra(let us denote it by A(T )).

(ii) For every di-Var-algebra B there exists an Ω-algebra A ∈ Var and an operator T satisfying (20) such that B ⊆ A(T ).
Proof. (i) Relation (20) implies that (1) hold in A(T ). If f(x1, . . . , xn) ∈ F(n) and H = {k1, . . . , kl} ⊆ {1, . . . , n}, l ≥ 1,then the value of Φ(n)(fH )(a1, . . . , an) in A(T ) is equal to f(T (a1), . . . , ak1 , . . . , akl , . . . , T (an)) ∈ A, i.e., all non-emphasizedvariables xi are replaced with T (xi). Thus, if A ∈ Var then A(T ) is a g-tri-Var-algebra.(ii) Given a di-Var-algebra B, consider B̂ = B⊕B as in Proposition 2.9 and define a linear mapping T : B̂ → B̂ insuch a way that T (a) = 0, T (a) = a, a ∈ B. Then (20) holds trivially, and B ⊆ B̂(T ).
Example 4.4.Let 〈A, ·〉 be an algebra in the variety Var with a derivation d such that d2 = 0, see, e.g., [28]. Defining a ` b = d(a) · b,
a a b = a · d(b), a ⊥ b = a · b we obtain a g-tri-Var-algebra (A, `, a,⊥).

240



V.Yu. Gubarev, P.S. Kolesnikov

It turns out that g-tri-Var-algebras are closely related with Γ-conformal algebras introduced in [20]. These systemsappeared as “discrete analogues” of conformal algebras defined over a group Γ. From the general point of view, theseare pseudo-algebras over the group algebra H = kΓ considered as a Hopf algebra with respect to canonical coproduct∆(γ) = γ⊗γ and counit ε(γ) = 1, γ ∈ Γ. Thus, a Γ-conformal algebra of a variety Var is just a Var-pseudo-algebraover kΓ as defined in subsection 2.2.Consider a Γ-conformal algebra C with H⊗2-linear operations ∗i : C ⊗C → H⊗2⊗HC , i ∈ I, given by
a ∗i b =∑

γ∈Γ(γ⊗1)⊗H ciγ , a, b ∈ C.

Then the family of bilinear operations `i, ai, ⊥i, i ∈ I, on C can be defined as follows, c.f. (9):
a ai b =∑

γ∈Γ c
i
γ , a `i b =∑

γ∈Γ γc
i
γ , a ⊥i b = cie,

where e is the unit element of Γ. Denote the Ω(3)-algebra obtained by C (0). The H⊗2-linearity of ∗i implies
a `i b =∑

γ∈Γ(γa) ⊥i b, a ai b =∑
γ∈Γ a ⊥i (γb), a, b ∈ C, i ∈ I

(the sums are finite even if Γ is an infinite group).
Proposition 4.5.
If C is a Γ-conformal algebra of the variety Var then C (0) is a g-tri-Var-algebra.

Proof. For every n ≥ 1 and for every ∅ 6= K = {k1, . . . , kl} ⊆ {1, . . . , n} define a linear map ΦK
n : H⊗n → H, H = kΓ,as follows:

ΦK
n (γ1⊗ · · ·⊗γn) = {γk1 if γk1 = . . . = γkl ,0 otherwise.

This is obviously a morphism of right H-modules. Hence, it can be extended to a map ΦK
n ⊗H idC : H⊗n⊗HC → C by therule F ⊗Ha 7→ ΦK

n (F )a, F ∈ H⊗n, a ∈ C . Later we will not distinguish ΦK
n and ΦK

n ⊗H idC since C is fixed.
Lemma 4.6.
For all f ∈ F(n), ∅ 6= K ⊆ {1, . . . , n}, and a1, . . . , an ∈ C, the following equality holds in C (0):(Φ(n)(fK ))(a1, . . . , an) = ΦK

n (f (∗)(a1, . . . , an)), (21)
where Φ(n) is the map defined in (5).
Proof. It is enough to prove (21) for all monomials in F(n). First, let us consider a monomial v = v(x1, . . . , xn) such that
v (∗) = v~, see subsection 2.2. Proceed by induction on n ≥ 1. For n = 1 the statement is clear. For n > 1, assume (21)is true for all shorter monomials w ∈ F(m), m < n, such that w (∗) = w~. Then v = v1(x1, . . . , xp) ◦i v2(xp+1, . . . , xn),
v (∗)
j = v~j for j = 1, 2. Suppose

v (∗)1 (a1, . . . , ap) =∑
ξ

Fξ⊗Hbξ , Fξ ∈ H⊗p, bξ ∈ C ;
v (∗)2 (ap+1, . . . , an) =∑

η
Gη⊗H cη, Gη ∈ H⊗(n−p), cη ∈ C ;

bξ ∗i cη =∑
ζ

(
α (ξ,η)1,ζ ⊗ α (ξ,η)2,ζ )⊗Hd(ξ,η)

ζ , α (ξ,η)
j,ζ ∈ Γ, d(ξ,η)

ζ ∈ C.
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Then
v (∗)(a1, . . . , an) = ∑

ξ,η,ζ

(
Fξα (ξ,η)1,ζ ⊗Gηα (ξ,η)2,ζ )⊗Hd(ξ,η)

ζ ∈ H⊗n⊗HC.

Without loss of generality we may assume Fξ = γ1,ξ⊗ · · ·⊗γp,ξ , Gη = β1,η⊗ · · ·⊗βn−p,η, where γj,ξ , βj,ξ ∈ Γ.There are three cases: (a) K1 = K ∩ {1, . . . , p} = ∅, (b) K2 = {j −p : j ∈ K ∩ {p+1, . . . , n}} = ∅, (c) K1, K2 6= ∅.In the first case, the inductive assumption and (5) imply
(Φ(n)(vK ))(a1, . . . , an) = v`1 (a1, . . . , ap) `i (Φ(n−p)(vK22 ))(ap+1, . . . , an)= Φ{p}p

(
v (∗)1 (a1, . . . , ap)) `i ΦK2

n−p
(
v (∗)2 (ap+1, . . . , an))

= (∑
ξ

γp,ξbξ

)
`i

(∑
η

ΦK2
n−p(Gη)cη) = ∑

ξ,η,ζ

ΦK2
n−p(Gη)α (ξ,η)2,ζ d(ξ,η)

ζ .

On the other hand, since K ⊆ {p+1, . . . , n}, we may ignore the first p tensor multipliers, so ΦK
n
(
Fξα (ξ,η)1,ζ ⊗Gηα (ξ,η)2,ζ ) =ΦK2

n−p
(
Gηα (ξ,η)2,ζ ) = ΦK2

n−p(Gη)α (ξ,η)2,ζ , and the claim follows. The case (b) (K ⊆ {1, . . . , p}) is completely analogous. Considerthe third one. If both K1 and K2 are nonempty then the inductive assumption and (5) imply
(Φ(n)(vK ))(a1, . . . , an) = (Φ(p)(vK11 ))(a1, . . . , ap) ⊥i (Φ(n−p)(vK22 ))(ap+1, . . . , an)= ΦK1

p
(
v (∗)1 (a1, . . . , ap)) ⊥i ΦK2

n−p
(
v (∗)2 (ap+1, . . . , an))= ∑

ξ,η,ζ

Φ{1,2}2
(ΦK1

p (Fξ )α (ξ,η)1,ζ ⊗ΦK2
n−p(Gη)α (ξ,η)2,ζ

)
d(ξ,η)
ζ

= ∑
ξ,η,ζ

ΦK
n
(
Fξα (ξ,η)1,ζ ⊗Gηα (ξ,η)2,ζ )d(ξ,η)

ζ .

(22)

To get the last equation, we used the obvious relation Φ{1,2}2 (ΦK1
p (F )⊗ΦK2

n−p(G)) = ΦK
n (F ⊗G), F ∈ H⊗p, G ∈ H⊗(n−p).On the other hand, Φ(n)K(v (∗)(a1, . . . , an)) by definition is equal to the right-hand side of (22).To complete the proof, it remains to consider u = v(xσ (1), . . . , xσ (n)), where v (∗) = v~. In this case, u(∗)(a1, . . . , an) =(σ ⊗H idC )(v (∗)(aσ (1), . . . , aσ (n))). By the definition of ΦK

n , we have
ΦK
n
(
u(∗)(a1, . . . , an)) = Φσ−1(K )

n
(
v (∗)(aσ (1), . . . , aσ (n))).

On the other hand, Φ(n)(uK ) = (Φ(n)(vσ−1(K )))σ by (5). Therefore,
(Φ(n)(uK ))(a1, . . . , an) = Φ(n)(vσ−1(K ))(aσ (1), . . . , aσ (n)).

Since the statement is already proved for v , the relation (21) holds for u as well.
If for some f ∈ F(n) the H-pseudo-algebra C satisfies f (∗)(a1, . . . , an) = 0 for all a1, . . . , an ∈ C , then by Lemma 4.6the Ω(3)-algebra C (0) satisfies the identities f(x1, . . . , ẋk1 , . . . , ẋkl , . . . , xn) = Φ(n)(fK ), K = {k1, . . . , kl}. Hence, this is ag-tri-Var-algebra.
Remark 4.7.Relation (21) implies, in particular, that C with respect to ⊥i, i ∈ I, is an Ω-algebra from Var. If |Γ| < ∞ then the operator
T : C → C , T (a) = ∑

γ∈Γ γa, is well-defined, and it satisfies (20). In this case, the structure of a g-tri-Var-algebra on
C (0) is given by Proposition 4.3.
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There is an interesting question whether a trialgebra or g-trialgebra A can be embedded into C (0) for some pseudo-algebra C . We have a positive answer for tri-Var-algebras, but only for char k = p > 0: The mapping ι from (10) realizessuch an embedding of A into the Γ-conformal algebra Cur Â when T = γ1 + · · ·+ γp, where e 6= γi are pairwise distinctelements of a group Γ such that |Γ| ≥ p+ 1.
Example 4.8.A g-tri-As-algebra A with respect to the operations [x, y] = x a y− x ` y and x · y = x ⊥ y turns into a noncommutativedialgebra analogue of a Poisson algebra: The operation [ · , · ] satisfies the Leibniz identity and · is associative. Moreover,the Poisson identity holds: [xy, z] = x [y, z] + [x, z]y.
In [30], the same operations [ · , · ] and · were considered for tri-As-algebras (in the sense of Definition 2.6). The analogueof a Poisson algebra obtained in this way satisfies one more identity [x, yz−zy] = [x, [y, z]] which does not appear inthe case of generalized trialgebras.
It is natural to conjecture that, as in the case of tri-Var-algebras, the operad governing the variety of g-tri-Var-algebrascan be obtained by the white product procedure in the case when Var is quadratic. Let us recall the definition of awhite product of quadratic binary operads [19]. For an S2-module E , denote kS3⊗kS2 (E⊗E) by F(E)(3). In F(E)(3),the transposition (12) ∈ S2 acts on the tensor square E⊗E as id⊗ (12). If P1 = P(E1, R1) and P2 = P(E2, R2) are twoquadratic binary operads then the Manin white product P1◦P2 is the sub-operad in P1⊗P2 generated by E1⊗E2 (here(12) ∈ S2 acts on E1⊗E2 as (12)⊗ (12)). Consider the S3-linear injection

Σ: (F(E1⊗E2))(3) → F(E1)(3)⊗F(E2)(3)
given by Σ: σ ⊗kS2 ((e1⊗µ1)⊗ (e2⊗µ2)) 7→ (σ ⊗kS2 (e1⊗e2))⊗ (σ ⊗kS2 (µ1⊗µ2)).Denote the image of Σ by D(E1, E2). The images of defining identities of an algebra over P1⊗P2 under Σ have to fallinto R = R1⊗F(E2)(3) + F(E1)(3)⊗R2, so to compute the white product one has to find the intersection of D(E1, E2)and R . This is a routine problem of linear algebra, but the amount of computations is usually very large.In our case, the operad P1 = gComTrias is defined by 3-dimensional E1 = ke⊕ke(12)⊕kf , f (12) = f , and 17-dimensionalsubspace R1 ⊂ F(E1)(3). The operad of associative algebras has 2-dimensional E2 = kµ⊕kµ(12) and 6-dimensional R2.In F(E1⊗E2), one has to interpret e⊗µ as x1 ` x2, e(12)⊗µ as x1 a x2, e⊗µ(12) as x2 a x1, e(12)⊗µ(12) as x2 ` x1, f ⊗µ as
x1 ⊥ x2, and f ⊗µ(12) as x2 ⊥ x1.A simple computer program allowed us to make sure that gComTrias ◦ As and gComTrias ◦ Lie define the varieties ofg-tri-As- and g-tri-Lie-algebras, respectively. In particular, the class of g-tri-Lie-algebras consists of linear spaces Lwith two operations [x, y] = x ` y and (x, y) = x ⊥ y such that L is a Leibniz algebra with respect to [ · , · ] and Lie algebrawith respect to ( · , · ). These operations are related by one binary-quadratic relation ([x, y], z) = [x, (y, z)] + ([x, z], y).Such a relation has recently appeared in [39]. We conjecture that a similar relation holds for every quadratic binaryoperad.
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