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1. Introduction

In [7], Glen Baxter introduced an identity defining what is now called Rota—Baxter operator in developing works of
F.Spitzer [36] in fluctuation theory. By definition, a Rota—Baxter operator R of weight A on an algebra A is a linear
map on A such that

R(MR() = R(XR(y) + R(x)y) + AR(xy),  x,y €A

where A is a scalar from the base field.

* E-mail: vsevolodgu@mail.ru
t E-mail: pavelsk@math.nsc.ru
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Later, commutative associative algebras with such an operator were studied by G.-C.Rota and P.Cartier [10, 34]. In
1980s, these operators appeared in the context of Lie algebras independently in works A.A. Belavin and V.C. Drinfeld [8]
and M.A. Semenov-Tian-Shansky [35] in research on solutions of classical Young—Baxter equation named in the honour
of Chen Ning Yang and Rodney Baxter.

For the present time, numerous connections of Rota—Baxter operators with different areas of mathematics (Young—Baxter
equations, operads, Hopf algebras, number theory, etc.) can be found [2, 17, 22, 26]. Also, there is a relation between
Rota—Baxter operators and quantum field theory [13, 14].

The notion of a Leibniz algebra introduced by J.-L. Loday [27] originates from cohomology theory of Lie algebras; this is
a noncommutative analogue of Lie algebras. Associative dialgebras (now often called diassociative algebras) emerged in
the paper by J.-L. Loday and T. Pirashvili [29], they play the role of universal enveloping associative algebras for Leibniz
algebras. In [24], a general notion of a dialgebra corresponding to an arbitrary variety Var of “ordinary” algebras (such
as associative, alternative, etc.) was introduced (hereinafter, we refer to them as to di-Var-algebras).

Later, J.-L. Loday and M. Ronco [30] introduced a generalization of dialgebras — trialgebras (in the associative case). In
this paper, we generalize the definition from [24] to the case of trialgebras. Given a variety Var of Q-algebras defined
by poly-linear identities, we define a corresponding variety called tri-Var-algebras. By a dialgebra (or trialgebra) we
mean a di- (or tri-)Var-algebra for some Var.

Dendriform dialgebras were defined by J.-L. Loday [28] in his study of algebraic K-theory. Moreover, they occur to be
Koszul-dual to di-As-algebras, where As is the variety of associative algebras. Dendriform trialgebras introduced in [30]
are proved to be Koszul-dual to tri-As-algebras. In this paper, we determine what is a di- or tri-Var-dendriform algebra,
following [3], for a given variety Var as above. By a dendriform dialgebra (or dendriform trialgebra) we mean a di- (or
tri-) Var-dendriform algebra for some Var. The term “dendriform algebra” will stand for either dendriform dialgebra or
dendriform trialgebra in contrast to previous works in this topic, where the term “dendriform algebra” means the same as
“di-As-dendriform algebra” in this paper. Also, the terms “dendriform trialgebra” or “tridendriform algebra” were used
for what we call “tri-As-dendriform algebra”.

Dendriform dialgebras (trialgebras) are linear spaces with two (three) operations >, < (and -). For their Koszul duals
(dialgebras and trialgebras) their operations usually are denoted by F, -, and L. In this paper, we prefer the latter
notations for dendriform structures instead of traditional >, <, and - since our combinatorial approaches to definitions
of corresponding varieties are very much similar.

M. Aquiar in [1] was the first who noticed a relation between Rota—Baxter algebras and dendriform algebras. He proved
that an associative algebra with a Rota—Baxter operator R of weight zero relative to operations a 4 b = aR(b),
a b b = R(a)b is a di-As-dendriform algebra. Later K. Ebrahimi-Fard [15] generalized this fact to the case of Rota—
Baxter algebras of arbitrary weight and obtained as a result both di- and tri-As-dendriform algebras. In the paper by
K.Ebrahimi-Fard and L. Guo [18], universal enveloping Rota—Baxter algebras of weight A for di- and tri-As-dendriform
algebras were defined.

The natural question: Whether an arbitrary dendriform algebra can be embedded into its universal enveloping Rota—
Baxter algebra of appropriate weight was solved positively in [18] for free dendriform algebras only. Y.Chen and Q. Mo [12]
proved that any di-As-dendriform algebra over a field of characteristic zero can be embedded into an appropriate Rota—
Baxter algebra of weight zero using the Grobner—Shirshov bases technique for Rota-Baxter algebras developed in [9].

Also, C.Bai, L. Guo and K.Ni [4] introduced the notion of an O-operator, a generalization of Rota—Baxter operator, and
proved that every dendriform algebra can be explicitly obtained from an algebra with an O-operator.

In a recent paper [3], the results of Aguiar and Ebrahimi-Fard were extended to the case of arbitrary operad of Rota—
Baxter algebras and dendriform algebras.

In the present work, we completely solve the embedding problem for dendriform algebras: For every di-Var-dendriform
algebra A there exists an algebra B € Var with a Rota—Baxter operator R of weight zero such that A is embedded
into B in the sense of [1]. For every tri-Var-dendriform algebra A there exists an algebra B € Var with a Rota-Baxter
operator R of nonzero weight such that A is embedded into B in the sense of [15].

The idea of the construction can be easily illustrated by the following example. Suppose (A, 4, F, 1) is a tri-As-dendriform
algebra. Then the direct sum of two isomorphic copies of A, the space A= A& A’, endowed with a binary operation
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axb=a-4b+akb+alb, axb =(akb), a b= (a-b), a *b" = (a Lb),

a,b € A is an associative algebra. Moreover, the map R(a’) = a, R(a) = —a is a Rota—Baxter operator of weight 1
on A. The embedding of A into A is given by a — d’, a € A.

In the last section, we introduce and explore a modification of the notion of a trialgebra from [30] which we call a gen-
eralized trialgebra (or g-trialgebra, for short). For every variety Var of binary algebras defined by poly-linear identities
we define a corresponding variety of g-tri-Var-algebras. This class of systems naturally appears from differential and
I"-conformal algebras, “discrete analogues” of conformal algebras introduced in [20]. The class of g-tri-As-algebras is
related with a natural noncommutative analogue of Poisson algebras. The free g-tri-Com-algebra generated by a set
X is isomorphic as a linear space to the free Perm-algebra generated by the algebra of polynomials in X. The op-
erad gComTrias governing the variety of g-tri-Com-algebras gives rise to the operads governing the varieties of g-tri-As-
and g-tri-Lie-algebras by means of the Manin white product with operads As and Lie, respectively.

Throughout the paper, we identify the notations for a variety of algebras and for the corresponding operad.

2. Operads for di- and trialgebras

Our main object of study is the class of dendriform algebras. In this section, we start with objects from the “dual world”
in the sense of Koszul duality.

The notion of an operad once introduced in [32] has had a renaissance since the beginning of 2000s. We address the
reader to either of perfect expositions of this notion and its applications in universal algebra, e.g., [19, 25, 31, 37].

Throughout the paper, k is an arbitrary base field. All operads are assumed to be families of linear spaces, compositions
are linear maps, and the actions of symmetric groups are also linear. By an ()-algebra we mean a linear space equipped
with a family of binary linear operations Q = {o; : i € /}. Denote by JF the free operad governing the variety of all
Q-algebras. For every natural number n > 1, the space F(n) can be identified with the space spanned by all binary
trees with n leaves marked by x4, ..., x,, where each vertex (which is not a leaf) has a label from Q.

Let Var be a variety of )-algebras defined by a family S of poly-linear identities of any degree (which is greater than
one). An operad governing the variety Var is also denoted by Var. Every algebra from this variety is a functor from Var
to Vec, the multi-category of linear spaces with poly-linear maps.

Denote by Q@ and QO the sets of binary operations {;, 4;: i € I} and Q@ U {L;: i € I}, respectively. Similarly, let
F@ and 3 stand for the free operads governing the varieties of all Q- and Q®)-algebras, respectively.

We will need the following important operads.

Example 2.1.

Operad Perm introduced in [11] is governing the variety of Perm-algebras [43, p.17]. Namely, Perm(n) = k" with a
standard basis ef-"), i=1,...,n. Every ef") can be identified with an associative and commutative poly-linear monomial
in xq,...,x, with one emphasized variable x;.

Example 2.2.

Operad ComTrias introduced in [40] is governing the variety called commutative triassociative algebras in [43, p.25].
Namely, ComTrias(n) has a standard basis e(F',’), where @ # H C {1,...,n}. Such an element (corolla) can be identified

with a commutative and associative monomial with several emphasized variables x;, j € H.

2.1. Identities of di- and tri-Var-algebras

Numerous observations made, for example, in [11, 24, 41] lead to the following natural definition.
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e
Definition 2.3.

A di-Var-algebra is a functor from Var® Perm to Vec, i.e,, an Q®-algebra satisfying the following identities:

(X1 _|i Xz) l_j X3 = (X1 l_l' Xz) l_j X3, X1 _|i (Xz l_j X3) = X1 _|i (X2 _|j Xg), (1)
F(X1, oy Xy ey X)), feS, n=deqf, k=1,...,n, 2
where i,j € I, and f(x1,..., X, ..., X,) stands for the Q®@-identity obtained from f by means of replacing all products o;

with either 4; or I; in such a way that all horizontal dashes point to the selected variable x.

Example 2.4.
Let |Q] = 1, and let As be the operad of associative algebras. The variety of di-As-algebras [29] is given by (1) together
with

X1 _| (Xz _| X3) = (X1 _| Xz) _| X3, X1 l_ (X2 _| X3) = (X1 " X2) _| X3, X1 l_ (X2 " X3) = (X1 l_ Xz) " X3. (3)

Example 2.5.
Consider the class of Poisson algebras (|QQ] = 2), where o4 is an associative and commutative product (we will denote
x oy y simply by xy) and o, is a Lie product (x o, y =[x, y]) related with oy by means of the following identity:

[X1X2, X3] = [X1 , X3]X2 + x1 [Xz, X3].

Then a di-Poisson algebra is a linear space equipped with four operations (-*-), [- %], * € {F, 1}, satisfying (1) and (2).
Commutativity of the first product and anticommutativity of the second one allow to reduce these four operations to only
two, since (2) implies

(X1 - X2) = (X2 F X1), [X1 - X2] = —[Xz F X1].
With respect to the operations

def def
xy=KxFy), [xyl=[xFy]

the identities (1) and (2) are equivalent to the following system:

x1(x2x3) = (x1x2) X3, ([x1, x2] + [x2, x1])x3 = 0, (x1x2) X3 = (X2x1) X3,
[, D2, xs]] =[x, [, xs]) =[x, X2, xs), (4)
[X1X2, X3] =X [Xz, X3] + Xz[X1 ’ Xg], [X1 f X2X3] = [X1 ’ X2}X3 + X2[X1 ’ X3].

In [28], a more general class was introduced (without assuming commutativity of the associative product). In [1], the
identities (4) defined the operad which is Koszul-dual to the operad of Pre-Poisson algebras.

A similar approach works for trialgebras. There exists a functor W: F® — F® ComTrias defined by W(2)(x1 F; x;) =
X1X2® 9(22)’ Y(2)(x1 i x2) = x1xz®e§2), Y(2)(x1 Li x2) = x1xz®eﬁ%)2. It is easy to note (see also [41]) that each W(n) is
surjective.

We are going to define a canonical family of inverse maps

d(n): F(n)® ComTrias(n) — F(n), n>1,
W(n)®(n) = idsnecomTrias(n)- SUppose u = u(xy, ..., X,) € F(n) is a non-associative O-monomial. Fix [ indices 1 < ky <
... < k; < n, and denote the monomial u with [ emphasized variables Xk j=1...,1by ull, H = {ki,..., ki}. Now,

identify u" with an element from F(n) ® ComTrias(n) in the natural way:

H — (n)
uTEu®ey i
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It can be considered as a binary tree from J(n) with [ emphasized leaves, see Figure 1.

Figure 1. Binary tree representing u = (x5 o1 (x103 x3)) 02 (x201 x4) with H = {1, 2}. Emphasized leaves are colored in black, others — in white.

Now the task is to mark all vertices of u'’ with appropriate labels from Q®. For n = 1, set ®(1)(xy®el) = x;. A
monomial u € F(n), n > 2, can be presented as u = u1(Xo(1), - - - Xo(p)) O U2(Xo(p41)s - - -1 Xamy), U1 € F(p), uz € F(n—p),
o € S,. Given a nonempty set of emphasized variables H = {ki, ..., k} C {1,...,n}, denote

Hy =o' (Hn{a(1),...,0(p)}), Hy={o(j)—p:jeHN{op+1),...,0(n)}}.

Then set
Comp (x1 ki X2, uly, ®(n —p)(u?z))a, H, =0,
d(n)(u") = § Comp (x1 4 x2, D(p)(ui"), u3)’, H, =g, (5)
Comp (x1 Fi x2, ®(p)(u}), @(n—p)(uh?))’,  Hi Ho # 6,
where Comp is the composition map in the operad F, v or v* (for v € F(m)) denote the same polynomial v(xi, ..., xy)

with all operations o; replaced with I; or ;, respectively.

Graphically, in order to compute ®(n) one should assign L to each vertex which is not a leaf if both left and right
branches have emphasized leaves. If only left branch contains an emphasized leaf then assign - to this vertex and to
all vertices of the right branch. Symmetrically, if only right branch contains an emphasized leaf then assign I to this
vertex and to all vertices of the left branch, see Figure 2.

Figure 2. Binary tree with marked vertices representing ®(5)(u”) = (x5 F1 (x1 43 x3)) L2 (x2-h x4) for v and H as on Figure 1.
One may extend ®(n) by linearity, so, if f(x1,...,x,) =>_azuz € F(n), then
&
. A def H
FX1 o Kk K Xa) = ) agd(n)(uf).
&
It is somewhat similar to the tri-successor procedure from [3].
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e
Definition 2.6.

A tri-Var-algebra is a functor from Var® ComTrias to Vec, i.e., an QP)-algebra satisfying the following identities:

(x1xix2) Fjx3 = (x1 Fix2) b x3, x1 i (a*px3) = x1 i (x2; x3), xe {41}, iLjel, (6)
X, Xk Xey 20 Xn), feS, n=degf, 1<k<...<k<n, [=1,...,n. (7)

For a variety Var, let us denote by DiVar and TriVar the operads governing di- and tri-Var-algebras, respectively.

Example 2.7.

The only defining identity of the variety As turns into seven identities (7) defining tri-As-algebras. Indeed, each
nonempty subset H C {1,2,3} gives rise to an identity of Q¥ -algebras, Q¥ = {i, 4, L}. If |H| = 1 then these are just
the identities of a di-As-algebra (3). For |H| = 2, we obtain three identities, e.g., if H = {1, 3} then the corresponding
identity is x; L (xaFx3) = (xydx2) L x3. If H = {1,2,3} then we obtain the relation of associativity for L. Together
with four identities (6), these are exactly the defining identities of what is called triassociative algebras in [43, p.23].

Example 2.8.

Let A be an associative algebra. Then the space A®? with respect to operations

a®bR®ckFad' @b’ ®c =abca’'@b'®C, a®bR®cHd' '@ =a®b®ca'b'c,
a®b®c L d®b'®c =a®bca’h’®c

is a tri-As-algebra.

The following construction invented in [33] for dialgebras also works for trialgebras. Let A be a O-trialgebra, i.e., an
QO)-algebra which satisfies (6). Then Ay = Span{at;b—a-;b,at;b—a Ll;b:a,b €A i€ l}is an ideal of A
The quotient A = A/A, carries a natural structure of an Q-algebra. Consider the formal direct sum A=A®A with
(well-defined) operations

ago;x =akt;x, xo;a=x;a, Goib=ak;b, xoiy=xLl;y, (8)

Proposition 2.9.
A O-trialgebra A is a tri-Var-algebra if and only if A is an algebra from the variety Var.

Proof. The claim follows from the following observation. If f(x1, ..., x,) € F(n) then the value f(a,...,d,) in A C A
is just the image of [®(n)(f"))(a1,..., a,) in A for any subset H; moreover, the value of f(xi, ..., Xk, - X -0 Xn)
on ay,...,a, € Als equal to f(ay,...,ak,...,0k,...,0,) € 2\ i.e, one has to add bars to all non-emphasized
variables. O

Assuming x L; y =0 for all x,y € A, i € I, we obtain the construction from [33]. This construction turns to be useful in
the study of dialgebras, see, e.g., [21, 42].
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2.2. Dialgebras and pseudo-algebras

The structure of a di-Var-algebra may be recovered from a structure of a Var-pseudo-algebra over an appropriate
bialgebra H. Let us recall this notion from [6]. Suppose H is a cocommutative bialgebra with a coproduct A and counit
€. We will use the Swedler notation for A, e.g., A(h) = hyy® h), A%(h) = (AQid)A(h) = ([d®@A)A(h) = hyy®hp® hg),
h € H. The operation F-h = FA"'(h), F € H®", h € H, turns H®" into a right H-module (the outer product of right
regular H-modules).

A unital left H-module C gives rise to an operad (also denoted by C) such that
C(n) = {f: C®" — H®"®yC | f is H® -linear}.

For example, if dim H = 1 then what we obtain is just a linear space with poly-linear maps. The composition of such
maps as well as the action of a symmetric group is defined in [6].

In these terms, if Var is a variety of Q-algebras defined by a system of poly-linear identities S then a Var-pseudo-
algebra structure on an H-module C is a functor from Var to the operad C. Such a functor is determined by a family of
H®2_linear maps

%1 C®C — H®®,C

satisfying the identities f®(x1,...,x,) =0, f € S, degf = n, cf. [23], where f* is obtained from f in the following way.
Assume a poly-linear Q-monomial v in the variables xy, ..., x, turns into a word Xg() . .. X4(n) for some o = o(u) € S,
after removing all brackets and symbols o;, i € I. Denote by u® the expression obtained from the monomial u by
means of replacing all o; with *;. Then u® can be considered as a map C®" — H®'®,C, which may not be H®"-linear.
However, u® = (o(u) ®uid)u® is H® -linear. Finally, if f = Y_ azus, ar € k, then

¢

f(*)()q, ceXn) = Z agu(;).
$

Example 2.10 (c.f. [6]).
Consider an Q-algebra A, a cocommutative bialgebra H, and define C = H®A. Then C is a pseudo-algebra with respect
to the operations

(f®a)* (h®b) = (f®h)Qu(a o; b), f,heH abeA iecl

Such a pseudo-algebra is denoted by CurA (current pseudo-algebra). If A belongs to Var then, obviously, CurA is a
Var-pseudo-algebra over H.

Given a pseudo-algebra C with operations *;, i € I, one may define operations F;, 4; on the same space C as follows:
if a *; b= Z(hg@fg)@,ng then
¢

abib=Y elh)feds, a-ib=) hee(fe)ds. (9)
& 3

Proposition 2.11.
Let C be a Var-pseudo-algebra. Then C is a di-Var-algebra.

Proof. It is enough to verify (1) & (2) on C¥. Indeed, if a %, b = Y_(h:®fs)®pdg, de %, c = Y_(h,®f])® e, then
$ n

(akib)xjc=)_

n

X cthacte) o e = ethaenor) o,

3 ng
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Hence,
(akib)bjc=) elhefeh))fre,

<

ns

On the other hand,

(aib)xc=Y_ (Z hge(fg)dg) xjc=) (hee(f)h,®f;) ®ney,

n $ né

so (at;b)Fjc=(ab)F;ctorall a,b,c € C. The second identity in (1) can be proved in the same way. Consider
a poly-linear identity f € S. It is straightforward to check, cf. [24], that if

P ar,... 00) =) (h1e®- - ®hne) ®rice
3

then f(ar,..., a5, ...,a,) =3 hig---€(hes) -+ - hpece in CO. Itis clear that if %) vanishes in C then C© satisfies (2). O
$
In particular, if B is a Var-algebra then (Cur B) is a di-Var-algebra.

Proposition 2.12.

If H contains a nonzero element T such that €(T) = 0 then every di-Var-algebra A embeds into (Curﬁ)(o)‘
Proof. Recall that A=A@®A, CurA = H®A. Define
LA H®A  a)=1®d+ T ®a. (10)

This map is obviously injective, and

a) % b)) = (10N @n(1®at; b) + (TN ®x(1®a 4 b)+ (1@ T)®n(1®a F; b).

Sinceat;b=a ;b in 2 we have

a)Fiub) =1®a bk, b+ TQ®akt; b=1at;b), a) ;i (b) =1®a-4; b+ T®a-; b =1a-;b). O

3. Dendriform di- and trialgebras

Let us first briefly demonstrate relations between dialgebras, dendriform dialgebras, and Manin products in the case
when Var = As. The operad Dend in [28] is known to be Koszul dual (see [19] for details on Koszul duality) to the
operad DiAs. Since DiAs = As® Perm and it was noticed in [41, Proposition 15] that for Perm (as well as for ComTrias)
the Hadamard product ® coincides with the Manin white product o, we have Dend = (As® Perm)' = As e PreLie, where
As' = As, Prelie is the operad of pre-Lie algebras which is Koszul dual to Perm, e stands for the Manin black product
of operads [19].

In general, for a binary operad P the successor procedure described in [3] gives rise to what is natural to call defining
identities of di- or tri-P-dendriform algebras. In addition, if P is quadratic then these P-dendriform algebras are dual
to the corresponding di- or tri-P'-algebras. In this case, obviously, (P'®Perm)' = P e Prelie for dialgebras, and
(P'® ComTrias)' = P' e PostLie for trialgebras, where PreLie = Perm', PostLie = ComTrias'. This observation is closely
related with Proposition 3.2 below.

In terms of identities, we do not need P to be quadratic (in fact, it is easy to generalize the successor procedure even
for algebras with n-ary operations, n > 2).
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3.1. Identities of di- and tri-Var-dendriform algebras

Suppose Var is a variety of ()-algebras defined by a family S of poly-linear identities, as above.

Definition 3.1.
A tri-Var-dendriform algebra is an Q®)-algebra satisfying the identities

X X Xi -0 Xn),s feS n=deqf, 1<k<...<k<n,

forall { =1,...,n, where f*(xq,..., X, ..., X, ..., X,) is obtained from f by means of the following procedure (the
tri-successor procedure from [3]). Consider a family of maps ®(n)*: F(n)® ComTrias(n) — T (n) defined on monomials
in a similar way as in (5), but, instead of v or V"', we have to use v* which stands for the linear combination of monomials
obtained when we replace each operation o; in v with I; + +; + 1 ;.

Extend ®*(n) by linearity and set

. ) def
X, X X X)) = E agfb*(n)(u?)
&

for f(x1, ..., xa) = 3_sacug € F(n), as €k, H = {ki, ..., k}. To get the definition of a di-Var-dendriform algebra, it is
enough to set x L y = 0 and consider |H| = 1 only.

Denote by DendDiVar and DendTriVar the operads governing di- and tri-Var-dendriform algebras, respectively.

Proposition 3.2.
If Var is a quadratic binary operad (and |Q| < oc) then (DiVar)! = DendDiVar' and (TriVar)' = DendTriVar', where Var'
stands for the Koszul-dual operad to Var.

Proof. We consider the trialgebra case in detail since it covers the dialgebra case. Suppose Var = P(E, R) is a binary
quadratic operad, i.e., a quotient operad of F, F(2) = E, with respect to the operad ideal generated by S;-submodule
R C F(3), see [19] for details.

The space E is spanned by p;: x1®x2 — xq10; X and yfn): X1Q®x2 — x20;x1, i € I. Without loss of generality, we may

assume that p;, i € /, are linearly independent and

12 12
H(k ) = Zaikuz + ZBjli](‘ ! kel Cl, axe€k,

iel jenr

are the only defining identities of Var of degree two, |I'| = d > 0 (if chark # 2, these are just commutativity and
anti-commutativity). Denote by N = 2|/| — d the dimension of E.

The space J(3) can be naturally identified with the induced S;-module kS; ®ys, (E ® E), where E® E is considered as
an Sy-module via (p®v)1? = p®@v(12, 4, v € E. Namely, the basis of F(3) consists of expressions

0 ®s, (H®V), o € {e, (13),(23)},

p and v range over a chosen basis of E. Therefore, dim F(3) = 3N2. In terms of monomials (or binary trees), for example,
e ®xs, (1 ® pj) corresponds to (x1 0; x2) 0; X3, € ®xs, (l/pz)@p,-) to x3 0; (x4 0j x2). A permutation 0 € Ss3 in the first tensor
(12)) corresponds to x7 o; (x2 0; x3).

factor permutes variables, e.g., (13) ®xs, (u,(-12)®u/-

Recall that £V denotes the dual space to E considered as an S;-module with respect to sgn-twisted action (v1?, u) =
—{v,y19), v € EV, y € E. If TV is the free binary operad generated by EV then (F(3))Y = FV(3) = kS;®xs, (EVQ EY).
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The Koszul-dual operad Var' is the quotient of FV by the operad ideal generated by R+ c FV(3), the orthogonal space
to R.

By the definition, the operad TriVar is equal to P(E®), R), where the initial data £, R® are defined as follows. The
space E®) is spanned by pf, (uf)"?, i € I, x € {F, 4, L}, with respect to the relations

W)™ =Y awp + Y Buly)™, D=0 awnl + Y Blu))™,

iel jeN\r iel jeNr!

kel.
D =) awnt + ) Bulw)™,
il jel\!

The S3-module R® is generated by the defining identities of tri-Var-algebras, i.e.,

RO = {0(3)(f"): T € R, B+ H C {1,2,3}} @0,
and 09 is the S3-submodule of F©® generated by

Food ko F Fo ol ko F

U @u; — U U @uy —U; Uy,
! ! ! ! i,jel (1)

W) Peu — @) e, W) eu — ) P eu,

It is easy to calculate that dim E® = 3N, dim F3)(3) = 27N?, dim O®) = 6N?, so dim R®) = 6N? 4 7 dim R. Denote by
0Y the Ss-submodule of ¥ generated by the first summands of all relations from (11).

Suppose f € F(3), g € FY(3), and let Hy, H, C {1,2,3} be nonempty subsets. It follows from the definition of ®(3) that
(®3)(f"), ®(3)(g"™)) = 0 if H; # H,. For H = H, = H, orthogonality of f and g implies (®(3)(f"), ®(3)(g")) = 0
as well. Moreover, for every f € F(3) we have < (3)(FH), Of)> = 0 since neither of terms from O+) appears in images
of (3).

Now, it is easy to see that if g € R+ C FV(3) then (f, ®*(3)(g")) = 0 for every f € RO. Hence,

def

(RH)*) = {o*3)(g"): g € R*, B # H C {1,2,3}} C (RY)™.

On the other hand, dim R* = 3N? — dim R, so dim(R*)®*) = 21N? — 7 dim R. Therefore, dim(R*)® + dim R®) = 27N?

and (R+)® = (R®)L. It remains to recall that, by definition, DendTriVar = P(E®, (R+)(¥). O
Example 3.3.

The defining identities of Perm-algebras are (x1x2)x3 — (x2x1)x3 and x;(x2x3) — (x1x2)x3 [11]. The corresponding variety
of di-Perm-algebras is governed by the operad DiPerm = Perm® Perm = PermoPerm. Thus, (DiPerm)' = Perm' e

Perm' = PreLie o PreLie, where PreLie is the operad governing left-symmetric (pre-Lie) algebras satisfying the identity
(x1X2) X3 — x1(x2x3) = (x2X¥1)x3 —X2(x1x3). By Proposition 3.2, (DiPerm)' = DendDiPreLie. Defining identities of the variety
of di-PrelLie-dendriform algebras are easy to construct by Definition 3.1: They coincide with the defining identities of
L-dendriform algebras [5]. Hence, the operad governing the class of L-dendriform algebras is equal to PreLie e PrelLie.

3.2. Embedding into Rota—-Baxter algebras

Suppose B is an Q-algebra. A linear map R: B — B is called a Rota—Baxter operator of weight A € k if
R(x) o; R(y R(xo R(y) + R(x)o; y + Axo; g) (12)

forall x,y € B, il
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Let A be an QP -algebra. Consider the isomorphic copy A’ of the underlying linear space A (assume a € A is in the
one-to-one correspondence with a” € A’), and define the following Q-algebra structure on the space A = A@A":

ao;b=ak;b+a- b+al;b, ao; b’ = (at;b), a’ o; b= (aH;b), a' o b’ =(a L; b, (13)
fora,be A iel

Lemma 3.4. R
Given a scalar A € k, the linear map R: A — A defined by R(a’) = Aa, R(a) = —Aa, a € A, is a Rota—Baxter operator
of weight A on the Q-algebra A.

Proof. 1t is enough to check the relation (12). A straightforward computation shows

R(a+b") o; Rix+y') = X2(—a +b) o; (—x +y)
:AZ(Gl_,‘X‘f‘G",‘X"‘GL,‘X—Gl_iy—G_hg—GJ_,'y—bl_iX—b_i,'X—bJ_,'X+b|_,‘y+b_|,‘y+bL[y).

On the other hand,

R((a—i—b’) o; Rix+y') + Rla+b')o; (x+g’)+)\(a+b’)o(x+y’))
=AR((a+b') oi (—x+y) + (—a+b) o; (x+y) + (a+b) o (x+y')
=AR(—aFix—adix—alix+atiy+atdy+aliy
—(bH4x)+bdiy) —abix—a"dix—alix+brix+b-dx+bl;x
—(aI—,~y)’+(b|—,-y)’+al—,»x—i—a—|[x+aJ_[x+(aI—,»y)/+(b—|,-x)/+(bJ_,-y)')
=M(-atiy—adiy—aliy+bdiy+abix+adix+alix—bbix—badix—bLlix+bkiy+bl;y). O

Lemma 3.5. L
Let A be an QP _algebra. Then the map R: A — A defined by R(a’) = a, R(a) = 0 is a Rota—Baxter operator of weight
A=0onA

The proof is completely analogous to the previous one. The following statement is well-known in various particular
cases, cf. [1, 15, 16, 38].

Proposition 3.6.
Let B be an Q-algebra with a Rota—Baxter operator R of weight A. Assume B belongs to Var. Then the same linear
space B considered as an QP -algebra with respect to the operations

xkiy=R(x) oy, x iy = xo0; R(y), xLiy=Axo;y (14)

is a tri-Var-dendriform algebra.
Proof. Letu=u(x,...,x,) € F(n) be a poly-linear Q-monomial. The claim follows from the following relation in B:
U (X1, e Ky K Xa) = AT (ROG), - Xk Xk - R(X0)), (15)

i.e., in order to get a value of an QP -monomial in B we have to replace every non-emphasized variable x;, i ¢ H =
{ki, ..., k}, with R(x;) and multiply the result by A"
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Relation (15) is clear for n = 1,2. In order to apply induction on n, we have to start with the case when H = @. Recall

that u*(xy, ..., x,) stands for the expression obtained from u by means of replacing each o; with ; + 4; + L;. Then
R(u*(x1, ..., xp)) = u(R(x1), ..., R(x»n)), n>2, (16)
in B. Indeed, for n = 2 we have exactly the Rota—Baxter relation. If u =vo;w, v =v(x,...,x,), w = W(Xp41, ..., Xn),

then, by induction,

R(u*) = R(v*Fiw* + v i w* +v* Liw*) = R(R(v¥) o, w* + v¥o; R(W*) + Av* o, w*)
= R(v") o; R(w*) = v(R(x1), ..., R(xp)) 0i W(R(Xp41), .. .. R(xn)) = u(R(x1), ..., R(xn))-

Now, let us finish proving (15). If u = vo; w, degv = p, H = H;UH, then there are three cases: (a) Hi, H, # §;
(b) Hy = 8 (¢) Hy = 0.

In the case (a), U™ (X1, ...\ Xk Xkpo oo 0 Xa) = O*(n)(u!) = ®*(p)(vM1) L; &*(n)(w™), and it remains to apply the
inductive assumption and the definition of L; from (14). In the case (b), ®*(n)(u") = v* F; ®*(n —p)(w"), so for any
ai,...,a, € B we can apply (16) to get

[o*(m)(w](ar,..., a,) = R (a1, a,)) o [&"(n = p) (W) ](@psr, .., a,)
=v(R(a1),...,R(ap)) o A W(R(apsa, - Gy ooy Giu- - R(an))
=NTu(R(ar, ..., ak, .. ay, ... R(a,)).

The case (c) is completely analogous. O

Proposition 3.7 (c.f. [1, 38]).
Let B be an Q-algebra with a Rota—Baxter operator R of weight A = 0. Assume B belongs to Var. Then the same linear
space B considered as Q® -algebra with respect to x - y = R(x)o; y, x 4; y = xo; R(y) is a di-Var-dendriform algebra.

Proof. Note that a di-Var-dendriform algebra is the same as tri-Var-dendriform algebra with x 1; y = 0 for all x, y,
and i. The claim follows from Proposition 3.6. O

Given an Q-algebra B € Var with a Rota—Baxter operator R: B — B of weight A, denote the tri-Var-dendriform algebra
obtained by Proposition 3.6 by B®). If A = 0 then B(® is actually a di-Var-dendriform algebra.

Theorem 3.8. R
Let A be an QP -algebra, and let A be the Q-algebra defined by (13). Then the following statements are equivalent:

(i) A is a tri-Var-dendriform algebra;
(it A belongs to Var.

Proof. (i)= (ii) Assume Ais a tri-Var-dendriform algebra, and let S be the set of defining identities of Var. We have
to check that every f € S holds on A.

First, let us compute a monomial in A=A@®A when all its arguments belong to the first summand.

Lemma 3.9. R
Suppose u = u(x1, ..., xn) € F(n) is a poly-linear Q-monomial of degree n. Then in the Q-algebra A we have
ular,...,a,) = )y O(n)w)ar,...,0.), @i €A (17)
H
where H ranges over all nonempty subsets of {1,...,n}.
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Proof. By the definition of multiplication in A u(aq,...,a,) = u*(ay,...,a,), where u* means the same as in the
definition of ®*(n). In particular, for n = 1,2 the statement is clear. Proceed by induction on n = degu. Assume
u = v o; w, and, without loss of generality, v = v(xq, ... Xp)y W= W(Xp41,...,X,). Then

ula,...,a,) = vi(ai,...,a,) Fi (Z‘D*(n—p)(WHz)(upH,...,u,,))
Ha

> O (p)v)(ar, ..., ap)
Hy

Z(D* (vM)( a1,...,ap)) 4w (apsr, ... An),

L (Z(D*(”_P)(WHZ)(GW-M-~~r‘7n)) (18)
Ha

where H; and H, range over all nonempty subsets of {1,...,p} and {p +1,...,n}, respectively. It is easy to see that
the overall sum is exactly the right-hand side of (17): The first (second, third) group of summands in (18) corresponds
toH=H, C{p+1,....n}, ( H=HiUH,, H=H; C{1,...,p}, respectively). O

Next, assume that [ > 0 arguments belong to A".

Lemma 3.10.
Suppose u = u(x1,...,x,) € F(n) is a poly-linear Q-monomial of degree n, H = {kq, ..., k} is a nonempty subset of
{1,...,n}. Then in the Q-algebra A we have

u(@, ..., G, dy, ., 0,) = (¢*(n)(uH)(a1,...,an))/.

Proof. For n = 1,2 the statement is clear. If u = v o; w for some i € | as above then we have to consider three
natural cases: (a) HC {1,...,p}; (b) HC {p+1,...,n}; (c) variables with indices from H appear in both v and w. In
the case (a), the inductive assumption implies

u(a1,...,021,...,0;([,,..,un) viay,..., a .,a;q,...,ap)—hW*(ap+1,...,an)

g

(&*(p)(v") (a1, ..., ap) i W (apia, ... an)),

and it remains to recall the definition of ®*(n). Case (b) is analogous. In the case (c), H = H;UH, as above and

(@, e @) = O P)(VI)(ar, - ap) L (0 — p) (W) (apsn, - an)
which proves the claim. O

Finally, suppose f € S is a poly-linear identity of degree n. Then ®*(n)(f") is an identity on the QP -algebra A, so
Lemmas 3.9 and 3.10 imply f holds on A.

(i)= (1) Themapt: A— A t(a) = d’, is an embedding of the Q®)-algebra A into A equtpped with operations (14). Let
us choose A = 1 and define a Rota—Baxter operator R on A by Lemma 3.4. By Proposition 3.6, AR is a tri-Var-dendriform
algebra, therefore so is A. O

If A =0 then the simple reduction of Theorem 3.8 by means of Lemma 3.5 leads to
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Theorem 3.11. R
Suppose A is an QP -algebra, and let A stands for an Q-algebra defined by (13) with x 1; y = 0. Then the following
statements are equivalent:

(i) A is a di-Var-dendriform algebra;

(it A belongs to Var.

Remark 3.12.

It is interesting to note that A is a simple di-Var-dendriform algebra if and only if Alis a simple Rota—Baxter algebra.

Corollary 3.13.
For every tri- (or di-)Var-dendriform algebra A there exists an algebra B € Var with a Rota—Baxter operator R of weight
A # 0 (or A =0, respectively) such that A C B

Proof. It is enough to consider the case of trialgebras only. Let A # 0 and let A? be an algebra with the same
underlying space as A but with new operations x oEA) y = (xo;y)/A. It is clear that A € Var and if R is a Rota—Baxter
operator on A from Lemma 3.4 then so is R for AW, Hence, AW with respect to the operations (14) is a tri-Var-
dendriform algebra by Proposition 3.6. Note that a map t: A — AW given by ((a) = a’ € A’ C AW is an embedding of
QP)-algebras. O

Given a tri-Var-dendriform algebra A, its universal enveloping Rota-Baxter algebra U,(A) of weight A, cf. [18], is an
algebra in the variety Var with a Rota—Baxter operator R such that

e There is a homomorphism @,: A — U,(A)® of tri-Var-dendriform algebras;

e For every algebra B € Var with a Rota—Baxter operator R’ of weight A and for every homomorphism ¢: A — B®R)
of tri-Var-dendriform algebras there exists a unique homomorphism of Rota—Baxter algebras x: U,(A) — B such

that @0 x = .
For a di-Var-dendriform algebra A, its universal enveloping Rota—Baxter algebra of weight zero Uy(A) is defined analo-
gously, see also [12].

It follows from standard universal algebra considerations that for every di- or tri-Var-dendriform algebra A there exists a
unique (up to isomorphism) universal enveloping Rota—Baxter algebra U,(A) (A = 0 in the case of dendriform dialgebras).

Since there exists B = A (or A®) such that ¢ is injective, the map ¢, has to be injective.

Corollary 3.14 (c.f. [12]).

Every di-Var-dendriform algebra embeds into its universal enveloping Rota—Baxter algebra of weight A =0 in Var.

Corollary 3.15.

Every tri-Var-dendriform algebra embeds into its universal enveloping Rota—Baxter algebra of weight A # 0 in Var.

Remark 3.16.

All these results remain valid for dendriform algebras over a commutative ring with a unit provided that A is invertible.

In [15], another structure of a dendriform dialgebra on an associative Rota—Baxter algebra B of arbitrary weight A was
proposed. In our terms, it corresponds to

atkib =ao;R(b)+ Aao;b, a-;b=R(a)o; b, a,beB. (19)

Such a construction also admits an embedding of a di-Var-dendriform algebra into an appropriate Rota—Baxter algebra.
It is enough to consider the case A # 0. Indeed, an arbitrary di-Var-dendriform algebra A may be considered as a
tri-Var-dendriform algebra with @ L; b = 0 for all a,b € A, i € I. Theorem 3.8 implies A to be embedded into the
Rota—Baxter algebra AW € Var of weight A. Since A’ is the image of A and (A)? = 0 in A and hence in AW, the
operations ; and F; in (19) coincide with those in (14).
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4. Generalized trialgebras

Consider a slightly generalized analogue of trialgebras which we shortly call g-trialgebras.

Definition 4.1.
A generalized tri-Var-algebra (or g-tri-Var-algebra) is an QP -algebra satisfying the identities (1) and (7).

In other words, we exclude the identities x; 4; (x2 L; x3) = x1 4 (x2 4;x3), (x1 Li x2) Fj x3 = (x3 i x2) F; x3 from the
definition of a tri-Var-algebra.

For any Q®)-algebra A satisfying O-identities (1) we can also construct (as in the dialgebra case) the Q-algebra
A=A®A as follows (similarly as in (8)): A= A/Span{at;b—a-ib:a,bc A icl},dob=akF;b aob=al;b,
ao;b=a+; b, ao;b=a L;b. An analogue of Proposition 2.9 holds for this construction and provides an equivalent
definition of a g-tri-Var-algebra.

Example 4.2.
If Var = Com is the variety of associative and commutative algebras then it is sufficient to consider only two operations F
and L to define g-tri-Com-algebras. Both these operations are associative, L is commutative, and they also satisfy the
following identities:

X1 F (XZ J_X3) = (X1 l_Xz) 1L X3, (X1 l_Xz) F X3 = (Xz |_X1) F X3.

Let us denote the corresponding operad by gComTrias. It is easy to derive from the definition that the free algebra
in gComTrias generated by a countable set X = {x;, x2, ...} is isomorphic as a linear space to the free algebra in Perm
generated by the space of polynomials k[X]. Its linear basis consists of words

U1|‘U1|‘...|‘Uk|_U0, U1<...<Uk,
where u; are basic monomials of the polynomial algebra k[X] with respect to the operation L and some linear ordering <.

Proposition 4.3 (c.f. [1]).
(i) Let A be an Q-algebra in the variety Var with a linear mapping T such that

Tx)oi T(y) = Tlxoi T(y) = T(T(x)ory),  xyecA iecl (20)

Then the space A with respect to operations x F; y = T(x)o;y, x 4; y = xo; T(y), x L; y = xo;y is a g-tri-Var-algebra
(let us denote it by AD).

(i) For every di-Var-algebra B there exists an Q-algebra A € Var and an operator T satisfying (20) such that B C A7)

Proof. (i) Relation (20) implies that (1) hold in A7) If f(x1,...,x,) € F(n)and H = {ky,..., k} C{1,...,n}, [ >1,
then the value of ®(n)(f")(a1,...,a,) in A7) is equal to f(T(a4), ..., Ak, ..., ak, ..., T(a,)) € A Le. all non-emphasized
variables x; are replaced with T(x;). Thus, if A € Var then A7) is a g-tri-Var-algebra.

(it) Given a di-Var-algebra B, consider B = B®B as in Proposition 2.9 and define a linear mapping T: B - Bin
such a way that T(a) =0, T(@) = @, a € B. Then (20) holds trivially, and B C B(". O

Example 4.4.
Let {A, ) be an algebra in the variety Var with a derivation d such that d> = 0, see, e.qg., [28]. Defining a - b = d(a) - b,
adb=a-db),alb=a-b weobtain a g-tri-Var-algebra (A,F, 4, 1).



V.Yu. Gubarev, P.S. Kolesnikov

It turns out that g-tri-Var-algebras are closely related with I'-conformal algebras introduced in [20]. These systems
appeared as “discrete analogues” of conformal algebras defined over a group I'. From the general point of view, these
are pseudo-algebras over the group algebra H = kI" considered as a Hopf algebra with respect to canonical coproduct
A(y) = y®y and counit ¢(y) = 1, y € I'. Thus, a ['-conformal algebra of a variety Var is just a Var-pseudo-algebra
over kI" as defined in subsection 2.2.

Consider a -conformal algebra C with H®?-linear operations *;: C® C — H®’®,C, i € I, given by

a*ib=Z(y®1)®HC§,, a,beC.

yel

Then the family of bilinear operations +;,;, L;, i € I, on C can be defined as follows, c.f. (9):

a—hb:Zc;, al—[b:Zyci, aJ_ibzci,,

yelr yelr

where e is the unit element of I. Denote the Q®-algebra obtained by C®. The H®2-linearity of ; implies

abib=) (va)Llib, a-ib=) aLl;(yb), a,beC, iel

vel vel

(the sums are finite even if I is an infinite group).

Proposition 4.5.
If C is a [-conformal algebra of the variety Var then C% is a g-tri-Var-algebra.

Proof. Foreveryn >1andforevery @+ K = {ki,...,k} C{1,...,n} define a linear map ®X: H® — H, H = kI,
as follows:

Yk v =...=w,

PN(i® @) =
i ) 0 otherwise.

This is obviously a morphism of right H-modules. Hence, it can be extended to a map ®X ®yid¢: H®"®,C — C by the
rule F®ua+— ®X(F)a, F € H®", a € C. Later we will not distinguish ®X and ®X®idc since C is fixed.

Lemma 4.6.
Forall f €F(n), 8+ K C{1,...,n}, and a1, ..., a, € C, the following equality holds in CO:

(®(m)(F))(ar, ..., a,) = K (I (ar, ..., a,)), (21

where ®(n) is the map defined in (5).

Proof. Itis enough to prove (21) for all monomials in F(n). First, let us consider a monomial v = v(x4, ..., x,) such that
v = v®, see subsection 2.2. Proceed by induction on n > 1. For n = 1 the statement is clear. For n > 1, assume (21)
is true for all shorter monomials w € JF(m), m < n, such that w = w®. Then v = vy (X1, Xp) 08 a(Xps1s oo s Xn),

v}*) = vj® for j =1,2. Suppose

vlar,....a)) =) Fe®ube, Fee H®, b:eC;
¢
i (@pir,.ca) =) Gr®uey, G, € H*" P, ¢, €C;
n
bexicy =Y (af%"®aly”)@nds"”, afher, di"ec.
14
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Then

VWiar,. .. a,) =) (Feai"® G,aly") @ndf™ € H*"®C.
[SUES

Without loss of generality we may assume F: = y1:® - - ®Vpe, Gy = B1,,® - ® Bop,; Where y/'g,B,-g erl.
There are three cases: (a) K1 =Kn{1,...,p} =0, (b)Ka={j—p:jeKn{p+1,....n}} =0, (c) Ki, Kz £ 0.

In the first case, the inductive assumption and (5) imply

() ))(ar,....a,) = Vi(ar,...,ap) ki (®(n—p)(vs2))(@ps.- -, an)

= o (W ar,..., ap)) F 002, (W (apir, ... an))

(Zmbf) X (Z‘szp(cn)cn) =Y OR,(Gyal"df”
: 7

§n.¢

On the other hand, since K C {p+1,...,n}, we may ignore the first p tensor multipliers, so CI>’<(F50(1‘r "’®C a(é" ) =

o2 p(G 0((5 '7)) = o o (Gp )afz"), and the claim follows. The case (b) (K C {1,...,p}) is completely analogous. Consider
the third one. If both K; and K; are nonempty then the inductive assumption and (5) imply

(@m0 (ar,-. an) = ()W) (a1, ap) Li (S0 =p),?))(@ps, - @)
= o8 (W (ar,..., a,)) L qanKZ,,( I apsr- o) an))

Z¢{12}(¢K1(F)a(5ﬂ) 2 (G, )a(sn)) J%n (22)
&€

— Z(DK(F 01(5")®G a(sn))dén
&ng

To get the last equation, we used the obvious relation ¢§1'2}(¢§1(F)®¢n’<ip(6)) = oK(F®G), F € H®, G € H®"=P),
On the other hand, ®(n)(v(as, ..., a,)) by definition is equal to the right-hand side of (22).

To complete the proof, it remains to consider u = v(Xg1), ..., Xo(m)), where v = v®. In this case, u(ay,...,a,) =
(0®nide) (V™ (aoq), - Ao(n)). By the definition of ®X, we have
—1
CDHK(U(*)(m, A an)) =7 (K)(v(*)(ag(n, cee Ua(n)))‘

On the other hand, ®(n)(uX) = (<1>(n)(v"—1('<)))lr by (5). Therefore,

(S (")) (@1, ..., an) = (V" E) (o), s Tom).
Since the statement is already proved for v, the relation (21) holds for u as well. O

If for some f € F(n) the H-pseudo-algebra C satisfies f*)(a,...,a,) = 0 for all a1,.. ,a, € C, then by Lemma 4.6

the Q¥-algebra C¥ satisfies the identities f(x1, ..., Xk, ... Xk, ... Xa) = ®(n)(FX), K = {ki, ..., k}. Hence, this is a
g-tri-Var-algebra. O
Remark 4.7.

Relation (21) implies, in particular, that C with respect to L;, i € /, is an Q-algebra from Var. If || < oo then the operator
T:C— C, T(a) =3, va, is well-defined, and it satisfies (20). In this case, the structure of a g-tri-Var-algebra on
CO is given by Proposition 4.3.
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There is an interesting question whether a trialgebra or g-trialgebra A can be embedded into C® for some pseudo-
algebra C. We have a positive answer for tri-Var-algebras, but only for chark = p > 0: The mapping ¢ from (10) realizes
such an embedding of A into the '-conformal algebra CurA when T = Y1+ -+ v, where e # y; are pairwise distinct
elements of a group I such that |[| > p + 1.

Example 4.8.
A g-tri-As-algebra A with respect to the operations [x,y] = x4y —xFy and x-y = x L y turns into a noncommutative
dialgebra analogue of a Poisson algebra: The operation [-, -] satisfies the Leibniz identity and - is associative. Moreover,
the Poisson identity holds:

[y, 2] = xly, 2] + [x, 2]y.

In [30], the same operations [+, -] and - were considered for tri-As-algebras (in the sense of Definition 2.6). The analogue
of a Poisson algebra obtained in this way satisfies one more identity [x, yz—zy] = [x, [y, z]] which does not appear in
the case of generalized trialgebras.

It is natural to conjecture that, as in the case of tri-Var-algebras, the operad governing the variety of g-tri-Var-algebras
can be obtained by the white product procedure in the case when Var is quadratic. Let us recall the definition of a
white product of quadratic binary operads [19]. For an S;-module E, denote kS;®s, (E® E) by F(E)(3). In F(E)(3),
the transposition (12) € S, acts on the tensor square EQE as id®(12). If Py = P(Ey, Ry) and P, = P(E3, Ry) are two
quadratic binary operads then the Manin white product P;0 P, is the sub-operad in P ® P, generated by £1® E, (here
(12) € S, acts on E1Q E; as (12)®(12)). Consider the Ss-linear injection

L (FE®E))B) — F(ENB)®TF(E)()

given by ¥: 0 Q®ys, ((6‘1 ®H1)®(6‘2®H2)) — (0 ®xs, (e1® e2)) ® (0 ®xs, (1h ® 112))-

Denote the image of £ by D(E1, E;). The images of defining identities of an algebra over P1® P, under I have to fall
into R = RIQTF(EL)(3) + F(E1)(3)® Ry, so to compute the white product one has to find the intersection of D(E7, E;)
and R. This is a routine problem of linear algebra, but the amount of computations is usually very large.

In our case, the operad Py = gComTrias is defined by 3-dimensional £; = ke @ ke @kf, f1?2 = f, and 17-dimensional
subspace Ry C F(E4)(3). The operad of associative algebras has 2-dimensional £, = ky@ku'? and 6-dimensional R,.
In F(E1® E3), one has to interpret e®p as x; F xz, e ®p as x; 4 xz, e®@p1? as x; 4 x1, e @u12 as x, - xq, f@u as
x1 Lx;, and f@u? as x, L x.

A simple computer program allowed us to make sure that gComTrias o As and gComTrias o Lie define the varieties of
g-tri-As- and g-tri-Lie-algebras, respectively. In particular, the class of g-tri-Lie-algebras consists of linear spaces L
with two operations [x, y] = x I y and (x, y) = x L y such that L is a Leibniz algebra with respect to [, -] and Lie algebra
with respect to (-,-). These operations are related by one binary-quadratic relation ([x,y],z) = [x, (y, 2)] + (x, 2] y).
Such a relation has recently appeared in [39] We conjecture that a similar relation holds for every quadratic binary
operad.
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