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on the previous best limits from LEP.
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Particles with long lifetimes are a feature of the Standard Model (SM) as well as many theories beyond the
Standard Model (BSM) including R-parity-conserving supersymmetry (SUSY) [1–7] models like split-
SUSY [8, 9] and gauge-mediated SUSY breaking (GMSB) [10–12], R-parity-violating SUSY models [13,
14], and exotic scenarios such as universal extra dimensions [15, 16]. However, particle lifetime remains
an under-explored parameter of phase space at the Large Hadron Collider (LHC), where detectors and
searches for new physics were designed to measure the decay products of short-lived, heavy particles with
the assumption that those decay products trace back to the collision point, or very close to it [17–22].
BSM particles with lifetimes longer than a few picoseconds produce unconventional signatures, including
displaced decay products that do not trace back to the interaction point. This brings technical challenges
in almost all aspects of the search and consequently, some models with TeV-scale BSM particles in this
lifetime regime remain unexplored. While many dedicated searches for long-lived particles have been
performed by the ATLAS [23–35] and CMS [36–38] Collaborations, signatures with displaced leptons
with no visible decay vertex would not be identified by any previous ATLAS search. This Letter addresses
that gap in coverage.

Such a signature brings unique sensitivity to GMSB SUSY models [39–42], where the gravitino is the
lightest SUSY particle (LSP), and the next-to-lightest SUSY particle (NLSP) becomes long-lived due to
the small gravitational coupling to the LSP. Well-motivated versions of this model have a stau (τ̃) as the
single NLSP or selectron (ẽ), smuon (µ̃), and τ̃ as co-NLSPs [43]. In these models, pair-produced sleptons
( ˜̀) of the same flavor decay into an invisible gravitino and a charged lepton of the same flavor as the parent
˜̀. A combination of results from the LEP experiments excluded right-handed µ̃ and ẽ of all lifetimes with
masses less than 96.3 GeV and 65.8 GeV, respectively, while the OPAL experiment alone set the best limits
on all lifetimes of τ̃1, a mixture of left- and right-handed states, with masses less than 87.6 GeV [44–48].
A previous search from the CMS experiment [49] selected events with displaced, different-flavor leptons
using 19.7 fb−1of 8 TeV data, but did not directly target this model. A reinterpretation concluded that
OPAL’s constraints remained the most stringent [43]. The present search extends sensitivity beyond the
LEP limits for the first time.

To evaluate signal sensitivity, Monte Carlo (MC) events of the simplifiedGMSBSUSYmodelwere simulated
with up to two additional partons at leading-order (LO) using MadGraph5_aMC@NLO v2.6.1 [50] with
the NNPDF2.3lo PDF set [51], and were interfaced to Pythia 8.230 [52] using the A14 tune [53]. The
sparticle decay is simulated using GEANT4 [54]. The impact of multiple interactions in the same and
neighboring bunch crossings (pileup) was modeled by overlaying each hard-scattering event with simulated
minimum-bias events generated with Pythia 8.210 [52] using the A3 tune [55] and NNPDF2.3lo PDF
set [51]. Signal cross sections were calculated at next-to-leading-order (NLO) in αs, with soft-gluon
emission effects added at next-to-leading-logarithm accuracy [56–60]. The nominal cross section and
uncertainty were taken from an envelope of predictions using different PDF sets and factorization and
renormalization scales [61]. The simplified model used for interpretation assumes a mass degeneracy of
the left- and right-handed slepton states, yielding a cross section of 0.73 ± 0.01 pb for any flavor of ˜̀ with
mass 100 GeV and 0.117 ± 0.004 fb for a ˜̀ with mass 800 GeV. The mass of the gravitino is set to 0.1 keV.
Simulated events were generated for ẽ/µ̃ (τ̃) masses 50–800 GeV (50-400 GeV) and lifetimes 0.01–10 ns
(0.1–1 ns).

This search uses 139 fb−1 of data collected by the ATLAS experiment from pp collisions at
√

s = 13 TeV.

2



The ATLAS detector consists of concentric subdetectors used together to identify particles1 [62–64]. Data
collection relies on a two-level trigger system, which uses tracking information from the Inner Detector
(ID) along with information from the calorimeters and Muon Spectrometer (MS) to make fast, event-level
decisions [65]. The typical lepton selection algorithms used in the trigger select particles coming from
the primary interaction and cannot be used to select displaced leptons. Instead, triggers without tracking
information are used: electrons are identified using only their electromagnetic calorimeter (EM) signature
via photon triggers, and muons are identified using MS information only. Single and di-photon triggers
select EM signatures with energy greater than 140 GeV and 50 GeV, respectively, and the muon trigger
selects MS signatures with transverse momentum (pT) greater than 60 GeV in the range |η | < 1.05. These
triggers have an acceptance independent of lepton displacement in the range probed by this search. The
acceptance ranges from 1–80% for all flavors, increasing with ˜̀ mass, and is lower for τ̃ than ẽ or µ̃ due to
the smaller pT of the final state leptons.

After the trigger stage, more complex tracking algorithms are possible, and tracks can be used more
extensively for particle identification. In particular, displaced leptons are identified as those with large
transverse impact parameters (|d0 |), the distance of closest approach of the particle’s track to the interaction
point in the x–y plane. In particular, displaced leptons are identified as those with large transverse impact
parameters (|d0 |), the distance of closest approach of the particle’s track to the interaction point in the
x–y plane. The |d0 | is measured with respect to the vertex with the highest Σp2

T of its associated tracks.
Tracks are reconstructed by fitting series of ID hits to identify those consistent with a particle’s trajectory.
For this search, tracking is performed in two stages: first, standard tracking reconstructs tracks with
|d0 | < 10 mm [66], then an additional reconstruction step uses hits that were not associated to tracks in the
previous stage, adding tracks with |d0 | < 300 mm [67]. The extended track collection is then combined
with EM clusters to reconstruct electrons, or with tracks composed of segments measured in the MS to
reconstruct muons, both in the range |η | < 2.5 . Standard lepton identification algorithms [68, 69] are
modified for this search to remove |d0 | selections and requirements on the number of hits required in the
track. Figure 1 shows the reconstruction efficiency for displaced electrons and muons with all modifications
made.

Signal leptons must have high transverse momentum, pT > 65 GeV, and large transverse impact parameters,
3 mm < |d0 | < 300 mm, to remove SM backgrounds. They must then pass a variety of quality criteria
to remove fake leptons originating from the mis-association of ID tracks to MS tracks or to calorimeter
signatures. First, ID tracks associated to leptons are required to have a fit with χ2/nDOF < 2 and no more
than one missing hit after their innermost hit. Next, consistency between the two components of the
reconstructed lepton is required. For electrons, this is ensured by requiring the ID track pT measurement is
no less than half that of the electron pT measured when accounting for the calorimeter energy, and the
combined fit of the muon’s ID and MS tracks must satisfy χ2/nDOF < 3. Muons are additionally required
to have measurements in at least three precision tracking layers of the MS and at least one high-precision φ
measurement. To reduce the background from out-of-time cosmic-ray muons, a requirement is made on
the MS timing with respect to the collision (t0). The average time measured by the muon’s MS segments,
tavg0 , must have an absolute value less than 30 ns. Finally, in order to reduce the contribution of leptons
from decays of heavy-flavor hadrons, signal leptons are required to be isolated from nearby activity in the
ID and calorimeters. The sum of the pT of all tracks near an electron (muon) must be less than 6% (4%) of

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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Figure 1: Electron (left) and muon (right) reconstruction and identification efficiency in signal MC simulation.
Leptons result from the decay of a ˜̀ with m ˜̀ = 500 GeV and τ ˜̀ = 1 ns. Efficiency is defined as the number of
reconstructed leptons divided by the number of generator-level leptons. Both reconstructed and generator-level
leptons are required to have pT > 20 GeV and |η | < 2.5. Blue circles show efficiencies with the standard track
collection, while purple squares show the improvement from the extended track reconstruction. Open markers show
the standard ATLAS identification algorithm, and closed markers show the modifications used in this search. The
closed purple square markers show the final lepton reconstruction efficiency. Markers are placed at the bin centers.

the lepton pT, and the sum of energy deposits near the electron (muon) in the calorimeters must be less
than 6% (15%) of the lepton’s energy [68, 69].

Three orthogonal signal regions are defined with at least two signal leptons and are distinguished by the
flavor of the two highest-pT leptons: SR-ee with two electrons, SR-µµwith two muons, and SR-eµwith one
muon and one electron. No requirements are placed on the charge of the leptons. In order to ensure the broad
applicability of this result to other models, minimal event-level requirements are made beyond the presence
of the two signal leptons. Backgrounds from lepton-pairs produced via interaction with the detector material
are reduced by requiring that the opening angle between the two leptons, ∆R`` ≡

√
∆η2

``
+ ∆φ2

``
, is greater

than 0.2. Additionally, the event must not contain any cosmic-tagged muons. A cosmic-ray muon traversing
the detector coincident with an LHC collision leaves a signature that could be reconstructed as two muons
back-to-back, one on the top half of the detector, µt and the other on the bottom, µb. Each of these muons
are tagged as resulting from a cosmic-ray muon if they have MS segments along their trajectory on the
opposite side of the detector, or if their trajectory traces back to a gap in detector coverage. This strategy is
similar to that used by Ref. [24]. A window in η and φ is defined with respect to the muon’s trajectory, and
if an MS segment is found within |ηµ + ηMS segment | < 0.018 and |(φµ − φMS segment) − π | < 0.25 the muon
is cosmic-tagged.

After all signal selections are made, the number of background events is estimated from data while keeping
the signal regions blinded. In both SR-ee and SR-eµ, the dominant background comes from fake leptons
with a smaller contribution from leptons from heavy-flavor hadron decays. Fake electrons typically result
from the mis-association of a track to a photon. Fake muons result from the mis-association of an ID track
to an MS track and are comparatively rare due to the reduced activity and increased pointing information
in the MS relative to the calorimeter. To estimate the background contribution from these fake and
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heavy-flavor leptons, the quality criteria enforced in this analysis are uncorrelated between the two leptons
in an event, a fact that is exploited to estimate the contribution to the signal region. The contribution from
these events to the signal regions is estimated using ratios obtained by measuring the number of events
in regions with inverted quality criteria of either or both leptons. The same algorithm is used for both
SR-ee and SR-eµ, but due to statistical limitations in SR-eµ, the pT and |d0 | requirements on the leptons
are relaxed to make a conservative estimate.

Validations are then performed to specifically target the heavy-flavor contribution or the fake contribution.
This is achieved by performing an estimate of leptons from heavy-flavor processes by using the same
method but inverting the isolation requirement in all regions. The fake contribution is probed in a similar
way but instead inverting and varying the requirements on track quality and lepton consistency. In the
validation of both estimates, the number of estimated and observed events were consistent within statistical
uncertainties. Nonetheless, uncertainties were assigned to account for the small differences between
predictions and observations in each validation. The predicted number of background events from fake and
heavy-flavor leptons is 0.46 ± 0.10 in SR-ee and 0.007+0.019

−0.007 in SR-eµ.

The dominant background in SR-µµ comes from mis-measured reconstructed muons from cosmic-ray
muons, and all other backgrounds are found to be negligible in comparison. In order for both µt and µb to
be reconstructed in the same event, both must have |tavg

0 | near the edges of the allowed range, and are likely
to have some of their MS hits associated to the wrong event. This results in reconstructed muons with
good quality ID tracks, but poor quality signatures in the MS, which could present challenges in cosmic
tagging one or both muons. An event with a cosmic-ray muon could meet all signal region requirements
if both muons have missing MS hits and neither is tagged. Cosmic tagging failures occur not when the
muon in question is mis-measured, but when the muon is in the opposite half of the detector from a poorly
reconstructed MS track, and no MS segments are found in the window used by the tag. The estimate of this
background relies on the assumption that the quality of a muon and its probability to be cosmic-tagged are
uncorrelated.

All events considered in this estimate have µb passing all signal requirements, while µt is either cosmic
tagged, fails some of the quality criteria, or both. No di-muon events were observed in which two muons
were on the same side of the detector. In events in which µt is cosmic-tagged, the ratio of µt which pass or
fail the quality criteria, Rgood, is measured. This ratio is then multipiled by the number of events in which
µt is not cosmic-tagged, but fails at least one of the quality criteria in order to make an estimate of SR-µµ.
The estimate is validated by redefining the cosmic tag window to leave more muons untagged, enabling a
higher statistics study of Rgood. An additional uncertainty is assigned to the background estimate from the
validation to account for the |d0 | dependence of Rgood which cannot be directly constrained in the nominal
estimate due to statistical limitations. Additional validations test other assumptions by varying the quality
criteria and reversing the roles of µb and µt in the definition of Rgood. Including all uncertainties, 0.11+0.20

−0.11
events are predicted in SR-µµ.

Signal systematics are also evaluated to quantify differences between data and MC simulation and correct
the MC events where possible. Differences in signal lepton selection efficiency cannot be directly compared
between data and MC simulation due to the lack of displaced leptons in data, so a conservative systematic
uncertainty is derived in three steps. First, trigger, reconstruction, and selection efficiencies are measured
for low-|d0 | leptons resulting from Z boson decays, for which data and simulation can be compared. Scale
factors are derived to correct the MC simulation to match the data. Uncertainties on these scale factors
are statistical and less than 5%. Next, the high-|d0 | tracking efficiency is compared between signal MC
simulation and data with with cosmic-ray muon signatures. After various corrections are made to account
for the different physical processes, the tracking efficiency as a function of displacement is compared and
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an 8% uncertainty is assigned to each lepton. Finally, the |d0 | dependence of the lepton reconstruction and
selection efficiency is compared to the |d0 | dependence of the tracking efficiency in MC simulation only.
The variation of the selection efficiency as a function of |d0 | is taken as an uncertainity to account for any
possible further discrepancies that cannot be studied in data. This uncertainty increases with displacement,
0.5–5% for muons and 3–27% for electrons. It is larger for electrons due to the identification challenges
introduced by the ambiguity in the detector signatures of electrons, photons, and converted photons.
Additional event-level uncertainties are also derived. Theoretical uncertainties include cross-section
uncertainties, 2–6%, and the variation of the factorization and renormalization scale, < 5%. Additional
uncertainties, including the impact of pileup on signal selection, luminosity uncertainty, and uncertainty on
the filtering selection used for the extended track reconstruction, contribute at < 2%.

Region SR-ee SR-µµ SR-eµ

Fake + Heavy-Flavor 0.46 ± 0.10 – 0.007+0.019
−0.007

Cosmics – 0.11+0.20
−0.11 –

Expected Background 0.46 ± 0.10 0.11+0.20
−0.11 0.007+0.019

−0.007

Observed events 0 0 0

Table 1: The expected and observed yields in the signal regions. Combined statistical and systematic uncertainties are
presented. Estimates are truncated at 0 if the size of measured systematic uncertainties would yield a negative result.

Zero events are observed in each of the three signal regions, consistent with the background predictions
shown in Table 1. As no excess of events is observed, exclusion limits on the ˜̀ masses are derived at 95%
confidence level (CL) following the CLs prescription [70]. The HistFitter package [71] is used to compute
the statistical interpretation based on a log-likelihood method [72], and all systematic uncertainties are
treated as Gaussian nuisance parameters in the likelihood. SR-ee and SR-µµ are fit individually to calculate
limits on GMSB SUSY models with a ẽ or µ̃ NLSP, while τ̃ NLSP and co-NLSP limits are obtained using
the simultaneous fit of all three signal regions. All uncertainties other than the statistical uncertainty are
treated as correlated across the three orthogonal regions.

Limits on long-lived ˜̀ production are presented in Figure 2 where expected and observed exclusion
contours as a function of ˜̀ mass and lifetime are shown. For a lifetime of 0.1 ns, ẽ NLSP, µ̃ NLSP, τ̃
NLSP, and co-NLSP scenarios are excluded for ˜̀ masses up to 720 GeV, 680 GeV, 340 GeV, and 820 GeV,
respectively. GMSB ˜̀ production is probed for the first time in this lifetime range at the electroweak scale
and approaching the TeV scale. Furthermore, as no requirements were made on missing energy, displaced
vertices, or jets, this result is model-independent and applicable to any BSM model producing high-pT
displaced leptons.
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