
Table 2 
Nonstrange mesons ( masses in GeV) 

So there is no place for (1250) in tbe 
bag model proposed here, as distinct from 
the "naive" bag model which had been 
used in m . However, the existence of 
J > /(1250) is not firmly established and 
needs further experimental check. 
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THE POTENTIAL AND QUASIPOTENTIAL MODELS FOR 
BOUND QUARKS 

R .M.Mir-Kasimov 
Joint Institute for Nuclear Research, 

Dubna 

The idea that quarks "inside" the hadrons 
are bounded by a simple potential is as old as 
the idea about quarks themselves. It is based 
on simple and conventional physical concepts 
and is attractive to many physicists• This 
viewpoint was first used by N.N.Bogolubov 
et a l / 1 ' 2 / . 

The discovery of new particles and their 
Interpretation as bound states of the charmed 
quarks' ' stimulated the creation of a "new 
wave" of papers, in which different simple po­
tentials describing the interaction between 
quarks are used. The most popular is the linear 
potential 

V ~ %r -\lo (i) 

whereY* is a relative distance between quarks. 
This potential is suggested by gauge theories 

of quark confinement and by exact soluble models 
in the 2-dimensional quantum electrodynamics. 

The spectroscopy which arises here is in 
satisfactory agreement with the experimental 
data on the mesonic (and baryonic) masses. Of 
course, all such models are the only first ap­
proximation to the real picture. The consistent 
solution of this problem should comprise both 
the quantum effects and all other attributes 
of the interaction of quarks. 

The main part of this talk is devoted to 
the application of the quasipotential (q.p.) 

/A/ 

approach7 ' . it Is connected directly with 
quantum field theory and it is strictly relati-
vistic. In fact, we shall employ the version 
of the q.p. approach given by Kadyshevsky' ' . 
But before passing to the q.p. analysis of 
hadronic spectra we should mention the papers 
devoted to investigation of this spectra on 
the basis of linear and other simple potenti­als / 6 / 
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The q.p. equations for the wave function 
and the scattering amplitude given Xr/^7 are 
absolute with respect to the geometry of the 
momentum space and could be obtained from the 
non-relativistic Schroedinger and Lippmann-
Schwlnger equations by changing the non-relati­
vistic (Euclidean) expressions for energy, 
volume element, etc.,by their relativistic 
(non-Euclidean) analogs. This fact allows us 
to pass to the relativistic T-representation 
using the expansion over matrix elements of 
the unitary irreducible representations of the 
Lorentz group^7/. The kernel of this relativis-

x/ 
tic Fourier transformation has the form ' 
} f t r ) j : ( f c k X f (itfyskX, ) " M r (2) 

? • i (the relative momentum of quarks 
in the c .m.s.) Y\ HerelT is the eigen­
value of the Casirair operator of the Lorentz 
group 

In the nonrelatlvistic limit 
f*1 a 

( 3 ) 

wherey-is a usual 3-vector. 
The equation for the relativistic wave func 

in V representation is the finite-
difference equation 

V(?.E,l L -is the quaslpotentlal and has 

2 

where 
the form 

This equation was successfully applied to the 
analysis of the C C system ( jj^-particle) in the 
case of linear potential in paper^8/. The supple­
mentary series of the Lorentz group representa-

/ Q / 

tion was used in ' . 
There is a number of difficulties connected 

with the finite-difference character of the 
q.p. equation. The main of them is the problem 
of boundary conditions. 

We suggest a version of q.p. equation which 
corresponds to the second order differential 

In what follows we consider the system 
i.e., the system of particles with equal 

masses. We employ the system of units in which 
" T \ ~ \Y\~£-y{ J where is the mass of quark. 

equation lnV^-representation^10/• We write the 
denominator in the Lippman-Schwinger equation 

i 
in the form 

4. (6) 

w h e r e c ^ ^ is the Euclidean distance between 
the point ̂  and the origin in the flat non-
relativistic momentum space. Passing now to the 
relativistic q.p. equation we must change 

wherej^ is the distance in the Lobachevsky mo­
mentum space, or rapidity. 

The q.p. equation is j» ^ 

The equation for the radial wave function in **} 
T* -representation is 

where ^ ( r ^ ) i s a specific centrifugal ten 
which in the non-relativistic limit goes over 

Vt is the principal quantum number. The spect­
rum of rapidities is given by the condition 
lfh(tf)=» 0 , i.e., by zeros of Airy function. For 
t*%~0 we have no analytic solutions. 

Using the lowest mesonic masses and lepto-
nic width (the colour is taken into account) 
as an input parameter, we made the computer 
calculations of radial and orbital excitations 
in|>p ,hft , \ \ anddC systems. The results are in 
good agreement with the data on mesonic spect-
roscopy^ 1 0/. For example the first radial exci­
tations in the C £ system take the following 
values; 

*. it ~ Os'te's); * s? ~ £ «(b w)% 

The detailed results of computations are pre­
sented i n / 1 0 / . 

We investigated also the case of extremely 
heavy quarks, which is suggested by the field-
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theoretical scheme In which the momenta of 
quanta off the mass shell belong to the de-
Sitter space /11-13/. 

(13) 
/IV Following paper7 x*r/ we identify with the 

length scale arising in the weak interaction 
theory; 

to V 7 

The quanta with the massf^ (the raaximons), 
M-

(14) 

includes the rapidity Xq of another geometrical 
nature: 

play in the theory with the de-Sitter momentum 
x/ 

space the principal role 7 . 
The attractive idea is to identify the quark 

with raaxiraon. In such a case these particles, 
originating due to the properties of the geomet^ 
ry of the momentum space, are at the same time 
the fundamental constituents of hadrons. 

We consider the model of -^mesons represen­
ted as the bound states of the quarks £ and Q 

with mass M. With slight modifications of the 
arguments of ref . ^ ^ w e obtain the q.p. equation 
which does not differ in form from (9), but 

The masses of all known resonances are 
much smaller than H > that i s ^ S i ^ for low-
laying excitations. It is easy to see that 

Vô ^M * a n d t h e absolute valuej{|p( of the re­
lative momentum equals 

within the accuracy ('A4I • Thus, the quarks 
motion has the relativistic character in this 
case. 

Taking masses of ̂ (3.095) and ̂  (3.686) 
as input parameters we obtain In this case also 
the higher excitations in the C C system, which 
could be identified with known £ (4.15) and 
^ M (4.40) states. 

X / /The massM is the limiting mass of the 
'11-13/ 

r/15/ 
virtual quanta^ 1 1 1 3 / # The term "maximon" is 

The knowledge of the relativistic bound 
state wave function permits one to obtain 
further information about its structure. For 
example, the computation of the values of mean-

IT / of the composite system 

^(d) yields 
^ t 2 / 1 = a c S f * (17) 

It is remarkable that uncertainty relation in 
the relativisticT-space 7 

results in the correct estimate for ^ 
It follows from (16) that the mean value of 

rapidity equals V^/x *ithin accurate of (/*/fvf) • 

Substituting (19) into (18) we obtain the esti­
mation 

( 2 0 ) 
mation % A 

taken from paper7 
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tive distance V* are canonically conjugated in 
the sense of the relativistic Fourier transfor-

/ 7 / 

mation7 7 . This relation is essentially used 
in the relativistic scheme describing the data 
on high energy hadron-hadron scattering7'"^7''. 
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NULL-PLANE QUANTIZATION AND QUASIPOTENTIAL 
EQUATION FOR COMPOSITE PARTICLES 

A.A.Khilashvili 
Department of Physics,Tbilisi State University, 

Tbilisi,USSR 

Methods of investigation of relativistic 
bound systems are known from the time of 
creation of quantum field theory. At present, 
( as always, of course) the problem is to 
develop more simpler and economical ways for 
dealing with bound states. 

We are inclined to think that the null-
plane ^ quantum field theory is to be more 
adapted to the problems under consideration 
because, if we eliminate the =• O modes, 
null-plane canonical commutation relations 
have simplest, Fock, representation even in 
the presence of interaction . Bound state 
wave functions at the equal 
^times" for constituents are maximally olose 
to nonrelatlvistlo expressions without the 
transition to the infinite momentum frame^'4"/. 

Bound state problem for two spin!ess 
particles on the one null-plane was considered 
in using Tamm-Dancoff approximation and 
in f**f - on the basis of DGS spectral repre­
sentation. 

From our point of view, the most successive 
approach to the bound state problem in rela­
tivistic quantum field theory is a quasipoten-
tial method . Equal-time quasipotential 
method had been successfully applied in many 
investigations . Null-plane quaslpotential 
equation was considered in papers for 
spin!ess particles and in A 0 * 1 1 / - for 
spinorial particles. 

In this report we shall discuss the main 
features of null-plane quaslpotential approach 
and give an application to the asymptotic 
behaviour of composite particle form faotors 
at large Pi . 

Taking into account that the £90 modes 
may be eliminated ^ 1 2 ^ from the F0ck-space with 
the help of second class constraints /13/ it 
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