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Abstract

We study world-sheet theories of Abelian and non-Abelian strings that arise in
different models. Considering a model in which Abelian (Abrikosov-Nielsen-Olesen)
string acquires rotational (quasi)moduli we analyze the parameter space to find examples
in which these strings not only coexist but are degenerate in tension. We prove that both
solutions are locally stable, i.e there are no negative modes in the string background.
The tension degeneracy is achieved at the classical level and is expected to be lifted by
quantum corrections. Moreover, using a representative set of parameters we numerically
calculate the low-energy Lagrangian on the world sheet of the Abrikosov-Nielsen-Olesen
string. The bulk model is deformed by a spin-orbit interaction generating a number of
“entangled” terms on the string world sheet.

We also consider modifications of N' = 2 supersymmetric QCD with the U(N)
gauge group and Ny = N quark flavors. These models support non-Abelian strings.
The dynamics of the orientational modes is described by two-dimensional CP(N — 1)
model with varying degrees of supersymmetry. We used analytical methods to solve the
CP(N — 1) model at finite string length L assuming periodic boundary conditions.

In the pure bosonic theory in the large-N limit we detect a phase transition at
L~ Aa%, (which is expected to become a rapid crossover at finite V). At large L the
CP(N — 1) model develops a mass gap and is in the Coulomb/confinement phase, while
at small L it is in the deconfinement phase. In the N' = (2, 2) supersymmetric CP(N —1)
model at finite L we find a large- N solution which was not known previously. We use the
power of holomorphy to deduce that the theory has a single phase independently of the
value of LAgp. For any value of this parameter a mass gap develops and supersymmetry
remains unbroken. So does the SU(N) symmetry of the target space. In the heterotic
N =(0,2) CP(N — 1) model we find a rich phase structure and discuss how it matches
the N = (2,2) limit.
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Chapter 1

Introduction

Quark confinement in QCD is a long-standing problem in Physics. The attraction force
between a quark and antiquark does not decrease with distance. Instead the potential
energy of their interaction grows linearly. Thus quarks never appear as free particles,
and one can only observe mesons and baryons.

A similar phenomenon occurs in superconductors of the second type and is referred
to as the Meissner effect. Consider a superconducting sample with magnets attached
to it on opposite sides. On one hand magnetic field cannot penetrate into a supercon-
ductor. On the other hand the flux of magnetic field must be conserved. Thus, a flux
tube forms between the magnets preserving the flux of magnetic field. Moreover, the
superconductivity is destroyed inside the flux tube. Since the flux tube has constant
tension the potential between two magnets growns linearly with distance. The flux tube
described above is referred to as ANO (Abrikosov, Nielsen and Olesen) string [1]. How-
ever, it cannot explain the confinement of quarks in QCD, since it is a chromomagnetic
flux tube an not a chromoelectric one.

A dual Meissner effect was suggested by t Hooft and Mandelstam [2] to explain
the confinement. They conjectured that due to color magnetic-monopole condensation
the non-Abelian flux tube forms between the quarks. The Seiberg-Witten solution [3]
of N' = 2 supersymmetric Yang-Mills theory demonstrated the existence of massless
monopoles which can condense, leading to the formation of ANO flux tube. It carries
chromoelectric flux, but is still Abelian.

Genuinly non-Abelian strings were first found in N' = 2 supersymmetric gauge
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theories [4, (Bl [0l [7]. Later this construction was generalized to a wide class of non-
Abelian gauge theories, both supersymmetric and non-supersymmetric, see [8, [9], 10, [T1].
Both Abelian and non-Abelian strings have translational modes associated with broken
translation symmetries. The main feature of the non-Abelian strings is the occurrence
of extra moduli: orienational zero modes associated with the color flux rotation in the
internal space.

In this thesis I present the study of Abelian and non-Abelian strings arising in two
different models. The thesis is organised as follows: In Chapter (2|) we consider a simple
model with “spin-orbit” interactions supporting the Abrikosov-Nielsen-Olesen (ANO)
[1] or similar strings (vortices) with “extra” non-Abelian moduli (or quasimoduli) on
the string world sheet. Such extra moduli fields can appear in the bulk models that
have order parameters carrying spatial indices, such as those relevant for superfluidity in
3He (see e.g. [12]). This particular example was studied in [L3], which, in fact inspired
a more detailed numerical analysis presented below. The studies in [14] [13], [15] were
carried out at a qualitative level. Here we perform calculations needed for the proof
of stability of the relevant solutions and derivation of all constants appearing in the
low-energy theory on the string world sheet.

First, we will consider the simplest model [14] assuming weak coupling in the bulk
(to justify the quasiclassical approximation), determine the profile functions to find the
string solution, and derive the world sheet model. The general theory of the string
moduli in the absence of the spin-orbit terms is discussed in [16, [17].

Then we introduce a spin-orbit interaction in the bulk. The impact of this interaction
on the string (vortex) world sheet amounts to lifting all or some rotational zero modes
(i.e. those not associated with the spontaneous breaking of the translational symmetry
by the string). However, under certain condition on a parameter determining the spin-
orbit interaction in the bulk, the mass gap generated on the world sheet remains small,
and the extra zero modes survive as quasizero modes (some may remain at zero at
the classical level). In addition to the above mode-lifting, the spin-orbit interaction
generates a number of interesting entangled terms on the string world sheet which couple
rotational and translational modes (despite the fact that the translational modes remain
exactly gapless).

In Chapters [3] and [ we consider a differenct model supporting non-Abelian strings
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[18]. As was mentioned the main feature of the non-Abelian strings is the occurrence of
orienational zero modes associated with their color flux rotation in the internal space.
Dynamics of these orientational moduli in the model we consider in Chapters 3| and
is described by two-dimensional CP(N — 1) model on the string world-sheet.

Recently there was a considerable progress in the study of long confining strings
of a fixed length both on lattices [19] [20] and by constructing the effective theory on
the string world sheet, see [21, 22]. The energy of the Abrikosov-Nielsen-Olesen (ANO)
closed string [I] in the Abelian-Higgs model as a function of the string length L (in the
large-L limit) can be written as

C.
E(L):TL—%+T—;+---, (1.0.1)

where T is the string tension and ellipses stand for terms of the higher order in 1/L. This
1/L expansion is determined by the low-energy effective two-dimensional theory on the
string world-sheet. For the ANO string the world-sheet theory is given by the Nambu-
Goto action plus higher derivative corrections. It is plausible to assume that a similar
structure applies to QCD confining strings. Recently a significant progress occurred in
measuring the spectrum of long confining QCD strings in lattice simulations, see, for
example, [23].

The 1/L term in is referred to as the Liischer term [24]. The coefficient 7 is
universal. Its value is determined by the number of massless (light) degrees of freedom
on the string world-sheet. The Abelian strings possess only two massless excitations
due to two translational zero modes; the Liischer term is, correspondingly, v = 7/3.

In Chapters |3| and |4 we study the L dependence of E(L) for all values of L, large
and small (see below), taking account of the orientational moduli that are described by
two-dimensional CP(N — 1) model. The latter is asymptotically free and develops its
own dynamical scale Acp. This modifies the expansion in . Assuming that

Acp < VT (1.0.2)
we can write A )
_ cpL 1
E(L)=TL+ 71 + O (TL3> . (1.0.3)

In Chapters 3] and [4] we present a detailed calculation of the string energy for strings



with
L>1/VT. (1.0.4)

For these values of L higher derivative corrections to the effective world-sheet theory
can be ignored, and we use CP(N — 1)-based description to calculate the function
f(AcpL) (which is already known [25] in the limits L > Agp and L < Agp). We
solve the CP(IN — 1) model using the large-N approximation [26] and imposing periodic
boundary conditions (on the boson and fermion fields in the case of supersymmetric
model, see below).

Now, when we have two free parameters in the problem under consideration, N and
L, and both can be large, the ordering of taking limits is of paramount importance and
a source of a number of paradoxes. We will always take first the limit N — oco. In
this limit the number of dynamical degrees of freedom is infinite (even in the quantum-
mechanical limit L — 0) and, moreover, all interactions die off. This makes possible
phase transitions.

In Chapter [3[ we study both non-supersymmetric case as well as 1/2-BPS string in
N = 2 supersymmetric QCD. For non-supersymmetric case we find a phase transition
in the world-sheet theory in the N = oo limit. At large L this theory develops a
mass gap and is in the Coulomb/confinement phase. Finite-length effects coming from

orientational moduli are exponentially suppressed. We find that at L > Acp

2
f(AcpL) = —g — N\/; v/ AcpL e~Aorl L. ) (1.0.5)

where the first term is the conventional Liischer term coming from the translational
moduli.

At small length the CP(N — 1) model is in the deconfinement phase. Massless
orientational moduli contribute to the Liischer term which becomes dependent on the
rank of the bulk gauge group. At /T < L < Acp we find that

Ff(AcpL) = —N g (1.0.6)

Next, we study supersymmetric case considering BPS-saturated non-Abelian string

in four-dimensional N' = 2 SQCD. In this case the world-sheet theory for orientational
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modes is N' = (2, 2) supersymmetric CP(N — 1) model. Solving this theory in the large-
N limit we find a single phase with unbroken supersymmetry and a mass gap. The
mass gap turns out to be independent of the string length. The chiral Zsy symmetry is
broken down to Zs, in much the same way as for infinitely long string. The photon field
acquires a mass term, and no Coulomb/confining potential is generated. Instead, the
theory has N degenerate vacua representing N elementary strings. The Liischer term
vanishes due to the boson-fermion cancellation.

In Chapter we introduce a mass term for the adjoint matter in the bulk and break
N = 2 supersymmetry down to /' = 1. The string remains BPS saturated [27]. It was
conjectured by Edalati and Tong [28] and confirmed in [29] that the target space in the
deformed model is CP(N —1) x C. The right-handed supertranslational modes become
coupled to superorientational ones, and the world sheet theory becomes heterotic model
with /' = (0,2) supersymmetry. It is important that this is a nonminimal model (cf.
[30]) well defined for all N.

We solve the above heterotic NV = (0,2) CP(N — 1) model on a cylinder with
circumference L in the large-N approximation, assuming periodic boundary conditions.
We observe three distinct phases. Two phases (III and IV in Fig. [l)) preserve the
SU(N) global symmetry. The finite-L effects are exponentially suppressed at large L
and intermediate values of the deformation parameter u, in much the same way as in
non-supersymmetric theory considered in Chapter [3l The parameter of deformation u
is related to the mass of the adjoint field in the bulk SQCD.

The theory in phase (IV) has mass gap and N vacua; the discrete chiral Zsy sym-
metry is spontaneously broken down to Zs. As we increase u still keeping L large the
theory undergoes a third order phase transition into a phase (III) with a single vacuum
and unbroken Zyn. This is a phase with massless fermions.

As is the case for non-supersymmetric theory, we find a phase (II) with would-be
broken SU(NV) symmetry at small L. In the latter phase a mass gap is zero in the leading
approximation. Moreover, we find that the vacuum energy also vanishes at N = oco. We
expect corrections of higher order in 1/N (or, perhaps, exponential corrections e N ) to
break N = (0,2) supersymmetry and lift the vacuum energy. We stress that SU(N) is
broken only when N = co. At large but finite IV this and other phase transitions turn

into rapid crossovers.
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We also discuss how this rich phase structure evolves to the NV = (2,2) picture with

a single phase in the limit of zero deformation, u = 0 (phase (I) in Fig. [I]).

u Il Il

SU(N) would be broken ZZN symmetric
o=0 iD=0 G=0
v
1
ZHN broken
| (2,2) Supersymmetry L
1/\

Figure 1.1: (I) u < 1/N? region corresponds to the N' = (2,2) solution regardless of L;
(IT) w > 1/N? and L < 1/A region corresponds to the would be broken SU(N) phase
(n! fields develop VEV); (III) L > 1/A and large u region represents the Zoy-symmetric
phase with massless fermions; (IV) L > 1/A and moderate u region represents Zy-

broken phase with massive bosons and fermions.



Chapter 2

Abelian and Non-Abelian Strings

2.1 Formulation of the problem

We start from the model suggested in [14]. Its overall features are similar to those of the

superconducting cosmic strings [31]. The model is described by an effective Lagrangian

L=Lo+ L, (2.1.1)
where
1
Lo = —galn +ID"F —V(9),
Dup = (O —iAu)o,
Vo= (el - )", (2.1.2)
and
Ly = 9uxX'0"X' = U(x,9), (2.1.3)
U = v [(—/ﬂ +16%) X'x* + 8 (x"xiﬂ : (2.1.4)

with self-evident definitions of the fields involved, the covariant derivative, and the
kinetic and potential terms. The parameters e, A\, 8, u, and v can be chosen at will,

with some mild constraints (e.g. v > ) discussed in [13]. In particular, the stability of



the ¢ # 0 vacuum we are interested in implies that 5 cannot be too small,

2
1
B> —5 , (2.1.5)
mi c(c—1)
where
02
c=—, (2.1.6)

cf. Eq. (2.1.9). The relations between the parameters in (2.1.2)), (2.1.4) and a,b,c
appearing below, on the one hand, and the physical parameters (the particle masses

and the coefficients in front of the quartic terms ¢*, x* and ¢?x?, respectively), on the

other hand, are shown in Table and (2.1.7), (2.1.9).

2 | >

-1
Ty,

Table 2.1: Parameters in (2.1.2)), (2.1.4) in terms of the particle masses and the coefficients in
front of the quartic terms ¢*, x*, and ¢?x? (A, A, and ~, respectively).

=

We will assume the parameters to be chosen in such a way that the bulk model is
weakly coupled and, hence, the quasiclassical approximation is applicable.

Now let us discuss some parameters and the corresponding notation. In the vacuum
the complex field ¢ develops a vacuum expectation value |pyac| = v while its phase is
eaten up by the Higgs mechanism. The masses of the (Higgsed) photon and the Higgs

excitation are

m? = 2¢%0?, mi = 4? . (2.1.7)



We will denote the ratio of the masses

2

2, 2 _ €
= = . 2.1.8
a=mi/m} = (2.1.8)
Moreover, in the vacuum the field x* does not condense. Its mass is

mi = (v2 — ). (2.1.9)

For what follows we will introduce two extra dimensionless parameters:

_ o9, 9_ Y c—1 _ 27,2

b—mx/mqﬁ:ﬁ p c=v"/u°. (2.1.10)

The first measures the ratio of the x to ¢ masses in the bulk and, as explained in [14],
has to be b 2 1. The second parameter is also constrained, ¢ > 1. We will treat both
of them as parameters of the order of unity. As for the spatial orientation, the string
will be assumed to lie along the z axis. We introduce a dimensionless radius in the

perpendicular {z,y} plane,
p=mey\x2+y>. (2.1.11)

The basis of our construction is the standard ANO string (see e.g. [32]). The ¢ field
winds ensuring topological stability, which entails in turn its vanishing at the origin.

This implies the following ansétze:
x; .
Ap=0, A= —81‘]‘7; (1 - f(ﬂ) . p=vp(p)e”, (2.1.12)
where « is the polar angle in the perpendicular plane, and we assume for simplicity the
minimal (unit) winding. The boundary conditions supplementing (2.1.12)) are

f(o0) =0, f(0)=1; p(0)=1, ¢(0)=0. (2.1.13)

In the core of such a tube the ¢ field tends to zero, see (2.1.13)). The vanishing of
the ¢ field results in the x* field destabilization in the core of the string (as follows from
Eq. (2.1.4)). Hence, inside the core, the x* field no longer vanishes,

2

(X' x)core ~ & (2.1.14)

ﬁ )
as will be illustrated by the graphs given below. Choosing the value of A judiciously,
we can make p2/3 > mi, implying that the O(3) symmetry is broken in the core. The



10

appropriate ansatz is

; H
X'=—=x( | 0 [. (2.1.15)
V28
with the boundary conditions
Xx(c0) =0, x(0)~1. (2.1.16)

Thus, we have three profile functions, f, ¢, and x, depending on p. Minimizing the

energy functional we derive the system of equations for the profile functions

(J”)' _
P p

N e e (@1)  pex® b
(¢0) = I R T R
/ b
(x’p) = (e’ -1), (2.1.17)

where the primes denote differentiation with respect to p. In the numerical solution to

be presented below we will assume for simplicity that
a=1, ie mg=my. (2.1.18)

In the absence of the x field this would imply the Bogomol'nyi-Prasad-Sommerfield
(BPS) limit [33] with the tension[]

Ty = 2mv? . (2.1.19)

Below we will see how the presence of the x field changes the tension, using Ty as a
reference point.

It is obvious that the solution x = 0 and ¢ = ¢y = pano satisfies the set of
equations . First we will show that this solution is unstable, i.e. corresponds to

the maximum rather than minimum of the energy functional.

1 Alternatively, this is the boundary between type-I and type-II superconductors.



11
2.2 Instability of the x = 0 solution

To prove instability we must demonstrate that for ¢ = g = pano there is a negative
mode in x, in much the same way as in [3I]. To this end it is sufficient to examine the

energy functional in the quadratic in y approximation,

s 2 v’ 2
& = ﬁL /dx dy {X [—A + v (—1 + Mchoﬂ x} , (2.2.1)

where L is the string length (tending to infinity), and find the lowest eigenvalue of
2 v’
—“A+ypc -1+ p@o x=FEx. (2.2.2)

One can view (2.2.2) as a two-dimensional Schrédinger equation. Given that the ground

state is spherically symmetric and introducing

v(p) =XxVp, (2.2.3)
one can rewrite (2.2.2)) as
2
o cop—1 1 _ _ B
P +(b o1 4p2>¢—61/), E_mé’ (2.2.4)

where prime denotes differentiation over p. Numerical solution at ¢ = 1.25 yields

—1.479 at b=1,
€= (2.2.5)
—4.19 at b=2.

2.3 x # 0 solution

To find the asymptotic behavior of the profile functions at p — oo one can linearize
these equations in this limit,

1 1
frovpe?, (l=p)~—e, x~—e V. (2.3.1)
VP VP

We integrated Eqs. (2.1.17)) numerically for a number of points in the parameter
space {b,c, 8} keeping a = 1. Then the parameter \ appears only as an overall factor,

with the analytically known dependence. Representative plots are given in Fig. ([2.1]

29).
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041 04
02F — 02 f —
00 1 2 3 4 5 6 P 00 1 2 3 4 5 6 P
—02r _0-2;
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Figure 2.1: b=1,¢=1.25, =28 Figure 2.2: b=2, ¢ =1.25, 3 =16
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The first plot at the very top is given to show the domain of p in which an “effective”
m? for the y field is negative forcing x* to condense in the core. This is the domain
of negative x* contribution to the potential energy. Then the three profile functions
are presented: f(p), ¢(p), and x(p) (from top to bottom). In terms of the physical
parameters, Figure corresponds to mi = mi and A = 160\ while Figure |D
corresponds to mi = 2m%¢ and X = 640\.

These plots demonstrate that x(0) is indeed close to unity. In scanning the parameter
space we observe that (i) increasing the parameter b (i.e. the y mass) increases both
the width of the domain where the “effective” m? for the y field is negative and the
value of x(0), but decreases the tension of the string; (ii) increasing the parameter ¢
(i.e. decreasing ) acts in the opposite direction; (iii) increasing the parameter 8 acts

in the same way as increasing ¢ but with a weaker impact.

2.4 The world-sheet theory without spin-orbit term

Now let us introduce moduli. Two translational moduli are obvious. Since they are well
studied we will not dwell on this part. Of interest are the rotational moduli. Given the

nontrivial solution (2.1.15)) we can immediately generate a family of solutions which go
through the system of equations (2.1.17)), namely,

=2 \(p)s, (2.4.1)
where the moduli S? are constrained (i = 1,2, 3),
S' S =1, (2.4.2)

therefore, in fact, we have two moduli, as was expected. To derive the theory on the
string world sheet we, as usual, introduce ¢, z dependence converting the S* moduli into
the moduli fields S%(t, z), and

=

X' = V2B x(p) S'(t.2) - (2.4.3)

Substituting this in the Lagrangian (3) and (4) we obtain the low-energy effective action

1 i\ 2
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where
L1 /002 2(p)d (2.4.5)
— = T . A.
27 ~ 8y J, ZTPX(p)dr
One can rewrite this as )
g B c
— =\ — 2.4.6
2w w2 I’ ( )
where
2
I z/ px-(p)dp. (2.4.7)
0
For the parameters we used in Figs. (2.1 we obtain
I ~ 1.107 (for Fig. R.1), I =~ 1.18 (for Fig. 2.2), (2.4.8)
and, correspondingly,
g’ g
5 0.915X (for Fig. 2.1)), o 1.717 X (for Fig. 2.2)) . (2.4.9)
™ T

2.5 Spin-orbit interaction

The “two-component” ¢-x string solution presented above spontaneously breaks two
translational symmetries, in the perpendicular z,y plane, and O(3) rotations. The
latter are spontaneously broken by the string orientation along the z axis (more exactly,
0(3)—0(2)), and by the orientation of the spin field x* inside the core of the flux tube
introduced through S°.

Now, we deform Eq. by adding a spin-orbit interaction [15],

Ly =0ux' 0"x" —e(0:X')* = U(x, 9), (2.5.1)

where € is to be treated as a perturbation parameter.

If e =0 (ie. Eq. is valid) the breaking O(3)—0O(2) produces no extra zero
modes (other than translational) in the ¢-A, sector [16, [I7]. Due to the fact that x # 0
in the core, we obtain two extra moduli S? on the world sheet. This is due to the fact
that at € = 0 the rotational O(3) symmetry is enhanced [13] [I5] because of the O(3)
rotations of the “spin” field x’, independent of the coordinate spacial rotations.

What happens at € # 0, see Eq. ? If € is small, to the leading order in

this parameter, we can determine the effective world-sheet action using the solution
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found above at ¢ = 0. Two distinct O(3) rotations mentioned above become entangled:
0O(3)x0(3) is no longer the exact symmetry of the model, but, rather, an approximate

symmetry. The low-energy effective action on the string world sheet takes the form

S = /dtdz(ﬁo(g)—i-ﬁn),

Lom = {2;2 [(aksif —e (8283)2]} — M2 (1 (S%)?), (2.5.2)
Lo = 30— ISP (0.50)°
+ 2M?(S%) (S'0.x11 + S?0.201) (2.5.3)

where ¥} = {x(t,2), y(t,z)} are the translational moduli fields, and 7T is the string

tension. The mass term M? is

I
M? =2 122 2.5.4
eV 53’ (2.5.4)
where -
12:/0 p (X' (p))?dp. (2.5.5)

For the values of parameters used in Figs. 1,2 we obtain
I, ~ 0.378 (for Fig. 1), I ~ 0.467 (for Fig. 2). (2.5.6)
As for the tension T" we have

T T
Z ~0.963 (for Fig. 1), - ~0.953 (for Fig. 2). (2.5.7)
To To

The impact of the x* field on the string tension is rather small and negative. The positive

contribution of its kinetic energy is compensated by the negative potential energy, see

Figs. (2.1} . This was expected given the result of Sec.

Moreover, it is seen that
M? ¢
el

T B

and is small for sufficiently small ratio £/5. This justifies the above calculation.
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2.6 Degeneracy between Abelian and Non-Abelian Strings

In the previous sections we found a solution for Abelian and non-Abelian strings. For
the chosen parameters the solution corresponding to the Abelian string was unstable.
A natural question arises as to whether the ANO (i.e. Abelian) and non-Abelian strings
can coexist in one and the same model, both being locally stable, and if yes, whether
their tensions can be degenerate. The exact answer to the second question can be given
only in supersymmetric models provided that both strings are BPS-saturated [33], with
one and the same central charge.

Deferring this task for the future here we will explore a model described in section
to find whether or not (classically) degenerate Abelian and non-Abelian strings are
simultaneously supported in this model for at least some values of parameters. We will
analyze the parameter space to find examples of degenerate strings which are locally
stable, i.e there are no negative modes in the string background.

We mainly follow the sections to (numerically) construct profile functions
with zero and non-zero values of the triplet field y, i.e. Abelian vs. non-Abelian. To
justify the quasiclassical approximation we assume weak coupling in the bulk. First,
to normalize our calculation, we determine the profile functions corresponding to the
Abrikosov-Nielsen-Olesen string and find its tension. Next, we find the string solution
with non-zero x. We show that with the appropriate choice of the parameters the
two strings are degenerate in tension at the classical level (within the accuracy of our

numerical calculations). We also investigate stability of the strings.

2.6.1 The x = 0 solution

First we consider y = 0 and ¢ = @9 = pano. We follow Witten [31] to investigate the
stability of the solution with regards to small x fluctuations. To this end we write down
a (linearized) equation for the x modes around the ANO solution. The mode equation

takes the form

2 _
—y + <b 0 11 - 4;2> v=eb, b)) =x V. (2.6.1)
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Foe two representative values of parameters the numerical solution yields
0.041 at b=0.0987, c=1.17,
€= (2.6.2)
0.234 at b=1.871, c=2.
The positivity of € implies the stability of the x = 0 solution. The tension of the string

was found to be
To

2mv?2
The second number on the right-hand side of Eq. (2.6.3)) represents the accuracy of our

numerical computations.

=1-0(1077). (2.6.3)

2.6.2 The x # 0 solution

Now we will demonstrate that although the above ANO solution is locally stable, the
model at hand supports a solution with non-Abelian moduli, i.e. with y # 0.
In the case of x # 0 one can find the asymptotic behavior of the profile functions at
p — oo by linearizing these equations in this limit,
f~\pe?, (1—g0)~\}ﬁe"’, Xw\}ﬁeﬁp. (2.6.4)
Then we integrated Eqgs. (2.1.17) numerically, keeping ¢ = 1 and varying parameters
{b,¢,B}. The plots of the profile functions are shown in Figs. . One can note
a rather low value of the x field in the core. In order for the x field not to be smeared
by quantum fluctuations we must additionally impose a constraint on the parameters
- 2(0
A< 222(_)1) . (2.6.5)
Fortunately, this is always possible since the value of A is in our hands. The origin of
Eq. is as follows. The value of the field x in the core of the string should be
much larger than the mass, otherwise quasiclassical treatment is not applicable (the
condensate of the field should contain many quanta). The mass of the x field is given
in Eq. . The normalization of the field given in Eq. should be modified,
taking into account the results of our numerical calculation for x(0). Thus, the above

ratio is expressed as follows

Xoore M2 1

2
m ~ 28X O

>1, (2.6.6)
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which reduces to Eq. (2.6.5]).
Similarly to the consideration in Sec. [2.6.1] we determine the lowest eigenvalue of

the equation

b 1
—" + p— (cgp% -1+ 3X%) s V=€, (2.6.7)

where 1, and x; are the solutions presented in Fig. 1. This is necessary to check the
stability of x # 0 solution with regards to local variations of x. The results of numerical

calculations yield

0.042 at b=0.0987, ¢ =1.17,
€= (2.6.8)
0.235 at b=1.871, c=2.

We determined the tension of the non-Abelian string,

To
2mv?

=1-0(1077) (2.6.9)

which must be compared with Eq. (2.6.3]). We observe the degeneracy of the two strings
(with x =0 and x # 0).
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Chapter 3

Non-Abelian String of a Finite
Length

3.1 Non-supersymmetric non-Abelian strings

In this section we briefly review the simplest four-dimensional non-supersymmetric
model supporting non-Abelian strings [18], give a topological argument for their stability
and outline the effective low-energy theory on the world-sheet.

The model suggested in [I8] is a bosonic part of N' = 2 supersymmetric QCD, see
[10] for a review. The gauge group of the theory is SU(N) x U(1). The matter sector
of the model consists of Ny = N flavors of complex scalar fields (squarks) charged with
respect to U(1), each in the fundamental representation of SU(N). The action of the

model is

_ 4 _L a Z_L 2
S = /dx[ 493 (Fm/) 49%(FIW)

ap ., 9 a2, 9% Ap 2
+ VAP + T (eaT %)+ 3 (1977 — V) | (3.1.1)
where T are the generators of SU(N), the covariant derivative is defined as

V, =0, - %A# — T AY,

20
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Ay and A, denote the U(1) and SU(N) gauge fields respectively, and the corresponding
coupling constants are g; and go. The scalar fields ¢*4 have the color index k =1, ..., N
and the flavor index A = 1,..., N. Thus, ¢4 can be viewed as an N x N matrix. The
U(1) charges of ©*4 are 1/2.

Let us examine the potential of the theory (3.1.1)) in more detail. It consists of two
non-negative terms and consequently the minimum of the potential is reached when
both terms vanish. The last term proportional to g7 forces ¢4 to develop a vacuum

expectation value. One can choose ©*4 to be proportional to the unit matrix, namely,

Pvac = V& diag (1,1,..., 1), (3.1.2)

where we use N x N matrix notation for ©*4. Then the last but one term vanishes
automatically.

The above vacuum field spontaneously breaks both the gauge and flavor SU(N)
groups. However, it is invariant under the action of combined color-flavor global SU(N )¢y .

Therefore, symmetry breaking pattern is

U(N)ga,uge X SU(N) — SU(N)C+F .

flavor

This setup was suggested in [34] and became known later as the color-flavor locking.

The topological stability of non-Abelian strings in this model is due to the fact that
m(SU(N) x U(1)/Zn) # 0. One combines the Zy center of SU(N) with elements
e2mik/N of U (1) to get windings in both groups simultaneously.

The string solution [I§] breaks the global symmetry of the vacuum as follows:
SU(N)cyr — SUN —1) x U(1). (3.1.3)

As a result the orientational zero modes appear, making the vortex non-Abelian.
As is clear from the symmetry breaking pattern of Eq. the orientational moduli
belong to the quotient

SU(N)

SUN D<o~ CPW -1 (3.1.4)

Thus, the low-energy effective theory on the string world-sheet is described by the
CP(N — 1) model. The action of the model was derived in [I8]; it can be written as

s000 = [ | 2@ 4 r 9l (315)
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where

Ty = 27§ (3.1.6)

is the classical tension of the string, 2* are two translational moduli in the perpendicular

plane, n!, I =1, ..., N are N complex fields subject to the constraint
!> =1, (3.1.7)

and 7 is defined below.
The covariant derivative is

Vi = 0, — 14y (3.1.8)

and k = (1, 2) labels the world-sheet coordinates. The relation between two-dimensional

coupling r and a four dimensional coupling g» at the scale /€ is given by

r= 4—2 (3.1.9)
92

The field A; enters without kinetic term and is auxiliary. It can be eliminated by virtue

of equations of motion and is introduced to make the U(1) gauge invariance of the model

explicit.

Let us count the number of degrees of freedom. The complex scalar fields give
2N real degrees of freedom, of which one is eliminated due to the constraint and
another one due to U(1) gauge invariance. Thus, the total number of degrees of freedom
is 2(IN — 1) which is precisely the number of degrees of freedom in the CP(N —1) model.

To conclude this section we note that formation of non-Abelian strings leads to
confinement of monopoles in the bulk theory. In fact, in the U(N) gauge theories
strings are stable and cannot be broken. Therefore, confined monopoles are presented
by junctions of two degenerate non-Abelian strings of different kinds, see review [10] for
details. In the effective world-sheet theory on the string these confined monopoles are

seen as CP(IV — 1) kinks interpolating between distinct vacua.

3.2 CP(N — 1) model at zero temperature

At large N the model was solved [26] in the 1/N approximation. Let us outline how
this is done. The Lagrangian £ of the CP(N — 1) model in the gauged formulation in
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the Euclidean space-time can be written as
L=|Vin!| +w <\nl\2—r) , (3.2.1)

where we rescale the n! fields. In addition, we introduce a parameter w to enforce the
constraint. Moreover, we replace the coupling r with the 't Hooft coupling constant A,

A= (3.2.2)

r

A does not scale with V.
Since the n! fields appear quadratically in the action (3.2.1)) we can perform the
Gaussian integration over them resulting in the equation for the effective potential V,

e TV — /dw dAy, det™ (—(8k —iAR)? + w) exp <];\[ /dza: w> ) (3.2.3)

where T' stands for the (asymptotically infinite) Euclidean time.

Since integration over w and Ay cannot be done exactly we use a stationary phase
approximation. Due to the Lorentz invariance we search for a point such that Ay =0
and w = const. To find this stationary point we vary the Eq. with respect to w.

The resulting equation is

k1
A ———=1. 2.4
/ 2m)2 k2 +w (3:24)
Rewriting the bare coupling constant A\ in terms of the scale Acp of the CP(N — 1)
model )
47 M
— =In—%, (3.2.5)
A AZp
where M,y is the ultra-violet cutoff, we finally find that
w=Ap. (3.2.6)

Thus, the vacuum value of w does not vanish. Looking at Eq. one can see that
a positive value of w means that a mass for the fields n! is dynamically generated.

To determine the spectrum of the theory one has to expand the effective action
Eq. around the saddle point and consider field fluctuations in the quadratic
approximation. Linear terms vanish. Terms that are cubic and higher are suppressed
by powers of 1/ V/N. Two Feynman diagrams in Fig. give rise to the kinetic term
for the U(1) gauge field.
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Figure 3.1: Feynman diagrams contributing to kinetic term of photon field

Gauge invariance requires the answer to be

H/u/ = H(pz) (p2g;u/ - pupu) . (327)

The meaning of Eq. is simple. It represents the kinetic energy of the gauge
field written in momentum space. Thus, what was introduced as an auxiliary field
becomes a propagating field. Calculation in Appendix [B| reproduces Witten’s result
[26], T1(0) = N/12wA%p , which is interpreted as the inverse of the U(1) charge squared
of the n! fields.

Massless photon in two dimensions produces the Coulomb potential between two

charges at separation R,
_ 127A?

N

leading to a linear confinement of the nn pairs. Thus, the spectrum of the theory

V(R) R, (3.2.8)

contains 7n “mesons” rather than free n’s.

It is instructive to present an alternative interpretation of this result. In [26] it was
shown that n! fields can be interpreted as kinks interpolating between different vacua.
The vacuum structure of the CP(N — 1) model was studied in [35]. According to this
work the genuine vacuum is unique. There are, however, of the order N quasivacua,
which become stable in the limit N — o0, since the energy split between the neighboring
quasivacua is O(1/N). Thus, one can imagine the 7 field interpolating between the true
vacuum and the first quasivacuum and the n field returning to the true vacuum as in
Fig. 3:2] The linear confining potential between the kink and antikink is associated
with the excess in the quasivacuum energy density compared to that in the genuine
vacuum.

This two-dimensional confinement of kinks can be interpreted in terms of strings
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Figure 3.2: Configuration of the string with two particles on it. Zero and one represent the
true vacuum and the first quasivacuum respectively.

and monopoles of the bulk theory, see [18]. The fine structure of the CP(N — 1) vacua
on the non-Abelian string means that N elementary strings are split by quantum ef-
fects and have slightly different tensions. Therefore, the monopoles, in addition to the
four dimensional confinement, (which ensures that they are attached to the string) ac-
quire a two-dimensional confinement along the string. The monopole and antimonopole
connected by a string with larger tension form a mesonic bound state.

Consider a monopole-antimonopole pair interpolating between strings 0 and 1, see
Fig. The energy of the excited part of the string (labeled as 1) is proportional to
the distance as in Eq. . When it exceeds the mass of two monopoles (which is of
order of Acp) then the second monopole-antimonopole pair appear breaking the excited
part of the string. This gives an estimate for the typical length of the excited part of
the string, R ~ N/Acp.

The above condition guarantees that there is enough energy in the °

‘wrong string”
to produce a pair of kinks. However, the probability of this process, string breaking,
(which can be inferred from the false vacuum decay theory) is proportional to exp(—N),

i.e. dies off exponentially at large N.

3.3 The Coulomb/confinement phase

In order to consider closed non-Abelian strings of length L we compactify the space
dimension; in other words, we study CP(N — 1) model on a strip of the finite
length L with periodic boundary conditions.

In Euclidean formulation considering a model at finite length is equivalent to con-

sidering the model at finite temperature. The correspondence between the length of the
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string and the temperature is given by
L=g, (3.3.1)

where ( is the inverse temperature. Thus, the limit of infinite length is the same as the
limit of zero temperature.

To solve the CP(N — 1) model on a finite strip we use large- N approximation. The
CP(N — 1) model at finite temperature in the large- N approximation was solved pre-
viously by Affleck [36], see also [37] and [38] for reviews. Although we use a different
regularization, our results match those obtained in [36]. There are two important dif-
ferences, however. The first one is related to the interpretation of the photon mass.
In [36] the emergence of the photon mass is interpreted as a phase transition into the
deconfinement phase already at L = co. We give a different interpretation of the photon
mass (see Sec. ; we do not detect any phase transition at L = oo. We interpret the
large L phase (L > 1/Acp) as a Coulomb/confinement phase, much in the same way as
at infinite L [26].

The second difference with Ref. [36] is that we find a phase transition at L ~ 1/Acp
into a deconfinement phase in the limit N — oo, see Sec. This is a weak coupling
phase. In this phase the global SU(V) is broken and the CP(/N — 1) model does not
develop a mass gap. The gauge field remains auxiliary and no Coulomb/confining
potential is generated.

At large but finite N we expect the phase transition to become a rapid crossover.
The spontaneous breaking of the global SU(/N) symmetry is in a contradiction with the
Coleman theorem [39], stating that there can be no massless non-sterile particles in 141
dimensions. Therefore we expect that the “would be Goldstone” states of the broken
phase acquire small masses suppressed in the large-/N limit.

To solve the CP(N —1) model we use the mode expansion with the periodic boundary
conditions. The open string setup involves the Dirichlet boundary conditions. For
example, for open string the expansion is modified. It acquires L-independent
terms coming from the energy associated with boundaries. Here we limit ourselves to a

closed string.
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3.3.1 Large-N solution

Our starting point is Eq. (3.2.1)). Integrating out n! fields, one arrives at the same Eq.
(3.2.3) as in the infinite L case. However, now we take into account the gauge holonomy

around the compact dimension. Following [36] we choose the gauge
A1 =0

and look for minima of the potential with Ag = const and w = const. The mode
expansion in gives for the orientational part of the string energy in

ok 2
Eorient 271_ Z / dCh In {‘h + <7r + AO) + OJ} . (332)

k=—00

To calculate (3.3.2) we follow [40] and use the zeta function regularization. Details
of our calculation are presented in Appendix [A] Here we give the final result for the

string vacuum energy,

NLw

Eorient (L) — A

Ky (kL
SZ (kL) coskLAg| , (3.3.3)

N

N2
AC’P

where K is the modified Bessel function of the second kind (also known as the Macdon-
ald function). An important feature of this expression is the appearance of a non-trivial
potential for the photon field. We will dwell on this issue in the next subsection.

To find the saddle point we extremize the expression with respect to w and

Ap, which results in the following equations:

anrient 2]VL\/a - .
K1 (Lk LkAg =0 3.3.4
o 7 Y KLk sin Lido =0, (3:3.4)
1ogA% = 4" Ko(Lky@)cos kAo , (3.3.5)
CP k=1

where the logarithmic term in the left-hand side of Eq. is the renormalized
inverse coupling 1/\. The logarithmic integral over momentum is regularized in the
infrared by w.

Equation yields the solution of the form LAy = «wl, where | € Z. However,
from the Eq. it is clear that the solution with LAy = 27l lies lower in energy
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than the solution with LAy = (2{ — 1)7 and is, thus, physical. We take Ay = 0 as a
solution of (3.3.4]). Our result for the orientational string energy is shown in Fig. |3.3
where V = Erient /L.

AV

20f \

Figure 3.3: Effective potential (in units of AZp) as a function of length.

Equation (3.3.5)) yields a nonvanishing value of w which we interpret — as in the case
of zero temperature — as mass generation for the n! fields. The dependence of the mass

on the string length L is shown in Fig. where we put

w=m. (3.3.6)

l

One can see that the n' field mass increases with decreasing L.

Figure 3.4: Mass (in the units of A) of fields n! as a function of L.

In the limit L > 1/Acp the modified Bessel functions in (3.3.3) exhibit exponential

fall-off at large L. To determine the leading non-trivial correction to the string energy
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we can use the “zeroth-order” solution w ~ A2CP of the equation |j for the vacuum
expectation value (VEV) of w. Clearly this “zeroth-order” solution coincides with the
VEV of w in the infinite volume, see (3.2.6)). For the total string energy we obtain

N 1 2 [A
E(L) = <2m§ + - A%P> L— g T N\/; % e~Aerl 4o (3.3.7)

In Eq. we included the classical string tension 27w£L, its renormalization due
to vacuum fluctuations in CP(N — 1) (i.e. (N/4mr)AZp L), and the contribution of the
translational modes which give the standard Liischer term. This result was quoted in
Chapter 1} see Eq. .

We see that the quantum fluctuations of the orientational moduli contribute both
to the renormalization of the string tension (the linear in L term in (3.3.7))) and to
the function f(AcpL) in . As was expected, in the theory with a mass gap the
contribution of orientational moduli to the L-dependent part of the string energy is
exponentially suppressed at large L.

Let us note, that the case of an open non-Abelian string was previously considered
in [41]. The results of [41] show the presence of long range 1/L effects coming from
the orientational sector even at large L where the theory has a mass gap. We disagree
with these results and believe that orientational long range forces in the large-L phase
are spurious and are associated with the boundary energy somehow induced [41] by the

Dirichlet boundary conditions rather than with the string itself.

3.3.2 The photon mass

The Ap-dependence in the potential ensures that the gauge field acquires a
mass [30]. It is quite natural to expect that the photon becomes massive at non-zero
temperature. Physically this means the Debye screening.

Expanding at large L we can write down an effective action for the U(1)
gauge field,

1 2 [Acp _
Sgauge = /d2$ {463 Flgl — N\/; 15 e Aerl cog Aol + -+ } . (3.3.8)

The kinetic term for the gauge field at non-zero temperature is calculated in Ap-

pendix [Bl To calculate the photon mass to the leading order in exp (—AcpL) we need
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the expression for the gauge coupling e? in the limit L — oo, namely,

1 N

—_— 3.3.9
e? 127rA%P’ ( )

see Sec. Expanding (3.3.8) to the quadratic order in Ay we arrive at

m? ~ 12A%p \/2nAcp L e ert (3.3.10)

for the photon mass. Note, that the non-zero photon mass at finite temperature does
not break gauge invariance since Lorentz symmetry is explicitly broken, see [36].

The photon becoming massive was the reason for the claim [36] that at non-zero
temperature the CP(IN — 1) model is in the deconfinement phase. We give a different
interpretation for this effect.

We treat the quasivacua as the strings of different tension. Kinks and antikinks
interpolate between true vacuum and the first quasivacuum. The Debye screening due
to a finite photon mass now can be interpreted as a breaking of the confining string
between kink and antikink in the thermal medium (through picking up a kink-antikink
pair from the thermal bath). Note, that unlike pair-production from the vacuum, this
process is not suppressed as exp(—N).

The kink-antikink potential has the form
V(R) = e? Re™mAR (3.3.11)

where R is the kink-antikink separation. It is still linear at small R, while the exponential
suppression at large R can be understood as a breaking of the confining string due to
creation of a kink-antikink pair from the thermal bath. Therefore, we still interpret the
large L phase as a Coulomb/confinement phase.

A similar question can be addressed in QCD. Do we have confinement of quarks
in QCD? We believe that the answer is positive. However, the confining string can
be broken by quark-antiquark production. We suggest a similar interpretation for the
CP(N — 1) model at non-zero temperature.

If L is very large (very low temperatures) the thermal string breaking can be ignored,

however once L reduces below log N/Acp the thermal breaking becomes operative.
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3.3.3 Small length limit

As was already mentioned, we will show in the next section that once L decreases below
1/Acp our CP(N —1) model undergoes a phase transition into the deconfinement phase.
To prove this we calculate the vacuum energy in the deconfinement phase in the next
section and show that it lies below that in the Coulomb/confinement phase.

In order to make this comparison we will examine Eqgs. and in the
low-L limit. These expressions determine the vacuum energy and the w expectation
value in the Coulomb/confinement phase.

Assuming that L?w < 1 we can use the following approximation for the sum of the
modified Bessel functions (see Eq. (8.526) in [42])

1y v 2
E K —F+—-In=Z+—-—+0 3.3.12

where v = 0.577 is the Euler-Mascheroni constant. Consequently, we get from (3.3.5))

1. L
hﬁﬁzg[ T +5hn f+7 : (3.3.13)
Acp

2L\/w 2

or approximately
1

n =—.
AcpL  Ly/w
Now the logarithmic integral which determines the renormalized inverse coupling

1/ is regularized in the infrared by 1/L rather than by y/w (which is the case in the

(3.3.14)

large-L limit). This gives us the w expectation value,

1

Ve=1g In(1/AcpL)

T (3.3.15)

Equation justifies our approximation L?w < 1 at L < 1/Acp. Note also that at
L < 1/A¢p the coupling constant is small — it is frozen at the scale 1/L (the logarithm
in the left-hand side of is large), so the theory is at weak coupling.

To find the orientational energy in this limit we need to find an approximate expres-
sion for the sum of the modified Bessel functions that appears in ,

Sk QL\FZ Ko k]f‘m (3.3.16)
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Derivative of the modified Bessel functions satisfies the following relation (see Eq.
(9.6.28) in [43]):

K
K (2) = —Ko(x) — 21 (3.3.17)
x
Let us introduce a notation,
o
Ky (k
= 15{ ?) (3.3.18)
k=1
Then
EED « oz @ ay . g
=— Ko( ~ ———=In— — — . 3.1
(xS1(x arz o(kx) g Tyl + O(z?) (3.3.19)
Integrating this expression one finds
w2 oz 2P 4
zSi(r) ~ —— — —In— — —(2y — 1) + const + O(z") (3.3.20)

2 4 47 8

The behavior of the modified Bessel function at small values of the argument is given

by (see Eq. (9.6.9) in [43]) .
Kq(z) ~ e (3.3.21)

Thus, the sum Sj(x) can be approximated as follows:

=1 2
Si(z)~ ) pen il (3.3.22)
k=1

Hence the constant appears to be 72/6. Now we are ready to present the approximate

expression we seek for,

Lw, Lyw Lw

—LfSl(L\f) ——\F—g n?_g( 1), (3.3.23)

With this approximation we arrive at the orientational energy

T N

N
Eorient(L) - _g f + N \@ - wL In ACPL -+ (3324)
Substituting here the VEV of w, see (3.3.15)), we get
N a N 1
Eorient(L) - - (3325)

32 2L m(1i/Acrl)
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The first term here is the Liischer term proportional to the number of orientational
degrees of freedom 2(N — 1) &~ 2N (in the large N limit). It gets corrected by an
infinite series of powers of inverse logarithms In (1/AcpL), if we naively extend the
Coulomb/confinement phase into the region of small L. We will show in the next
section that in fact the theory undergoes a phase transition into a different phase, with

a lower energy.

3.4 Deconfinement phase

Classically CP(N — 1) model has 2(N — 1) massless states which can be viewed as
Goldstone states of the broken SU(N) symmetry. Indeed, classically the vector n'
satisfies a fixed length condition, |n|? = r, see (3.2.1). Thus classically n! acquires a
VEV breaking SU(N) symmetry.

However, as was shown above, in the strong coupling large L domain the spontaneous
symmetry breaking does not occur, in much the same way as in the infinite-L limit, see

! is smeared all over the vacuum manifold due to

[26]. At strong coupling the vector n
strong quantum fluctuations. The theory has a mass gap, moreover the number of the
massive n-fields becomes 2N. Effectively the classical constraint |n|? = r is lifted, see
[26].

At small L the theory enters a weak coupling regime so we expect occurrence of the
classical picture in the limit N — oo. To study this possibility we assume that one
component of the field n!, say ng = n can develop a VEV. Then we integrate over all
other components of n! (I=1,2,...) keeping the fields n and w as a background. Note,
that a similar method was used in [44] for studying phase transitions in the CP(N — 1)

model with twisted masses.

Now, instead of (3.3.24]), we get

™ N N 1
Eorient(L) =wlL |n|2 - g f — % wL In Aol

o (3.4.1)

where the ellipses stand for higher terms in L?w. Note, that here we drop the contribu-
tion associated with the integration over the constant n (the second term in ([3.3.24]))

because we introduce ng as a constant background field (in other words, we drop the

term with £ =0 in (3.3.2)).
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Minimizing over w and n we arrive at the equations

N 1
2
= —1 4.2
= (34.2)
wn = 0.

The solution to these equations with nonzero ng read

N 1
2
= —In——+ =0. 3.4.3

We see that the mass gap w is not generated. Substituting this in (3.4.1)) we get that

the orientational energy reduces just to the Liischer term, namely

Eorient(L) = -

N
7 (3.4.4)

wl 3

This energy is lower than the one in (3.3.25). Therefore, we conclude that at L ~
1/Acp the theory undergoes a phase transition into the phase with the broken SU(V)
symmetry. This ensures the presence of 2(N — 1) Goldstone states n!, | = 1,...(N — 1).
The photon remains an auxiliary field, no kinetic term is generated for it. As a result,
there is no Coulomb/confining linear rising potential between the n-states. The phase
with the broken SU(N) is a deconfinemet phase. Since |n!| is positively defined Eq.
(3.4.3)) shows that this phase appears at L < 1/Acp.

The results of numerical calculations are in agreement with our conclusions. The
relation between orientational energies in both phases is shown in Fig. . One can
see that the Liischer term energy is lower and is thus physical.

The phase with the broken symmetry in two dimensions can occur only in the limit
N — oo. As was already explained, if N is large but finite this would contradict
the Coleman theorem [39]. Therefore, we expect that at large but finite N the phase
transition becomes a rapid crossover. In particular, we expect that the n! fields are not
strictly massless. They have small masses suppressed by 1/N.

To conclude this section let us note that the CP(N — 1) model compactified on a
cylinder with the so-called twisted boundary conditions was studied in [45]. No phase
transition was found; moreover, it was shown that the theory has a mass gap which
shows no L-dependence and is determined entirely by Acp. We believe that our results

are not in contradiction with those obtained in [45], because at finite L the boundary
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Figure 3.5: Comparison of orientational energies in both phases. The Liischer term always lies
lower. We set Acp = 1.

conditions matter: they can be crucial. In particular, the twisted boundary conditions
can be viewed as a gauging of the global SU(V) group with a constant gauge potential.
Then the global SU(N) is explicitly broken. This model should be considered as distinct
as compared to the CP(N — 1) model with the periodic boundary conditions studied

here.

3.5 Supersymmetric CP(N — 1) model with no compact-

ification

Non-Abelian strings were first found in N/ = 2 supersymmetric QCD with the U(N)
gauge group and Ny = N quark hypermultiplets [4, Bl [6, [7], see [8, [0, 10}, 11] for
reviews. In much the same way as for non-supersymmetric case the internal dynamics of
orientational zero modes of non-Abelian string is described by two-dimensional CP(N —
1) model living on the string world-sheet. The string solution is 1/2-BPS saturated,;
therefore the two-dimensional model under consideration is N' = (2, 2) supersymmetric.
In this section we briefly review the large-N solution of N' = (2,2) CP(N — 1) model in
infinite space [26]. In the next section we will present the large-N solution of the model

on a strip of a finite length L (cylindrical compactification).
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The bosoinc part of the action of the CP(/N — 1) model is given by

1
Sbos = /Cl2$ [|V2nll + FFZQJ 2 |8Z'0"2 + @D2

+ 200! +iD (' = 7o) (3.5.1)

where the covariant derivative is defined as V; = 0; — iA4; and o is a complex scalar
field, the scalar superpartner of A;. Moreover, rg is the bare coupling constant. In the

2

limit e* — oo the gauge field A; and o become auxiliary fields. D stands for the D

component of the gauge multiplet. The factor ¢ is due to the passage to the Euclidean
notation.

The fermionic part of the action takes the form
Sterm = /d2$[45_mi(vo —iV3)€h + &1i(Vo +iV3)EL,

1- 1-
+ gARi<V0 — iV3))\R + g)\Li(VO + iVS))\L

+ (V20Gngh, + ivem(ArgL — Aigh) +Hee) | (3.5.2)

where the fields £ZL7 r are the fermion superpartners of n! and A L,r belong to the gauge

multiplet. In the limit e? — oo they enforce the following constraints:

aleh =0, aleh=0. (3.5.3)

The field o is auxiliary and can be eliminated, namely,

o= OgngR (3.5.4)

3.5.1 Large-NN solution

The N = (2,2) supersymmetric CP(N — 1) model was solved in the large-N limit by
Witten [26], see also [46]. In this section we briefly review this solution.
Since both fields n! and ¢ appear quadratically we can integrate them out. This

produces two determinants,

det ™™ (=02 +iD + 2| [?) det™ (—0? + 2|o]?) (3.5.5)
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The first determinant comes from the boson n! fields, while the second comes from the

fermion & fields. Note that if D = 0 the two contributions obviously cancel each other,

and supersymmetry is unbroken. As before, the non-zero values of iD + 2|o|? and 2|o|?

can be interpreted as non-zero values of the mass of n! and & fields, and we put A4 = 0.
The final expression for the effective potential is given by (see, for example, [46])

iD + 2|o|?
Aep

N 2
Vg = /d%M |:—(iD +2/0]?) In +iD + 2|o*In (3.5.6)

where the logarithmic ultraviolet divergence of the coupling constant is traded for the
scale Acp.
To find a saddle point we minimize the potential with respect to D and o, which

yields the following set of equations:

D + 2|o|?
w2
ACP

iD + 2|o|?
In———— =0 3.5.7
0 =0, (35.7)

The solution to these equations is

D=0, (3.5.8)

which shows that supersymmetry is not broken. The VEV of ¢ is

V2o =Acpe i, k=0,..,(N—1). (3.5.9)

We see that o develops a VEV giving masses to the n! fields and their fermion super-
partners /. The phase factor in the right-hand side of does not follow from
(3.5.7)). It comes from the broken chiral U(1) symmetry. The axial anomaly breaks it
down to Zon. The field o has the chiral charge 2. This explains the phase factor in
. Once |o| has a nonzero VEV the anomalous symmetry breaking ensures that
the theory has N vacuum states. Clearly this fine structure cannot be seen in the large
N approximation since the phase factor is a 1/N effect.

In full accord with the Witten index, the solution above has N vacua, each with the
vanishing energy.

Consider now the vector multiplet. In much the same way as in the non-supersymmetric
case, photon becomes a propagating field. To find the renormalized gauge coupling one

needs to evaluate two Feynman diagrams shown in the Fig[3.6]
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Figure 3.6: Feynman diagrams contributing to the kinetic term of the photon

Details of the appropriate calculation are given in Appendix [C] The result is

Lo 3510

Through the coupling to the Imo (due to the chiral anomaly) now the photon
acquires a mass. Moreover, the fermion fields Az g also become propagating, with the
same mass as that of the photon, as required by supersymmetry. The masses of the

fields of the vector multiplet are as follows [26], [46]:
Mph = Mr, p = MReo = Mimo = 2Acp . (3.5.11)

Since the photon became massive there is no linear rising Coulomb potential between
the charged states. There is no confinement in supersymmetric CP(/N — 1) model even
in the infinite volume limit. It has N degenerate vacua which are interpreted as N
degenerate elementary non-Abelian strings in the four-dimensional bulk theory. In
contrast to the non-supersymmetric case, the confined monopoles of the bulk theory,
which are seen as kinks interpolating between the CP(N — 1) vacua, are free to move

along the string, see [10] for further details.

3.6 Supersymmetric CP(IN — 1) on a cylinder

Now we compactify one space dimension and impose periodic boundary conditions, both
for bosons and fermions, in order to preserve N’ = (2,2) supersymmetry. We stress that
this compactification cannot be considered as thermal. Non-zero temperature requires
anti-periodic boundary conditions for fermions, which would break supersymmetry ex-

plicitly.
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The large-N method in the case of N' = (2,2) CP(N — 1) model works similar to
that in the non-supersymmetric case. We compactify now the spatial coordinate z1 and
start from a slightly modified expression for the determinants in Eq. (3.5.5). Choosing

the Ay = 0 gauge and assuming that A; is non-zero we write
det™ (=05 — (01 — iA1)?> + mj) det™ (=05 — (01 — iA1)* +mF) | (3.6.1)
where we introduced the following notation:
my =iD 42|,  mj =20 (3.6.2)

The evaluation of each of the determinants is no different from that in the non-
supersymmetric case. Again we use the zeta-function method. Using expressions in

Appendix [C] we can derive the effective potential,

LN D + 2|o|? 2o
E = —[—(¢D+2|a|2)1n¢+ iD +2|o|*In ‘2’
4 Aép Agp
2. K1 (Lmyk)
_ Z mb cos(LAlk)
=\ K1 (Lm k)
+ Z mf 0 (LAlk)] , (3.6.3)
k=

Here the first line is just the effective potential at L = oo, while the second and third
lines are the finite-L corrections due to bosons and fermions, respectively.
To find a stationary point we vary the above expression with respect to Ay, D and

0. The resulting equations are as follows:

my > Ki(Lmyk)sin (LALk) —my Y Ki(Lmyk) sin (LAjk) =0,
k=1 k=1

2 o 0o
20 | ~In % 43" Ko(Lmyk) cos (LAk) — 4y Ko(Lmyk) cos (LAk)
m
f k=1 k=1

2

—In E +4 Z Ko(Lmypk) cos (LA1k) = 0. (3.6.4)
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Calculation of the gauge coupling constant at finite L is also modified (see Appendix
. As a result, we arrive at

! L L i K1 (Lmypk)k (3.6.5)
= m 6.
Ne?  4am?  2mmy, — ! B/

which reduces to 1/4rAZp in the limit L — oo.
Consider now the large L limit, L > 1/Acp. Assuming that my ~ m; ~ Acp (we
confirm this below) we expand the string energy (3.6.3|) keeping the first exponentially

small term

LN m2 m2
E = — —m%lan—i—iD—i—m?flan
4m Aép Agp

2 / /
_ N \/7 [ % el _ % e—me] cos A1 L+ ---. (3.6.6)
T

Taking derivatives with respect to D, /26 and A; we obtain

N m2 2 1 exp(—myL)
——1lo b 4N cosAi1L+---=0,
ar 8 A%, V2m myL !

{exp (=myL) exp(—myL)

sinAjL+---=0, (3.6.7)
vmbL \/me }

where the ellipses denote next-to-leading corrections in 1/Lmy and 1/Lmy.
The solution of these equations is as follows. The second and third equations are
satisfied at
D =0, (3.6.8)

which shows that supersymmetry is not broken. A; remains undetermined.

With D = 0 the first equation determines the o expectation value, namely,
N, 2P

1 —V2|o|L
e - =N exp (~ V2ol L)
™ cp V2m V2|o|L

cos AL+ -, (3.6.9)
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This equation seems to present a puzzle. It shows that the VEV of o depends on the
parameter Ay, which is arbitrary. If this were the case the theory would have a branch

of vacua parametrized by the Polyakov line
ef dordr — AL (3.6.10)

which measures the holonomy around the compact dimension. More exactly, the the-
ory would have N branches of vacua, because Zsy symmetry ensures that the over-
all phase of o takes N values 27k/N, k = 0,...,(N — 1). This would contradict the
Witten index argument which ensures that the number of vacua is equal to N for
N = (2,2) supersymmetric CP(N — 1) model.

The resolution of this puzzle is that we should quantize the phase variable A;L
(note that [ dz1A; depends only on time) as a function of the non-compact time. In
the emerging quantum mechanics the phase A;L is not fixed; instead, it is smeared all
over the circle (in the ground state). As a result, the cos (A1L) in is averaged to
zero and the ¢ VEVs are given by

V2o =Acpe ™, k=0,.., (N —1). (3.6.11)

This is exactly the same result as for L = oco. All cosine functions of AL in the last

equation in are averaged to zero, therefore the result in is exact and
does not depend on L.

This result also can be understood by studying the exact twisted superpotential of

N =(2,2) CP(N — 1) model. In the infinite volume it is given by [47, 48] 49]

W(o) = % {\@J log V2o — \/50} . (3.6.12)

Acp

This superpotential has correct transformation properties with respect to the chiral U(1)
symmetry. Namely, integrated over half of the superspace it is invariant under chiral
symmetry up to a term which precisely reproduces the chiral anomaly. Now at finite

length this superpotential in principle could have corrections proportional to powers of
exp (—\@UL). (3.6.13)

However these corrections would spoil the transformation properties of the superpoten-

tial with respect to the chiral symmetry. Therefore they are forbidden. As a result at
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finite L the exact superpotential of the theory is still given by . Critical points
of this superpotential are given by and do not depend on L. This matches our
result obtained from large-N approximation.

In particular, at small L the theory is at weak coupling and can be studied in the
quasiclassical approximation. As we already mentioned CP(/N — 1) model compactified
on a cylinder with twisted boundary conditions was studied in [45]. It is shown in [45]
that the mass gap at weak coupling is produced by fractional instantons and does not
depend on L both in supersymmetric and non-supersymmetric cases. For our case (pe-
riodic boundary conditions) the mass gap shows L-dependence in non-supersymmetric
case, while in the supersymmetric case it is L-independent. The quasiclassical origin of
this behavior needs to be understood in the weak coupling domain of small L. This is

left to a future work.

To conclude, in ' = (2, 2) supersymmetric CP(N — 1) model we have a single phase
with the unbroken supersymmetry and N vacua. Each vacuum has vanishing energy and
parametrized by the VEV of ¢ in Eq. . Unlike non-supersymmetric problem,
this VEV is independent of L.

3.7 The photon mass

In this section we outline the photon mass calculation.

The effective action for the gauge field can be written as [46]

1 N o
2 2 *
Sgauge:/d x{462Fkl_4ﬂ' loggF } 5 (371)
where the photon mixing with ¢ is due to the chiral anomaly and
., 1 g
F* = ieijFU (372)

is the dual gauge field strength. In the case of infinitely long string the the gauge
coupling and the photon mass were found [46],

1 N 1

and
Mpp = 2Acp , (3.7.4)
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respectively. In Sec. [3.6] we derived the expression for the gauge coupling in the case of
finite length, see (3.6.5)). The corresponding expression for the photon mass in the limit
of AcpL > 11is

mey ~ (2Acp)? (1 — v 2mAcpL G_ACPL) (3.7.5)

where we used the asymptotic expansion of the modified Bessel functions (see Eq. (9.7.2)
in [43]),

Ky(z) ~f5e ™ (3.7.6)

Since K(j(z) = —Kj(z) we can also determine the photon mass in the opposite limit of

AcpL <« 1,

o0 o0 4
™ 1
;Kl(lm)k = - (; Kg(kx)) i

(2Acp)? < (2Acp)?. (3.7.7)



Chapter 4

Heterotic Non-Abelian String

4.1 Heterotic N' = (0,2) CP(N — 1) model at L = oo

The heterotic NV = (0,2) CP(N — 1) model at L = oo was solved in [46] in the large-N
limit. In this section we will briefly review this solution. The bosonic part of the action

in the gauged formulation is
Sy = /d2x [|anl|2 +2la2nY)? +iD(In'|* — o) + 4\w[2\a\2] , (4.1.1)

where n! (I = 1,..N) is a complex N-vector parametrizing the orientational modes.

Moreover,
Vi=0,—1A;.

Here Aj is the gauge potential, ¢ is a complex scalar field. The fields Ag, o and D
belong to the gauge (vector) multiplet. These fields come without kinetic terms and are
auxiliary. Moreover, 1 is a coupling constant, while w is the N' = (2,2) deformation

parameter. Eliminating D leads to the constraint

In'> =rg. (4.1.2)

44
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The fermionic part of the action is

Sy = / d%[{mz’(vo — iV3)Eh + &1i(Vo + iV3)EL

+ iV208R8L + V20 (AREL — ALER)
+iV20* G LR +iV2(ALER — AREL)n!
+ %ERiaLCR + (Z‘ﬁwj\LCR -+ H.C.) , (4.1.3)

where 5@27 ;, are fermionic superpartners of n! (superorientational modes of the string),
Ar,r are auxiliary fermions from the vector superfield, while (g is the right-handed
supertranslational mode. In the N/ = (2,2) model it was decoupled. We do not include
the bosonic translational modes describing shifts of the string center. Nor do we include
the left-handed supertranslational mode (, because both decouple not only in the
N =(2,2) but in the /' = (0,2) model as well [28] [29].

The terms containing (g or w break N' = (2,2) down to N = (0,2) . The deforma-

tion parameter w is complex and scales with N as [46]
w~VN. (4.1.4)

It is determined by the mass parameter of the adjoint matter in the bulk theory [29].

Integrating over Az, g leads to the constraints
e = 0,
Ern' = wir. (4.1.5)

Integrating over o implies

_ i £l
T +2|w‘2)§lL£R~ (4.1.6)

Note that this model has an axial U(1) symmetry broken by the chiral anomaly down
to Zon much in the same way as in the N' = (2, 2) model [26]. We find that o develops a
vacuum expectation value (VEV) which results in a spontaneous breaking of the discrete
Zon down to Zy. Moreover as can be seen from , a non-zero VEV of the o field

corresponds to a non-zero fermion bilinear condensate <£l L§%>.
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Since both fields n! and & appear in the action quadratically we can integrate them

out. This produces the product of two determinants,
det ™™ (=02 +iD + 2|o|?) det™ (=97 + 2|0 ?) . (4.1.7)

The first determinant comes from the boson n! fields, while the second comes from the
fermion &' fields. Note that if D = 0 the two contributions obviously cancel each other,
and supersymmetry is unbroken. Also, the non-zero values of iD + 2|o|? and 2|o|? can
be interpreted as non-zero values of the masses of the n! and ¢! fields, respectively. We
put A = 0.

The final expression for the effective potential is (see [46])

N
Vi = [ o
47

2|0
A2

D + 2|o|?
z+|a|+i

A2 b

— (iD +2|0|*) In

2

+ 2lo[*In —|—2]a|2u], (4.1.8)
where the logarithmic ultraviolet divergence of the coupling constant is traded for the
finite scale A of the asymptotically free CP(NN — 1) model. We also introduced a dimen-
sionless deformation parameter

u = WW, (4.1.9)

which does not scale with N.
To find the saddle point we minimize the potential with respect to D and o, which

yields the following set of equations:

iD + 2|o|?
lnﬂ =0,
Aép
iD + 2|o|?
ln — 71 — 4.1.10
The solution to these equations is
iD=A*(1-¢e"%), and 2lo/*>=A%"". (4.1.11)

The value of D in this solution does not vanish, implying that supersymmetry is spon-

taneously broken. We see that o develops a VEV giving masses to the n' fields and



47

their fermion superpartners &. More exactly, the solution for ¢ can also be written as

V3o = Aexp <_u N 2mik

5 N > , k=0,.,N—-1, (4.1.12)
where the phase factor is not seen in Eq. . It comes as a result of a chiral
anomaly which breaks the chiral U(1) symmetry, U(1) — Zn. The field o has the
chiral charge 2. Thus a non-zero VEV of |o| ensures that Zy symmetry is broken
down to Zs and there are N vacua presented in .

Substituting the solution (4.1.10) into (4.1.8) we obtain an expression for the vacuum

energy density N
Wac = EAZ(l —e"), (4.1.13)

which, as expected, vanishes in the limit v — 0.

4.2 N = (0,2) model on a cylinder

The N = (2,2) model on a cylinder was solved in the large-N limit in the previous
Chapter. In this section we apply the same approach to N' = (0,2) model assuming
periodic boundary conditions both for bosons and fermions. Since the action (4.1.1))
and (4.1.3) is quadratic in n! and & we can integrate over these fields. We assume that
the compact dimension in the bulk theory is 1 and the string is wrapped around this
dimension. We will assume a nontrivial holonomy of Ay around this compact
dimension. In the Ay = 0 gauge we will look for a solution with A; = const.

First consider the case when neither of the fields n! or ¢ develop VEVs. The

expression for the effective potential is easily found,

N m2 m2
V = 47r<’LD—ZD1DA—mf1nf+me

Kl meki
8m LkA
+ omjy ; mek: Ccos 1

Ky (Lmpk)
. 2 1 NI )
8m g Ik cost:Al) , (4.2.1)

where we use an effective mass notation for the bosonic n! and fermionic &' fields,

mi =iD + 2|o|?, mfc =2l0?, . (4.2.2)
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Here Kj(z) is the modified Bessel function of the second kind and the deformation
parameter u is related to the parameter w as in (4.1.9). The first line in is the
same as the one found in the case of the L = oo string , while the second and
third lines represent contributions arising due to the finite length of the string. The
potential is periodic in the phase LA, with the period 27, so we can assume
that 0 < LA; < 2m.

4.2.1 Saddle point approximation

To find VEVs of A, of ¢ and iD we take derivatives of (4.2.1)) with respect to these

fields. Then we obtain three equations,

Vna, = mp Y Ki(Lmpk)sin LkAy —my Y Ki(Lmygk)sin LkA; ,
k=1 k=1

2 0
VNer = 20 |~In% 443" Ko(Lmyk) cos LkA;
m
f k=1

- 4ZK0(mek:)costA1+u ,
k=1

2 oo
m
Vnip = —In A—g +4) " Ko(Lmyk) cos LkA; . (4.2.3)
k=1

One can see that the first equation is satisfied when either A1 =0 or A; = w/L. How-
ever, unlike the bosonic theory described in the previous Chapter, A; = 0 corresponds
to the maximum of potential. The energy is lower if LA; = w. This can be easily
understood. Consider the second and third lines in ,

VA ~ [mel (me) — mbK1 (Lmb)] COS(LAl) . (4.2.4)

On the one hand we know from the definition that m;, > my. On the other hand K (x)
decreases exponentially at large values of the argument. Thus, at least for large L the
potential E4 = ¢ x cos(LA;), where ¢ > 0. Hence we conclude that the minimum of the
potential is at LA; = w. This conclusion is also supported by a numerical calculation,

see Figs. 2,3. Below we assume that
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Figure 4.1: V = 47V vs string length L at the value of deformation parameter v = 0.1. Solid
line corresponds to Ay = w/L, while dashed line correcponds to 4; = 0.

As can be seen from the graphs in Figs. 2, 3 no solution with lower energy exists for
sufficiently small L and/or high enough value of the deformation parameter. To explore

this issue we need to find approximate analytical solutions.

4.3 Z,n broken phase

Consider first the large-L domain or, more precisely, L > 1/A. In addition we assume
that u is not very large. Then we use the second and third equations in to find
the expressions for masses. Next, we use to find the vacuum energy.

We will show below that in the limit of large LA > 1 and intermediate u we have
Lmy ;> 1. If so, to find the boson and fermion masses we can apply the asymptotic

behavior of the modified Bessel functions,

™

Ko(z) =~ Ki(2) = %

e?. (4.3.1)

Assuming that LA; = 7 we arrive at the following expressions for masses:
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Figure 4.2: V = 47V vs deformation parameter u at the sting length L = 4.5.

If L is large, LA > 1, and the value of u is neither too large nor too small, exponential
corrections are small and mjy ; are of order of A. This justifies our approximation. As
was already mentioned, m;, and m; have a meaning of masses for bosons n! and fermions

¢!, Thus we have a non-vanishing mass gap in this phase.

From (4.3.2) we find VEVs of D and o,
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u 2 u —u g3
V2o ~ Ae 2 {1 T g eALe /2}62Nk, (4.3.3)

where £k =0, ..., (N —1).
The presence of non-zero D signals that N' = (0, 2) supersymmetry is spontaneously

broken. The vacuum energy is

NLA? 2 /8 —u
E~ {1 ey T (e*AL — gmu/4gmALe /2)} . (4.3.4)

Am ALV AL
The phase of ¢ in (4.3.3) is determined by the same phase factor as in (4.1.12f). We
see that we have N degenerative vacua, in much the same way as in the infinite volume

case. The degeneracy is not due to supersymmetry but due to the fact that the discrete

chiral Zs) symmetry is broken down to Zs.



ol
Our approximation assumes that both boson and fermion masses are large as com-
pared to 1/L. However, from (4.3.2)) we see that m; exponentially decreases at large u.

Our approximation breaks down when we increase u above the curve
LA ~e2. (4.3.5)

We will see in Sec. that in fact on this curve o becomes zero and the theory goes

into Zon-symmetric phase.

4.3.1 Quantum mechanics: the u — 0 limit

It was shown in Chapter that the VEV of the o field in the CP(N — 1) model
with N' = (2,2) supersymmetry does not depend on the string length. Since in L is
not a holomorphic parameter, N' = (2,2) supersymmetry forbids the effective twisted
superpotential (which determines the 0 VEV) to depend on L.

The fact that L is not a holomorphic parameter in N' = (2,2) CP(N — 1) model is
not a universal statement. Examples are known when L in combination with another
variable form a holomorphic quantity. For instance, in the case of A’ = 1 supergravity
on R3 x St considered in [50] the radius of S! is combined with the dual photon field
into one holomorphic parameter which does enter the expression for the superpotential.

Our problem, however, does not fall in the above class. In ' = (2,2) CP(N — 1)
there is no additional field to partner with the parameter L to make it holomorphic.
The conserved R charge in this model plays a custodial role and precludes L dependence
of the superpotential.

More explicitly, one can expect that the effective twisted superpotential can depend
on dimensionless parameter o L, however U(1)z symmetry forbids this dependence. This
is because ¢ has U(1)g charge equal to 2 while L is neutralﬂ . The L independence of
the o condensate ensues.

However, in the heterotic CP(N —1) model supersymmetry is spontaneously broken.
Thus one can expect the ¢ VEV to depend on the string length. This is what we
observe in Eq. . However, one can note that the expressions for the boson and
fermion masses in the limit of vanishing u do not reduce to those obtained in

2

U(1)r symmetry is broken by chiral anomaly, however one can compensate for this breaking if
one assigns R charge equal to 2 to CP(N — 1) scale A.
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the CP(N — 1) model with N = (2,2) supersymmetry. It depends on the string length
even if u = 0. What is happening?

To resolve this puzzle we note that the v — 0 limit turns out to be in conflict
with the quasiclassical approximation in the one-loop effective action which we use in
the large-N analysis. We will see below that the relevant parameter is «N2. Thus, the
change of regime we expect to detect occurs at u ~ 1/N? and is not seen in the standard
treatment.

In other words, to detect this change of regimes we must consider a quantum-
mechanical problem for the Polyakov line (3.6.10)) and average operators cos(LkA;)
that appear in the equations defining masses over the ground state wave func-

tion. The equations for the masses in the small-u limit become

2 o0
m
1nr§ = 4> Ko(Lmpk)xs,
k=1
m2 o)
1nA—,j = 4)  Ko(Lmgk)xs —u. (4.3.6)
k=1

where the i is the average value of the operator cos(LkA;) defined as

Xk:/ LdA;|¢|* cos(LkA;) . (4.3.7)

Here ) is the ground state wave function in quantum mechanics for LA;.

In this way we obtain the masses
87‘(’
2 AL
~ A?[1

8T uAL  3u
2 ~ _AL R ——— —
My A? <1 +1/— N (1 + 5 1 ) X1 u) , (4.3.8)

where we expand the expressions for masses m; and my at large L and small u. This

L

expressions imply a smooth N = (2, 2) limit if x; vanishes with u.
From equation (4.2.1]) one can read off the action for the A; quantal variable,

LA2 LN Ki(Lmgk)
S = /dt + (8 fz Lk cos(LkAy)

(4.3.9)

8m Z Lmbk S(LkA1)>

k=
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In the large-L limit the equation for the wave function is given by
d*y
12 + (A —2qcos(2¢))y =0, (4.3.10)

where ¢ = LA;/2, and the parameter ¢ is defined as follows:

UNZE_AL
q =
(

WAL’ (4.3.11)

(please, observe its explicit dependence on uN?). This is the Mathieu equation. The
solution for the wave function can be found numerically. The averaged value of cos(LA;)

is

x1 = —099 at AL=5 and uN? = 10°
x1i = —085 at AL=5 and uN?=10°
x1 = —107% at AL=5 and uN?=10"'. (4.3.12)

Thus we see that for large values of the deformation parameter the averaging plays
almost no role, and the saddle point approximation works well. However, as the defor-
mation parameter gets smaller the averaged value of cosine vanishes and the expression
for fermion mass reduces to that obtained in the N' = (2,2) model.

A more transparent albeit qualitative analysis can be carried out if we use the
harmonic oscillator approximation in our quantal problem. Then one can find the

averaged value of cos LA; analytically,

1/4
Y1 ~ —VuN2e-AL </2\7£> . (4.3.13)

This result explicitly demonstrates vanishing of x; as the deformation parameter uN?
tends to zero. Thus we see that in the v — 0 limit the solution of the ' = (0, 2) model
tends to that of the A" = (2,2) model in the interval u € [0, const/N?].

4.4 The Z;n unbroken phase

Now let us consider the region where w is large, i.e. u > log AL, see Eq. (4.3.5)). For the
time being we assume that L is still large, L > 1/A. We can find approximate analytic
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solution for a curve in the (L, uw) plane at which the Zsy broken phase with N distinct
vacua ceases to exist (see the phase diagram in Fig. 1). This phase is terminated when
the fermion mass (it is always smaller or equal to the boson mass) reaches zero as we
increase u. Assuming that the fermion mass is close to zero so that Lm; < 1 we can
approximate the sums of the Bessel functions in . Noting that cos(mk) = (—1)*
we use with y = 0 to obtain the following expression for the fermion mass

. u
20~ B P
(Lmyg)“So = S +v—1In N (4.4.1)
where Sy 2 are defined in (A.3). Thus, the solution with non-zero my exists only below
the curve

AL =~ 4me?/2=51=7 (4.4.2)

This formula gives a more accurate prediction for the curve (4.3.5) which was obtained
in the previous section. Moreover, the minimal string length is AL ~ 1.76. Numerical

calculation also shows that the fermionic mass goes to zero at finite values of both L

and u, as can be seen from Fig. (4.3 and (4.4).

my

S I S S ST S S S S S S |
20 25 3.0 35 4.0 45 5.0 55 L

Figure 4.3: Fermion mass my vs string length L at the value of the deformation parameter
u=0.1.

Moreover it is clear from Figs. and that as L > 1/A the fermionic mass m
tends to Ae™* while iD tends to A?(1 — e™%), in agreement with (4.3.2) and (4.3.3)),

respectively. One can also note that ¢D — 0 as u — 0. This is expected since the u = 0

limit corresponds to the NV = (2,2) model.
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Figure 4.4: Fermion mass my vs deformation parameter u at L = 4.5.

Above the curve (4.4.2), the only solution of the second equation in (4.2.3)) is

o=0, (4.4.3)

m2 ~ A2 (1 - ,/i}if“) (4.4.4)

is still given by the same expression as in the Z;xn broken phase, see (4.3.2)).

Note that the Zsy unbroken phase we have observed is quite remarkable. On the

while the boson mass

phase transition line N vacua fuse to one, a family of split Zsy-symmetric vacua does

not emerge. We will discuss this circumstance later.

4.4.1 The Liischer term.

Using the expression (D.13) from Appendix [D| we find that the vacuum energy in this

phase is independent on u and given by

LNA? 2 /8T _,r\ 7N
E~ 14 22 emaL) T 44,
A < VANV 6L (445)

The second term here is the Liischer term [24]. It arises due to massless fermions.

Note, that it equals to half of what we found for non-supersymmetric theory where it

comes from bosons (3.4.4). The reason is that now the gauge holonomy is non-trivial,
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Figure 4.6: iD vs the deformation parameter u at L = 4.5.

Ay = 7/L. Moreover, the same reason ensures that although the Liischer term in (4.4.5))
comes from fermions it still gives negative contribution to the energy as compared to

the non-supersymmetric case.

The vacuum energy (|4.4.5)) can be compared to the vacuum energy in the Z; broken
phase below the curve (4.4.2)) in the limit of Lm; <1,

LNA? 2 /81 _.; 7N NSy 4

The energy difference is approximately given by the last term above. Equation (4.4.1])

tells us that the energy difference behaves as ~ (L — L.(u))? near the phase transition
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curve, where Lc(u) is given by ({.4.2).
In summary, we conclude that as we increase u and cross the curve our system
goes through a line of third order phase transitions into the phase with o = 0. All N
vacua coalesce in the ¢ plane and Zsy symmetry is restored. In the infrared limit our

theory in this phase flows to a conformal limit which is a free theory of massless fermions

g.

4.4.2 What happens with the A, auxiliary field in the Z;x unbroken
phase

As we move into the Zyn unbroken phase by increasing u we could, in principle, ob-
serve two distinct scenarios: the N former vacua of the Zon broken phase which fuse
themselves into ¢ = 0 in phase III, in fact, split in energy, with NV — 1 of them be-
coming quasivacua, and only one of them remaining as the true vacuum. This phase
would be quite similar to the Coulomb/confinement phase in the non-supersymmetric
CP(N — 1) model described in Chapter |3 (see also [26]).

The second option is to have just a unique vacuum at ¢ = 0, with no accompanying

family of quasivacua. One can decide between the two options by analyzing the auxiliary

field A,,.
We need to evaluate the two diagrams shown in Fig. (4.7]). The first diagram
{
n! §
/7 > N
A~~~ }-\.nm., v 4+ i v
P\ ! P
“\1‘-

Figure 4.7: One loop diagrams that contribute to the photon kinetic term.

comes from bosons n!. In much the same way as in the non-supersymmetric CP(N — 1)
model it produces a kinetic term for the photon in the Lagrangian,

L o

YRR (4.4.7)
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where at large L the expression for the charge e? is given by

1 N

This makes U(1) gauge field dynamical [26]. In the non-supersymmetric model this
leads to confinement of electric charges. The reason is that the static Coulomb potential
in two dimensions is linear and ensures that the charged n! states are linearly confined
in the non-supersymmetric model [26]. Similar Coulomb/confining phase occurs in
the compactified non-supersymmetric CP(N — 1) model at large L (see Chapter [3)).
Confinement of n! states can be interpreted as a small split between quasivacua involved
in the f-angle evolution [35, (I8]. In this picture the n! states are interpreted as kinks
interpolating between true vacuum an the first quasivacuum.

On the other hand, in our N' = (0, 2) theory we have also the second diagram coming
from massless fermions. It produces a mass term for the photon

V(A)) = % (A1 - %)2 . (4.4.9)

Evaluation of the coefficient N/2 is presented in Appendix [E| This term is a manifes-
tation of the chiral anomaly and appears in much the same way as in the Schwinger
model.

Therefore, the photon obtains a mass
my =~ VI2A. (4.4.10)

The photon mass ensures the exponential fall-off of the electric potential between
charged sources. Thus, there is no confinement in the o = 0 phase of our (0,2) su-
persymmetric CP(/N — 1) model.

This ensures the absence of fine vacuum structure with split quasivacua. In fact
there is no 6 dependence in the theory with massless fermions, and the argument of [35]
does not apply. We have a single vacuum with the unbroken Zsy symmetry and no
family of quasivacua in the o = 0 phase (i.e. phase III in Fig. 1). This is a new phase

in the CP(N — 1) model which was not known before.
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4.5 Would be broken SU(IN) phase

Now let us consider the region of small L. At small L the theory enters a weak coupling
regime so we expect the emergence of the classical picture in the limit N — oo. Classi-
cally CP(IN — 1) model has 2(N — 1) massless states which can be viewed as Goldstone
states of the broken SU(N) symmetry. To study this possibility much in the same way
as in [44] we assume that one component of the field n!, say n' = n can develop VEV
and we integrate over all other components of n! in the external fields n, o D and A;.
However now in order not to break supersymmetry by the boundary conditions we have
to leave out one component of £ fields as well. Due to the constraint we can

choose these components to be §ZL\{ r = &1,r- The expression for the energy is

LN 2 2
E = . zD—lenM—mfclnnm%+mfcu
K1 mek‘ 2 (Lmbk
LA;) — —_— LA
+ 8m fg Lk cos(kLA1) — 8m bk Tk cos(kLAy)

+ L [(md+ ADnf + iv20€res + V20 ELtr)
+ LA —i€RpERLA,
LN [\/m; P AT\ Jm Ag] , (4.5.1)

where the first two lines are the same as in (4.2.1]), the third and fourth lines correspond

to components which we left out of integration, and the last line gives the contribution

due to omission of the zero modes.
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4.5.1 Saddle point approximation

Proceeding as in the SU(V) symmetric case we obtain the following set equations that

defines a stationary point

0 = (mi+A%n, (4.5.2)
0 = \/iafL—fRAlza*fR—i-fLAl, (453)
N 1 L m} L
2o T N Ko (Lmpk) cos(kLA 454
n| L[Q TJFA%JF‘” n szl o(Lmyk) cos(kLAY )] (4.5.4)
2Lmy, 2Lm s =
0= N[ NN K (Lmgk) sin(RLAL) — L N7 K (Dmgk) sin(kLAy),
T s
k=1 k=1

A A , .
L ! ] 4 2LAn|? +iLELEr — iLERtn (4.5.5)
Jmie A fmir A7

1 1
+
2\/mg+A% 2\/m?c+A%

0 = Liv2én + 20 [L|n|2 + N( -

L& L&
— Ko(Lmypk kLA;) — — Ko(Lm sk kLA
+ 27 Ko(Lmyk) cos(kLAL) = = 37 Ko(Lmjk) cos(kLAL) ),

k=1 k=1
LN 2
T mf

From (4.5.2) we conclude that my = A; = 0. Then (4.5.5) does not have a solution
unless ¢ = 0. We also see that ¢ L,r = &1,r = 0 satisfies the above system of equations.

We find that n! field develops a vacuum expectation value

N 4
2 _ AV ar
[n|* = o (ln NG 'y) , (4.5.7)

which implies in turn that this solution exists only for AL < 7.05. The energy is found
to be zero as in the supersymmetric case, see phase I in Fig. .

This phase is similar to the dynamical regime we found previously in the non-
supersymmetric CP(N — 1) model in Chapter . In particular, the VEV of n! breaks
global SU(N) symmetry implying the presence of 2(N — 1) real massless degrees of
freedom. As we already mentioned the dynamics of the CP(N — 1) model in this phase
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is determined by quasiclassical approximation in the action (4.1.1). At small L the

theory is at weak coupling because the inverse coupling constant r is determined by

_N1 1
o7 OgLA'

The constant r grows large at small L.

r (4.5.8)

However, we do not expect exactly massless modes to appear in 1 + 1 dimensions
because of Mermin-Wagner-Coleman’s theorem [51, 39]. We found the above solution
in the leading order in 1/N. It holds only in the limit N = oco. Thus, we should
expect higher order corrections to modify the result. In particular, the would-be Gold-
stone massless modes may acquire small masses suppressed in the large N limit. As a
consequence the energy might be uplifted from zero.

The solution that we found is completely u-independent. Thus we expect that the
vacuum energy in the would be broken phase is given by Ej,. which is independent on

u and suppressed at large N.

4.6 Quantum mechanics at small L:

w — 0 limit

Now we have to study the limit v — 0 at small L where the theory should match
the N' = (2,2) CP(N — 1) model which has a single SU(N) symmetric (Z3y broken)
phase with the mass gap independent of L. Clearly the would be broken SU(N) phase
cannot explain this limit because it is u-independent. Our analysis in this section has
a qualitative nature. As we have already seen, for the case of large L the transition
occurs at uN? ~ 1 where the large-N approximation strictly speaking is not applicable.

Below we argue that the SU(N) symmetric phase reappear again when we go to the
limit of extremely small u keeping L small, L <« 1/A. Assuming that both Lmy < 1
in this phase we use to find the expression for the potential valid for LA; close
tom

- NI? .

where A; = A; — 7/L. By analogy with (4.4.1) one can find the expression for the

bosonic mass

a7
2q, ~ —
(Lmp)°Se =~ S1+v—1In AL (4.6.2)
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Thus the expression for the potential is given by

~ Nu ~
V(A) ~ ﬁA% , (4.6.3)

Hence, as u gets smaller the potential becomes weaker and flatter. When LA; gets close
to 0 or 27 the above expression becomes invalid. The results of numerical calculations
are given in Fig. . Two curves correspond to two values of deformation parameter
u = 0.05 and v = 0.1 (dashed curve). One can see that the expression we derived is
in a good agreement with numerical results. As w gets smaller the amplitude of the

potential also decreases.
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. . = 7T .
Figure 4.8: Dependence of potential Vi = ——V on the deformation parameter w.

2N
We see that in the limit v — 0 the potential V([ll) becomes flat and we have to
average over A; (instead of taking the saddle point value A; = w/L) in much the similar
way as we did in Sec. for the region of large L. The averaging procedure gives us
N = (2,2) limit.
More exactly the vacuum energy in SU(N) symmetric phase at extremely small u is
given by

N
Eaym ~ ZTTAQ L. (4.6.4)

Comparing this with the vacuum energy Ej, in the would be broken SU(NN) phase
which is independent of u we see that at very small critical u. ~ 1/N?, the energy in

the SU(N) unbroken phase becomes lower then that in the SU(N) broken phase, and
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the system undergoes a phase transition into SU(NN) symmetric phase, see Fig. 1. The

SU(N) symmetric phase has a perfectly smooth u — 0 limit.



Chapter 5

Conclusion and Discussion

In Chapter [2] we discussed the theory supporting strings with extra (rotational) moduli
on the string world sheet. Our numerical analysis demonstrates that it is not diffi-
cult to endow the ANO string with such moduli following a strategy similar to that
used by Witten in constructing cosmic strings. Our discussion was carried out in the
quasiclassical approximation.

When the bulk model is deformed by a spin-orbit interaction a number of entangled
terms emerge on the string world sheet. Quantum effects on the string world sheet
(which can be made arbitrarily small with a judicious choice of parameters) is a subject
of a separate study.

We also found numerical solutions for the profile functions and calculated the ten-
sions of two distinct (but degenerate) strings. This proves the possibility of coexistence
of the ANO and non-Abelian degenerate strings in one and the same model simulta-
neously. The classical degeneracy is not protected against quantum corrections. The
obvious next step is to supersymmetrize the model to see whether or not one can have
the two strings BPS-saturated. Then the degeneracy will be preserved in higher orders.
Another interesting project is to slightly change the parameters of the model to make
the two strings slightly non-degenerate, with the aim of calculating the decay rate of
the heavier string into the lighter one.

In Chapter [3| we studied two-dimensional CP(N —1) model (both nonsupersymmetric
and N = (2,2)) compactified on a cylinder with circumference L (periodic boundary

conditions). We found the large-N solution for any value of L and discussed in detail

64
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the large-L and small-L limits.

A drastic difference is detected in passing from the nonsupersymmetric to N' = (2, 2)
supersymmetric case. In the former case in the large-NV limit we observe a phase tran-
sition at L ~ Agp (which is expected to become a rapid crossover at finite N). At
large L the CP(NN — 1) model develops a mass gap and is in the Coulomb/confinement
phase, with exponentially suppressed finite-L effects. At small L it is in the deconfine-
ment phase; the orientational modes contribute to the Liisher term. The latter becomes
dependent on the rank of the bulk gauge group.

In the supersymmetric CP(N — 1) model we have a different picture. Our large-IN
solution exhibits a single phase independently of the value of LAcp. For any value of
this parameter a mass gap develops and supersymmetry remains unbroken. So does the
SU(N) symmetry of the target space (i.e. it is restored). The mass gap turns out to be
independent of the string length. The Liischer term is absent due to supersymmetry.

In Chapter [4] we studied heterotic N' = (0,2) CP(N — 1) model and found three
different phases, see Fig. At large L and intermediate values of the deformation
parameter u there is a phase (IV) with a mass gap, IV vacua and broken discrete Zoy
symmetry. As we increase u a reach a critical value (which grows with L) we find a phase
transition to the Zsy symmetric phase (III), with a unique vacuum. The line separating
these two SU(N) symmetric phases is a line of a third order phase transitions in the
large N limit.

As the string under consideration gets shorter we find a phase transition to a phase
with the would be broken SU(N) symmetry (phase II). In this phase we expect masses
of the n fields to be much smaller than in two SU(N) symmetric phases. In fact,
at N = oo they vanish. At small L and extremely small u we expect another phase
transition from the would be broken SU(V) phase into the SU(N) unbroken phase (I)
which has a smooth u — 0 limit.

Strictly speaking, our description of the underlying dynamics in terms of the phase
transitions is valid only at NV = co. At large but finite /N one can expect that all phase

transitions become rapid crossovers.



References

[1]

A. Abrikosov, Sov. Phys. JETP 32, 1442 (1957) [Reprinted in Solitons and Particles,
Eds. C. Rebbi and G. Soliani (World Scientific, Singapore, 1984), p. 356]; H. Nielsen and
P. Olesen, Nucl. Phys. B61, 45 (1973) [Reprinted in Solitons and Particles, Eds. C. Rebbi
and G. Soliani (World Scientific, Singapore, 1984), p. 365].

G. t Hooft, Topology of the gauge condition and new confinement phases in non-Abelian
gauge theories, 1981NuPhB.190..455T; S. Mandelstam, Vortices and quark confinement in
non-Abelian gauge theories Phys. Rept. 23, 245 (1976)

N. Seiberg, E. Witten, FElectric-magnetic duality, monopole condensation, and confinement
in N' = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426, 19 (1994), (E) B 430,
485 (1994) [hep-th/9407087]; Monopoles, duality and chiral symmetry breaking in N =
2 supersymmetric QCD, Nucl. Phys. B 431, 484 (1994) [hep-th/9408099].

A. Hanany and D. Tong, Vortices, Instantons and Branes, JHEP 0307, 037 (2003) [hep-
th/0306150].

R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Non-Abelian superconductors:
Vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673, 187 (2003) [hep-th/0307287].

M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev.
D 70, 045004 (2004) [hep-th/0403149].

A. Hanany and D. Tong, Vortex Strings and Four-Dimensional Gauge Dynamics, JHEP
0404, 066 (2004) [hep-th/0403158].

D. Tong, TASI Lectures on Solitons, arXiv:hep-th/0509216.

M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: The
moduli matriz approach, J. Phys. A 39, R315 (2006) [arXiv:hep-th/0602170].

66



[10]

[11]

[18]

[19]

[21]

[22]

67

M. Shifman and A. Yung, Supersymmetric Solitons, Rev. Mod. Phys. 79 1139 (2007)
[arXiv:hep-th/0703267]; an expanded version in Cambridge University Press, 2009.

D. Tong, Quantum Vorter Strings: A Review, Annals Phys. 324, 30 (2009)
[arXiv:0809.5060 [hep-th]].

G. Volovik, The Universe in a Helium Droplet, (Oxford University Press, 2003); A. J.
Leggett, Quantum Liquids (Oxford University Press, 2006).

M. Nitta, M. Shifman and W. Vinci, On Non-Abelian Quasi-Gapless Modes Localized on
Mass Vortices in Superfluid 3He-B, Phys. Rev. D 87, 081702 (2013) [arXiv:1301.3544

[cond-mat.other]].

M. Shifman, Simple Models with Non-Abelian Moduli on Topological Defects, Phys. Rev.
D 87, 025025 (2013) [arXiv:1212.4823 [hep-th]].

M. Shifman and A. Yung, Phys. Rev. Lett. 110, 201602 (2013) [arXiv:1303.7010 [hep-th]].

E. A. Ivanov and V. I. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realiza-
tions, Teor. Mat. Fiz. 25, 164 (1975) [English version in JINR Report JINR-E2-8593].

I. Low and A. V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s
theorem, Phys. Rev. Lett. 88, 101602 (2002) [hep-th/0110285].

A. Gorsky, M. Shifman, A. Yung, Non-Abelian Meissner effect in Yang-Mills theories at
weak coupling, Phys. Rev. D 71, 045010 (2005) [arXiv:hep-th/0412082].

M. Teper, Large-N and confning flux tubes as strings - a view from the lattice, Acta Phys.
Polon. B 40, 3249 (2009) [arXiv:0912.3339].

A. Athenodorou and M. Teper, Closed fluz tubes in D=2+1 SU(N) gauge theories: dynam-
ics and effective string description, arXiv:1602.07634 [hep-lat].

O. Aharony and Z. Komargodski, The effective theory of long strings JHEP 1305, 118
(2013) [arXiv:1302.6257].

S. Dubovsky, R. Flauger, and V. Gorbenko, Effective String Theory Revisited, JHEP 1209,
044 (2012), [arXiv:1203.1054].

A. Athenodorou, B Bringoltz, M. Teper Closed Flux Tubes and Their String Description
in D=3+1 SU(N) Gauge Theories, JHEP 1102, 030 (2011) [arXiv:1007.4720 [hep-lat]].



[24]

[25]

[28]

[29]

[30]

[31]

32]

68

M. Liischer, Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories,
Nucl. Phys. B 180, 317 (1981).

M. Shifman and A. Yung, Non-Abelian strings and the Lischer term, Phys. Rev. D 77,
066008 (2008) [arXiv:0712.3512 [hep-th]].

E. Witten, Instantons, the Quark Model, and the 1/N Expansion, Nucl. Phys. B 149, 285
(1979).

M. Shifman, A. Yung, Non-Abelian Fluz Tubes in SQCD: Supersizing World-Sheet Super-
symmetry, Phys. Rev. D 72, 085017 (2005) [arXiv:hep-th/0501211]

M. Edalati, D. Tong, Heterotic Vortex Strings, JHEP 0705, 005 (2007) [arXiv:hep-
th/0703045).

M. Shifman and A. Yung, Heterotic Flux Tubes in N=2 SQCD with N=1 Preserving De-
formations, Phys. Rev. D 77, 125016 (2008) [arXiv:0803.0158 [hep-th]].

J. Chen, X. Cui, M. Shifman and A. Vainshtein, On Isometry Anomalies in Minimal
N =(0,1) and N = (0,2) Sigma Models, arXiv:1510.04324 [hep-th].

E. Witten, Superconducting Strings, Nucl. Phys. B 249, 557 (1985).

M. Shifman, Advanced Topics in Quantum Field Theory, (Cambridge University Press,
2012).

E. B. Bogomol'nyi, Sov. J. Nucl. Phys. 24, 449 (1976), reprinted in Solitons and Particles,
eds. C. Rebbi and G. Soliani (World Scientific, Singapore, 1984) p. 389. M. K. Prasad and
C. M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975), reprinted in Solitons and Particles,
Eds. C. Rebbi and G. Soliani (World Scientific, Singapore, 1984) p. 530.

K. Bardakci, M.B. Halpern, Spontaneous Breakdown and Hadronic Symmetries, Phys. Rev.
D 6, 696 (1972)

E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys.
Rev. Lett. 81, 2862 (1998), [hep-th/9807109].

I. Affleck, The Role of Instantons in Scale Invariant Gauge Theories, Nucl. Phys. B 162,
461 (1980).

G. Lazarides, The Effect of Statistical Fluctuations on Confinement and on the Vacuum
Structure of the CP™=Y) Models, Nucl. Phys. B 156, 29 (1979).



[38]

[39]

[46]

[47]

69

A. Actor, Temperature Dependence of CPN~! Model and the Analogy with Quantum Chro-
modynamics, Fortschr. Phys. 33, 333 (1985).

S. R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys.
31, 259 (1973).

S. W. Hawking, Zeta Function Regularization of Path Integrals in Curved Spacetime, Com-
mun. Math. Phys. 55, 133 (1977).

A. Milekhin, CP(N-1) model on finite interval in the large N limit, Phys. Rev. D 86,
105002 (2012) [arXiv:1207.0417 [hep-th]].

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, (Academic Press,
New York, 1980).

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs,
and Mathematical Tables.

A. Gorsky, M. Shifman and A. Yung, The Higgs and Coulomb/Confining Phases in
“Twisted-Mass” Deformed CP(N-1) Model, Phys. Rev. D73, 065011 (2006) [arXiv:hep-
th/0512153).

G. V. Dunne and M. Unsal, Resurgence and Trans-series in Quantum Field Theory: The
CP(N-1) Model, JHEP 1211, 170 (2012) [arXiv:1210.2423 [hep-th]].

M. Shifman, Alexei Yung, Large-N Solution of the Heterotic N'= (0,2) Two-Dimensional
CP(N — 1) Model, Phys. Rev. D 77, 125017 (2010) [arXiv:0803.0698]

A. D’Adda, A. C. Davis, P. DiVeccia and P. Salamonson, An effective action for the su-
persymmetric CP"~1 models, Nucl. Phys. B222 45 (1983).

E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403, 159 (1993)
[hep-th/9301042].

S. Cecotti and C. Vafa, On classification of N' = 2 supersymmetric theories, Comm. Math.
Phys. 158 569 (1993).

D.Tong, C. Turner, Quantum dynamics of supergravity on R x S', JHEP 1412 (2014)
142, [arXiv:1408.3418]

N.D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One-
or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).



[52] E.T. Whittaker, G.N. Watson, A course of modern analysis (1927).

70



Appendix A

Calculation of Zeta function

We define the zeta function of an operator 2 as follows:
C(s)=TrQ°. (A1)
The operator of interest is given in Eq. ,
Q= —(0p —iAL)* +m?, (A.2)

where instead of w we write m?. In the A; = 0 gauge the expression for the zeta function

takes the form

LS 0o o 2 -s
(w-L 3 [ (q;+(%;+AO> +mz) )

Gauge invariance requires invariance under transformation Ay — Ag + 27ko/L, where
ko is integer. This is manifest in (A.3) since the shift can be absorbed in the sum. We
always can look for a solution for Ag in the interval |Ag| < w/L, say Ag = 0.

To evaluate the expression in we will need the following identities

I(Z)= /Oo dtt* et (A.4)
0
/OO da(z?) (@12 (22 4 A%)P-1 = %(AQ)B_H‘WB(a/Q, 1-8—a/2),
0
B(z,y) =

(A.5)
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The definition of the modified Bessel functions of second kind is

/000 dz ¥ exp (—% — bx) =2 (%)V/Q K, (2\/(%) .

The definition of the theta function (see Chapter 21 of [52]) is

o

o0
Os(x,7) = Z qu ¥ =1 42 Z qu cos2kz, q=e"",
k=1

k=—o00

Its Jacobi transformation is
2
Os(x,7) = (—iT)_1/2 exp < ) Os(x/7,—1/7).
T

The evaluation of the zeta function, Eq. (A.3)), proceeds as follows:

N 00 1/2—s
@ T TE(s—3) 2k S
f— — PR A
¢(s) o T'(s) k;m 7 +Ag | +m
TITAT(s—3) fam\17% & LAy )
- 2 T(s) T kzzoo LR +6
@ TIEr(s—3) (2r\'"™ 1
27 I'(s) L I'(2)
% * dt tz—le—taz e—th—kﬁzt
/O k:zoo
@ T TEr(s—3) (2r\7* 1
B 2r  T(s) L I'(z
o 1t zﬁQt it
X / dtt* e " O3
0
(A.8),(A.7)

L) =

1/2—s

00 [o¢]
= F VT / dt t773/2 e +B4/4 (1 + 22 e*@ cos 7r/€/32>
0
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(A.6)

(A7)

(A.8)
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X (P(z — %) + 4;(7rk:G)Z§KZ_;(27rkG) cos ﬂk62>

g 7L 1 [ 1
AT m25—2 | s —1

4 X (Lmk\* !
— —_— K, _1(Lmk LAk A9
+ F(s);( 5 ) s—1(Lmk) cos LA (A.9)
where we introduced intermediate notations
Lm 1 TTE(s—1) /2n\1 72
_ e = F=__'2 2/ (20 A.10
“Ton T 27 I'(s) L ’ ( )
and
2 2
W2 <LA0) N (Lm) R e B tyYY (A.11)
2 2 T

To find the derivative of the zeta function we will make use of the following properties
of Euler’s I" function:
I'z+1)==2I'(2), I'(0)=o00. (A.12)

The derivative is evaluated as follows:
TL
47

1 1 2Inm
m25—2 (S _ 1)2 m25—2(8 _ 1)

((s) =

4F/ Lmk
- m2s 2 Z ( > K 1(Lmk) cos LAok

s=0
TLm? Ki(kLm)
= —1+1 —_— LA Al
- +Inm —1—8; eI SO ok (A.13)
Following [40] we can write the generating functional,
1 ! 1 2

where a normalization constant p has dimension of mass. Renormalizability requires

= Myy.
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Thus, in terms of the zeta function and its derivative the expression for the effective

potential becomes

V=——(¢'(0)+¢(0)InM2) — %Lm2 In ‘Aj@v : (A.15)

Substituting the expressions for the zeta function and its derivative we obtain

NLw w 2 K (kLy/w)
V=—"""|l-In—H— -8y — Y coskLAg| , (A.16)
4 AZp kz kLy/w

where we replaced m? by w.



Appendix B

Kinetic term in case of bosonic

theory

To find the U(1) charge of the n! fields one has to consider only the second diagram in
Fig. (3.1). The first diagram is needed only for renormalization. The relevant part of

the action written in the Minkowski spacetime takes the form
iSH = i/dzx [V,ﬁle“nl — m?|n|?
. o _ 202 L s Api= A 1 20,12
= z/d x [@mla"nl —mZ|n|* +1A¥(n O yn') + A%|n|?|, (B.1)

e
where 0, = 0, — 0, . We then pass to Euclidean space,

t=—ir, Ag=idy, A;=2A4A;.
The action in Euclidean space is
~ < A~
SE _ /d%:« [amakm +m2|n|? + iAg (70 gnt) + A2|n|2} . (B.2)

Now we can determine the Feynman rules. The results are shown in Fig. (B.1).

Thus for the kinetic term (in the case of an infinitely long string) one can write

_ (pi + QQz)(pj + 2Qj)
tij = N/ 2(m2 +¢*)(m*+ (p+q)?) (B:3)

Introducing the Feynman parameter to combine the denominators

1 ! 1
ala+8) "~ /0 “ @it ar .
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=(p+2q),

_______ _——— - — :(p2+?n2)—1

Figure B.1: Feynman rules: vertex and the propagator of n! field.

and substituting [ = ¢ + px in Eq. (B.3) we arrive at

/ d?l dl‘ plp] 1 — 2$) — 233(pilj —I—pjli) + 4l¢lj]
1] =N
(12 +m? + p?x(1 — x))?

(B.5)

Terms linear in [ vanish. To find the U(1) charge we only need to consider the p;p;

structure. Thus, the expression for the charge is

1 / d*l dx (1 —2x)? - /1 de (1 —2x)? (B.6)
Ne2 | (2n)2 (I2+m2+p2x(1—2))2  Jy 4n m2+p2z(l —x)’ '
Expanding the last expression to the zeroth power in p one finally finds
1 U dw 9 1
— (1 -2 = . B.7
Ne? /0 47m? ( 7) 127m? (B.7)

The case of the finite length string is considered along similar lines. We recall (see
[36]) that the limit p, — 0 is understood as first putting pg = 0 and then letting p;
go continuously to zero. As a result, only IIpg # 0. Using the Feynman rules one can

derive the following expression:

4w
My = — ¢ : B.8
"= Z N Ry e e ()
where we defined wy, = 27k/L. Introducing again the Feynman parameter and making

the same substitution one arrives at

o0

Nuw? 1 dr
Hoo = k/ - B.9
0= 2L )y (B.9)




7
We expand this expression and keep only the leading power in p. Then the expression

for the charge becomes

1 1| < )82 _ 2 — 5/2_
5 = Z (m? + w} m Z m? + wi
Ne 4L [k:oo k=—o00 i
12 e 00 ]
= % Z (kQ =+ a 3/2 a2 Z k2 —+ a 5/2 , (BlO)
k=—00 k=—00 n

where o = Lm/2mw. We deal with these sums as follows:

o) o

. 1 o0
Si(z,a) = Z (k:2+oz2)_z I )/ dt 7Lt Z ekt
Z)Jo

k=—o00

k=—00

1 > z—1_—ta? .
F(z)/ dtt*" e " ©3(0,it/m)

0
ﬁ z—1 7ta /i
F(z)/o dtt 05(0, - /it)

) VE [TE-1) | & ((kr) -
F<z>la2“ 4;@) K.y 2k >]~ (B.11)

Thus the expression for the charge can be written as

||§

||§

I

3
v = o (2) e s

1 L
- Ki(kL k—— Ko (kLm) k2. B.12
127m?2 2wm; 1(kLm) kzl 2(kLm) (B.12)

In the limit Lm > 1 the contributions from the modified Bessel functions are exponen-

tially small and thus the expression for the charge reduces to that for the infinitely long

string.



Appendix C

Kinetic term in the

supersymmetric case

In Appendix B we calculated the first diagram (the boson part) in Fig. Now we
will calculate the second diagram (the fermion part). The relevant part of the fermion

action in the Minkowski spacetime is

iSM = z‘/dzx{ﬁ_iv“vuf—i\@a§_<l_275>§

v ivare (L) s}, (1)

where V,, = 0,, — 1A, is the covariant derivative, and the v matrices are defined as
0 —i 0 1 1 0
0 1 5
V= y V= S .
We pass to Euclidean space,

t:_iT? AO:iAO? A’L:A17 ’AYO:’YO? ’A}/l:_il-}/lv ’?5:’757

and, since in Euclidean formulation ¢ and € are independent, we define

£=¢, £=i.
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Thus, the action in Euclidean space can be presented as follows:

st = - [aleae it

- vad (1) e varg (1) g]. ©2)

Examining this expression in components one can find that it matches that of (3.5.2)).
Since from now on all calculations will be carried out in Euclidean space we will drop
the caret notation. Using ((C.2)) we find the Feynman rules that are shown in Fig. (C.1J),

where we introduced a notation 0 = a + ib and the mass is m? = 2a? + 2b2.

H

= ’\‘/

B P+ ibv/2 + a.\/?”f’
D B p? +m?

Figure C.1: Feynman rules: vertex and the propagator of ¢! field.

We begin from the case of the infinitely long string. The fermion contribution to

the kinetic term is

g d?q 1
= - e e
x Tr ['yz(g +iV2b 4+ V2a7°)y? (p+d+ iv2b +V2a7°)| . (C.3)

The Clifford algebra is, as usual,

{y'y'} =207 (C.4)



80

As a result, the trace identities for the v matrices become

Te(v'y’) = 257,
Tr(,yz,yj,yk,yl) — 25@]5kl _ 25Zk5jl + 252[5]]6 ,
Tr(odd number of 7’s) = 0. (C.5)

Thus, the expression for the kinetic term takes the form

oo [ e Mg
(2m)2 (2 +m?)[(p + q)? + m?]

_/ d? 1
(2m)2 (¢* + m?)[(p + ¢)* + m?]
X [2¢'(p+a) +2¢7(p+q)' — 2q(p + q)07 — 2m?5]. (C.6)

Notice, that generally speaking Tr(7'y/7%) # 0 in two dimensions. However, we find
that both such contributions cancel each other.

We proceed as in the bosonic theory, introducing the Feynman parameter and mak-
ing the same substitution. Linear terms drop out, as usual. Furthermore, considering
only p'p? structure we obtain

y d2ld:r 1—(1-2x)?
e = p
F pj/ 212+ m? + pPa(l - )

o dr 1—(1-2z)?
B p’/ drm? + p?x(l — ) (©1)

Expanding to zeroth order in p we find fermion contribution to e? ,
1 1

— = C.8

Ne2  6mm? (C.8)

Combining this with the result we obtained in the boson theory, we finally arrive at

1 1

NeZ  arm?’ (C9)

In the case of the finite length string the starting expression ((C.6|) is modified

1
Z /277 (42 +m?)[(p + q)* +m?]

X [2¢(p+qY + 24 (0 + q)' — 2q(p + q)0" — 2m?67]. (C.10)



81
Again, just as in the boson theory we consider Ilyg. After we make the same substitution

and introduce the Feynman parameter we obtain

dz
Igg = — C.11
00 L Z_ / (pP?x(1 — ) + m? + w?)3/2 ( )

Then we expand this expression and keep only the first nonvanishing power in p. Thus,

fermionic contribution to the charge is

1 m? & 2 2\—5/2

F k=—oc0

Summarizing, we obtained a sum identical to that in (B.10). Therefore, their eval-
uation is identical too. Combining the result found in this Appendix with that of the

boson theory, we obtain for the charge

1
Nz 47Tm2 ZKl Lmk)k (C.13)



Appendix D

Relations for modified Bessel

functions

In this Appendix we derive all the relations for the sums of modified Bessel functions

of the second kind used in the text. We will use the following asymptotic behavior

1
Ki(z) - - as z—0, (D.1)
z
as well as the properties of derivatives
K
Ko(z) = —=K;i(2) and K{(z) = —Ko(z) — 1(2) , (D.2)
z

and the following approximations, valid to order O(y?, z2) (see formula 8.526 in [42])

gKO(Zk) cos(yk) = % * %m i + 2\/Z;T+7y2 +S0(2y* — 2°) + b,
iKo(zk)(—l)k cos(yk) = % + %ln i 4 % + %(2y2 _ Zz) e (D.3)
where dp 1 ~ y?2? and we defined the sums
Sy = i (27rl S~ 0015, S = i% ~ 1,386,
— (2l) £~ (21 - 1)
Sz = i 7T2(2l1_1)3 ~0.107. (D.4)

=1
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To find the sum involving cosine we notice that on one hand

oo K o0
d% (zz lgjk) cos(yk)) = 2 Ko(zk) cos(yk). (D.5)
k=1 k=1
and on the other hand
oo K oo
jy (Z 1;;’” cos(yk)) ==Y Ki(zk)sin(yk), (D.6)
k=1 k=1
moreover the following relation also holds
d [~ d [~ :
7 (kzl Ko(zk) cos(yk:)> = ~ % (kzl K (zk) sm(yk:)) , (D.7)

where we used (D.2)) several times.
First using (D.5)) and the expansion from (D.3)) we find to order O(y?2, 22)

K V22 +y? 2y —1
1(zk) cos(yk) =~ AVt N Gl )—Elni
k 2z 8 4  Ar
k=1
Sozy? + fliy) (D.8)
where fi(y) depends on y.
Now using and approximation (D.3|) we find that
- . Ty y
ZKl(zk:) sin(yk) 8 ———= — = + 2502y + fa(z), (D.9)

P 2222 +y? 22

where fa(z) is a function which depends on z. Since LHS vanishes when y = 0 and
z # 0 we conclude that fo(z) = 0. Now from we find that

X K (zk /-2 2 2
ll(j ) cos(yk) = —% + Z—Z — Sozy® + f3(2), (D.10)
k=1

where f3(z) depends on z.
To fix fi(y) and f3(z) we use the property (D.1)) and find that

Ki(zk) cos(yk) — i cos(yk) 1 (yQ _TY 2) ) (D.11)
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Thus we conclude that

2. K1 (zk) s
; k cos(yk) ~ - 2z * 4z + 6z Sozy
z2v—=1) z. z
- =2  —ln—. D.12
8 4 M (D-12)

In a similar way we find that

2. K1 (zk) i 2(2514+2v—-1) =z =z
~1 ~ — _imZ
7.[.2 y2 52 5
Ty 22 D.1
2: "1z 2 (D-13)



Appendix E

Photon mass

In this Appendix we derive an expression for the photon mass. Due to gauge invariance
both the diagrams in Fig. (4.7)) have to be of the form

IL; = I1(p?) (p*6i; — pip;) - (E.1)

Below we show that for the second diagram II(p?) has a pole which means that photons

acquire mass. We put p; = 0 and evaluate II;1:

My, = —— Z/ dqo 247 — 2qo(po + qo) — 2m3
27 (g3 + qt +m1)(P0+2POQO+qO+Q1 +m3)

—[mﬁ%mﬂ, (E.2)

where m; is the fermion mass, which we put to zero at the end, mso is the mass of

Pauli-Villars regulator, and ¢; is a discrete momentum

21k
G =—+4 =

: L@k+n. (E.3)

We introduce Feynman parameter x and substitute integration variable gy = [ — pox

dldx 2% — 2m? + 2p2x(1 — x) — 212
H11 = ——= / / q12 1 Po ( ) [m1 <> mg]:| s (E4)
2 +m1—|—q1—|—xp0—:np0]

where terms linear in [ drop out. Integrating over [ one finds

1 > 1 m?
II;; = 7[ / dx L —[m1 < mg]} , (E.5)
L k;o o [m?+q?+apt— a?pd]3?
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and since m; = 0 the first term vanishes and only the contribution from the regulator

remains. To integrate over  we use third Euler’s substitution

\/—pgch +pdr+m2+¢d = \/—pg(aj —z1)(x — 12) = t(T — 71) ™ (E.6)

One can easily check that neither of the roots belong to the interval « € [0, 1] and thus

this substitution is justified. After integration we obtain the following sum

=7 Y L E Y E
=7 P ~NoT (2 232" :
L@ +my+ B)yg+m Ly i my)

where we ignore py compared to my. Evaluating this sum (see Appendix we finally

obtain (setting mg — 00)
1
My =——, (E.8)
7r

which tells us that IT(p?) indeed contains a pole
0p*) =-—5 (E.9)

and the photon becomes massive.
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