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Abstract

We study world-sheet theories of Abelian and non-Abelian strings that arise in

different models. Considering a model in which Abelian (Abrikosov-Nielsen-Olesen)

string acquires rotational (quasi)moduli we analyze the parameter space to find examples

in which these strings not only coexist but are degenerate in tension. We prove that both

solutions are locally stable, i.e there are no negative modes in the string background.

The tension degeneracy is achieved at the classical level and is expected to be lifted by

quantum corrections. Moreover, using a representative set of parameters we numerically

calculate the low-energy Lagrangian on the world sheet of the Abrikosov-Nielsen-Olesen

string. The bulk model is deformed by a spin-orbit interaction generating a number of

“entangled” terms on the string world sheet.

We also consider modifications of N = 2 supersymmetric QCD with the U(N)

gauge group and Nf = N quark flavors. These models support non-Abelian strings.

The dynamics of the orientational modes is described by two-dimensional CP(N − 1)

model with varying degrees of supersymmetry. We used analytical methods to solve the

CP(N − 1) model at finite string length L assuming periodic boundary conditions.

In the pure bosonic theory in the large-N limit we detect a phase transition at

L ∼ Λ−1
CP (which is expected to become a rapid crossover at finite N). At large L the

CP(N − 1) model develops a mass gap and is in the Coulomb/confinement phase, while

at small L it is in the deconfinement phase. In theN = (2, 2) supersymmetric CP(N−1)

model at finite L we find a large-N solution which was not known previously. We use the

power of holomorphy to deduce that the theory has a single phase independently of the

value of LΛCP. For any value of this parameter a mass gap develops and supersymmetry

remains unbroken. So does the SU(N) symmetry of the target space. In the heterotic

N = (0, 2) CP(N − 1) model we find a rich phase structure and discuss how it matches

the N = (2, 2) limit.
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Chapter 1

Introduction

Quark confinement in QCD is a long-standing problem in Physics. The attraction force

between a quark and antiquark does not decrease with distance. Instead the potential

energy of their interaction grows linearly. Thus quarks never appear as free particles,

and one can only observe mesons and baryons.

A similar phenomenon occurs in superconductors of the second type and is referred

to as the Meissner effect. Consider a superconducting sample with magnets attached

to it on opposite sides. On one hand magnetic field cannot penetrate into a supercon-

ductor. On the other hand the flux of magnetic field must be conserved. Thus, a flux

tube forms between the magnets preserving the flux of magnetic field. Moreover, the

superconductivity is destroyed inside the flux tube. Since the flux tube has constant

tension the potential between two magnets growns linearly with distance. The flux tube

described above is referred to as ANO (Abrikosov, Nielsen and Olesen) string [1]. How-

ever, it cannot explain the confinement of quarks in QCD, since it is a chromomagnetic

flux tube an not a chromoelectric one.

A dual Meissner effect was suggested by t Hooft and Mandelstam [2] to explain

the confinement. They conjectured that due to color magnetic-monopole condensation

the non-Abelian flux tube forms between the quarks. The Seiberg-Witten solution [3]

of N = 2 supersymmetric Yang-Mills theory demonstrated the existence of massless

monopoles which can condense, leading to the formation of ANO flux tube. It carries

chromoelectric flux, but is still Abelian.

Genuinly non-Abelian strings were first found in N = 2 supersymmetric gauge

1
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theories [4, 5, 6, 7]. Later this construction was generalized to a wide class of non-

Abelian gauge theories, both supersymmetric and non-supersymmetric, see [8, 9, 10, 11].

Both Abelian and non-Abelian strings have translational modes associated with broken

translation symmetries. The main feature of the non-Abelian strings is the occurrence

of extra moduli: orienational zero modes associated with the color flux rotation in the

internal space.

In this thesis I present the study of Abelian and non-Abelian strings arising in two

different models. The thesis is organised as follows: In Chapter (2) we consider a simple

model with “spin-orbit” interactions supporting the Abrikosov-Nielsen-Olesen (ANO)

[1] or similar strings (vortices) with “extra” non-Abelian moduli (or quasimoduli) on

the string world sheet. Such extra moduli fields can appear in the bulk models that

have order parameters carrying spatial indices, such as those relevant for superfluidity in

3He (see e.g. [12]). This particular example was studied in [13], which, in fact inspired

a more detailed numerical analysis presented below. The studies in [14, 13, 15] were

carried out at a qualitative level. Here we perform calculations needed for the proof

of stability of the relevant solutions and derivation of all constants appearing in the

low-energy theory on the string world sheet.

First, we will consider the simplest model [14] assuming weak coupling in the bulk

(to justify the quasiclassical approximation), determine the profile functions to find the

string solution, and derive the world sheet model. The general theory of the string

moduli in the absence of the spin-orbit terms is discussed in [16, 17].

Then we introduce a spin-orbit interaction in the bulk. The impact of this interaction

on the string (vortex) world sheet amounts to lifting all or some rotational zero modes

(i.e. those not associated with the spontaneous breaking of the translational symmetry

by the string). However, under certain condition on a parameter determining the spin-

orbit interaction in the bulk, the mass gap generated on the world sheet remains small,

and the extra zero modes survive as quasizero modes (some may remain at zero at

the classical level). In addition to the above mode-lifting, the spin-orbit interaction

generates a number of interesting entangled terms on the string world sheet which couple

rotational and translational modes (despite the fact that the translational modes remain

exactly gapless).

In Chapters 3 and 4 we consider a differenct model supporting non-Abelian strings



3

[18]. As was mentioned the main feature of the non-Abelian strings is the occurrence of

orienational zero modes associated with their color flux rotation in the internal space.

Dynamics of these orientational moduli in the model we consider in Chapters 3 and 4

is described by two-dimensional CP(N − 1) model on the string world-sheet.

Recently there was a considerable progress in the study of long confining strings

of a fixed length both on lattices [19, 20] and by constructing the effective theory on

the string world sheet, see [21, 22]. The energy of the Abrikosov-Nielsen-Olesen (ANO)

closed string [1] in the Abelian-Higgs model as a function of the string length L (in the

large-L limit) can be written as

E(L) = TL− γ

L
+

c3

TL3
+ · · · , (1.0.1)

where T is the string tension and ellipses stand for terms of the higher order in 1/L. This

1/L expansion is determined by the low-energy effective two-dimensional theory on the

string world-sheet. For the ANO string the world-sheet theory is given by the Nambu-

Goto action plus higher derivative corrections. It is plausible to assume that a similar

structure applies to QCD confining strings. Recently a significant progress occurred in

measuring the spectrum of long confining QCD strings in lattice simulations, see, for

example, [23].

The 1/L term in (1.0.1) is referred to as the Lüscher term [24]. The coefficient γ is

universal. Its value is determined by the number of massless (light) degrees of freedom

on the string world-sheet. The Abelian strings possess only two massless excitations

due to two translational zero modes; the Lüscher term is, correspondingly, γ = π/3.

In Chapters 3 and 4 we study the L dependence of E(L) for all values of L, large

and small (see below), taking account of the orientational moduli that are described by

two-dimensional CP(N − 1) model. The latter is asymptotically free and develops its

own dynamical scale ΛCP. This modifies the expansion in (1.0.1). Assuming that

ΛCP �
√
T (1.0.2)

we can write

E(L) = TL+
f(ΛCPL)

L
+O

(
1

TL3

)
. (1.0.3)

In Chapters 3 and 4 we present a detailed calculation of the string energy for strings
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with

L� 1/
√
T . (1.0.4)

For these values of L higher derivative corrections to the effective world-sheet theory

can be ignored, and we use CP(N − 1)-based description to calculate the function

f(ΛCPL) (which is already known [25] in the limits L � Λ−1
CP and L � Λ−1

CP). We

solve the CP(N −1) model using the large-N approximation [26] and imposing periodic

boundary conditions (on the boson and fermion fields in the case of supersymmetric

model, see below).

Now, when we have two free parameters in the problem under consideration, N and

L, and both can be large, the ordering of taking limits is of paramount importance and

a source of a number of paradoxes. We will always take first the limit N → ∞. In

this limit the number of dynamical degrees of freedom is infinite (even in the quantum-

mechanical limit L → 0) and, moreover, all interactions die off. This makes possible

phase transitions.

In Chapter 3 we study both non-supersymmetric case as well as 1/2-BPS string in

N = 2 supersymmetric QCD. For non-supersymmetric case we find a phase transition

in the world-sheet theory in the N = ∞ limit. At large L this theory develops a

mass gap and is in the Coulomb/confinement phase. Finite-length effects coming from

orientational moduli are exponentially suppressed. We find that at L� ΛCP

f(ΛCPL) = −π
3
−N

√
2

π

√
ΛCPLe

−ΛCPL + · · · , (1.0.5)

where the first term is the conventional Lüscher term coming from the translational

moduli.

At small length the CP(N − 1) model is in the deconfinement phase. Massless

orientational moduli contribute to the Lüscher term which becomes dependent on the

rank of the bulk gauge group. At
√
T � L� ΛCP we find that

f(ΛCPL) = −N π

3
. (1.0.6)

Next, we study supersymmetric case considering BPS-saturated non-Abelian string

in four-dimensional N = 2 SQCD. In this case the world-sheet theory for orientational
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modes is N = (2, 2) supersymmetric CP(N −1) model. Solving this theory in the large-

N limit we find a single phase with unbroken supersymmetry and a mass gap. The

mass gap turns out to be independent of the string length. The chiral Z2N symmetry is

broken down to Z2, in much the same way as for infinitely long string. The photon field

acquires a mass term, and no Coulomb/confining potential is generated. Instead, the

theory has N degenerate vacua representing N elementary strings. The Lüscher term

vanishes due to the boson-fermion cancellation.

In Chapter (4) we introduce a mass term for the adjoint matter in the bulk and break

N = 2 supersymmetry down to N = 1 . The string remains BPS saturated [27]. It was

conjectured by Edalati and Tong [28] and confirmed in [29] that the target space in the

deformed model is CP (N −1)×C. The right-handed supertranslational modes become

coupled to superorientational ones, and the world sheet theory becomes heterotic model

with N = (0, 2) supersymmetry. It is important that this is a nonminimal model (cf.

[30]) well defined for all N .

We solve the above heterotic N = (0, 2) CP(N − 1) model on a cylinder with

circumference L in the large-N approximation, assuming periodic boundary conditions.

We observe three distinct phases. Two phases (III and IV in Fig. 1) preserve the

SU(N) global symmetry. The finite-L effects are exponentially suppressed at large L

and intermediate values of the deformation parameter u, in much the same way as in

non-supersymmetric theory considered in Chapter 3. The parameter of deformation u

is related to the mass of the adjoint field in the bulk SQCD.

The theory in phase (IV) has mass gap and N vacua; the discrete chiral Z2N sym-

metry is spontaneously broken down to Z2. As we increase u still keeping L large the

theory undergoes a third order phase transition into a phase (III) with a single vacuum

and unbroken Z2N . This is a phase with massless fermions.

As is the case for non-supersymmetric theory, we find a phase (II) with would-be

broken SU(N) symmetry at small L. In the latter phase a mass gap is zero in the leading

approximation. Moreover, we find that the vacuum energy also vanishes at N =∞. We

expect corrections of higher order in 1/N (or, perhaps, exponential corrections e−N ) to

break N = (0, 2) supersymmetry and lift the vacuum energy. We stress that SU(N) is

broken only when N =∞. At large but finite N this and other phase transitions turn

into rapid crossovers.
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We also discuss how this rich phase structure evolves to the N = (2, 2) picture with

a single phase in the limit of zero deformation, u = 0 (phase (I) in Fig. 1).

SU(N) would be broken symmetric

broken

Z

Z

2N

2N

I

II III

IV
1

1/

=0 =0iD=0

(2,2) Supersymmetry 

Figure 1.1: (I) u < 1/N2 region corresponds to the N = (2, 2) solution regardless of L;

(II) u � 1/N2 and L < 1/Λ region corresponds to the would be broken SU(N) phase

(nl fields develop VEV); (III) L > 1/Λ and large u region represents the Z2N -symmetric

phase with massless fermions; (IV) L > 1/Λ and moderate u region represents Z2N -

broken phase with massive bosons and fermions.



Chapter 2

Abelian and Non-Abelian Strings

2.1 Formulation of the problem

We start from the model suggested in [14]. Its overall features are similar to those of the

superconducting cosmic strings [31]. The model is described by an effective Lagrangian

L = L0 + Lχ (2.1.1)

where

L0 = − 1

4e2
F 2
µν + |Dµφ|2 − V (φ) ,

Dµφ = (∂µ − iAµ)φ ,

V = λ
(
|φ|2 − v2

)2
, (2.1.2)

and

Lχ = ∂µχ
i ∂µχi − U(χ, φ) , (2.1.3)

U = γ
[(
−µ2 + |φ|2

)
χiχi + β

(
χiχi

)2]
, (2.1.4)

with self-evident definitions of the fields involved, the covariant derivative, and the

kinetic and potential terms. The parameters e, λ, β, µ, and v can be chosen at will,

with some mild constraints (e.g. v > µ) discussed in [13]. In particular, the stability of

7
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the φ 6= 0 vacuum we are interested in implies that β cannot be too small,

β ≥
m2
χ

m2
φ

1

c(c− 1)
, (2.1.5)

where

c ≡ v2

µ2
, (2.1.6)

cf. Eq. (2.1.9). The relations between the parameters in (2.1.2), (2.1.4) and a, b, c

appearing below, on the one hand, and the physical parameters (the particle masses

and the coefficients in front of the quartic terms φ4, χ4 and φ2χ2, respectively), on the

other hand, are shown in Table 2.1 and (2.1.7), (2.1.9).

β
λ̃

γ

a
m2
A

m2
φ

b
m2
χ

m2
φ

v2

µ2
≡ c

(
1− 4λ

γ

m2
χ

m2
φ

)−1

Table 2.1: Parameters in (2.1.2), (2.1.4) in terms of the particle masses and the coefficients in
front of the quartic terms φ4, χ4, and φ2χ2 (λ, λ̃, and γ, respectively).

We will assume the parameters to be chosen in such a way that the bulk model is

weakly coupled and, hence, the quasiclassical approximation is applicable.

Now let us discuss some parameters and the corresponding notation. In the vacuum

the complex field φ develops a vacuum expectation value |φvac| = v while its phase is

eaten up by the Higgs mechanism. The masses of the (Higgsed) photon and the Higgs

excitation are

m2
A = 2e2v2 , m2

φ = 4λv2 . (2.1.7)
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We will denote the ratio of the masses

a = m2
A/m

2
φ ≡

e2

2λ
. (2.1.8)

Moreover, in the vacuum the field χi does not condense. Its mass is

m2
χ = γ

(
v2 − µ2

)
. (2.1.9)

For what follows we will introduce two extra dimensionless parameters:

b = m2
χ/m

2
φ ≡

γ

4λ

c− 1

c
, c = v2/µ2 . (2.1.10)

The first measures the ratio of the χ to φ masses in the bulk and, as explained in [14],

has to be b >∼ 1. The second parameter is also constrained, c > 1. We will treat both

of them as parameters of the order of unity. As for the spatial orientation, the string

will be assumed to lie along the z axis. We introduce a dimensionless radius in the

perpendicular {x, y} plane,

ρ = mφ

√
x2 + y2 . (2.1.11)

The basis of our construction is the standard ANO string (see e.g. [32]). The φ field

winds ensuring topological stability, which entails in turn its vanishing at the origin.

This implies the following ansätze:

A0 = 0 , Ai = −εij
xj
r2

(
1− f(r)

)
, φ = vϕ(ρ)eiα , (2.1.12)

where α is the polar angle in the perpendicular plane, and we assume for simplicity the

minimal (unit) winding. The boundary conditions supplementing (2.1.12) are

f(∞) = 0 , f(0) = 1 ; ϕ(∞) = 1 , ϕ(0) = 0 . (2.1.13)

In the core of such a tube the φ field tends to zero, see (2.1.13). The vanishing of

the φ field results in the χi field destabilization in the core of the string (as follows from

Eq. (2.1.4)). Hence, inside the core, the χi field no longer vanishes,

(χiχi)core ≈
µ2

2β
, (2.1.14)

as will be illustrated by the graphs given below. Choosing the value of λ judiciously,

we can make µ2/β � m2
χ, implying that the O(3) symmetry is broken in the core. The
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appropriate ansatz is

χi =
µ√
2β

χ(ρ)


0

0

1

 , (2.1.15)

with the boundary conditions

χ(∞) = 0 , χ(0) ≈ 1 . (2.1.16)

Thus, we have three profile functions, f , ϕ, and χ, depending on ρ. Minimizing the

energy functional we derive the system of equations for the profile functions(
f ′

ρ

)′
= a

ϕ2 f

ρ
,

(
φ′ρ
)′

=
f2 ϕ

ρ
+
ρϕ
(
ϕ2 − 1

)
2

+
ρϕχ2

2β

b

c− 1
,

(
χ′ρ
)′

=
b

c− 1
ρχ
(
cϕ2 + χ2 − 1

)
, (2.1.17)

where the primes denote differentiation with respect to ρ. In the numerical solution to

be presented below we will assume for simplicity that

a = 1 , i.e. mφ = mA . (2.1.18)

In the absence of the χ field this would imply the Bogomol’nyi-Prasad-Sommerfield

(BPS) limit [33] with the tension 1

T0 = 2πv2 . (2.1.19)

Below we will see how the presence of the χ field changes the tension, using T0 as a

reference point.

It is obvious that the solution χ = 0 and ϕ = ϕ0 ≡ ϕANO satisfies the set of

equations (2.1.17). First we will show that this solution is unstable, i.e. corresponds to

the maximum rather than minimum of the energy functional.

1 Alternatively, this is the boundary between type-I and type-II superconductors.
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2.2 Instability of the χ = 0 solution

To prove instability we must demonstrate that for ϕ = ϕ0 ≡ ϕANO there is a negative

mode in χ, in much the same way as in [31]. To this end it is sufficient to examine the

energy functional in the quadratic in χ approximation,

Eχ =
µ2

2β
L

∫
dx dy

{
χ

[
−∆ + γµ2

(
−1 +

v2

µ2
ϕ2

0

)]
χ

}
, (2.2.1)

where L is the string length (tending to infinity), and find the lowest eigenvalue of[
−∆ + γµ2

(
−1 +

v2

µ2
ϕ2

0

)]
χ = Eχ . (2.2.2)

One can view (2.2.2) as a two-dimensional Schrödinger equation. Given that the ground

state is spherically symmetric and introducing

ψ(ρ) = χ
√
ρ , (2.2.3)

one can rewrite (2.2.2) as

−ψ′′ +
(
b
cϕ2

0 − 1

c− 1
− 1

4ρ2

)
ψ = εψ , ε =

E

m2
φ

, (2.2.4)

where prime denotes differentiation over ρ. Numerical solution at c = 1.25 yields

ε =

 −1.479 at b = 1 ,

−4.19 at b = 2 .
(2.2.5)

2.3 χ 6= 0 solution

To find the asymptotic behavior of the profile functions at ρ → ∞ one can linearize

these equations in this limit,

f ∼ √ρ e−ρ , (1− ϕ) ∼ 1
√
ρ
e−ρ , χ ∼ 1

√
ρ
e−
√
bρ . (2.3.1)

We integrated Eqs. (2.1.17) numerically for a number of points in the parameter

space {b, c, β} keeping a = 1. Then the parameter λ appears only as an overall factor,

with the analytically known dependence. Representative plots are given in Fig. (2.1,

2.2).
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Figure 2.1: b = 1, c = 1.25, β = 8
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Figure 2.2: b = 2, c = 1.25, β = 16
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The first plot at the very top is given to show the domain of ρ in which an “effective”

m2 for the χ field is negative forcing χi to condense in the core. This is the domain

of negative χi contribution to the potential energy. Then the three profile functions

are presented: f(ρ), ϕ(ρ), and χ(ρ) (from top to bottom). In terms of the physical

parameters, Figure (2.1) corresponds to m2
χ = m2

φ and λ̃ = 160λ while Figure (2.2)

corresponds to m2
χ = 2m2

φ and λ̃ = 640λ.

These plots demonstrate that χ(0) is indeed close to unity. In scanning the parameter

space we observe that (i) increasing the parameter b (i.e. the χ mass) increases both

the width of the domain where the “effective” m2 for the χ field is negative and the

value of χ(0), but decreases the tension of the string; (ii) increasing the parameter c

(i.e. decreasing µ) acts in the opposite direction; (iii) increasing the parameter β acts

in the same way as increasing c but with a weaker impact.

2.4 The world-sheet theory without spin-orbit term

Now let us introduce moduli. Two translational moduli are obvious. Since they are well

studied we will not dwell on this part. Of interest are the rotational moduli. Given the

nontrivial solution (2.1.15) we can immediately generate a family of solutions which go

through the system of equations (2.1.17), namely,

χi =
µ√
2β

χ(ρ)Si , (2.4.1)

where the moduli Si are constrained (i = 1, 2, 3),

Si Si = 1 , (2.4.2)

therefore, in fact, we have two moduli, as was expected. To derive the theory on the

string world sheet we, as usual, introduce t, z dependence converting the Si moduli into

the moduli fields Si(t, z), and

χi =
µ√
2β

χ(ρ)Si(t, z) . (2.4.3)

Substituting this in the Lagrangian (3) and (4) we obtain the low-energy effective action

S =
1

2g2

∫
dt dz

(
∂kS

i
)2
, k = t, z. (2.4.4)
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where
1

2g2
=

1

8cβλ

∫ ∞
0

2πρχ2(ρ) dρ . (2.4.5)

One can rewrite this as
g2

2π
= λ

β

π2

c

I1
, (2.4.6)

where

I1 =

∫ ∞
0

ρχ2(ρ) dρ . (2.4.7)

For the parameters we used in Figs. (2.1, 2.2) we obtain

I1 ≈ 1.107 (for Fig. 2.1), I1 ≈ 1.18 (for Fig. 2.2) , (2.4.8)

and, correspondingly,

g2

2π
≈ 0.915λ (for Fig. 2.1) ,

g2

2π
≈ 1.717λ (for Fig. 2.2) . (2.4.9)

2.5 Spin-orbit interaction

The “two-component” φ-χ string solution presented above spontaneously breaks two

translational symmetries, in the perpendicular x, y plane, and O(3) rotations. The

latter are spontaneously broken by the string orientation along the z axis (more exactly,

O(3)→O(2)), and by the orientation of the spin field χi inside the core of the flux tube

introduced through Si.

Now, we deform Eq. (2.1.3) by adding a spin-orbit interaction [15],

Lχ = ∂µχ
i ∂µχi − ε(∂iχi)2 − U(χ, φ) , (2.5.1)

where ε is to be treated as a perturbation parameter.

If ε = 0 (i.e. Eq. (2.1.3) is valid) the breaking O(3)→O(2) produces no extra zero

modes (other than translational) in the φ-Aµ sector [16, 17]. Due to the fact that χ 6= 0

in the core, we obtain two extra moduli Si on the world sheet. This is due to the fact

that at ε = 0 the rotational O(3) symmetry is enhanced [13, 15] because of the O(3)

rotations of the “spin” field χi, independent of the coordinate spacial rotations.

What happens at ε 6= 0 , see Eq. (2.5.1)? If ε is small, to the leading order in

this parameter, we can determine the effective world-sheet action using the solution
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found above at ε = 0. Two distinct O(3) rotations mentioned above become entangled:

O(3)×O(3) is no longer the exact symmetry of the model, but, rather, an approximate

symmetry. The low-energy effective action on the string world sheet takes the form

S =

∫
dt dz

(
LO(3) + Lx⊥

)
,

LO(3) =

{
1

2g2

[(
∂kS

i
)2 − ε (∂zS3

)2]}−M2
(
1− (S3)2

)
, (2.5.2)

Lx⊥ =
T

2
(∂k~x⊥)2 −M2(S3)2 (∂z~x⊥)2

+ 2M2
(
S3
) (
S1∂zx1⊥ + S2∂zx2⊥

)
, (2.5.3)

where ~x⊥ = {x(t, z), y(t, z)} are the translational moduli fields, and T is the string

tension. The mass term M2 is

M2 = ε v2 πI2

2cβ
, (2.5.4)

where

I2 =

∫ ∞
0

ρ (χ′(ρ))2 dρ . (2.5.5)

For the values of parameters used in Figs. 1, 2 we obtain

I2 ≈ 0.378 (for Fig. 1), I2 ≈ 0.467 (for Fig. 2) . (2.5.6)

As for the tension T we have

T

T0
≈ 0.963 (for Fig. 1) ,

T

T0
≈ 0.953 (for Fig. 2) . (2.5.7)

The impact of the χi field on the string tension is rather small and negative. The positive

contribution of its kinetic energy is compensated by the negative potential energy, see

Figs. (2.1, 2.2). This was expected given the result of Sec. 2.2.

Moreover, it is seen that
M2

T
∼ ε

β

and is small for sufficiently small ratio ε/β. This justifies the above calculation.
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2.6 Degeneracy between Abelian and Non-Abelian Strings

In the previous sections we found a solution for Abelian and non-Abelian strings. For

the chosen parameters the solution corresponding to the Abelian string was unstable.

A natural question arises as to whether the ANO (i.e. Abelian) and non-Abelian strings

can coexist in one and the same model, both being locally stable, and if yes, whether

their tensions can be degenerate. The exact answer to the second question can be given

only in supersymmetric models provided that both strings are BPS-saturated [33], with

one and the same central charge.

Deferring this task for the future here we will explore a model described in section

2.1 to find whether or not (classically) degenerate Abelian and non-Abelian strings are

simultaneously supported in this model for at least some values of parameters. We will

analyze the parameter space to find examples of degenerate strings which are locally

stable, i.e there are no negative modes in the string background.

We mainly follow the sections (2.2, 2.3) to (numerically) construct profile functions

with zero and non-zero values of the triplet field χ, i.e. Abelian vs. non-Abelian. To

justify the quasiclassical approximation we assume weak coupling in the bulk. First,

to normalize our calculation, we determine the profile functions corresponding to the

Abrikosov-Nielsen-Olesen string and find its tension. Next, we find the string solution

with non-zero χ. We show that with the appropriate choice of the parameters the

two strings are degenerate in tension at the classical level (within the accuracy of our

numerical calculations). We also investigate stability of the strings.

2.6.1 The χ = 0 solution

First we consider χ = 0 and ϕ = ϕ0 ≡ ϕANO. We follow Witten [31] to investigate the

stability of the solution with regards to small χ fluctuations. To this end we write down

a (linearized) equation for the χ modes around the ANO solution. The mode equation

takes the form

−ψ′′ +
(
b
cϕ2

0 − 1

c− 1
− 1

4ρ2

)
ψ = εψ , ψ(ρ) ≡ χ√ρ . (2.6.1)
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Foe two representative values of parameters the numerical solution yields

ε =


0.041 at b = 0.0987 , c = 1.17 ,

0.234 at b = 1.871 , c = 2 .

(2.6.2)

The positivity of ε implies the stability of the χ = 0 solution. The tension of the string

was found to be
T0

2πv2
= 1−O(10−7) . (2.6.3)

The second number on the right-hand side of Eq. (2.6.3) represents the accuracy of our

numerical computations.

2.6.2 The χ 6= 0 solution

Now we will demonstrate that although the above ANO solution is locally stable, the

model at hand supports a solution with non-Abelian moduli, i.e. with χ 6= 0.

In the case of χ 6= 0 one can find the asymptotic behavior of the profile functions at

ρ→∞ by linearizing these equations in this limit,

f ∼ √ρ e−ρ , (1− ϕ) ∼ 1
√
ρ
e−ρ , χ ∼ 1

√
ρ
e−
√
bρ . (2.6.4)

Then we integrated Eqs. (2.1.17) numerically, keeping a = 1 and varying parameters

{b, c, β}. The plots of the profile functions are shown in Figs. (2.3, 2.4). One can note

a rather low value of the χ field in the core. In order for the χ field not to be smeared

by quantum fluctuations we must additionally impose a constraint on the parameters

λ̃� χ2(0)

2(c− 1)
. (2.6.5)

Fortunately, this is always possible since the value of λ̃ is in our hands. The origin of

Eq. (2.6.5) is as follows. The value of the field χ in the core of the string should be

much larger than the mass, otherwise quasiclassical treatment is not applicable (the

condensate of the field should contain many quanta). The mass of the χ field is given

in Eq. (2.1.9). The normalization of the field given in Eq. (2.1.14) should be modified,

taking into account the results of our numerical calculation for χ(0). Thus, the above

ratio is expressed as follows

χ2
core

m2
χ

=
µ2

2β
χ2(0)

1

γ(v2 − µ2)
� 1 , (2.6.6)
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which reduces to Eq. (2.6.5).

Similarly to the consideration in Sec. 2.6.1, we determine the lowest eigenvalue of

the equation

−ψ′′ +
[

b

c− 1

(
cϕ2

1 − 1 + 3χ2
1

)
− 1

4ρ2

]
ψ = εψ , (2.6.7)

where ϕ1, and χ1 are the solutions presented in Fig. 1. This is necessary to check the

stability of χ 6= 0 solution with regards to local variations of χ. The results of numerical

calculations yield

ε =


0.042 at b = 0.0987 , c = 1.17 ,

0.235 at b = 1.871 , c = 2 .

(2.6.8)

We determined the tension of the non-Abelian string,

T0

2πv2
= 1−O(10−7) (2.6.9)

which must be compared with Eq. (2.6.3). We observe the degeneracy of the two strings

(with χ = 0 and χ 6= 0).
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Figure 2.3: b = 0.0987, c = 1.17, β = 1.1β∗
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Chapter 3

Non-Abelian String of a Finite

Length

3.1 Non-supersymmetric non-Abelian strings

In this section we briefly review the simplest four-dimensional non-supersymmetric

model supporting non-Abelian strings [18], give a topological argument for their stability

and outline the effective low-energy theory on the world-sheet.

The model suggested in [18] is a bosonic part of N = 2 supersymmetric QCD, see

[10] for a review. The gauge group of the theory is SU(N) × U(1). The matter sector

of the model consists of Nf = N flavors of complex scalar fields (squarks) charged with

respect to U(1), each in the fundamental representation of SU(N). The action of the

model is

S =

∫
d4x
[
− 1

4g2
2

(
F aµν

)2 − 1

4g2
1

(Fµν)2

+ |∇µϕA|2 +
g2

2

2

(
ϕ̄AT

aϕA
)2

+
g2

1

8

(
|ϕA|2 −Nξ

)2]
, (3.1.1)

where T a are the generators of SU(N), the covariant derivative is defined as

∇µ = ∂µ −
i

2
Aµ − iT aAaµ ,

20
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Aµ and Aaµ denote the U(1) and SU(N) gauge fields respectively, and the corresponding

coupling constants are g1 and g2. The scalar fields ϕkA have the color index k = 1, ..., N

and the flavor index A = 1, ..., N . Thus, ϕkA can be viewed as an N ×N matrix. The

U(1) charges of ϕkA are 1/2.

Let us examine the potential of the theory (3.1.1) in more detail. It consists of two

non-negative terms and consequently the minimum of the potential is reached when

both terms vanish. The last term proportional to g2
1 forces ϕA to develop a vacuum

expectation value. One can choose ϕkA to be proportional to the unit matrix, namely,

ϕvac =
√
ξ diag (1, 1, ..., 1), (3.1.2)

where we use N × N matrix notation for ϕkA. Then the last but one term vanishes

automatically.

The above vacuum field spontaneously breaks both the gauge and flavor SU(N)

groups. However, it is invariant under the action of combined color-flavor global SU(N)C+F .

Therefore, symmetry breaking pattern is

U(N)gauge × SU(N)flavor → SU(N)C+F .

This setup was suggested in [34] and became known later as the color-flavor locking.

The topological stability of non-Abelian strings in this model is due to the fact that

π1(SU(N) × U(1)/ZN ) 6= 0. One combines the ZN center of SU(N) with elements

e2πik/N of U(1) to get windings in both groups simultaneously.

The string solution [18] breaks the global symmetry of the vacuum as follows:

SU(N)C+F → SU(N − 1)× U(1) . (3.1.3)

As a result the orientational zero modes appear, making the vortex non-Abelian.

As is clear from the symmetry breaking pattern of Eq. (3.1.3) the orientational moduli

belong to the quotient

SU(N)

SU(N − 1)× U(1)
= CP (N − 1) . (3.1.4)

Thus, the low-energy effective theory on the string world-sheet is described by the

CP (N − 1) model. The action of the model was derived in [18]; it can be written as

S(1+1) =

∫
d2x

[
Tcl

2
(∂kz

i)2 + r |∇k nl|2
]
, (3.1.5)
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where

Tcl = 2πξ (3.1.6)

is the classical tension of the string, zi are two translational moduli in the perpendicular

plane, nl, l = 1, ..., N are N complex fields subject to the constraint

|nl|2 = 1 , (3.1.7)

and r is defined below.

The covariant derivative is

∇k = ∂k − iAk (3.1.8)

and k = (1, 2) labels the world-sheet coordinates. The relation between two-dimensional

coupling r and a four dimensional coupling g2 at the scale
√
ξ is given by

r =
4π

g2
2

. (3.1.9)

The field Ak enters without kinetic term and is auxiliary. It can be eliminated by virtue

of equations of motion and is introduced to make the U(1) gauge invariance of the model

explicit.

Let us count the number of degrees of freedom. The complex scalar fields give

2N real degrees of freedom, of which one is eliminated due to the constraint (3.1.7) and

another one due to U(1) gauge invariance. Thus, the total number of degrees of freedom

is 2(N−1) which is precisely the number of degrees of freedom in the CP (N−1) model.

To conclude this section we note that formation of non-Abelian strings leads to

confinement of monopoles in the bulk theory. In fact, in the U(N) gauge theories

strings are stable and cannot be broken. Therefore, confined monopoles are presented

by junctions of two degenerate non-Abelian strings of different kinds, see review [10] for

details. In the effective world-sheet theory on the string these confined monopoles are

seen as CP(N − 1) kinks interpolating between distinct vacua.

3.2 CP (N − 1) model at zero temperature

At large N the model was solved [26] in the 1/N approximation. Let us outline how

this is done. The Lagrangian L of the CP (N − 1) model in the gauged formulation in
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the Euclidean space-time can be written as

L = |∇knl|+ ω
(
|nl|2 − r

)
, (3.2.1)

where we rescale the nl fields. In addition, we introduce a parameter ω to enforce the

constraint. Moreover, we replace the coupling r with the ’t Hooft coupling constant λ,

λ =
N

r
; (3.2.2)

λ does not scale with N .

Since the nl fields appear quadratically in the action (3.2.1) we can perform the

Gaussian integration over them resulting in the equation for the effective potential V ,

e−T̂ V =

∫
dω dAk det−N

(
−(∂k − iAk)2 + ω

)
exp

(
N

λ

∫
d2xω

)
, (3.2.3)

where T̂ stands for the (asymptotically infinite) Euclidean time.

Since integration over ω and Ak cannot be done exactly we use a stationary phase

approximation. Due to the Lorentz invariance we search for a point such that Ak = 0

and ω = const. To find this stationary point we vary the Eq. (3.2.3) with respect to ω.

The resulting equation is

λ

∫
d2k

(2π)2

1

k2 + ω
= 1 . (3.2.4)

Rewriting the bare coupling constant λ in terms of the scale ΛCP of the CP(N − 1)

model
4π

λ
= ln

M2
uv

Λ2
CP

, (3.2.5)

where Muv is the ultra-violet cutoff, we finally find that

ω = Λ2
CP . (3.2.6)

Thus, the vacuum value of ω does not vanish. Looking at Eq. (3.2.1) one can see that

a positive value of ω means that a mass for the fields nl is dynamically generated.

To determine the spectrum of the theory one has to expand the effective action

Eq. (3.2.1) around the saddle point and consider field fluctuations in the quadratic

approximation. Linear terms vanish. Terms that are cubic and higher are suppressed

by powers of 1/
√
N . Two Feynman diagrams in Fig. 3.1 give rise to the kinetic term

for the U(1) gauge field.
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Figure 3.1: Feynman diagrams contributing to kinetic term of photon field

Gauge invariance requires the answer to be

Πµν = Π(p2)
(
p2gµν − pµpν

)
. (3.2.7)

The meaning of Eq. (3.2.7) is simple. It represents the kinetic energy of the gauge

field written in momentum space. Thus, what was introduced as an auxiliary field

becomes a propagating field. Calculation in Appendix B reproduces Witten’s result

[26], Π(0) = N/12πΛ2
CP , which is interpreted as the inverse of the U(1) charge squared

of the nl fields.

Massless photon in two dimensions produces the Coulomb potential between two

charges at separation R,

V (R) =
12πΛ2

N
R , (3.2.8)

leading to a linear confinement of the n̄n pairs. Thus, the spectrum of the theory

contains n̄n “mesons” rather than free n’s.

It is instructive to present an alternative interpretation of this result. In [26] it was

shown that nl fields can be interpreted as kinks interpolating between different vacua.

The vacuum structure of the CP (N − 1) model was studied in [35]. According to this

work the genuine vacuum is unique. There are, however, of the order N quasivacua,

which become stable in the limit N →∞ , since the energy split between the neighboring

quasivacua is O(1/N). Thus, one can imagine the n̄ field interpolating between the true

vacuum and the first quasivacuum and the n field returning to the true vacuum as in

Fig. 3.2. The linear confining potential between the kink and antikink is associated

with the excess in the quasivacuum energy density compared to that in the genuine

vacuum.

This two-dimensional confinement of kinks can be interpreted in terms of strings
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Figure 3.2: Configuration of the string with two particles on it. Zero and one represent the
true vacuum and the first quasivacuum respectively.

and monopoles of the bulk theory, see [18]. The fine structure of the CP(N − 1) vacua

on the non-Abelian string means that N elementary strings are split by quantum ef-

fects and have slightly different tensions. Therefore, the monopoles, in addition to the

four dimensional confinement, (which ensures that they are attached to the string) ac-

quire a two-dimensional confinement along the string. The monopole and antimonopole

connected by a string with larger tension form a mesonic bound state.

Consider a monopole-antimonopole pair interpolating between strings 0 and 1, see

Fig. 3.2. The energy of the excited part of the string (labeled as 1) is proportional to

the distance as in Eq. (3.2.8). When it exceeds the mass of two monopoles (which is of

order of ΛCP) then the second monopole-antimonopole pair appear breaking the excited

part of the string. This gives an estimate for the typical length of the excited part of

the string, R ∼ N/ΛCP.

The above condition guarantees that there is enough energy in the “wrong string”

to produce a pair of kinks. However, the probability of this process, string breaking,

(which can be inferred from the false vacuum decay theory) is proportional to exp(−N),

i.e. dies off exponentially at large N .

3.3 The Coulomb/confinement phase

In order to consider closed non-Abelian strings of length L we compactify the space

dimension; in other words, we study CP(N − 1) model (3.2.1) on a strip of the finite

length L with periodic boundary conditions.

In Euclidean formulation considering a model at finite length is equivalent to con-

sidering the model at finite temperature. The correspondence between the length of the
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string and the temperature is given by

L = β , (3.3.1)

where β is the inverse temperature. Thus, the limit of infinite length is the same as the

limit of zero temperature.

To solve the CP(N − 1) model on a finite strip we use large-N approximation. The

CP (N − 1) model at finite temperature in the large-N approximation was solved pre-

viously by Affleck [36], see also [37] and [38] for reviews. Although we use a different

regularization, our results match those obtained in [36]. There are two important dif-

ferences, however. The first one is related to the interpretation of the photon mass.

In [36] the emergence of the photon mass is interpreted as a phase transition into the

deconfinement phase already at L =∞. We give a different interpretation of the photon

mass (see Sec. 3.3.2); we do not detect any phase transition at L =∞. We interpret the

large L phase (L > 1/ΛCP) as a Coulomb/confinement phase, much in the same way as

at infinite L [26].

The second difference with Ref. [36] is that we find a phase transition at L ∼ 1/ΛCP

into a deconfinement phase in the limit N → ∞, see Sec. 3.4. This is a weak coupling

phase. In this phase the global SU(N) is broken and the CP(N − 1) model does not

develop a mass gap. The gauge field remains auxiliary and no Coulomb/confining

potential is generated.

At large but finite N we expect the phase transition to become a rapid crossover.

The spontaneous breaking of the global SU(N) symmetry is in a contradiction with the

Coleman theorem [39], stating that there can be no massless non-sterile particles in 1+1

dimensions. Therefore we expect that the “would be Goldstone” states of the broken

phase acquire small masses suppressed in the large-N limit.

To solve the CP(N−1) model we use the mode expansion with the periodic boundary

conditions. The open string setup involves the Dirichlet boundary conditions. For

example, for open string the expansion (1.0.1) is modified. It acquires L-independent

terms coming from the energy associated with boundaries. Here we limit ourselves to a

closed string.
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3.3.1 Large-N solution

Our starting point is Eq. (3.2.1). Integrating out nl fields, one arrives at the same Eq.

(3.2.3) as in the infinite L case. However, now we take into account the gauge holonomy

around the compact dimension. Following [36] we choose the gauge

A1 = 0

and look for minima of the potential with A0 = const and ω = const. The mode

expansion in (3.2.3) gives for the orientational part of the string energy in (1.0.3)

Eorient(L) =
N

2π

∞∑
k=−∞

∫ ∞
−∞

dq1 ln

{
q2

1 +

(
2πk

L
+A0

)2

+ ω

}
. (3.3.2)

To calculate (3.3.2) we follow [40] and use the zeta function regularization. Details

of our calculation are presented in Appendix A. Here we give the final result for the

string vacuum energy,

Eorient(L) =
NLω

4π

[
1− ln

ω

Λ2
CP

− 8
∞∑
k=1

K1(kL
√
ω)

kL
√
ω

cos kLA0

]
, (3.3.3)

where K1 is the modified Bessel function of the second kind (also known as the Macdon-

ald function). An important feature of this expression is the appearance of a non-trivial

potential for the photon field. We will dwell on this issue in the next subsection.

To find the saddle point we extremize the expression (3.3.3) with respect to ω and

A0, which results in the following equations:

∂Eorient

∂A0
=

2NL
√
ω

π

∞∑
k=1

K1(Lk
√
ω) sinLkA0 = 0 , (3.3.4)

log
ω

Λ2
CP

= 4

∞∑
k=1

K0(Lk
√
ω) cosLkA0 , (3.3.5)

where the logarithmic term in the left-hand side of Eq. (3.3.5) is the renormalized

inverse coupling 1/λ. The logarithmic integral over momentum is regularized in the

infrared by ω.

Equation (3.3.4) yields the solution of the form LA0 = π l, where l ∈ Z. However,

from the Eq. (3.3.3) it is clear that the solution with LA0 = 2π l lies lower in energy
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than the solution with LA0 = (2l − 1)π and is, thus, physical. We take A0 = 0 as a

solution of (3.3.4). Our result for the orientational string energy is shown in Fig. 3.3,

where Ṽ = Eorient/L.
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Figure 3.3: Effective potential (in units of Λ2
CP) as a function of length.

Equation (3.3.5) yields a nonvanishing value of ω which we interpret – as in the case

of zero temperature – as mass generation for the nl fields. The dependence of the mass

on the string length L is shown in Fig. 3.4 where we put

√
ω ≡ m. (3.3.6)

One can see that the nl field mass increases with decreasing L.
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Figure 3.4: Mass (in the units of Λ) of fields nl as a function of L.

In the limit L� 1/ΛCP the modified Bessel functions in (3.3.3) exhibit exponential

fall-off at large L. To determine the leading non-trivial correction to the string energy
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we can use the “zeroth-order” solution ω ≈ Λ2
CP of the equation (3.3.5) for the vacuum

expectation value (VEV) of ω. Clearly this “zeroth-order” solution coincides with the

VEV of ω in the infinite volume, see (3.2.6). For the total string energy we obtain

E(L) =

(
2πξ +

N

4π
Λ2

CP

)
L− π

3

1

L
−N

√
2

π

√
ΛCP

L
e−ΛCPL + · · · . (3.3.7)

In Eq. (3.3.7) we included the classical string tension 2πξL, its renormalization due

to vacuum fluctuations in CP (N − 1) (i.e. (N/4π) Λ2
CP L), and the contribution of the

translational modes which give the standard Lüscher term. This result was quoted in

Chapter 1, see Eq. (1.0.5).

We see that the quantum fluctuations of the orientational moduli contribute both

to the renormalization of the string tension (the linear in L term in (3.3.7)) and to

the function f(ΛCPL) in (1.0.3). As was expected, in the theory with a mass gap the

contribution of orientational moduli to the L-dependent part of the string energy is

exponentially suppressed at large L.

Let us note, that the case of an open non-Abelian string was previously considered

in [41]. The results of [41] show the presence of long range 1/L effects coming from

the orientational sector even at large L where the theory has a mass gap. We disagree

with these results and believe that orientational long range forces in the large-L phase

are spurious and are associated with the boundary energy somehow induced [41] by the

Dirichlet boundary conditions rather than with the string itself.

3.3.2 The photon mass

The A0-dependence in the potential (3.3.3) ensures that the gauge field acquires a

mass [36]. It is quite natural to expect that the photon becomes massive at non-zero

temperature. Physically this means the Debye screening.

Expanding (3.3.3) at large L we can write down an effective action for the U(1)

gauge field,

Sgauge =

∫
d2x

{
1

4e2
F 2
kl −N

√
2

π

√
ΛCP
L3

e−ΛCPL cosA0L+ · · ·

}
. (3.3.8)

The kinetic term for the gauge field at non-zero temperature is calculated in Ap-

pendix B. To calculate the photon mass to the leading order in exp (−ΛCPL) we need
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the expression for the gauge coupling e2 in the limit L→∞, namely,

1

e2
≈ N

12πΛ2
CP

, (3.3.9)

see Sec. 3.2. Expanding (3.3.8) to the quadratic order in A0 we arrive at

m2
A ≈ 12Λ2

CP

√
2πΛCPL e

−ΛCPL . (3.3.10)

for the photon mass. Note, that the non-zero photon mass at finite temperature does

not break gauge invariance since Lorentz symmetry is explicitly broken, see [36].

The photon becoming massive was the reason for the claim [36] that at non-zero

temperature the CP(N − 1) model is in the deconfinement phase. We give a different

interpretation for this effect.

We treat the quasivacua as the strings of different tension. Kinks and antikinks

interpolate between true vacuum and the first quasivacuum. The Debye screening due

to a finite photon mass now can be interpreted as a breaking of the confining string

between kink and antikink in the thermal medium (through picking up a kink-antikink

pair from the thermal bath). Note, that unlike pair-production from the vacuum, this

process is not suppressed as exp(−N).

The kink-antikink potential has the form

V (R) = e2Re−mAR , (3.3.11)

whereR is the kink-antikink separation. It is still linear at smallR, while the exponential

suppression at large R can be understood as a breaking of the confining string due to

creation of a kink-antikink pair from the thermal bath. Therefore, we still interpret the

large L phase as a Coulomb/confinement phase.

A similar question can be addressed in QCD. Do we have confinement of quarks

in QCD? We believe that the answer is positive. However, the confining string can

be broken by quark-antiquark production. We suggest a similar interpretation for the

CP(N − 1) model at non-zero temperature.

If L is very large (very low temperatures) the thermal string breaking can be ignored,

however once L reduces below logN/ΛCP the thermal breaking becomes operative.
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3.3.3 Small length limit

As was already mentioned, we will show in the next section that once L decreases below

1/ΛCP our CP(N−1) model undergoes a phase transition into the deconfinement phase.

To prove this we calculate the vacuum energy in the deconfinement phase in the next

section and show that it lies below that in the Coulomb/confinement phase.

In order to make this comparison we will examine Eqs. (3.3.3) and (3.3.5) in the

low-L limit. These expressions determine the vacuum energy and the ω expectation

value in the Coulomb/confinement phase.

Assuming that L2ω � 1 we can use the following approximation for the sum of the

modified Bessel functions (see Eq. (8.526) in [42])

∞∑
n=1

K0(ny) ≈ π

2y
+

1

2
ln

y

4π
+
γ

2
+O(y2) , (3.3.12)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Consequently, we get from (3.3.5)

ln

√
ω

ΛCP
= 2

[
π

2L
√
ω

+
1

2
ln
L
√
ω

4π
+
γ

2

]
, (3.3.13)

or approximately

ln
1

ΛCPL
=

π

L
√
ω
. (3.3.14)

Now the logarithmic integral which determines the renormalized inverse coupling

1/λ is regularized in the infrared by 1/L rather than by
√
ω (which is the case in the

large-L limit). This gives us the ω expectation value,

√
ω =

π

L

1

ln (1/ΛCPL)
+ · · · . (3.3.15)

Equation (3.3.15) justifies our approximation L2ω � 1 at L� 1/ΛCP . Note also that at

L� 1/ΛCP the coupling constant is small – it is frozen at the scale 1/L (the logarithm

in the left-hand side of (3.3.14) is large), so the theory is at weak coupling.

To find the orientational energy in this limit we need to find an approximate expres-

sion for the sum of the modified Bessel functions that appears in (3.3.3),

SE =
2L
√
ω

Lπ

∞∑
k=1

K1(kL
√
ω)

k
. (3.3.16)
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Derivative of the modified Bessel functions satisfies the following relation (see Eq.

(9.6.28) in [43]):

K ′1(x) = −K0(x)− K1(x)

x
. (3.3.17)

Let us introduce a notation,

S1(x) =
∞∑
k=1

K1(kx)

k
. (3.3.18)

Then

(xS1(x))′ = −x
∞∑
k=1

K0(kx)
(3.3.12)
≈ −π

2
− x

2
ln

x

4π
− xγ

2
+O(x3) . (3.3.19)

Integrating this expression one finds

xS1(x) ≈ −xπ
2
− x2

4
ln

x

4π
− x2

8
(2γ − 1) + const +O(x4) (3.3.20)

The behavior of the modified Bessel function at small values of the argument is given

by (see Eq. (9.6.9) in [43])

K1(x) ∼ 1

x
. (3.3.21)

Thus, the sum S1(x) can be approximated as follows:

S1(x) ≈
∞∑
k=1

1

xk2
=
π2

6x
. (3.3.22)

Hence the constant appears to be π2/6. Now we are ready to present the approximate

expression we seek for,

SE =
2

Lπ
L
√
ωS1(L

√
ω) ≈ π

3L
−
√
ω − Lω

2π
ln
L
√
ω

4π
− Lω

4π
(2γ − 1) . (3.3.23)

With this approximation we arrive at the orientational energy

Eorient(L) = −π
3

N

L
+N

√
ω − N

2π
ωL ln

1

ΛCPL
+ · · · (3.3.24)

Substituting here the VEV of ω, see (3.3.15), we get

Eorient(L) = −π
3

N

L
+
π

2

N

L

1

ln (1/ΛCPL)
+ · · · . (3.3.25)
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The first term here is the Lüscher term proportional to the number of orientational

degrees of freedom 2(N − 1) ≈ 2N (in the large N limit). It gets corrected by an

infinite series of powers of inverse logarithms ln (1/ΛCPL), if we naively extend the

Coulomb/confinement phase into the region of small L. We will show in the next

section that in fact the theory undergoes a phase transition into a different phase, with

a lower energy.

3.4 Deconfinement phase

Classically CP(N − 1) model has 2(N − 1) massless states which can be viewed as

Goldstone states of the broken SU(N) symmetry. Indeed, classically the vector nl

satisfies a fixed length condition, |n|2 = r, see (3.2.1). Thus classically nl acquires a

VEV breaking SU(N) symmetry.

However, as was shown above, in the strong coupling large L domain the spontaneous

symmetry breaking does not occur, in much the same way as in the infinite-L limit, see

[26]. At strong coupling the vector nl is smeared all over the vacuum manifold due to

strong quantum fluctuations. The theory has a mass gap, moreover the number of the

massive n-fields becomes 2N . Effectively the classical constraint |n|2 = r is lifted, see

[26].

At small L the theory enters a weak coupling regime so we expect occurrence of the

classical picture in the limit N → ∞. To study this possibility we assume that one

component of the field nl, say n0 ≡ n can develop a VEV. Then we integrate over all

other components of nl (l=1,2,...) keeping the fields n and ω as a background. Note,

that a similar method was used in [44] for studying phase transitions in the CP(N − 1)

model with twisted masses.

Now, instead of (3.3.24), we get

Eorient(L) = ωL |n|2 − π

3

N

L
− N

2π
ωL ln

1

ΛCPL
+ · · · , (3.4.1)

where the ellipses stand for higher terms in L2ω. Note, that here we drop the contribu-

tion associated with the integration over the constant n (the second term in (3.3.24))

because we introduce n0 as a constant background field (in other words, we drop the

term with k = 0 in (3.3.2)).
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Minimizing over ω and n we arrive at the equations

|n|2 =
N

2π
ln

1

ΛCPL
+ . . . , (3.4.2)

ω n = 0 .

The solution to these equations with nonzero n0 read

|n|2 =
N

2π
ln

1

ΛCPL
, ω = 0 . (3.4.3)

We see that the mass gap ω is not generated. Substituting this in (3.4.1) we get that

the orientational energy reduces just to the Lüscher term, namely

Eorient(L) = −π
3

N

L
. (3.4.4)

This energy is lower than the one in (3.3.25). Therefore, we conclude that at L ∼
1/ΛCP the theory undergoes a phase transition into the phase with the broken SU(N)

symmetry. This ensures the presence of 2(N − 1) Goldstone states nl, l = 1, ...(N − 1).

The photon remains an auxiliary field, no kinetic term is generated for it. As a result,

there is no Coulomb/confining linear rising potential between the n-states. The phase

with the broken SU(N) is a deconfinemet phase. Since |nl| is positively defined Eq.

(3.4.3) shows that this phase appears at L < 1/ΛCP.

The results of numerical calculations are in agreement with our conclusions. The

relation between orientational energies in both phases is shown in Fig. (3.5). One can

see that the Lüscher term energy is lower and is thus physical.

The phase with the broken symmetry in two dimensions can occur only in the limit

N → ∞. As was already explained, if N is large but finite this would contradict

the Coleman theorem [39]. Therefore, we expect that at large but finite N the phase

transition becomes a rapid crossover. In particular, we expect that the nl fields are not

strictly massless. They have small masses suppressed by 1/N .

To conclude this section let us note that the CP (N − 1) model compactified on a

cylinder with the so-called twisted boundary conditions was studied in [45]. No phase

transition was found; moreover, it was shown that the theory has a mass gap which

shows no L-dependence and is determined entirely by ΛCP. We believe that our results

are not in contradiction with those obtained in [45], because at finite L the boundary
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Figure 3.5: Comparison of orientational energies in both phases. The Lüscher term always lies
lower. We set ΛCP = 1.

conditions matter: they can be crucial. In particular, the twisted boundary conditions

can be viewed as a gauging of the global SU(N) group with a constant gauge potential.

Then the global SU(N) is explicitly broken. This model should be considered as distinct

as compared to the CP(N − 1) model with the periodic boundary conditions studied

here.

3.5 Supersymmetric CP(N − 1) model with no compact-

ification

Non-Abelian strings were first found in N = 2 supersymmetric QCD with the U(N)

gauge group and Nf = N quark hypermultiplets [4, 5, 6, 7], see [8, 9, 10, 11] for

reviews. In much the same way as for non-supersymmetric case the internal dynamics of

orientational zero modes of non-Abelian string is described by two-dimensional CP(N−
1) model living on the string world-sheet. The string solution is 1/2-BPS saturated;

therefore the two-dimensional model under consideration is N = (2, 2) supersymmetric.

In this section we briefly review the large-N solution of N = (2, 2) CP(N − 1) model in

infinite space [26]. In the next section we will present the large-N solution of the model

on a strip of a finite length L (cylindrical compactification).
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The bosoinc part of the action of the CP(N − 1) model is given by

Sbos =

∫
d2x
[
|∇inl|2 +

1

4e2
F 2
ij +

1

e2
|∂iσ|2 +

1

2e2
D2

+ 2|σ|2|nl|2 + iD(|nl|2 − r0)
]
, (3.5.1)

where the covariant derivative is defined as ∇i = ∂i − iAi and σ is a complex scalar

field, the scalar superpartner of Ai. Moreover, r0 is the bare coupling constant. In the

limit e2 → ∞ the gauge field Ai and σ become auxiliary fields. D stands for the D

component of the gauge multiplet. The factor i is due to the passage to the Euclidean

notation.

The fermionic part of the action takes the form

Sferm =

∫
d2x
[
ξ̄lRi(∇0 − i∇3)ξlR + ξ̄lLi(∇0 + i∇3)ξlL

+
1

e2
λ̄Ri(∇0 − i∇3)λR +

1

e2
λ̄Li(∇0 + i∇3)λL

+
(
i
√

2σξ̄lRξ
l
L + i

√
2n̄l(λRξ

l
L − λLξlR) + H.c.

) ]
, (3.5.2)

where the fields ξlL,R are the fermion superpartners of nl and λL,R belong to the gauge

multiplet. In the limit e2 →∞ they enforce the following constraints:

n̄lξlL = 0 , n̄lξlR = 0 . (3.5.3)

The field σ is auxiliary and can be eliminated, namely,

σ = − i√
2r0

ξ̄lLξ
l
R . (3.5.4)

3.5.1 Large-N solution

The N = (2, 2) supersymmetric CP(N − 1) model was solved in the large-N limit by

Witten [26], see also [46]. In this section we briefly review this solution.

Since both fields nl and ξl appear quadratically we can integrate them out. This

produces two determinants,

det−N
(
−∂2

i + iD + 2|σ|2
)

detN
(
−∂2

i + 2|σ|2
)

(3.5.5)
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The first determinant comes from the boson nl fields, while the second comes from the

fermion ξl fields. Note that if D = 0 the two contributions obviously cancel each other,

and supersymmetry is unbroken. As before, the non-zero values of iD+ 2|σ|2 and 2|σ|2

can be interpreted as non-zero values of the mass of nl and ξl fields, and we put Ak = 0.

The final expression for the effective potential is given by (see, for example, [46])

Veff =

∫
d2x

N

4π

[
−(iD + 2|σ|2) ln

iD + 2|σ|2

Λ2
CP

+ iD + 2|σ|2 ln
2|σ|2

Λ2
CP

]
, (3.5.6)

where the logarithmic ultraviolet divergence of the coupling constant is traded for the

scale ΛCP.

To find a saddle point we minimize the potential with respect to D and σ, which

yields the following set of equations:

ln
iD + 2|σ|2

Λ2
CP

= 0 ,

ln
iD + 2|σ|2

2|σ|2
= 0 , (3.5.7)

The solution to these equations is

D = 0, (3.5.8)

which shows that supersymmetry is not broken. The VEV of σ is

√
2σ = ΛCP e

2πk
N
i, k = 0, ..., (N − 1). (3.5.9)

We see that σ develops a VEV giving masses to the nl fields and their fermion super-

partners ξl. The phase factor in the right-hand side of (3.5.9) does not follow from

(3.5.7). It comes from the broken chiral U(1) symmetry. The axial anomaly breaks it

down to Z2N . The field σ has the chiral charge 2. This explains the phase factor in

(3.5.9). Once |σ| has a nonzero VEV the anomalous symmetry breaking ensures that

the theory has N vacuum states. Clearly this fine structure cannot be seen in the large

N approximation since the phase factor is a 1/N effect.

In full accord with the Witten index, the solution above has N vacua, each with the

vanishing energy.

Consider now the vector multiplet. In much the same way as in the non-supersymmetric

case, photon becomes a propagating field. To find the renormalized gauge coupling one

needs to evaluate two Feynman diagrams shown in the Fig.3.6.
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Figure 3.6: Feynman diagrams contributing to the kinetic term of the photon

Details of the appropriate calculation are given in Appendix C. The result is

1

e2
=
N

4π

1

Λ2
CP

. (3.5.10)

Through the coupling to the Imσ (due to the chiral anomaly) now the photon

acquires a mass. Moreover, the fermion fields λL,R also become propagating, with the

same mass as that of the photon, as required by supersymmetry. The masses of the

fields of the vector multiplet are as follows [26, 46]:

mph = mλL,R = mReσ = mImσ = 2ΛCP . (3.5.11)

Since the photon became massive there is no linear rising Coulomb potential between

the charged states. There is no confinement in supersymmetric CP(N − 1) model even

in the infinite volume limit. It has N degenerate vacua which are interpreted as N

degenerate elementary non-Abelian strings in the four-dimensional bulk theory. In

contrast to the non-supersymmetric case, the confined monopoles of the bulk theory,

which are seen as kinks interpolating between the CP(N − 1) vacua, are free to move

along the string, see [10] for further details.

3.6 Supersymmetric CP(N − 1) on a cylinder

Now we compactify one space dimension and impose periodic boundary conditions, both

for bosons and fermions, in order to preserve N = (2, 2) supersymmetry. We stress that

this compactification cannot be considered as thermal. Non-zero temperature requires

anti-periodic boundary conditions for fermions, which would break supersymmetry ex-

plicitly.
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The large-N method in the case of N = (2, 2) CP(N − 1) model works similar to

that in the non-supersymmetric case. We compactify now the spatial coordinate x1 and

start from a slightly modified expression for the determinants in Eq. (3.5.5). Choosing

the A0 = 0 gauge and assuming that A1 is non-zero we write

det−N
(
−∂2

0 − (∂1 − iA1)2 +m2
b

)
detN

(
−∂2

0 − (∂1 − iA1)2 +m2
f

)
, (3.6.1)

where we introduced the following notation:

m2
b = iD + 2|σ|2, m2

f = 2|σ|2. (3.6.2)

The evaluation of each of the determinants is no different from that in the non-

supersymmetric case. Again we use the zeta-function method. Using expressions in

Appendix C we can derive the effective potential,

E =
LN

4π

[
− (iD + 2|σ|2) ln

iD + 2|σ|2

Λ2
CP

+ iD + 2|σ|2 ln
2|σ|2

Λ2
CP

− 8m2
b

∞∑
k=1

K1(Lmbk)

Lmbk
cos (LA1k)

+ 8m2
f

∞∑
k=1

K1(Lmfk)

Lmfk
cos (LA1k)

]
, (3.6.3)

Here the first line is just the effective potential at L = ∞, while the second and third

lines are the finite-L corrections due to bosons and fermions, respectively.

To find a stationary point we vary the above expression with respect to A1, D and

σ. The resulting equations are as follows:

mb

∞∑
k=1

K1(Lmbk) sin (LA1k)−mf

∞∑
k=1

K1(Lmfk) sin (LA1k) = 0 ,

2σ

[
− ln

m2
b

m2
f

+ 4

∞∑
k=1

K0(Lmbk) cos (LA1k)− 4

∞∑
k=1

K0(Lmfk) cos (LA1k)

]
= 0 ,

− ln
m2
b

Λ2
CP

+ 4
∞∑
k=1

K0(Lmbk) cos (LA1k) = 0 . (3.6.4)
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Calculation of the gauge coupling constant at finite L is also modified (see Appendix

C). As a result, we arrive at

1

Ne2
=

1

4πm2
b

+
L

2πmb

∞∑
k=1

K1(Lmbk)k , (3.6.5)

which reduces to 1/4πΛ2
CP in the limit L→∞.

Consider now the large L limit, L � 1/ΛCP. Assuming that mb ∼ mf ∼ ΛCP (we

confirm this below) we expand the string energy (3.6.3) keeping the first exponentially

small term

E =
LN

4π

{
−m2

b ln
m2
f

Λ2
CP

+ iD +m2
f ln

m2
f

Λ2
CP

}

− N

√
2

π

[√
mb

L
e−mbL −

√
mf

L
e−mfL

]
cosA1L+ · · · . (3.6.6)

Taking derivatives with respect to D,
√

2σ̄ and A1 we obtain

−N
4π

log
m2
b

Λ2
CP

2

+N
1√
2π

exp (−mbL)√
mbL

cosA1L+ · · · = 0,

√
2σ

{
N

4π
log

m2
f

m2
b

+N
1√
2π

[
exp (−mbL)√

mbL
−

exp (−mfL)√
mfL

]
cosA1L+ · · ·

}
= 0,

{
exp (−mbL)√

mbL
−

exp (−mfL)√
mfL

}
sinA1L+ · · · = 0 , (3.6.7)

where the ellipses denote next-to-leading corrections in 1/Lmb and 1/Lmf .

The solution of these equations is as follows. The second and third equations are

satisfied at

D = 0, (3.6.8)

which shows that supersymmetry is not broken. A1 remains undetermined.

With D = 0 the first equation determines the σ expectation value, namely,

N

4π
log

2|σ|2

Λ2
CP

= N
1√
2π

exp
(
−
√

2|σ|L
)√√

2|σ|L
cosA1L+ · · · . (3.6.9)
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This equation seems to present a puzzle. It shows that the VEV of σ depends on the

parameter A1, which is arbitrary. If this were the case the theory would have a branch

of vacua parametrized by the Polyakov line

e
∫
dx1A1 = eiA1L, (3.6.10)

which measures the holonomy around the compact dimension. More exactly, the the-

ory would have N branches of vacua, because Z2N symmetry ensures that the over-

all phase of σ takes N values 2πk/N , k = 0, ..., (N − 1). This would contradict the

Witten index argument which ensures that the number of vacua is equal to N for

N = (2, 2) supersymmetric CP(N − 1) model.

The resolution of this puzzle is that we should quantize the phase variable A1L

(note that
∫
dx1A1 depends only on time) as a function of the non-compact time. In

the emerging quantum mechanics the phase A1L is not fixed; instead, it is smeared all

over the circle (in the ground state). As a result, the cos (A1L) in (3.6.9) is averaged to

zero and the σ VEVs are given by

√
2σ = ΛCP e

2πk
N
i, k = 0, ..., (N − 1). (3.6.11)

This is exactly the same result as for L = ∞. All cosine functions of A1L in the last

equation in (3.6.4) are averaged to zero, therefore the result in (3.6.11) is exact and

does not depend on L.

This result also can be understood by studying the exact twisted superpotential of

N = (2, 2) CP(N − 1) model. In the infinite volume it is given by [47, 48, 49]

W (σ) =
N

4π

{
√

2σ log

√
2σ

ΛCP
−
√

2σ

}
. (3.6.12)

This superpotential has correct transformation properties with respect to the chiral U(1)

symmetry. Namely, integrated over half of the superspace it is invariant under chiral

symmetry up to a term which precisely reproduces the chiral anomaly. Now at finite

length this superpotential in principle could have corrections proportional to powers of

exp
(
−
√

2σL
)
. (3.6.13)

However these corrections would spoil the transformation properties of the superpoten-

tial with respect to the chiral symmetry. Therefore they are forbidden. As a result at
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finite L the exact superpotential of the theory is still given by (3.6.12). Critical points

of this superpotential are given by (3.6.11) and do not depend on L. This matches our

result obtained from large-N approximation.

In particular, at small L the theory is at weak coupling and can be studied in the

quasiclassical approximation. As we already mentioned CP(N − 1) model compactified

on a cylinder with twisted boundary conditions was studied in [45]. It is shown in [45]

that the mass gap at weak coupling is produced by fractional instantons and does not

depend on L both in supersymmetric and non-supersymmetric cases. For our case (pe-

riodic boundary conditions) the mass gap shows L-dependence in non-supersymmetric

case, while in the supersymmetric case it is L-independent. The quasiclassical origin of

this behavior needs to be understood in the weak coupling domain of small L. This is

left to a future work.

To conclude, in N = (2, 2) supersymmetric CP(N −1) model we have a single phase

with the unbroken supersymmetry and N vacua. Each vacuum has vanishing energy and

parametrized by the VEV of σ in Eq. (3.6.11). Unlike non-supersymmetric problem,

this VEV is independent of L.

3.7 The photon mass

In this section we outline the photon mass calculation.

The effective action for the gauge field can be written as [46]

Sgauge =

∫
d2x

{
1

4e2
F 2
kl −

N

4π
log

σ

σ̄
F ∗
}
, (3.7.1)

where the photon mixing with σ is due to the chiral anomaly and

F ∗ =
1

2
εijF

ij (3.7.2)

is the dual gauge field strength. In the case of infinitely long string the the gauge

coupling and the photon mass were found [46],

1

e2
=
N

4π

1

Λ2
CP

, (3.7.3)

and

mph = 2ΛCP , (3.7.4)
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respectively. In Sec. 3.6 we derived the expression for the gauge coupling in the case of

finite length, see (3.6.5). The corresponding expression for the photon mass in the limit

of ΛCPL� 1 is

m2
ph ≈ (2ΛCP)2

(
1−

√
2πΛCPL e

−ΛCPL
)

(3.7.5)

where we used the asymptotic expansion of the modified Bessel functions (see Eq. (9.7.2)

in [43]),

K1(x) ∼
√

π

2x
e−x . (3.7.6)

Since K ′0(x) = −K1(x) we can also determine the photon mass in the opposite limit of

ΛCPL� 1,

∞∑
k=1

K1(kx)k = −

( ∞∑
k=1

K0(kx)

)′
≈ π

2x2
− 1

2x
,

m2
ph ≈ ΛCPL

π
(2ΛCP)2 � (2ΛCP)2 . (3.7.7)



Chapter 4

Heterotic Non-Abelian String

4.1 Heterotic N = (0, 2) CP(N − 1) model at L =∞

The heterotic N = (0, 2) CP(N − 1) model at L =∞ was solved in [46] in the large-N

limit. In this section we will briefly review this solution. The bosonic part of the action

in the gauged formulation is

Sb =

∫
d2x
[
|∇knl|2 + 2|σ|2|nl|2 + iD(|nl|2 − r0) + 4|ω|2|σ|2

]
, (4.1.1)

where nl (l = 1, ...N) is a complex N -vector parametrizing the orientational modes.

Moreover,

∇k = ∂k − iAk .

Here Ak is the gauge potential, σ is a complex scalar field. The fields Ak, σ and D

belong to the gauge (vector) multiplet. These fields come without kinetic terms and are

auxiliary. Moreover, r0 is a coupling constant, while ω is the N = (2, 2) deformation

parameter. Eliminating D leads to the constraint

|nl|2 = r0 . (4.1.2)

44
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The fermionic part of the action is

Sf =

∫
d2x
[
ξ̄lRi(∇0 − i∇3)ξlR + ξ̄lLi(∇0 + i∇3)ξlL

+ i
√

2σξ̄lRξ
l
L + i

√
2n̄l(λRξ

l
L − λLξlR)

+ i
√

2σ?ξ̄lLξ
l
R + i

√
2(λ̄Lξ̄

l
R − λ̄Rξ̄lL)nl

+
1

2
ζ̄Ri∂LζR + (i

√
2ωλ̄LζR + H.c.)

]
, (4.1.3)

where ξlR,L are fermionic superpartners of nl (superorientational modes of the string),

λR,L are auxiliary fermions from the vector superfield, while ζR is the right-handed

supertranslational mode. In the N = (2, 2) model it was decoupled. We do not include

the bosonic translational modes describing shifts of the string center. Nor do we include

the left-handed supertranslational mode ζL, because both decouple not only in the

N = (2, 2) but in the N = (0, 2) model as well [28, 29].

The terms containing ζR or ω break N = (2, 2) down to N = (0, 2) . The deforma-

tion parameter ω is complex and scales with N as [46]

ω ∼
√
N . (4.1.4)

It is determined by the mass parameter of the adjoint matter in the bulk theory [29].

Integrating over λL,R leads to the constraints

n̄lξlL = 0 ,

ξ̄Rn
l = ωζR . (4.1.5)

Integrating over σ implies

σ = − i√
2(r0 + 2|ω|2)

ξ̄lLξ
l
R . (4.1.6)

Note that this model has an axial U(1) symmetry broken by the chiral anomaly down

to Z2N much in the same way as in the N = (2, 2) model [26]. We find that σ develops a

vacuum expectation value (VEV) which results in a spontaneous breaking of the discrete

Z2N down to Z2. Moreover as can be seen from (4.1.6), a non-zero VEV of the σ field

corresponds to a non-zero fermion bilinear condensate
〈
ξ̄lLξ

l
R

〉
.
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Since both fields nl and ξl appear in the action quadratically we can integrate them

out. This produces the product of two determinants,

det−N
(
−∂2

i + iD + 2|σ|2
)

detN
(
−∂2

i + 2|σ|2
)
. (4.1.7)

The first determinant comes from the boson nl fields, while the second comes from the

fermion ξl fields. Note that if D = 0 the two contributions obviously cancel each other,

and supersymmetry is unbroken. Also, the non-zero values of iD + 2|σ|2 and 2|σ|2 can

be interpreted as non-zero values of the masses of the nl and ξl fields, respectively. We

put Ak = 0.

The final expression for the effective potential is (see [46])

Veff =

∫
d2x

N

4π

[
− (iD + 2|σ|2) ln

iD + 2|σ|2

Λ2
+ iD

+ 2|σ|2 ln
2|σ|2

Λ2
+ 2|σ|2u

]
, (4.1.8)

where the logarithmic ultraviolet divergence of the coupling constant is traded for the

finite scale Λ of the asymptotically free CP(N −1) model. We also introduced a dimen-

sionless deformation parameter

u =
8π

N
|ω|2 , (4.1.9)

which does not scale with N .

To find the saddle point we minimize the potential with respect to D and σ, which

yields the following set of equations:

ln
iD + 2|σ|2

Λ2
CP

= 0 ,

ln
iD + 2|σ|2

2|σ|2
= u . (4.1.10)

The solution to these equations is

iD = Λ2(1− e−u) , and 2|σ|2 = Λ2e−u . (4.1.11)

The value of D in this solution does not vanish, implying that supersymmetry is spon-

taneously broken. We see that σ develops a VEV giving masses to the nl fields and
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their fermion superpartners ξl. More exactly, the solution for σ can also be written as

√
2σ = Λ exp

(
−u

2
+

2πik

N

)
, k = 0, ..., N − 1 , (4.1.12)

where the phase factor is not seen in Eq. (4.1.10). It comes as a result of a chiral

anomaly which breaks the chiral U(1) symmetry, U(1) → Z2N . The field σ has the

chiral charge 2. Thus a non-zero VEV of |σ| ensures that Z2N symmetry is broken

down to Z2 and there are N vacua presented in (4.1.12).

Substituting the solution (4.1.10) into (4.1.8) we obtain an expression for the vacuum

energy density

Vvac =
N

4π
Λ2(1− e−u) , (4.1.13)

which, as expected, vanishes in the limit u→ 0 .

4.2 N = (0, 2) model on a cylinder

The N = (2, 2) model on a cylinder was solved in the large-N limit in the previous

Chapter. In this section we apply the same approach to N = (0, 2) model assuming

periodic boundary conditions both for bosons and fermions. Since the action (4.1.1)

and (4.1.3) is quadratic in nl and ξl we can integrate over these fields. We assume that

the compact dimension in the bulk theory is x1 and the string is wrapped around this

dimension. We will assume a nontrivial holonomy (3.6.10) of Ak around this compact

dimension. In the A0 = 0 gauge we will look for a solution with A1 = const.

First consider the case when neither of the fields nl or ξl develop VEVs. The

expression for the effective potential is easily found,

V =
N

4π

(
iD − iD ln

m2
b

Λ2
−m2

f ln
m2
b

m2
f

+m2
fu

+ 8m2
f

∞∑
k=1

K1(Lmfk)

Lmfk
cosLkA1

− 8m2
b

∞∑
k=1

K1(Lmbk)

Lmbk
cosLkA1

)
, (4.2.1)

where we use an effective mass notation for the bosonic nl and fermionic ξl fields,

m2
b = iD + 2|σ|2, m2

f = 2|σ|2, . (4.2.2)
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Here K1(z) is the modified Bessel function of the second kind and the deformation

parameter u is related to the parameter ω as in (4.1.9). The first line in (4.2.1) is the

same as the one found in the case of the L = ∞ string (4.1.8), while the second and

third lines represent contributions arising due to the finite length of the string. The

potential (4.2.1) is periodic in the phase LA1, with the period 2π, so we can assume

that 0 ≤ LA1 < 2π.

4.2.1 Saddle point approximation

To find VEVs of A1, of σ and iD we take derivatives of (4.2.1) with respect to these

fields. Then we obtain three equations,

VN,A1 = mb

∞∑
k=1

K1(Lmbk) sinLkA1 −mf

∞∑
k=1

K1(Lmfk) sinLkA1 ,

VN,σ? = 2σ

[
− ln

m2
b

m2
f

+ 4
∞∑
k=1

K0(Lmbk) cosLkA1

− 4
∞∑
k=1

K0(Lmfk) cosLkA1 + u

]
,

VN,iD = − ln
m2
b

Λ2
+ 4

∞∑
k=1

K0(Lmbk) cosLkA1 . (4.2.3)

One can see that the first equation is satisfied when either A1 = 0 or A1 = π/L. How-

ever, unlike the bosonic theory described in the previous Chapter, A1 = 0 corresponds

to the maximum of potential. The energy is lower if LA1 = π. This can be easily

understood. Consider the second and third lines in (4.2.1),

VA ∼ [mfK1(Lmf )−mbK1(Lmb)] cos(LA1) . (4.2.4)

On the one hand we know from the definition that mb ≥ mf . On the other hand K1(x)

decreases exponentially at large values of the argument. Thus, at least for large L the

potential EA = c× cos(LA1), where c > 0. Hence we conclude that the minimum of the

potential is at LA1 = π. This conclusion is also supported by a numerical calculation,

see Figs. 2,3. Below we assume that

LA1 = π . (4.2.5)
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Figure 4.1: V̄ ≡ 4πV vs string length L at the value of deformation parameter u = 0.1. Solid
line corresponds to A1 = π/L, while dashed line correcponds to A1 = 0.

As can be seen from the graphs in Figs. 2, 3 no solution with lower energy exists for

sufficiently small L and/or high enough value of the deformation parameter. To explore

this issue we need to find approximate analytical solutions.

4.3 Z2N broken phase

Consider first the large-L domain or, more precisely, L � 1/Λ. In addition we assume

that u is not very large. Then we use the second and third equations in (4.2.3) to find

the expressions for masses. Next, we use (4.2.1) to find the vacuum energy.

We will show below that in the limit of large LΛ � 1 and intermediate u we have

Lmb,f � 1. If so, to find the boson and fermion masses we can apply the asymptotic

behavior of the modified Bessel functions,

K0(z) ≈ K1(z) ≈
√

π

2z
e−z . (4.3.1)

Assuming that LA1 = π we arrive at the following expressions for masses:

m2
b ≈ Λ2

(
1−

√
8π

ΛL
e−ΛL

)
,

m2
f ≈ Λ2e−u

{
1−

√
8π

ΛL
e
u
4 e−ΛLe−u/2

}
. (4.3.2)
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Figure 4.2: V̄ ≡ 4πV vs deformation parameter u at the sting length L = 4.5.

If L is large, LΛ� 1, and the value of u is neither too large nor too small, exponential

corrections are small and mb,f are of order of Λ. This justifies our approximation. As

was already mentioned, mb and mf have a meaning of masses for bosons nl and fermions

ξl. Thus we have a non-vanishing mass gap in this phase.

From (4.3.2) we find VEVs of D and σ,

iD ≈ Λ2

{
1− e−u −

√
8π

ΛL

(
e−ΛL − e−3u/4e−ΛLe−u/2

)}
,

√
2σ ≈ Λ e−

u
2

{
1−

√
2π

ΛL
e
u
4 e−ΛLe−u/2

}
e

2πik
N , (4.3.3)

where k = 0, ..., (N − 1).

The presence of non-zero D signals that N = (0, 2) supersymmetry is spontaneously

broken. The vacuum energy is

E ≈ NLΛ2

4π

{
1− e−u +

2

ΛL

√
8π

ΛL

(
e−ΛL − e−u/4e−ΛLe−u/2

)}
. (4.3.4)

The phase of σ in (4.3.3) is determined by the same phase factor as in (4.1.12). We

see that we have N degenerative vacua, in much the same way as in the infinite volume

case. The degeneracy is not due to supersymmetry but due to the fact that the discrete

chiral Z2N symmetry is broken down to Z2.
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Our approximation assumes that both boson and fermion masses are large as com-

pared to 1/L. However, from (4.3.2) we see that mf exponentially decreases at large u.

Our approximation breaks down when we increase u above the curve

LΛ ∼ e
u
2 . (4.3.5)

We will see in Sec. 4.4 that in fact on this curve σ becomes zero and the theory goes

into Z2N -symmetric phase.

4.3.1 Quantum mechanics: the u→ 0 limit

It was shown in Chapter (3) that the VEV of the σ field in the CP(N − 1) model

with N = (2, 2) supersymmetry does not depend on the string length. Since in L is

not a holomorphic parameter, N = (2, 2) supersymmetry forbids the effective twisted

superpotential (which determines the σ VEV) to depend on L.

The fact that L is not a holomorphic parameter in N = (2, 2) CP(N − 1) model is

not a universal statement. Examples are known when L in combination with another

variable form a holomorphic quantity. For instance, in the case of N = 1 supergravity

on R3 × S1 considered in [50] the radius of S1 is combined with the dual photon field

into one holomorphic parameter which does enter the expression for the superpotential.

Our problem, however, does not fall in the above class. In N = (2, 2) CP(N − 1)

there is no additional field to partner with the parameter L to make it holomorphic.

The conserved R charge in this model plays a custodial role and precludes L dependence

of the superpotential.

More explicitly, one can expect that the effective twisted superpotential can depend

on dimensionless parameter σL, however U(1)R symmetry forbids this dependence. This

is because σ has U(1)R charge equal to 2 while L is neutral 2 . The L independence of

the σ condensate ensues.

However, in the heterotic CP(N−1) model supersymmetry is spontaneously broken.

Thus one can expect the σ VEV to depend on the string length. This is what we

observe in Eq. (4.3.3). However, one can note that the expressions for the boson and

fermion masses (4.3.2) in the limit of vanishing u do not reduce to those obtained in

2 U(1)R symmetry is broken by chiral anomaly, however one can compensate for this breaking if
one assigns R charge equal to 2 to CP(N − 1) scale Λ.



52

the CP(N − 1) model with N = (2, 2) supersymmetry. It depends on the string length

even if u = 0. What is happening?

To resolve this puzzle we note that the u → 0 limit turns out to be in conflict

with the quasiclassical approximation in the one-loop effective action which we use in

the large-N analysis. We will see below that the relevant parameter is uN2. Thus, the

change of regime we expect to detect occurs at u ∼ 1/N2 and is not seen in the standard

treatment.

In other words, to detect this change of regimes we must consider a quantum-

mechanical problem for the Polyakov line (3.6.10) and average operators cos(LkA1)

that appear in the equations defining masses (4.2.3) over the ground state wave func-

tion. The equations for the masses in the small-u limit become

ln
m2
b

Λ2
= 4

∞∑
k=1

K0(Lmbk)χk ,

ln
m2
f

Λ2
= 4

∞∑
k=1

K0(Lmfk)χk − u . (4.3.6)

where the χk is the average value of the operator cos(LkA1) defined as

χk =

∫ π

−π
LdA1|ψ|2 cos(LkA1) . (4.3.7)

Here ψ is the ground state wave function in quantum mechanics for LA1.

In this way we obtain the masses

m2
bπ ≈ Λ2

(
1 +

√
8π

ΛL
e−ΛLχ1

)
,

m2
fπ ≈ Λ2

(
1 +

√
8π

ΛL
e−ΛL

(
1 +

uΛL

2
− 3u

4

)
χ1 − u

)
, (4.3.8)

where we expand the expressions for masses mb and mf at large L and small u. This

expressions imply a smooth N = (2, 2) limit if χ1 vanishes with u.

From equation (4.2.1) one can read off the action for the A1 quantal variable,

S =

∫
dt

[
LȦ2

1

4e2
+

LN

4π

(
8m2

f

∞∑
k=1

K1(Lmfk)

Lmfk
cos(LkA1)

−8m2
b

∞∑
k=1

K1(Lmbk)

Lmbk
cos(LkA1)

)]
. (4.3.9)
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In the large-L limit the equation for the wave function is given by

d2ψ

dφ2
+ (λ− 2q cos(2φ))ψ = 0 , (4.3.10)

where φ = LA1/2, and the parameter q is defined as follows:

q =
uN2e−ΛL

(2πΛL)3/2
ΛL , (4.3.11)

(please, observe its explicit dependence on uN2). This is the Mathieu equation. The

solution for the wave function can be found numerically. The averaged value of cos(LA1)

is

χ1 = −0.99 at ΛL = 5 and uN2 = 109

χ1 = −0.85 at ΛL = 5 and uN2 = 105

χ1 = −10−3 at ΛL = 5 and uN2 = 101 . (4.3.12)

Thus we see that for large values of the deformation parameter the averaging plays

almost no role, and the saddle point approximation works well. However, as the defor-

mation parameter gets smaller the averaged value of cosine vanishes and the expression

for fermion mass reduces to that obtained in the N = (2, 2) model.

A more transparent albeit qualitative analysis can be carried out if we use the

harmonic oscillator approximation in our quantal problem. Then one can find the

averaged value of cosLA1 analytically,

χ1 ≈ −
√
uN2e−ΛL

(
2π

ΛL

)1/4

. (4.3.13)

This result explicitly demonstrates vanishing of χ1 as the deformation parameter uN2

tends to zero. Thus we see that in the u→ 0 limit the solution of the N = (0, 2) model

tends to that of the N = (2, 2) model in the interval u ∈ [0, const/N2].

4.4 The Z2N unbroken phase

Now let us consider the region where u is large, i.e. u� log ΛL, see Eq. (4.3.5). For the

time being we assume that L is still large, L� 1/Λ. We can find approximate analytic
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solution for a curve in the (L, u) plane at which the Z2N broken phase with N distinct

vacua ceases to exist (see the phase diagram in Fig. 1). This phase is terminated when

the fermion mass (it is always smaller or equal to the boson mass) reaches zero as we

increase u. Assuming that the fermion mass is close to zero so that Lmf � 1 we can

approximate the sums of the Bessel functions in (4.2.3). Noting that cos(πk) = (−1)k

we use (D.3) with y = 0 to obtain the following expression for the fermion mass

(Lmf )2S2 ≈ S1 + γ − ln
4π

ΛL
− u

2
, (4.4.1)

where S1,2 are defined in (A.3). Thus, the solution with non-zero mf exists only below

the curve

ΛL ≈ 4πeu/2−S1−γ . (4.4.2)

This formula gives a more accurate prediction for the curve (4.3.5) which was obtained

in the previous section. Moreover, the minimal string length is ΛL ≈ 1.76. Numerical

calculation also shows that the fermionic mass goes to zero at finite values of both L

and u, as can be seen from Fig. (4.3) and (4.4).

Figure 4.3: Fermion mass mf vs string length L at the value of the deformation parameter
u = 0.1.

Moreover it is clear from Figs. 4.3 and 4.5 that as L� 1/Λ the fermionic mass mf

tends to Λe−u while iD tends to Λ2(1 − e−u), in agreement with (4.3.2) and (4.3.3),

respectively. One can also note that iD → 0 as u→ 0. This is expected since the u = 0

limit corresponds to the N = (2, 2) model.
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Figure 4.4: Fermion mass mf vs deformation parameter u at L = 4.5.

Above the curve (4.4.2), the only solution of the second equation in (4.2.3) is

σ = 0 , (4.4.3)

while the boson mass

m2
b ≈ Λ2

(
1−

√
8π

ΛL
e−ΛL

)
(4.4.4)

is still given by the same expression as in the Z2N broken phase, see (4.3.2).

Note that the Z2N unbroken phase we have observed is quite remarkable. On the

phase transition line N vacua fuse to one, a family of split Z2N -symmetric vacua does

not emerge. We will discuss this circumstance later.

4.4.1 The Lüscher term.

Using the expression (D.13) from Appendix D we find that the vacuum energy in this

phase is independent on u and given by

E ≈ LNΛ2

4π

(
1 +

2

ΛL

√
8π

ΛL
e−ΛL

)
− πN

6L
. (4.4.5)

The second term here is the Lüscher term [24]. It arises due to massless fermions.

Note, that it equals to half of what we found for non-supersymmetric theory where it

comes from bosons (3.4.4). The reason is that now the gauge holonomy is non-trivial,
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i

Figure 4.5: iD vs L at the value of the deformation parameter u = 0.1.

ii

Figure 4.6: iD vs the deformation parameter u at L = 4.5.

A1 = π/L. Moreover, the same reason ensures that although the Lüscher term in (4.4.5)

comes from fermions it still gives negative contribution to the energy as compared to

the non-supersymmetric case.

The vacuum energy (4.4.5) can be compared to the vacuum energy in the Z2N broken

phase below the curve (4.4.2) in the limit of Lmf � 1,

E ≈ LNΛ2

4π

(
1 +

2

ΛL

√
8π

ΛL
e−ΛL

)
− πN

6L
− NS2

4πL
(Lmf )4 . (4.4.6)

The energy difference is approximately given by the last term above. Equation (4.4.1)

tells us that the energy difference behaves as ∼ (L− Lc(u))2 near the phase transition
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curve, where Lc(u) is given by (4.4.2).

In summary, we conclude that as we increase u and cross the curve (4.4.2) our system

goes through a line of third order phase transitions into the phase with σ = 0. All N

vacua coalesce in the σ plane and Z2N symmetry is restored. In the infrared limit our

theory in this phase flows to a conformal limit which is a free theory of massless fermions

ξl.

4.4.2 What happens with the Aµ auxiliary field in the Z2N unbroken

phase

As we move into the Z2N unbroken phase by increasing u we could, in principle, ob-

serve two distinct scenarios: the N former vacua of the Z2N broken phase which fuse

themselves into σ = 0 in phase III, in fact, split in energy, with N − 1 of them be-

coming quasivacua, and only one of them remaining as the true vacuum. This phase

would be quite similar to the Coulomb/confinement phase in the non-supersymmetric

CP(N − 1) model described in Chapter 3 (see also [26]).

The second option is to have just a unique vacuum at σ = 0, with no accompanying

family of quasivacua. One can decide between the two options by analyzing the auxiliary

field Aµ.

We need to evaluate the two diagrams shown in Fig. (4.7). The first diagram

Figure 4.7: One loop diagrams that contribute to the photon kinetic term.

comes from bosons nl. In much the same way as in the non-supersymmetric CP(N − 1)

model it produces a kinetic term for the photon in the Lagrangian,

1

4e2
F 2
kl , (4.4.7)
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where at large L the expression for the charge e2 is given by

1

e2
≈ N

12πΛ2
. (4.4.8)

This makes U(1) gauge field dynamical [26]. In the non-supersymmetric model this

leads to confinement of electric charges. The reason is that the static Coulomb potential

in two dimensions is linear and ensures that the charged nl states are linearly confined

in the non-supersymmetric model [26]. Similar Coulomb/confining phase occurs in

the compactified non-supersymmetric CP(N − 1) model at large L (see Chapter 3).

Confinement of nl states can be interpreted as a small split between quasivacua involved

in the θ-angle evolution [35, 18]. In this picture the nl states are interpreted as kinks

interpolating between true vacuum an the first quasivacuum.

On the other hand, in our N = (0, 2) theory we have also the second diagram coming

from massless fermions. It produces a mass term for the photon

V (A1) =
N

2π

(
A1 −

π

L

)2
. (4.4.9)

Evaluation of the coefficient N/2π is presented in Appendix E. This term is a manifes-

tation of the chiral anomaly and appears in much the same way as in the Schwinger

model.

Therefore, the photon obtains a mass

mγ ≈
√

12Λ . (4.4.10)

The photon mass ensures the exponential fall-off of the electric potential between

charged sources. Thus, there is no confinement in the σ = 0 phase of our (0,2) su-

persymmetric CP(N − 1) model.

This ensures the absence of fine vacuum structure with split quasivacua. In fact

there is no θ dependence in the theory with massless fermions, and the argument of [35]

does not apply. We have a single vacuum with the unbroken Z2N symmetry and no

family of quasivacua in the σ = 0 phase (i.e. phase III in Fig. 1). This is a new phase

in the CP(N − 1) model which was not known before.
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4.5 Would be broken SU(N) phase

Now let us consider the region of small L. At small L the theory enters a weak coupling

regime so we expect the emergence of the classical picture in the limit N →∞. Classi-

cally CP(N − 1) model has 2(N − 1) massless states which can be viewed as Goldstone

states of the broken SU(N) symmetry. To study this possibility much in the same way

as in [44] we assume that one component of the field nl, say n1 ≡ n can develop VEV

and we integrate over all other components of nl in the external fields n, σ D and A1.

However now in order not to break supersymmetry by the boundary conditions we have

to leave out one component of ξ fields as well. Due to the constraint (4.1.5) we can

choose these components to be ξNL,R ≡ ξL,R. The expression for the energy is

E =
LN

4π

[
iD − iD ln

m2
b

Λ2
−m2

f ln
m2
b

m2
f

+m2
fu

+ 8m2
f

∞∑
k=1

K1(Lmfk)

Lmfk
cos(kLA1)− 8m2

b

∞∑
k=1

K1(Lmbk)

Lmbk
cos(kLA1)

]

+ L
[
(m2

b +A2
1)|n|2 + i

√
2σξ̄RξL + i

√
2σ?ξ̄LξR

]
+ iξ̄LξLLA1 − iξ̄RξRLA1

+ N

[√
m2
f +A2

1 −
√
m2
b +A2

1

]
, (4.5.1)

where the first two lines are the same as in (4.2.1), the third and fourth lines correspond

to components which we left out of integration, and the last line gives the contribution

due to omission of the zero modes.
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4.5.1 Saddle point approximation

Proceeding as in the SU(N) symmetric case we obtain the following set equations that

defines a stationary point

0 = (m2
b +A2

1)n , (4.5.2)

0 =
√

2σξL − ξRA1 = σ?ξR + ξLA1 , (4.5.3)

|n|2 =
N

L

[ 1

2
√
m2
b +A2

1

+
L

4π
ln
m2
b

Λ2
− L

π

∞∑
k=1

K0(Lmbk) cos(kLA1)
]
, (4.5.4)

0 = N
[2Lmb

π

∞∑
k=1

K1(Lmbk) sin(kLA1)−
2Lmf

π

∞∑
k=1

K1(Lmfk) sin(kLA1),

− A1√
m2
b +A2

1

+
A1√

m2
f +A2

1

]
+ 2LA1|n|2 + iLξ̄LξL − iLξ̄RξR (4.5.5)

0 = Li
√

2ξ̄LξR + 2σ
[
L|n|2 +N

(
− 1

2
√
m2
b +A2

1

+
1

2
√
m2
f +A2

1

+
L

π

∞∑
k=1

K0(Lmbk) cos(kLA1)− L

π

∞∑
k=1

K0(Lmfk) cos(kLA1)
)
,

+
LN

4π

(
u− ln

m2
b

m2
f

)]
. (4.5.6)

From (4.5.2) we conclude that mb = A1 = 0. Then (4.5.5) does not have a solution

unless σ = 0. We also see that ξ̄L,R = ξL,R = 0 satisfies the above system of equations.

We find that nl field develops a vacuum expectation value

|n|2 =
N

2π

(
ln

4π

ΛL
− γ
)
, (4.5.7)

which implies in turn that this solution exists only for ΛL ≤ 7.05. The energy is found

to be zero as in the supersymmetric case, see phase I in Fig. (1).

This phase is similar to the dynamical regime we found previously in the non-

supersymmetric CP(N − 1) model in Chapter (3). In particular, the VEV of nl breaks

global SU(N) symmetry implying the presence of 2(N − 1) real massless degrees of

freedom. As we already mentioned the dynamics of the CP(N − 1) model in this phase
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is determined by quasiclassical approximation in the action (4.1.1). At small L the

theory is at weak coupling because the inverse coupling constant r is determined by

r =
N

2π
log

1

LΛ
. (4.5.8)

The constant r grows large at small L.

However, we do not expect exactly massless modes to appear in 1 + 1 dimensions

because of Mermin-Wagner-Coleman’s theorem [51, 39]. We found the above solution

in the leading order in 1/N . It holds only in the limit N = ∞. Thus, we should

expect higher order corrections to modify the result. In particular, the would-be Gold-

stone massless modes may acquire small masses suppressed in the large N limit. As a

consequence the energy might be uplifted from zero.

The solution that we found is completely u-independent. Thus we expect that the

vacuum energy in the would be broken phase is given by Ebr which is independent on

u and suppressed at large N .

4.6 Quantum mechanics at small L:

u→ 0 limit

Now we have to study the limit u → 0 at small L where the theory should match

the N = (2, 2) CP(N − 1) model which has a single SU(N) symmetric (Z2N broken)

phase with the mass gap independent of L. Clearly the would be broken SU(N) phase

cannot explain this limit because it is u-independent. Our analysis in this section has

a qualitative nature. As we have already seen, for the case of large L the transition

occurs at uN2 ∼ 1 where the large-N approximation strictly speaking is not applicable.

Below we argue that the SU(N) symmetric phase reappear again when we go to the

limit of extremely small u keeping L small, L � 1/Λ. Assuming that both Lmb,f � 1

in this phase we use (D.13) to find the expression for the potential valid for LA1 close

to π

V (Ã1) ≈ NL2

π
Ã2

1

(
m2
b −m2

f

)
S2 , (4.6.1)

where Ã1 ≡ A1 − π/L. By analogy with (4.4.1) one can find the expression for the

bosonic mass

(Lmb)
2S2 ≈ S1 + γ − ln

4π

ΛL
. (4.6.2)
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Thus the expression for the potential is given by

V (Ã1) ≈ Nu

2π
Ã2

1 , (4.6.3)

Hence, as u gets smaller the potential becomes weaker and flatter. When LA1 gets close

to 0 or 2π the above expression becomes invalid. The results of numerical calculations

are given in Fig. (4.8). Two curves correspond to two values of deformation parameter

u = 0.05 and u = 0.1 (dashed curve). One can see that the expression we derived is

in a good agreement with numerical results. As u gets smaller the amplitude of the

potential also decreases.

1 2 3 4 5 6 LA1

0.1

0.1

0.2

0.3

V1

Figure 4.8: Dependence of potential V̄1 ≡
πL2

2N
V on the deformation parameter u.

We see that in the limit u → 0 the potential V (Ã1) becomes flat and we have to

average over A1 (instead of taking the saddle point value A1 = π/L) in much the similar

way as we did in Sec. 4.3.1 for the region of large L. The averaging procedure gives us

N = (2, 2) limit.

More exactly the vacuum energy in SU(N) symmetric phase at extremely small u is

given by

Esym ≈
uN

4π
Λ2 L . (4.6.4)

Comparing this with the vacuum energy Ebr in the would be broken SU(N) phase

which is independent of u we see that at very small critical uc ∼ 1/N2, the energy in

the SU(N) unbroken phase becomes lower then that in the SU(N) broken phase, and
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the system undergoes a phase transition into SU(N) symmetric phase, see Fig. 1. The

SU(N) symmetric phase has a perfectly smooth u→ 0 limit.



Chapter 5

Conclusion and Discussion

In Chapter 2 we discussed the theory supporting strings with extra (rotational) moduli

on the string world sheet. Our numerical analysis demonstrates that it is not diffi-

cult to endow the ANO string with such moduli following a strategy similar to that

used by Witten in constructing cosmic strings. Our discussion was carried out in the

quasiclassical approximation.

When the bulk model is deformed by a spin-orbit interaction a number of entangled

terms emerge on the string world sheet. Quantum effects on the string world sheet

(which can be made arbitrarily small with a judicious choice of parameters) is a subject

of a separate study.

We also found numerical solutions for the profile functions and calculated the ten-

sions of two distinct (but degenerate) strings. This proves the possibility of coexistence

of the ANO and non-Abelian degenerate strings in one and the same model simulta-

neously. The classical degeneracy is not protected against quantum corrections. The

obvious next step is to supersymmetrize the model to see whether or not one can have

the two strings BPS-saturated. Then the degeneracy will be preserved in higher orders.

Another interesting project is to slightly change the parameters of the model to make

the two strings slightly non-degenerate, with the aim of calculating the decay rate of

the heavier string into the lighter one.

In Chapter 3 we studied two-dimensional CP(N−1) model (both nonsupersymmetric

and N = (2, 2)) compactified on a cylinder with circumference L (periodic boundary

conditions). We found the large-N solution for any value of L and discussed in detail

64
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the large-L and small-L limits.

A drastic difference is detected in passing from the nonsupersymmetric to N = (2, 2)

supersymmetric case. In the former case in the large-N limit we observe a phase tran-

sition at L ∼ Λ−1
CP (which is expected to become a rapid crossover at finite N). At

large L the CP(N − 1) model develops a mass gap and is in the Coulomb/confinement

phase, with exponentially suppressed finite-L effects. At small L it is in the deconfine-

ment phase; the orientational modes contribute to the Lüsher term. The latter becomes

dependent on the rank of the bulk gauge group.

In the supersymmetric CP(N − 1) model we have a different picture. Our large-N

solution exhibits a single phase independently of the value of LΛCP. For any value of

this parameter a mass gap develops and supersymmetry remains unbroken. So does the

SU(N) symmetry of the target space (i.e. it is restored). The mass gap turns out to be

independent of the string length. The Lüscher term is absent due to supersymmetry.

In Chapter 4 we studied heterotic N = (0, 2) CP(N − 1) model and found three

different phases, see Fig. 1. At large L and intermediate values of the deformation

parameter u there is a phase (IV) with a mass gap, N vacua and broken discrete Z2N

symmetry. As we increase u a reach a critical value (which grows with L) we find a phase

transition to the Z2N symmetric phase (III), with a unique vacuum. The line separating

these two SU(N) symmetric phases is a line of a third order phase transitions in the

large N limit.

As the string under consideration gets shorter we find a phase transition to a phase

with the would be broken SU(N) symmetry (phase II). In this phase we expect masses

of the n fields to be much smaller than in two SU(N) symmetric phases. In fact,

at N = ∞ they vanish. At small L and extremely small u we expect another phase

transition from the would be broken SU(N) phase into the SU(N) unbroken phase (I)

which has a smooth u→ 0 limit.

Strictly speaking, our description of the underlying dynamics in terms of the phase

transitions is valid only at N =∞. At large but finite N one can expect that all phase

transitions become rapid crossovers.
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Appendix A

Calculation of Zeta function

We define the zeta function of an operator Ω as follows:

ζ(s) = Tr Ω−s . (A.1)

The operator of interest is given in Eq. (3.2.3),

Ω = −(∂k − iAk)2 +m2 , (A.2)

where instead of ω we write m2. In the A1 = 0 gauge the expression for the zeta function

takes the form

ζ(s) =
T̂

2π

∞∑
k=−∞

∫ ∞
−∞

dq1

(
q2

1 +

(
2πk

L
+A0

)2

+m2

)−s
. (A.3)

Gauge invariance requires invariance under transformation A0 → A0 + 2πk0/L, where

k0 is integer. This is manifest in (A.3) since the shift can be absorbed in the sum. We

always can look for a solution for A0 in the interval |A0| < π/L, say A0 = 0.

To evaluate the expression in (A.3) we will need the following identities

Γ(Z) =

∫ ∞
0

dt tz−1 e−t , (A.4)

∫ ∞
0

dx(x2)(α−1)/2(x2 +A2)β−1 =
1

2
(A2)β−1+α/2B(α/2, 1− β − α/2) ,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (A.5)
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The definition of the modified Bessel functions of second kind is∫ ∞
0

dxxν−1 exp
(
−a
x
− bx

)
= 2

(a
b

)ν/2
Kν

(
2
√
ab
)
. (A.6)

The definition of the theta function (see Chapter 21 of [52]) is

Θ3(x, τ) =
∞∑

k=−∞
qk

2
e2πix = 1 + 2

∞∑
k=1

qk
2

cos 2kx , q = eπiτ , (A.7)

Its Jacobi transformation is

Θ3(x, τ) = (−iτ)−1/2 exp

(
x2

iπτ

)
Θ3(x/τ,−1/τ) . (A.8)

The evaluation of the zeta function, Eq. (A.3), proceeds as follows:

ζ(s)
(A.5)
=

T̂

2π

Γ(1
2)Γ(s− 1

2)

Γ(s)

∞∑
k=−∞

[(
2πk

L
+A0

)2

+m2

]1/2−s

=
T̂

2π

Γ(1
2)Γ(s− 1

2)

Γ(s)

(
2π

L

)1−2s ∞∑
k=−∞

[(
k +

LA0

2π

)2

+ ε2

]1/2−s

(A.4)
=

T̂

2π

Γ(1
2)Γ(s− 1

2)

Γ(s)

(
2π

L

)1−2s 1

Γ(z)

×
∫ ∞

0
dt tz−1e−tα

2
∞∑

k=−∞
e−k

2t−kβ2t

(A.7)
=

T̂

2π

Γ(1
2)Γ(s− 1

2)

Γ(s)

(
2π

L

)1−2s 1

Γ(z)

×
∫ ∞

0
dt tz−1e−tα

2
Θ3

(
iβ2t

2
,
it

π

)
(A.8),(A.7)

= F

√
π

Γ(z)

∫ ∞
0

dt tz−3/2e−tα
2+β4t/4

(
1 + 2

∞∑
k=1

e−
k2π2

t cosπkβ2

)

(A.6)
= F

√
π

Γ(z)

(
1

G2

)z− 1
2
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×

(
Γ(z − 1

2
) + 4

∞∑
k=1

(πkG)z−
1
2Kz− 1

2
(2πkG) cosπkβ2

)

(A.6)
=

T̂L

4π

1

m2s−2

[
1

s− 1

+
4

Γ(s)

∞∑
k=1

(
Lmk

2

)s−1

Ks−1(Lmk) cosLA0k

]
, (A.9)

where we introduced intermediate notations

ε =
Lm

2π
, z = s− 1

2
, F =

T̂

2π

Γ(1
2)Γ(s− 1

2)

Γ(s)

(
2π

L

)1−2s

, (A.10)

and

α2 =

(
LA0

2π

)2

+

(
Lm

2π

)2

, β2 =
LA0

π
, G2 = α2 − β4/4 . (A.11)

To find the derivative of the zeta function we will make use of the following properties

of Euler’s Γ function:

Γ(z + 1) = zΓ(z) , Γ(0) =∞ . (A.12)

The derivative is evaluated as follows:

ζ ′(s) =
T̂L

4π

[
− 1

m2s−2

1

(s− 1)2
− 2 lnm

m2s−2(s− 1)

− 4Γ′(s)

Γ2(s)m2s−2

∞∑
n=1

(
Lmk

2

)s−1

Ks−1(Lmk) cosLA0k

]∣∣∣∣∣
s=0

=
T̂Lm2

4π

[
−1 + lnm2 + 8

∞∑
k=1

K1(kLm)

kLm
cosLA0k

]
(A.13)

Following [40] we can write the generating functional,

lnZ =
1

2
ζ ′(0) +

1

2
lnµ2ζ(0) , (A.14)

where a normalization constant µ has dimension of mass. Renormalizability requires

µ = Muv .
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Thus, in terms of the zeta function and its derivative the expression for the effective

potential becomes

V = −N
T̂

(
ζ ′(0) + ζ(0) lnM2

uv

)
− N

4π
Lm2 ln

M2
uv

Λ2
. (A.15)

Substituting the expressions for the zeta function and its derivative we obtain

V =
NLω

4π

[
1− ln

ω

Λ2
CP

− 8

∞∑
k=1

K1(kL
√
ω)

kL
√
ω

cos kLA0

]
, (A.16)

where we replaced m2 by ω.



Appendix B

Kinetic term in case of bosonic

theory

To find the U(1) charge of the nl fields one has to consider only the second diagram in

Fig. (3.1). The first diagram is needed only for renormalization. The relevant part of

the action written in the Minkowski spacetime takes the form

iSMB = i

∫
d2x

[
∇µn̄l∇µnl −m2|n|2

]
= i

∫
d2x

[
∂µn̄l∂

µnl −m2|n|2 + iAµ(n̄l
←→
∂ µn

l) +A2|n|2
]
, (B.1)

where
←→
∂ µ =

−→
∂ µ −

←−
∂ µ . We then pass to Euclidean space,

t = −iτ , A0 = iÂ0 , Ai = Âi .

The action in Euclidean space is

SEB =

∫
d2x̂

[
∂kn̄l∂knl +m2|n|2 + iÂk(n̄l

←→
∂ kn

l) + Â2|n|2
]
. (B.2)

Now we can determine the Feynman rules. The results are shown in Fig. (B.1).

Thus for the kinetic term (in the case of an infinitely long string) one can write

Πij = N

∫
d2q

(2π)2

(pi + 2qi)(pj + 2qj)

(m2 + q2)(m2 + (p+ q)2)
. (B.3)

Introducing the Feynman parameter to combine the denominators

1

α(α+ β)
=

∫ 1

0
dx

1

(xβ + α)2
, (B.4)
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Figure B.1: Feynman rules: vertex and the propagator of nl field.

and substituting l = q + px in Eq. (B.3) we arrive at

Πij = N

∫
d2l dx

(2π)2

[
pipj(1− 2x)2 − 2x(pilj + pjli) + 4lilj

]
(l2 +m2 + p2x(1− x))2

. (B.5)

Terms linear in l vanish. To find the U(1) charge we only need to consider the pipj

structure. Thus, the expression for the charge is

1

Ne2
=

∫
d2l dx

(2π)2

(1− 2x)2

(l2 +m2 + p2x(1− x))2
=

∫ 1

0

dx

4π

(1− 2x)2

m2 + p2x(1− x)
. (B.6)

Expanding the last expression to the zeroth power in p one finally finds

1

Ne2
=

∫ 1

0

dx

4πm2
(1− 2x)2 =

1

12πm2
. (B.7)

The case of the finite length string is considered along similar lines. We recall (see

[36]) that the limit pµ → 0 is understood as first putting p0 = 0 and then letting p1

go continuously to zero. As a result, only Π00 6= 0. Using the Feynman rules one can

derive the following expression:

Π00 =
N

L

∞∑
k=−∞

∫
dq

2π

4ω2
k

(m2 + q2 + ω2
k)(m

2 + (p+ q)2 + ω2
k)
, (B.8)

where we defined ωk = 2πk/L. Introducing again the Feynman parameter and making

the same substitution one arrives at

Π00 =

∞∑
k=−∞

Nω2
k

L

∫ 1

0

dx

(m2 + ω2
k + p2x(1− x))3/2

. (B.9)
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We expand this expression and keep only the leading power in p. Then the expression

for the charge becomes

1

Ne2
=

1

4L

[ ∞∑
k=−∞

(m2 + ω2
k)
−3/2 −m2

∞∑
k=−∞

(m2 + ω2
k)
−5/2

]

=
L2

32π3

[ ∞∑
k=−∞

(k2 + α2)−3/2 − α2
∞∑

k=−∞
(k2 + α2)−5/2

]
, (B.10)

where α = Lm/2π. We deal with these sums as follows:

S1(z, α) ≡
∞∑

k=−∞
(k2 + α2)−z

(A.4)
=

1

Γ(z)

∫ ∞
0

dt tz−1e−tα
2
∞∑

k=−∞
e−k

2t

(A.7)
=

1

Γ(z)

∫ ∞
0

dt tz−1e−tα
2
Θ3(0, it/π)

(A.8)
=

√
π

Γ(z)

∫ ∞
0

dt tz−1e−tα
2
Θ3(0,−π/it)

(A.6)
=

√
π

Γ(z)

[
Γ(z − 1

2)

α2z−1
+ 4

∞∑
k=1

(
kπ

α

)z− 1
2

Kz− 1
2
(2kπα)

]
. (B.11)

Thus the expression for the charge can be written as

1

Ne2
=

1

4L

(
L

2π

)3 [
S1(3/2, α)− α2S1(5/2, α)

]
=

1

12πm2
+

L

2πm

∞∑
k=1

K1(kLm) k − L2

6π

∞∑
k=1

K2(kLm) k2. (B.12)

In the limit Lm� 1 the contributions from the modified Bessel functions are exponen-

tially small and thus the expression for the charge reduces to that for the infinitely long

string.



Appendix C

Kinetic term in the

supersymmetric case

In Appendix B we calculated the first diagram (the boson part) in Fig. 3.6. Now we

will calculate the second diagram (the fermion part). The relevant part of the fermion

action in the Minkowski spacetime is

iSMF = i

∫
d2x

{
ξ̄ iγµ∇µ ξ − i

√
2σξ̄

(
1− γ5

2

)
ξ

+ i
√

2σ∗ξ̄

(
1 + γ5

2

)
ξ

}
, (C.1)

where ∇µ = ∂µ − iAµ is the covariant derivative, and the γ matrices are defined as

γ0 =

(
0 −i
i 0

)
, γ1 =

(
0 i

i 0

)
, γ5 =

(
1 0

0 −1

)
.

We pass to Euclidean space,

t = −iτ , A0 = iÂ0 , Ai = Âi , γ̂0 = γ0 , γ̂1 = −iγ1 , γ̂5 = γ5 ,

and, since in Euclidean formulation ξ and ξ̄ are independent, we define

ξ̂ = ξ , ˆ̄ξ = iξ̄ .
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Thus, the action in Euclidean space can be presented as follows:

SEF = −
∫
d2x̂

[
ˆ̄ξ iγ̂k∂̂k ξ̂ + ˆ̄ξ γ̂kÂk ξ̂

−
√

2σ ˆ̄ξ

(
1− γ̂5

2

)
ξ̂ +
√

2σ∗ ˆ̄ξ

(
1 + γ̂5

2

)
ξ̂

]
. (C.2)

Examining this expression in components one can find that it matches that of (3.5.2).

Since from now on all calculations will be carried out in Euclidean space we will drop

the caret notation. Using (C.2) we find the Feynman rules that are shown in Fig. (C.1),

where we introduced a notation σ = a+ ib and the mass is m2 = 2a2 + 2b2.

Figure C.1: Feynman rules: vertex and the propagator of ξl field.

We begin from the case of the infinitely long string. The fermion contribution to

the kinetic term is

Πij = −
∫

d2q

(2π)2

1

(q2 +m2)[(p+ q)2 +m2]

× Tr
[
γi(/q + i

√
2b+

√
2aγ5)γj(/p+ /q + i

√
2b+

√
2aγ5)

]
. (C.3)

The Clifford algebra is, as usual,

{γiγj} = 2δij . (C.4)
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As a result, the trace identities for the γ matrices become

Tr(γiγj) = 2δij ,

Tr(γiγjγkγl) = 2δijδkl − 2δikδjl + 2δilδjk ,

Tr(odd number of γ’s) = 0 . (C.5)

Thus, the expression for the kinetic term takes the form

Πij = −
∫

d2q

(2π)2

Tr[γi/qγj(/p+ /q)−m2γiγj ]

(q2 +m2)[(p+ q)2 +m2]

= −
∫

d2q

(2π)2

1

(q2 +m2)[(p+ q)2 +m2]

× [2qi(p+ q)j + 2qj(p+ q)i − 2q(̇p+ q)δij − 2m2δij ] . (C.6)

Notice, that generally speaking Tr(γiγjγ5) 6= 0 in two dimensions. However, we find

that both such contributions cancel each other.

We proceed as in the bosonic theory, introducing the Feynman parameter and mak-

ing the same substitution. Linear terms drop out, as usual. Furthermore, considering

only pipj structure we obtain

Πij
F = pipj

∫
d2ldx

(2π)2

1− (1− 2x)2

(l2 +m2 + p2x(1− x))2

= pipj
∫ 1

0

dx

4π

1− (1− 2x)2

m2 + p2x(1− x)
. (C.7)

Expanding to zeroth order in p we find fermion contribution to e2 ,

1

Ne2
F

=
1

6πm2
. (C.8)

Combining this with the result we obtained in the boson theory, we finally arrive at

1

Ne2
=

1

4πm2
. (C.9)

In the case of the finite length string the starting expression (C.6) is modified

Πij = − 1

L

∞∑
k=−∞

∫
dq

2π

1

(q2 +m2)[(p+ q)2 +m2]

× [2qi(p+ q)j + 2qj(p+ q)i − 2q(̇p+ q)δij − 2m2δij ] . (C.10)
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Again, just as in the boson theory we consider Π00. After we make the same substitution

and introduce the Feynman parameter we obtain

Π00 =
m2

L

∞∑
k=−∞

∫ 1

0

dx

(p2x(1− x) +m2 + ω2
k)

3/2
. (C.11)

Then we expand this expression and keep only the first nonvanishing power in p. Thus,

fermionic contribution to the charge is

1

Ne2
F

=
m2

4L

∞∑
k=−∞

(m2 + ω2
k)
−5/2 (C.12)

Summarizing, we obtained a sum identical to that in (B.10). Therefore, their eval-

uation is identical too. Combining the result found in this Appendix with that of the

boson theory, we obtain for the charge

1

Ne2
=

1

4πm2
+

L

2πm

∞∑
k=1

K1(Lmk)k . (C.13)



Appendix D

Relations for modified Bessel

functions

In this Appendix we derive all the relations for the sums of modified Bessel functions

of the second kind used in the text. We will use the following asymptotic behavior

K1(z)→ 1

z
as z → 0 , (D.1)

as well as the properties of derivatives

K0(z)′ = −K1(z) and K ′1(z) = −K0(z)− K1(z)

z
, (D.2)

and the following approximations, valid to order O(y2, z2) (see formula 8.526 in [42])

∞∑
k=1

K0(zk) cos(yk) =
γ

2
+

1

2
ln

z

4π
+

π

2
√
z2 + y2

+ S0(2y2 − z2) + δ0 ,

∞∑
k=1

K0(zk)(−1)k cos(yk) =
γ

2
+

1

2
ln

z

4π
+
S1

2
+
S2

2
(2y2 − z2) + δ1 , (D.3)

where δ0,1 ∼ y2z2 and we defined the sums

S0 =

∞∑
l=1

π

(2πl)3
≈ 0.015 , S1 =

∞∑
l=1

1

l(2l − 1)
≈ 1.386 ,

S2 =

∞∑
l=1

1

π2(2l − 1)3
≈ 0.107 . (D.4)
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To find the sum involving cosine we notice that on one hand

d

dz

(
z
∞∑
k=1

K1(zk)

k
cos(yk)

)
= −z

∞∑
k=1

K0(zk) cos(yk) , (D.5)

and on the other hand

d

dy

( ∞∑
k=1

K1(zk)

k
cos(yk)

)
= −

∞∑
k=1

K1(zk) sin(yk) , (D.6)

moreover the following relation also holds

d

dz

( ∞∑
k=1

K0(zk) cos(yk)

)
= − d

dy

( ∞∑
k=1

K1(zk) sin(yk)

)
, (D.7)

where we used (D.2) several times.

First using (D.5) and the expansion from (D.3) we find to order O(y2, z2)

∞∑
k=1

K1(zk)

k
cos(yk) ≈ −π

√
z2 + y2

2z
− z(2γ − 1)

8
− z

4
ln

z

4π

− S0zy
2 +

f1(y)

z
(D.8)

where f1(y) depends on y.

Now using (D.7) and approximation (D.3) we find that

∞∑
k=1

K1(zk) sin(yk) ≈ πy

2z
√
z2 + y2

− y

2z
+ 2S0zy + f2(z) , (D.9)

where f2(z) is a function which depends on z. Since LHS vanishes when y = 0 and

z 6= 0 we conclude that f2(z) = 0. Now from (D.6) we find that

∞∑
k=1

K1(zk)

k
cos(yk) ≈ −π

√
z2 + y2

2z
+
y2

4z
− S0zy

2 + f3(z) , (D.10)

where f3(z) depends on z.

To fix f1(y) and f3(z) we use the property (D.1) and find that

∞∑
k=1

K1(zk)

k
cos(yk)→

∞∑
k=1

cos(yk)

zk2
=

1

z

(
y2

4
− πy

2
+
π2

6

)
. (D.11)
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Thus we conclude that

∞∑
k=1

K1(zk)

k
cos(yk) ≈ −π

√
z2 + y2

2z
+
y2

4z
+
π2

6z
− S0zy

2

− z(2γ − 1)

8
− z

4
ln

z

4π
. (D.12)

In a similar way we find that

∞∑
k=1

K1(zk)

k
(−1)k cos(yk) ≈ −z(2S1 + 2γ − 1)

8
− z

4
ln

z

4π

− π2

12z
+
y2

4z
− S2

2
zy2 . (D.13)



Appendix E

Photon mass

In this Appendix we derive an expression for the photon mass. Due to gauge invariance

both the diagrams in Fig. (4.7) have to be of the form

Πij = Π(p2)
(
p2δij − pipj

)
. (E.1)

Below we show that for the second diagram Π(p2) has a pole which means that photons

acquire mass. We put p1 = 0 and evaluate Π11:

Π11 = − 1

L

[ ∞∑
k=−∞

∫ ∞
−∞

dq0

2π

2q2
1 − 2q0(p0 + q0)− 2m2

1

(q2
0 + q2

1 +m2
1)(p2

0 + 2p0q0 + q2
0 + q2

1 +m2
1)

− [m1 ↔ m2]
]
, (E.2)

where m1 is the fermion mass, which we put to zero at the end, m2 is the mass of

Pauli-Villars regulator, and q1 is a discrete momentum

q1 =
2πk

L
+A1 =

π

L
(2k + 1) . (E.3)

We introduce Feynman parameter x and substitute integration variable q0 = l − p0x

Π11 = − 1

L

[ ∞∑
k=−∞

∫ ∞
−∞

∫ 1

0

dldx

2π

2q2
1 − 2m2

1 + 2p2
0x(1− x)− 2l2

[l2 +m2
1 + q2

1 + xp2
0 − x2p2

0]2
− [m1 ↔ m2]

]
, (E.4)

where terms linear in l drop out. Integrating over l one finds

Π11 =
1

L

[ ∞∑
k=−∞

∫ 1

0
dx

m2
1

[m2
1 + q2

1 + xp2
0 − x2p2

0]3/2
− [m1 ↔ m2]

]
, (E.5)
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and since m1 = 0 the first term vanishes and only the contribution from the regulator

remains. To integrate over x we use third Euler’s substitution√
−p2

0x
2 + p2

0x+m2 + q2
1 =

√
−p2

0(x− x1)(x− x2) = t(x− x1) . (E.6)

One can easily check that neither of the roots belong to the interval x ∈ [0, 1] and thus

this substitution is justified. After integration we obtain the following sum

Π11 = − 1

L

∞∑
k=−∞

m2
2

(q2
1 +m2

2 +
p20
4 )
√
q2

1 +m2
2

≈ − 1

L

∞∑
k=−∞

m2
2

(q2
1 +m2

2)3/2
, (E.7)

where we ignore p0 compared to m2. Evaluating this sum (see Appendix B) we finally

obtain (setting m2 →∞)

Π11 = − 1

π
, (E.8)

which tells us that Π(p2) indeed contains a pole

Π(p2) = − 1

πp2
(E.9)

and the photon becomes massive.
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