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Abstract

In this thesis we investigate two aspects of quantum information processing with
continuous variables in networks. Quantum physics is currently undergoing its
second revolution, in which the unique properties of quantum superpositions and
non-classical entanglement are harnessed and engineered to improve technologies
across a wide range of fields. One particular area of interest is the connection
of different quantum devices across a shared network, where the scale can range
from a single room to the size of a university or company campus. An obvious
choice of channels for networks of this size is optical fibers and so the faithful
transfer of quantum states of light across the channels of the network becomes
an integral challenge.

Firstly, we generate a continuous variable non-Gaussian state, namely the single
photon subtracted squeezed vacuum state (1-PSSqV), and use it as a probe of
the transmission efficiency across three different network channels. For the first
channel, a 1m single mode fiber (SMF) on the same optical table of the state
generation setup, we measure a Wigner negativities of —0.206 & 0.0017 of the
received state. For the second channel, a 60 m SMF connection between the
state generation lab and an adjacent lab, we measure —0.104 + 0.0017. For the
third channel, a 400 m connection across 3 nodes of the DTU campus fiber-
optic network to a separate building, we unfortunately could not measure any
Wigner negativity. Here the main problem was optical loss of the channel. The
presence of Wigner negativity confirms the survival of the highly non-classical
correlations of the transmitted state.

Secondly, we implement a sensing protocol on a small on-table free-space net-
work consisting of four nodes. In the protocol a continuous variable multi-partite
entangled state is used to measure the average of individual phase shifts at each
node. Here we show an increased sensitivity to the phase shift, as a ~ 20%
reduction in the root-mean-square estimation error, compared to the sensitivity
possible for any measurement protocol not using an entangled probe state.






Resumeé

I denne afhandling undersgger vi to aspekter af kvanteinformations behandling
med kontinuerlige variable i netvaerk. Kvantefysik gennemgar i gjeblikket sin an-
den revolution, hvor de unikke egenskaber ved kvantemekanisk superposition og
ikke-klassisk sammenfiltring udnyttes og controlleres til at forbedre teknologier
pa tveers af en lang raekke felter. Et seerligt interessant omrade er forbindelsen
mellem forskellige kvanteenheder pa tveers af et feelles netvaerk, hvor stgrrelsen
kan veere fra et enkelt rum til et universitet eller en virksomhedscampus. Et
abenlyst valg af kanaler til et netvaerk af denne stgrrelse er optiske fibre, hvorved
palidelig overfgrsel af kvantetilstande i laserlys over netvaerkets kanaler bliver
en central udfordring.

Forst, genererer vi en kontinuerlig variabel ikke-Gaussisk tilstand, navnlig den
enkelt fotonfratrukket klemte vakuumtilstand og bruger den som en sonde for
transmissionseffektiviteten pa tvaers af tre forskellige netvaerkskanaler. For den
forste kanal, en 1m single-mode optisk fiber (SMF) placeret pa det samme op-
tiske bord som tilstandsgenerationsopsatningen, maler vi en Wigner-negativitet
pa —0.206 £+ 0.0017 af den modtagne tilstand. For den anden kanal, en 60 m
SMF-forbindelse mellem tilstandsgenerationslaboratoriet og et tilstgdende lab-
oratorie, maler vi —0.104 + 0.0017. For den tredje kanal, en 400 m forbindelse
pa tvaers af 3 krydsnoder i DTU campus fiberoptiske netveaerk til en separat
bygning, kunne vi desveerre ikke male nogen Wigner-negativitet. Problemet var
her hovedesageligt optisk tab undervejs. Tilstedeveaerelsen af Wigner-negativitet
bekraefter overlevelsen af de steerke ikke-klassiske korrelationer i den transmit-
terede tilstand.

Efter, implementerer vi en maleprotokol pa et lille bordbegraenset fritlufts netvaerk
bestaende af fire knudepunkter. I protokollen anvendes en kontinuerligt variabel
flerdelt sammenfiltret sondetilstand til at male gennemsnittet af individuelle
faseforskydninger ved hvert knudepunkt. Her viser vi en gget fglsomhed over for
faseforskydningen, som en ~ 20% reduktion i rod-middel-kvadrat méleafvigelsen,
sammenlignet med den fglsomhed der er mulig for enhver maleprotokol der ikke
bruger en sammenfiltret sondetilstand.
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CHAPTER 1

Introduction

When the first few bits of data were transmitted between the computers at the
University of California and Stanford Research Institute in 1969, on a precursor
network to today’s internet, it is not hard to imagine that the researchers in-
volved never could have dreamed of the endless possibilities this technology one
day would allow. Similarly it is doubtful that Bardeen, Brattain and Shockley
could have fully grasped the potential of their invention and the scope of the
ensuring digital revolution. What might seem like fundamental research today,
far removed from any practical importance, can in time prove to lay the foun-
dation of technical advances of great importance. It is in this fog of possible
direction to pursue, not knowing which direction is correct (if any direction will
turn out to be?), that much of current quantum information research plays out.

The first quantum revolution was a revolution of atomic and subatomic physics,
which among many things leads to the aforementioned invention of the tran-
sistor, which in turn lead to the construction of the computers at UCLA and
SRI and to the internet. We are now in the middle of the second quantum
revolution. Its beginning was marked by the application of quantum mechanics
to information theory and is now concerned with the application of this new
theory to the development of new and improved technology. These efforts can
be divided into three distinct, but interlinked fields, as exemplified by the pillars
of the ongoing European Quantum Flagship program [1]; Quantum Computing
/ Simulation, Quantum Communication and Quantum Sensing / Metrology. It



2 Introduction

is believed that all of these fields will see technology improved by quantum me-
chanics in the coming decades [2].

A central concept in the development of such improved technologies is the
threshold, called quantum advantage, at which a quantum improved technol-
ogy does something (anything) that a similar technology based on classical
physics can not do. This threshold was claimed passed last year by Google
in the context of quantum computation [3], where they showed that using a 53
qubit processor they could sample distributions of the 253 dimensional compu-
tation state space exponentially faster than the best known classical algorithms,
though their claim was later refuted by IBM [4]. Recently quantum advantage
as also been demonstrated for quantum communication [5] and metrology proto-
cols [6]. While these milestones help to strengthen our belief in the course of the
different research direction, they are themselves only stepping stones towards
bigger goals. For quantum communication one such goal is the construction of a
quantum internet. A network capable of transmitting quantum protected clas-
sical information and quantum information encoded in quantum states between
distant parties, as well as entangling them, can be used for all three of the main
quantum information fields [7]. In the context of quantum communication the
obvious candidate for the physical platform on which to build such a network is
optics. The main advantage is that quantum information encoded in the elec-
tromagnetic field readily can be transmitted through free space and, thanks to
the extensive development of telecom technology, through optical fibers.

Tremendous effort has been made in the development of the techniques needed to
realise the long distance connections required of a quantum internet [8]. Without
resorting to satellite relayed connections, the main obstacle here is the inherent
transmission loss of optical fibers and the corresponding primary solution is to
rely on quantum repeaters to overcome the loss [9] [10]. On the other hand,
for short distance networks, the optical losses might be low enough to allow for
direct transmission of simple quantum states. But in a short network it might
be more likely that e.g. two quantum computers or several sensing nodes are
connected and that more fragile highly non-classical states have to be trans-
mitted. In such a scenario a combination of advanced repeater schemes and
error detection and correction codes will eventually be necessary to properly
link the nodes [11]. Networks also play an important role for quantum sensing,
where an increased interested over the last few years has been given to use of
entanglement across network modes as means of improving multi- or distributed
parameter estimation protocols [12-14].

The work of this thesis is towards both of these ends and is divided into two
projects. In the first project we consider, as a first step, the direct transmission
of a continuous variable non-Gaussian state through network channels of various
sizes. The state of choice is the photon subtracted squeezed vacuum state, as it



can be reliably produced and serves well as probe of the limits of direct trans-
mission in such conditions. The preservation of measurable Wigner negativity
after transmission will serve as the overarching goal and require both low opti-
cal loss and stable phase control of the network channel. In the second project
we perform a proof-of-principle experimental realization of a distributed sensing
protocol, in which an entangled probe state is used to measure the average phase
shift of nodes in a small scale network.

The thesis consists of an four main chapters followed by an outlook.

1. Theory Here a basic introduction to continuous variable quantum op-
tics is given with a focus on squeezed light and relevant equations used
through the thesis presented. A model describing the experimental pro-
cedure of creating a 1-PSSqV state is presented together with the theory
of tomographic reconstruction from homodyne measurement data, which
will be used to analyse experimental results. We also provide a quick
walkthrough of the implementation of the maximum likelihood algorithm
for the reconstruction process.

2. Experimental Methods Here we give a detailed description of the ex-
perimental framework for the generation of 1-PSSqV states. We construct
a setup to produce continuous wave squeezed light at 1550 nm via para-
metric down-conversion of a second harmonic field in an OPO cavity. We
then tap a small part of the squeezed vacuum field into a trigger channel
and frequency filter it to select only the central frequency mode of the
OPO output to be measured by a single-photon detector. A click of the
single-photon detector then then heralds the creating of the 1-PSSqV state
in the signal channel. We also describe the different network configurations
the state was transmitted trough.

3. Non-Gaussian State Transmission Here the results of the non-Gaussian
state transmission project are presented. We analyse the results obtained
from three different measurement configurations and compare them to the
results expected from our theoretical mode.

4. Distributed Quantum Sensing Here the results of the distributed sens-
ing project are presented in the form of the published work together with
a short introduction.

5. Outlook Concludes on the presented results of the two projects and dis-
cusses possible paths forwards.
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CHAPTER 2

Continuous Variable
Quantum Optics

In this chapter a basic introduction to continuous variable (CV) quantum optics
is given. In sec. 2.1 the two main representations of a quantum state of light,
the density matrix and the Wigner function, is presented and in sec. 2.2 the
properties and generation of one of the the most basic ingredients in any quan-
tum enhanced optical communication, sensing or computational protocol - the
squeezed vacuum state - is explored. In sec. 2.3.2 a theoretical model describing
an experimentally relevant scheme for producing a non-Gaussian state is derived.
The scheme details how the non-Gaussian operation of single photon detection
can be used to transform a squeezed vacuum state into a non-Gaussian state -
the photon subtracted squeezed vacuum state. Finally in sec. 2.4 the homodyne
detection scheme and its use in quantum state tomography presented.

2.1 Representation of quantum states of light

Quantum mechanics is usually explained as the laws of nature at the atomic
level. For light this picture translates to quantum optics being the laws of elec-
tromagnetism at the single photon level. To unfold them the generic approach
is to quantize the electromagnetic field to obtain the Hamiltonian of a harmonic



6 Continuous Variable Quantum Optics

oscillator, where the electric and magnetic field take on the usual role of position
and momentum. A single mode of the electromagnetic field is then described
by the Hamiltonian

H = hw (aﬂa + 1) (2.1)

where @ and a' are the the non-Hermitian non-commuting annihilation and
creation operators with the commutation [a,a'] = 1, h is Plancks constant and
w the angular frequency of the electromagnetic field. The eigenstate of the
quantum harmonic oscillator H is then called the energy eigenstates or Fock
states |n) and have the eigenvalues E, = hw(n + 1/2), corresponding to the
state |n) consisting of n photons i.e. excitation of the electromagnetic field
mode. From the definition a|n) = v/n|n —1) and a' |n) = v/n +1|n+ 1) the
photon number operator # = a'a also shows this 7 |n) = n|n). For |n = 0) the
state is called the vacuum state or energy ground state corresponding to zero
photons. Curiously the nonzero energy of the ground state Fy = hw/2 is the
first hint the non classical nature of quantum description of light.

2.1.1 Density matrix

The energy eigenstates are conveniently used to span the Hilbert space, as they
form a complete set due to the Hermitity of H. They are then used as the basis
to describe any quantum state by its density matrix

p= Z ki |[vq) (il (2.2)

This basis is called the number state basis or Fock basis. The density matrix
of a pure quantum state |¢) is then written as p = |¢) (10|, where ¢ can be any
superposition of photon number states. The diagonal of the density matrix is
then the photon number distribution pr(n) = p,, of that state, where p,,, =
(m| p|n). Without further introduction we here present the density matrix
representation of the most commonly encountered quantum states as they will
be useful to have at hand for later calculations. Their definition and derivation
can be found in almost any quantum optics text book [15][16].
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State [4) Number state expansion
o0
Vacuum |0) > don |n)
n=0
A~ 7‘()"2 S a™
Coherent | |a) = D(«) |0) e 2 nz::O o= |n)

Q == n e'® tanhr %
Sqz. vac. | [¢) =S(0)[0) | o= Zo (n«/;)!( tanh ) 52 n)

Fock | > Gmn In)
n=0
[eS) 9 on
Odd cat |cat_> \/ﬁ ZO 5£7}L\/7 |TL>
S} 2] "
Even cat |cat+> \/ﬁ Z:O 5([)71 Vol |n>

Table 2.1: Typical optical quantum states and their number state expansion
coefficients

2.1.2 Phase space and the Wigner function

From the annihilation and creation operators we can define quadrature operators
closely resembling the canonical position and momentum operators of a classical
harmonic oscillator

:@:\ﬁ(awa) : p:%(aﬁ-a) (2.3)

Using these quadrature operators the Hamiltonian of the quantum harmonic os-
cillator from eq. 2.1 can be written as H= ’%“ (:%2 + 132). Note that while the an-
nihilation and creation operators were non-Hermitian' the quadrature operators
are and have the commutation relation [Z,p] = ¢ corresponding to them being
conjugate variables and therefore not precisely measurable at the same time.
Instead they must obey the Heisenberg uncertainty principle (AZ2)(Ap?) >
|[£,p]|/4 = 1/4. This can also be seen from that fact that while the quadrature
expectation values of the number states are zero (&) = (p) = 0 their variance is

INon-Hermition operators are not observables, meaning they do not correspond to a mea-
surable quantity
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non-zero even for the vacuum state (AZ?) = (Ap?) =n + 1/2.

The quadrature operators can be combined to represent the quadrature gy along
any axis in the phase space spanned by the x- and p-axis. We call this quadra-
ture the rotated quadrature

Go = cosf & +sinf p = %(dTew + ae ) (2.4)
Here 0 is the angle to x-axis and so we consider §o = & and ¢r/2 = p. The
eigenstates and eigenvalues of the rotated quadrature operator is then written
as |gg) and g respectively. The wave function of a pure quantum state |¢)) can
then be calculated as the overlap with the quadrature operator 1(q) = (gg|®)
and the corresponding quadrature probability function as Prg = | (gg|t)) |%. If the
state is mixed the quadrature probability has to be calculated using the states
density matrix Prg = (gg|p|qe)- For the number states the explicit expression
for the wave function is

e—ine

(go|n) = W

As we shall see in sec. 2.5.1 this equation will be useful when calculating projec-
tion operators in the number state basis. A useful way of visualizing a quantum
state in the x-p phase space is using the Wigner function [17]. The Wigner
function of a quantum state, defined by its density matrix p, is given defined as

H,(q)e™4"/? (2.5)

1 [ . .
W) =5 [ e tlale+ ) dy 26

In general the Wigner function of any operator A is defined in the same way
Wa(z,p) = 5= ffooo VP (z — %’ A ‘m + 4 dy. Using the overlap formula tr[AB] =
2m [ [ Wa(z,p)Wg(z,p) dedy the expectation value of the operator, calculated

as (A) = tr[pA], can then be calculated from Wigner function in a similar fash-
ion:

</Al> =Tr [[)/q =27 /Z /Z W (x,p)Wal(x,p) dedy (2.7)

Similar to number state representation we here present, without derivation, the
Wigner functions of the same quantum states [15][16]: From the Wigner function
it is clear to see that the vacuum state is a Gaussian distribution in the center
of phase space with the variance 1/2, meaning that is a minimum uncertainty
state. The coherent state is then simply a vacuum state displaced in phase
space, while the squeezed vacuum state is a vacuum state with unequal variances
along the p- and x-axis, making it non-classical. Here the variance along the
x-axis is reduced below the classical 1/2 limit but with the variance along the
p-axis increased accordingly to satisfy the Heisenberg uncertainty relation. The
Fock states are even more non-classical, except for the vacuum state, they all



2.1 Representation of quantum states of light 9

State W(z,p) phase space distribution
Vacuum Wo Lexp (—2? — p?)
Coherent W Wo(z — Zayp — Pa)

Sqz. vac. Wiqu Wo(ze™", pe”)
Fock W (—=1)"LY (222 + 2p*)Wy(, p)

0Odd cat W, {Wo(x —V2a, p) + Wo(z + v2a,p)
+2Wo(z,p cos(2\@pa)}

Even cat w_ — [Wo(x —V2a,p) + Wo(z + V2a, p)

(

2— 26*2“
—2Wy(x, p) cos 2\/5])04)}

2+2e*2‘1

Table 2.2: Wigner functions for typical optical quantum states

have non-Gaussian Wigner functions and have regions in phase space where it
is negative. This feature is clear sign of the quantum nature of those states
and since their photon number, and thereby energy, is precisely defined they
have a completely undefined phase corresponding to rotation symmetry in phase
space. But not only the number states can be non-Gaussian, the even and odd
Schrodinger’s cat states, defined as even N (|a) + |—«)) and odd N_(|a) —
|—a)) super positions of coherent states opposite in phase space, have regions of
negative Wigner function. These states contain either only even or odd photon
number contributions.

Conversion to number state basis

From eq. 2.6 we know in principle how to calculate the Wigner function of a
quantum state given its density matrix. As we shall see later it will be equally
useful to be able to calculate the density matrix given the Wigner function
of a state. This can be done by considering that in the number state basis,
each matrix element of j is equal to the expectation value of the corresponding
number state projection operator. Using eq.2.7 we can therefore write

pon = Telpl) () = 25 [~ W) Won(op) dody (28)
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where W, (x, p) then is the Wigner function of the projection operator |m) (n|,
which has the analytical form

1 !
Wn(2,p) = —e~ 77 (<1)" (& — ip)™ ="y [2m 2 L= (2% 4+ 2p%)  (2.9)
T m!
where LE{D‘) is the generalized Laguerre polynomials and the expression being
valid for m > n, with Wi, (2, p) = W}, (x, p) symmetry for m < n. If we on the
other hand are in possession of the density matrix, expressed in the number state
basis, we can calculate the Wigner function by inserting p = me Prmn |M) (1]
directly into eq. 2.6 to get

W (z,0) = prnWonn (2, p) (2.10)

As we shall see later in sec. 2.5, this will be the case when we perform quantum
state reconstruction using the maximum likelihood algorithm, where the out-
come is exactly the density matrix in the number state basis and so we will ap-
ply eq. 2.10 to obtain the Wigner function of the reconstructed state. Knowing
that the off-diagonal elements of a density matrix contains the phase informa-
tion about the state and that the center of the Wigner function has undefined
phase, we expect that W (0,0) should only depend on the diagonal elements of
the density matrix. This is exactly the case, since Wy, (0,0) = 26,,,(=1)™ so
that W(0,0) = 1 3" (—1)"p,, and, as we shall see in sec. 4.2.2, this expression
can be useful when performing optimizing of a parameter in the reconstruction
process using the resulting Wigner negativity as a benchmark.

2.1.3 Fidelity and trace distance

The fidelity F' between two quantum states p; and ps is a measure of their
closeness in the Hilbert space and takes the value 0 < F'(p1,p2) < 1. A fidelity
of either 0 or 1 corresponds to p; and po being either orthogonal or identical
states respectively. If g1 = |¢1) (¢1] and pa = |i2) (2] are both pure states,
the fidelity is defined as F(t1,12) = | (¢1]12) |2. This definition generalizes
to the case of either state being impure, so that if po is an impure state the
fidelity can be calculated as F'(11, p2) = (1] 95 |11). For both cases the fidelity
can equivalently be written as F' = Tr[p1p2]. If both states are impure the
generalization does not hold and instead a more general expression must be
used. In [18] Jozsa defines the necessary conditions for such an expression and
then proves that the ’transition probability’ formula from [19] satisfy them. The
formula is written as

F(p1,p2) = Tr { p1p2 ﬁl]z (2.11)
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where v M is the matrix square root defined as v Mv M = M. From the Wigner
functions the fidelity between a pure [¢1) and impure py state can be calculated
in the same way using eq. 2.7

F(11,p2) = Tr[|¢1) (1] po] = 27 /_OO /_OO Wiz, p)Wa(z, p) dxdy (2.12)

where Wy and W5 are the Wigner functions of the states.

Trace distance

Another useful metric for comparing two quantum states is the trace distance
T, which similar to the fidelity, is a measure of the distinguishably of between
two quantum states and takes the value 0 < T'(p1,p2) < 1. Compared to the
fidelity of the interpretation of the trace distance is reversed, so that a value of
0 or 1 corresponds to identical or orthogonal states respectively. It is defined as
half of the trace distance between the two states [20] T(p1, p2) = 3/|p1 — p2ller,
which for hermitian matrices reduces to

T(pr, p2) = 3T [v/(or = p2)?] (2.13)

Here ||M||s; is the trace norm defined as ||M||sy = VMTM. The trace dis-
tance is connected to the fidelity through the Fuchs-van de Graaf inequality
1—/F(p1,p2) < T(p1,p2) < +/1—F(p1,p2), where it provides useful upper
and lower bounds of the fidelity. For the case of either states being pure, the
inequality reduces to 1 — F'(¢1, p2) < T(¢1, p2) [21].

2.1.4 Loss model

Most linear loss mechanisms acting on a signal state is modelled as state p
being transmitted through a beamsplitter with vacuum as its other input and a
transmittance 1" = 7 corresponding to the loss. The result is that the signal state
intensity is reduced by 7 while the signal mode is admixed with 1 — n vacuum.
The effect of interfering two mode operators a; and ao on a beamsplitter is
typically written as

)= )G o (219)

= BY(T) (“1) B(T) (2.15)

2

Q>
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with B(T) = exp [arccos(ﬁ) (arad — &I&g)} being the beamsplitter operator.
In the density matrix picture the loss is then considered as the partial trace over
the transmitted vacuum mode v’ after transformation by the beamsplitter

o = Tr [B )y @10, (0], BO)] (2.16)

The matrix elements of 5’ can be calculated using the generalized Bernoulli
transformation [22]

(5 )mn = (m] p Z Bintrie,m (1) Brkn () (m + k[ ps [n + k) (2.17)

where By, tk,m(n) = \/(”Zk)n"(l —n)* is the binomial distribution. In the
Wigner function picture linear loss 77 can be modelled as the convolution of the

state with a complex Gaussian G, with variance o = /(1 —7)/2n
W (a )—l(woc)(i =) (2.18)
£ ’p - 77 S o ﬁ’ \/ﬁ .

2.2 Squeezed light

First observed by Slusher et al. in 1985, squeezed light is perhaps the most
fundamental resource for CV quantum information processing (CVQIP) and
have been used to facilitate quantum improved protocols across all three fields
of quantum computation, sensing and communication. For a detailed review
of the history of squeezed light and its importance, see the excellent review by
Andersen et al. [23]. Mathematically squeezing is expressed by the squeezing
operator

S(€) = exp (5 2 _ %zﬂ) (2.19)

A squeezed vacuum state, [€) = 5’({) |0), is a common starting point of many
CVQIP protocols, including our non-Gaussian state and distributed sensing
projects, since it can readily be generated experimentally. It has the properties
of the expectation value of the quadrature operator being zero Agy = 0 for any
squeezing rate and along any quadrature angle, similar to the vacuum state,

while the variance is "squeezed" <A§02> = %e‘” and "antisqueezed" <Aﬁ2> =

;627" along orthogonal quadrature angles as compared to the vacuum state.
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Generation

The mathematical squeezing operator can be implemented through a type-0
degenerate parametric down-conversion process [15]. Such a process can be
physically realized by transmitting a pump field at frequency 2w through a
second-order nonlinear medium, in order to down-convert a photon from the
pump field into a photon pair in a signal field at frequency w. The Hamiltonian
for such a process is

H = hwota + 2hwobTd + ihix @ (@ﬂiﬂ - eﬁ%) (2.20)

where a and b denotes the signal and pump field modes respectively and x ()
is the second-order nonlinear susceptibility coefficient of the medium along the
direction of pump field propagation, often simply called the nonlinearity. It is
assumed that the pump field is a strong coherent field, so that it can be described
classically as Be~*“t. One can then write the Hamiltonian in the interaction
picture as H;,, = ihy® (B*a* — Ba'?) so that the evolution operator U(t) takes
the form of the squeezing operator

O(t) = e~ iHimit/h = X P &350 (¢) (2.21)

with € = 2y 3t. Here the interaction time ¢ is equivalent to the interaction
length, that is the physical length of the nonlinear medium. It is therefore clear
that in order to generate strong squeezing, one needs to maintain a strong pump
field through a long piece of material with high nonlinearity.

2.2.1 Optical parametric oscillator

Since x(?) is small for most optical materials the squeezing levels obtainable
by a simple single-pass setup of the pump field through the nonlinear material
very is low. Pulsed light can be used to circumvent this issue, but to generate
a continuous wave squeezed field, the dominant solution has been to place the
nonlinear material inside an optical cavity at resonance with the down-converted
fields.
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Figure 2.1: Schematic of OPO model parameters

For an optical cavity the resonance spectrum consist of a comb of Lorentzian
shaped resonance peaks, centred at the fundamental frequency wg and with spac-
ing A, = 27 /tcqy called the free spectral range of the cavity, where teqy = leaw/c
is the round-trip time and [., is optical cavity round-trip length. The half-width
at half-maximum (HWHM) of the resonance peaks is called the bandwidth of
the cavity and is equivalent to the decay rate v of the circulating field and is pro-
portional to the total round-trip loss . The two main contributing factors can
be thought of as the output coupler transmittance 77 and the intra-cavity losses
L, so that r = /1 —T1v/1 — L. Each loss factor contributes to the bandwidth
as y1 = (1 = V1 =T1)/teaw = T1/2tcan and yo = (1 = /1 = L) /tean = L/2tcqn,
for 71, £ < 1, so that the total decay rate v = 1 4+ v2 is the HWHM bandwith
of the cavity.

To model the OPO behaviour we use the field operators in both time and fre-
quency domain. In a frame rotating with the central frequency wg the two
domains are connected by the symmetric Fourier transformation as

~ _ 1 > eiwt&

) = = [ el de (2.22)
a(t) = —1 - e w

aft) = = [ ) (1) d (2.23)

Using the equation of motion of the intra-cavity field d.q, as an ansatz we can
derive the correlation functions of the cavity output mode Gy, from which we
can derive the quadrature correlation functions. In the following only the main
results will be presented, while the full derivation can be followed in [24] and
originally in [25]. Using the parameters shown in fig. 2.1 the equation of motion
in the Heisenberg picture is

Bcon(®) _ iog]

di tav(t) = Vacav (t) + /271800 (t) + /27180ac(t) (2.24)
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where € = x?|5] = v P,/Py,, is the pump rate and ¢ is the pump phase
offset. The OPO threshold condition is then € = = corresponding to the cavity
field building faster then it decays. Above threshold (e > 7) the cavity output
field will have a coherent amplitude and show simple Poissonian statistics, while
if the OPO is pumped below its threshold (¢ < «) the output field will show
sub-Poissonian statistics, allowing for squeezing to be observed. Using that
Gin + Gout = V/2718car the equation of motion can be solved, yielding the time
domain correlation functions of the output field operator

i¢ [ o—(r—alt—t'|  —(vrelt—t'|
N N 6’}/16 e [
t)a(t)) = 2.2
(a(t)a(t")) 5 < o + P ) (2.25)
—(r=o)lt—t']  o—(vHe)lt—t|
at(a)) = L[ € ¢ 2.2
(a"(ta(t')) > — P (2.26)

Here the output mode subscript has been dropped for simplicity. Using the
definition of the x and p quadrature operators from eq. 2.3 their time domain
correlation functions can be found using the field correlation functions above.
Setting ¢ = /2 for simplicity, corresponding to an amplitude squeezed state,
we find that

_=t) | me i (2.27)
2 Y +e

= 74 76*(7*6)\75*75'\ (2.28)

Here : . : denotes the normal-ordered form, which is useful to work with since it
does not include the ‘S(tT_t/) vacuum term. Using the Wiener-Khintchine theorem
we can obtain the quadrature power spectrum S(w) as the Fourier transform of
the quadrature auto-correlation function Sy(w) = [2° (4(7)§(0)) €* dr, where
(G(7)d(0)) is simply (G(¢)g(t')) for 7 = ¢t — ¢’ corresponding to the correlations of
the continuous OPO output field being independent on the time of day. Inserting
eq. 2.27 and 2.28 we obtain the spectral densities of the quadrature operators
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of the OPO output field

1 2ev1 1 2ney
So(w) = = — == 2.29
(@) 2 (y+e2+w? 2 (v+e?+w? (2.29)

1 2emy 1 2ney
S —_ - = = —_—m 2.30
At S s N Rl R SRS (230

In the final form the output coupler term ~; have been replaced by an efficiency
term 7 and the total OPO decay rate. From there it is easy to see that when n =
1 the output state is pure since the product S,S, = 1/4 saturates the Heisenberg
uncertainty. These spectral densities are very useful, as they are proportional
to the spectral densities of the photocurrents produced by homodyne detection
when locked to the corresponding quadrature phase and so can be used to fit
experimental data in order to extract model parameters. If a quadrature other
than x or p is measured the spectral density is given by a geometric combination
of the x- and p-spectra

Syo (W) = Sz (w) cos? 6 + S (w) sin? @ (2.31)

corresponding to the definition of gy, so that § = 0 becomes the angle where
we will measure squeezing (x quadrature) due to our choice of squeezing angle
(¢ = 7/2). Plots showing the effect of pump rate and loss on the generated
squeezing and anti-squeezed levels as well as the frequency and phase dependence
of the power spectrum are shown in fig. 2.2.

Sx(w =0) [dB] Sp(w =0) [dB] Sq(e=0.5y,n=1) [dB]
0.8 0.8 T 3.0 7 - T
0 \ 18 2 i I ! 10
> > 3,54 1 : | : 8
w -3 % [ ! ! 1 !
206 206 15 g ! b ] 6
5} -6 O @ 2.0 1 4
£ ® g 12§ I
£ 9 E o i ! !
c 0.4 c 0.4 9 c 1.5 H 1 ! 1 0
g 12 & > H ‘@ \ -2
a a 6 é 1.04 | } f ¥ -4
E 02 -15 € 0.2 3 3 i B \ -6
a g 05791 ‘l 1 \l -8
-18 0 = g g =T
0. T T T 1 0.0 T T T 1 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.0 0.5 1.0 15 2.0
Detection efficiency: n Detection efficiency: n Detection angle: 6 [rT]

Figure 2.2: Contour plots of eq. 2.29, 2.30 and 2.31 in dB scale, showing the
behaviour of the power spectrum for squeezed vacuum. Dotted lines show the
vacuum noise crossing

From fig. 2.2(left4+middle) we see that the squeezing level is more sensitive to
loss than the anti-squeezing and that the observed squeezing is highly reduced
for for non-zero loss even for high pump rates. From fig. 2.2(right) we see the
typical "McDonalds" squeezing curves when looking across the detection angle
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at a fixed frequency and that a larger part of the phase space (quadrature angles)
is anti-squeezed then squeezed. This fact will be relevant when we want to use
a single temporal mode function to encompass a non-Gaussian state generated
from squeezed vacuum.

2.2.2 As a resource for non-Gaussian state generation

Squeezed light can be used as a resource for the conditional generation of non-
Gaussian state, by relying on the highly non-Gaussian nature of photon detec-
tion. This concept was concretized in 1997 by Dakna et al., when they proposed
a simple scheme to generate a state similar to a small amplitude Schrédinger’s
cat state by subtracting photons from a squeezed vacuum using a beamsplit-
ter and counting them [26]. We call these states photon subtracted squeezed
vacuum states; PSSqV. The first experimental demonstrations with pulsed light
were realized in 2004 [27] and 2006 [28] and using using continuous wave light
in 2006 [29] and 2007 [30]. Many more advanced schemes have later followed,
such as the first demonstrations of two photon subtraction [31] and three pho-
ton subtraction [32]. Proposals have also been made on how to generate state
similar to larger amplitude Schrodinger’s cat states [33, 34] as well as experimen-
tal demonstrations [35-37]. Relevant to us is the first demonstrations of non-
Gaussian states at the telecom wavelength showing Wigner negativity [38, 39].
Highly pure PSSqV states have also been generated by tight optical filtering of
the subtracted squeezed vacuum mode [40]. Recently the generation of optical
Schrédinger’s cat like states have also been proposed for a generalized photon
subtraction scheme [41]. For further details on the various production schemes
and possible applications of non-Gaussian states see the 2020 review by Lvovsky
et al.

In the following section we will, in short, present two models of the single PSSqV
state (1-PPSqV), as this will be the state we generate experimentally in cha. 5.

2.3 Photon subtracted squeezed vacuum

Here we first briefly introduce, as a reference, the idealized representation of
the photon subtracted squeezed vacuum state as a single mode state generated
from a number resolving detector. Afterwards a more realistic model of the
procedure required to experimentally generate the photon subtracted squeezed
vacuum state is presented. The model was developed by Mglmer in 2006 [42] in
connection to the first experimental demonstration of the procedure the same
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year [43] and is based on the multi-mode description of the OPO output field.
A more detailed walkthrough of the model, included derivation of many inter-
mediary terms, is given in the thesis of Neergaard-Nielsen[24].

The basic principle of the generation scheme is to transmit a squeezed vac-
uum state through a weakly reflective beamsplitter and then detect one or more
photons in the reflected trigger path, thereby collapsing the state into a photon
subtracted squeeed vacuum state.

2.3.1 Single mode with number-resolved detection

In the single mode picture the state incident on the beamsplitter is written as
[Yin) = [£)410), and the output state calculated as |tp,) = B(T) [ti,), with
the beamsplitter operator of eq. 2.15 and using the formula B(T)|n,0) =
>or—o VBMT)|k,n — k) |22]. By conditioning this two-mode state on the de-
tection of m photons in the trigger mode the state in the signal subspace will
collapse into

_olmins) 1 3 n+m B2 T™(T) |n 2.32
[Vm) s JPr(m) \/Prt(m);< +ml§) (T) [n), (2.32)

where Pry(m) =Y, | (n, m|yss) |* is the probability of detecting the m photons
in the trigger mode. We see that depending on the parity of m the 1-PSSqV
state will be a super position of either even or odd photon numbers. For the
case of subtracting a single photon the state becomes equivalent to a slightly
less squeezed single photon state [44]

1
sinh s

[¥1)s = @5(s)10) = 5(s) |1) (2.33)

where s = arctanh(7T tanh ) < r is a modified squeezing parameter owing to the
admixing of vacuum through the unused port of the beamsplitter used to sub-
tract the single photon. That is a 1-PSSqV state generated from initial squeezing
parameter r and beamspliter transmittance T corresponds to a squeezed single
photon with squeezing parameter s. We also note that s — r as t — 1. The
number state expansion and Wigner function of the 1-PSSqV state is summa-
rized below, where kqq,(r, ¢, n + 1) is the coefficient of the squeezed vacuum
state from tab. 2.1.
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State V) Number state expansion

1-PSSqV | [sqv-1) = aS(€)[0) | YhEkygu(r, ¢, + 1)

sinh r
W(x,p) Phase space distribution
Weqv—l Wy (xeirvper)

2.3.2 Conditioned multi-mode model

The multi-mode model is based on the covariance matrix formalism. Here a two
mode Gaussian state can always be rotated such that its covariance matrix has
the generic form

'm 0 TIys O

T'aa | Tap 0 T 0 Ty
T = = 2.34
( I'as | I'eB ) '; 0 Tz O (2.34)

0 Toy 0 TI'ga

corresponding to no x-p correlations in either subsystem. While building our
model we utilize that the vacuum noise term of the auto-correlation functions
does not influence the transformation of the autocovariance. We therefore con-
veniently choose the normal-ordered form of the auto-correlations and simply
add the vacuum term in the end to obtain the full covariance matrix expression
of the final two mode state. A schematic of the sequential steps involved in
building the model is shown in fig. 2.3.

Fi Pbs th ths Pfinal
OPO Iftf (t) | ff, (t) % DWTrigger
T H
1 fs(t) % Signal

Figure 2.3: Outline of multi mode model structure

1. OPO output The initial uncorrelated two-mode state is then the squeezed
vacuum state in the signal mode (AA) and vacuum in the trigger mode

(BB), with the signal subspace having the entries : T'{; (t—t') := 2 (: (t)&(t) :

~—
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and : Thy(t —t/) :== 2 (: p(t)p(¢') :) from eq. 2.27 and 2.27 respectively.

T = ( :Fi‘A(é_t/): 8 ) (2.35)

. Tapping Part of the signal mode is then coupled to the trigger mode by

a beamsplitter interaction. The two-mode state after the beamsplitter is
calculated as : T :—: T := B(T) : ' : B(T)T with the B(T) matrix
similar to the one used in eq. 2.14:

T, =T:T%,:
TP = T, = —T(1—1): T, (2.36)
Tp: =1 —T):T%,:

. Trigger filtering The trigger mode is then frequency filtered to select only

the central frequency resonance mode of the OPO output. The transfor-
mation : T'® : — : T'*/ : is calculated as the convolution of the covariance
matrix elements with the trigger filter function. We use a single-sided
exponential function as the filter function, corresponding to the tempo-
ral response of a physical filter cavity as used in our experimental setup
(optical lowpass filter). The trigger mode subspace (BB) is filtered twice,
while the covariance subspace (AB) only once, with the integrations from
] — o0, '] for AB and from | — oo, t] and | — oo, '] for BB, corresponding
to the output field of the frequency filter at time ¢ not being affected by
the input field at some later time:

: Fi{A o= FZEA :
T = FZfB o=k [Tt —T) e T dr (2.37)
: I’gB =R [T — 1) e R+t =m=7") qrdr’

. Temporal mode selection The subtraction and detection of a photon

from the OPO output field, leads to the conditioned state existing as
altered temporal correlations within a distinct a temporal mode around the
trigger time. By temporally filtering the mode operator of the otherwise
stationary OPO output field we can define an operator for the temporal
mode as [ fs(t)as(t)dt, where fs(t) is a filter function corresponding to
the desired temporal mode. Since we are filtering the mode operator, the
temporal mode function (TMF) is an amplitude filter and should therefore
be normalized as [ |fs(t)|*dt = 1. Intuitively the temporal mode of the
1-PSSqV should resemble the autocovariance function (eq. 2.27 and 2.28)
of the OPO output field around the trigger time, since it is only within
these correlations that entanglement between the trigger and signal mode
can lead to the signal mode being affected by the photon subtraction
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in the trigger mode. In practice the TMF is applied to the recorded
time traces during data analysis, though it can be applied directly in the
experiment by shaping the amplitude of the LO according to the TMF
or by filtering the homodyne photocurrent if the conditioned state has
been filtered to have a TMF resembling the electrical filter response as in
[40]. An advantage of applying the TMF in post, is that its shape can
be optimized to maximize e.g. the Wigner negativity of the reconstructed
state. This is important as choosing a wrong TMF can lead to either not
including the full correlations of the conditioned state or including some
of the background squeezed vacuum. To this end we therefore choose
not to explicitly choose the TMF in our model. The transformation of
the state after the trigger filtering : 't/ — : T' . into the temporal
mode selected state is then calculated by the integration of the temporal
correlations around the trigger time weighted by the TMF and so here the
all integrations are from | — 0o, 0o[.

thms: — fffs t S Fi{A dtdt’
. Ttms . I\tms P fffs t Pi(B dtdt’ (238)
T = [ [ ) rg‘B dtdt’

5. Channel loss The loss of the trigger and signal channel transform the
state as : T : — . '/ := p : T : 5y where 5 is a two-mode diagonal
matrix with |/ns and /7 entries corresponding to mixing the signal and
trigger modes with auxiliary vacuum modes using beamsplitter matricies
B(ns) and B(n;) as in step 2. The full covariance matrix of the final two-
mode state just before detection in trigger channel is then obtained by
adding back the vacuum noise as : I'f : — I'/ =1+ : 1/

I‘QA =mns: G +1
= F];B = /Mt : T (2.39)
Tl =n T +1

Having already chosen the mode function of the trigger filter we are free to
choose the temporal mode functions f;(¢) and fs(¢) of the trigger and signal
modes respectively. For the trigger mode we choose a delta function f;(t) = 6(¢),
corresponding to a very narrow timing resolution of the photon detector com-
pared to the length of the correlations of the detected field, which is reasonable
for a our setup with a timing resolution of 70 ps and a OPO bandwith of
8 MHz 125 ns. For the signal mode we choose a double exponential function
fs(t) = \/7se 7" of width ~,, which should be a reasonable guess since the
ideal mode function for low gain and no trigger filtering have been found to be
a double exponential of width equal to the OPO bandwidth [45]. With these
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choices of mode functions and following the approach outlined above, analytical
expressions for the entries of I'f was obtained by Neergaard-Nielsen [24]:

rf, =1+1yr4) rf, =1+,
Il =1+(1-T)pr%) rf, =1+ (1-T)pTy) (2.40)
Iy = VT = 1)yl rd, = VT = T)ynar)
with
() _ Tye(y Fe+2ys)

AT (vFeo(yFets)
(*) :|:2’ye/<;

= 2.41
A S CETTEN (241
(+) Faver(y Fe+ Kk +7s)
AB —

(YFe(yFet+r)(YyFe+vs)(k+s)

We note that the x and p correlations between the two modes remain symmetri-
cal with respect to the sign change of e. With the covariance matrix of the two
mode system just before a trigger click in hand, we now turn our attention to
the calculation of the resulting state conditioned on a click in the trigger mode.
The Wigner function of an arbitrary N-mode Gaussian state, described by its
covariance matrix T, can be calculated as Wr(¢) = [7V detF]’le’gTFg and the
Wigner function of the conditioned state as

2 [ [ Wr(&)Wr(&) de?
2m [Wr (W (&) d€?

Wcond(fs) = (242)
where €, = (25, ), & = (20,py) and € = (2, py, 27, ;) is the signal, trigger and

two mode coordinates and Wi(z, p) = == — Le=* =" is the Wigner function of

1
2w ™
the trigger mode on-POVM Eo" = 1, + |0), (0], calculated in similar fashion as
eq. 2.6. The form of eq. 2.42 can be understood by looking at the equivalent
expression for density matrices p¢" = tr,[E¢"pr]/tre[E"pr] |24], where the
traces can be evaluated using eq. 2.7. Here it is more clear that the conditioned
state p2" is obtained by operating on the state pr with the on-POVM and tracing
out the trigger mode corresponding to integrating the product of the state and
on-POVM Wigner functions across the trigger mode. Using the generic form of
a covariance matrix of a (properly rotated) two mode Gaussian state (eq. 2.34)
an analytical expressions for eq. 2.42 can be found as

«? p? (1+4TDg3)x2 - (14T 44)p?
W (f ) eXp <_F711 - F22> 2exp (_ D11 (14D33) T35 F22(1+F44)*F§4>
cond\Ss) = -
LEVARTE B! 7/ (T11(1+T33) — T2;)(Ta2(1 + Tyy) — T'3,)

-1
2

[1 0+ Ts) (1 + )

(2.43)
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Here the first term in the numerator is the unconditioned state Wiycond(€s) =
[mv/T11la2] Le/Tu=pi/T22 corresponding to having simply traced out the
trigger mode and the denominator term is the probability of a trigger click
pro, =1 —2[/(1+T33)(1 +Tus)] %

A parameter accounting for the effect of fake counts can be included in the model
as a mixing of the conditioned state with the unconditioned state by a factor
=, called the modal purity, which is the fraction of true to total (true+fake)
counts:

Wcond(gsv E) = EWcond(gs) + (1 - E)Wuncond(gs) (244)

In this perspective fake counts are any clicks from the SSPD not originating
from the detection of a subtracted photon. These are typically the detector
dark counts and counts from scattered light, mainly the control beams used for
locking and phase control of the experiment. Our full model is then obtained by
inserting the covariance matrix entries of eq. 2.40 into eq. 2.44. The parameters
of the model are summarized in tab. 2.3.

Total OPO decay rate, OPO bandwidth
Pump rate, yv/ P/ Pipr

Tapping ratio, beamsplitter transmittance
Trigger filter width, FC bandwidth

Signal temporal mode width

Total signal channel efficiency

Total trigger channel efficiency

Modal purity

MIT2 a0 2

Table 2.3: Parameters of the multi mode model with on/off detection for
photon-subtracted squeezed vacuum generation.

Optimal filter and mode functions

Here we investigate the effects of the widths of the signal TMF and the trigger
filter in our model on the Wigner negativity of the heralded state. We set all
efficiencies to unity and use a beamsplitter ratio of 7' ~ 1. First we see the
effect of TMF width by setting the trigger filter width to infinity. This is of
course nonsensical in the real experiment, but will allow us to isolate the effect.
We then see if the trigger width affects the optimal TMF width and finally use
the optimal TMF width to see the effect of the trigger width. The results are
shown in fig. 2.4.
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Figure 2.4: Effect of signal TMF width and trigger filter width on the Wigner
negativity predicted by the model.

For the isolated TMF width we see that as the pump rate increases the optimal
filter width decreases as well as the obtained Wigner negativity. The reduction in
Wigner negativity can be understood as the bandwidth of the x and p quadrature
being pushed apart by the epsilon term in the denominator of eq.2.29 and 2.30.
The larger the pump rate is the more the temporal mode of the state is skewed
and the less a single temporal mode function can encompass it. The shortening
of the optimal TMF width can then be attributed to the shortening of the
anti-squeezed bandwidth weighing heavier than the lengthening of the squeezed
bandwith, since more of the phase space is anti-squeezed than squeezed. We
then see that the trigger filter width should at least be 8 times larger than the
OPO bandwidth to not cause the optimal TMF width to decrease and thereby
decreasing the Wigner negativity. Though here we have to keep in mind that we
are using a sharp double exponential function as our TMF and that the effect
of the trigger filter is to smoothen out the temporal correlations and so using a
different TMF shape could negate this effect. It is also worth keeping in mind
that while the TMF is applied in the data analysis and therefore easily can be
varied, the trigger filter width x is set by the bandwidth of the physical filtering
system and so might not be easy adjust or even possible to adjust.
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Loss mechanisms
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Figure 2.5: Wigner negativity as a function of pump rate for various values of
T, n:, ns and =. Values a unity unless otherwise.

Here we investigate the effect of the remaining parameters of the model; T, 7,
1 and Z. If we disregard their effect on the modal impurity their behaviour is
straight forward; if they are decreased so is the Wigner negativity as is seen from
the solid lines of fig. 2.5. The reduction is worst for the signal channel efficiency
and modal impurity, who essentially describe the same mechanism of mixing
the signal state with vacuum. We see that the reduction is linear and that a
decrease from 99% to 90% results in a roughly 20% reduction of the Wigner
negativity across the pump range. The dashed lines include the coupling of the
modal impurity to the other parameter and is modelled as

= _ <ﬁtc> - <ﬁdc> _ <ﬁ> (1 - T)"?t

E(e, T, nt) (rre) @) (L= T — (fae) (2.45)
where (fi;.) and (ng.) is the total and dark count rates, respectively, observed
from the SSPD when running the experiment and (7) = (a'(t)a(t)) = v1€*/(v*—
€2) is the photon number expectation value of the OPO output mode, which cor-
responds to the photon production rate in Hz. For the calculation of the dashed
lines in fig. 2.5 zero internal loss is assumed (72 = 0 — v = 71) and typical
experimental parameters are used to set (ng.) = (1—Z") (?') (1 —T")n; /=" with
€/y=04,T =097, n =0.1, Z = 0.995. The prime denotes the specific value
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since the dark count rate should ideally not depend on any model parameters.
In a real experiment the photon detector will unfortunately not only see dark
counts but also counts from scattered light or unattenuated light from control
beams and their relation to the different loss mechanism depends on the specific
layout of the experimental setup.

Fidelity

Finally we investigate the fidelity between our model and a real odd cat state
and the single mode 1-PSSqV. We use the Wigner function from our model and
the Wigner functions from tab. 2.2 and 2.3.1 and calculate the fidelity using eq.
2.12 for various pump rates and amplitude or squeezing parameters. The result
is shown in fig. 2.6. In general we see that the fidelity decreases with increasing
pump rate, as we would expect from the decreased Wigner negativity and that
to obtain a fidelity above 0.9 the pump rate has to be /v < 0.4. We also note
that the fidelity to the single-mode 1-PSSqV is slightly higher than to the real
odd cat state, while both a significantly higher than to the single photon fock
state.

Fidelity: odd cat Fidelity: 1-PSSqV
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Figure 2.6: Fidelity between the conditioned multi-mode 1-PSSqV state and
the real odd cat state and single-mode 1-PPSqV. All efficiencies of the model is
set to unity with 7"~ 1 and k = oo and for each pump rate the optimal TMF
width is used. Dotted lines indicate the maximal fidelity trajectory.

2.4 Homodyne detection

To characterize a continuous variable state a phase sensitive measurement of the
light field is needed, though unfortunately there exists no current detector tech-
nology that can direly measure the phase of an incoming electromagnetic field at
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optical frequencies. Instead interference can be used to reveal the desired phase
information about a state. A measurement technique that does this is the bal-
anced homodyne detection. Proposed in 1989 by Vogel [46] and experimentally
demonstrated four years later [47], homodyne detection is a phase-sensitive mea-
surement of the quantum noise of the electric field defined by an optical mode.
From a practical point of view the homodyne measurement allows us to mea-
sure the quadrature values gy of a state along any angle in phase space. The
measurement consists of interfering the signal field with a strong local oscillator
(LO) field on a balanced (50:50) beamsplitter and measuring the two output
modes with photodetectors. The resulting photocurrents are then subtracted to
remove the classical noise of the LO field and amplify the phase sensitive noise
of the signal field. To see how the scheme works we consider the field operators
a1 and ao of the two incoming fields

- 1 . R R o 1/, R At At
by = E (GQ + al) = Np1 = b{bl = 5 (na,z + N1 + a£a1 + a{ag)
- 1 . R . 1/, R At At
b ﬁ (G2 —a1) = Tpo= b;bg =3 (na’g + Ng,1 — a;al — a{ag)

In the classical picture the photocurrent ¢ produces by a diode is proportional
to the absorbed field intensity i oc |E|?, while in the quantum regime its the
photon number of the mode a, so that i oc . The subtracted photocurrent from
the homodyne detector iy is then

Thd = 11 — 1o X ﬁb,l — be72 = &;(All + dJ{CALQ (246)

Setting a; = as as our input signal state to be measured and ay = |alo\ei9 as
the local oscillator field, we get

ihd X | ol (&Se—w + &leig) = V2|ads 0 (2.47)

2.4.1 Imperfect homodyne detection
Optical loss

Any loss, both before and during, the homodyne measurement can be modelled
as the input signal state having been transmitted through a beamsplitter with
transmission 7, so that a; = \/nas + /1 — na,. Inserting this expression into
eq. 2.46 gives

ina Xlaol [ (Vilas + /T = na)e ™™ + (ijal + /1= nab)e”|
= V2|auo|(v/ds0 + /1= 1dy) (2.48)
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Unbalanced

If the detection is unbalanced (T # %) we cannot use eq. 2.46. Instead we have
that

by =vV1—Tay+VTay, = fp1=(1—T)Ags~+ Thaes + VT —T?(abay + alay)
by =VTay —V1—Tay = fps=Thas+ (1—=T)Aas — VT —T%(abay + alay)

which leads to the homodyne photocurrent containing the uncorrelated photon
number operators

thd =11 — l2 OCTip1 — T2 (2.49)

=(1 = 2T) (P2 — Pa1) + 2T — T?(alay + alay) (2.50)

If we assume that the mode as contains the strong local oscillator field and that

T = 1 + k, where k is some small fraction (k < 1) symbolizing the unbalance,

it is possible to obtain a balanced photocurrent by attenuating the by mode by
an amount 1 — 7 that compensates for the larger portion of the a; mode. In
[48] it was found that for small imbalances this compensation leads to a loss of
the homodyne signal corresponding to the imbalance, i.e. for a 4% imbalance
(T' = 48/52) the compensation needed to balance the homodyne photocurrent
results in a loss, equivalent to eq. 2.48, of 4%.

2.5 Quantum state reconstruction

We will now consider the essential task of estimating what quantum state we
have measured, based on collected experimental data. If we imagine {|j)} as
the set of all possible outcomes of our measurement, we can write our dataset
{f;} as the frequency f; of each outcome. In general if one has a model of
a system it is possible to calculate the probability pr; of having measured |j)
given some specific model parameters. In our case of trying to estimate an
unknown quantum state, the elements of its density matrix play the role of
model parameters and our job is to find the density matrix gy that maximizes
the likelihood of providing our dataset. To do this we use a likelihood function

defined as ‘
£(p) = [Jor? (2.51)
J

where pr; = (j| p|j) = Tr {ﬁjﬁ} is the probability of measuring |j) given p. We
immediately see that £ if maximized when p = pg, since the probabilities will
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then exactly match the data (pr; = f;). In [49] Lvovsky presents an iterative
method for maximizing this likelihood which is suitable for homodyne data. The
approach is to introduce the operator

R =Y 2, (2.52)

where H] = |7) (j| is the projection operator. Noticing that as p — po we get
pr; — f; which leads to R(p) — 1 since {|j)} is assumed to be a complete set

so that > I1; = 1. In the limit we then have R()pR(p) = p, which forms the
basis of an iterative process

P — A [ R(p0)p® R(ﬁw))} (2.53)

in which an initial 5(9) is asymptotically transformed towards the maximum-
likelihood estimator gy so that the likelihood monotonically increases. Each step
of the iteration is normalized to unity trace by A. We call this reconstruction
approach the MaxzLik algorithm, short for maximum likelihood.

2.5.1 Tomography from homodyne data

We now consider the special case that the data set {f;} is from a series of
homodyne measurements of a single mode quantum state. We imagine our
dataset as consisting of a total of Ny quadrature values, corresponding to the LO
having been locked at different phase angles, while Ny quadrature values where
recorded at each angle. Since the eigenstates of the homodyne measurement,
which are the quadratures states |gg), are continuous valued, the set {|gg)} has to
be binned for the probability pr, to be finite. We therefore define the probability
of observing the quadrature variable gy within a bin spanning |q;; ¢;+1[ as

qit1 qit1 .
mm:/ pmm@:/ (a0l plao) dag = Tr [Tl 1) (2.54)
q1 q1
with TIy,; = q’“ |g6) {qs| dg being the projection operator for the Ith bin at

the phase 6. The integration is across the bin width dg. We then denote the
number of observations in the /th bin as Ny ; so that Ny = Zj Np,;. As we are
now using two indices 6 and j to index our dataset {fy;} we can modify eq.

2.52 to reflect it P
~ 0,1
R(p 2.55
EI me (2:55)

Here )", is the sum over the LO angles and the factor Ny/Ny ensures that the
contribution to the sum from each angle is correctly weighted if Ny is not equal
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for all angles. We also note that the bins have to cover the entire range of quadra-
ture values, so that we fulfil the completeness requirements of ), pry; = 1 and

X ﬂg,l = 1, but as we will see in the section below, this is of course not feasible
in a real world implementation of the algorithm. The derivation here only con-
sidered a single mode state, but it can readily be extended to multi-mode states,
though the measurement data requires increases exponentialy with the number
of modes the states occupies. Newer methods relying on neural Networks have
therefore been developed for circumvent this difficulty [50]. Using the MakLik
algorithm we reconstruct the density matrix, but to only observe Wigner nega-
tivity data obtain from photon-number-resolving measurements have been used
to directly reconstruct the Wigner Function [51].

Loss compensated reconstruction

One of the advantages of this implementation of the MaxLik algorithm is the
possibility of directly including and compensating for any detection inefficiencies
in the reconstruction procedure. This is done by exchanging the projection
operator ITy; with the POVM [52]

Epr= 3 \/Bwk ) Bt (n) /qm (mlqe) (qoln) dq|n+k) (m+k| (2.56)

m,n,k

which corresponds to measuring with a detector of 7 efficiency. The MaxLik
algorithm will then directly reconstruct a state, where the loss from the detection
have been compensated. For m and n the summation is from 0 to the eventual
truncation of the photon number state space (explained below), and for k its
from 0 to largest of m or n.

Uncertainty of MaxLik reconstruction

To estimate the uncertainty of the MaxLik reconstruction process we will use
the bootstrap method. Here the density matrix reconstructed from experimental
data is used to generate several sets of simulated data corresponding to having
measured that reconstructed state with homodyne detection. Using the MaxLik
algorthim on the simulated sets then provides a series of simulated density ma-
trices. From these statistical uncertainties can be derived, such as the average
distance to the original density matrix or the standard deviation of the resulting
Wigner negativity.
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2.5.2 Implementation of MaxLik

When implementing the MaxLik algorithm we choose to use the number state
basis. In it we can directly use eq. 2.5 to calculate the matrix elements of the
projection operator as

o = [ " mlgo) (gsln) dg (2.57)

q

But since the Hilbert space is infinite dimensional, we need to choose a highest
photon number state N to include as the truncation point of our resulting N-+1
dimensional space. This space of course has to be large enough so that the
state p we are trying to reconstruct can be fully expressed, meaning that the
largest photon number component of p should be much smaller than N. This
truncation also influences how large a range of quadrature values our binning
needs to cover in order for the completeness requirements to be met. Since we
already assumed that N is the largest photon number component in our space,
we need to choose the starting ¢;—p and ending ¢—y, point of our binning,
such that fqiNb (go|N) dg=1=3,,Tr [12[971} /N, where qo and qr, is the This
is is especially important to note for small amplitude quantum states such as
PSSqV, since one could, from just observing the recorded quadrature values,
make a choice of ¢—¢ and ¢=n, large enough to not truncate {fy;}, but too
small to not truncate the largest photon number component of ﬂg’l.
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This issue is illustrated in fig. 2.7 and 2.8 and from them we see that a sensible
choice could be N = 30 and —go = ¢, = 10, which is indeed what we will
use for the simulated data and analysis of the experimental data presented in
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chap. 4. Using the approach outlined below we also investigate the effect of the
number of phase angles and the number of bins on reconstruction process. We
use the fidelity and trace distance as metric and the results of this analysis is
shown in sec. A.1. The conclusion is that using a azimuthal resolution of 30°
and a bin range of 200, should suitable for a 1-PSSqV state.

Walkthrough of implementation

To see how to implement the MaxLik algorithm on experimental data collected
by homodyne detection, we start by building a simulated dataset. With the ex-
pression for an odd cat state from tab. 2.1 we generate a N = 30 (31x31) density
matrix of a state with mean photon number 2, rotate it 90° and subject it to
20% loss. We then generate simulated datasets of 20000 points by sampling
from the inverted cumulative distribution at 30° phase intervals. From these
datasets we build quadrature histograms by binning the data in the range —10
to 10 with 200 bins, giving a quadrature resolution of 0.1. Finally we combine
all histograms into a single vector for convenience. By combining the data to a
single vector the frequency reduces to a single subscript j and we avoid the sum
over the phase angles.

These steps are shown in fig. 2.9. The MaxLik algorithm (eq. 2.53) is then
run for 1000 iterations using eq. 2.52 and the identity matrix as p(®) and the
result is shown in fig. 2.10. Here we see that already after 100 runs there is
excellent agreement between the probability vector and the input data vector
f;j. To check that the MaxLik algorithm really did construct our input state
we use eq. 2.11 and 2.13 to calculate the fidelity and trace distance. Here we
see that around 100 steps are needed for the direct reconstruction process to
reach > 0.99 fidelity to the lossy input state, while the loss compensated recon-
struction needs more than 10000 steps to reach > 0.99 fidelity to the pure state.
We conclude the walktrough of our implementation of the MaxLik algorithm
by inspecting the evolution of the state during the reconstruction process. We
do this by looking at both the R operator, density matrix and corresponding
Wigner function. This is shown in fig. 2.12 and 2.13.
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Preparation of simulated data for the MaxLik algorithm.
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Figure 2.10: Result of running MaxLik on simulated data. (top) Evolution of
the probability vector p; during the MaxLik run. (middle) Agreement between
the probability and frequency vectors. (bottom) Ratio between frequency and
probability vector for 100 runs. The ratio should ideally be one for all bins, but
is of course zero where the f; bins were empty. At the transition to non-empty
bins at the edges of the distributions we see that the ratio oscillates wildly. This
is due numerical instability, as f; is small and pr; becomes close to 0.
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Figure 2.12: Evolution of the R operator and state density matrix during the
reconstruction process. We see that initially all information about the state is
contained in the R operator and that it is pushed towards the identity matrix as
the density matrix is build up. We also note that the imaginary part of R outside
of the photon number range supported by the density matrix is increased. This
can most likely be attributed to numeral instability similar to what we saw in
fig. 2.10(bottom), as there is little feedback from the MaxLik algorithm in the
range of photon numbers beyond range supported by density matrix.
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CHAPTER 3

Experimental Methods

A schematic overview of the experimental setup used for non-Gaussian state
generation is shown in fig. 3.1. The key features of the setup will be be out-
lined below while a more in depth description of the three stages is given in the
following sections. A detailed description of the setup used for the distributed
sensing project can be found in the sec. A.5 of the appendix.

Coherent laser light at the fundamental frequency w from a master laser source
is split into a fundamental pump field «, to be frequency up-converted by a
second-harmonic generation (SHG) cavity, and a local oscillator (LO) field ay,,
to function as a phase reference for homodyne measurement. The up-converted
field 3 is then used to pump an optical parametric oscillator (OPO) cavity below
its threshold with vacuum as its input, in order to generate a squeezed vacuum
field by spontaneous parametric down-conversion. The squeezed vacuum field is
then transmitted through a very weakly reflecting beamsplitter, in order to tap
a small portion of the field into a trigger channel, while the rest of the squeezed
vacuum field continues into a signal channel. In the trigger channel a filtering
cavity (FC) system ensures that only the central frequency mode of the squeezed
vacuum field is being transmitted to a single photon counting module (SPCM).
In the signal channel the main part of the vacuum field is mixed with the strong
LO field on a balanced beamsplitter for its quadrature values to be recorded
by homodyne detection (HD). A single photon detection in the trigger channel
then heralds that a photon was subtracted from the central frequency mode of
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the squeezed vacuum field in the signal channel. Using the trigger signal the
quadrature values of the photon-subtracted squeezed vacuum state is recorded
by the HD and the non-Gaussian features of the state can be uncovered.

Squeezed resource generation Trigger channel

Trigger }

9 “<[oPoY S10) e,

Signal channel
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Figure 3.1: Simplified overview of the experimental setup.

3.1 Squeezed resource generation

For both the non-Gaussian state transmission and distributed sensing projects
a squeezed vacuum field is used as the initial quantum resource. To generate
the continuous squeezed vacuum field we design and build a free space optical
setup. As mentioned in the chapter introduction the setup follows the conven-
tional technique of generating squeezed vacuum from spontaneous parametric
down-conversion in an OPO cavity pumped below threshold. The pump field
is likewise generated by second-harmonic generation in a cavity from the same
master laser field supplying the LO field, used for homodyne detection, to ensure
good phase coherence. A schematic of the setup is shown in fig. 3.2

The setup can be divided into seven key features; [1] The master laser source, [2]
fiber coupling of the local oscillator field, [3] beam chopping stage to implement
a sample-hold measuring scheme, [4] fiber coupling of the filter cavity locking
beam, [5] second harmonic generation cavity, [6] Optical parametric oscillator
cavity, 7] splitting of OPO output into signal and idler beam and gain locking
of the OPO.
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Figure 3.2: Schematic overview of the setup for squeezed vacuum generation.

3.1.1 Key features of non-Gaussian state generation setup
[1] Master laser

Since the motivation for our experiments are proof-of-principle implementations
of quantum communication protocols for short distance networks we naturally
want to work in the telecom band in order to utilize existing optical fibercom-
ponents and infrastructure. We specifically chose to work at 1550 nm as this
wavelength in general provides the lowest loss optical fibers and components. For
our experiment we use a Erbium-doped fiber laser from NKT (KOHERAS BASIK
X15) as the main laser. The X15 model has a linewidth of < 0.1kHz, typical
phase noise below —120dB/Rad/v/Hz at 1 Hz and up and coherence length of
10s of kilometres. We then use an erbium-doped fiber amplifier (EDFA) from
NKT to amplify the optical power from 40mW to a maximum of 2W. The laser
light is guided by a single-mode fiber (SMF) and coupled out onto the optical
table through a fiberport.

Unfortunately the output fiber of the EDFA is not polarization maintaining
(PM) and we therefore observe some small drift of the polarization of the main
laser output in range of a few Hz. This polarization drift in turn leads to drift
of the optical power as we use polarization beamsplitters (PBS) to divide the
beam to different parts of the setup. To mitigate this problem we use a simple
polarization stabilizer (PS) consisting of a motorized half-wave plate (HWP),
PBS, photo-detector, ADC and PID controller. A schematic overview of the
PS can be seen in fig. 3.3. The HWP is set so that a small portion of the
main beam is tapped off by the PBS and the optical power is monitored by the
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detector. The resulting voltage signal is digitized and used as error signal for a
digital PID controller connected to the driver of the motorized waveplate. The
feedback loop of the PS then allows us to stabilize drifts in both optical power
and polarization originating from the main laser source and to choose a locking
point resulting in a desired optical power after the PS. For reliable operation
of the PS it is important to choose the locking point so that the signal-to-noise
ratio (SNR) of the error signal is sufficient.

Figure 3.3: Polariza- Figure 3.4: Beam chopper (BC)
tion stabilizer (PS)

[2] Local oscillator fiber coupling

Just after the PS part of the main laser field is tapped off using a half-wave plate
(HWP) and polarization beamsplitter (PBS) combo. Since the beam is linearly
polarized after the PS stage, turning the HWP tuned the power splitting of the
PBS. The LO field is coupling to polarization maintaining (PM) single mode
fiber (SMF) through a fiber collimator at 80% efficiency. A z-translation degree
of freedom on the collimator can be used to adjust the coupling efficiency and
thereby tune the LO power at the homodyne station. Detuning the coupling
efficiency slightly also increases the stability of LO power, since it becomes less
sensitive to mechanical drift. By fiber coupling the LO we also circumvent the
need to use a mode matching cavity to clean the LO mode before interference
with the signal for homodyne detection.

[3] Beam chopping

To avoid the strong beams used for phase control and cavity locking to cou-
ple through the trigger channel and into the SPCM and saturating it, we use
a "sample-hold"-scheme when running the experiment. The scheme consists
of continuously switching the control and probe beams on and off at a fixed
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frequency and have been used extensively for heralded non-Gaussian state gen-
eration [53]. When the beams are on (sample) all phase and cavity locks are
active and the experiment is being stabilized, when the beams are off (hold)
all the feedback controls are kept constant, while the generated state is being
measured. When using this scheme it is important to keep the hold period
short enough so that drifts of phase and cavity locks are negligible and the sam-
ple period long enough to properly restabilize the experiment before holding
it. Usually a longer sample period compared to the hold period is used. The
specific settings used when running the experiment are listed in sec. 3.4.3.

In the setup we use a beam chopper (BC) consisting of two acousto-optic modu-
lators to chop (turn on and off) the beam before it is split into a probe and lock
beam (see fig. 3.4). An AOM operates by transcending an input electrical RF
signal into standing sound waves across a transparent crystal, thereby deflecting
part of an incoming light field due to the acousto-optic effect. Depending on
the incident angle 6;,, the deflected part has its frequency either increased or
decreased by the sound wave frequency, while the amplitude of the deflected
part depends on the RF signal strength. The angle of deflection 6, is related
to the RF signal by 2A sin 6,,; = mAg/n, where A is the wavelength of the sound
wave, Ag is the incident light wavelength, n is the refractive index of the crystal
material and m = 0,+1,£2, ... is the deflection order [54]. We use AOMs from
ISOMET and drive them with a 80 MHz dual driver in an up-down configura-
tion. In this configuration the beam is first up-shifted by 80 MHz (+1st order)
with 60% efficiency and then down-shifted again with -80 MHz (-1st order) with
60% efficiency. The dual driver ensured that the total frequency shift is exactly
cancelled. The driver has both an input for digital modulation (D mod), which
turns the driver on and off, and analogue modulation (A mod), which tunes the
strength of the modulation, and even when both inputs are zero, and there is
no standing wave inside the AOM crystal, a small portion of the incident field
will still scatter into the 1st order mode. Using both inputs in conjunction gives
the highest possible extinction ratio, where we measure ~ 120 dB. Before the
BC a flip mirror allows for the BC stage to be skipped if desired.

[4] Filter cavity lock beam fiber coupling

After the BC stage part of the beam is tapped off the be used as the locking
beam for the FC in the trigger channel. The beam is again tapped using a
HWP+PBS combo and coupled into SMF at 70% efficiency through a graded
index (GRIN) lens. An electro-optic modulator (EOM) in the beam path before
the BC stage is driven at 28.7 MHz by the SHG lockbox, to create a phase
modulation used for Pound-Drever-Hall locking. This locking scheme is used
for both SHG, OPO and FC cavities, since all their lockboxes are synchronized.
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Further details regarding the locking schemes are given in sec. 3.4.2. The fiber
coupling efficiency is not critical, since the FC only needs low power to lock and
so any reflection will be minimal.

[5] SHG cavity

The frequency doubling of the fundamental 1550 nm light field into the second
harmonic field at 775 nm is done by a nonlinear crystal placed at the waist of a
tightly focused cavity mode, resonant to the fundamental field. The nonlinear
conversion efficiency of the crystal is low (less than 1%/W) and so the cavity is
used to enhance the input field to several watts of circulating power. As a result
up to 60% total power conversion from the fundamental to the second harmonic
field is realised. The cavity uses a compact bowtie configuration with the crystal
waist between two curved mirror. The input field is coupled in through a 90%
reflective mirror, while the rest are high-reflectivity (HR) to the fundamental
field. All mirrors are transparent to the second harmonic field and so it simply
coupled out through one of the curved mirrors. Details regarding the crystal and
cavity design is given in sec. 3.1.2. The cavity is locked with the PDH locking
scheme [55] using a PZT-actuator clamped to one of the flat cavity mirrors. An
EOM in the input beam path creates a 28.7 MHz phase modulation, which is
used to derive the error signal from a photodetector signal measuring a small
part of the circulating light is leaking out through one of the high-reflector
mirror. After the SHG cavity a HWP+PBS combo and a beamdump is used
to control the power of the pump field coupled into the OPO cavity, thereby
tuning the pump rate e.

[6] OPO cavity

The parametric down-conversion of the OPO cavity is carried out by a nonlinear
crystal identical to the one used for second-harmonic generation. Here the cavity
is used to define the mode of the generated field and is designed identical to the
SHG. The pump is coupled through the curved mirrors and dumped on the
other side of the cavity. The generated fundamental field is leaked out through
a 90% transmitting outcoupling mirror. The OPO is also locked using the PDH
scheme and PZT-actuated mirror, with a locking beam coupling in through a
HR mirror into the counter-propagating direction relative to the down-converted
field. A photodetector with a 28.7 MHz resonant amplification circuit measures
the locking beam coupling out through the outcoupler mirror. The OPO lockbox
is synchronized to the SHG lockbox and so the same modulation is used. The
crystal is AR coated and has a 1.15° degrees angled facet to ensure that the



3.1 Squeezed resource generation 43

locking beam does not couple to the co-propagating direction. A probe beam
is also coupled into the OPO in the co-propagating direction to serve has a
phase reference between the down-converted field and the local oscillator during
homodyne measurement.

[7] Idler tapping and gain locking

Finally the output field of the OPO is divided into two channels, signal and
trigger, by a HWP-PBS combination. We denote the beam in trigger channel as
idler and the beam in signal channel as signal. Since the OPO output field is lin-
early polarized, turning the HWP effectively tunes the splitting ratio 7" between
the two channels. Note that in our model we assumed the signal state to be the
transmitted part, but in the experiment we use the reflection of the PBS as the
signal part, since it has a higher extinction ratio, leading to cleaner polarization
mode as compared to the transmitted part. From our model we know that the
optimal choice of T" depends on the dark count rate, but in the lab one also has
to consider the overall stability of the setup when running the experiment and
so even if a sufficiently low dark count rate would theoretically allow a very low
tapping ratio, the time required to gather enough measurement statistics could
become longer than the stability of some parts of the setup. As a starting point
we choose to tap 3% corresponding to setting 7' = 0.97 in the model, since this
value has been used in previous photon subtraction experiments [40].

When the probe beam is coupled into the OPO it will be either amplified or
deamplified by the phase sensitive parametric interaction with the pump beam
in the nonlinear crystal. The amount of amplification or de amplification relative
to the no pump level is called the gain and is given by

cos? ¢y, sin” ¢,

G(op) = e AR (3.1)
where © = €/v = \/Pjn/Pipr is the pump parameter and Py, the oscillating
threshold of the OPO. This equation can be calculated from eq. 2.24 by ex-
changing |a,|e!®» with the vacuum terms. The gain is then the fraction of the
square of the steady state solution to the cavity field with and without the pump
field. The phase between the pump and probe field is locked by tapping off 1%
of the signal field and measuring it with a photodetector. By modulating the
phase of the probe beam with a PZT-mirror, the relative phase between the
probe and pump beam can be locked, using an AC locking scheme, to either
amplification ¢, = 0 or deamplification ¢, = m/2. Consequently this locking
angle sets the squeezing angle and so in our setup we lock to deamplification
resulting in amplitude squeezing. See sec. 3.4.2 for more details regarding the
locking scheme.
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3.1.2 SHG and OPO design

Here we will present a short overview of the steps and considerations involved
in designing the second-harmonic generation (SHG) and optical parametric os-
cillator (OPO) cavities used in the setup. Further details can be found in my
master thesis [56]. In essence the design process is as follows:

1. Choose crystal material and design phase matching method to facilitate
desired nonlinear process.

2. Based on crystal specifications design an optical cavity to enhance the
nonlinear interaction.

For both steps an essential parameter to consider is the single-pass nonlinear
conversion efficiency FE,;, which is a measure of the effectiveness of the power
conversion between the fundamental and harmonic fields involved in the non-
linear process. For SHG we write P, = E,; P2 and so we would like our design
choices during step (1) and (2) to maximize F,;. In 1968, when studying the
optimization of SHG and parametric generation (PG), Boyd and Kleinman ar-
rived at a theoretical expression for E,,; in the experimentally relevant context
of focused Gaussian beams [57]:

1672d?, 1.y
¢ —« lcryhBK(0-7BaK/7§au) (32)

= €0CA3 NNy
where hpg, called the BK-h factor, is the Boyd-Kleinman focussing function
containing all the experimentally tunable parameters

h @#a Mlery E(1—p) G*K(TJr‘r Vio(r—7")— B2 (r—7")? o
(3.3)

An overview of the involved parameters can be found in tab. A.4. From the
optimization of the BK-h factor (fig. 3.5) we obtain several key insights. If
negligible absorption x = 0 is assumed then the optimal focus position is in the
middle of the crystal ;1 = 0 and there then exists both an optimal focus strength
(&ém = lery/22R) and optimal, non zero, phase mismatch (o0 = zgAk), which are
both determined solely by the crystal length. We therefore have the following
two design constraints, which are independent of non-linear process or cavity
geometry:

o The optimal focusing strength &,, = 2.837 determines the cavity design
through the optimal Rayleigh length of the resonant cavity mode zgr ,, =

Lery/26m = lopy /5.675.
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e The optimal phase mismatch o, = 0.574 determines the crystal de-
sign through the optimum wave vector mismatch Ak,, = o,/zr, =
3.255/lory.

Phase matching

The phase mismatch of non-linear process is defined as the wave vector mismatch
Ak = kip — kouy of the fields inside the crystal. For SHG and SPDC the
fields are Akspa = 2k, — ko and Aksppc = koo, — 2k, respectively, so that
Akspg = —Aksppc = (nw Nay ). This means that we will be able to use the
same crystal for both SHG and SPDC. For plane waves this mismatch should be
zero to fully utilize the crystal length, since a non zero mismatch will eventually
lead to the accumulated phase difference between the two fields exceeding 7
thereby causing the process to reverse and power to be transferred back to the
pump field. This exact length is called the coherence length l.,, = 7w/Ak. But
from the Boyd-Kleinman theory we know the optimal wave vector mismatch
Ak, for focused Gaussian beams.
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Figure 3.5: The o- and &-dependence of the BK-h factor under the assumption

that =k = u = 0, so that eqn. 3.3 reduces to a single, real-valued, integral:
hBK o_é‘ |:f§ COSO‘E:::SIHUT dT [58]

For crystal material we choose periodically poled potassium titanyl phosphate
(PPKTP) from Raicol Crystals, as their crystals had previously shown good
performance for both SHG of 775 nm pump light and SPDC into 1550 nm
squeezed light [59-61]. Here periodically poling is a method of obtaining quasi-
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phase matching (QPM) by having the nonlinearity of the crystal periodically
change sign, so that a phase grating of period A, is formed, effectively imposing
an additional momentum of G = —27/A,, to the phase matching condition.
In practice the alternating nonlinearity is achieved by periodically poling the
crystal with a strong electric field along its length, forming domains of length
Apor/2 with every other domain flipped. By carefully engineering the poling pe-
riod A, it should then be possible to fulfil the QPM condition Ak, = Ak+G.

A downside of using QPM is that the effective nonlinearity d.ys is scaled by
a factor 2/, while the upside is that periodically poling works for any crys-
tal direction, so that one with the largest nonlinearity dy can be utilized. The
principle of using periodically poling to obtan QPM is best illustrated for plane
waves, where the optimal phase mismatch is 0 resulting in the mth order QPM
condition Ay = 2mn/Ak = mleon, m € 1,3,5,.... Here the poling period
should be an odd integer number of coherence lengths. This effect is illustrated
in fig. 3.6.

In general both the dispersion and birefringence of the crystal will be tempera-
ture dependent, and so we need to know the exact temperature dependence of
refractive index to calculate the phase mismatch accurately. From the littera-
ture we use the formula obtained by Emanueli and Arie [62] for the temperature
dependence and the base indexes obtained by Fradkin et al. [63], Kato et al. [64]
and Fan et al. [65]. Further details and an overview of all involved parameters
can be found my thesis [56]. We plot the phase mismatch as a function of crys-
tal temperature and poling period to see if we can reach the optimal mismatch
with reasonable values. The results are shown in fig. 3.7. From fig. 3.7 we see
that we should be able to obtain optimal phase matching for a range of poling
periods and temperatures. In the end we choose to use a 16 mm crystal, where
Raicol recommends a poling period of ~ 24.7 um and operating temperature
of ~ 30 — 50 °C, which appears to match well with the parameters suggested
by using the Fradkin numbers. We also note that even if the poling period
is slightly off, we have some leeway in the temperature to reach the optimal
mismatch. The parameters suggested by using the Kato and Fan numbers are
quite far off from the recommended parameters, so we choose to disregard them.
We conclude our crystal analysis by investigating the dependence of the BK-h
factor on different parameters of the model 3.3. The results of this analysis is
shown in fig. 3.8.

Cavity geometry

From the optimization of the BK-h factor for our choice of crystal length
(lery = 16mm), we know that we should design our SHG and OPO cavities
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Figure 3.6: Illustration of the effect of using periodically poling to obtain quasi
phase matching for planar waves. Calculated using Fa,, o fol”y d(z)eAF2dz,
where d(z) is a dj step function along the crystal length with A,,; as period,
emulating the periodically poled nonlinearity dy. We see that the field is only
effectively build up, when the QPM condition of Apo = mlcon, m € 1,3,5, ... is
satisfied. The upper line plot shows the linear scaling of the quasi phase matched
field build-up for comparison, together with the corresponding perfectly phase
matched field build-up using the effective nonlinearity d.yy = (2/mn)dy. The
overlap of the curves shows that using the effective nonlinearity for perfect phase
matching correctly captures the effect of mth-order QPM.

such that the resonant mode has a waist size inside the middle of the crystal of
wo,m = \/Aozrm/m(N, T) = 1/Aol6 mm/(71.82 x 5.675) = 27.7 um. Of the
three main cavity geometries (linear, triangle, bowtie) we choose the bowtie, as
this geometry design has several key advantages for our purpose. Besides being
practically easy to design, build and work with due to the several degrees of
freedom, the main advantage is, from the perspective of OPO, that it supports
a running wave resonant mode, meaning that the two directions of propagation
inside the cavity does not interfere, and the output coupler mirror will be angled
relative to the output signal beam path. This means that we can use a counter
propagation lock beam relative to the signal beam and that any back reflection
from signal path, such as FC lock or LO light, into the OPO will not inter-
fere with the signal field. This both helps to reduce the contamination of the
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Figure 3.7: Phase mismatch of type-0 SHG for three different PP-
KTP crystal lengths calculated using refractive index values from literature.
Ap = Ak§heo(T) + G with AkGa o(T) = 45 |n.(3,T) —n.(\, T)| =
Ak$neo(T) and G = —21/A o

squeezed light field in the signal path and to reduce the possibility of light being
scattered into the idler path and coupling to the SSPD. The facet of the crystal
is, for the same reason, cut at an angle of 1.15°. Further details regarding the
mechanical design can be found in my master thesis [56].

Using the cavity design approach as outline in sec. A.2.2 of the appendix with
the bowtie geometry definition of tab. A.3, with crystal length [.,, = 16mm,
crystal refractive index n = 1.82, mirror curvature R = 50mm, cavity round-trip
length l.q, = 310mm and folding angle 6 = 6°, we obtain the resonant solution
shown in fig. ??. Here fixing .4, and 0 lets us vary [; as the only free parameter.
We see that with a distance of 58 mm between the curve mirrors, the resonant
mode will have the optimal waist size inside the crystal and that the low folding
angle ensures very low astigmatisme of the mode. The finesse F' = 7\/r/(1—r)
of the cavity is a similar measure of how well the cavity stores the resonating
light field and is related to the full-width at half-maximum (FWHM) bandwidth
as 2y = A, /F. The parameters of our cavity is summarised in tab. 3.1.

3.1.3 SHG performance

For the performance of the SHG cavity the metric we consider is the total
conversion efficiency of the fundamental field into the second harmonic field,
which will be determined by the nonlinear conversion efficiency E,;. The input-
output power conversion is easily measured experimentally, but in order to relate
the result into the corresponding nonlinear conversion efficiency we need to
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Figure 3.8: Dependence of the BK-h factor (eq. 3.3) on different model pa-
rameters. The temperature dependence comes from the refractive index (fig.
3.7). (top-left) Temperature has to be controlled to at least within 1 °C to
maintain a stable nonlinear conversion. (bottom-left) Even a +30% deviation
from the optimal focus, will not result in drastic reduction of the BK-h factor.
(top-right) We are not concerned with the overall wavelength dependence of
the fundamental field since our fiber laser is stable. (bottom-right) Phase
matching bandwidth of the down-conversion process. This will be important
when we design the frequency filtering of the trigger channel needed to suppress
all the frequency sideband modes of the OPO output.

consider how the intra-cavity field is related to the input power. We start with
the simple expression for the relationships between the input, intra-cavity and
reflected fields [66]

Peay Ty P'refl 1- (Tl - T)Q

P, (1-1)2 P (1—-T1)(1—r)2 (3-4)

Here T3 is the input coupler transmission, which is 0.1 for our SHG and r =

V1I=T1V1—-Ly/1— E;LZP(SW) is the total round-trip field amplitude attenua-
tion caused by the combination of outcoupling, linear loss £ and nonlinear loss
due to the frequency conversion, where E!, is the nonlinear conversion effi-
ciency without accounting for the absorption of second harmonic field in the
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Length, l.r, 16 mm
Crystal Height x width 2mm x 1 mm
Poling period, A, 27.7 pm
Operating temperature, T,, | ~ 45 °C
Crystal waist 27.7 pm
Cavity length, l.q, 310 mm
Geometry Mirror curvatures, R 50 mm
Folding angle, 0.4, 6°
Outcoupler, T} 10%
FSR, Aw 967 MHz
Spectral Bandwidth, ~ 8 MHz
Finesse ~ 60
Escape efficiency, nesc 0.98

Table 3.1: Design specifications of the SHG and OPO cavities

crystal (o/ = 0 in the model). This correction is needed since the amount of
lost fundamental field, relevant in the context of intra-cavity field attenuation,
is independent on loss of the harmonic field due to absorption. The absorp-
tion of the fundamental field can then be included in the linear loss term for
convenience. The full nonlinear conversion efficiency is then calculated using
P2 = B, (P*))? with P{*) obtained numerically from eq. 3.4. The result is

shown in fig. 3.9.

3.1.4 OPO performance

From a classical perspective the OPO performance can be benchmarked by the
observed parametric gain. The measurement is straight forward; a probe is cou-
pled to the OPO and the gain at various pump powers is recorded. From this
measurement the threshold of the OPO can be determined, which is an impor-
tant parameter since it tells us what pump power to inject for a desired pump
rate €. The results of such a measurement is shown in fig. 3.10. The threshold
is related to the nonlinear conversion efficiency by Py, = (T + £)?/4E,; [67]
and for the OPO we measure an escape efficiency of nes. = 0.97 corresponding
to an intra-cavity loss of £ ~ 0.3%. With a measured threshold of 788 mW
this should correspond to a nonlinear conversion efficiency of approximately
0.34% /W, which is seen to agree reasonable well with our result from the SHG
performance test.

From a quantum perspective the OPO performance is benchmarked by the
amount of squeezing produced, though this in reality is a benchmark of the com-
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Figure 3.9: Plot of the measured performance of the SHG cavity. We observe
a maximum total conversion of 0.63 at 350 mW, but with a resulting low con-
version efficiency of 0.18%. The obtained nonlinear conversion efficiency ranges
between 0.16% /W and 0.38% /W as seen from the insert. These values are lower
than the 0.7%/W expected by Raicol and can be attributed to a combination
of misalignment of the cavity field and irregularities in the poling period long
the crystal. The model is calculated using eq. 3.2 with d.;; as the lowest and
highest value reported in literature and the linear loss estimated by measuring
the depth of the cavity resonance dip in reflection, when the crystal temperature
is tuned outside the interaction bandwidth.

bined performance of the OPO, signal channel and homodyne detector. Since
we plan to run our experiment using the sample-hold scheme we are interested
in investigating the stability of our setup. It should of course be so stable, so
that no difference in the measured squeezing level is seen during the hold pe-
riod. To see this we record a sequence of 1000 individual time traces of the OPO
output locked to both squeezing and antisqueezing. We divide the long traces
into several shorter segments and compute the variance and power spectrum of
the noise relative to noise of corresponding shot noise segments. The results of
this analysis are shown in fig. 3.11.

We observe a maximum squeezing level of close to —5 dB at 1 —2M H z relative
to the vacuum level with a corresponding anti squeezing level at 7.5 — 8.5 dB.
The reduction in squeezing and antisqueezing at low frequencies can be con-
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Figure 3.10: Plot of the measured gain at different pump powers. Fit of eq.
3.1 gives a threshold power of P, = 788 £ 1 mW. The right axis shows the
scaling of the corresponding pump parameter x = \/ P/ Py,

tributed to phase noise of the local oscillator lock, which affects the squeezing
level more severely than the antisqueezing as seen be the identical squeezing at
1 and 2 MHz. During the measurement the coupling efficiency of the signal into
SMF was 89%, while the other measurement parameters were estimated to be
0.53 pump rate, total homodyne efficiency 0.90, escape efficiency 0.97, gain lock
tapping 0.99 which gives a total efficiency of 77%. Taking the phase noise into
account the best fit to the power spectrum are obtained using v = 27 x 6.9 MHz,
z = 0.53, n = 0.78 and ¢,. = 9° phase noise during the squeezing measurement.
Though the bandwidth appears to be somewhat smaller than expected by the
OPO design, we often get get a lower bandwidth when fitting using a phase
noise term, since they affect the shape of the squeezing trace in a similar fash-
ion and with the large phase noise used by the fitting routine the uncertainty
is large. Our two main take away conclusions is that the squeezing level seems
to stay constant during the hold time and that our measurement suffers from
large phase noise of the LO lock at frequencies below 2 MHz, which will have
to be improved.

The setup for squeezing light generation also contains an additional identical
OPO (not shown here), and has been used for the deterministic generation of a
2-dimensional cluster state [68] and later the deterministic implementation of a
multi-mode gate set on it [69].
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Figure 3.11: Typical squeezing levels using fiber coupled homodyne detector
and sample-hold measurement scheme.

3.2 Trigger channel

As we know from our model and plan of the experimental layout the job of the
trigger channel is to filter away all the undesired longitudinal modes of the OPO,
so that only photons subtracted from the central frequency mode are coupled
to the single photon detection module (SPDM) for heralding. A conceptual
schematic of the trigger channel is shown in fig.3.12. Here a linear filtering
cavity (FC) and a dense wavelength division multiplexing (DWDM) filter work
in combination to provide the frequency filtering necessary for suppression of
the higher and lower order longitudinal OPO modes, while a superconducting
single photon detector plus amplifier electronics work as the SPCM, converting
the subtracted photons into electrical trigger signals for heralding. After the FC
a free space AOM is used to protect the SSPD from saturation when running
the experiment with the sample-hold scheme, by blocking the strong idler beam
during the sample period. The refracted part of the idler beam, containing only
single photons from the central frequency mode of the OPO, is coupled into
SMF through a gradient-index (GRIN) lens and after passing the DWDM filter
leaves the optical table and is guided through 10 m of fiber into the SSPD in an
adjacent technical room. Here the inherent broadband detection of the SSPD
makes the +80 MHz frequency shift of the refracted beam by the AOM irrele-
vant.
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The FC locking beam is turned to an orthogonal linear polarization, as com-
pared to the idler beam, and coupled into the FC from the backside using a
PBS, while a second PBS on the front side couples the locking beam out again
and into a locking detector. The FC is locked using the PDH scheme (see sec.
?? for details). An isolator (ISO) ensures that neither probe light reflected on
the FC or light from the FC locking beam couples back into the OPO.

Trigger
Lspem |

Figure 3.12: Schematic overview of trigger channel

3.2.1 Frequency filtering

From fig. 3.8(bottom-right) we expect the bandwidth of the SPDC process for
a 16 mm crystal to be 5 — 6 nm corresponding to 622 — 746 GHz and with a
designed OPO FSR of around 1 GHz it is clear that many hundreds of OPO
modes will be available for the SPDC process to populate. Though in reality
the number of available modes will be smaller since both the upper and lower
mode pair will have to be simultaneously resonant within the cavity. The exact
number of available modes can in principle be calculated by considering that the
dispersion of the crystal will cause the relative resonance frequencies the upper
and lower modes to be detuned. As a result, when the detuning becomes larger
than the OPO bandwidth, the SPDC process will be suppressed, due to the
energy conservation requiring equal spacing of the modes from the fundamental
frequency. But as we shall see from the use of the DWDM filter, we need not
take this effect into account.

From our model we know that the bandwidth of our trigger filter should ideally
be several times larger than the OPO bandwidth, but it should of course not be
comparable to the FSR of the OPO. In reality it is quite difficult to construct
a single frequency filter which has both a narrow bandwidth and a very large if
not infinite FSR. To this end we choose to employ two filters; firstly a narrow
(2.2 mm) linear filter cavity with a bandwidth of ypc ~ 24 2rMHz and FSR of
Awpc = 75 2nGHz, secondly we take advantage of the SSPD being fiber cou-
pled and use a standard 50 GHz DWDM C-band filter centred at 1550 nm as a
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passive bandpass filter. An overview of the two filter spectra relative the OPO
and full SPDC is presented in fig. 3.13, where it is clear from the lower plot
that the bandpass spectrum of the DWDM allows us to disregard the reduced
SPDC spectrum as discussed above.
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Figure 3.13: Overview of the combined filtering of the filter cavity (FC)
and dense wavelength division multiplexing (DWDM) bandpass filter. OPO
bandwith is yopo =~ 8 27MHz with FSR Awppo =~ 1 27GHz, FC band-
with is ypo ~ 24 2rMHz with FSR Awpc =~ 75 2rGHz, DWDM bandwith
is v =~ 50 2rGHz and the full SPDC bandwidth is Awsppc ~ 685 2rGHz.

We measure a typical transmission efficiency of the FC of ~ 80% followed by
a typical efficiency of the remaining channel (AOM, fiber coupling, DWDM)
measured at the fiber output before the SSPD of ~ 40%. We therefore estimate
the total optical transmission efficiency of the trigger channel to be ~ 30%.
Together with an estimated SSPD efficiency of 60% the total trigger channel
efficiency is then n; =~ 20%. More effort could be made to increase this efficiency,
but from our model, with the low dark counts we are able to achieve, we expect
negligible improvements.
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Filter cavity geometry

The filter cavity is build around a Thorlabs cage system and uses two identical
500 mm curved 1/4”-inch mirrors with 7' = 0.2% transmission coatings. One
mirror is mounted together with a ring PZT-actuator in a specially designed
holder. The mirror sits in a small aluminium socket that is clamped to the
PZT-actuator by a preload mechanism. The aluminium socket allows the mirror
to sit extended forward, so that the cavity distance in principle can be made
arbitrarily short. For our measurements we set it to 2.2 mm and the cavity
finesse is ~ 1600. The holder is mounted in a typical tip-tilt stage, while the
second mirror is kept fixed without any degrees of freedom. The waist size is
calculated using the cavity design guide outlined in sec. A.2.2 of the appendix
and a plot of the design consideration is seen in fig. A.6. Further details
regarding the cavity design can be found in my thesis [56].

3.2.2 Superconducting single photon detector

To detect the photons subtracted from the squeezed vacuum signal, we employ
a fiber-coupled superconducting single photon detector (SSPD) based on a nio-
bium titanium nitride (NbTiN) nanowire cavity stack developed at the National
Institute of Information and Communications Technology in Kobe, Japan [70].
The stack consists of a few nm thick meandering NbTiN nanowire sandwiched
between a layer of SiO, with a ~ 100 nm thick Ag mirror on top, and a layer
of SiOs towards the Si substrate, forming a doubled sided cavity around the
nanowire to increase the absorption probability [71]. The filling factor of the
nanowire have been optimized for high system detection efficiency (SDE) and
high counting rate simultaneously for 1550 nm [72]. The reported specifications
of the sensor are a SDE of ~ 70%, with a maximum timing jitter of 68 ps and
dark count rate of 100 Hz. The sensor package is housed in a Gifford-McMahon
(GM) cryocooler [73], which is pumped to a vacuum pressure of ~ 5 x 1075 Pa
and cooled to ~ 2 K by a helium compressor.

An overview the SSPD and readout electronics is shown in fig. 3.14. A Battery
powered voltage source supplies a steady bias current to the SSPD nanowire
through the dc arm of a bias tee. The nanowire is cooled below its critical
temperature and the the voltage is set so that the bias current is just below the
critical current. An absorption of a photon will then create a small resistive
hotspot at the absorption location, causing the current density to rapidly in-
crease in the vicinity of the hotspot end eventually exceeding the critical density.
This causes a resistive barrier to form across the nanowire and, aided by joule
heating from the bias current, eventually blocking the current flow. The drop
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in current is readout as a voltage pulse through the AC arm of the bias tee and
amplified by a low noise amplifier. Even after the amplifier the voltage pulse is
quite small and short and we therefore use a discriminator to convert the pulse
to a signal more suitable signal for triggering an oscilloscope. The shape of the
pulses after the amplifier and discriminator can be seen in fig. 3.15.
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For every input pulse the discriminator can output a pulse on two different chan-
nels at the same time and so we use one channel as the trigger for an oscilloscope
during data collection and the other we connect to a 8-channel Counter/Timer
Device (PCI 6602 form National Instruments) installed on a lab computer. From
a homemade LabView program we then monitor the count rate and collect count
statistics when running an experiment. The program is especially useful since
we also input the hold signal and program one counter to use it as a gate, thus
allowing us to monitor both the total count rate and the equivalent hold period
count rate. It is this count rate we use to estimate the modal purity.

During the measurements for the cat state transmission projected presented
in cha. 4 we observed typical SDEs of ~ 60% and could maintain count rates
of up to a few million Hz before latching with dark count rates between 10 and
50 Hz. Here dark count rate, (An?,), is considered to be the observed count
rate when the SSPD fiber is disconnected from the trigger channel, not to be
confused with the fake count rate, (An%ake% which we consider as the observed
count rate when running the experiment and blocking the OPO pump beam.
Both rates are counted during the hold period, as mentioned above. This rate
therefore includes the dark count rate and the counts originating from all other
sources than subtracted signal photons. As we use LED lights in the laboratory
very little ambient light couples to the SSPD and the fake count rate is there-
fore mainly caused by scattered light probe and lock light. To minimize the fake
counts we installed several sections of blackout hardboard to wall off the parts
of the setup containing the strongest beams, as well as encapsulating the SSPD
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fiber coupling setup.

3.3 Signal channel

As motivated in the introduction the aim of the non-Gaussian project is to
successfully transmit a CV non-Gaussian quantum state between two physically
distant locations. A successful transmission is benchmarked by the survival of
non-Gaussianity through the verification of a measurable Wigner negativity at
the receiver side. The desired setup for the signal channel is therefore quite
straight forward: after a small part of the beam is tapped off for the trigger
channel the signal beam is coupled into SMF through an anti reflective (AR)
coated graded index (GRIN) lens. The non-Gaussian signal state is then trans-
mitted through a fiber channel, to the receiver location where it is characterized
by quantum tomography. The tomography is performed on quadrature statis-
tics collected by measuring the state with homodyne detection at various locked
local oscillator (LO) angles. To perform the state characterization at the re-
ceiver location a portable fiber coupled homodyne measurement station (HMS)
with all the necessary components for locking, triggering and data collection is
used. The only signals needed to be transmitted between the sender (lab A) and
receiver location are then the signal state, LO and trigger signals. An overview
the signal channel is shown in fig. 3.16 and a description of the three different
configurations used for fiber network channel is given in sec. 3.3.2.

To transmit the electrical SSPD trigger signals a electrical-to-fiberoptic (E — O)
converter from Highland Technology is used to convert the signals to 1310 nm
optical TTL pulses, which are then combined with the LO on a 1310/1550 wave-
length division multiplexer (WDM) and coupled into a separate SMF channel
adjacent to the signal channel. On the HMS an identical WDM and correspond-
ing fiberoptic-to-electrical (O — FE) converter first splits the LO and trigger
signals and then converts the trigger pulses back to electrical TTL signals. The
E — O conversion happens with a < 250 ps risetime, < 12 ps typical RMS link
jitter and total propagation delay of 1.2 ns, while the O — E happens with a
< 750 ps risetime, < 12 ps typical RMS link jitter and total propagation delay
of < 10 ns. The low jitter time is especially important to ensure that the photon
subtracted part of the homodyne photocurrent arrives at the digital sampling
oscilloscope (DSO) a fixed delay relative to the arrival of a SSPD trigger click. If
the trigger delay varies, the photon subtracted part will not appear at the exact
same point in time of the recorded time traces. As a result the temporal mode
function can not be placed correctly for all time traces, leading to additional
background squeezed vacuum being included ultimately reducing the observable
Wigner negativity.
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Figure 3.16: Schematic overview of the signal channel

3.3.1 Homodyne measurement station

The HMS relies on a SMF fiber based homodyne measurement setup. Here both
signal and LO beams are SMF coupled and interfered on a fiber 50:50 beam-
splitter (BS) before directly outcoupling onto the homodyne detector diodes
through GRIN lenses. The main advantage of the fiber setup is that almost
perfect mode overlap between the signal and LO is inherently guaranteed by the
fiber BS and with carefully taped SMF fibers the polarization is well maintained
leading to close to unity homodyne visibility being achievable using manual po-
larization controller. In order to scan the phase of the LO we use a homemade
fiber stretcher, which is based on a 3D printed, Pacman like, structure with a
PZT-actuator stack placed in the mouth of the Pacman and the fiber tightly
wound around the circumference (see fig. A.12). Applying a voltage to the
PZT-actuator then pushes the structure apart stretching the fiber, leading to
a phase change at the fiber output and by making the radius of the Pacman
larger than the critical bending angle of the fiber, the fiber stretcher introduces
no additional losses, besides the unavoidable 0.18 dB/km propagation loss of
SMF-28 fiber. To implement the arbitrary phase lock, AC/DC lock for short,
two fiber stretchers are used: one for modulating the LO phase and one for
scanning and locking. A thorough description of the AC/DC locking scheme is
given in sec. 3.4.2.

The HMS consists of a two-level 300 x 450 mm optical breadboard tower hous-
ing the homodyne detector, outcoupling GRIN lenses, 50:50 coupler, manual
polarization controller and two fiber stretchers on the upper level together with
the WDM, O — FE converter and Red Pitaya board on the lower level. The
breadboard tower is placed on top a rolling cart, with the required electrical
components on a lower shelve. These are dual lab power supplies to provide
the £9 V and +19 V required to power the homodyne detector and a pream-
plifier. The preamplifier together with a high-voltage amplifier (HVA) amplifies
the 0 — 2 V output of the Red Pitaya to the 0 — 150 V range permitted to drive
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the fiber stretcher PZT-actuators. A function generator (FG), identical to the
FG in lab A, is used to generate a similar sample-hold signal in lab B. The two
FGs are not synchronized, but by carefully detuning the frequency of the lab B
FG and adjusting the phase, the two sample-hold signals can be overlapped and
drift by only ~ 10 us over 2 mins. A network router to connect a laptop to the
Red Pitaya and DSO to control the AC/DC lock and program the measurement
procedure.

Figure 3.17: Photographs of the HMS placed in lab C (bld. 340)

We know from the theoretical description of homodyne detection (sec. 2.4) that
the measurement hinges on the precise cancellation of the classical laser noise of
the local oscillator. For a free-space homodyne setup this cancellation is usually
achieved by carefully tuning the splitting ratio of the interference beamsplitter,
but tuning the coupling ratio of a fixed 50:50 fiber coupler is not possible and so
any asymmetry in the splitting ratio has to be balanced by attenuation of one
of the fiber arms after the coupler. To this end we use a homemade 3D printed
fiber attenuator, which consists of a small solid structure with a channel for the
fiber, raising it a few mm above the table. The channel has a short gap with an
arm piece reaching over. The end of the arm piece is fixed to the table with an
M6 screw and by turning the screw the arm piece is lowered, thereby pushing
down on the fiber across the gap inducing bending loss. The amount of loss is
then controlled by the screw (see fig. A.13).

To reduce optical losses the outcoupling GRIN lenses are spliced to the 50:50
coupler and from the LO side we measure a 48.1% and 47.8% transmission
efficiency out of the diodes. The exact splitting ratio is also very slightly polar-
ization dependent and due to the high gain of the HD this leads to a measurable
change in DC output when adjusting the LO polarization during HD visibility
optimization. And since the polarization is changed whenever a fiber mating
sleeve has been disconnected, we routinely have to reoptimize the visibility and
rebalance the HD by adjusting the attenuation. From sec. 2.4.1 we know that
for small asymmetry in the splitting ratio the attenuation required to balance
the HD leads to a loss corresponding to the asymmetry ratio. We therefore
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estimate the typical optical loss of the HD, before detection, to be 5% and a
99% visibility.

Homodyne detector

Besides the direct noise cancellation other important performance metrics of
a homodyne detector (HD) is the quantum efficiency of the diodes, detection
bandwidth and noise clearance of the electrical circuit. The detection efficiency
should be as close to unity as possible to not impart additional loss during
the detection process and the bandwidth should be large enough to detect all
frequency components of the measured field. Finally the detector circuit should
handle a high enough LO power to provide a flat frequency response across the
relevant bandwidth range at a noise level far above the electrical circuit dark
noise. To meet these requirements we use high quantum efficiency AR coated
100 pm diodes optimized for 1550 nm at a 10 — 15° angle of incident. In order
for the photocurrents to be correctly subtracted, the diodes are placed close to
each other on opposite sides of the HD PCB. A simplified schematic of the HD
circuit is shown in fig. 3.21(a). Here the difference photocurrent is converted to
a voltage signal by a trans-impedance amplifier stage and the signal split into
a DC and 100 Hz highpass filtered AC output. To confirm that our detector
is correctly shotnoise limited across its bandwidth, we measure the balanced
noise for different LO powers check that the noise power scales linearly with
the optical power. From the measurements we confirm our designed bandwidth
of 30 MHz and find that we have 20 dBm of clearance between the electronic
noise and shot noise when using a LO power of 1 mW. By ensuring proper
focus of the light into the HD diode and comparing the optical input power to
the output voltage we estimate a 7y =~ 97% quantum efficiency of the full HD
circuit. To total efficiency of the homodyne measurement is therefore estimate
to be 7,4 = 0.95 - 0.992 - 0.97 =~ 0.90.

3.3.2 Measurement configurations

Here we give a description of the three different network configurations and the
accompanying modifications of the HMS used for each.
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Configuration (1)

Here the network channel is a ~ 1 m SMF fiber placed on the same table as
the non-Gaussian state generation setup. We measure the state using only the
detector part of the HMS and place the two-level optical breadboard tower on
the optical table on pedestals. We further bypass the electrical-to-optical and
optical-to-electrical conversion of the trigger signals and feed them directly to
the DSO and reuse the 50 kHz gain modulation of the probe beam to generate
the AC locking signal for the AC/DC LO lock. Never leaving the optical table
results in the setup having excellent long term phase stability, as seen from the
squeezing measurements in fig 3.11.

Configuration (2)

Here the network channel is a 60 m SMF connecting lab A to an adjacent lab B.
The fiber is pulled through a ventilation tube and into a basement corridor and
placed in a standard cable try running along the corridor ceiling. Inside lab A
and B the fiber is carefully taped to reduce phase noise, while no special precau-
tions are taken to secure the fiber along the corridor. A map of the basement
corridor and the fiber connection can be seen in fig. A.7 of the appendix. Here we
measure a channel efficiency of ~ 95%. The less than unity efficiency is mainly
caused by the APC/APC couplings in mating sleeves. In general we find that
the efficiency for SMF APC/APC connections can very between 100%and90%,
that there can be difference between mating sleeves, that disconnecting and re-
connecting the same fiber from the same sleeve does not guarantee that same
efficiency and that some fibers, due to imperfections of the fiber tip, never can
be coupled with high efficiency using mating sleeves. The precise estimation of
optical efficiency therefore becomes difficult when many connection are involved.

For this configuration we first used a homemade fiber modulator to modulate
the phase at 20 kHz, which provided a clear AC locking signal in lab B. The
modulator consisted of stripping the ends of two fiber pigtails and splicing them
together without adding a protective sleeve leaving roughly 2 cm of exposed
fiber. The bare fiber was then glued to the feet of a U-shaped piece of 3D
printed material with a PZT-actuator element squeezing in between the feet be-
low the fiber (see fig. A.13. Modulating the PZT-actuator length then pushed
the feet apart thereby stretching the fiber and inducing a phase shift.

While the design does work, the exposed fiber is extremely delicate and in our
experience both samples we assembled broke within a few hours of use. Instead
to chose to use a second fiber stretcher, from which we found a resonance at
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14 kHz to give the best result. We also tried to modulate and lock with a single
fiber stretcher, but due to the scanning of the PZT-actuator during calibration
the AC error signal would be uneven across the scan, thereby prohibiting correct
calibration.

Configuration (3)

Here the network channel consists of a 70 m SMF connecting lab A to a node
(B307) of the DTU campus fiber network. From there a connection is patched
through two other nodes into a separate building (340) on campus. We denote
the technical room in which the B340 node is placed as lab C and use a ~ 3 m
SMF fiber made from two spliced SC and APC pigtails to couple out of the B340
node and into the HMS. An overview of the entire channel is sketched in fig. 3.18
and a map of the campus network can be seen in fig. A.8. Including the initial
70 m fiber we estimate the total channel length to be ~ 400 m. The patched
connection in which the LO and trigger signals are transmitted consists of 10
years old fibers and we measure a total transmission efficiency, from incoupling
in lab A to outcoupling in lab C (before the HMS), of ~ 75%. The connection
in which the Signal is transmitted uses newer fibers and here we measure an
efficiency of ~ 90%. We also find that cleaning the SC/SC couplings at each
network node greatly improved the efficiency and so this should be done for any
network channel transmitting sensitive quantum states.

To improve the AC locking signal we modify the HMS by removing the sec-
ond fiber stretcher and instead use a fiber coupled EOM to generate the phase
modulation. But since the EOM uses PM fiber we have to use a fiber polariza-
tion controller and polariser before the EOM in order to rotate the polarization
into the PM fiber and maximize the transmission efficiency. With the polariza-
tion controller we get a transmission efficiency of the LO through the polariser
and EOM of ~ 60%.

DTU campus fiber network (400m)

B307 B341 B340
LO + trigger HXE-341 HXE-307  HXE-340 HXE-341 | :LO + trigger
100% H 6607 #12 6607 #12 #9 #9 3 75%
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Figure 3.18: test
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3.4 Experimental control

An integral challenge to all quantum optics experiments is the stabilization of
optical phases and cavity lengths. In general, even on a damped optical ta-
ble and with sturdy optics mounts or taped fibers the path lengths of different
beams are always drifting slightly causing the relative phases to fluctuate. Ac-
tive feedback is therefore needed to lock the relative phase between interfering
beams. The same is true for optical cavities, where it is typically the case the
master laser frequency is much more stable than the cavity length (resonance
frequency). For a beam to couple resonantly with a cavity, the optical length of
the cavity therefore has to be locked to the resonant length defined by the laser
frequency.

The general scheme for such locks is a close loop control system, where the
interference (or cavity resonance) signal is monitored and used to derive an
error signal that is fed to an proportional-integral-derivative (PID) controller
which drives the physical feedback mechanism. An excellent introduction to
practical feedback control for experimentalist is [74].

3.4.1 Red Pitaya and PyRPL

In our experimental setup all such locks are handled by Red Pitaya (RP) field-
programmable gate array (FPGA) boards running the PyRPL (Python Red
Pitaya Lockbox) software package [75]. Besides the FPGA chip, the RP is
equipped with 2 x analog input and output SMA ports, sampled at 125 MHz us-
ing 14 bits. The PyRPL package provides high-level functions and user-interface
in python together with a custom FPGA design in Verilog, which implements
the various digital signal processing (DSP) modules used for the feedback con-
trol systems - lockbozes for short. These modules include a two-channel oscil-
loscope, two arbitrary function generator, four PID controllers with four-order
filters, three demodulation (IQ) modules, an infinite impulse response (IIR) fil-
ter and a network and spectrum analyser. On a lab computer we therefore have
a programmable interface with real-time display and tuneability of all our locks
and lockbox parameters. A photograph of the RP setup can be seen in fig A.10
of the appendix.
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mirrors, connected to the PID output through a HVA. In practice we do not
use the differential (D) parameter of the PID module and optimize the P and I
values by hand.

The exact same locking scheme is used to lock the OPO cavity. But by syn-
chronizing the clock of the SHG and OPO RP boards, the OPO RP does not
need to output any modulation signal to the EOM and can reuse the 27.8 MHz
phase modulation to generate the error signal.

FC locking

The lockbox used for the FC lock is shown in fig. 3.19(b). The FC RP is also
synchronized to the SHG RP, so that the same 27.8 MHz phase modulation
signal can be used to lock the FC using the PDH scheme. But due to the
high finesse of the FC compared to the SHG and OPO cavities and the finite
resolution of the RP DAC a more elaborate locking procedure is used. An error
signal is generated in the usual fashion via demodulation, but is then fed to two
different PID modules whose output are connected to an external adder box.
Before adding the two signals, one arm of the adder is amplified with a low gain,
while the other arm is amplified with a high gain. The idea is to use the fine
(low gain) PID to handle small high frequency fluctuations and the course (high
gain) PID to handle the slower and larger drifts as well as scanning the cavity
length. The locking procedure is as follow:

1. The fine PID is inactive and the course PID is set to scan the cavity length
slowly (low P and I). A python timer in PyRPL is set to check the input
signal value every 10 ms.

2. Once the value is at 50% of the resonance peak height the fine PID is and
the course P, I, lockpoint and filter settings are changed.

3. If the lock is lost (input signal goes low) the locking procedure is immedi-
ately repeated.

A 10 Hz LPF of the course arm is also included in the adder box, which can
be activated by the RP. But in practice we found that switching the filter on
caused the lock to break, due to a slight change in phase delay of the course arm
relative to the fine. And in general we could maintain a stable lock by tuning
the PID parameters and relying on the digital LPF of course arm.
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Gain phase locking

The lockbox used for the gain lock is shown in fig. 3.19(c). It implements a AC-
locking scheme, similar to the PDH scheme used for cavity locking. As described
in sec. 3.1.1 a PZT-actuated mirror in the probe path is used to modulate the
probe phase at f, = 50 kHz before the OPO. After the OPO the probe is mea-
sured by tapping 1% off from the signal path. Through the parametric gain the
input signal at lockbox is then proportional to cos(¢, + ¢4 + M cos(27 fpt)),
where ¢, is the global phase of the down-converted field equal to the pump
phase, ¢, is the global probe beam phase and M is the modulation depth,
which is assumed small compared to the amplitude of the interference fringe.
Disregarding the high frequency part we call this signal the DC signal, since
it is obtained directly without any modulation. By demodulation (convoluting
with cos(27wf,) and low-pass filtering) a signal proportional to —sin(¢, — ¢p)
can be obtained. We call this signal the AC signal and use it as the error signal,
since it both centred around 0 due to the LPF and is shifted 90° relative to the
DC signal. Locking the error signal to 0 then corresponds to locking at the top
(amplification) or bottom (de-amplification) of the interference signal between
the probe and pump beam. Changing between the two locking regimes is simply
done by changing the sign of P and I in PyRPL. The only practical difference
to the cavity locks is here then, that the both the modulation and feedback is
performed by the same PZT-actuated mirror.

To allow for the PZT-actuated mirror to operate at high frequencies a design
based on [76] was used. Here a quarter inch mirror and single-disk (low capaci-
tance) PZT is glued to a tapered brass base with lead filling. The small mirror
and tapered interface effectively reduces low frequency drumhead modes, while
the lead filling dampens sharp longitudinal resonance modes of the structure.

LO phase locking

The lockbox used for the LO lock is shown in fig. 3.19(c). It implements a
AC/DC-locking scheme, where a DC and AC error signal is combined to form
a new error signal, shifted by an arbitrary phase in between the two. Since the
gain lock sets the relative phase between the pump and probe beam ¢ = ¢, —¢,,
locking the phase between the probe beam and LO ¢, — ¢, effectively locks the
relative phase between the LO and squeezed vacuum signal field.

From the DC output of the homodyne detector both a DC and AC error signal
is derived and fed to individual PID modules. The AC signal is obtained by
modulating the LO phase with a fiber stretcher at f;, = 14 KHz and demodu-
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lating. In both PID modules the I and D values are set to 0 and the P value is
used to tune the amplitude of the error signal. By modifying the FPGA code,
the output of the PID modules are hardcoded to be summed and used as input
to a third PID module. The PID filters should be chosen so that the DC signal
is a clean cosine and the AC signal a clean sine. By setting the lockpoint of the
DC PID any detector offset can be compensated and by tuning the quadrature
factor applied in the IQ module after the demodulation the amplitude of the
AC signal can be scaled to the DC signal amplitude.

Once the DC and AC error signals have been properly calibrated, setting Py, =
sin(f) and P,. = cos(0) leads to the input signal of the third PID being a sine
shifted by 0 relative to the AC signal. Thus setting § = 0 leads to pure AC lock-
ing corresponding to locking to the squeezed quadrature, while § = 90° leads to
pure DC locking corresponding to locking to the anti-squeezing quadrature. The
advantage of this method is that it can be implemented using a single RP board,
while the downside is that it requires precise calibration of the error signals to
lock to the correct intermediate phase. If either the pump, probe or LO power
is changed the locking parameters also have to be reoptimized. Fortunately,
thanks to PyRPL, most of the calibration can be automatized.

3.4.3 Sample-hold scheme

When running the experiment we use a sample-hold scheme, where first all lock-
ing beams and stabilization feedbacks are active during a sample period and then
turned off and held constant during a hold period, where measurement data is
collected. When running the non-Gaussian experiment we use a sample-hold
period of 10 ms, where the locking beams are on for 7 ms, followed by a 0.3 ms
dead time before AOMs3, in the trigger channel blocking the SSPD, is opened
for 2.5 ms and data is collected followed by another 0.2 ms dead time. The
scheme is outlined in fig. 3.20.

Using PDH and AC locking schemes and an on/off switching of the locking
beams faster than the drift and bandwidth of the locks, it is in principle not
necessary to modify the locks as they will not "see" that the error signal is
turned on and off. But since we are using rather slow 100 Hz chopping with
a 3 ms hold time, we modify the PyRPL FPGA code in two ways to accom-
modate; (1) when the sample signal, given to the RP through the extension
connectors, is low corresponding to the lock beams being off, the input value of
the PIDs is set to 0 so that they keep a constant output value and (2) when the
sample signal is high again there is a 1.05 ms delay until the PID output value is
updated, ensuring the error signal has time to build up and not cause a sudden
jump of the lock due to drifts during the hold period. The 1.05 ms corresponds
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to the time needed when a 1 kHz LPF of the error signal is used. The signals
used to drive the sample-hold scheme are generated by a 2-channel FG, shown
in fig. 3.21. Here channel 1 is the sample signal (100 Hz 70% duty cycle square
wave) and is given to the RPs and dual driver of the beam chopping AOMs and
channel 2 is the hold signal (100 Hz 25% duty cycle square wave) and is given
to the SSPD AOM and the DSO as the qualified trigger for when to trigger on
SSPD clicks.

— - 1.05ms 0.2 ms—>» - 0.3 ms—> =
-« 6.0ms > -« 2.5 ms —>
. Sample Hold
delay
ov
-1.5V - B R R el by
\ Y J Y J
Clicks from scattered lock and probe beam light Subtracted photon clicks

Figure 3.20: The sample-hold scheme. When sample is high lock beams and
feedbacks are on, when sample is low lock beams are off and feedbacks kept
constant. When hold is high the SSPD is open and the DSO triggered on the
SSPD clicks. The high count rate during the sample period is due to strong lock
beams scattering through the SSPD AOM, even when it is off.
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Figure 3.21: (a) Simplified homodyne detector circuit. A trans-impedance
amplifier (TTA) stage converts the subtracted photocurrent of the two diodes
to a voltage, which is then split into a DC and AC arm. The AC arm is high-
pass filtered at 100 Hz to remove any technical DC noise. (b) Overview of the
signals used to drive the sample-hold scheme. Channel 1 is the sample signal
and channel 2 is the hold signal. The A mod signal of the dual driver is amplified
to be 0 — 10 V and the gate signal of the fixed driver is left floating.
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CHAPTER 4

Non-Gaussian State
Transmission

In this chapter the data collected from the non-Gaussian state transmission
project will be analysed and the obtained results compared to the theoretical
model developed in sec. 2.3.2. The data presented will the best obtained from
three different experimental configurations. In configuration (1) the homodyne
stage was placed in lab A on the same optical table as the squeezed light gen-
eration stage, in configuration (2) the portable homodyne station was placed in
a separate adjacent laboratory (lab B) and in configuration (3) the station was
placed in a completely separate building (lab C). The technical details of the
configurations are given in sec. 3.3.2. For all configurations the data sets yield-
ing the best results, namely the lowest obtained Wigner negativity, are used for
the analysis.

4.1 Experimental run and data collection

When running the experiment our aim is to produce photon subtracted squeezed
vacuum states and subsequently verify the quality of those states. To this end we
will employ quantum state tomography using data collected via homodyne mea-
surement in order to reconstruct the density matrix and Wigner function of the
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generated state. The negativity of the Wigner function will be our benchmark
for the performance of our experimental setup. In order for the tomographic
reconstruction to be successful we will need both sufficient azimuthal resolu-
tion and statistics of the measures state. Based on the analysis of sec. 2.5, we
choose to collect 5000 traces at each of six equally separated angles; 0°, 30°,
60°, 90°, 120°, 150°. Since the photon subtracted squeezed vacuum state is
m-symmetrical, only data between 0° and 180° needs to be collected. From the
model we expect the temporal mode of the photon subtracted squeezed vacuum
state to extend roughly 60 ns in time, and therefore choose a trace length of
1 ps with a sampling rate of 500 MS/s, giving a time resolution of 2 ns. Saving
a long enough time traces is beneficial for two reasons; firstly the trace has to
be long enough to encompass any potential timing delay between the SSPD
trigger signal and homodyne photocurrent corresponding to the temporal mode
reaching the oscilloscope and secondly it will allow us to extract information
about the unconditioned squeezed state away from the signal temporal mode.
The experiment is run using the setup in described in cha. 3. Running the
experiment consists of:

1. Lock SHG, OPO and FC cavities and then lock the parametric gain to
deamplification as described in sec. 3.4.2.

2. Set the OPO pump beam power and transmittance of the tapping beam-
splitter (3%).

3. Engage the sample-hold scheme in lab A. For configuration (2) and (3)
synchronize the locally generated sample-hold signal to the lab A signal
using the SSPD trigger signals as reference.

4. Set the HD DC signal to zero offset by attenuation and calibrate the
homodyne AC/DC lock as described in sec. 3.4.2.

5. Trigger the oscilloscope with the SSPD clicks using the hold signal as a
qualifier and set the oscilloscope to record a sequence of time traces.

6. For each desired phase angle lock the LO phase and record a measurement
sequences.

7. Block the signal channel and record a shot noise sequence.
8. Block the LO and record an electronic noise sequence.

9. Block the OPO pump beam and note down the SSPD fake counts.

Before running the experiment other parameters of the setup should also be
checked and optimized if necessary. Typically this includes the OPO threshold
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(optimized through pump beam alignment and crystal position and tempera-
ture), fiber coupling to the signal GRIN lens, LO polarization for HD interfer-
ence, GRIN lens coupling to the HD diodes, shielding position to reduce SSPD
fake counts as well as locking parameters of cavity and phase locks.

4.2 Data analysis

The data analysis consists of three main steps. Firstly we use the portion of the
time traces away from the signal temporal mode to compute power spectrum
of the quadrature fluctuations at the different measurement angles of the un-
conditioned "background" squeezed vacuum. By normalizing to the shot noise
spectrum we can then perform curve fitting using the power spectral density
formula 2.31 to check if the fitted parameters correspond to the measurement
settings. Secondly we determine the shape of the temporal mode function, which
we will use to extract the quadrature values from our time traces. Each time
trace results in a singular value and so for each measurement angle we build a
distribution of quadrature values. Finally we employ the maximum likelihood
algorithm, as explained in sec. 2.5, on our set of distributions in order to re-
construct the density matrix corresponding to the quantum state most likely to
have produced those exact statistics. From the resulting density matrix we can
then directly use eq. 2.10 to calculate the states Wigner function and (hope-
fully!) confirm the presence of Wigner negativity. The reconstructed Wigner
function also serves as an illuminating point of comparison to our theoretical
model.

4.2.1 Fitting of unconditioned squeezed vacuum

Before computing the power spectrums we need to determine the position of the
photon subtraction event within the time traces. We find the event by computing
the time dependent quadrature variance (Agy(t)?) of the traces locked to the
Z and p quadrature, as we expect the noise variance of the photon subtracted
state to be larger than the surrounding squeezed vacuum. This is shown in
fig. 4.1, where we clearly see a large increase in the noise variance of the anti-
squeezed trace as well as a minor increase in the squeezed noise variance. The
negative offset of the peak relative to the oscilloscope trigger time (¢t = 0) is
due to the timing difference between the arrival of the homodyne photocurrent
of the conditioned state and the electrical trigger signal from SSPD electronics.
The shape of the peak also reveals some hints about the correlations between
the signal and trigger fields and, as we shall see in the next section, can serve
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as a guide to determining a suitable temporal mode function.
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Figure 4.1: (left) Noise variance of the vacuum, squeezing and anti-squeezing
traces of the Dy data set. The large peak in the anti-squeezing trace at —192 ns
indicates the photon subtraction event. (right) Full normal ordered autoco-
variance matrices of the squeezed and anti-squeezed quadrature, calculated by
subtraction the shotnoise covariance matrix.

The variance traces of 4.1(left) could be modelled by taking the expectation
value of the convolution of a filter function, corresponding to the homodyne
detector impulse response, across the signal quadrature correlations after con-
ditioning. With the conditioned state located in the first half of the time traces
at —192 ns relative to the trigger time, we choose to use the second half of the
time traces to compute the background noise power spectrum. This procedure is
followed for all the presented data sets. We note that the diagonal of the covari-
ance matrix describes the time dependent normal ordered quadrature variance
(: AG(t)? :) = (: G(t)4(t) :). From our initial test of a squeezing measurement
we expect our LO lock to suffer from some phase fluctuations and include this
in our model of the power spectrum by assuming that the actual phase locking
point is a normal distribution with a small standard deviation ¢ and that the
fluctuations can be different for the AC and DC lock. From [77] this corre-
sponds to a phase offset in the locking angle of ¢ when locked to squeezing and
antisqueezing. We therefore modify eq. 2.31 to reflect this

5’(9) = [Sw cos? 50, + Sp sin? 69dc} cos? 0
+ [Sp c0s? 804 + S, sin? (59dc] sin? 0 (4.1)

As described in sec. 3.4.2 the AC/DC locking scheme requires precious calibra-
tion of the AC and DC error signal for the locking points in between 0° and
90° to be accurate. We therefore choose to first fit only the squeezing and an-
tisqueezing traces using eq. 4.1 to obtain en estimate of the bandwidth, pump
rate, efficiency, ac and dc phase fluctuations. Afterwards we use the resulting
fitting parameters to fit a phase locking offset of the {30°,60°,120°,150°} traces.
The result of this analysis is shown in fig. 4.2.
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Figure 4.2: Power spectrum fitting of background squeezed vacuum of dataset
Dy (left) and Dj (right). The dotted lines indicate the expected position of the
{30°,60°,120°,150°} traces based on the {0°,90°} fit. The fitted locking angles
of Dy are seen to match well with the intended locking angles, while the Dj
fit show both a significant offset from the intended locking angle and a large
mismatch between the symmetrical angles.

In order for the fitting routine to estimate uncertainties the phase noise of the
DC lock is fixed to 0 during the fit (¢q. = 0). This is justified as the result of
the fit is unchanged by including it or not, as its effect is negligible compared
to the phase noise of the AC lock ¢4.. The fitting results are:

v =79+ 0.2 MHz v3 = 7.5+ 0.2 MHz
e1 =048 +0.02 v, €3 = 0.49 + 0.02 73
Ns.1 = 0.76 4 0.05 Nes = 0.73 + 0.05
Gae1 = 4+ 3.5° bacs =114 1.2° (4.2)

The uncertainties are estimated as the 95% uncertainty interval and the fits
are generally seen to match the measured data well. The uncertainties of the
fitted angles are all within £1°. The difference in OPO bandwidth between the
two measurement series is a result of the large phase fluctuations, which causes
the fitting routine to be slightly over parametrized as discussed in sec. 3.1.4.
The fitted pump rate agrees reasonably well with the 200 mW of 775 nm pump
power used for the measurements and the estimated OPO threshold of 788 mW,
as 1/200/788 =~ 0.5. The fitted efficiencies are also within range of the expected
loss, based on the estimation of the loss budget from sec. 3.1.4. But it is worth
keeping in mind that when fitting with both the bandwidth ~, pump rate ¢, loss
1 and squeezing phase noise ¢, the fitting routine is over parametrized and so
the fitting result can not be trusted as the true values of the measurement. We
therefore only only on the obtained numbers as rough estimates and as a check
that the automated measurement process was carried out correctly. Our main
take away is e.g. that the AC/DC lock of the homodyne measurement seem to
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work correctly for configuration (1), where the measurement is done on the same
optical table and low phase drifts of the signal and LO is expected and that for
configuration (2) the change of AC locking mechanism and an increased phase
drift from the long fiber channel between the two rooms cause the AC/DC lock
to become unstable.

4.2.2 Choice of signal temporal mode function

In order to perform the tomographic reconstruction of our state we need to
extract quadrature values from our time traces. As described in the derivation
of our theoretical model this is done applying a mode function f5(¢) to the time
trace and integrating it. Each trace then results in a single quadrature value.
The mode function should ideally completely overlap the true temporal mode
of the conditioned state for the tomography to give the best result. In order to
determine this optimal mode function shape we follow two approaches: firstly we
choose three different double-sided exponential functions and perform the full
tomographic reconstruction while varying their bandwidth parameters to find
the mode shape that results in the largest Wigner negativity, secondly we employ
the slightly more elegant approach of expanding the autocovariance function into
eigenfunctions and using the function corresponding to the largest eigenvalue as
the mode function. This approach relies on the conditioned state having higher
variance than the background squeezed vacuum and was first introduced by
Morin et al. in the context of continuously measured time traces [78]. This
approach has been used in previous photon subtraction experiments [79, 80] to
provide the optimal mode function and have recently been expanded to also
include complex mode functions [81]. To perform the eigenfunction expansion
we consider our data as not continuous, but instead discretely binned in time due
to our 2 ns measurement resolution. In the discrete scenario the eigenfunction
expansion turns high-dimensional principal components analysis (PCA) [82],
where we have 1000 dimensions corresponding to the 1 us measurement time.
An excellent description of this equivalence is given in the master thesis of Larsen
[83]. The result of using PCA on the covariance matrices in fig. 4.1 is shown in
fig. 4.3.
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Figure 4.3: (left) Eigenvalues of the covariance matrices of D2. (middle)
Corresponding eigenvectors of the largest and second largest eigenvalues. Red
and blue is for the p and & quadrature respectively. (right) The corresponding
normalized mode function. The dotted line is the leading eigenvector and solid
line is square of that, while the red is the naive guess with a bandwith of
7.5 2rMHz.

From fig. 4.3 we curiously see that the leading eigenvector is quite broad com-
pared to the naive guess and that its square looks more reasonable. This can
be explained by the fact that the PCA mode function is only based on the anti-
squeezing quadrature which has the bandwidth v — ¢ and for the high pump
rate used here (r = 0.48) this difference becomes significant. To circumvent
this problem an average between then PCA-x and PCA-p can be used, but this
is not possible for us due to the low variance of the squeezing measurements.
As we will see, we find that using the square of the PCA gives better results
and this can be explained by the fact that the square is roughly equal to twice
the bandwidth PCA(t,~)? ~ PCA(t,2v). This can also be considered by try-
ing to perform the average using e 7=t = e~Itl/t= but since the variance of
squeezing is so low infinite bandwidth is needed to see the correlations and so
t' = (ty +1tp)/2 =t =t,/2 since 7y, = co = t, = 0.

We normalize all mode functions as f,(t) = fs(t)/+/ [ |f(¢)[?dt so that [ f(t)*dt =

1. Using this normalizing the pre-factor on double-sided exponential functions
is not required. The functions we use are:

fua(t) = et

£ o(t) = o= Rlet?/2 -
fS,S(t) = %6*71”7&\ _ %6*’}/2‘157154

The result of the brute force optimization for the Dy dataset is shown in fig. 4.4.
Similar optimizations were performed for D; and D3 datasets as well and the
results are summarized in tab. 4.1 and 4.2. In general we find that the maximal
Wigner negativity is obtained when using a slightly smoothed signal TMF, such
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as fs2 or f,3, compared to the sharp shape of f,; ;. This is to be expected as
both the optical filtering of the trigger filter cavity and any electrical lowpass
filtering of the detection circuit will result in a smoothing the signal temporal
mode. In the summarised results the PCA mode function used is the square of
the mode function suggested by the PCA analysis, since using the direct mode
function did not result in any Wigner negativity. The obtained lower Wigner
negativities confirm our suspicion that using the PCA method of deriving the
optimal TMF is not the best choice for our data, due to the missing support
from the squeezing quadrature.
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Figure 4.4: (left-+middle) Optimization of the signal TMF for three different
filter functions for the Dy set. (right) The resulting optimal mode functions
with the PCA mode being the squared eigenvector. The solid line in the left plot
is a fit of the f,; data points to the model with vy = 8.0, € = 0.48vy, T' = 0.97,
7y = 0.2 and = = 0.995 fixed and the fit returning v = 7.8 £ 0.14, k = 32 £ 2,
ns = 0.728 4 0.003. All frequency numbers are in 2rMHz. The insert shows a
higher resolution optimization around the optimal filter width. Here the black
curves lying close to the red and orange is the Wigner negativity at £ = (0,0),
showing that the value does not deviate much. This is further supported by
that fact that the minimal Wigner values were obtained are all &,,;, < 0.03.

From our TMF optimization analysis we find that for the D; and D> measure-
ment series, using the correction to the phase space locking angle obtained from
the unconditioned squeezed vacuum power spectrum fitting, does in fact not
result in a larger Wigner negativity. While for the D3 series, taken using con-
figuration (2), a Wigner negativity could be obtained when using the corrected
angles. This can be explained from the fact that
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D Dy D
fsa 7.80 7.35
(60} fs2 8.76 7.10
OV foa | 12.47,14.32 10.42, 14.95
fsa 5.42 7.34 7.10 (8.45)
A fs,2 8.53 7.10 7.45 (8.34)
Ko fos | 6.76,15.64  10.42,14.95  11.37, 12.43 (9.74, 19.53)

Table 4.1: Table of the optimal decay parameters of the different TMF of
the different data sets. Values are in 2rMHz units. The used angles were
obtained from the power spectrum fitting of the background squeezed vacuum
as {6p} = {0°,30°,60°,90° 120°,150°}, {0;} = {0°,38°,68°,90°,111°,139°},
{65} = {0°,31°,62°,90°,121°,150°} and {05} = {0°,17°,36°,90°,148°,169°}.

D, Dy Dy
fsa —0.182  —0.180 -
fs2 —0.206 —0.170 -
{60} fo3 ~0.202  —0.181 _
PCA? | —0.162 —0.171 -
fsa —0.151  —0.173  —0.047 (—0.087)
0" fs2 —0.172  —0.166 —0.052 (—0.097)
fs,3 —0.185 —0.174  —0.046 (—0.094)
PCA? | —0.144 —0.165 —0.042 (—0.080)

Table 4.2: Table of the minimum Wigner negativities obtained for the opti-
mized TMF of tab. 4.1. Values are W (&), which have been found to be
very close to 7V (0,0) at the optimal mode function. The second set of values
for D3 has been obtained by disregarding the {30°} measurement sequence.

4.3 Inspection of reconstruction process

As seen from tab. 4.2 a Wigner negativity was observed for 1-PSSqV states mea-
sured using configuration (1) and (2). For configuration (3) technical difficulties
sadly prevented us from measuring any Wigner negativity. We now then further
investigate the tomographic reconstruction process using a datasets from each
configuration and applying the optimal f; ; TMF to compare to our model. For
configuration (2) we want to ensure the validity of using the corrected locking
angles for the reconstruction and for configuration (3) we want to figure out what
experimental imperfections prevents us from measuring a Wigner negativity.
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4.3.1 Configuration (1)

We start by plotting the quadrature histograms for each measurement angle
(as in fig. 2.9) and compare them to the expected marginal distributions of
the Wigner function calculated from our model using the parameters obtained
from the power spectrum fitting of the background squeezed vacuum. The
result is shown in fig. 4.5, where we find good agreement between the measured
(red dots), expected (green lines) and reconstructed (black line) quadrature
distributions.
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Figure 4.5: Quadrature distributions and histograms of the D; dataset, to-
gether with the expected marginal distributions using both the set {¢} and
corrected {¢*} locking angles. The quadrature values are extracted using the
fitted parameters of eq. 4.2 and f, 1(¢t) with y1 = 7.35 2rMHz. The black curve
is the marginal distributions of the reconstructed Wigner function. The over-
lap of all three curves with the measured histograms indicates that the state
generation setup and measurement is working as intended.

Using the uncorrected locking angles and quadrature histograms shown in fig.
4.5 we perform the MaxLik reconstruction and the result is shown in fig. 4.6.
The reconstructed state has a Wigner negativity of —0.18+0.0017 with a fidelity
of 0.98 to the state expected form the model. The fidelity can be increased to ~ 1
by slightly increasing the signal channel efficiency. We therefore feel confident
that our model accurately describes the 1-PSSqV state that our setup produces
and that our HMS is capable of correctly measuring it. Looking at the density
matrix p that the MaxLik algorithm directly produces we also see expected
behaviour. Our 1-PSSqV states are produced from amplitude squeezed vacuum
and so the anti-squeezed quadrature is along the p-axis leading to negative off
diagonal terms as well as non-zero imaginary parts. We also see that all p,,,
elements with odd m — n are close to zero, as should be expected from a 7-
symmetrical state. Due to high pump rate (z = 0.48) that was used for the D;
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set the state contains photon number contributions all the way up to n = 10
with a mean photon number of 2.46 as well has strong correlations between
them as seen from the off-diagonal terms. Rotation invariant (27-symmetrical)
states, such as the fock states, have no off-diagonal terms and so the presence of
the off-diagonal terms is also an indication of the CV nature of the state. The
diagonal of the density matrix is the photon number distribution and from it
we see a small glimpse of the cat-like nature of our state - the super position
of odd photon number states. This is seen from the fact that pss is larger than
p22 and partly by the similar height of the ps5, p77 and pgg terms with their
even counterpart. Here the high loss 7, =~ 0.75 has caused the superposition
to degrade. Finally the trace distance of the evolution of the state during the
reconstruction process confirms that the algorithm had reached a stable solution
after 500 iterations.

. Im
Model MaxLik Re(pmn) (Pmn)
0 - 0.2 0 0.02
1o 2 .I | 2 n
4 4 0.1 4 0.01
6fu 6 I
E g 00 E g » 0.00
10 10
N 0.5 12 -01 1y -0.01
14 14
-0.2 -0.02
02468101214 02468101214
n n
a0 0.0
Photon number dist. Trace distance

0.3 - (n)=2.46
107!
-2
-05 )
L 02 10~

1072
0.1
-1.0 II 104
1111 IT
0 5 10
n

15 0 200 400
Iteration steps

Figure 4.6: (Left) Visual comparison of expected and reconstruction Wigner
functions of the D; dataset. (Right) Density matrix output of the MaxLik
algorithm together with the photon number distribution and trace distance evo-
lution.

4.3.2 Configuration (2)

Follow the same procedure for configuration (2), as we did for configuration (1),
we plot the results in fig. 4.7. Looking at the quadrature histograms we see, as
we expected from the power spectrum fitting, that there is a larger discrepancy
between the measured and expected quadrature distribution for the set locking
angles (light green curve). Using the corrected locking angles appear to result in
better agreement between the measured and expected quadrature distributions,
though the {30°,150°} measurements still appear off, with {30°} slightly worse.
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Figure 4.7: D3 hist

It is for this reason that we initially excluded this measurement from the re-
construction, in order to obtain even higher Wigner negativities as seen in tab.
4.2. But is the use of the corrected phase angles for the reconstruction even
a valid approach? Surely if these "bad" measurements are truly how the state
looks, due to degradation from loss or other sources, it would not be scientifi-
cally proper to simply alter (or even exclude!) them from the analysis in order
to obtain better results. We are therefore interested in seeing how different
experimental imperfections affect the 1-PSSqV state, to determine if the cause
of the discrepancy really is an offset in the locking angles. To this end we in-
vestigate how three different mechanisms; locking phase noise é, locking phase
offset 0 and loss 7, effects the shape of the expected marginal distributions.
From the marginal distributions the effect of locking phase offset and loss can
be observed directly and to see the effect of locking phase noise we generate
samples from a normal distribution of locking angles centred at the set angles
and with variance §. From the samples we then calculate the corresponding
marginal distribution'. The result is shown in fig. 4.8.

From the analysis we learn several important features; the shape at {90°} is
dominantly affected by loss and so its dip gives a good indication of the signal
channel efficiency. The closer the measurement angle is to the squeezing an-
gle the more the height of the volcano shape is dependent on the locking phase
offset. That a locking phase noise of 6 for {0°,90°} gives a volcano height equiv-
alent to a phase offset of 26, but with a reduced dip. In that sense phase noise
appears like a combination of locking phase offset and loss.

From these observations it is then clear that for the D3 dataset, the histograms
we obtain for {30°,60°,120°,150°} only can be explained by a locking phase

1 This approach is similar to what was done in sec. 2.5.2 to generate the simulated quadra-
ture histograms for MaxLik reconstruction.
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Figure 4.8: Plots of how locking phase noise 6, locking phase offset 40 and loss
7, affects the shape of the marginal distributions of a 1-PSSqV state, calculated
from our model with v = 8 27rMHz, ¢ = 0.5v, T = 0.97, x = 30 2rMHz,
fs = 7.5 2rMHz, n, = 0.75, 5, = 0.2 and = = 0.995

offset, since neither loss or phase noise could have resulted in the large discrep-
ancy we see between the expected and measured distributions for set set locking
angles. Another thing to note is that from the power spectrum fits we expect
that our measurements should suffer from phase noise of the AC lock and while
a phase noise of 6§ ~ 10° could explain the discrepancy between the expected
and measured distributions for the {30° 150%rc} measurements it should also
reduce the {0°} measurement, which should be the most sensitive to phase noise.
But we don’t see this and so the missing dip for {30°150%rc} could be from
erroneous low efficiency or large phase noise for those particular measurements,
though a sudden drop in efficiency seems unlikely while an increase in locking
phase noise is entirely possible as the locking parameters of the AC/DC lock are
set and optimized only once before a full measurement run. The optimization
consists of adjusting the P and I parameters of the PID module driving the feed-
back, by looking at the lock for § = 0° and 6§ = 90°. While the AC and DC error
signals should in practice be made identical so that the final error signal fed to
PID does not change between the measurements, drifts in the experiment can
cause them to change. This can both explain how such a locking phase offset can
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occur and how, for some measurement angles, the locking parameters could be
suboptimal leading to a large locking phase noise. This was especially true for
configuration (2), where the modulation for the AC locking signal was provided
by a second fiber modulator driven at a resonance of only 14 MHz compared
to the 50 KHz of configuration (1). For this reason we also decided to perform
the MaxLik reconstruction on the D3 dataset without including the {30° 150°}
measurements and the result, together with the other reconstructions of the Ds
dataset is shown in fig. 4.9 The Wigner negativity of of the model is —1.403,
while the reconstructed states have —0.04540.0017 and —0.105=+0.0017 respec-
tively. The difference can here be explained by either additional loss or phase
noise as discussed.
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Figure 4.9: (Left) Comparison of the Wigner function from the three dif-
ferent reconstructions of the D3 dataset to the Wigner function expected by
the model. {¢(®} = {0°,30°,60°,90°,120°,150°} is the set locking angles,
{¢pMY = {0°,17°,36°,90°,148°,169°} is the corrected angles and {¢} =
{0°,36°,90°,148°} is with the possibly erroneous measurements excluded. All
histograms were created using the f, 1(t) mod function with v, = 277.5 MHz,
277.1 MHz and 278.42 MHz for {¢(¥}, {¢(V} and {¢®} respectively.

4.3.3 Configuration (3)

For configuration (3), the true objective of this project, we sadly did not succeed
in measuring any Wigner negativity. This was mostly a result of the configura-
tion only being avaible within the final month of the deadline of this thesis, due
to the lockdown of the DTU campus caused by the ongoing COVID-19 virus
outbreak. Within the available time it was not possible to figure out and solve
all the experimental imperfections, but we will still here present the collected
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measurement data here. As previously we start by looking at the covariance of
the squeezing and antisqueezing measurements (fig. 4.10). For this measure-
ment (Dy) we used a pump rate of ~ 0.35 is compared to the ~ 0.48 used for the
previous measurements. The reason being that we expected the locking phase
noise to be worse for the measurement configuration due to the longer fiber
network, and so a smaller anti-squeezed level reduces the effect of phase noise.
From fig. 4.10 we see a clear sign of the photon subtraction event. We then pro-
ceed with the curve fitting of the background squeezed vacuum power spectrum,
but already from the observed variance levels we expect the squeezed to be re-
duced from either additional loss or increased phase noise. The fitting results
are as well less clear. Including the AC phase noise term we get v = 7.0 £ 0.5,
x = 0.28+£0.08, n, = 0.66 £ 0.26 and ¢4, = 17 £ 5°, which immediately seems
wrong due to the incorrectly fitted pump parameter and high efficiency with
high AC phase noise. Fixing ¢,. = 0 we get v =8.0+0.3, x = 0.37 +:0.015 and
ns = 0.37+0.016, which both fit the used experimental parameters much better
and has lower fitting uncertainties. For both fits the locking angle corrections
are with +4° from the set angles.
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Figure 4.10: Measurement result from configuration (3). A clear sign of the
photon subtraction event can be seen, but the low squeezing level indicate that
Wigner negativity is most likely not preserved.

We then plot the quadrature distributions and histograms and compare them
to the marginal distributions we would expect our model using the two set of
fitted parameters and optimized signal TMF. This is shown in fig. 4.11 and we
clearly see, as we expected, that the darkgreen curve of the fitted parameters
without the AC phase noise term matches the measured data better. From our
previous analysis (fig. 4.8) we also know that the low dip of the {90°} volcano
is mainly caused by loss and so this also suggests that configuration (3) had
a significantly reduced efficiency compared to configuration (1) and (2). This
could be a attributed to the many connections of the fiber network, but from
an independent measurement it was estimated to ~ 0.90 = 0.01%.

Even though we could obtain a better match to the measured quadrature dis-
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tributions using the fitted parameters excluding the phase noise term, we will
conclude our analysis by investigating the actual phase noise that our D, mea-
surement suffered from. We do this by keeping all locks and beams constantly on
in lab A, while only running the sample-hold scheme on the AC/DC lockbox.
This means that we can continuously track the probe intensity from the DC
output of the homodyne detector during sample-hold periods, when locked to
different LO phases corresponding to a tomographic measurement. An overlay
of 200 such traces across two sample-hold periods is shown in fig. 4.12.
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Figure 4.11: Quadrature distributions and histograms of the D, dataset, to-
gether with the expected marginal distributions using the two different sets of
fitted results.

For the traces shown here we used a frequency of 200 Hz with a sample-hold
duty-cycle of 60:40. We see that from the moment the hold period starts (¢t = 0),
and the feedback is held constant, the phase of the probe relative to the LO
starts to drift and that already after ~ 1 ms the phase has drifted more then
180°. For a measurement this would correspond to the measured phase being
randomized after 1 ms, and so it seems surprising that our measured quadra-
ture distributions are not worse than they are. To further investigate we also
plot a zoom of the first 0.5 ms of the hold period and for the {60°,90°,120°}
measurements calculate the phase noise in degrees as the standard deviation of
the phase angle of the sinusoidal interference. This can not straightforwardly
be done for the other phases as they close to the interference edge and so the
unwrapping of the phase from the noisy traces leads to large uncertainties. The
calculation shows that even the strong phase drift caused by the fiber network
connection our AC/DC lock is able to maintain a lock with ~ 4° of phase noise
and that the phase fluctuations increases to more than ~ 10° after only 0.5 ms
of hold time.

One explanation for why such large phase fluctuations does not appear to hurt
our measurements more, is that we used a sample-hold frequency of 100 Hz and
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that the measurement time for a single set of 5000 sequences, corresponding
to 5000 SSPD trigger clicks, was roughly 1.5 mins corresponding to 1 click per
sample-hold period. It might be so that the internal speed of the DSO is exactly
so slow that it would trigger on the first click of a hold period and then not be
ready to trigger again before a new period would start. In that way only data
from the first (and best) trigger clicks of each hold-period would be recorded
during a measurement sequence. Unfortunately our DSO does not provide tim-
ing information on individual traces within a sequences data file to confirm this
suspicion.
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Figure 4.12: Drift of the relative phase between the LO and signal for config-
uration (3). Visualized as the overlay of 200 time traces across 2 sample-hold
periods with a constant probe signal. (right) Zoom of the first 0.5 ms of hold
time and corresponding phase noise calculated as the standard deviation of the
phase fluctuations. The darker shaded area indicate the time duration when the
lock is on.



CHAPTER 5

Distributed Quantum
Sensing

In 2018 Zhuang et al. proposed the first protocol for utilizing CV multipartite
entanglement to improve the precision of phase or displacement sensing tasks
in a network [14]. Late the following year we then demonstrated the first ex-
perimental realization a distributed sensing protocol improved by multipartite
entanglement. In our published work we show that for fixed probe resources
we obtain an improvement of the root-mean-square (rms) estimation error of
sensing the average phase shift across 4 nodes, by using a multipartite entan-
gled probe state as compared to using non-entangled probes. Generally the rms
estimation error for protocols utilizing entanglement can scale as the Heisenberg
scaling in the number of nodes M, that is 1/M, while protocols without entangle-
ment only scale as the standard quantum limit 1/ VM. But due to experimental
imperfections in our implementation, mainly optical loss, we only show a 20%
improvement for M = 4 nodes. Due to the scaling advantage of CV multipar-
tite entanglement being highly sensitive to loss, recent advancement have been
made in protocols utilizing nonlinear amplifiers [84] or CV error correction codes
[85] to improve their robustness against loss. Besides phase sensing distributed
quantum sensing have also recently been demonstrated in the context of sensing
RF signals [86]. For a more general introduction to using squeezing vacuum for
sensing see the review by Lawrie et al. [87].
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5.1 Experimental setup

The experimental setup used to implement our distributed sensing protocol
uses an almost identical setup for generating the squeezed probe as for the non-
Gaussian state project. The main difference is the addition of a second EOM in
the probe beam path, which is used to create a 3 MHz sideband acting as the
probe state for the sensing protocol. The sideband probe state is then squeezed
by the OPO, allowing us to adjust the coherent and squeezed part of the probe
state by tuning the OPO pump power and EOM modulation strength. The
squeezed probe state is then passed through a beamsplitter network (BN) cre-
ating the multipartite entanglement between the four exit arms.

In [14] the phases to be sensed is then imagined as a small phase shift in one arm
of a Mach-Zehnder interferometer just before homodyne detection in each arm.
For four nodes this would requires four phase locked interferometers followed by
four LO phase locks and so to reduce the experimental complexity we choose
to overlap the LO with the probe before the BN and use QWPs after to trans-
form their polarizations to opposite circular polarizations. We then use the fact
that a HWP will shift the relative phase between the two circular polarizations
modes and detect them with homodyne detection using a polarization beam-
splitter (PBS) to interfere the probe and LO. In this way the QWP+HWP+PBS
effectively realises a copropagating Mach-Zehdner interferometer with the phase
shift split between the two arms and we only need to lock the probe and LO
phase before the BS network. A sketch of the setup is shown in fig. 5.1 and
more details are given in the supplement material.
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Figure 5.1: Schematic of the setup used for the distributed sensing project.
The missing part of the squeezed probe generation stage is identical to the setup
used in fig. 3.2. DSO is a 4 channel digital sampling oscilloscope.
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Distributed quantum sensing in a continuous-
variable entangled network

Xueshi Guo®™, Casper R. Breum

Tobias Gehring®1, Matthias Christandl?, Jonas S. Neergaard-Nielsen

Networking is integral to quantum communications' and has
significant potential for upscaling quantum computer tech-
nologies®. Recently, it was realized that the sensing perfor-
mances of multiple spatially distributed parameters may
also be enhanced through the use of an entangled quantum
network®°. Here, we experimentally demonstrate how sens-
ing of an averaged phase shift among four distributed nodes
benefits from an entangled quantum network. Using a four-
mode entangled continuous-variable state, we demonstrate
deterministic quantum phase sensing with a precision beyond
what is attainable with separable probes. The techniques
behind this result can have direct applications in a number of
areas ranging from molecular tracking to quantum networks
of atomic clocks.

Quantum noise associated with quantum states of light and mat-
ter ultimately limits the precision with which measurements can
be carried out''-*. However, by carefully designing the coherence
of this quantum noise to exhibit properties such as entanglement
and squeezing, it is possible to measure various physical parameters
with significantly improved sensitivity compared to classical sens-
ing schemes'. Numerous realizations of quantum sensing utilizing
non-classical states of light'""” and matter'® have been reported,
but only a few applications have been explored. Examples of these
include quantum-enhanced gravitational wave detection”, the
detection of magnetic fields*’~** and sensing of the viscous-elasticity
parameter of yeast cells. All these implementations are, however,
restricted to the sensing of a single parameter at a single location.

Spatially distributed sensing of parameters at multiple locations
in a network is relevant for applications from local beam tracking*
to global-scale clock synchronization®. The development of quan-
tum networks enables new strategies for achieving enhanced per-
formance in such scenarios. Theoretical works***~*" have shown
that entanglement can improve sensing capabilities in a network
using either twin photons or Greenberger—Horne-Zeilinger (GHZ)
states combined with photon number-resolving detectors™® or using
continuous-variable (CV) entanglement for the detection of distrib-
uted phase space displacements’. In this Letter, we experimentally
demonstrate an entangled CV network for sensing the average of
multiple phase shifts inspired by the theoretical proposal of ref. ”.
We focus on the task of estimating small variations around a known
phase in contrast to ab initio phase estimation. We successfully
demonstrate deterministic distributed sensing in a network of four
nodes with a sensitivity beyond that achievable with a separable
approach using similar quantum states.

We start by introducing a theoretical analysis of the networked
sensing scheme assuming the existence of an external phase

1, Johannes Borregaard?, Shuro lzumi’, Mikkel V. Larsen®’,

™ and Ulrik L. Andersen®™

reference. Consider a network of M nodes with optical inputs that
undergo individual phase shifts, ¢,(j=1, ..., M). The goal is to esti-

mate the averaged phase shift, ¢ = Z;‘i ) q&] / M, among all nodes

with as high precision as possible. Two different sensing set-ups are
considered: a separable system where the nodes are interrogated
with independent quantum states (Fig. 1a) and an entangled system
where they are interrogated with a joint quantum state (Fig. 1b). We
assume the squeezers give out pure single-mode Gaussian quantum

states described by the state vectors lﬁ(a)s‘(r)|0), where D and § are

the displacement and squeezing operators, respectively, a is the dis-
placement amplitude and r is the squeezing factor. We assume that
each probe state undergoes loss in a channel with transmission 7. We
furthermore restrict the estimator to be the joint phase quadrature,
Pavg =
vidual modes), practically corresponding to the averaged outcome
of M individual homodyne detectors. These states and detectors are
of particular interest due to their experimental feasibility, inherent
deterministic nature, high efficiency and robustness to noise.

Z?L ﬁ}/M (where ﬁ} are the phase quadratures of the indi-

Using the separable approach, M identical Gaussian probe states
are prepared and individually detected, while in the entangled
approach, a single squeezed Gaussian state is distributed evenly to
the M nodes via a beamsplitter array and similarly measured indi-
vidually with homodyne detectors at the nodes. If one wanted to
estimate different linear combinations of the phase shifts than the
simple average, other beamsplitter divisions would be required**.
The sensitivity of the measurement can be defined as the standard
deviation (s.d.) of the measurement which, by error propagation, is"*

A2
10( B ) /08,

o=

where <A132 >= < ﬁaig> - ﬁavg) ? is the variance of the estima-

avg
tor. We are only interested in the sensitivity for small phase shifts,
because one can always use an initial rough phase estimation to
adjust the homodyne detector (the local oscillator phase) to the
maximum sensitivity setting'®. For small phase shifts, we obtain
the sensitivities for the separable (o,) and entangled (o,) approaches
(Supplementary Section I):

=2r,
e +1/n—-1
o= e tHl/n-1 @)
20,/ M
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Fig. 1| Distributed phase sensing scheme. The task is to estimate the
average value of M spatially distributed small phase shifts ¢,, ..., ¢, a,
Without a network, the average phase shift must be estimated by probing
each sample individually. This can be done with homodyne detection of
the phase quadrature (HD,, ..., HD,)), and the sensitivity can be increased
by using squeezed probes generated by M independent squeezers S, ...,
Sy b, If the M sites are connected by an optical beamsplitter network
(BSN), a single squeezed probe can be distributed among the sites. This
enables entanglement-enhanced sensing of the average phase shift. ¢,d,
The entangled approach of b shows a gain in sensitivity compared to the
separable approach in a for the same number of photons, N, hitting each
sample and with optimized probe states. This gain, G = o2/ 02", is plotted
as a function of the number of samples M with N fixed at 10 (c) and as

a function of the average number of photons with M fixed at 4 (d) for
different values of 7, the efficiency of the channel between pure resource
state and phase sample.
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We now constrain the average number of photons, N, hitting

each sample. The photons can be separated into those originating

from coherent displacement and those originating from squeez-

ing: N= mh+NssqL (a2 +sinh’,) for the separable case and
N=N, o+ N, o, = (a2 +sinh’,)/M for the entangled case. The
ratio between %oton numbers, parametnzed as fye = N5/ N can
be tuned to give the optimal sensitivities
NA-m)+2(1+/1+4N(1-
oL (1=m+5( (1-m) @
s )
2-/MN 14+n/N
MN(1- 11 1+4MN(1 -
w1 (-m+ 0+ HNO—D)
¢ 2MN' 1+7n/(MN)

For perfect efficiency (n=1), it is clear that the sensitivity of
the entangled system yields Heisenberg scaling both in the num-
ber of nodes (1/M) and the number of photons per mode (1/N),
whereas the separable system only achieves the latter and a classical
1/~/M-scaling with the number of modes. The gain in sensitivity of
the entangled network relative to the separable network (denoted
G=06" /6" is thus G= /M.

NATURE PHYSICS

For non-ideal efficiency, the Heisenberg scaling ceases to exist,
in accordance with previous work on single parameter estimation®.
In fact, for n— 0, both sensitivities approach 1/2+/MN. Still, it is
important to note that the entangled network exhibits superior
behaviour for any value of #, M and N for optimized p, p.. Some
examples for the sensitivity gain are illustrated in Fig. 1c,d. From
Fig. 1d where a network of M =4 nodes is considered, it is clear that
the highest gain in sensitivity is attained at a finite photon number.
We also note that, for large photon numbers, the gain tends to unity
for non-zero loss, meaning no enhanced sensitivity when using the
entangled approach. However, there is still a practical advantage for
the entangled approach: only one squeezed state is needed com-
pared to the M squeezed states with similar squeezing levels for the
separable approach (Supplementary Section I).

Next, we demonstrate experimentally the superiority of using an
entangled network for distributed sensing. A schematic outline for
the experimental set-up is shown in Fig. 2a (for more details see
Extended Data Fig. 1, Methods and Supplementary Section II). The
entangled network is realized by dividing equally a displaced single-
mode squeezed state into four spatial modes by means of three bal-
anced beamsplitters. These entangled probe states are then sent to
the four nodes of the network, where they each undergo a phase
shift ¢; and are finally measured with high-efficiency balanced
homodyne detectors that are set to measure the phase quadrature,
p The external phase reference is set by the local oscillator, which
co- propagates with the probes through the set-up but in a different
polarization mode. This ensures that the relative phases between
the probes and the local oscillator can be controlled. The resulting
photocurrents from the four detectors are further processed and
subsequently combined to produce the averaged phase shift. For
demonstration purpose, we set all ¢, to the same value ¢, = ¢,,,, but
in principle they could be different.

An experimental run is shown in Fig. 2b. In this particular run, a
displaced squeezed state is prepared with an average photon number
of N=2.48 +0.12 in each mode, of which N, ;,,=0.30 £ 0.01 photons
are from the squeezing operation and N, ., =2.19 +0.11 are from the
phase modulation, as this distribution is near-optimal for the entan-
gled case. We then impose 12 different ¢,,, values by phase shifts
at each node while recording the Fourier transformed homodyne
detector outputs; the spectra around the 3 MHz sideband for six of
the ¢, values are shown in Fig. 2b. These outputs yield poor esti-
mates of the individual phase shifts (because the squeezing in each
mode is only ~0.8dB), but the averaged phase shift, obtained by
summing the photocurrents, produces an entanglement-enhanced
estimate with significantly lower noise, ~5dB squeezing. The spec-
tra for the averaged photocurrents are shown in Fig. 2c. For compar-
ison, we also simulate the separable approach by directing the entire
displaced squeezed state (with properly optimized parameters) to a
single node. We then perform the phase estimation at that node and
scale the obtained sensitivity by +/4 to obtain the projected perfor-
mance for an average over four identical sites.

We quantify the performance of the sensing network by estimat-
ing the sensitivities of the two approaches based on the averaged
homodyne measurement outcomes, P,,,. By extracting the rate of

change with respect to a phase rotation, |0< avg) /aq') , as well as

AP,

a\g>
tion (1). See Supplementary Section IV for more details on the data
analysis. For the experimental runs described above, we obtain
sensitivities of 6,=0.099+0.003 and 6,=0.118+0.002 for the
entangled and separable approach, respectively. These correspond
to single-shot resolvable distributed phase shifts (that is, phase
shifts for which the signal-to-noise ratio is unity) of 5.66°+0.18°
for the entangled case and 6.76°+0.11° for the separable case
with ~2.5 photons. Using a coherent state instead of the squeezed
state, the minimal resolvable phase for 2.5 photons is 9.06°+0.07°,

the variance, , of P,,, we deduce the sens1t1v1ty using equa-
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Fig. 2 | Experimental scheme. a, A simplified outline of the experimental set-up for the entangled approach with M =4 (see Supplementary Section Il

for details). A 1,550 nm laser beam is phase-modulated at 3 MHz by an electro-optic modulator (EOM) and injected into an optical parametric oscillator
(OPO). This prepares a displaced squeezed state at the 3 MHz sideband. A BSN splits the state into four identical and entangled probes, which are used

to sense the average phase shift of ¢, to ¢,. After phase shifting, the probes' phase quadratures p. are measured with homodyne detection set-ups (HD,

to HD,), whose outputs are recorded by an oscilloscope. The power spectral densities (PSDs) of the individual modes as well as their average, ﬁavg: are
obtained from fast Fourier transforms (FFTs) of the oscilloscope traces. This set-up can be reduced to the separable approach (M=1) by removing the BSN
and sending the state to one phase shift and HD. b,c, Example PSD results for f)l (b) and évg (c) from one experimental run for the entangled approach,
M=4. Each trace is an average of 2,000 FFTs. We record the spectra for varying settings of the phase shifts. Here, the values of ¢,,, are 0.3°, 4.2°,8.2°,

12.1°,16.1° and 20.0° from the bottom curve to the top curve in the plots (see Supplementary Section Il for details of phase calibration). Due to the

quantum correlations of the entangled probes, the noise of szg

the sensitivity o, are extracted: the peak and the noise level of the spectrum for

corresponding to the standard quantum limit. Note that these
angles are larger than our small phase shift approximation (which
requires ¢,,, to be much smaller than ~7° for the conditions in this
experimental run; Supplementary Section I). In practice, this means
that it is necessary to probe the sample more than once to resolve
the small phases implemented in the experiment. Sampling the
phases K times will result in /K times smaller resolvable phase shift
angles. The entangled strategy will still benefit from the enhanced
sensitivity per probe.

We find the sensitivities for different total average photon num-
bers both for the entangled and separable network, and plot the
results in Fig. 3a. For every selection of the total photon number, we
adjust y to a near-optimal value for optimized sensitivity (Fig. 3b,c).
It is clear in Fig. 3a that both realizations beat the standard quan-
tum limit (reachable by coherent states of light) and, most impor-
tantly, we see that the entangled network outperforms the separable
network. The ultimate sensitivity of our entangled approach is
not reached in our implementation (see Methods and Extended
Data Fig. 2). However, homodyne detection will not, even in prin-
ciple, saturate this bound, and non-Gaussian measurements are in
general needed.

Our results demonstrate experimentally how mode entangle-
ment, here in the form of squeezing of a collective quadrature of a
multimode light field, can enhance the sensitivity in a distributed
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reduces significantly compared to ﬁj From these spectra, <F3 >and <Aﬁ2

>, which constitute

avg avg

5 ) ) 22 a2 22 A \2
P,\g are respectively given by <Pavg> and <APavg> = <Pavg> - <F;Vg> .

sensing scenario. The main limitation of the scheme when applied
to realistic scenarios will be the channel efficiency, which will even-
tually limit the achievable gain. Other technical challenges will be
to supply phase-locked local oscillators to each site that are sepa-
rate from the probe beams and to suppress the spectral parts of the
squeezed light that does not contribute to the sensing. On the other
hand, because the probes are generated from a simple beamsplitter
network, it will be straightforward to scale to more modes where
the sensitivity gain may be even larger (Fig. 1c). Consequently,
we believe that techniques demonstrated in this proof-of-prin-
ciple experiment have direct applications in a number of areas.
Specifically, beam tracking, relevant for molecular tracking®, could
benefit from these techniques. Such applications impose limits on
the allowed probe power to prevent photon damage and heating of
the systems. Mode entanglement can thus be used to increase sen-
sitivity without increasing the probe power. Using squeezed coher-
ent light for quantum non-demolition (QND) measurements has
also been exploited for the generation of spin squeezing in atomic
ensembles” and optical magnetometry”. Although this is usually
considered for single ensembles, the generalization to multiple
ensembles can provide enhanced sensitivity and new primitives for
quantum information processing. Combining several ensembles
for magnetometry and utilizing mode entanglement would further
reduce the shot noise and increase the sensitivity of a collective
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Fig. 3 | Phase sensitivity results. a, Sensitivity to ¢,,, for different average numbers of photons per sample N for the entangled scheme (s,) and the
separable scheme (6,). The sensitivities predicted in theory, a:”t/as""t, are plotted with shaded lines, where the shadows show the upper/lower bound
within the overall efficiency n=73.5+1.5% of our experimental set-up. SQL indicates the standard quantum limit, for which no squeezer but only coherent
states are used. The result shows that both schemes perform better than the SQL and that the entangled network outperforms the separable network. b,
Data points are the values of u, (the proportion of N originating from the squeezing process) obtained in the experiment. The solid curves are the optimal

U, that minimize o at a given N. The contours indicate the values of a:m

normal distribution.

optical measurement. Performing a collective optical QND mea-
surement of several atomic ensembles can prepare a distributed
spin-squeezed state for quantum network applications. In particu-
lar, squeezing of multiple optical lattice clocks could be used for col-
lective enhancement of clock stability**. In ref. *’, this was obtained
by letting a single probe interact with all ensembles in a sequential
manner. However, by utilizing mode entanglement, this can be per-
formed in a parallel fashion with no quantum signal being transmit-
ted between the ensembles.
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Methods

Outline of the experimental methods. Full details of the experimental set-up and
data analysis are provided in Supplementary Sections II-IV. A brief outline is
given here.

With this set-up, squeezed vacuum at 1,550 nm wavelength is generated in a
bowtie-shaped OPO containing a periodically poled KTiOPO, crystal (Extended
Data Fig. 1a). The OPO cavity has a half-width at half-maximum bandwidth
of 8.0 MHz, an oscillation threshold of 850 mW and 95% escape efficiency. It is
pumped by 775 nm light generated by second harmonic generation in an identical
cavity. Two 1,550 nm beams are injected into the cavity through a high reflector:
one beam propagates against the direction of the squeezed light and is used for
locking the cavity length and the other beam co-propagates and serves multiple
purposes. First, this latter beam exits the cavity in the same spatial mode as the
squeezing and is therefore used for alignment with the local oscillator. Second, it is
used for locking the phase of the squeezing through the classical parametric gain,
observed after tapping off 1% of the light. Third, and most importantly, it serves
as the coherent displacement part of our probes. For this purpose, it is modulated
at 3 MHz by an EOM. The modulation depth determines the amplitude of the
displacement. Finally, it is used as the phase reference for locking the probe state
and the local oscillator (LO) phase for homodyne detection.

The LO used in all four homodyne detectors is combined with the squeezed
probe on a polarizing beamsplitter (PBS) in orthogonal polarizations prior to the
distribution of the combined beams in the beamsplitter network (Extended Data
Fig. 1b). Because the LO is co-propagating with the signals in the same spatial
modes, balanced homodyne detection—which is inherently insensitive to noise
in the LO—is achieved by changing the fields to orthogonal circular polarizations
with A/4 wave plates and subsequently mixing and splitting the fields on PBSs. The
PBS outputs are then detected on a balanced photodetector (Extended Data Fig.
1c). To lock the local oscillator to either the phase or amplitude quadrature of the
probe, 1% is tapped off and detected with a homodyne detection set-up identical to
those at the four sensing sites. All locks in the set-up are controlled by the PyRPL
software package’' running on a PC and multiple RedPitaya FPGA boards. At each
of the sensing sites, as well as at the LO phase lock, the relative phase of the LO and
probe is manually controlled by a A/2 wave plate. Before the measurements, the
wave plates are carefully calibrated in order to be able to apply a well-defined phase
shift to the probe states. Turning the /2 wave plate by 1° induces a 4° phase shift.

The data for the sensitivity measurements are obtained by simultaneously
recording 200 ps-long oscilloscope traces of the high-pass filtered homodyne
detector signals. The power spectral density is then calculated via the FFT of
these traces and, from each, the single point at 3.000 MHz is extracted for further
processing. Finally, the phase estimation sensitivities are obtained from fitting to
simple sinusoidal models the amplitudes of the sideband peaks and the background
noise floors as a function of the induced phase shift.

Mode definition of the optical field for sensing. The choice of modulation for
generation of the coherent displacement defines the spectral mode of the probing
scheme: a narrow 5kHz band around the 3 MHz optical sideband of the 1,550 nm
carrier. This sideband is chosen as it is in the spectral region of our source with
maximum squeezing. At higher frequencies, the squeezing reduces due to the
limited bandwidth of the OPO, while at lower frequencies, it is degraded by
technical noise. Equivalently, the temporal mode is given by the 200 ps oscilloscope
trace length. The spatial mode of the beams (~1.8 mm diameter) and their
polarization also add to the definition of the optical mode that probes the sample,
and it is the average photon number within this mode that counts as the resource of
the phase sensing. Note that there are no fundamental restrictions in the scheme on
the optical modes employed. In any practical setting, they would be chosen based on
the nature of both the squeezing source and the samples being probed. In this work,
the classical, separable and entangled schemes are compared using the same mode
definitions. One could of course consider choosing different modes for a classical
or separable scheme, but the relevant comparison of the schemes is still in terms

of sensitivity versus average photon number within the mode. Whichever mode

is chosen for each of the three schemes, as long as there is multimode squeezing
(entanglement), the entangled scheme will outperform the other schemes.

In this proof-of-principle experiment, many photons outside the sensing mode
still hit the sample, even though they do not count in the resource calculations. For
applications where the power on the sample is restricted, these ‘inactive’ photons
should be avoided. Photons from the local oscillator can be avoided by using
individual local oscillators locally at the sites, combined with the probes after phase
sampling. Photons in the carrier of the coherent modulation can be filtered away
optically. The same is true for squeezed photons outside the employed spectral
mode. Conversely, the spectral mode could be extended to contain most of the
bandwidth of the squeezed OPO output.

Quantum Cramér-Rao bound for ¢,,, sensing. Throughout the experiment, we
did not try to pursue the ultimate sensitivity by using optimal probe states and
optimal measurements. This means that the sensitivity for ¢,,, sensing, with both
the separable approach and the entangled approach, can be further optimized.
Here, we confine the discussion to Gaussian states, and analyse the ultimate
sensitivity limit for ¢,,, sensing for a given probe with the help of the quantum
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Cramér-Rao bound (QCRB). We also compare the QCRB for ¢,,, sensing to the
counterpart of single parameter phase sensing by using a single-mode Gaussian
state as the probe, as discussed in detail in ref. **. We assume the sensing channel
has a constant efficiency < 1.

For a general sensing problem, the QCRB sets a lower bound, minimized over
all possible measurements, on the uncertainty with which a parameter ¢ can be
estimated through an unbiased estimator ¢, given a probe in a certain quantum

state: A$2 > F7", where F, is the quantum Fisher information. The ultimate
sensitivity limit for sensing of a single phase shift is thus UQ?R = 1/@ The
quantum Fisher information for single-mode phase sensing using a Gaussian probe
with initial displacement & and squeezing r is given by*
&, AN+ DA+ —2)

= a (6)
Ny +1 (4N, +2)° +4

with an effective thermalization photon number, due to loss, of

-2r

1 -
Ny = [(re +1-p)e” +1-n)—1]

and an effective squeezing parameter

r'= l10
4

o ne? +1—7y
e +1-y

The QCRB for sensing of an average ¢,,, of multiple phase shifts with coherent
probes, 65t, and with our separable approach, (rs?}f, can also be found from equation
(6), divided by ~/M to account for the M independent phase estimations.

For non-trivial estimation involving multiple parameters, the quantum Fisher
information matrix (QFIM) is needed. The variance of an unbiased estimator ¢ of

an arbitrary linear combination of M parameters, g = Z,ﬁil web, is <A§z) =w'Kw
with the weight coefficients w'=(w,, ..., w,,) and parameter covariance matrix K
with K, = <(¢Y - ¢[)(¢j - 4;] ) > Given a quantum Fisher information matrix F, the
QCRB is expressed as

<A§2> :wvl‘KwaTF"w:o;iCR (7)

The QCRB for ¢,,, with the entangled scheme where the weights are
Wy =(1/4,1/4,1/4,1/4)is then

4

CR_ T -1 1 -1

Oent = angFenlwavg= 16 Z (Fene ij (8)
ij=1

How to calculate the QFIM for arbitrary multimode Gaussian states, as well as the
existence (or not) of a measurement that reaches the bound, is discussed in refs.
31 We use equations (16)-(21) in ref. ** to numerically calculate F, .. As discussed
in ref. **, when any of the symplectic eigenvalues of the quadrature covariance
matrix of the Gaussian state has unity value, the process in ref. ** gives a singular
result. This applies to our entangled scheme, because it has three vacuum input
modes. We solve this numerical problem pragmatically by replacing the three
vacuum states with very weak thermal states (10-° mean photon number in each).
The optimal QCRBs for different scenarios, together with the optimal
sensitivity of our measurement schemes ¢ and 6", are shown in Extended
Data Fig. 2. The QCRBs are optimized over a and r for a fixed mean photon
number. For the 7=0.735 detection efficiency, the states optimizing the QCRBs
are all squeezed vacuum states. It is interesting to compare this with ref. *°, where
it is shown that for pure states (7=1), the optimal Gaussian probes to sense a
parameter encoded in a BSN (¢, is a special case of such a parameter) can be
prepared by sending a single-mode squeezed vacuum state into one port of the
BSN and vacuum states to all the other ports. This is equivalent to what we do in
our entangled scheme. At our detection efficiency, we find
an> 07> o™ > 60> ! ©
The sensitivities obtained do not reach the corresponding ultimate limits.
Furthermore, these relations show that, in principle, it should be possible to
reach a better sensitivity with a separable scheme than what is obtained with
the entangled scheme. However, the difference between them is small and—to
the best of our knowledge—no efficient way of experimentally implementing a
measurement to reach the ultimate limit qig is known. In ref. *, it is discussed
that an XP + PX type of measurement is needed to reach the QCRB when 5 <1.
This is non-Gaussian and cannot be realized by only Gaussian operations such as
squeezing, beamsplitters, phase shifts and homodyne/heterodyne detection. For
sensing involving multiple parameters, a joint, non-Gaussian measurement may be
optimal, but the experimental approaches to reach the optimal bound o-eCR remain
unclear.

nt
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Finally, note that the QCRB of the entangled scheme overlaps with that of the
single parameter estimation. This makes sense intuitively: splitting a resource state
equally into four and using these to probe the average of four phase shifts should
result in the same sensitivity as that of a single phase shift probed by the same
unsplit resource.

Data availability

The data represented in Figs. 2 and 3 and Supplementary Fig. 6b are available

as Source Data or Supplementary Data. Raw oscilloscope data and data analysis
scripts are available at https://doi.org/10.11583/DTU.9988805. All other data that
support the plots within this paper and other findings of this study are available
from the corresponding author upon reasonable request.
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Extended Data Fig. 2 | Optimal sensitivities and quantum Cramér-Rao bounds (QCRB) for different scenarios. All calculated with a total efficiency
of n=0.735 as in our experiment. The optimal sensitivity of our separable scheme os"pt and entangled scheme a;"’t are plotted in solid blue and red,
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entangled scheme (UECR, dashed red), as well as the QCRB for single parameter phase sensing with a squeezed probe (Usc,ﬁ, solid green).
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CHAPTER 6

Outlook

In this thesis two projects related to quantum information processing in net-
works, namely the non-Gauusian state transmission project (1) and the dis-
tributed quantum sensing project (2), were discussed. The goal of project (1)
was to transmit a continuous variable non-Gaussian state across a short distance
network channel and to measure its Wigner negativity at the receiver side as
a sign of the non-Gaussianity of the received state. For project (2) the goal
was to use a multi-partite entangled probe state to show a sensitivity advantage
over a non-entangled probe states for the sensing of distributed phase shifts in a
network. First, before presenting the results of either project, the theory of con-
tinuous variable quantum optics were introduced together with a realistic model
of the experimental procedure for generating a one photon subtracted squeezed
vacuum state (1-PSSqV). An implementation of the maximum likelihood algo-
rithm for tomographic reconstruction of states measured by homodyne detection
was also discussed. Next, the experimental setup constructed to perform the
measurements for both projects was described. Finally the result of project (1)
was presented as a detailed analysis of the data collected for the different mea-
surement configurations, while the results of project (2) was presented in the
form of the published work.
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Non-Gauusian state transmission

For the non-Gauusian state transmission project we build a setup consisting of
a SHG cavity in order to generate continuous wave squeezed vacuum at 1550 nm
via parametric down conversion in an OPO cavity. To subtract single photons
from the squeezed vacuum field, we employed the conventional scheme of using
a weakly reflecting beamsplitter to tap a small portion of the squeezed field into
a trigger channel where the detection of a single photon heralds the subtracted
state in a signal channel. In the trigger channel we constructed a frequency
filter system consisting of a narrow linear filter cavity and a DWDM bandpass
filter. For the filter cavity we developed a locking scheme to efficiently lock the
cavity using an FPGA based lockbox controlled by the PyRPL software suite.
The single photons were detected by a single photon detector based on super-
conducting niobium titanium nitride nanowires. We characterized the trigger
channel to have a total detection efficiency of 20% and with careful shielding
of the optical setup dark count rates of 10 — 50 Hz were achieved. To measure
the heralded state we designed and assembled a portable measurement station
based on a fiber coupled homodyne detector setup and characterized it to have a
total detection efficiency of 90%. By coupling the generated non-Gaussian state
into single mode fiber, transmitting it through three different network channel
configurations and measuring using the portable measurement station, the re-
ceived states were characterized by quantum tomography.

For configuration (1), in which the channel was a 1 m fiber and the measurement
station was placed on the same optical table, we measured a maximal Wigner
negativity of —0.2067 with a mean photon number of 2.54. For configuration
(2), in which the channel was a single 60 m fiber terminating at an adjacent
lab, we measured a maximal Wigner negativity of —0.105 with a mean photon
number of 2.345. Here we also showed how carefully analysing the tomographic
process allowed us to compensate for incorrect measurement settings. For con-
figuration (3), in which the channel was a ~ 300 m connection through the
DTU campus fiber network terminating in a separate building, we could sadly
not measure any Wigner negativity before concluding the project. In the end
we found, for yet unknown reasons, that the efficiency of the signal channel had
severely decreased between the measurements of configuration (2) and (3).

For configuration (3) we performed measurements of the phase fluctuations of
the fiber channel and found that, while severe, our locking scheme could com-
pensate for them and determined that a holding time of no longer than a few
100 ps will be required. The most obvious point of improvement is the optical
transmission efficiency of the signal channel. Improving this efficiency can be
done in three places; locally in lab A by checking the transmission efficiency of
all optical components in the signal channel, by cleaning all fiber connections of
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the campus network and by rebuilding the measurement station using a higher
quality beamsplitter and resplicing the fiber connections. Besides the optical ef-
ficiency the expected Wigner negativity can also be improved by using an even
lower pump rate and by reducing the length of the filter cavity to increase its
bandwidth. We therefore strongly believe that given the improvements listed
measuring Wigner negativity of a CV non-Gaussian state transmitted troiugh
the DTU campus network is entirely possible with our setup.

Besides measuring the Wigner negativity by improving the optical loss of the
signal channel other interesting paths to pursue could be to use a true local-
local oscillator setup to perform the homodyne measurements, thereby reducing
the channel requirements to a single quantum channel for network transmission.
This could be implemented in our setup by either adding a pilot tone during the
sample period or by placing it a high sideband frequency outside of the band-
width of the 1-PSSqV state [88]. Another interesting experiment could be split
the cat state on a 50:50 beamsplitter and direct either half to different buildings
and measure them using identical measurement stations. Since our SSPD has 6
channels, we could also easily split the trigger channel after frequency filtering
onto several SSPDs in order to generate up to six photon subtracted squeezing
vacuum states. Though using this approach the measurement time would scale
exponentially due to the decreased success probability of a trigger events and
so the long term stability of our setup and especially the fake count rate be-
comes increasingly important. Beside the fundamentally interesting aspects of
creating large non-Gaussian state, other protocols more relevent for quantum
communication tasks could be pursued, such as CV entanglement distribution
and distillation across the network [89]

Regarding the measurement station there are also possible points of improve-
ment. From our data analysis we found that locking to the angles between 0°
and 90° could be problematic for our implementation of the AC/DC lock. This
issue could be circumvented adding a second homodyne detector and changing
the measurement setup to hetorodyne detection, in which the signal is split on a
50:50 beamsplitter and one half is measured in x-quadrature and the other in the
p-quadrature. In this way the entire phase space of the Q-function is sampled at
once and only a pure AC and pure DC lock is required [81]. The usual difficulty
of getting two interference visibilities close to unity is further reduces by using a
fiber setup, where we found that a > 0.99 visibility routinely could be achieved.
For the measurement presented in chap. 4 a "slow" sample-hold scheme was
used. Here slow means that the sampling frequency was well below the locking
bandwidth and we therefore had to hold all locks during data collection. This of
course allows for long measurement traces to be collected, but as we saw from
the measurement of the phase noise of the full fiber network (fig. 4.12) this is of
no use as the phase drifts too quickly. We should therefore opt to use the "fast"
sample-hold scheme, in which the sampling frequency is much higher than the
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locking bandwidth and so the locks can be kept continuously on, as they won’t
see the on/off switching of the locking signals. One thing to solve would then
be the synchronization of the sample-hold signal generated in lab A and lab C.
If solved, using this method our measurement should then only suffer from the
locking phase noise, which we found to be ~ 4° for configuration (3).

Distributed quantum sensing

For the distributed sensing project, which was carried out before the non-
Gaussian state transmission project in the old lab, we also build a setup to
generate squeezing vacuum from using parametric down-conversion in an OPO
cavity as well as the four node free-space network consisting of three 50:50
beamsplitters and eight QWPs and HWPs. For the project we developed the
technique of using overlapped probe and LO signals in opposite circular polar-
izations to realise a phase shift between the two modes using only a HWP. This
allowed us to to scale the network size to four nodes without having to deal with
the otherwise eight phase locks. With the entangled probe state we showed a
roughly 20% improvement in root-mean-square estimation error compared to a
non-entangled probe, for the sensing task of measured the average phase shift of
the four nodes. The main obstacle preventing us from showing a better scaling
was the 75% total optical efficiency of the network channels. To obtain the
maximal sensitivity with our experimental setup we had to carefully optimize
the distribution of coherent and squeezed photons within the entangled probe
state. As this project was a proof-of-principle experiment and since we had to
disassemble the experimental setup completely, we have no current plans for
developing the experiment further.

Though an interesting idea could be to use the same scheme of overlapped
LO and probe state to implement a multipass sensing protocol. In ?? Higgins
et al. show how passing a probe state through a phaseshift multiple times can
linearly increase the accumulated phase and thereby leading to a Heisenberg
limited measurement sensitivity. In experimental setup they used polarization
NOON states created by passing a heralded single photon trough a PBS. But
due to the heralding their scheme was only probabilistic. Using a setup similar
to what we build for this project, but with a multipass stage as in 7?7 (HWP in
between two mirrors and QWPs) instead of the beamsplitter network we could
show, assuming low enough loss, a deterministic Heisenberg limited scaling in
the number of probe passes of the multipass stage.
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Waist size wo \/)\ZR/’/T

Rayleigh length zr | Twd/A

Divergence angle dr | A/Twy

Wavenumber k | 2mn/A

Angular frequency v | 2mc/A

Beam width w(z) | wor/14 (2/2zRr)?
Beamfront curvature R(2) | z (14 (zr/2)?)

Gouy phase Gim(z) | (1 +1+m)arctan(z/zg)
Modematch 1 < 2 Moo | 2/(wo2/wo.1 + wo,1/wo,2)

Table A.1: Typical parameters of a focused Gaussian beam [54].

A.2 Cavity design guide

A.2.1 Ray transfer matrix analysis

The beam parameter ¢(z) fully describes a Gaussian beam by its Rayleigh length
or waist size

q(z) =z+1izp & 1):#—¢ (A1)

The transformation of a Gaussian beam by a combination linear optical elements
is described by the ABCD law

Aql+B

= Ca+D (4.2

q2

where ¢; is the initial Gaussian beam parameter, ¢ is the resulting beam pa-
rameter and A,B,C and D are the matrix elements of the ray transfer matrix
M = MsMs;M; describing the sequential transformation of optical elements
1—+2—=3.
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Propagation d = distance M, = (1) (f
. 1 0]
Thin lens f = focal length My =|_1 1
L f J

R — mirror curvature 1 0
R. = Rcos@ (tangential plane) | M, = [_2 }
R. = R/ cosf (sagittal plane)

Curved

mirror

Curved n = refractive index M — [ 1 0]
boundary 1 — 2 | R = boundary curvature b= el

Table A.2: Common ray transfer matrices [54].

Fabry-Perot —h—

(FP) 7 C M =My(3) M (R)Mp(3)
Monolithic Rery Fory L, -
FP @ M =M, (<5) My (Rery) My (<5%)

R
N R VS VAT R YA
Triangle T X Mp(% +13)
Is=y/(2)2+13, 0= arctan%

M =M,(ls)M,(R,0)

| Sy () My, 1), ()
- R - _’" R
Iy =\/(%)? +13, 0 = arctan 22

M =M, (ls + 2) M, (R, 0)

Bowtie w. L1 L
M, (P=tere ) My (n, 1) M, (L

crystal X My (=) My (n, 1) My, (=5+)
ly =/ (bE2)2 412, 6 = arctan lffl?

Table A.3: Common optical free-space cavity geometries and the associated
ray transfer matrix M used to calculate the resonant mode waist size. Generally
M describes the waist to waist transfer, so that if the cavity has has two waists
or is symmetric M only describes half a round trip.
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Waist-to-waist transfer equations

If we say that both ¢; = iz and g2 = izp o are waists, we can then use the
ABCD law to write

iAzpi + B  i(AD — BC)zpy + ACzy, , + BD
iCzp1 + D N (023,1)2+D2

1ZR2 =

which is solved by separating the real and complex part

ACz%, + BD [-BD
. — - - = _— A
Re(g2): O (Cona)? + D2 < ZR,1 aC (A.3)
m(g») (AD — BC)zp, _ (AD —BO)\/ 5
m N z = =
& 2 Oz )2+ D? —C280 4 D2
B (AD — Bc)%\/ :,ch _ |-AB (A1)
B —BC + AD ~ Vb '

Here we use that zp must be real so the terms —BD/AC and —AB/CD are
assumed positive. The two equations can then be used directly to obtain the
Rayleigh lengths and thereby waist size of any resonant cavity geometry. Since
the equations only hold for resonant modes, a geometry resulting in complex
Rayleigh lengths corresponds to no resonant mode being supported.

A.2.2 Mechanical designs
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Figure A.5: Design consideration of the SHG and OPO cavities.
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Figure A.6: Design considerations of the FC. resonant mode waist size, band-
width (BW) and free spectral range (FSR) as function of the cavity length
(lcaw/2) and mirror specifications. Using a cage system, we can easily change
the cavity length, but initially choose a cavity length of 2.2 mm with identi-
cal 99.8% reflective, 500 mm curved mirrors. This results in a waist size of
wo = 0.12 mm and, assuming no additional losses, a finesse of ~ 1600, BW of
Yrc ~ 24 MHz and Awpc ~ 75 GHz FSR.

A.2.3 Boyd-Kleinmann parameteres

Phase mismatch parameter o | Akzg
Focusing strength paramter X | Lery/22R
Focusing position parameter | Uery —2F)/lery
Double refraction parameter B | p/do
Absorption parameter K | 42R
Phase mismatch Ak

Focus position f

Double refraction angle P

Diffraction half-angle 0o

Crystal length lery

Effective nonlinear coefficient deyy

Linear absorption coefficient Qo

Effective absorption coefficient ay | oy £ oy,

Table A.4: Overview of parameters used in Boyd-Kleinman theory [57].
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A.3 Measurement configurations

a3 a5 a7

1-PSSqV i1
generation

Figure A.7: Map of the laboratory rooms in the basement of building 307 at
the DTU campus. The 1-PSSqV state is generated in lab A and is connected
to lab B via two 60 m SMF fibers (configuration 2) and to the 307b node of the
campus fiber network (G in fig. A.8) via two 70 m SMF fibers (configuration
3).
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Figure A.8: Map of the DTU fiber network with central nodes shown. For
measurement configuration (3) a connection between node G and E was patched
up, so that the channel connecting lab A in bld. 307 to lab C in bld. 340 passes
through a total of three node cabinets. The total channel length is estimated
to be ~ 400 m.

Figure A.9: HMS in lab B (right), on the way to bld. 340 (middle) and inside
lab C (left).
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A.4 Lab infrastructure

A.4.1 Red Pitaya

In our setup we typically use one RP per lockbox and have modified them in
the following way:

e change the output voltage from +1 V to 0 — 2 V and improve the output
noise performance by removing resistor R1, R2, R3 and R4 of the output
ports [90].

e synchronized the clock of several RP by jumping R23 and R24 (master)
and removing R25 and R26 (slave). The clock from the master RP is
carried to the slave RP through the GND, CLK+ and CLK- pins of the E2
extension connector. Using this method we have successfully synchronized
up to five RP using short unshielded cables as well as synchronizing to RP
using a 4 m 2-poled shielded cable.

Figure A.10: Red Pitaya rack
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A.4.2 Homebuild feedback components
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Figure A.11: Network analysis of the small piezo mounted mirror used for

probe phase modulation and gain locking.
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Figure A.12: Network analysis of the 3D printed
AC/DC locking of homodyne detection.

Figure A.13: (right) 3D printed fiber modulator. Good LO locking was
achieved using 20 kHz modulation with low ringing, but after a few hours of
continuous use the piezo broke. (right) 3D printed fiber attenuator.
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A.5 Supplementary material to Chap. 4
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I. AVERAGED PHASE SHIFT SENSING WITH P,,, ESTIMATOR

Our distributed phase sensing scenario is as follows. At each of M spatially separated locations, an optical phase
shift ¢; occurs. We are interested in estimating the average phase shift ¢,z = ﬁ Z?il ¢;. It is straight-forward
to generalize to other linear combinations of the phase shifts, but for the sake of demonstrating the power of the
entangled approach it suffices to consider the simple average, where the gain is maximum [1]. We consider two
different approaches: The separable scheme where each phase shift is probed individually by squeezed coherent states,
and the entangled scheme where the M locations are part of an optical network endowed with a single squeezed
coherent state that is distributed among the nodes to serve as an entangled probe. In either case, the phase shifted
probes are measured by homodyne detection of their phase quadratures and the results are communicated classically

to establish the average.
We furthermore make the following assumptions to simplify the analysis:

1. All the phase shifts are small, giving the small-angle approximation sin ¢ ~ ¢.

2. All probes in the separable approach are identical, having real-valued displacement amplitude «; and squeezing
in the phase quadrature with squeezing parameter . That is, the M probes are each in the state |1)(*)) =
D(a5)5(rs)[0), where D(a) = exp(aa’ — a*a) is the displacement operator and S(r) = exp(5(at? — 4?)) is the

squeezing operator.

3. In the entangled approach, the single initial resource state has real-valued displacement amplitude o, and phase
squeezing with squeezing parameter 7., that is, it is in the state |1/(®)) = D(a.)S(r.)|0). This resource is divided

evenly through the network to the M nodes.

4. The channel losses, quantified by the efficiency parameter n, are identical for the M channels and they occur
entirely prior to the probes reaching the phase samples. In other words, we assume the phase samples themselves
and the detection to be lossless. While this assumption is not quite realistic, even in our experiment, it mostly
has consequences when keeping track of the number of photons hitting the sample but does not influence the
sensitivity as such. In a truly distributed setting, most losses would also happen in the distribution of the

resources.

For high-sensitivity estimation of larger phase shifts, these assumptions can still be fulfilled, as long as the local
oscillator in the homodyne detector is pre-adjusted to be roughly 90° out of phase with the shifted probe. This rough

estimation can be done with just a few initial probings [2].

A. General sensitivity for small phase shift

1. Separable scheme

With probe states given as described above, we use the notation defined in Figure 1 to analyse the separable scheme.

The phase quadrature of a single mode after channel loss and the phase shift ¢; is

ﬁj = (\/ﬁ‘i's,j + 1- nivactj) Sin(bj + (\/ﬁps,j + V 1- nﬁvac,]) C05¢j;

ey
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FIG. 1. Phase quadrature notations for analyzing the separable scheme. The amplitude quadrature is defined accordingly.
Ds,1--.Ds,n: operator for the initial squeezed states; Pvac,1...Dvac,m: the vacuum operators induced by loss. 7: the overall
detection efficiency; ¢1 ... ¢n: the local phase shifts; p1...pasr: phase quadrature of a single mode after channel loss and the
phase shift.

where & ;, Ps ;j are the quadrature operators of the initial squeezed states with mean values (&, ;) = V2as, (Ps,j) =0
and variances (Ag2 ;) = Le?rs (Ap? i) = 1e72"<, while fyac,j, Pvac,j are vacuum mode operators admixed through
the losses. The cxpcctatlon valuc of thc rotated phase quadrature is

(B;) = Vi (&a5) sin g = \/2nasing; ~ \/2nase;. (2)

The phaso shift can thus be directly estimated from the measured 13] values. The average phase shift of M modes,
Gavg = 37 ZJ L ¢, can then be estimated with the estimator Pag = 2 Z] 1 by

avg \/>Cx s ¢avg (3)

The sensitivity of the estimation is defined as the standard deviation which, from standard error propagation
analysis, is given by

<Apavg>
SR (4)

[0(Pae) 00

The slope of Pavg VErsus Qayg is
8<pavg>/8¢avg o/ 2770457 (5)
and its variance is

2
M

(BP%) = (A Zp] — S (©)
M? M? 4
M .
=

Z sin?¢; (n{A23 ;) + (1 = (A%, ;) + cosd; (A3 ;) + (1= 0)(Apgac ;) (7)

3 \

e~ 2rs 1—1
[22( sin? ¢, + U 7 cos? ¢ + 3 ]>. (8)




The second equality comes from the fact that in the separable approach there are no correlations between the modes.
Under a stronger bound on the magnitude of the phase shifts, ¢; < y/(Ap? ;)/(AZ2 ;), this expression reduces to

- 1 . 1-n ne s +1—n
2 N\ 2 P P
(AP, = i (n(ApSJ) + 2 > Wi . 9)

Hence, the sensitivity is

Ve 1 i/n—1
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The average number of photons hitting each sample is

Ng = Ngcoh + Nesqz = n(a? + sinh? Ts). (11)
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FIG. 2. Phase quadrature notations for analyzing the entangled scheme. The amplitude quadrature is defined accordingly.
BSN: beam-splitter network with M inputs and outputs; pe: the only non-vacuum input of the BSN; ) ... 57, the evenly split
M output of the BSN. All the other notations are the same as Figure 1.

2. Entangled scheme

With entangled probes (the notation used in our analysis is summarized in Figure 2), we use the same estimator,

P,.g. The individual modes that combine to form the average are, however, now related through the distributed single
initial resource pe:

ﬁj = (\/ﬁ‘f:; + V 1- njvac.,j) sin ¢j + <\/ﬁﬁ; + V 1- nﬁvac,j) CcOoS ¢j7 (12)

where the primed mode operators are obtained after symmetric distribution in the beam-splitter network, that is,

[ PR | .
ZTe = 5, Pe=—F— " 13
i o P mzpy (13)

The mean value of the estimator is

(Prus) = o 3200~ LTS (3716, = P (14)



The variance is

1
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In the second line, we made use of the fact that there are no correlations between & and p quadratures for the given
probe state in our entangled scheme as well as the small angle approx1mat10n cos(¢;) ~ 1, 51n(¢]) ¢;. In the third

line, we further tightened the small angle approximation by taking a qb such that for all j, |¢,| < (;5 and assuming

B M 2 M 2
e <A S > < <A > >
=1 j=1

- (Ap2)
= <G
= < (16)

This approximation gives a sensitivity for the entangled approach of

<Ang> . \/672“{-1/77—1

o= ‘ = . (17)

O (Pavg) /s 2ac

Note that this, in contrast with the separable approach, does not depend on the number of modes M. The sensitivity
is therefore the same as the sensitivity for a single mode with the same resource state - but in the single mode case
the sample would of course be exposed to M times as many photons. The average number of photons hitting each
sample in the distributed, entangled scheme is

i(az, +sinh®r,). (18)

Ne = Ne,coh + Nc,sqz = M

B. Optimized parameters and sensitivities
1. Entangled scheme

With the sensitivities given by egs. (10) and (17), we wish to find the values for the displacement amplitudes and
squeezing parameters that optimize the sensitivity for a fixed photon number on the sample. This problem can be
solved with Lagrangian multipliers, using the constraint Ny, — N = 0, where N is the photon number to be held
fixed during optimization. The total photon number of the resource state(s) before loss is then Niyoy = MN/7.

The Lagrange function for the entangled scheme is



and the equations for the stationary point of the Lagrangian become

After some manipulation, the solutions can be expressed as

az = Niot — sinh? Te =

with Ay = /1 4+4MN(1 —n). The optimal photon number ratio is

and the optimal sensitivity obtained with these parameters becomes

Le(aevr"e)A) :Ue"")\(Ne_N) (19)

_ Ve +1/n—1 N2 12
T — + )\ﬁ(ae +sinh®r.) — AN, (20)
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which for n = 1 reduces to o%'(n = 1) = 3 1\/11 ~N\/ TN M N 7 This sensitivity exhibits Heisenberg scaling in both photon

number (due to the squeezing) and mode number (due to the entanglement).
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2. Separable scheme

Doing the same derivation for the separable scheme, that is, starting from the Lagrange function L,(as,rs,A) =
os + ANy — N), results in the following optimal parameters for squeezing and displacement:

Az (28)
1-n’
N, ) N (A —1)2
2 tot 2 1
i LA Y 1S R ol S A 29
QT TS n 41 -n)(AL—n)’ (29)
with A; = \/1+4N(1 —7), and a corresponding photon number ratio
Nesqz Msinh?rg n(A —1)2 (30)
s = 2 = = .
=N Now AN =)A= )
Finally, the optimal sensitivity becomes
ooPt — 1 N(l 777)+77(A1 +1)/27 (31)
? 2V MN 1+n/N

which for n = 1 reduces to o%P*(n = 1) = thus no longer showing Heisenberg scaling in the mode

1 /| N
2vVMN '\ N+12
number. The result enable us to obtain the simulation result in Fig 1c and 1d in the main text, and the optimal p
and corresponding squeezing rated need to get the optimal u is shown in Fig. 3.

II. PREPARATION OF ENTANGLED PROBES

The entangled probes are prepared in two steps. First, we generate a squeezed coherent state, denoted as the
squeezed probe (SP), by an optical parametric oscillator (OPO). Second, we send the SP through a beam-splitter
network (BSN) to generate 4 entangled probes. We define the mode of the SP to be a narrow sideband at 3 MHz,
since this is region where we have high squeezing quality.

A. Generation of squeezed probes with OPO

The laser source for the experiment is an amplified NKT Photonics X-15 fibre laser operating at 1550 nm. Most of
the light is used for pumping a second harmonic generation (SHG) cavity (same design as the OPO described below)
to produce 775 nm light to act as the OPO pump. The rest is used for the local oscillator and the probe and lock
beams. As shown in Fig. 4, we use a bow-tie shaped OPO with a periodically poled potassium titanyl phosphate
(PPKTP) crystal to generate the SP by type-0 parametric down conversion. The bandwidth of the cavity is 8.0 MHz
half width half maximum (HWHM) and the OPO pump power threshold is 850 mW. The 775 nm pump, which for
the measurements presented here varied between 150 mW and 350 mW, is coupled through the dichroic curved cavity
mirrors and dumped after passing the crystal. A 3.6 mW coherent beam at 1550 nm, weakly phase-modulated by
an electro-optic modulator (EOM) at 3 MHz and 28.7 MHz, is coupled into the OPO in the counter-propagating
direction through a high reflectivity mirror (HR) with a transmittance of about 100 ppm. This beam is used to lock
the cavity by the Pound-Drever—Hall technique with the 28.7 MHz side band and the resonant detector D1. All cavity
and phase locks in the experiment are handled by Red Pitaya FPGA boards running the PyRPL lockbox software [3].

The reflection from the HR mirror is re-coupled into the forward-propagating mode of the OPO with a 0° mirror
to serve as the carrier of the sideband mode that defines our probe state. A variable attenuator (Att.) is inserted
to control the optical power. In the OPO, the forward-propagating beam is squeezed by the parametric process and
coupled out through a 10% transmittive out coupling mirror (light gray in Fig. 4). A half-wave plate (\/2) and
a polarization beam-splitter (PBS) is used to tap around 1% of the OPO output towards detector D2 to lock the
phase between the carrier and the pump for de-amplification. As a result, the carrier is squeezed in the amplitude
quadrature, leading to squeezing of the phase quadrature of the probe in the 3 MHz modulated sideband frequency
mode since the sideband is encoded by phase modulation.
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FIG. 4. Squeezed probe (SP) preparation with OPO. M, high reflectively mirror; EOM, electro-optic modulator; Att, attenuator;
D1, resonant detector for cavity lock; D2, high gain detector for OPO gain lock.

B. Generation and detection of entangled probes

The detailed experimental setup is shown in Fig. 5. It is essentially a multi-port version of a squeezed-light-enhanced
polarization interferometer [4]. We create four entangled probes by sending the squeezed probe, SP, through a BSN
consisting of three 50:50 beam-splitters. Prior to this, the SP is spatially combined on a PBS with a strong beam
(LO) which will act as the local oscillator for all four modes. The LO phase is locked to either the p or & quadrature
of the SP by tapping ~ 1% towards a polarization-based homodyne detection setup, the output of which is used to
control a piezo-mounted mirror in the LO path. In each of the four modes, the phase between LO and SP can be
further controlled by a A/4 and a A/2 wave plate. The \/4 plates change the LO and SP into left-hand and right-hand
circular polarization, respectively. The A/2 plates introduce phase shifts between SP and LO and play two roles:
First, they are used to synchronize the phases for the entangled probes by compensating the phase difference induced
by 50:50 beam splitters. Second, they are used to simulate the phase samples, that is, the imposed phases ¢1, ..., ¢4.
For details, see section IIT A. Finally, the four outputs are measured on homodyne detectors.
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FIG. 5. Detailed experimental setup and the input-output relationship of the beam splitter network (BSN). The input modes
@1 to G4 with s-polarization are transferred into the output modes b1 to bs. Here, only G, is a squeezed coherent state operator.
G to a4 are vacuum operators. By tuning the wave plates at each output of the BSN, b1 to by are set to circular polarization.

1. Homodyne detection and data acquisition

All five homodyne detection setups use the same scheme, illustrated in Fig. 6a. The circularly polarized SP and
LO interfere after the PBS. The optical power of the LO is about 3 mW on each HD and it detects a SP of about 10
nW. The output of the detector is electronically split into AC and DC parts with a bias-tee of about 100 kHz. The
AC signal, V., is used for phase sensing. It includes the 3 MHz side-band, but filters out the carrier at DC and the
side-band for cavity locking at 28.7 MHz with a low pass filter at around 14 MHz. The DC signal, V., detects the
carrier. It is used for phase locking and phase calibration (see section IIIB).
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FIG. 6. a. The circular polarized SP and local oscillator (LO) are projected into p- or s-polarization by a PBS, and detected
with a balanced photo-detector. The output voltage of the detector photo diodes is separated into DC-100 kHz output V4. and
100 kHz-14 MHz output V,c. PD, photo diode; TIA, trans-impedance amplifier. b. Power spectral densities (PSDs). SNL,
shot-noise limit; ASQ, anti-squeezing; SQ, squeezing; PX and PP, probe noise in X and P quadrature respectively, measured
by blocking pump; EL, electronic noise of the data acquisition system, measured by blocking both SP and the LO.

The V. outputs of HD1 to HD4 are sent to a 4-channel oscilloscope (LeCroy HDO6034), which acquires time-
voltage traces of 200 ps with a 50 MHz sampling rate. The power spectral densities (PSDs) of the individual HD
outputs and the averaged output is obtained by Fast Fourier Transform (FFT) on a computer. Fig. 6b shows PSDs
for the averaged voltage of the 4 HDs in different experimental conditions with no modulation from the EOM. All
the PSDs in Fig. 6b are the averaged result of 400 oscilloscope measurements. To show the signal-to-noise ratio of
the data acquisition system, we measure the PSDs of the shot noise level (SNL, measured when SP is blocked) and
electronic noise (EL, measured when both SP and LO are blocked). The result is shown in green and dark grey traces
in Fig. 6b. We see that the electronic noise clearance is about 23 dB at the 3 MHz side band, which corresponds to
about 0.5% effective loss in detection efficiency. We will discuss the other PSDs shown in Fig. 6b in the following
subsection.

2. Input-output relations of the BSN

The BSN we use in the experiment is shown in Figure 5. The only non-vacuum input mode a; is the SP, whose
mode operator is a1 = ST(r)aS(r) + a in the Heisenberg picture, with @ being the annihilation operator of the OPO
input at 3 MHz and the real-valued o being the effective coherent excitation of the mode after modulation by the
EOM and de-amplification in the OPO. All the other input modes as, a3 and a4 are vacuum modes. The output

modes of the BSN, b; can be explicitly written as:

by = %ﬁ(&l — iy + Vi) + /T — dvacn
by = %\/’7](&1 — iy — V2id2) + /1= ndyac,2

ba = 5@+ i — Vids) + /T~ s (52)
Here we have introduced an identical overall efficiency 7 and vacuum mode operator Gyqc,j for j = 1...4. Although
the various inefficiencies occur at different points in the experiment, for simplicity we have assumed (as in section I)

that they all occur after the distribution of the probes in the BSN and that they are identical for the four channels.
Experimentally, we use eight variable irises before the PDs of all four HDs to equalize the overall detection efficiency.

3. Qwerall detection efficiency estimation

The loss budget of our experiment setup is as follows: the escape efficiency of the OPO ~ 95%; the quantum
efficiency of the photo diodes in HD ~ 98%; the imperfection of the mode matching between SP and LO ~ 90%; the



electronic noise of the homodyne detection ~ 99%; the efficiency introduced by tapping for phase locking ~ 97% and
the efficiency of all optics between OPO output and the PD of the HD ~ 92%. The loss budget of the experiment
system gives an estimation of the overall detection efficiency of n ~ 74%.

We also estimate the overall detection efficiency by measuring the squeezing/anti-squeezing degrees (notated with

v2, and v2,,) for the entangled approach at 3 MHz. Since

02, =ne e 4+ (1—n)
V2, = e’ + (1 —1n), (33)

we can calculate 1 and r. with measured qu and vzsq. The overall efficiency estimated with 5 different pump powers
to the OPO is n = 73.5% & 1.5%. This result coincide with the loss budget estimation, and we use this result to
theoretically calculate the sensitivity.

For the separable approach, where the BSN is removed, the overall efficiency is ~ 1.5% higher. However, we
compensate this by tapping more to the lock detector D2 in Figure 4 so the separable approach has similar efficiency
to that of the entangled approach.

4. Entanglement characterization of the probes

The squeezing degree for each individual output mode will not be better than 3/4 shot noise due to the splitting
of the SP in the BSN. However, the squeezing of SP is converted into entanglement between all the probes. By joint
measurement of the 4 probes (simply averaging the voltage from the four HDs), we can recover the squeezing degree
of the SP: From Eq. (32), the joint measurement recovering the squeezing of SP is simply the sum of the four HD; 4
outputs. The recovered squeezed and anti-squeezed quadratures are shown as SQ (blue) and ASQ (red) in Fig. 6b.
We see the joint measurement gives about 4.8 dB of squeezing at the 3 MHz side band frequency. The additional
noise seen below 2 MHz is due to technical noise from our laser. As a calibration of the noise of the probe before
the parametric process, we measure the PSDs of X and P quadrature by blocking the pump of our OPO, and the
result is shown with PX (light blue) and PP (light red) in Fig. 6b (noting that here we refer to the amplitude/phase
quadrature of the carrier of the SP since there is no side-band). We see the technical noise of both X and P quadrature
decreases as the frequency increases and overlap with the SNL when the frequency is above 1.8 MHz. Therefore, in
our estimation of the overall detection efficiency at the side band frequency (3 MHz), we ignore contributions from
technical noise of the laser.

g & b.
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FIG. 7. a. Squeezing and anti-squeezing spectra for a single distributed spatial mode obtained from HD;. b. Squeezing and
anti-squeezing spectra from joint measurement. Dashed lines: spectra predicted by theory.

With the measurement described in Fig. 6b, we can get the squeezing/anti-squeezing degree in SNL units. Fig. 7a
and b shows the squeezing and anti-squeezing of an individual channel (HD1) and that from the joint measurement,
respectively. The dashed lines show the squeezing and anti-squeezing predicted by [5]

4n P/Pth
SE(f) = v ,
D = BT + (/o )?

where S™(f) and ST (f) denotes the squeezing and anti-squeezing spectrum, n = 0.735 is the estimated overall
detection efficiency, feq, = 8.0 MHz is the HWHM of the OPO cavity and P;, = 850 mW is the threshold of the

(34)
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OPO. In this measurement, P = 300 mW pump power is used. Here both f.q, and Py, are obtained from independent
measurements.

We quantitatively verify the entanglement of the probes by reconstructing the covariance matrix of the 4 modes.
As we do not expect correlations between & and p quadratures, we only experimentally reconstruct M, = Cov(Z;, &)
and M, = Cov(p;,py) for j,k = 1 to 4 at around 3 MHz. After balancing the length of cables from HD; 4 to
the oscilloscope, we digitally filter the recorded traces by a 50 kHz band pass filter centered around 3 MHz, and
measure M, and M, respectively. The covariance matrices in shot noise units from the average of 400 oscilloscope
measurements are:

0.83 —0.18 —0.17 —0.19 3.0 1.9 1.9 2.0
- 084 —0.16 —0.18 - 2818 1.9 .

Me=1 " " o83 —oas| Me=| . 1 2819] (35)
- - 082 .- 230

where symmetric elements are not shown. We show the entanglement property of the probes by calculating the
logarithmic negativity N'(p) between them, where A'(p) > 0 is a sufficient condition for entanglement [6]. For a
Gaussian state this can be obtained through the symplectic eigenvalues of the partially transposed covariance matrix,
so that N(p) = 3, f(0), where 0y, are the symplectic eigenvalues and f(x) = —logy(x) for x < 1 and 0 otherwise.
By constructing the full M, ;, covariance matrix from M, and M, we find that for any two, three or four modes the
value of N (p) is within the range of 0.20 £ 0.02, 0.33 £ 0.02 and 0.51 + 0.02 respectively, confirming the presence of
quadrature entanglement across all mode combinations.

IIT. PHASE CONTROL AND CALIBRATION

In this section we first calculate the interference at the two photo diodes of the HD in Fig. 6. The result shows that
the phase between SP and LO can be controlled by rotating the A\/2 wave plates. After that, we describe the phase
calibration procedure and result in our experiment. With the phase calibration result, we can control the phase ¢;
for j =1...4 (and therefore ¢,yg) by rotating the \/2 wave plates to a specific position.

A. Phase control with \/2 wave plates

The LO with p polarization and OPO output with s polarization are combined by the PBS in Fig. 5, and the Jones
vector after the PBS is

BEro-e7'ro )
Jin = |:ESP Le~ibsp | (36)

where Ero - 710 is the LO and Egp - e*¢s7 is the OPO output (squeezed probe). The Jones Matrix for a wave
plate is [7]

~|cos(¢/2) + isin(¢/2) cos(26) isin(¢/2) sin(26)
Mup = isin(¢/2) sin(20) cos(¢/2) — isin(¢/2) cos(29)] ’ (37)

where 0 is the angle between the fast axis of the wave plate and p polarization (the direction of LO), and ¢ is the
retardance of the wave-plate (¢ = 7 or ¢ = /2 for an ideal A\/2 or A/4 wave-plate, respectively). We fix the \/4
wave plate at § = 45° and put the \/2 wave plate at a variable angle 6,, resulting in the output Jones vector

. J
Jout = M2 (00) M) 4(45°) Jin = [ J;] (38)
with
1 . , .
— iE i(200—¢L0) _ | —i(20,+¢sp)
J1 NG} {1 Loe spe ]

Jy = {ELOei(%’uﬂbLo) _ ,L‘Espe*i(w'v*d’“’)] . (39)

Sl



11

Therefore, the interference between the two polarization modes observed at the two diodes of the HD after the second
PBS is:

Inp = |J1|*> = |Jo|* = 2EspEro sin(40, — ¢a), (40)
where ¢q = ¢psp — ¢ro is the initial phase difference between OPO output and LO mode before being overlapped at
the first PBS. The result show that if we rotate the A\/2 wave plate by an angle of 1°, the phase between LO and OPO
output will change 4°. The form of Eq. (40) also shows the visibility of the HD is not affected by the polarization
transformation since it doesn’t have any constant term. However, if the wave plates or PBS are not perfect, which
means that the wave plates have either more or less retardance or that the PBS has a finite extinction ratio between s
and p polarization, a similar calculation shows the rotation of A/2 wave plate by 1° will result in a phase shift slightly
deviating from 4°, and that the visibility of the interference at HD can be reduced. We experimentally measure these
imperfections as shown in the following subsection.

B. Phase calibration

During the experiment we lock ¢4 to be either 0° or 90° with HDy, and use the rotation of the A/2 wave plate
before each HD to control the phase of each mode. In order to account for potential imperfections in our experiment,
we first measured the visibility reduction from imperfect polarization components. We find a worst-case reduction of
the HD visibility from 98.5% to 95.2%. We also perform a phase calibration by scanning the phase between LO and
SP carrier with a ramp at 27 Hz while the interference fringe measured from V. of HDy, and HD; 2 34 is recorded.
The phase between LO and signal in each path is inferred from sine curve fitting. We calibrate the phase with 40
repeated measurements at each \/2 wave plate position, and the result is shown in Fig. 8. The SQ (blue dots) shows
the result when we lock ¢; = 0° and the HDs measure the squeezed quadrature, and the ASQ (red dots) shows the
result when we lock ¢; = 90°. For both SQ and ASQ, we rotate the \/2 wave-plate position in each channel by an
actuator in the wave-plate mount, allowing us to faithfully use the calibration result in the experiment.
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FIG. 8. Phase calibration result for each HD. The black dashed line is the linear fitting of the calibration.

TABLE I. The phase calibration result
Squeezing

k1]-3.96 [k2][-3.97 [k3][-3.95 [k4[-3.96
b1]-0.13 [b2[-0.59 [b3[-0.64 [b4]0.37

Anti-squeezing

k1]-3.99 [k2[-3.99 [k3[-4.06 [k4[-4.06
b1]-89.50[b2[-89.97[b3]-89.87[b4[-88.90
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From the calibration results, we see that the phase is linear within the whole range of the actuator (8°) on the wave
plate mounts. The result of the linear fitting to HD channel j = 1 to 4 with the equation

¢j = k;0, +b; (41)

is summarized in Table I. With these fitted parameters, we can control both the phase in each channel ¢; or the
averaged phase ¢,y accurately. Particularly, if we lock ¢; to 0°, we can change the ¢, by a slope of 3.96° £ 0.02°;
if we lock ¢; to 90°, can change the ¢avg by a slope of 4.02° £ 0.02°.

IV. DATA ANALYSIS

In this section we introduce the details of our data analysis procedure, which includes measuring the sensitivity by
fitting and counting how many photons in average is used in the SP.

As the estimator of @avg, Pavg is experimentally estimated from the PSD of the averaged output of the four HDs
in each mode. Fig. 9 shows the PSD results measured for different ¢.,s. Each PSD is obtained from the FFT of an
average of 2000 oscilloscope traces. The spectrum peak at 3 MHz S, gives the value of

SPk = 2V9271 ) (pzvg> = 2V92n, : ((APaQVg> + <P3Vg>2)1 (42)

where Vg, is the 4-mode shot noise limit (SNL) voltage from HDs decided by LO power, electronic gain and the digital
filtering. The constant 2 in Eq. (42) comes from the commutation relationship we choose [X, P] =i. We start our
data analysis by separating the peak into two voltage parts

Sy =V2+V2

no

(43)

where V; = \/§Vsn|<15ewg>\ is the signal part induced by the coherent photons of the side band, and V,, =
V2V, (APz ) is the part induced by the fluctuation of the light. Except at the 3 MHz peak, the spectra in

avg
Fig. 9 vary slowly with frequency. This enables us to extract V,, from the adjacent frequencies of the 3 MHz peak.
The procedure of V;, estimation is illustrated with the anti-squeezing quadrature (ASQ, @ave = -89.5 £0.8°) PSD in
Fig. 9 as an example. We first do a linear fit with the frequency range indicated by the red dots, which is slightly
away from 3 MHz. This fitting gives the black dashed line labeled as ”Fitting for ASQ”. V,, is then inferred by the
square root value of the fitted line at 3 MHz. Since our side band line width is obviously smaller than the 5 kHz
resolution of the FFT, only one peak point is observed in the PSDs in Fig. 9. Therefore, V; can simply be calculated
by the difference between the blue dot at 3 MHz and the fitting result.

In our experiment we always introduce equal positive phase shift in all channels. In this case we know that
(Pavg) > 0, and V; and V,, relate to the averaged phase ¢y by

V;(Qbavg) = \/§Vsn<Pavg> = Vsn : ael Sin(¢avg + al)l

2
v M
Vii(bavg) = V2V AP2, = Vi - /02, €082 (v + 02) + 2, 5 (havg + 02). (44)

Here « is the real coherent amplitude from modulation, M is the mode number, 6; and 6, are parameters indicating
the imperfections of the experimental setup (ideally they should be 0), where 6; parametrizes the residual amplitude
modulation of the phase modulating EOM and 6, parametrizes the phase locking offset of the squeezing measurement.
qu =ne 2" + (1 —mn) and vgsq = ne? + (1 —n) are squeezing and anti-squeezing degrees in SNL units. Note that
the form of Eq. (44) rely on two assumptions: First, we assume that the modulation signal on the EOM is perfectly
coherent s0 V;(¢avg) doesn’t have an offset term. This assumption is consolidated by the fact that we drive the EOM
with a sine wave generated from a function generator with phase noise less than -65 dBc. Second, we ignore the phase
fluctuations of the phase locking. This assumption is consolidated by the high (~32 dB) signal-to-noise ratio of the
locking detector HDy,, though this signal-to-noise ratio is not a direct measurement of the phase fluctuation.

A. Sensitivity fitting

With V, and V,, extracted for a range of ¢ayg settings, we can estimate the sensitivity. By comparing the definition
of 0 in Eq. (4) with Eq. (44), the sensitivity to a small phase shift at a given ¢,y offset is

g = Vn(‘bavg)/‘/s,((z)avg)v (45)
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FIG. 9. PSDs of averaged HD output voltage with 3 MHz phase modulation on at different ¢avg. SNL: shot-noise limit; SQ,
Pavg=0.2 £0.8°; ASQ, ¢aveg = 89.5 £0.8°. We estimate Vi and V,, from these PSDs.
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FIG. 10. (a) and (b): Fitting from measured Vi and V,, in different ¢avg. With the fiting result, o is estimated by using Eq.
(46). All the error bars are standard deviation of the data.

where V] = 0V, /0y, is the partial derivative of V; with respect to ¢aye and the o estimation is independent of SNL
measurement since dividing V,, with V! can cancel Vs, out.

In the experiment we give an identical local phase shift to all 4 modes so that ¢; = ¢ave for all j =1 to 4, and
change the value of ¢,y around both the squeezing ¢avg = 0 and the anti-squeezing |pavg| = 90°. The ¢,y we choose
to induce as well as the fitting to Eq. (44) with measured V; and V,, from Figure 9 is shown in Figure 10. In the

Vs(@avg) fitting, the parameters to fit are the slope k = / %Vsnae and 0. In the V, fitting, the squeezing noise

voltage scaled by SNL, kgq = Vi, - vsq, the anti-squeezing noise voltage scaled by SNL, kqsq = Vi - Vasq, and 6o are
fitting parameters. With the fitting result, we estimate the small angle sensitivity of our system o, by

_ V;L(ﬁbav ;= 0)
Omin = Vs/(¢av: — 0) . (46)

We do fitting for 5 different pump power of OPO and find the fitted values of #; and 65 are 3.4° +0.2° and 1.6° +0.6°,
respectively. These values are reasonably small, and in principle could be further reduced by better locking and phase
modulation techniques. For the most sensitive case (maximum squeezing rate) in our result, the fitted 6; and 6
indicate 0, could have been further improved by ~ 0.2% and ~ 0.9%, respectively. The o, extracted in Eq. (46)
is shown in our experiment results for the entangled approach in main text Fig 3 as o.. The uncertainty of V! is
obtained from the fitting, and the uncertainty of V, is obtained from the standard deviation of 2000 measurements.
The error bars for o in Fig. 3 are calculated by error propagation of Eq. (46).

A similar analysis method is used for the separable approach, but the PSDs used in the separable approach are
from only one HD instead of averaged HD outputs. By removing the BSN, our setup gives the separable approach of
M = 1. To compare with the entangled approach of M = 4, we rescale our result with 1/v/M as a result of classical
averaging. The scaled sensitivity is quoted as our experiment result for the separable approach in main text Fig. 3 as
Os.
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B. Resource counting

In this section, we show how to experimentally measure the average photon number per mode that we use in the
phase sensing.

For the entangled approach, we estimate M N, = M N, cop + M Ne g4 by comparing the joint measurement PSDs
for squeezing and anti-squeezing quadrature to that for SNL, where M = 4 is the mode number. With the notation
defined above, the average number of squeezed photons for all modes in the entangled approach are obtained by
comparing V,, to Vg, with

1 5 o 1 [V (Pavg = 0°) | V2 (¢avg = 90°)
M- Ne,SQZ = 5 ((Apfvg) + <AX§1zg> - 1) = Z [ & ng + ‘52 -2/, (47)
Similarly, the average number of coherent photons are obtained by comparing Vi to Vi, with
g V2(¢ave = 90°
M- Netcah, = 770(53 == (¢ 5 ) (48)

4v2

sn

With Eq. (47) and (48), Ne = Ne coh + Ne,sq- gives the N values in main text Fig. 3 for the entangled approach o.
The error bars for N in Fig. 3, entangled approach are calculated by error propagation of Eqgs. (47-48).

For the separable approach, we use a very similar technique. However, the PSD is from a single HD instead of joint
measurement. Explicitly, the photon number per mode for the separable approach is Ny = Ng con + N sq2, With

L oias2 -2 1[VZ(e=0°)  VZ(¢=90°
Novar =3 (0 (A8 —1) = 3 | 25y = + 2 = =2 )
and
V2(¢=90°
Ns,coh = %7 (50)

sn’/

where ¢ is the phase shift of the single mode, and we use Vy,s to denote the 1-mode SNL, which is about 1/4 of
the 4-mode SNL V;, used in the entangled approach. The photon number per mode Ny = Ny con + N sq- gives the
N values in main text Fig. 3 for the separable approach os. The error bars for NV in Fig. 3, separable approach are
calculated by error propagation of Egs. (60-61).
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