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Final results of the CUPID-0 Phase I experiment
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Abstract.

A convincing observation of neutrino-less double beta decay (0vDBD) relies on the possibility
of operating high-energy resolution detectors in background-free conditions. Scintillating
cryogenic calorimeters are one of the most promising tools to fulfill the requirements for a
next-generation experiment. Several steps have been taken to demonstrate the maturity of
this technique, starting form the successful experience of CUPID-0. The CUPID-0 experiment
collected almost 10 kg y of exposure, running 26 Zn®2Se crystals during two years of continuous
detector operation. The complete rejection of the dominant « background was demonstrated,
measuring the lowest counting rate in the region of interest for this technique. Furthermore,
the most stringent limit on the 3?Se OvDBD was established. In this contribution we present
the final results of CUPID-0 phase-I, including a detailed model of the background and the
measurement of the 2vDBD half-life.

1. Introduction

The neutrino-less double beta decay [1] (OvDBD) is the most sensitive process able to unveil
the Majorana nature of neutrino [2]. Furthermore, its observation would be an incontrovertible
evidence of the non conservation of the lepton number. Finally, many theoretical models [3]
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explaining the matter antimatter asymmetry occurred in the early universe require the Majorana
nature of neutrinos. For all these reasons, there is an increasing interest in the search for this
process exploiting several technologies [4, 5, 6, 7, 8]. Despite the experimental effort the OvDBD
was never observed: the current limits on its half-life are of the order of 10?°-10%¢ yr, depending
on the isotope. Next generation experiments aim to achieve a sensitivity on the half-life of
the process of the order of 10?7 yr improving their current technologies [9]. First proposed
by Fiorini and Niinikoski [10], in the last years cryogenic calorimeters proved to be among
the most promising techniques for 0vDBD search. Furthermore, the particle identification
capability offered by the dual read-out of heat and light allows a strong reduction of the
background in the energy region of interest. Indeed, thanks to the dual read-out of a scintillating
cryogenic calorimeter, as proposed by Pirro [11], the background can be dramatically reduced
disentangle the /v interactions from the « ones. The CUPID-0 detector is the first medium
scale demonstrator of such technique.

2. CUPID-0
Assembled at the and of 2016, CUPID-0 was cooled-down in the Underground Laboratory of
Gran Sasso at the beginning of 2017.
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Figure 1. A: The CUPID-0 detector anchored to the dilution refrigerator located in the Hall
A of Underground Laboratory of Gran Sasso. B: Detector and single module design. C: Duty
cycle of CUPID-0 in the phase-I data taking: 74% - physics data; 12% - system maintenance;
10% - 232Th energy calibration; 3% - ®°Co energy calibration; 1% - AmBe source.

The detector is composed by 26 ZnSe scintillating calorimeters (24 enriched in 82Se at 95% level
and the remaining two natural) each one surrounded by a VIKUITI reflective foil and monitored
by two light detectors consisting in Ge slabs operated as cryogenic calorimeters (see Fig 1 A
and B). The details on the detector construction and commissioning can be found in Ref. [12].
In Fig. 1 C the duty-cycle of the detector in the first phase data taking (from June 2017 to
December 2018) is showed. The data collected are divided in 9 data sets each one characterized
by its own energy resolution, event selection efficiency and exposure. At both beginning and
end of each data set, energy calibration runs are performed exploiting 232Th v source. The
evaluation of the detector performances as well as the analysis technique used are described in
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details in Ref. [13, 14, 15]. The total exposure collect in the 9 data sets results 9.95 kg y of
Zn®?Se, corresponding to 3.88x10%° #2Se atoms yr.

3. Physics results

As detailed in Ref. [13] we applied three types of events selection cuts to the data acquired: the
first one rejecting no particle-like events (electronic noise, spikes, pile-up events, etc), the second
one rejecting the alpha particle interactions, and the final one rejecting the /v interactions
coming from internal contaminations of 2°8T1 tagging the a decay of its mother (2!?Bi). The
corresponding three energy spectra are shown in Fig. 2 left. The OvDBD of #2Se is expected
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Figure 2. Energy spectra corresponding to 9.95 kg y of Zn®?Se exposure in two energy windows.
The grey histogram is the spectrum obtained with the selection on Zn®2Se thermal pulses. The
filled orange histogram includes the « rejection through the LD pulse shape. The filled blue
histogram is the final spectrum after the rejection of the delayed coincidences with ?'2Bi events.

as a mono-energetic peak at the Q-value of the reaction (2997.9+0.3 keV [16]). Therefore,
we selected a symmetric energy region around the Q-value (see Fig. 2 right) to evaluate the
background index in the energy region of interest. In this energy region 14 events survived all
the cuts. This corresponds to a background index of (3.5739) x 1073 counts/(keV kg yr), the
lowest achieved by a cryogenic calorimeter experiment [17]. Then, since we found no evidence
of OvDBD, we put a Bayesian lower limit on the 32Se half-life of T(1)72 > 3.5 x 10%* yr at 90%
C.I. [17].

In order to understand the sources of the residual background we developed a detailed
background model able to accurately reproduce the collected data [18]. Thanks to this model,
along with the high signal-to-noise of the acquired two neutrino double beta decay (2vDBD)
spectrum, we performed the most precise measurements of the 2vDBD half-life of 82Se [20].
Furthermore studing the shape of 2vDBD we also set an upper limits on the Lorentz violating
term in such nuclear transition [19] and established which nuclear model better reproduces the
collected data (see Ref. [20] for more details).

Finally, the background model allowed to recognize that the main contribution in the ROI is
due to p interactions: (1.534-0.13 stat+0.25 syst)x 1072 counts/(keV kg yr). The contaminations
of the crystals dominate the residual one.

4. Conclusions and future perspectives

The CUPID-0 detector, the first demonstrator of the scintillating calorimeter technique, have
concluded at the end of 2018 the first phase of data taking collecting an exposure of 9.95 kg y
of Zn®2Se. The results concerning the most stringent limits on the 82Se 0vDBD both on excited
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and ground states of 3Kr are published respectively in Ref [21] and [17]. Concerning the 2vDBD
we collected the energy spectrum with the best signal-to-noise ratio reported in literature.
This allowed to measure the 82Se 2vDBD half-life with unprecedented precision [20], and to
accurately study the possible spectrum distortion caused by a Lorentz violating term in nuclear
transition [20] or by the nuclear model describing the transition [20]. In order to assess the
individual contributions to the measured background, at the beginning of 2019 we upgraded the
CUPID-0 detector by installing a muon veto and removing the reflecting foil that prevents the
analysis of coincidences of surface events among crystals. In such a way, we plan to improve the
capability of recognizing the sources of the /v background measured by CUPID-0. Measuring
residual background contributions with such a high sensitivity will be of crucial importance in
anticipation of the next-generation CUPID experiment [22]. The phase II data taking began in
June 2019 and it is smoothly ongoing.
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