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Abstract. Considering a theory of Brans-Dicke gravity with general couplings of a heavy
field, we derive the low-energy effective theory action in the universe of temperature
much lower than the heavy field mass. Gravitational equations and the Brans-Dicke scalar
field equation including an effective potential of the scalar field are obtained, which is
induced through virtual interactions of the heavy field in the late-time universe. We find
a deSitter cosmological solution stemming from the inverse power law effective potential
of the scalar field and discuss the possibility that the late time acceleration of our universe
can be described by means of the solution.

Recent cosmological observations including supernova data [1] suggest that our universe is made
up of about 68 % dark energy, about 27 % dark matter, and about 5 % ordinary matter, and they
cause an explosion of interest in the origin of dark energy [1] and dark matter [2]. The current cosmic
acceleration due to the dark energy and the primordial inflation can be described by using the de
Sitter solutions to the gravitational field equations. Various approaches have been used to understand
the dark energy, such as the cosmological constant, quintessence [3], and the phantom [4] in general
relativity. Other approaches are based on assorted types of modifications to general relativity, such as
f (R) gravity and scalar-tensor theories of gravity. We study the late-time acceleration of the Universe,
in the Brans-Dicke (BD) theory of gravity coupled to a heavy field.

From the BD gravity theory, we derive the low-energy effective theory [5] action in the universe of
temperature much lower than the heavy field mass and obtain an inverse power law effective potential
of the BD scalar field, which is stimulated through virtual interactions of the heavy field. With the
effective potential we discuss the possibility that the cosmological constant problem can be addressed.
Before doing these things, we present the method by which the low-energy effective theory can be
obtained from a high energy theory, as follows:

The (effective action or) generating functional (GF) for connected, one-particle-irreducible (1PI)
with respect to ϕ- and h-lines Green functions is given by the Legendre transform of a GF for con-
nected Green functions, W( j, J) = −i ln Z( j, J) with GF for (general) Green functions Z( j, J),

Γ(ϕ, h) = W( j, J) −
∫

d4x jϕ −
∫

d4xJh (1)

with δW( j,J)
δ j = ϕ, δW( j,J)

δJ = h. Eq. (1) can be rewritten as

Γ(ϕ, h) = Γ(ϕ, J) −
∫

d4xJh, (2)
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where the GF for connected, 1PI with respect to ϕ-lines Green functions is given by the partial Leg-
endre transform

Γ(ϕ, J) = W( j, J) −
∫

d4x jϕ. (3)

with δW( j,J))
δ j = ϕ. From (2) we also have the relation

Γ(ϕ, J) = Γ(ϕ, h) +
∫

d4xJh (4)

with
δΓ(ϕ, h)
δh

= −J, (5)

which gives us h = h(ϕ, J).
When the freedoms associated with matter fields, h(xµ), heavier (mh > T ) than the temperature

of the Universe are hidden from direct observation (i.e., J = 0), the effective theory is described by
the low-energy effective action S e f f (ϕ) of light fields, ϕ(xµ), only. In the tree-level approximation, its
action is given by

S e f f (ϕ) ≡ Γ(0)(ϕ, h(ϕ)), (6)

where h(ϕ) ≡ h(ϕ, J = 0) is derived from the equation

δΓ(0)(ϕ, h)
δh

= 0 (7)

with the effective action Γ(ϕ, h) defined in terms of both ϕ and h fields in a high-energy theory, as in
Eq. (1).

The BD theory of gravity coupled to a heavy field h(xµ) can be described by the action, S =∫
d4x
√−g[φR − ωbd

φ
gαβ∂αφ∂βφ − V(φ)] + S (hm), which is rewritten as

S =
∫

d4x
√−g[ϕ2R − ωgαβ∂αϕ∂βϕ − V(ϕ)] + S (hm), (8)

with substitution φ = ϕ2 and ωbd =
1
4ω. The action for the heavy field is assumed by

S (hm) =

∫
d4x
√−g[−1

2
gαβ∂αh∂βh − V̄(h) − Vint(ϕ, h)], (9)

where V̄ is the potential of the heavy field and the non-renormalizable interaction potential

Vint(ϕ, h) =
u

Mk+l−4
d

ϕkhl (10)

with k + l > 4.
By applying the formula (7) to Eqs. (9) and (10) and by choosing V̄(h) = 1

2 m2
hh2, we get

h(ϕ) ≃ (
−ulϕk

m2
hM(k+l−4)

d

)
1

2−l (1 +
1

2 − l
gαβ∇α∂β

m2
h

) ≃ (
−ulϕk

m2
hM(k+l−4)

d

)
1

2−l , (11)

in the low-energy limit, |∂βh| << mhh. Substituting Eq. (11) into Eqs. (6) and (8), we have

S e f f (ϕ) ≃
∫

d4x
√−g[ϕ2R − ω(ϕ)gαβ∂αϕ∂βϕ − V(ϕ) − 1

2
gαβ∂αh(ϕ)∂βh(ϕ) −Ve f f (ϕ)], (12)

2

EPJ Web of Conferences 168, 08004 (2018)	 https://doi.org/10.1051/epjconf/201816808004
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology



where the GF for connected, 1PI with respect to ϕ-lines Green functions is given by the partial Leg-
endre transform

Γ(ϕ, J) = W( j, J) −
∫

d4x jϕ. (3)

with δW( j,J))
δ j = ϕ. From (2) we also have the relation

Γ(ϕ, J) = Γ(ϕ, h) +
∫

d4xJh (4)

with
δΓ(ϕ, h)
δh

= −J, (5)

which gives us h = h(ϕ, J).
When the freedoms associated with matter fields, h(xµ), heavier (mh > T ) than the temperature

of the Universe are hidden from direct observation (i.e., J = 0), the effective theory is described by
the low-energy effective action S e f f (ϕ) of light fields, ϕ(xµ), only. In the tree-level approximation, its
action is given by

S e f f (ϕ) ≡ Γ(0)(ϕ, h(ϕ)), (6)

where h(ϕ) ≡ h(ϕ, J = 0) is derived from the equation

δΓ(0)(ϕ, h)
δh

= 0 (7)

with the effective action Γ(ϕ, h) defined in terms of both ϕ and h fields in a high-energy theory, as in
Eq. (1).

The BD theory of gravity coupled to a heavy field h(xµ) can be described by the action, S =∫
d4x
√−g[φR − ωbd

φ
gαβ∂αφ∂βφ − V(φ)] + S (hm), which is rewritten as

S =
∫

d4x
√−g[ϕ2R − ωgαβ∂αϕ∂βϕ − V(ϕ)] + S (hm), (8)

with substitution φ = ϕ2 and ωbd =
1
4ω. The action for the heavy field is assumed by

S (hm) =

∫
d4x
√−g[−1

2
gαβ∂αh∂βh − V̄(h) − Vint(ϕ, h)], (9)

where V̄ is the potential of the heavy field and the non-renormalizable interaction potential

Vint(ϕ, h) =
u

Mk+l−4
d

ϕkhl (10)

with k + l > 4.
By applying the formula (7) to Eqs. (9) and (10) and by choosing V̄(h) = 1

2 m2
hh2, we get

h(ϕ) ≃ (
−ulϕk

m2
hM(k+l−4)

d

)
1

2−l (1 +
1

2 − l
gαβ∇α∂β

m2
h

) ≃ (
−ulϕk
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d

)
1

2−l , (11)

in the low-energy limit, |∂βh| << mhh. Substituting Eq. (11) into Eqs. (6) and (8), we have
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d4x
√−g[ϕ2R − ω(ϕ)gαβ∂αϕ∂βϕ − V(ϕ) − 1

2
gαβ∂αh(ϕ)∂βh(ϕ) −Ve f f (ϕ)], (12)

where the effective potential
Ve f f (ϕ) = d ϕ

−2k
l−2 (13)

with d = (1/2l
2

2−l − l
l

2−l )(−u)
2

2−l m
2l

l−2
h (M(k+l−4)

d )
2

l−2 (u < 0, k+ l > 4, and l > 2), which gives us an inverse
power law potential for a quintessence model. The equation of state is given by

ωtot ≡
p
ρ
=
ωϕ̇2 + 4(ϕ̇2 + ϕϕ̈ + 2Hϕϕ̇) − V + cϕ

2k+2l−4
2−l ϕ̇2 − dϕ

−2k
l−2

ωϕ̇2 − 12Hϕϕ̇ + V + cϕ
2k+2l−4

2−l ϕ̇2 + dϕ
−2k
l−2

with c = 1
2

k2

(2−l)2 ( −ul
m2

h M(k+l−4)
dm

)
2

2−l . Note that ωtot > −1.

In the flat Friedamnn-Robertson-Waker spacetime, we can derive the scalar field equation and the
Friedmann equation from Eq. (12).

(2ω + h′2)ϕ̈
= −(6ωH + 3Hh′2 + h′h′′ϕ̇)ϕ̇ − 2{V,ϕ2 −6(Ḣ + 2H2) +Ve f f ,ϕ2 }ϕ

with h′ ≡ ∂h
∂ϕ

, V,ϕ2 ≡ ∂V
∂ϕ2 , ... and

−4ϕ2Ḣ(= ρ + p)
= 2(ω + 2)ϕ̇2 + 4ϕϕ̈ + ḣ2(ϕ) − 4Hϕϕ̇, (14)

subject to the constraint

6ϕ2H2 = ωϕ̇2 − 12Hϕϕ̇ + V +
1
2

ḣ2(ϕ) +Ve f f (ϕ), (15)

from which we get a solution for de Sitter universe with Ḣ = 0 and ϕ̈ = 0, which has following
requirements (with H = const. and ϕ̇ = const.):

6ϕ2H2 = ωeϕ̇
2 − 12ϕϕ̇H + V(ϕ) +Ve f f (ϕ), (16)

(ωe + 2)ϕ̇2 − 2Hϕϕ̇ = 0,

and
(6ωeH + h′h′′ϕ̇)ϕ̇ = {2V ,ϕ2 −24H2 + 2Ve f f ,ϕ2 }ϕ

with ωe ≡ ω(1 + h′2
2ω ). Linear stability analyses near the above solution are given in [6].

When ϕ̇2 << 1 and V(ϕ) << 1 are assumed, Eq. (16) yields Λϕ2 ∼ Ve f f (ϕ) with an effective
cosmological constant Λ ≃ 10−122M2

p and the Planck mass Mp ≃ 1019GeV . We suppose that the BD
field ϕ would be an attractor in the asymptotic region with ϕ ∼ Mp. Note that < ϕ2 >∼ 1/G in the
BD theory [7] with its Lagrangian density, ϕ2R − ωgαβ∂αϕ∂βϕ − V(ϕ). Taking the heavy field mass
mh ≃ 10−17Mp and Md ≃ 10−xMp in Eqs. (13) and (16), we have the useful solutions in (possibly
smallest) integers l and k:

Interesting cases, [ l = 3, k = 3, x = 5 ] and [ l = 3, k = 6, x = 2 ], of natural numbers k, l, and x
can be related with effective theories, which are derived from a grand unified theory defined at energy
higher than Md ≃ 1014GeV or Md ≃ 1017GeV , respectively. In these cases,

Ve f f (ϕ) ∝ m6
h/M

2
d · (Md/ϕ)2k. (17)

Other cases of [ l = 3 ] and [ k = any integer, x = 0 ] are obtained with a little different values of mh ∼
10−20Mp andΛ ∼ 10−120M2

p, compared to the former cases. In the latter cases, the non-renormalizable
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interaction term of the BD and the heavy field in Eq. (10) is induced from a high-energy theory which
resides at energy near Mp. The effective potential isVe f f (ϕ) ∝ m6

h/M
2
p · (Mp/ϕ)2k.

We can restate that, in the low-energy effective theory of BD gravity coupled with a heavy field
whose non-renormalizable interaction terms are derived from a grand unified theory, we get a petite
cosmological constant Λ from the effective potential Ve f f in Eq. (16) (with suitable mh and Md).
The cosmological constant problem thus can be alleviated in this kind of quintessence model with the
inverse power law, effective potential of the BD field in the late-time universe, as given in Eqs. (13)
and (17).

Acknowledgements

We would like to thank Profs. Y. M. Cho, R. Ruffini, S. W. Kim, S. P. Kim, H. Y. Lee, and G. Kang,
who invite us. We thank Profs. C. Lee, H. Min, and P. Y. Pac who helped us learn field theories. We
also thank Profs. M-S Kim and H-Y Park who were our colleagues in Soongsil University.

It was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by Ministry of Education, Science and Technology (NRF-
2017R1D1A1B06032249).

References

[1] Riess A. G. et al., Astron. J. 116, 1009 (1998); Perlmutter S. J. et al, Astrophys. J. 517, 565
(1999); Perlmutter S. J., Turner M. S., and White M. J., Phys. Rev. Lett. 83, 670 (1999); Riess A.
G. et al., Astrophys. J. 659, 98 (2007); Spergel D. N. et al. [WMAP Collaboration], Astrophys. J.
Suppl. 170, 377 (2007).

[2] Mannheim P. D., Astrophys. J. 479, 659 (1997); Lee T. H. and Lee B. J., Phys. Rev. D 69, 127502
(2004).

[3] Ratra B. and Peebles P. J. E., Phys. Rev. D 37, 3406 (1988); Frieman J. and Waga I., Phys. Rev.
D 57, 4642 (1998); Steinhardt P. J., Wang L., and Zlatev I., Phys. Rev. D 59, 123504 (1999).

[4] Caldwell R. R., Phys. Lett. B 545, 23 (2002).
[5] Lee C., Lee T. H., and Min H., Phys. Rev. D 39, 1681 (1989); 1701 (1989).
[6] Damdinsuren B., Sim J., and Lee T. H., Class. Quant. Grav. 34, 175012 (2017).
[7] Brans C. and Dicke R., Phys. Rev. 124 , 925 (1961).

4

EPJ Web of Conferences 168, 08004 (2018)	 https://doi.org/10.1051/epjconf/201816808004
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology


