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Abstract
We present a method of tomography in which photon pairs from a device-under-test (DUT) are
experimentally characterised by quantum interference with a reference photon pair source; we call
this quantum-referenced spontaneous emission tomography (Q-SpET). In Q-SpET, the joint
spectral phase (JSP) of photon pairs generated by a DUT can be reconstructed by combining four
spectrally resolved interferograms. We demonstrate this theoretically and experimentally,
characterising the JSP of a microresonator photon pair source. Our method is fully implemented
on a chip, demonstrating the compactness, inherent phase stability, low complexity, and resource
efficiency of this method.

1. Introduction

Photons play an essential role quantum technologies, with applications ranging from entanglement-based
quantum networks [1–5], quantum metrology, sensing, imaging [6, 7], and information processing [8–10].
Both single photons and entangled photon pairs can be used to implement protocols that go beyond the
capability of classical information processing. Entangled photons can be directly generated in nonlinear
parametric processes, such as spontaneous four-wave mixing (SFWM) or spontaneous parametric
down-conversion, while single photons can be obtained from pairs by heralding [11]. Photon pair generation
obeys the energy and the momentum conservation laws, which imprints spectral and wavevector
correlations. Measuring and controlling such correlations is of great importance. For example, the number of
Schmidt modes quantifies the amount of time-energy entanglement in a pair [12], while in heralding
applications the presence of correlations between the photons of a pair leads to the heralded photon being
left in a mixed state [13].

We describe the state of photon pairs using their biphoton wave function, or joint spectral amplitude
(JSA), a quantity that depends on the frequencies of the two photons. The square magnitude of the JSA—the
joint spectral intensity (JSI)—can be measured directly using a frequency-resolved coincidence measurement
[14]; or more rapidly and with a higher signal-to-noise ratio by using stimulated emission tomography
(SET) [15, 16]. But the argument of the JSA—the joint spectral phase (JSP)—describes the phase correlation
of photon pairs, meaning the full, complex JSA is necessary for a complete characterisation of the
entanglement between a pair of photons. As a first approximation, one can use the JSI extracted from SET to
infer an upper bound on spectral correlation or entanglement [16]. Using a phase-sensitive SET, one can
extract the JSP of photon-pairs generated from a waveguide source [17]. However, it has recently been shown
that the JSP of photon pairs generated by resonant sources cannot be extracted from a phase-sensitive SET as
directly as the JSI [18]. Although data from SET can be processed and provide an estimate of the correct JSP
if there is an analytical model of photon-pair generation, this may not be feasible for more complicated
sources [19] where such models do not exist.
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Recently, many phase-sensitive methods for the measurement of the JSA have been reported. A
self-referenced approach based on Electro-Optic Shearing Interferometry has been demonstrated, which
makes use of post-processing relying on Fourier filtering [20, 21]. Alternatively, a weak coherent state can act
as a reference, the interference of which with the state of photon pairs can lead to a measurement of the
complex biphoton wavefunction in both frequency [22] and time domains [23]. These methods rely on
precise timing synchronisation with the reference, and require phase stability. Also, [22] may require
additional reference lasers and possibly a stabilising method (e.g. lock-in amplifier) for the phase-sensitive
interference to measure the JSA of SFWM photon pairs. Other approaches mitigate the experimental
complexity with larger processing overheads associated with artificially constrained phase-retrieval
algorithms [24], using a methodology that can be simplified under the assumption that the photons are
highly correlated [25].

Here we present a technique that recovers the JSP through the use of quantum interference between the
state of a device-under-test (DUT) and that of a reference waveguide source; hence we call our strategy
‘quantum-referenced spontaneous emission tomography’ (Q-SpET). A particular feature of our method is
the exploitation of quantum interference between the states of two dissimilar sources, unlike most
experiments reported in the literature where photons are generated by identical sources [4, 13, 26–32]. We
choose a micro-racetrack resonator as a DUT because it is one of the most promising photon-pair sources in
integrated quantum photonic technologies [2, 33, 34] and because it has a nontrivial JSP, unlike waveguide
sources [18].

Q-SpET works under the conditions that the JSA of the DUT has a smaller bandwidth than that of the
reference, and that any feature (such as chirp) in the spectral profile of the pump does not vary significantly
across the JSA of the reference. We employ the JSA of a waveguide, which has a flat phase profile and a
uniform amplitude over a significant frequency range, as our reference. This condition is often observed in
silicon-on-insulator waveguide sources [18, 35, 36] and waveguide sources in other photonic platforms [21,
22]. The simulated JSAs of our waveguide and resonant source are in figure S3(A). Another important
condition is the restriction to the weak pump regime [5, 37], in which to good approximation a single
photon pair is generated either in the DUT or in the reference. In this paper the technique is fully
implemented on a silicon photonic chip, ensuring inherent phase stability, low complexity, and minimal
resource overhead. The footprint of our circuit is∼1 mm× 0.8 mm.

2. Implementing spontaneous emission tomography

In our photonic chip, shown in figure 1, the pump light, in a coherent state |α⟩, enters from the left through
a vertical grating coupler (VGC), and its power is then divided across two paths according to the splitting
ratio η set by a MZI. The pump light in each channel can lead to the generation of photon pairs through
SFWM in the structure that follows.

The upper channel leads to a spiral waveguide (W), and the lower channel to a micro-ring resonator (R).
The quantum state describing the pump exiting the MZI (see the circled number 1 in figure 1) can be
expressed as

|Ψ1⟩= |√ηα⟩W|i
√
1− ηα⟩R. (1)

Using the normalised biphoton wavefunctions ΦR(νs,νi) and ΦW(νs,νi) to characterise the probability
amplitudes for the generation of pairs in the resonator and waveguide respectively, where νs and ν i are signal
and idler frequencies, the normalised states associated with these generation processes are [38]

|ψII⟩k =
ˆ

dνsdνiΦk(νs,νi )a
†
s (νs)a

†
i (νi)|vac⟩, (2)

where k= {R,W}, a†s (νs) and a†i (νi) are creation operators for signal and idler photons, and |vac⟩ is the
vacuum state. After the photon pair generation, which occurs either in the DUT or in the reference, or not at
all, we use asymmetric MZIs to filter out the pump, resulting in a quantum state (at circled number 2 in
figure 1) consisting of a superposition of the vacuum state and the two-photon state |Ψ2⟩

|Ψ2⟩= NR(η)|ψII⟩R|vac⟩W +NW(η)|vac⟩R|ψII⟩W, (3)

where the factors NR and NW depend on the splitting ratio η and the brightness of the sources, and
|NR|2 + |NW|2 = 1. The photon pairs from the resonator then propagate through a path-matching waveguide
section, and a relative phase (θ) is applied in the waveguide arm using a thermo-optic phase-shifter.
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Figure 1. Schematic of our photonic chip. VGC structures are used as optical input and output (O1, O2, O3) ports. The circled
numbers (1, 2, 3) refer to different stages of the circuit: First, the optical pump is distributed to the spiral and the resonator
element using an MZI; the state of the pump field is described by |Ψ1⟩. In stage 2, photon pairs can be generated in either arm of
the circuit, and on-chip AMZI filters are used to remove the pump from the optical channel; the two-photon state is given by
|Ψ2⟩. Next, a phase θ can be applied to one of the arms using a thermal phase-shifter, before the optical path compensation
(i.e. matching) element. The two arms are brought together and interfered using an Mach–Zehnder interferometer (MZI), with
the resulting two-photon state given by |Ψ3⟩. Two additional tuneable on-chip optical filters based on resonator structures allow
for performing frequency-resolved measurements.

Next, both arms of the circuit are connected to an MZI configured as a balanced beam splitter. After the
MZI (circled number 3 in figure 1), the state describing coincidences in the lower arm of the circuit is

|Ψ3⟩= N

ˆ
dνsdνi [NRΦR(νs,νi)−NWΦW(νs,νi)e

i2θ]b†s (νs)b
†
i (νi)|vac⟩, (4)

where N is a normalisation constant, and b†j (νj) are creation operators for the lower output arm of the MZI.
Next, we use two on-chip, resonator-based tuneable optical filters to select the frequencies of light that we
divert toward a given output. Photons filtered towards O3 and O1 are labelled signal and idler, respectively,
and the remaining photons propagate into O2. All three outputs are coupled off the chip using VGCs, and
signal and idler photons are detected using off-chip superconducting single-photon detectors (figure S1).
The probability of detecting both a signal and idler of a specific frequency in arms O3 and O1, given a phase
angle θ and a splitting ratio η, involves a superposition of the amplitudes ΦR(νs,νi), and ΦW(νs,νi) and can
be expressed as (see supplemental material):

P(θ,η,νs,νi ) =
1

4

∣∣NR(η)ΦR(νs,νi)+NW(η)ΦW(νs,νi)e
i2θ
∣∣2 . (5)

Our method of tomography uses a chosen set of θ values ({0,π/4,3π/4,π/2}). At each setting of θ we
sweep the on-chip filters over a range of frequencies (νs and ν i) and measure the coincidences. Once
normalised, these give the probability density (equation (5)) as a function of νs and ν i for the value of θ
chosen and the splitting ratio η of the pump. When done for the four chosen values of θ, this results in the
four interferograms in figure 2(A); the resolution of our data is limited by the bandwidth of our on-chip
filters (∼10 pm). Combining these results we find (see supplemental material) we can identify the JSP
(denoted by θJSA) from

P(π4 ,η,νs,νi)− P( 3π4 ,η,νs,νi)

P(0,η,νs,νi)− P(π2 ,η,νs,νi)
=

Im{ΦR(νs,νi)}
Re{ΦR(νs,νi)}

= tan(θJSA(νs,νi)), (6)

where we have assumed that the waveguide JSA ΦW(νs,νi) has negligible variation over the frequency range
in which the ring JSA ΦR(νs,νi) is non-negligible, and θJSA is referenced to the global phase of the waveguide
JSA. Note that this strategy does not require knowledge of the precise value of the splitting ratio η of the
pump.

Figure 2(B) shows both the simulated JSP, obtained following the method described earlier [39], and the
JSP that we have obtained in the experiment using the results of figure 2(A). The JSPs in figure 2(B)
additionally include contours (shown in white) indicating 25%, 10%, and 1% of the maximum signal
intensity. These contours are extracted from the simulated JSI (figure 3(B)), and only act as a visual guide.
We find good agreement between simulated and measured data, especially when the signal is above 10% of
the maximum. After determining the JSP, the JSI can be identified by direct detection of the frequency
dependence of the emitted signal and idler photons (figure S3(C)), or by SET [15, 18], and the full JSA can be
constructed.
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Figure 2. Spontaneous emission tomography. (A) Four measured interferograms at θ = {0,π/4,π/2,3π/4}. A low-pass filter is
used here to remove high-frequency noise. (B) Simulated and experimental JSP for spontaneously emitted photon pairs generated
from a micro-resonator. The superimposed white dotted contours represent constant intensity lines of the simulated JSI
(figure 3(B)), indicating 25%, 10%, and 1% of the maximum signal. The colour bars are in linear scales.

Figure 3. Stimulated emission tomography. Simulated and experimental (A) JSP and (B) JSI of the stimulated four-wave mixing
in a micro-resonator. The white contour lines represent the 25%, 10%, and 1% intensity bounds as in figure 2(B)-simulation. The
experimental signal is primarily detectable within the innermost contour. Considering very weak signal is present outside this
contour, the experimental JSPs have remarkable similarity within the outer contours. Data was not collected in the white region in
the JSI plot. The colour bars are in linear scales.

3. Stimulated vs spontaneous emission tomography of a resonant process

SET can be used to determine the JSI much more easily than direct detection of the spontaneous process. We
have done SET on our integrated circuit (figures S1 and S5) using a seed at signal frequencies and recording
the stimulated intensity at the idler frequencies. The results are shown in figure 3(B) together with a
simulation; as in the case of Q-SpET there is reasonably good agreement between the measured and
simulated data. The resolution of our SET data is 125 MHz (1 pm) and 20 MHz (0.16 pm) for the seed and
idler frequencies respectively.

Just as interferograms were constructed in the Q-SpET experiment, we can construct stimulated FWM
(StFWM) interferograms, here by sweeping the wavelength of an external seed laser and recording the
spectra of the stimulated idler photons at O2 (see figure 1). By using the interferograms at specific values of
θ, we can then extract the phase of the stimulated idler, (see supplemental material) analogously to what was
done for the spontaneous process (figure 2(B)). Again, there is a reasonably good agreement between the
measured data and the simulation (figure 3(A)).

Remarkably, the JSPs of the spontaneous and the stimulated processes, as can be seen when comparing
figures 2 and 3, are different. For ring resonators such as the one studied here, as νs and ν i are varied the
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spontaneous FWM JSP (figure 2(B)) is dominated by an energy-conservation trend, angle correlation with
∆νi-∆νs and anti-correlation with∆νs+∆νi, while the JSP of the stimulated process is dominated by the
value of the idler frequency∆νi, with very little dependence on∆νs. The difference follows from the full
expressions of the JSAs for the spontaneous and stimulated processes in a ring resonator. The JSA of the
SFWM process, ΦR−Sp, and that for the stimulated process ΦR−St, are given by

ΦR−Sp(νs,νi) = N

ˆ
dνp1dνp2α(νp1)α(νp2)Fp−(νp1)Fp−(νp2)F

∗
s+(νs)F

∗
i+(νi)δ(νp1 + νp2 − νs − νi), (7)

ΦR−St(ν̄s,νi) = N ′
ˆ

dνp1dνp2α(νp1)α(νp2)Fp−(νp1)Fp−(νp2)F
∗
s−(ν̄s)F

∗
i+(νi)δ(νp1 + νp2 − ν̄s − νi), (8)

where the subscripts p, s, and i represent pump, signal, and idler photons respectively, and α(νp) is the pump
field amplitude. In equation (7), νs and ν i are the frequencies of the spontaneously emitted signal and idler,
while in equation (8), ν̄s is the CW seed frequency and ν i is the frequency of the stimulated idler; N and N ′

are normalisation constants, and energy conservation is expressed by the Dirac delta function, δ(ν). The
resonant field enhancements are characterised by

Fk±(ν) =
1√
L

γ∗k
2π(νk − ν)± iΓ̄k

, (9)

where k can be pump (p), signal (s) or idler (i), γk is a coupling coefficient, Γ̄k corresponds to the half-width
half-maximum of the line-width of the resonances, and L is the geometrical length of the resonator [39].

Equations (7) and (8) are very similar. Indeed, the JSIs that follow from them are identical, but the JSPs
are different. In particular, the resonant field enhancement factors for signal (F∗s+(νs)) in the spontaneous
case and seed in the stimulated case (F∗s−(ν̄s)) are different, leading to different JSPs. As discussed in the
supplemental material, the complex JSA for the seeded process characterising SET is proportional to the
spontaneous JSA only when the seed field excites the system in one of its asymptotic-out states. For our
resonator, this would require engineering the seed in such a way that the input and the loss channel of the
ring are both excited, so that the seed photons can only leave the interaction region from the through port
[18]. In practice, the seed can only be coupled to the input port; hence we cannot excite the resonator in one
of its asymptotic-out states. The experimental conditions are then analogous to those in [18], with the direct
consequence that the phase of the spontaneous JSA in equation (7) differs from the phase of the stimulated
JSA in equation (8) as shown in figures 2(B) and 3(A). This confirms that, in general and without full access
to all the asymptotic channels, spontaneous emission cannot be replicated by the corresponding stimulated
emission process [18, 40].

4. Conclusion

In summary, Q-SpET is a resource-efficient technique that recovers the JSP of a biphoton wave function
without relying on an analytical model of the photon source. It exploits the quantum interference between
the biphoton wave function of a DUT and that of a dissimilar reference source. We have demonstrated this
method on a silicon photonic chip by recovering the JSP of a resonator, using a waveguide source as the
reference. All the components for signal splitting, photon pair generation, phase reconfiguration, and
spectral filtering are integrated on the same chip, ensuring precise control and phase stability. In principle
Q-SpET is not restricted to integrated photon pair sources, and could be used to characterise any biphoton
quantum state; we envision this method finding applications in tasks involving the characterisation of a
range of sources, and in the certification of quantum processes.

Data availability statement

The data that support the findings of this study will be openly available following an embargo at the
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Code availability
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reasonable request.
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