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Abstract

The University of Manchester

Peter William Millington

Degree of Doctor of Philosophy

Thermal Quantum Field Theory and

Perturbative Non-Equilibrium Dynamics

Friday, th August, 

In this thesis, we develop a perturbative formulation of non-equilibrium thermal
quantum field theory, capable of describing the evolution of both temporal and spa-
tial inhomogeneities in relativistic, quantum-statistical ensembles. We begin with a
review of the necessary prerequisites from classical thermodynamics, classical and
quantum statistical mechanics, quantum field theory and equilibrium thermal field
theory. Setting general boundary conditions on the ensemble expectation values of
products of interaction-picture creation and annihilation operators, we derive free
propagators in which space-time translational invariance is explicitly broken. By
means of the Schwinger-Kelydsh, closed-time path formalism, we are then able to
introduce a path-integral description that accounts consistently for these temporal
and spatial inhomogeneities. Subsequently, we develop a time-dependent perturba-
tion theory that is free of the pathologies previously thought to spoil such approaches
to non-equilibrium dynamics.

Following an unambiguous definition of the number density of particles, we
derive from first principles perturbative, field-theoretic evolution equations for sta-
tistical distribution functions. These evolution equations do not rely on the gradient
expansion of so-called Wigner functions, as is necessary in the alternative Kadanoff-
Baym approach, and are consistent with the well-known Boltzmann equations in
the classical limit. Finally, with reference to a simple toy model, we highlight the
appearance of processes otherwise kinematically disallowed in existing approaches
to thermal field theory. These evanescent contributions are a consequence of the
microscopic violation of energy conservation and are shown to be significant to the
early-time evolution of non-equilibrium systems. We observe that the spectral evo-
lution oscillates with time-dependent frequencies, which is interpreted as a signal of
non-Markovian, memory effects.
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Lay Abstract

The University of Manchester

Peter William Millington

Degree of Doctor of Philosophy

Thermal Quantum Field Theory and

Perturbative Non-Equilibrium Dynamics

Friday, th August, 

Our everyday experience of the world is of something macroscopic, i.e., something
containing large objects that we can touch. Intellectually, we can appreciate that
these objects are made up of microscopic pieces like atoms and molecules, but this
remains something intangible to our human senses. For instance, we know that the
air around us is a gas of molecules. Nevertheless, when deciding whether to put on
a jumper, we don’t ask ourselves what each of these molecules is doing. Instead, we
simply ask ourselves how warm it is. The temperature of the air as a whole is what
matters to us, not the properties of the billions of individual air molecules. Yet,
these things must be connected; the temperature must somehow be a consequence
of the individual behaviour of these billions of molecules.

However, there are also macroscopic objects that are beyond our everyday ex-
perience; objects that are unimaginably hot and dense and contain incomprehensible
amounts of energy. One example is the infant Universe shortly after the Big Bang.
We want to understand the properties of this, the largest object that we know of,
in terms of the behaviour of the very smallest objects. These are the elementary
particles, the building blocks out of which everything is made. The connection be-
tween the microscopic properties of these individual elementary particles and the
macroscopic properties of such massive collections of these particles is the subject
of this thesis.
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Note to the Reader

The proliferation of ‘time’-related objects is somewhat unavoidable in the analysis

described in this thesis. As such, the reader’s attention is drawn to the list of

symbols included on page 31. In particular, we emphasise the distinction between the

macroscopic time t and the microscopic time t̃, differentiated by a tilde. The purely-

imaginary time of the Matsubara formalism will be denoted by the Greek character

τ and the complex time of the Schwinger-Keldysh, closed-time path formalism by

the Gothic character t.

Every effort has been made to ensure that this thesis is as self-contained as

practicable. However, a comprehensive review of thermal field quantum theory (or

perhaps, more appropriately, theories) is far beyond the scope of this discussion. We

concentrate therefore on including only that which is necessary to the pedagogy of

the exposition of our approach. Nevertheless, when it is suitable to do so, references

to further material are included.

Final Submission

Since the original submission of this thesis, the material contained has subsequently

been published in:

Perturbative Non-Equilibrium Thermal Field Theory

Peter Millington and Apostolos Pilaftsis

arXiv: 1211.3152
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1 Introduction

With modern experimental particle physics continuing to push at both the energy

and intensity frontiers, we are increasingly concerned with the dynamics of dense

systems of ultra-relativistic particles. One such system is the deconfined phase

of quantum chromo dynamics (qcd) — the quark gluon plasma (qgp) [1] — the

existence of which has been inferred from the observation of jet quenching (see for

instance [2]) in Pb-Pb collisions by the atlas [3], cms [4] and alice [5] experiments

at the lhc of cern in Geneva. Aside from these terrestrial, but nevertheless exotic

systems, an understanding of these ultra-relativistic many-body dynamics is also of

interest in theoretical astro-particle physics and cosmology. Predictions about the

evolution of the early Universe rely upon our understanding of the dynamics of the

exotic states of matter that were present in the unimaginably-high energy densities

that immediately followed the Big Bang. Furthermore, these systems will in general

begin their evolution far from thermodynamic equilibrium.

The Wilkinson Microwave Anisotropy Probe (wmap) [6,7] measured a baryon-

to-photon ratio at the present epoch of η = nB/nγ = 6.116+0.197
−0.249 × 10−10, where

nB = nb − nb̄ is the difference in the number densities of baryons and anti-baryon.

This observed baryon asymmetry of the Universe (bau) — the asymmetry between

the present-day numbers of baryons and anti-baryons — is consistent with the pre-

dictions of Big-Bang nucleosynthesis (bbn) [8]. The generation of this asymmetry

requires the presence in the early Universe of out-of-equilibrium processes and the

violation of baryon number (B), charge (C) and charge-parity (CP ). These are the

so-called Sakharov conditions [9]. One such set of processes is prescribed by the
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baryogenesis via leptogenesis scenario [10, 11], in which an initial excess in lepton

number (L), provided by the decay of heavy right-handed Majorana neutrinos, is

converted to a baryon number excess through the B + L-violating sphaleron inter-

actions [12] of the Weinberg-Salam electroweak theory [13, 14]. The description of

these phenomena requires a consistent approach to the non-equilibrium dynamics of

particle number densities. Such a treatment may also be relevant to reheating and

preheating [15–17] at the end of the inflationary epoch.

The classical evolution of particle number densities is described by the Boltz-

mann transport equation, see for instance [18–21] and semi-classical approaches

may be achieved by substituting the classical Boltzmann factors with quantum-

statistical, Bose-Einstein or Fermi-Dirac distribution functions, in the case of bosons

and fermions respectively. However, these approaches cannot systematically take

into account the finite-width and off-shell effects provided by a complete field-

theoretic description.

The first such framework for calculating ensemble expectation values (eevs)

of field operators was provided by Matsubara [22] in the so-called imaginary-time

formalism (itf) of thermal field theory, derived by interpreting the canonical density

operator as an evolution operator in negative imaginary time. Consistent real time

Green’s functions may then be obtained by appropriate, but subtle, analytic contin-

uation. The itf remains however limited to the description of processes occurring

at thermodynamic equilibrium.

The calculation of eevs directly in real time is achieved using so-called real-

time formalisms. In particular, for non-equilibrium systems, one uses the closed-

time path (ctp) [23, 24] or in-in formalism due to Schwinger and Keldysh. The

correspondence of these results with those obtained by the imaginary-time formalism

are discussed extensively in the literature, see for instance [25–31]. A perturbative

expansion of the in-in generating functional is then provided by the Corwall-Jackiw-

Tomboulis (cjt) effective action [32,33] as applied to the ctp formalism by Calzetta

and Hu [34, 35].
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The extension of this description to the calculation of the out-of-equilibrium

evolution of particle number densities is often achieved by the derivation of so-called

quantum-corrected or quantum Boltzmann equations [36–43]. These approaches

rely upon the Wigner transformation and gradient expansion [44] of a system of

Kadanoff-Baym (KB) [45, 46] equations, originally applied in the non-relativistic

regime [47, 48]. Often one must also make quasi-particle Ansätzen for the forms of

the propagators.

In this thesis, we describe a perturbative approach to non-equilibrium dynam-

ics of many-body quantum field-theoretic systems. This approach is based upon a

minor modification of the Schwinger-Keldysh ctp formalism. Appealing to the re-

maining freedom in the canonical commutation relations of the interaction-picture

creation and annihilation operators, we are able to derive the most general form

of time-dependent free propagators, in which space-time translational invariance is

explicitly broken. Subsequently, we argue that a perturbation theory based upon

these non-homogeneous propagators is free of the pinching singularities thought to

spoil perturbative approaches to non-equilibrium quantum field theory. With the

introduction of an unambiguous definition of the number density of particles, we de-

rive perturbative evolution equations for statistical distribution functions, which do

not rely on gradient expansion. Furthermore, we argue that this gradient expansion

is inappropriate for the early-time evolution of these non-equilibrium systems.

With reference to a simple toy model, we show that these time-evolution equa-

tions are consistent with the Boltzmann transport equation and the truncated gra-

dient expansion of the Kadanoff-Baym equations. We show that the systematic

incorporation of finite-time effects and the consistent treatment of generalised decay

kinematics lead to the appearance of processes otherwise kinematically disallowed

in existing approaches. These evanescent processes result from the microscopic vi-

olation of energy conservation at early times. The contributions of this evanescent

regime are significant to the early-time evolution of these systems. Finally, we inves-

tigate the spectral evolution of the particle width, in which we observe oscillations

with time-dependent frequencies. This is interpreted as a signal of non-Markovian,
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memory effects and evidence of a truly out-of-equilibrium description.

This thesis is divided into two parts. Part I contains a review of material

pertinent to the subsequent formulation of our approach to non-equilibrium quantum

field theory. We revisit the central ideas of classical mechanics, thermodynamics

and statistical mechanics; their first quantisation in the form of quantum statistical

mechanics; and finally their second quantisation, with reference to the approaches

of equilibrium thermal field theory. In Part II, we develop the aforementioned

formalism applicable to the non-equilibrium dynamics of many-body field-theoretic

systems.

The content of this thesis is briefly outlined as follows; more detailed sum-

maries are provided in the introductions to Parts I and II and at the start of each

chapter where appropriate. In Chapter 3, we set out from Hamilton’s principle and

the resulting formulation of classical mechanics. Following a brief review of key

ideas from thermodynamics and statistical mechanics, we arrive at the Boltzmann

transport equation, the quantum field-theoretic generalisation of which is the aim

of this thesis. Moving to quantum mechanics, we proceed in Chapter 4 to a review

of quantum statistical mechanics, with particular reference to the quantum har-

monic oscillator. Here, we introduce many of the formal ideas required for our later

discussions. Subsequently, in Chapter 5, we introduce the path-integral representa-

tion of the quantum harmonic oscillator and derive the form of its propagators. In

Chapter 6, we outline the itf and the introduction of thermal propagators in the

quantum-statistical limit. Finally, in Chapter 7, we move to quantum field theory

with the quantisation of the scalar field. This takes us to the equilibrium description

of thermal field theory and the conclusion of Part I.

Part II contains the generalisations of these ideas to non-equilibrium systems,

setting out from a description of the ctp formalism in Chapter 9 and its minor mod-

ification, we outline the generalisation to non-homogeneous backgrounds in Chapter

10. As a check of the consistency of our approach, Chapter 11 describes the ther-

modynamic equilibrium limit and the correspondence with the familiar results of
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the itf. Chapter 13 outlines the generalisations of these discussions to the complex

scalar field. In Chapter 12, we argue that the perturbation theory is free of pinching

singularities. Subsequently, in Chapter 14, we define the number density of parti-

cles, allowing us then to derive the perturbative time-evolution equations described

in Chapter 15. In Chapter 16, we introduce the techniques required to compute loop

integrals containing the non-homogeneous free propagators. These results are then

used to investigate the dynamics of a simple toy model in Chapter 17. Finally, in

Chapter 18, we conclude our discussions.

A number of appendices are also included. Appendix A lists the definitions

and properties of, as well as relevant relations between, the various propagators used

throughout our analysis. In Appendix B, we illustrate the form of the most general

Guassian-like density matrix. For comparison with the results of Chapter 15, we

derive the familiar form of the Kadanoff-Baym equations in Appendix C.

The material presented in Chapter 7 and Part II is based heavily upon a

forthcoming publication [49]. References, whose use was more general in the writing

of this thesis, are indicated at the beginning of relevant chapters.
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Part I

Equilibrium Mechanics
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2 Introduction to Part I

As we have identified, the aim of this part is to cover the prerequisites necessary

for the pedagogy of the exposition of the approach to non-equilibrium dynamics

described in Part II. In attempting to write down what is essentially a second quan-

tisation of statistical mechanics, we implicitly rely on central ideas from classical

mechanics, thermodynamics and statistical mechanics, as well as quantum mechan-

ics, quantum statistical mechanics and finally quantum field theory. As such there

are a number of key ideas that we must revisit: the introduction and interpretation

of statistical distribution functions as applied to systems of particles; the concept

of observables and the calculation of their ensemble expectation values (eevs); the

path integral and the introduction of the propagators with which we will ultimately

perform the calculations of interest.

Part I then is broken up into roughly three general areas: the first is concerned

with classical theory; the second moves on to quantum mechanics; and the third

introduces us to the ideas of quantum field theory. As pedagogical as we intend

to be, we must allow ourselves a starting point: this is the founding principle of

classical mechanics — the principle of least action. Chapter 3 moves through the

Hamiltonian and Lagrangian formulations of mechanics, leading on to a derivation

of the Liouville theorem and the introduction of the classical distribution function.

We pass then to discussions of the statistical distribution functions of systems of

classical particles, closing with a discussion of the Boltzmann transport equation.

In Chapter 4 and with reference to the quantum harmonic oscillator, we introduce

the ideas of quantum mechanics and quantum statistical mechanics. Subsequently,
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we devote Chapter 5 to the derivation of the path integral, introduced by Richard

Feynman [50], the use of which will be fundamental to the discussions of Part II.

Before proceeding finally to the ideas of quantum field theory in Chapter 7, we

describe in Chapter 6 the inclusion of thermal effects, with particular reference to

the imaginary-time approach to equilibrium thermal field theory. In order to keep

this first part to a reasonable length, a number of areas of thermal field theory are

omitted from our discussions. Nevertheless, where appropriate, suitable references

are indicated.
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3 Classical Prerequisites

In this chapter, we review the classical foundations on which our later discussions

are built. Setting out from a revision of Hamilton’s formulation of mechanics, we

revisit the ideas of classical statistical mechanics and its relation to classical ther-

modynamics. We proceed by introducing the classical distribution function and

deriving its equation of motion — the Liouville equation. Introducing the familiar

thermodynamic potentials, we make use of Liouville’s theorem to derive the classi-

cal distribution function of a gas of particles in thermodynamic equilibrium — the

Gibb’s distribution. Arriving at the concept of a statistical ensemble, we are able to

bridge the gap between the microscopic description of statistical mechanics and the

macroscopic description of thermodynamics by means of Boltzmann’s hypothesis

for the definition of the entropy. With the subsequent introduction of the classical

partition function, we obtain a complete microscopic description of the macroscopic

properties of classical equilibrium systems.

Having successfully derived the collective properties of our gas, we look again

at the properties of the individual particles that comprise it. Employing Boltz-

mann’s H theorem — the law of increase of entropy — we derive the equilibrium

statistical distribution function of these particles — the Boltzmann distribution.

Finally, allowing then for interactions between the particles and the departure from

equilibrium, we derive the Boltzmann transport equation, which describes the ap-

proach to equilibrium of the statistical distribution function. It is a self-consistent

quantum field-theoretic analogue of this time-evolution equation that is the ultimate

goal of this work and it is for this reason that we justify this classical introduction.
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Of course, the content of this chapter is in no way new. A number of texts have

been used in its preparation: in particular, those by J. B. Marion & S. T. Thornton

[51], L. D. Landau, E. M. Lifshitz & L. P. Pitaevskii [52], J. W. Halley [53] and

R. Bowley & M. Sánchez [54]; and for the discussion of the Boltzmann equation,

the texts by G. H. Wannier [55] and V. Garzó & A. Santos [56].

3.1 Hamilton’s Principle

Let us consider an isolated system U , which we shall for definiteness take to be a

gas of NU distinguishable particles, each of which is free to move in three spatial di-

mensions, such that U comprises 3NU independent degrees of freedom. An isolated

system is one that is completely separate from its surroundings in the sense that

it is unable to exchange either energy or particles with those surroundings. With

the k-th degree of freedom, we associate the coordinate qk and its time derivative

q̇k. These are the components of the positions and velocities of all NU particles.

We may then fully specify the state of the system U at a time t in terms of 6NU

parameters: the set of 3NU coordinates {qk | k ∈ N, k ≤ 3NU } and their time-

derivatives {q̇k| k ∈ N, k ≤ 3NU }.

The starting point for our description of the dynamics of this system is Hamil-

ton’s principle, which we may state as follows:

The dynamics of a system are such that the time integral of the dif-

ference of the kinetic and potential energies is minimised.

We introduce the classical action

S[qk, ti, tf ] =

∫ tf

ti

dt L(qk, q̇k, t), (3.1.1)

where tf − ti is the time interval over which the dynamics of the system U take
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place. The quantity

L(qk, q̇k, t) = T (qk, q̇k, t)− U(qk, q̇k, t) (3.1.2)

is the Lagrangian, which is nothing other than the difference of the total kinetic and

potential energies, which we donote by T and U respectively. Hamilton’s principle is

then the statement that the dynamics of the system U are such that the action S is

minimised—the principle of least action. (Indeed, we may want to consider whether

it is necessary for the action to be minimised or sufficient for it to be extremised.)

We note that the action has dimensionality [S] = E × T, that is energy × time, or

equivalently M× L2 × T−1, mass × length-squared ÷ time.

It follows therefore that the dynamics of the system U may be obtained by

solving the variational integral equation

δS[qk, tf , ti] = δ

∫ tf

ti

dt L(qk, q̇k, t) = 0. (3.1.3)

The lower-case Greek delta denotes the functional variation, i.e., we are to vary

the functions qk(t) in order to extremise the action. Considering then the small

variations δqk and δq̇k, we may write

∫ tf

ti

dt

3NU
∑

k=1

(

∂L

∂qk
δqk +

∂L

∂q̇k
δq̇k

)

= 0. (3.1.4)

Integrating by parts in the second term, choosing the variation to vanish at the

boundaries of integration, i.e., δqk(tf ) = δqk(ti) = 0, we obtain

3NU
∑

k=1

∫ tf

ti

dt

(

∂L

∂qk
− d

dt

∂L

∂q̇k

)

δqk = 0, (3.1.5)

where we have swapped the order of integration and summation. Since the δqk are

arbitrary up to the constraint at the boundaries of integration, it follows that the

parentheses must vanish independently for each degree of freedom. We then obtain
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the set of 3NU Euler-Lagrange equations

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0, (3.1.6)

the solutions of which, given a set of 6NU boundary conditions, completely specify

the dynamics of the system U .

The total time derivative of the Lagrangian is

dL

dt
=
∂L

∂t
+

3NU
∑

k=1

(

∂L

∂qk
q̇k +

∂L

∂q̇k
q̈k

)

. (3.1.7)

For an isolated system, the Lagrangian cannot depend explicitly on time and, as

such, the partial derivative with respect to time vanishes. Using the Euler-Lagrange

equations in (3.1.6), we may then write the total time derivative as

dL

dt
=

3NU
∑

k=1

(

d

dt

∂L

∂q̇k
q̇k +

∂L

∂q̇k
q̈k

)

, (3.1.8)

or, equivalently,

d

dt

(

3NU
∑

k=1

∂L

∂q̇k
q̇k − L

)

= 0. (3.1.9)

We define by the parentheses a quantity H , which is the Legendre transform

H(pk, qk) = max q̇ℓ

(

3NU
∑

k=1

pkq̇k − L
)

, (3.1.10)

where pk is the generalised momentum of the k-th degree of freedom and the ex-

tremisation yields

pk =
∂L

∂q̇k
. (3.1.11)

It follows straightforwardly from the Euler-Lagrange equations in (3.1.6) that

ṗk =
∂L

∂qk
. (3.1.12)

The quantity H is the Hamiltonian. For our isolated system U , this is just the
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total energy T + U , which, by (3.1.9), must be conserved. The pk are the 3NU

components of the conjugate momenta.

The total differential of the Hamiltonian is

dH =

3NU
∑

k=1

(

∂H

∂pk
dpk +

∂H

∂qk
dqk

)

+
∂H

∂t
dt, (3.1.13)

or, in terms of the Legendre transform of the Lagrangian in (3.1.10),

dH =

3NU
∑

k=1

(

q̇kdpk + pkdq̇k −
∂L

∂qk
dqk −

∂L

∂q̇k
dq̇k

)

− ∂L

∂t
dt. (3.1.14)

Using (3.1.11) and (3.1.12), the second and fourth terms in the parentheses cancel

and we may rewrite the total differential as

dH =

3NU
∑

k=1

(

q̇kdpk − ṗkdqk
)

− ∂L

∂t
dt. (3.1.15)

Comparing (3.1.13) and (3.1.15), we obtain Hamilton’s equations of motion

q̇k =
∂H

∂pk
, (3.1.16a)

ṗk = −
∂H

∂qk
. (3.1.16b)

For completeness, we note that the partial derivatives with respect to time are

related via
dH

dt
=
∂H

∂t
= −∂L

∂t
, (3.1.17)

all of which are of course zero for the isolated system U .

We have obtained two descriptions of the dynamics of our system U : the first

comprises 3NU second-order differential equations, the Euler-Lagrange equations;

and the second comprises 6NU first-order differential equations, Hamilton’s equa-

tions of motion. Herein, lies a problem: if, in reality, U comprises a large number of

interacting particles, then this system of 6NU coupled first-order differential equa-
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tions rapidly becomes intractable. However, the fact that this number of degrees of

freedom is so large will turn out to provide the solution to this seemingly insoluble

problem; it will allow us to treat this system statistically.

3.2 Liouville’s Theorem

Let S ⊂ U be some small subsystem of the larger isolated system U , comprising

NS ≪ NU particles and having 3NS independent degrees of freedom, where the

number of particles NS is still sufficiently large that we cannot hope to describe

the dynamics by solving the classical equations of motion. We may consider the

subsystem S to be in contact with a reservoir R formed by the complement of S

in U , i.e., R = U \S , see Figure 3.1.

Choosing to describe the system in terms of the Hamiltonian formulation,

we associate with the k-th degree of freedom the coordinate qk and the conjugate

momentum pk. At a given time t, the state of the subsystem S is completely

specified by the set of 3NS coordinates and 3NS momenta, which we may consider

as specifying the coordinates of a point or phase point in some 6NS -dimensional

phase space. Hereafter, we will drop the subscript S on quantities associated with

the subsystem S for convenience.

On microscopic time scales, i.e., those comparable with the characteristic time

between collisions in the gas, τc say, the microscopic arrangement of the subsystem S

will evolve rapidly in time. It seems intuitive however that many of these microscopic

arrangements or microstates will lead to equivalent macroscopic properties, which

will vary only slowly in comparison to these microscopic fluctuations. Given some

observable O(t), our aim then is to find a means of calculating the time average over

these stochastic fluctuations:

Ō(t) = 1

τ

∫ t+τ/2

t−τ/2

dt′O(t′), (3.2.1)

where τ ≫ τc. Nevertheless, in order to evaluate this time average directly, we would
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S

R

U = S ∪R

Figure 3.1: A schematic representation of the isolated system U , partitioned into

the open subsystem S and the reservoir R = U \S . The hatched square represents

the fixed, impermeable adiabatic boundaries of the system U , across which neither

particle exchange nor heat transfer are permitted. The dashed square represents the

open boundary of the subsystem S , across which both particle exchange and heat

transfer are permitted.

still require complete knowledge of the microscopic evolution of the system, which

we have identified as an impossibility.

We return then to our phase space. As a result of these microscopic fluctu-

ations, the phase point occupied by S will traverse some path or phase trajectory

in phase space. Suppose then that we observe S for some period of time τ be-

tween t− τ/2 and t + τ/2, where τ ≫ τc. This time must be sufficiently large that

the phase trajectory has traversed the entire phase space, and equivalently S has

passed through every possible microstate, a number of times. Concentrating on a

small 6N -dimensional hypervolume ∆Ω6N between qk and qk = qk+∆qk and pk and

pk = pk +∆pk, where

∆Ω6N =

3N
∏

k=1

∆qk ∆pk, (3.2.2)

we observe that S occupies this hypervolume for a time ∆τ . Given a subsequent


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observation, the probability of finding S in this hypervolume must then be

∆P(qk, pk, q
′
k, p

′
k, t) =

∆τ(qk, pk, q
′
k, p

′
k, t)

τ
. (3.2.3)

Given that ∆Ω6N is small, we may perform a Taylor expansion of this proba-

bility around q′k = qk and p′k = pk. The first non-vanishing contribution will be that

in which we vary with respect to all 6N dimensions of the hypervolume, in which

case

∆P(qk, pk, q
′
k, p

′
k, t) ≈

[(

3N
∏

k=1

∂q′
k
∂p′

k

)

∆τ(qk, pk, q
′
k, p

′
k, t)

τ

]

q′
k
=qk

p′
k
=pk

∆Ω6N . (3.2.4)

In the infinitesimal limit, we may associate with the infinitesimal phase space hy-

pervolume between qk and qk + dqk and pk and pk + dpk a particular microstate of

the subsystem, which we take to occupy a hypervolume h3N , where the constant

h has dimensions of action, that is M × L2 × T−1. We may interpret the constant

h as the width of a microstate in each of the two-dimensional hypersurfaces of the

phase space. The symbol chosen for this constant is not accidental: in the quantum

mechanical case, it will turn out to be precisely Planck’s constant. The probability

of finding S in a given microstate is then given by

dP(qk, pk, t) = ρ(qk, pk, t)
dΩ6N

h3N
, (3.2.5)

where

dΩ6N =

3N
∏

k=1

dqk dpk. (3.2.6)

We have defined

ρ(qk, pk, t) =

[(

3N
∏

k=1

h ∂q′
k
∂p′

k

)

∆τ(qk, pk, q
′
k, p

′
k, t)

τ

]

q′
k
=qk

p′
k
=pk

, (3.2.7)

which is the number density of representative points in phase space or the density

in phase space, which we shall refer to as the classical distribution function.
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3.2. Liouville’s Theorem

If we are finding these continuous probability distributions disconcerting, it is

worth noting that we could also have proceeded by dividing the phase space up into

a lattice comprising a large number of discrete hypervolumes Ωi. Observing that S

occupied the i-th hypervolume for a time τi(t) of the total time τ , again between

t− τ/2 and t+ τ/2, the probability of finding S in this hypervolume is

Pi(t) =
τi(t)

τ
. (3.2.8)

The subsystem must be somewhere in phase space and it is clear then that the sum

over all probabilities must unity, i.e.,

∑

i

Pi(t) = 1. (3.2.9)

Let us suppose then that we are interested again in our observable quantity O,
which varies slowly over each discrete hypervolume. In this case, we may write the

expectation of this observable, which we denote 〈O(t)〉, as

〈O(t)〉 =
∑

i

Pi(t)Oi, (3.2.10)

where Oi is the value of the observable if S occupies the i-th hypervolume. In the

continuum limit, taking the lattice spacing to be infinitesimally small, it follows that

the expectation of our observable quantity O is just

〈O(t)〉 =
∫

dP(qk, pk, t)O(qk, pk) =
∫

dΩ6N

h3N
ρ(qk, pk, t)O(qk, pk), (3.2.11)

where the distribution function must be subject to the normalisation

∫

dP(qk, pk, t) =

∫

dΩ6N

h3N
ρ(qk, pk, t) = 1. (3.2.12)

It seems reasonable that this statistical average is entirely equivalent to the time av-

erage in (3.2.1). If we are able to find the form of the distribution function ρ(qk, pk, t)

without having to solve the system of classical equations of motion, then we have
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∆Ω6N

qk qk +∆qk

pk

pk +∆pk

Figure 3.2: A schematic representation of the phase-space hypervolume ∆Ω6N .

succeeded in finding a palatable means of modelling our many-body system. The

equivalence of these two types of average relies on the validity of our assumption

that the phase trajectory of the system passes through, or at least passes arbitrar-

ily close to, every point in phase space. This assumption is the so-called ergodic

hypothesis due to Boltzmann [57, 58].

On macroscopic time scales, the subsystem S will also evolve in time due to

its interactions with the reservoir R. These interactions will alter the likelihood that

S is found in any given microstate and as such the distribution function will also

evolve in time. However, ρ(qk, pk, t) may only change by the net flux of representative

points in or out of the hypervolume between qk and qk + dqk and pk and pk + dpk,

i.e.,
∂ρ

∂t
+∇ · (ρu) = 0, (3.2.13)

where u =
∑3N

k=1(q̇kq̂k + ṗkp̂k) is the phase-space velocity of these representative

points and q̂k and p̂k are 3N -dimensional unit vectors. This is the continuity equa-

tion. We have omitted the arguments of ρ(qk, pk, t) for convenience. Using the

identity

∇ · (ρu) = (∇ρ) · u+ ρ∇ · u, (3.2.14)
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this may be written in full as

∂ρ

∂t
+

3N
∑

k=1

[

∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk + ρ

(

∂q̇k
∂qk

+
∂ṗk
∂pk

)]

= 0. (3.2.15)

Using Hamilton’s equations of motion (3.1.16), the latter parenthesis is identically

zero and we are left with

∂ρ

∂t
+

3N
∑

k=1

(

∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk

)

= 0. (3.2.16)

After again using Hamilton’s equations of motion and introducing the symmetric

Poisson brackets

{A,B}qk,pk =
∂A

∂qk

∂B

∂pk
− ∂B

∂qk

∂A

∂pk
, (3.2.17)

this may be rewritten in the form of the Liouville equation

∂ρ

∂t
−

3N
∑

k=1

{H, ρ}qk,pk = 0. (3.2.18)

Looking again at (3.2.15), we see that this is nothing other than the total time

derivative, such that
dρ

dt
= 0. (3.2.19)

We may state this result as follows:

The classical distribution function of a system must remain constant

along the phase trajectories of that system.

This is Liouville’s theorem.

Returning to (3.2.16), we interpret ṗk as the k-th component of the 3N -

dimensional generalised force F =
∑3N

k=1 ṗkp̂k and q̇k as the k-th component of

the 3N -dimensional generalised velocity v =
∑3N

k=1 q̇kq̂k. We have denoted by v the

generalised velocity to distinguish it from the 6N -dimensional phase-space velocity
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u. We then obtain the Vlasov equation

∂ρ

∂t
+ v · ∇q ρ+ F · ∇p ρ = 0, (3.2.20)

where the left-most two terms are the so-called drift terms and the right-most term

is the so-called force term.

3.3 Thermodynamic Potentials

Let us suppose now that the subsystem S is in a state of thermodynamic equilib-

rium, such that it appears static on macroscopic scales. Clearly, on microscopic

scales, the motion of individual particles remains far from static. In this case, the

description of the macroscopic state or macrostate of S in terms of our 6N micro-

scopic parameters seems somewhat undesirable. A far more reasonable approach

might be to describe the state by its macroscopic, collective properties, that is by

appropriate thermodynamic variables, which are functions only of the state of S ,

i.e., functions of state, independent of the history by which it reached equilibrium.

The subsystem S is open in the sense that it may exchange both energy and

particles with the reservoir R. Let us imagine that we partition S from R by some

partially permeable and conductive vessel. It follows therefore that there are three

ways in which R may effect a change on S : by the transfer of heat ; the action

of chemical work, through the addition or removal of particles and the action of

mechanical work, through changes in the volume of the vessel. Given that R is

sufficiently large, we may assume that S cannot effect any change of state on R.

For now, let us assume that the vessel is impermeable, whilst still permitting

heat exchange between S and R. It follows that the total particle number N in S

is fixed and S is said to be closed. Suppose then that S expands from an initial vol-

ume Vi to a final volume Vf , resulting say from the removal of some compressive force

exerted on the vessel by the reservoir. We allow this expansion to proceed slowly

in infinitesimal steps of volume dV , each resulting from an infinitesimal reduction
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in this compressive force. We may then assume that S remains in thermodynamic

equilibrium in each step of the expansion. We refer to such a process as quasi-static.

After each step, it seems reasonable that we may restore the compressive force in

the same quasi-static manner, slowly returning S to its initial state. We then refer

to this process as reversible.

In expanding by a volume dV , S must do an amount of reversible work d̄W

on R, the magnitude of which is PdV , where P is the thermodynamic pressure. We

have, however, not restricted the flow of heat between S and R and, indeed, further

information is required in order to determine whether this expansion takes place

adiabatically, that is without heat exchange. In general, therefore, the infinitesimal

amount of reversible work d̄W must be accompanied by some infinitesimal, reversible

flow of heat d̄Q. It follows then, by conservation of energy, that the total internal

energy U of S changes by an amount

dU = d̄Q+ d̄W, (3.3.1)

where d̄W = −PdV , since any increase in volume must reduce the total internal

energy. This is the first law of thermodynamics. The horizontal bar through the

differentials on the right-hand side denote that these are inexact differentials, that

is there do not exist anti-derivative operations that yield the total work done or

the total heat transferred. These quantities depend not only on the initial and final

states, but also the details of the states through which the system moves during this

change of state. In other words, work and heat are not functions of state.

In writing the differential work in terms of the volume and pressure, we have

already rewritten part of the right-hand side of (3.3.1) in terms of functions of state.

What remains is to write the differential heat in terms of an exact differential. We

introduce a new function of state: the entropy S, which we define through

dS =
d̄Q

T
, (3.3.2)
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where T is the thermodynamic temperature. The entropy will turn out to be a

measure of the disorder of S . We may now write the first law of thermodynamics

entirely in terms of exact differentials:

dU = TdS − PdV. (3.3.3)

If we allow S to exchange particles with R, we must also allow for the effect

of some infinitesimal change in the total particle number dN . In this case, the first

law may be written

dU = TdS − PdV + µdN, (3.3.4)

where we have introduced the chemical potential µ, which is simply a measure of

the energy required to add a particle to S . It is clear then that the total inter-

nal energy is a function of the entropy S, volume V and particle number N , all

of which are extensive variables, those that scale with the size of the system. A

system in thermodynamic equilibrium is therefore one in which the entropy, volume

and particle number do not change with time. True thermodynamic equilibrium

then necessitates simultaneous kinetic, mechanical and chemical equilibrium. By

considering the total differential

dU(S, V,N) =

(

∂U

∂S

)

V,N

dS +

(

∂U

∂V

)

S,N

dV +

(

∂U

∂N

)

S,V

dN, (3.3.5)

where the subscripts remind us that the partial derivatives are evaluated with all

other variables held constant, we may define the intensive variables: temperature

T , pressure P and chemical potential µ — those which do not scale with the size of

the system — as

T =

(

∂U

∂S

)

V,N

, P =

(

∂U

∂V

)

S,N

, µ =

(

∂U

∂N

)

S,V

. (3.3.6)

Hence, kinetic, mechanical or chemical equilibrium are attained when the tempera-

ture, pressure or total particle number, respectively, have reached constant values.
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Thermodynamic Potential Total Differential
Natural

Variables

Total Internal Energy, U dU = TdS − PdV + µdN S, V,N

Enthalpy, H dH = TdS + V dP + µdN S, P,N

Helmholtz Free Energy, F dF = −SdT − PdV + µdN T, V,N

Gibbs Free Energy, G dG = −SdT + V dP + µdN T, P,N

Grand Potential, Φ dΦ = −SdT − PdV −Ndµ T, V, µ

Table 3.1: Summary of the key thermodynamic potentials and their natural variables.

For processes that take place at constant entropy (isoentropic), constant vol-

ume (isochoric or isovolumetric) or particle number (isosmotic), it is clear that the

total internal energy is a useful quantity for calculations. For isobaric processes

however, taking place at constant pressure, it is convenient to define a new thermo-

dynamic potential by the Legendre transform

H = U + PV, (3.3.7)

such that

dH = TdS + V dP + µdN. (3.3.8)

This quantity is known as the enthalpy . For processes occurring at constant volume

and constant temperature (isothermal), it is convenient to define the Helmholtz free

energy

F = U − TS, (3.3.9)

and for processes at constant pressure and constant temperature, the Gibbs free

energy

G = H − TS. (3.3.10)

Finally, for open subsystems in which we are interested in the total particle number
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N , it will prove useful to define the grand potential

Φ = F − µN. (3.3.11)

Table 3.1 summarises the differential forms of these thermodynamic potentials and

lists their natural variables.

In the presence of s different particle species, the generalisation of these defini-

tions is reasonably straightforward. We simply replace the terms µN in the Legendre

transforms and µdN in the total differential forms with summations over all particle

species, i.e.,

µN →
s
∑

i=1

µiNi, (3.3.12a)

µdN →
s
∑

i=1

µi dNi. (3.3.12b)

3.4 Entropy and the Gibb’s Distribution

Thus far we have introduced two seemingly disparate descriptions of our subsystem

S : the first, based upon the microscopic properties of the individual constituents

of the subsystem and the second, based upon only macroscopic, collective properties

of the subsystem as a whole. Not surprisingly, the next step is to find a connection

between these two descriptions.

In Section 3.2, we established Liouville’s theorem: the statement that the

classical distribution function must remain constant along the phase trajectories of

the system. It follows therefore that this distribution function can depend only on

those quantities that also remain constant along those trajectories. These are the

constants or integrals of motion, which for our gas of particles are the total energy,

three-dimensional linear momentum and three-dimensional angular momentum, the

latter two of which correspond to the collective motion of the system. Choosing the

boundaries of the system U to be fixed in some inertial, non-accelerating reference
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frame, we may neglect this collective motion and the density in phase space of the

subsystem S must then be a function only of the total energy EN(qk, pk). The

subscript N reminds us that this is the total energy of all N particles.

However, we can restrict the form of the distribution function further. Let us

consider two congruous subsystems: S1 and S2, each with respective distribution

functions ρ1 and ρ2 and whose volumes are fixed by impermeable vessels, such that

they are both closed. If S1 and S2 are themselves sufficiently large, then we may

neglect the contributions from interactions occurring at the boundary between them

and, as such, the state of one subsystem cannot effect the state of the other. In which

case, S1 and S2 are said to be statistically independent. Given the law of addition

for independent probabilities, it follows that the combined distribution function of

the two subsystems S1 ∪ S2 must be the product of their individual distribution

functions, i.e.,

ρ1∪ 2 = ρ1ρ2. (3.4.1)

We conclude therefore that the logarithm of the distribution function of a subsystem

must be an additive function of the relevant integrals of motion. For S , we have

only to consider the total energy and we may write

ln ρ(qk, pk) = −α− βEN(qk, pk), (3.4.2)

where α and β are constants. We have chosen the overall sign suggestively in

anticipation that we should be less likely to find the subsystem in a state of higher

energy than one of lower energy. Exponentiating this result, the distribution function

of our closed subsystem is

ρ(qk, pk) =
1

Z
e−βEN (qk,pk), (3.4.3)

where the constant Z is such that the normalisation in (3.2.12) is satisfied, i.e.,

Z =

∫

dΩ6N

h3N
e−βEN (qk,pk). (3.4.4)
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The density in phase space in (3.4.3), pertaining to the closed subsystem, is referred

to as the canonical distribution. The normalisation Z, which represents a sum over

all possible states, is known as the canonical partition function.

The expectation of the logarithm of the distribution function in (3.4.2) is

∫

dΩ6N

h3N
ρ(qk, pk) ln ρ(qk, pk) = −α− β

∫

dΩ6N

h3N
ρ(qk, pk)EN (qk, pk). (3.4.5)

The integral on the right hand side is just the expectation of the total energy, which,

if the system is in equilibrium, must be nothing other than the thermodynamic, total

internal energy

U = 〈EN〉 =
∫

dΩ6N

h3N
ρ(qk, pk)EN(qk, pk). (3.4.6)

For our closed subsystem of fixed volume and particle number, the first law of

thermodynamics has the form

dU = TdS, (3.4.7)

cf. (3.3.3). Comparing (3.4.7) with the total differential of (3.4.5), we infer that

dS = −βT d〈ln ρ〉. (3.4.8)

The entropy must therefore be related to the expectation of the logarithm of the

distribution function as follows:

S = −kB 〈ln ρ〉 , (3.4.9)

up to some overall additive constant, where kB is Boltzmann’s constant. The con-

stant

β =
1

kBT
, (3.4.10)

is then the inverse thermodynamic temperature having units of energy, in which case

the exponent of the distribution function is dimensionless as required.

Considering again our two congruous subsystems, we now allow particle ex-
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change across the boundary between them. Nevertheless, if the subsystems are

sufficiently large, then we may also neglect this contribution and consider these sub-

systems to be quasi-closed. In this case, they remain statistically independent, as

were the closed subsystems above, and the form of the logarithm of the distribution

function is exactly as in (3.4.2). However, for these quasi-closed subsystems of fixed

volume, the first law of thermodynamics is

dU = TdS + µdN. (3.4.11)

It follows then that the distribution function must take the form

ρ(qk, pk) =
1

Ξ
e−β[En(qk,pk)−µn], (3.4.12)

where the constant α in (3.4.2) has become a function of the total particle number n.

This distribution function is referred to as the grand canonical distribution. Again,

we must always find the subsystem to be in one of the possible microstates. However,

as well as all possible energies, these microstates now cover all possible total particle

numbers n, which differ from the macroscopic total particle number N = 〈n〉. It

follows then that this distribution function must satisfy the normalisation

∑

n

∫

dΩ6n

h3n
ρ(qk, pk) = 1, (3.4.13)

where we now sum over all possible numbers of particles, in which case

Ξ =
∑

n

∫

dΩ6n

h3n
e−β[En(qk,pk)−µn]. (3.4.14)

This normalisation again represents a sum over all possible states and is known as

the grand canonical partition function.

Looking again at (3.4.5), it would appear more convenient to rewrite the in-

tegral over phase space as an integral over the energies EN of the microstates. We

can then forget about the impractical set of microscopic coordinates and momenta
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entirely. In this form, the expectation of the energy of a closed subsystem becomes

U =

∫

dEN ρ(EN)
1

h3N
∂Ω6N

∂EN
EN , (3.4.15)

where ρ(EN) is the canonical distribution in (3.4.3). From this integral, we see that

the probability of finding S in a microstate of energy between EN and EN + dEN

is

dP(EN) = ρ(EN)
1

h3N
∂Ω6N

∂EN
dEN , (3.4.16)

The canonical distribution ρ(EN ) is the number density of microstates in phase

space and

dwN ≡
1

h3N
∂Ω6N

∂EN

dEN (3.4.17)

is the total number of microstates with energy in the interval between EN and

En + dEN . It follows that the product

ρ(EN )
dwN

dEN

(3.4.18)

is then the density of microstates in the space of energies.

If the closed subsystem S is in thermodynamic equilibrium with total internal

energy U , the energy probability distribution

dP(EN)

dEN
= ρ(EN )

dwN

dEN
(3.4.19)

must be highly peaked near EN = U with some finite width ∆U . If all microstates

in the energy interval ∆U are equally likely — the assumption of equal a priori

probability — then the energy probability distribution must be constant over that

interval. In this case, the total probability must be equal to the area of a rectangle

with height ρ(U)dwN

dU
and width ∆U , which must also be normalised to unity. Hence,

∫

dEN ρ(EN )
dwN

dEN

≈ ρ(U)
dwN

dU
∆U = 1, (3.4.20)
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where

W (U) ≡ ∆wN =
dwN

dU
∆U (3.4.21)

is just the total number of microstates with energy in the interval ∆U , that is the

number of microstates consistent with the macrostate of total internal energy U . It

follows therefore that

W (U) =
1

ρ(U)
, (3.4.22)

which we refer to as the statistical weight of the macrostate of total internal energy

U . Since all microstates are equally likely, the probability of finding the system in

any one of the W (U) microstates given that it is in a macrostate of energy U is

simply W−1(U).

Using Liouville’s theorem, we argued that the logarithm of the distribution

function must be a linear function of the energy and, as such, the following equality

holds:

S = −kB ln ρ(U) = −kB 〈ln ρ(EN )〉 . (3.4.23)

Using (3.4.22), the entropy of a given macrostate may be expressed in terms of its

statistical weight as

S = kB lnW (U). (3.4.24)

Hence, the entropy of a given macrostate is the natural logarithm of the total number

of microstates consistent with that macrostate. This is Boltzmann’s hypothesis. This

is a significant result: the question of calculating the distribution function of a system

and subsequently its thermodynamic properties is now one of counting microstates,

i.e., a question only of combinatorics.

For an open subsystem, we must also sum over all possible total particle num-

bers n, replacing the canonical distribution with the grand canonical distribution in

(3.4.23). Nevertheless, the energy probability distribution must also be dominated

by particle numbers n near the thermodynamic total particle number N , in which
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case the generalisation of (3.4.20) reads as

∑

n

∫

dEn ρ(En, n)
dwn

dEn
≈ ρ(U,N)

dwN

dU
∆U = 1, (3.4.25)

differing only by the replacement of the canonical distribution by the grand canonical

distribution. We may conclude therefore that the arguments followed above for the

closed subsystem also hold for an open subsystem.

The introduction of the statistical weight W allows us to construct a differ-

ent picture of our statistical average. Rather than observing a single system for

a sufficiently large period of time, we can instead consider observing a sufficiently

large number of identically-prepared systems instantaneously. We imagine populat-

ing phase space with copies of the subsystem, all prepared in the same way and each

in one of the possible microstates. This set of copies is called a statistical ensemble.

If the copies are prepared with the same energy, volume and particle number

and are isolated from one another then the ensemble is said to be microcanonical.

This is true of the isolated system U , for which the distribution function must be

narrowly peaked at a particular value UU and thus have the form of a delta function:

ρ =W−1δ(U − UU ). (3.4.26)

This is known as the microcanonical distribution. The microcanonical partition

function W is just the statistical weight of the macrostate with energy UU , that is

W = eS/kB. (3.4.27)

For the closed subsystem S , we must allow for the energy to be exchanged

with the reservoir R. The copies of the subsystem must then be allowed to exchange

energy. Such an ensemble is said to be canonical and is described by the Gibb’s

distribution

ρ(U) = e−S(U)/kB , (3.4.28)
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obtained by exponentiating (3.4.23). Using the definition of the Helmholtz free

energy in (3.3.9), we may write the Gibb’s distribution in the following form:

ρ(U) = eβ(F−U). (3.4.29)

Comparing this with (3.4.3), we see that the canonical partition function may be

written in terms of the Helmholtz free energy as

Z = e−βF (3.4.30)

and therefore

F = −kBT lnZ. (3.4.31)

Hence, it is through the canonical partition function that we are able to calculate

the thermodynamic potentials directly.

For an open subsystem, we must allow the copies in our ensemble to exchange

both energy and particles. This is known as the grand canonical ensemble. In this

case, the Gibb’s distribution still takes the form in (3.4.28), where the entropy is

now a function of both the total internal energy U and the total particle number N .

In this case, we may use the definition of the grand potential in (3.3.11) to write

the grand canonical Gibb’s distribution as

ρ(U,N) = eβ(Φ−U+µN). (3.4.32)

It follows then that the grand potential may be written in terms of the grand canon-

ical partition function as

Φ = −kBT ln Ξ. (3.4.33)

Thus, for open subsystems, it is through the grand canonical partition function that

we make connection with the thermodynamic potentials.

Until now, we have considered the N particles in our gas to be distinguishable.

That is to say that we may distinguish two particles whose positions and momenta
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Statistical Ensemble
Type of

System

Fixed

Variables

Partition

Function

microcanonical
isolated
system

all W = eS/kB

canonical
closed

subsystem
particle
number

Z = eFT/kB

grand canonical
open

subsystem
none Ξ = eΦT/kB

Table 3.2: Summary of the three statistical ensembles and their partition functions.

are identical. For point-like particles, this does not seem a reasonable proposition.

If we want to treat indistinguishable particles then our integrals over all microstates

must be replaced by integrals over all physically-distinct microstates. There are N !

ways to arrangeN particles and as such the number of physically distinct microstates

is reduced by the same factor. It follows that for indistinguishable particles, the

definitions of the canonical and grand canonical partition functions become

Z =
1

N !

∫

dΩ6N

h6N
e−βEN (qk,pk), (3.4.34a)

Ξ =
∑

n

1

n!

∫

dΩ6n

h3n
e−β[En(qk,pk)−µn]. (3.4.34b)

In summary, having introduced statistical ensembles comprising copies of the

subsystem in each of the possible microstates, we have found a means of calculat-

ing macroscopic thermodynamic quantities from a microscopic description of the

subsystem. The various statistical ensembles are summarised in Table 3.2. This

connection is made through the partition function, which may be determined from

the statistical weights of the various macrostates. What remains is for us to calculate

these statistical weights directly by counting available microstates.
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3.5 The Boltzmann Distribution

Let us consider again our subsystem S of N particles, which we shall now assume

to be indistinguishable. For this subsystem, the microstates are just the possible

microscopic states of the individual particles. In this case, the particles themselves

constitute a canonical ensemble and groups of particles with the same energy, a grand

canonical ensemble. It is reasonable therefore to ask for the probability of finding

a single particle with energy between E and E + dE. Our task then is to count

the number of physically-distinct ways in which we can distribute these N particles

amongst the available microstates, which are presumably infinite in number.

Suppose then that there are gi microstates all of which have a discrete energy

Ei, so that there are gi ways in which a particle may have the energy Ei. We

will eventually take the continuous limit, but for now we wish to count discrete

microstates. There are then gNi

i ways in which Ni particles can have energy Ei:

there are gi ways to place the first particle, gi ways to place the second and so on.

However, these particles are indistinguishable and as such we must remove those

arrangements that differ only by permutation. The number of permutations of Ni

particles is simply Ni!. As such, the total number of physically-distinct ways of

placing Ni particles into microstates with energy Ei is simply

Wi =
gNi

i

Ni!
. (3.5.1)

Hence, the statistical weight of a macrostate of total internal energy U , where

U =
∑

i

NiEi, (3.5.2)

is just

W (U) =
∏

i

Wi =
∏

i

gNi

i

Ni!
. (3.5.3)
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Following Boltzmann, we define the quantity

H = lnW =
∑

i

ln Wi, (3.5.4)

which of course is related to the entropy of the subsystem. This H is not to be

confused with the Hamiltonian. Substituting then for (3.5.1), this quantity takes

the form

H =

∞
∑

i=1

(

Ni ln gi − lnNi!
)

. (3.5.5)

For Ni large, we may use Stirling’s approximation for the logarithm of the factorial

lnNi! = Ni lnNi −Ni, (3.5.6)

in which case

H = −
∞
∑

i=1

(

Ni ln
Ni

gi
−Ni

)

. (3.5.7)

The ratio fi ≡ Ni/gi is just the average number of particles in each microstate of

energy Ei, which we shall refer to as the statistical distribution function. We may

then rewrite

H = −
∞
∑

i=1

gi
(

fi ln fi − fi
)

(3.5.8)

We shall assert that the system moves to extremise this quantity. This is

Boltzmann’s H theorem and a statement of the law of increase of entropy, otherwise

known as the second law of thermodynamics. It follows that we must solve

∂

∂fi

∞
∑

j=1

gj
(

fj ln fj − fj
)

= 0, (3.5.9)

subject to the constraints

N =
∞
∑

i=1

gifi, (3.5.10)

and

U =

∞
∑

i=1

gifiEi. (3.5.11)
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By the method of Lagrange undetermined multipliers, we must solve therefore the

auxiliary equation

δ

δfi

∞
∑

j=1

gj
(

fj ln fj − fj + αfj + βfjEj

)

= 0, (3.5.12)

where α and β are constants. Using the functional derivative

δfj
δfi

= δij , (3.5.13)

where δij is the Kronecker delta, equal to unity for i = j and zero otherwise, we find

− ln fi = α + βEi (3.5.14)

or, exponentiating,

fi = e−(α+βEi). (3.5.15)

The entropy of this system is

S = kBH = −kB
∞
∑

i=1

gi(fi ln fi − fi), (3.5.16)

the total differential of which is

dS = −kB
∞
∑

i=1

gi(α+ βEi)dfi. (3.5.17)

Comparing again with the first law of thermodynamics, we conclude that α = −βµ
and β = 1/kBT , where µ and T are the chemical potential and thermodynamic

temperature as before. Thus, we have

fi = e−β(Ei−µ). (3.5.18)

This is the Boltzmann distribution, describing the average number of particles in a

particular microstate of energy Ei.
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Thus, we have the answer to our original question: the probability of finding

a particle with energy between E and E + dE is just

dP(E) =
1

Z
g(E)fβ(E)dE, (3.5.19)

where the partition function may be written as

Z =

∫

dE g(E)fβ(E). (3.5.20)

Herein, we denote the continuous Boltzmann distribution by fβ(E) = e−β(E−µ).

g(E) is the number of microstates with energy between E and E + dE.

3.6 The Boltzmann Transport Equation

The energy of the single-particle microstate E must depend only the position and

momentum of that single particle, i.e., E ≡ E(q,p). It follows then from the Vlasov

equation in (3.2.20), that the Boltzmann distribution fβ, must satisfy the following

equation of motion:
∂fβ
∂t

+ v ·∇qfβ + F ·∇pfβ = 0, (3.6.1)

the solution of which we have established above. This is the so-called collisionless

Boltzmann equation.

Suppose then that we perturb our gas of particles, such that the statistical

distribution deviates from the Boltzmann distribution. The system will only return

to equilibrium if the particles that comprise it our allowed to interact. It is clear then

that the collisionless Boltzmann equation is insufficient to describe this process of

thermalisation. For a system out of equilibrium, the statistical distribution function

will depend explicitly on time. Recalling that the left-hand side of the collisionless

Boltzmann equation is nothing other than the total derivative of the distribution

function, it is clear that the right-hand side will no longer be zero. Instead, it will

comprise terms that depend upon the interactions between the particles in the gas
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— the so-called collision terms.

Before considering these collisions further, we shall assume our gas of particles

to be ideal. By this, we mean that the particles are of negligible size in comparison to

the distance between them and that the time between collisions is long in comparison

to the characteristic length of those collisions. In fact, we shall take the particles

to be point-like and the collisions to be instantaneous. It follows then that we may

consider the particles to be free, in the sense that we may consider any potential

energy due to the collisions to be negligible. In this case, the energy of a particle of

momentum p is just the non-relativistic kinetic energy

E(p) =
p2

2m
, (3.6.2)

where m is the mass of the particle.

We shall allow then for binary collisions between the particles of our gas and

consider collisions that scatter particles into or out of the volume element d3p taking

place instantaneously at a time t and position q. For either of these processes, we

have two incoming particles of momentum k1 and k2 and two outgoing particles of

momentum k′
1 and k′

2, where the total momentum must be conserved throughout

the collision. Assuming that these collisions are elastic, the total kinetic energy must

also be conserved. We then obtain the kinematic constraints

k′
1 + k′

2 = k1 + k2, (3.6.3a)

k′
1
2
+ k′

2
2
= k2

1 + k2
2, (3.6.3b)

where the second equality results from (3.6.2), since all the particles are assumed

to have the same mass. Thus, the 12 degrees of freedom (the 3 components of 4

momenta) are subject to 4 constraints: 3 from the conservation of momentum and

1 from the conservation of energy. Of the remaining 8 degrees of freedom, 3 are the

components of a momentum p that we will fix, leaving 5 degrees of freedom over

which we must sum to obtain the total cross-section for the collisions of interest.
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Using (3.6.3), we may show also that the magnitude of the relative initial and

final momenta are also conserved, that is

k2 = (k′
1 − k′

2)
2 = (k1 − k2)

2. (3.6.4)

It follows that the cross-section for an individual collision must be a function of the

magnitude k and not the magnitudes of both the initial and final relative momenta,

since these quantities are not independent. Each individual cross-section will how-

ever depend upon the angles between both pairs of initial and final momenta, of

which their are 4: 2 polar and 2 azimuthal. In which case, it is clear that to calcu-

late the total cross-section for such collisions, we must sum over one of the initial

momenta, k1 say, and the angular degrees of freedom of one other momentum. We

may parametrise this angular dependence by the solid angle Ω, swept out between

the two relative momenta k′
1 − k′

2 and k1 − k2. In all, this comprises 5 integrals as

we anticipated.

The cross-section for an individual process will depend upon the relative flux

of the incoming particles, which is just k/m, and the differential cross-section σ′ =

dσ/dΩ, with which we parametrise the angular dependence of the collision. Both

of these quantities are symmetric under the interchange of the initial and final

states. However, the cross-section will also depend upon the availability of the

incoming particles, which will not be symmetric under this interchange. The number

of particles with momenta between k and k+ d3k is just f(k,q, t)d3k.

Fixing the out-going momentum k′
2 = p, the total cross-section for the scat-

tering of particles into the volume d3p is

d3k2

∫

d3k1

h3
dΩ

k

m
σ′f(k1,q, t)f(k2,q, t). (3.6.5)

The total cross-section for the inverse process, whereby a particle is scattered out of

the volume d3p, is obtained by interchanging the initial and final states, such that
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k1 → k′
1 and k2 → k′

2. Recalling that k′
2 = p, we find

d3p

∫

d3k′
1

h3
dΩ

k

m
σ′f(k′

1,q, t)f(p,q, t). (3.6.6)

The Jacobian of the transformation k1 → k′
1, k2 → k′

2 is unity. In which case, we

may rewrite (3.6.5) as

d3p

∫

d3k′
1

h3
dΩ

k

m
σ′f(k1,q, t)f(k2,q, t). (3.6.7)

The differential cross-section σ′ has dimensions of L2 and so these results have the

dimensions of T−1. Thus, (3.6.7) may be interpreted as the rate of increase of

the number density of particles with momentum between p and p + d3p due to

scattering into the volume d3p. Conversely, (3.6.6) is the corresponding rate of

decrease, resulting from the inverse process. The net increase in the number density

is therefore the difference of (3.6.7) and (3.6.6), which is nothing other than the

total time derivative of the statistical distribution function f(p,q, t), i.e.,

df(p,q, t)

dt
=

∫

d3k1

h3
dΩ

k

m
σ′
[

f(k1,q, t)f(k2,q, t)− f(k′
1,q, t)f(p,q, t)

]

. (3.6.8)

The dimensionality of this expression is consistent with the interpretation of the

statistical distribution function f(p,q, t) as a number density in phase space. It

follows then that the total number of particles per unit volume between q and

q+ d3q is

n(q, t) =

∫

d3p

h3
f(p,q, t); (3.6.9)

and the total number of particles is

N(t) =

∫

d3qn(q, t) =

∫

d3q

∫

d3p

h3
f(p,q, t). (3.6.10)

The total time derivative in (3.6.8) must be equal to the left-hand side of the

collisionless Boltzmann equation in (3.6.1), in which we must replace the equilibrium

Boltzmann distribution by the time-dependent distribution function f(p,q, t). We





3. Classical Prerequisites

then arrive at the Boltzmann transport equation

∂f(p,q, t)

∂t
+ v ·∇qf(p,q, t) + F ·∇pf(p,q, t)

=

∫

d3k′
1

h3
dΩ |v − v′

1|σ′[f(k1,q, t)f(k2,q, t)− f(k′
1,q, t)f(p,q, t)

]

, (3.6.11)

where the velocities v = p/m and v′
1 = k′

1/m and k2 = p+ k′
1 − k1 by momentum

conservation.

We have obtained a first-order differential equation describing the time evo-

lution of the statistical distribution function, corresponding to the number density

of our N particles in phase space. If this system is perturbed from thermodynamic

equilibrium, we anticipate that its return to equilibrium will be driven by the col-

lision terms, proceeding until those terms vanish. As a final check therefore, let us

replace the time-dependent distribution function in the binary collision terms by the

Boltzmann distribution and show that they do indeed vanish as we expect. After

making this substitution, we obtain the difference of two exponentials:

e−β(p2+k1
′2)/2m − e−β(k2

1
+k2

2
)/2m. (3.6.12)

By conservation of energy, the exponents of these two terms are identical and the

rates of scatterings into and out of the phase space volume d3p are equal. Thus,

the exponential form of the Boltzmann distribution and the conservation of energy

are sufficient to ensure that the collision terms vanish and we conclude that the

Boltzmann distribution also describes the equilibrium distribution of our idealised

gas of interacting particles.

The aim of the remainder of this thesis is to generalise these statistical distri-

bution functions and their transport equations to quantum field theory.
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Before proceeding to the full quantum field-theoretic description of the macroscopic

phenomena introduced in the previous chapter, we should first review the corre-

sponding quantum-mechanical approach — quantum statistical mechanics.

In this chapter, we will set out from the first quantisation of classical mechan-

ics in the familiar wave picture due to Erwin Schrödinger. Having introduced the

familiar states, operators and observables, we will emphasise the time-dependence

of the various pictures: the Schrödinger, Heisenberg and interaction pictures. After

defining the quantum mechanical density operator, we move on to many-body quan-

tum systems, introducing the quantum statistical density operator and its relation

to the partition function. Finally, by considering the archetypal quantum harmonic

oscillator, we derive the statistical distribution function of integer-spin quanta, i.e.,

bosons — the Bose-Einstein distribution.

For a comprehensive discussion of the concepts introduced in this chapter, the

reader is directed to the text by J. J. Sakurai [59].

4.1 Quantisation

The classical numbers q and p, corresponding to one-dimensional coordinates of po-

sition and momentum, are now superseded by the quantum mechanical position and

momentum operators q̂ and p̂. These operators allow us to make measurements of

the positions and momenta of a quantum state, which is described in the Schrödinger
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picture of quantum mechanics by a wavefunction ψ(q, t̃). The modulus squared of

this wavefunction

|ψ(q, t̃)|2 = ψ∗(q, t̃)ψ(q, t̃) (4.1.1)

is the probability density that, at a time t̃, the quantum state will be found at a

position between q and q+dq. The quantum state must be somewhere and as such

the wavefunction satisfies the normalisation

∫ +∞

−∞
dq ψ∗(q, t̃)ψ(q, t̃) = 1. (4.1.2)

The expectation value of a general operator Ô is then

〈O〉 =
∫ +∞

−∞
dq ψ∗(q, t̃)Ôψ(q, t̃). (4.1.3)

The ‘time’ appearing in this wavefunction has deliberately been denoted with

a tilde. This is to differentiate these microscopic times from the macroscopic times

of thermodynamics. This may seem particularly pedantic, but our motivation is

this: the second law of thermodynamics — the law of increase of entropy. This

law seemingly gives the ‘time’ of thermodynamics a preferred direction. By this,

we do not mean that time must always run in the same direction — we hope to

avoid a philosophical discussion of the arrow of time – and in fact, we made use of

reversible processes to derive the first law of thermodynamics. Instead, we mean that

processes occurring out of thermodynamic equilibrium, i.e., those which do not take

place quasi-statically, cannot be reversed exactly. In other words, the process and its

inverse are asymmetric. In this case, our ‘preferred direction’ is a rather ambiguous

statement of the violation of time-reversal symmetry on macroscopic scales. On

the other hand, the microscopic equations of motion — including those of Newton,

Hamilton and Lagrange — are entirely symmetric under this time reversal. This then

is our justification for distinguishing these two times: dependence upon microscopic

times is constrained to be symmetric under time reversal, whereas dependence upon

macroscopic times is not.
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The wavefunction evolves according to the Schrödinger equation

Ĥψ(q, t̃) = i~
∂

∂t̃
ψ(q, t̃), (4.1.4)

where Ĥ is the Hamiltonian operator, which will be some combination of the po-

sition and momentum operators. The constant ~ is Planck’s constant h divided

by 2π, having the units of action. The Hamiltonian operator allows us to make a

measurement of the energy of a quantum state and the presumption therefore is

that the wavefunction describes a state of definite energy. Looking again at the

expectation value in (4.1.3), it is clear that a suitable representation of the position

operator is simply the position q. We may obtain the coordinate representation of

the momentum operator by differentiating the Schrödinger equation with respect to

this position:
∂Ĥ

∂q
ψ(q, t̃) = i~

∂2

∂t̃∂q
ψ(q, t̃), (4.1.5)

where we have commuted the partial derivatives on the right-hand side. From

Hamilton’s equations of motion (3.1.16b), the partial derivative of the Hamiltonian

is related to the partial time derivative of the momentum. We then obtain

p̂ = −i~ ∂
∂q
. (4.1.6)

From this coordinate representation of the momentum operator, we may derive

the canonical commutation relation

[

q̂, p̂
]

= q̂p̂− p̂q̂ = i~. (4.1.7)

This commutation relation expresses a fundamental incompatibility between simul-

taneous measurements of the position and momenta of a quantum state — the

Heisenberg uncertainty principle. The uncertainties in any such measurements must

satisfy

∆q∆p ≥ ~

2
. (4.1.8)
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This result presents us with a problem. The statistical approach of the previ-

ous chapter relied on our ability to write down the statistical distribution function

f(q,p, t), which depends simultaneously upon both position and momentum. This

is seemingly forbidden by the uncertainty principle. We have however already es-

tablished the solution. Each representative point in phase space (representative of

a given microstate) was smeared out by a factor of the constant h, which had the

dimensions of action. This smearing out is exactly what is required by the uncer-

tainty principle and this h must be Planck’s constant. It follows therefore that the

microstates of quantum mechanical systems are the quantum states themselves.

Introducing the braket notation due to Dirac, we may write the coordinate-

space wavefunction as the inner product between vectors of a Hilbert space

ψ(q, t̃) = 〈q|ψ(t̃)〉 . (4.1.9)

The basis vectors |q〉 are eigenstates of the position operator q̂, satisfying the eigen-

value equation

q̂ |q〉 = q |q〉 , (4.1.10)

where the eigenvalue q is the observable position of the state |q〉. We may also

introduce the momentum-space wavefunction

ψ(p, t̃) = 〈p|ψ(t̃)〉, (4.1.11)

representing the probability that a quantum state has the momentum p. The basis

vectors |p〉 are eigenstates of the momentum operator p̂, satisfying the eigenvalue

equation

p̂ |p〉 = p |p〉 . (4.1.12)

These position and momentum eigenstates form complete orthonormal bases, satis-
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fying the orthogonality conditions

〈q|q′〉 = δ(q − q′), (4.1.13a)

〈p|p′〉 = 2π~δ(p− p′). (4.1.13b)

and the completeness relations

∫ +∞

−∞
dq |q〉〈q| = I, (4.1.14a)

∫ +∞

−∞

dp

2π~
|p〉〈p| = I. (4.1.14b)

The appearance of Planck’s constant in the denominator of the momentum integra-

tion is consistent with our treatment of the classical phase space in the previous

chapter, cf. (3.2.5), such that the volume element

dq dp

2π~
(4.1.15)

is dimensionless. The position and momentum eigenstates have respective dimen-

sions of L−1/2 and L1/2.

By inserting into (4.1.9) the completeness relation of the momentum eigen-

states, we may relate the coordinate- and momentum-space wavefunctions via

ψ(q, t̃) =

∫ +∞

−∞

dp

2π~
〈q|p〉ψ(p, t̃). (4.1.16)

Using the canonical commutation relation (4.1.7) and the coordinate representation

of the momentum operator (4.1.6), we may show that the kernel

〈q|p〉 = eiqp/~ (4.1.17)

is that of the inverse Fourier transform. Hence, the position- and momentum-space
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wavefunctions are related by

ψ(q, t̃) =

∫ +∞

−∞

dp

2π~
eiqp/~ ψ(p, t̃), (4.1.18)

as we would anticipate.

In braket notation, the expectation value of the operator Ô may be written in

the form

〈O(t̃)〉 = 〈ψ(t̃)|Ô|ψ(t̃)〉 . (4.1.19)

We see that all time-dependence is contained in the state vectors |ψ(t̃)〉. This defines
the so-called Schrödinger picture, in which basis vectors and operators are time-

independent and state vectors are time-dependent. The evolution of the state vector

|ψ(t̃)〉 is determined by

i~
d

dt̃
|ψ(t̃)〉 = Ĥ |ψ(t̃)〉 . (4.1.20)

The Hamiltonian is time-independent and it follows straightforwardly that the state

vector at a time t̃ may be related to the state vector at an earlier time t̃i by

|ψ(t̃)〉 = e−iĤ(t̃−t̃i)/~ |ψ(t̃i)〉 . (4.1.21)

This defines the evolution operator

Û(t̃, t̃i) = e−iĤ(t̃−t̃i)/~, (4.1.22)

whose action is to evolve the state vector forwards in time from t̃i to t̃.

We may now write the expectation value of an operator in an alternate form:

〈O(t̃)〉 = S〈ψ(t̃i)|eiĤS(t̃−t̃i)/~ÔSe
−iĤS(t̃−t̃i)/~|ψ(t̃i)〉S. (4.1.23)

We have been careful to indicate by a subscript S that the state vectors and operators

are understood in the Schrödinger picture. From this expression, we may define a

new picture in which all of the time dependence is in the operators. This is the
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so-called Heisenberg picture. The time-independent Heisenberg-picture state vector

is defined as

|ψ〉H ≡ |ψ(t̃i)〉S, (4.1.24)

which depends implicitly on the time t̃i. The time-dependent, Heisenberg-picture

operator is

ÔH(t̃) ≡ eiĤS(t̃−t̃i)/~ÔSe
−iĤS(t̃−t̃i)/~, (4.1.25)

in which case the expectation value in the Heisenberg picture is

〈O(t̃)〉 = H〈ψ|ÔH(t̃)|ψ〉H. (4.1.26)

The Heisenberg-picture operator evolves according to the Heisenberg equation

of motion
d

dt̃
ÔH(t̃) =

i

~

[

ĤH, ÔH(t̃)
]

. (4.1.27)

The full Hamiltonian commutes with itself and the Heisenberg- and Schrödinger-

picture Hamiltonians are identical. In corollary, the full Hamiltonian remains time-

independent in the Heisenberg picture. Returning to (4.1.9), the equivalence of these

two pictures requires that the coordinate-space basis vectors are time-dependent in

the Heisenberg picture, that is to say

|q(t̃)〉H = eiĤS(t̃−t̃i)/~|q〉S, (4.1.28)

evolving with the complex-conjugate of the Schrödinger equation. The coordinate

space wave-function may then be written in terms of basis and state vectors in the

Heisenberg picture as

ψ(q, t̃) = H〈q(t̃)|ψ〉H. (4.1.29)
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4.2 The Interaction Picture

Finally, let us suppose that we are interested in the evolution of states as a result

of interactions, as will indeed be the case for the rest of this thesis. We divide the

full Hamiltonian into free and interaction parts, i.e.,

ĤS ≡ Ĥ0
S + Ĥ int

S . (4.2.1)

We may then define time-dependent, interaction-picture state vectors according to

|ψ(t̃)〉I ≡ eiĤ
0
S
(t̃−t̃i)/~|ψ(t̃)〉S = e−iĤint

S
(t̃−t̃i)/~|ψ(t̃i)〉S, (4.2.2)

whose evolution is driven entirely by the interaction part of the Hamiltonian. The

interaction-picture basis states are

|q(t̃)〉I ≡ eiĤ
0
S
(t̃−t̃i)/~|q〉S (4.2.3)

and the interaction-picture operator is

ÔI(t̃) ≡ eiĤ
0
S
(t̃−t̃i)/~ÔSe

−iĤ0
S
(t̃−t̃i)/~, (4.2.4)

both of which are now time dependent.

From (4.2.4), the free part of the Hamiltonian remains time-independent in

the interaction picture. The interaction part of the Hamiltonian, on the other hand,

becomes time-dependent, since the free and interaction parts of the Hamiltonian do

not necessarily commute. The interaction part

Ĥ int
I (t̃) = eiĤ

0
S
(t̃−t̃i)/~Ĥ int

S e−iĤ0
S
(t̃−t̃i)/~. (4.2.5)

may be written by virtue of the Baker-Campbell-Hausdorff formula as

Ĥ int
I (t̃) = AdiĤ0

S
(t̃−t̃i)/~

Ĥ int
S , (4.2.6)
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where AdX ≡ eadX and adX is the adjoint representation of the commutator

adX(Y ) = [X, Y ]. (4.2.7)

It follows that the evolution of the interaction-picture state vector is determined by

the equation of motion

i~
d

dt̃
|ψ(t̃)〉I = Ĥ int

I (t̃)|ψ(t̃)〉I, (4.2.8)

where we emphasise the time dependence of the interaction part of the Hamiltonian.

The basis states evolve under the free part of the Hamiltonian according to

i~
d

dt̃
|q(t̃)〉I = −Ĥ0

I |q(t̃)〉I; (4.2.9)

and the operator, according to

d

dt̃
ÔI(t̃) =

i

~

[

Ĥ0
I , ÔI(t̃)

]

. (4.2.10)

In order to solve (4.2.8), we return to the evolution operator, which in the in-

teraction picture may be written in terms of the interaction-part of the Hamiltonian

in Schrödinger-picture as

Û(t̃, t̃i) = e−iĤint
S

(t̃−t̃i), (4.2.11)

which evolves the interaction-picture state vector |ψ(t̃i)〉I from a time t̃i to a time t̃,

i.e.,

|ψ(t̃)〉I = Û(t̃, t̃i)|ψ(t̃i)〉I. (4.2.12)

For convenience, we have not included a subscript I on this evolution operator but

we emphasise its distinction from (4.1.22). If follows from (4.2.8) that Û(t̃, t̃i) must

satisfy

i~
d

dt̃
Û(t̃, t̃i) = Ĥ int

I (t̃)Û(t̃, t̃i), (4.2.13)

subject to the boundary condition

Û(t̃, t̃) = I (4.2.14)
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for all times t̃. Furthermore, we may convince ourselves that Û is Markovian, satis-

fying

Û(t̃, t̃1)Û(t̃1, t̃i) = Û(t̃, t̃i). (4.2.15)

In this case, it would appear that the evolution between t̃1 and t̃ is independent of

the evolution between t̃1 and t̃i. In other words, at least microscopically, there is

no memory of the previous history of the evolution. Of course, for a macroscopic

system evolving out of thermodynamic equilibrium, we cannot yet exclude such

memory effects and indeed this non-Markovian macroscopic evolution should signal

departure from equilibrium.

The inverse of the evolution operator Û−1(t̃, t̃i), which evolves the interaction-

picture state vector back from the time t̃ to the time t̃i, is defined via the inverse

relation

Û−1(t̃, t̃i)Û(t̃, t̃i) = I, (4.2.16)

since, at least microscopically, the evolution may always be reversed. Given the

Markovian property in (4.2.15), it follows that

Û−1(t̃, t̃i) = Û(t̃i, t̃). (4.2.17)

Differentiating (4.2.16) and using (4.2.13), Û−1(t̃, t̃i) is the solution to

i~
d

dt̃
Û−1(t̃, t̃i) = −Û−1(t̃, t̃i)Ĥ

int
I (t̃), (4.2.18)

from which we may confirm that Û(t̃, t̃i) is unitary with

Û−1(t̃, t̃i) = Û †(t̃, t̃i) = eiĤ
int
S

(t̃−t̃i)/~, (4.2.19)

where † denotes the Hermitian conjugate of the operator—the complex conjugate of

the transpose of the operator. We have also used the fact that the Hamiltonian is

necessarily Hermitian, that is Hermitian self-conjugate, such that it has real eigen-

values. The unitary property ensures that the total probability is conserved during
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the evolution.

We have so far written the explicit form of the evolution operator in terms

of Schrödinger-picture operators only. In order to express Û(t̃, t̃i) in terms of

interaction-picture operators, we return to (4.2.13), transforming the equation of

motion into the form of a Volterra integral equation of the second kind:

Û(t̃, t̃i) = I− i

~

∫ t̃

t̃i

dt̃1 Ĥ
int
I (t̃1)Û(t̃1, t̃i), (4.2.20)

where we have used the boundary condition in (4.2.14). By repeatedly reinserting

this result into itself—the successive approximation method—we obtain the Neu-

mann series (see for instance [60])

Û(t̃, t̃i) = I− i

~

∫ t̃

t̃i

dt̃1 Ĥ
int
I (t̃1)+

(

− i

~

)2
∫ t̃

t̃i

dt̃1

∫ t̃1

t̃i

dt̃2 Ĥ
int
I (t̃1)Ĥ

int
I (t̃2)+ · · · (4.2.21)

Let us look more closely at the third term in (4.2.21). In the t̃1-t̃2 plane, the region

of integration is the triangle bounded by t̃1 = t̃, t̃1 = t̃2 and t̃2 = t̃i. By changing

the order of integration, we may show that

∫ t̃

t̃i

dt̃1

∫ t̃1

t̃i

dt̃2 Ĥ
int
I (t̃1)Ĥ

int
I (t̃2) =

∫ t̃

t̃i

dt̃2

∫ t̃

t̃2

dt̃1 Ĥ
int
I (t̃1)Ĥ

int
I (t̃2). (4.2.22)

Subsequently making the change of variables t̃1 ↔ t̃2 on the right-hand side, we

obtain the identity

∫ t̃

t̃i

dt̃1

∫ t̃1

t̃i

dt̃2 Ĥ
int
I (t̃1)Ĥ

int
I (t̃2) =

∫ t̃

t̃i

dt̃1

∫ t̃

t̃1

dt̃2 Ĥ
int
I (t̃2)Ĥ

int
I (t̃1). (4.2.23)

On the left-hand side, t̃1 ≥ t̃2, where as, on the right-hand side, t̃2 ≥ t̃1. Noticing

that the Hamiltonian operators are always ordered with the left-most having the

largest (or latest) time, we introduce the time-ordering operator

T
[

Ô(t̃1)Ô(t̃2) · · · Ô(t̃n)
]

= Ô(t̃1)Ô(t̃2) · · · Ô(t̃n), t̃1 ≥ t̃2 ≥ · · · ≥ t̃n. (4.2.24)
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By adding to both sides of (4.2.23) a duplicate of the left-hand side, we may write

∫ t̃

t̃i

dt̃1

∫ t̃1

t̃i

dt̃2 Ĥ
int
I (t̃1)Ĥ

int
I (t̃2) =

1

2

[

∫ t̃

t̃i

dt̃1

∫ t̃

t̃1

dt̃2 Ĥ
int
I (t̃2)Ĥ

int
I (t̃1)

+

∫ t̃

t̃i

dt̃1

∫ t̃1

t̃i

dt̃2 Ĥ
int
I (t̃1)Ĥ

int
I (t̃2)

]

=
1

2

∫ t̃

t̃i

dt̃1

[

∫ t̃

t̃1

dt̃2 +

∫ t̃1

t̃i

dt̃2

]

T
[

Ĥ int
I (t̃1)Ĥ

int
I (t̃2)

]

=
1

2

∫ t̃

t̃i

dt̃1

∫ t̃

t̃i

dt̃2T
[

Ĥ int
I (t̃1)Ĥ

int
I (t̃2)

]

, (4.2.25)

such that all integrations now run from t̃i to t̃. It follows that the Neumann series

(4.2.20) may be recast in the form

Û(t̃, t̃i) = I− i

~

∫ t̃

t̃i

dt̃1 Ĥ
int
I (t̃1) +

1

2!

(

− i

~

)2
∫ t̃

t̃i

dt̃1

∫ t̃

t̃i

dt̃2 T
[

Ĥ int
I (t̃1)Ĥ

int
I (t̃2)

]

+ · · · .
(4.2.26)

Recognising this series as the expansion of the exponential function, we obtain the

solution

Û(t̃, t̃i) = T

[

exp

(

− i

~

∫ t̃

t̃i

dt̃′ Ĥ int
I (t̃′)

)]

. (4.2.27)

There is however an implicit assumption in this result. The validity of the expansion

requires that the integral in the exponent is small in comparison to ~. Therefore,

either the time interval t̃ − t̃i must be comparably short; the interactions must be

comparably weak, so that there contribution to the energy is small; or both.

The equation of motion of the inverse evolution operator has the integral form

Û−1(t̃, t̃i) = I+
i

~

∫ t̃

t̃i

dt̃1 Û
−1(t̃1, t̃i)Ĥ

int
I (t̃1). (4.2.28)

Following the same procedure as above, repeatedly inserting this expression into

itself, we will end up with the rightmost (as opposed to the leftmost) operator having

the largest time. As such, we must introduce the anti-time-ordering operator

T̄
[

Ô(t̃1)Ô(t̃2) · · · Ô(t̃n)
]

= Ô(t̃n) · · · Ô(t̃2)Ô(t̃1), t̃1 ≥ t̃2 ≥ · · · ≥ t̃n. (4.2.29)
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We then obtain

Û−1(t̃, t̃i) = T̄

[

exp

(

i

~

∫ t̃

t̃i

dt̃′ Ĥ int
I (t̃′)

)]

. (4.2.30)

4.3 The Density Operator

In the previous chapter, our statistical description of macroscopic systems stemmed

from the density in phase space or classical distribution function. Our aim in this

section is to introduce the corresponding object in quantum statistical mechanics:

the density operator.

Let us consider a closed quantum mechanical subsystem S in thermodynamic

equilibrium, which is at time t̃ described by the state vector |Ψ(t̃)〉S. This subsystem
is to be the quantum analogue of our gas of particles. The state vector |Ψ(t̃)〉S is

a coherent sum over all possible quantum states of S , where those quantum states

constitute the microstates of S . The expectation value of the Schrödinger-picture

operator ÔS is then

〈O(t̃)〉 = S〈Ψ(t̃)|ÔS|Ψ(t̃)〉S. (4.3.1)

We introduce the complete orthonormal set of state vectors {|ψi(t̃)〉S}, which are

the accessible microstates of S . These state vectors satisfy the orthonormality

condition

S〈ψi(t̃)|ψj(t̃)〉S = δij, (4.3.2)

and the completeness relation

∑

i

|ψi(t̃)〉S S〈ψi(t̃)| = I, (4.3.3)

where δij is again the Kronecker delta. Inserting the orthonormality condition (4.3.3)

to the left and right of the operator in (4.3.1), the expectation value may be rewritten

as

〈O(t̃)〉 =
∑

ij

a∗i (t̃)aj(t̃) S〈ψi(t̃)|ÔS|ψj(t̃)〉S, (4.3.4)
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where the amplitudes are given by

ai(t̃) = S〈ψi(t̃)|Ψ(t̃)〉S. (4.3.5)

This is the probability amplitude that S is in the i-th microstate at a time t̃. We

have then the coherent decomposition

|Ψ(t̃)〉S =
∑

i

ai(t̃)|ψi(t̃)〉S. (4.3.6)

Alternatively, we may write this expectation value as

〈O(t̃)〉 = tr ˆ̺S(t̃)ÔS, (4.3.7)

defining the quantum-mechanical density operator

ˆ̺S(t̃) =
∑

ij

a∗i (t̃)aj(t̃)|ψj(t̃)〉 S S〈ψi(t̃)| = |Ψ(t̃)〉S S〈Ψ(t̃)|, (4.3.8)

where we have made use of the cyclicity of the trace

trABC = trCAB = trBCA. (4.3.9)

We note that this density operator is time-dependent in the Schrödinger pic-

ture, evolving according to the quantum Liouville or von Neumann equation

d

dt̃
ˆ̺S(t̃) +

i

~

[

ĤS, ˆ̺S(t̃)
]

= 0, (4.3.10)

such that ˆ̺S(t̃) = e−iĤS(t̃−t̃i)/~ ˆ̺S(t̃0)e
iĤS(t̃−t̃i)/~. The Poisson brackets of the classical

Liouville equation (3.2.18) have been replaced by the commutator of operators. We

note that this differs by an overall sign from the Heisenberg equation of motion, cf.

(4.1.27). This is as we should expect since, in the Heisenberg-picture, the density

operator is time-independent and the evolution is passed on to the operators, which

must evolve contrary to the Schrödinger-picture density operator for the two pictures
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to remain equivalent. The interaction-picture density operator, on the other hand,

evolves according to

d

dt̃
ˆ̺I(t̃) = −

i

~

[

Ĥ int
I (t̃), ρ̂I(t̃)

]

= L̂(t̃)ˆ̺(t̃), (4.3.11)

where we have introduced the Liouvillian L̂(t̃) = ad−iĤint
I

/~(t̃).

We have specified that the subsystem S is in a state of thermodynamic equi-

librium. As such, the only time evolution should be that intrinsic to the state vectors

themselves, described by the Schrödinger equation. It follows then that the ampli-

tudes ai(t) must be time-independent. However, these amplitudes are microscopic

quantities and must therefore be subject to random, stochastic fluctuations. The

period τ of these fluctuations must be cut off at some characteristic time-scale, τc

say, which, by the uncertainty principle, must be of order ~/kBT , where kB is the

Boltzmann constant and T is the thermodynamic temperature of the system S .

Working in natural units with ~ and kB set to unity, we conclude that τ must be

less than of order the inverse thermodynamic temperature β = 1/T . In which case,

our interest is in the time-average of these quantum-mechanical expectation values

over periods of order β. By the ergodic hypothesis, see Section 3.2, we shall refer to

these time-averaged observables as ensemble expectation values (eevs).

Returning to (4.3.7), let us now assume that the commutator
[

ĤS, ÔS

]

van-

ishes, such that ÔS is diagonal in the basis of state vectors. As a result, the matrix

element

Oij = S〈ψi(t̃)|ÔS|ψj(t̃)〉S (4.3.12)

is time-independent, vanishing for i 6= j. In this case, we may write the expectation

value as

〈O(t̃)〉 = ̺ii(t̃)Oii, (4.3.13)

where the summation over i is implicit and

̺ii(t̃) = |ai(t̃)|2. (4.3.14)
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The only remaining time-dependence is that due to the random, microscopic fluc-

tuations. We then define the eev

〈O〉β = ρii(β)Oii, (4.3.15)

where

ρii(β) ≈
1

β

∫ β

0

dt̃ ̺ii(t̃) =
1

β

∫ β

0

dt̃ |ai(t̃)|2 (4.3.16)

is the quantum-statistical density matrix . It follows that the quantum-statistical

density operator may be written in the form

ρ̂S(β) = ρii(β)|ψi(t̃)〉S S〈ψi(t̃)|, (4.3.17)

which is time-independent as we expected. Of course, this object need not be diag-

onal and in general

ρ̂S(β, t̃) = ρij(β)|ψi(t̃)〉S S〈ψj(t̃)|, (4.3.18)

where the sum over i and j remains implicit and the density operator is now time-

dependent. Recalling that the state vectors correspond to the microstates of S , it

follows that the elements of the density matrix ρii are the statistical weights of the

corresponding macrostates.

The quantum-statistical density operator, hereafter referred to as simply the

density operator, is an incoherent sum over the microstates of S . It is important to

note that we have therefore removed the possibility, in general, of constructing this

density operator out of some thermal state vector |Ψ(t̃); β〉S, that is to say

ρ̂S(β) 6= |Ψ(t̃); β〉S S〈Ψ(t̃); β|, (4.3.19)

where

|Ψ(t̃); β〉S =
∑

i

ai(β)|ψi(t̃)〉S. (4.3.20)

Indeed, such a coherent approach to equilibrium quantum statistical mechanics is

formulated in thermo field dynamics [61–63]. However, our aim is to describe systems
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out of equilibrium in which a coherent decomposition of this form is certainly not

appropriate, although generalisations of such approaches to non-equilibrium systems

have been discussed [64–67].

4.4 The Partition Function

The final step is to connect the density operator to the thermodynamic quantities

discussed in the previous chapter. As we have identified, the elements of the diagonal

density matrix are the statistical weights of the corresponding macrostates. We

anticipate then that the definition of the entropy, which must have the form of an

eev, is

S = −kBtr ρ̂ ln ρ̂. (4.4.1)

The logarithm of the operator is understood as an expansion in terms of a diagonal

matrix representation, in which case

S = −kB
∑

i

ρii ln ρii. (4.4.2)

The law of increase in entropy then results in the canonical form of the elements of

the density matrix

ρii =
1

Z
e−βEi, (4.4.3)

where Ei is the energy of the i-th quantum state. The normalisation Z is the

canonical partition function, which may now be written as explicitly as a sum over

states

Z =
∑

i

e−βEi. (4.4.4)

This may be in turn written in the form of a trace:

Z = tr e−βĤ , (4.4.5)
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where Ĥ is the Hamiltonian operator. We then arrive at the form of the canonical

density operator

ρ̂(β) =
1

Z
e−βĤ . (4.4.6)

We now have a means of calculating eevs of operators in quantum mechanics.

For our closed subsystem S , which is in thermodynamic equilibrium at temperature

T , the eev of a general operator Ô is

〈O〉β =
1

Z
tr e−βĤÔ. (4.4.7)

The trace is then evaluated in any complete orthonormal basis by inserting the

orthonormality condition before the trace and between the operators, using both

the cyclicity and linearity of the trace operation. There are no indications as to the

picture in which this eev is to be understood, since it is picture-independent: we

can insert unity (in the form of a product of evolution operators and their inverses)

and use the cyclicity of the trace to map between pictures. The only requirement

then is that the operators appearing within the trace are understood in the same

picture.

Hereafter, it will be convenient to redefine the density operator so that it does

not include its normalisation and so that this normalisation must always be specified

explicitly. With this convention, the canonical density operator becomes

ρ̂ = e−βĤ (4.4.8)

and the canonical partition function,

Z = tr ρ̂. (4.4.9)

The eev of a general operator Ô may then be written

〈O〉β =
tr ρ̂ Ô

tr ρ̂
. (4.4.10)
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This definition will lend itself more naturally to the forthcoming discussions.

4.5 The Quantum Harmonic Oscillator

Before continuing our discussions of quantum statistical mechanics further, it will

be helpful to consider a specific example. This example, not surprisingly, will be

the archetypal harmonic oscillator. This will lead us to a definition of the number

operator and its equilibrium eev— the distribution function of integer-spin, bosonic

quantum states known as the Bose-Einstein distribution.

The Hamiltonian operator of the one-dimensional quantum harmonic oscillator

of mass m and angular frequency ω is

Ĥ =
p̂2

2m
+

1

2
mω2q̂2, (4.5.1)

where q̂ and p̂ are the position and momentum operators introduced previously.

Our aim is to solve the Schrödinger equation (4.1.4) explicitly. A discussion of this

solution and its generalisation to three-dimensional quantum harmonic oscillator is

provided in [68].

Separating variables, we write the wavefunction of the quantum harmonic os-

cillator as a product of coordinate- and time-dependent terms

ψ(q, t̃) = ψ(q)U(t̃). (4.5.2)

We then obtain the time-independent Schrödinger equation (tise)

Ĥψ(q) = E ψ(q), (4.5.3)

where the constant E is the energy of the state ψ(q, t̃). The time-dependence U(t̃)

satisfies

i~
d

dt̃
U(t̃) = EU(t̃), (4.5.4)
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from which we obtain

U(t̃) = e−iEt̃/~, (4.5.5)

where any constants due to explicit boundary conditions have been absorbed into

the normalisation of ψ(q). Comparing with the evolution operator, we justify our

choice of notation.

The tise may be written explicitly as

[

∂2

∂q2
−
(mω

~

)2

q2 +
2mE

~2

]

ψ(q) = 0. (4.5.6)

This may be cast in a soluble form by making the Ansatz

ψ(q) = Ae−
mω
2~

q2P (q), (4.5.7)

where P (q) is some polynomial of q. The constant A will be fixed by normalisation

of the time-independent wavefunction via

∫ +∞

−∞
dq |ψ(q)|2 = 1, (4.5.8)

since the modulus-squared of the time-dependent part is unity. Substituting for this

Ansatz, the tise may be cast in terms of the polynomial P (q):

[

∂2

∂q2
− 2

mω

~
q
∂

∂q
+

2m

~2

(

E − 1

2
~ω
)

]

P (q) = 0. (4.5.9)

Defining a new variable x through

x2 =
mω

~
q2, (4.5.10)

we obtain
[

∂2

∂x2
− 2x

∂

∂x
+

2

~ω

(

E − 1

2
~ω
)

]

P (x) = 0. (4.5.11)

This is the Hermite differential equation, for which solutions exist only if E− 1
2
~ω is
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4.5. The Quantum Harmonic Oscillator

an integer multiple of ~ω. Thus, we find that the energies of the quantum harmonic

oscillator are quantised, taking discrete values

En = ~ω
(

n+
1

2

)

, (4.5.12)

where n ∈ N0. Each solution may be interpreted as comprising n quanta, each an

oscillator of frequency ω and with energy ~ω. Note that the lowest energy state

with n = 0 — the vacuum — has a finite energy 1
2
~ω, referred to as the zero-point

energy. The polynomials P (y) are the Hermite polynomials Hn(y) [69], which form

an orthogonal basis with the weight function

w(x) = e−x2

, (4.5.13)

such that
∫ ∞

−∞
dx e−x2

Hn(x)Hm(x) =
√
π2nn!δnm. (4.5.14)

For future reference, we note that these polynomials satisfy the recursion relations

Hn+1(x) = 2xHn(x)−
dHn

dx
, (4.5.15a)

dHn

dx
= 2nHn−1(x). (4.5.15b)

After normalising, we find the constant

A =
1√
2nn!

(mω

π~

)1/4

(4.5.16)

and hence the time-dependent wavefunctions of the one-dimensional quantum har-

monic oscillator are

ψn(q, t̃) =
1√
2nn!

(mω

π~

)1/4

Hn(
√

mω/~ q) exp
(

− mω

2~
q2
)

exp
( iEnt̃

~

)

. (4.5.17)

Given the orthogonality of the Hermite polynomials, these wavefunctions form an
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orthonormal set, satisfying

∫ +∞

−∞
dq ψ∗

n(q, t̃)ψm(q, t̃) = δnm, (4.5.18)

as required.

Having established the quantisation of the harmonic oscillator, we return to

the braket notation introduced previously. The time-independent wavefunctions

may then be written as

ψn(q) = 〈q|n〉 . (4.5.19)

The time-independent energy eigenstates |n〉 ≡ |ψn〉, denoted simply by the discrete

quantum number n ∈ N0, satisfy the energy eigenvalue equation

Ĥ |n〉 = En |n〉 , (4.5.20)

and together form a complete orthonormal basis with

∞
∑

n=0

|n〉〈n| = I, (4.5.21a)

〈n|m〉 = δnm. (4.5.21b)

We have already identified that the state |n〉 comprises n quanta of energy ~ω. It

follows then that the Hamiltonian must have the form

Ĥ = ~ω
(

n̂+
1

2

)

, (4.5.22)

where n̂ is an operator which counts the number of quanta — the number operator.

Thus, the energy eigenstate |n〉 is an eigenstate of the number operator n̂ with

eigenvalue n, i.e.,

n̂ |n〉 = n |n〉 . (4.5.23)

Looking again at the Hamiltonian in (4.5.1), written in terms of the position
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and momentum operators, we see that it may be factorised as follows:

Ĥ = ~ω
[(

√

mω

2~
q̂ − p̂√

2m~ω
i
)(

√

mω

2~
q̂ + i

p̂√
2m~ω

)

+
1

2

]

, (4.5.24)

where the zero-point contribution has resulted from the use of the canonical com-

mutation relation in (4.1.7). Introducing the dimensionless operators

â =

√

mω

2~
q̂ + i

p̂√
2m~ω

, (4.5.25a)

â† =

√

mω

2~
q̂ − i p̂√

2m~ω
, (4.5.25b)

the Hamiltonian may be written in the more condensed form

Ĥ = ~ω
(

â†â +
1

2

)

. (4.5.26)

We conclude that the number operator is

n̂ = â†â. (4.5.27)

The canonical commutation relation translates to the algebra

[

â, â†
]

= 1 (4.5.28)

of these new operators, the action of which we will now determine.

Acting explicitly on the time-independent wavefunctions, using their coordi-

nate representations and the recursion relations of the Hermite polynomials (4.5.15),

we find that

âψn(q) =
√
nψn−1(q), (4.5.29a)

â†ψn =
√
n + 1ψn+1, (4.5.29b)
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and, equivalently, it follows that

â |n〉 = √n |n− 1〉 , (4.5.30a)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (4.5.30b)

We interpret then â† as a creation operator, whose operation on an energy eigenstate

adds a quanta of energy to the system; and â as an annihilation operator, whose

operation removes a quanta of energy from the system. Note that we can construct

the nth state as

|n〉 = (â†)n√
n!
|0〉 , (4.5.31)

where |0〉 is the vacuum state.

We can quickly show that these operators satisfy the commutators

[Ĥ, â†] = ~ωâ†, [Ĥ, â] = −~ωâ. (4.5.32)

Hence, by the Heisenberg equation of motion, we find the time-dependent position

and momentum operators

q̂(t) =

(

~

2mω

)1/2

(âe−iωt + â†eiωt), (4.5.33a)

p̂(t) = −i
(

mω~

2

)1/2

(âe−iωt − â†eiωt), (4.5.33b)

satisfying Hamilton’s equations of motion, in which case p̂ is indeed the quantum

analogue of the conjugate momentum.
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4.6 The Bose-Einstein Distribution

We are now in a position to ask for the eev of the number of quanta of a quantum

harmonic oscillator in thermodynamic equilibrium. This is just

〈n〉β =
1

Z
tr e−βĤ n̂, (4.6.1)

where the partition function is

Z = tr e−βĤ . (4.6.2)

Evaluating the trace in the basis of energy eigenstates, using the orthonormality

conditions in (4.5.21), the partition function may be written

Z = e−β~ω/2
∞
∑

n=0

e−β~ωn =
eβ~ω/2

eβ~ω − 1
. (4.6.3)

The remaining trace in the numerator of (4.6.1) yields

= e−β~ω/2
∞
∑

n=0

ne−β~ωn =
eβ~ω/2

(eβ~ω − 1)2
. (4.6.4)

Hence, the eev of the number density is

〈n〉β = fB(~ω) =
1

eβ~ω − 1
. (4.6.5)

This is the Bose-Einstein distribution, describing the number density of integer-

spin particles, i.e., bosons, with energy between ~ω and ~ω + d~ω. Note that in

the low-temperature limit, in which β is large, we recover the classical Boltzmann

distribution fβ(~ω).
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5 Correlation Functions

In this chapter, we introduce a description of the quantum harmonic oscillator based

upon the path integral introduced by Richard Feynman [50] (see also [70–72]). This

representation will be fundamentally important to the derivation of our approach to

non-equilibrium quantum field theory and, as a result, we have chosen to devote a

full chapter to its explanation.

5.1 The Path Integral

Let us consider again the state of the quantum harmonic oscillator described by the

wavefunction ψ(qf , t̃f ) = 〈qf , t̃f |ψ〉 at some time t̃f , here written in the Heisenberg

picture, where for generality we have not indicated the quantum number n. We may

insert a complete set of position eigenstates at some earlier time t̃i < t̃f , such that

ψ(qf , t̃f ) =

∫ +∞

−∞
dqi 〈qf(t̃f )|q̃i(t̃i)〉ψ(qi, t̃i). (5.1.1)

The inner product D(qf , t̃f ; qi, t̃i) = 〈qf(t̃f )|qi(t̃i)〉 may be interpreted as the prob-

ability amplitude for a transition from the state ψ(qi, t̃i) to the state ψ(qf , t̃f), oc-

curring with probability

P(qf , t̃f ; qi, t̃i) = |D(qf , t̃f ; qi, t̃i)|2. (5.1.2)

Further subdividing the time-interval t̃f − t̃i and requiring that the ‘path’ of our

wavefunction pass through a given point q at some time t̃, where t̃i < t̃ < t̃f , we
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develop the Markov train

ψ(qf , t̃f) =

∫∫ +∞

−∞
dq dqiD(qf , t̃f ; q, t̃)D(q, t̃; qi, t̃i)ψ(qi, t̃i). (5.1.3)

We can imagine continuing to subdivide the time interval intoN infinitesimally-small

intervals δt̃ = (t̃f − t̃i)/N . In the continuum limit N →∞, our integrations over all

the intermediate spatial configurations become an integral over all possible ‘paths’

by which the system can evolve, or as Feynman put it “a sum over all histories.”

Symbolically, we write
∫

. . .

∫ +∞

−∞

N−1
∏

j=0

dqj →
∫

[dq], (5.1.4)

where q0 ≡ qi(t̃i) and qN ≡ qf (t̃f).

Let us consider then one infinitesimal interval between t̃j and t̃j+1. In terms of

time-independent position eigenstates, which we emphasise still depend implicitly

on the time t̃i, we may write

〈qj+1(t̃j+1)|qj(t̃j)〉 = 〈qj+1|e−iĤ(t̃j+1−t̃j)/~|qj〉 , (5.1.5)

where Ĥ is the full Hamiltonian. Taylor-expanding the exponent, we obtain

〈qj+1|[1− δt̃
~
Ĥ +O(δt̃)2]|qj〉 , (5.1.6)

which, using the orthonormality of the basis of position eigenstates, becomes

δ(qj+1 − qj)− δt
~
〈qj+1|Ĥ|qj〉+O(δt)2, (5.1.7)

where we subsequently replace the delta function by the Fourier representation

∫ +∞

−∞

dpj
2π~

exp

[

i

~
pj(qj+1 − qj)

]

, (5.1.8)

where pj is the conjugate momenta. In order to proceed further, we recall that the
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Hamiltonian of the quantum harmonic oscillator is

Ĥ =
p̂2

2m
+

1

2
mω2q̂2, (5.1.9)

Inserting a complete set of momentum eigenstates, we may write

〈qj+1|p̂2|qj〉 =
∫ +∞

−∞

dpj
2π~

〈qj+1|p̂2|pj〉 〈pj|qj〉 . (5.1.10)

We then find

〈qj+1|p̂2|q̂j〉 =
∫ +∞

−∞

dpj
2π~

p2j exp

[

i

~
pj(qj+1 − qj)

]

. (5.1.11)

Furthermore, we may write

1

2
mω2 〈qj+1|q̂2|qj〉 =

1

2
mω2q2j 〈qj+1|qj〉 =

1

2
mω2q2j δ(qj+1 − qj). (5.1.12)

Putting everything together and re-exponentiating the Taylor expansion, we obtain

〈qj+1(t̃j+1)|qj(t̃j)〉 =
∫ +∞

−∞

dpj
2π~

exp

[

i

~

(

pj(qj+1 − qj)− δt̃H(pj, qj)
)

]

. (5.1.13)

The integration over pj is ill-defined. However, making the analytic continuation

t̃ = iτ and pj = −ip̄j — the Wick rotation — this integral may be recast in the

Gaussian form

i

2π~

∫ +∞

−∞
dp̄j exp(−ap̄2j + bp̄j + c) =

i

2π~

(

π

a

)1/2

exp

(

b2

4a
+ c

)

, (5.1.14)

where

a =
δτ

2~m
, b =

qj+1 − qj
~

, c =
δτ

2~
mω2q2j . (5.1.15)

Thus, we find

〈qj+1(iτj+1)|qj(iτj)〉 = Nj exp

{

− δτ

~

[

m

2

(

qj+1 − qj
δτ

)2

+
1

2
mω2q2j

]}

, (5.1.16)
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where we have hidden the coefficients in the normalisation Nj. Hence, we may write

〈qf(iτf )|qi(iτi)〉 = N
∫

· · ·
∫ N−1
∏

j=1

dqj exp

{

− δτ

~

[

m

2

(

qj+1 − qj
δτ

)2

+
1

2
mω2q2j

]}

.

(5.1.17)

Taking the continuum limit, N →∞, we recognise that

qj+1 − qj
δτ

= q̇j =
dqj
dτ

. (5.1.18)

The summation in the exponent is the Riemann sum for the integral

S̄(τf , τi) =

∫ τf

τi

dτ
1

2

(

mq̇2 +mω2q2
)

, (5.1.19)

which is the Euclidean or imaginary-time action. We then arrive at the Euclidean

path integral

〈qf(iτf )|qi(iτi)〉 = N
∫

[dq] exp

[

− 1

~
SE(τf , τi)

]

. (5.1.20)

Making the analytic continuation τ = −it̃, we obtain the familiar action and the

Minkowski or real-time path integral

〈qf (t̃f)|qi(t̃i)〉 = N
∫

[dq] exp

[

i

~
S(t̃f , t̃i)

]

. (5.1.21)

This is the path integral representation of the probability amplitude for the prop-

agation of a signal from position qi at a time t̃i to a position qf at time t̃f . The

probability amplitude for the transition between states is obtained by convoluting

with the initial wavefunction ψ(qi, t̃i), cf. (5.1.3).

We have derived this result assuming an explicit, quadratic form for the poten-

tial. However, the same arguments follow for any potential V (q̂) that is a function

only of q̂.
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5.2 The Generating Functional

Suppose now that we want to perturb the oscillator from its ground state, the

vacuum, and watch how it relaxes back to that ground state over some perceivably-

infinite length of time. This corresponds to a driven oscillator, whose evolution is

described by the inhomogeneous differential equation

mq̈(t̃) +mω2q(t̃) = ~j(t̃), (5.2.1)

where ~j(t̃) is some driving force. This equation of motion is equivalent to adding

to the action a term
∫ +∞

−∞
dt̃ ~j(t̃)q(t̃). (5.2.2)

The solution of the inhomogeneous equation (5.2.1) may be written as

q(t̃) = q0(t̃) + ~

∫ +∞

−∞
dt̃′G(t̃− t̃′)j(t̃′), (5.2.3)

where q0(t̃) is the solution of the homogeneous equation

mq̈0(t̃) +mω2q0(t̃) = 0. (5.2.4)

The Green’s function G(t̃− t̃′) must satisfy

m

[

d2

dt̃2
+ ω2

]

G(t̃− t̃′) = δ(t̃− t̃′), (5.2.5)

the solution of which may be found subject to suitably-imposed boundary conditions.

This equation defines an operator

G−1(t̃− t̃′) = m

[

d2

dt̃2
+ ω2

]

. (5.2.6)

In order to generalise this problem to our path-integral description, we define
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the generating functional

Z[j] = 〈0(+∞)|0(−∞)〉j = 〈0(−∞)|T
[

exp

(

i

~

∫ +∞

−∞
dt̃ ~j(t̃)q̂(t̃)

)]

|0(+∞)〉 ,

(5.2.7)

which is the vacuum-to-vacuum transition amplitude in the presence of an external

source j. The explicit time-dependence of the vacuum states is a consequence of

the presence of this external source. For now, we will refrain from commenting on

the behaviour of this source in the infinitely-distant past and future. Decomposing

the vacuum state in the basis of position eigenstates, we may proceed as we did

in the previous section to derive a path-integral representation of this generating

functional. We find

Z[j] = N
∫

[dq] exp

[

i

~

∫ +∞

−∞
dt̃
(

L(q̇, q) + ~j(t̃)q(t̃)
)

]

, (5.2.8)

where L is the Lagrangian

L(q̇, q) =
1

2
mq̇2(t̃)− 1

2
mω2q2(t̃). (5.2.9)

Integrating by parts and assuming that q̇(t̃) vanishes at the boundaries of

integration, we may write the exponent in the form

i

~

∫ +∞

−∞
dt̃

[

− 1

2
q(t̃)

(

m
d2

dt̃2
+mω2

)

q(t̃) + ~j(t̃)q(t̃)

]

. (5.2.10)

Recognising the contents of the parenthesis as the operator defined in (5.2.6), this

exponent may be rewritten as

i

~

∫ +∞

−∞
dt̃

[

− 1

2
q(t̃)G−1(t̃− t̃′)q(t̃) + ~j(t̃)q(t̃)

]

. (5.2.11)

Using the general form of the solution of the inhomogeneous equation in (5.2.3), we

may complete the square in this exponent and write the generating functional in the





5.2. The Generating Functional

Re t

Im t

Figure 5.1: A sketch of the complex-time plane t = t̃ − iτ ∈ C, showing the closed

contour used to perform the Wick rotation between Euclidean and Minkowski space-

time path integrals.

form

Z[j] = Z[0] exp
[

i~

2

∫∫ +∞

−∞
dt̃ dt̃′ j(t̃)G(t̃− t̃′)j(t̃′)

]

, (5.2.12)

where Z[0] is the generating functional in the absence of external sources.

At this point, we recall that the path integral was defined subject to our ability

to perform the Wick rotation between real and imaginary times. This analytic

continuation relies on our ability to close an integration contour in the complex-

time plane that contains sections which run parallel and coincident with the real

axis and anti-parallel and coincident with the imaginary axis. This contour is shown

in Figure 5.1. We denote the complex time by the Gothic character t = t̃− iτ ∈ C.

The contribution from the curved sections that arc over the upper-right and the

lower-left quadrants must therefore vanish in order for this analytic continuation

to hold. This yields the following constraints on the analytic continuation of the
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Green’s function to complex times:

lim
τ→+∞

G(t̃− iτ) = 0, t̃ < 0, (5.2.13a)

lim
τ→−∞

G(t̃− iτ) = 0, t̃ > 0. (5.2.13b)

where we have taken t
′ = 0 for convenience.

5.3 The Propagator

In this section, we will proceed to solve the Cauchy problem in 5.2.5 explicitly and

derive the form of the Green’s function G(t̃ − t̃′). We first introduce the functions

G≷(t̃− t̃′), writing

G(t̃− t̃′) = θ(t̃− t̃′)G>(t̃− t̃′) + θ(t̃′ − t̃)G<(t̃− t̃′). (5.3.1)

The unit step function θ(t̃− t̃′) may be written in the contour-integral representation

θ(t̃) = i

∫ +∞

−∞

dω′

2π~

e−iω′ t̃

ω′ + iǫ
=



























1, t̃ > 0,

1
2
, t̃ = 0,

0, t̃ < 0,

(5.3.2)

where ǫ = 0+. Given that G≷ are the solutions of a second-order, linear differential

equation , we make the Ansätze

G≷(t̃− t̃′) = A≷e−iω(t̃−t̃′) +B≷eiω(t̃−t̃′), (5.3.3)

subject to the following boundary conditions: the Dirichlet continuity condition

G>(0) = G<(0); (5.3.4)


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and the Neumann discontinuity condition

lim
ǫ→0+

[

m
d

dt̃
G>(t̃− t̃′)

∣

∣

∣

t̃=t̃′+ǫ
−m d

dt̃
G<(t̃− t̃′)

∣

∣

∣

t̃=t̃′−ǫ

]

= 1. (5.3.5)

The validity of the Wick rotation led to the constraints in (5.2.13), which immedi-

ately restricts B> = A< = 0. Subsequently, (5.3.4) and (5.3.5) yield the system

A>e−iωt̃′ − B<eiωt̃
′

= 0, (5.3.6a)

A>e−iωt̃′ +B<eiωt̃
′

=
i

mω
, (5.3.6b)

from which we obtain the results

G>(t̃− t̃′) = i

2mω
e−iω(t̃−t̃′); (5.3.7a)

G<(t̃− t̃′) = i

2mω
eiω(t̃−t̃′). (5.3.7b)

Using the Fourier representation of the unit step function, we find the contour-

integral representation of the Green’s function

G(t̃− t̃) = − 1

m

∫ +∞

−∞

dω′

2π~

e−iω′(t̃−t̃′)

ω′2 − ω2 + iǫ
. (5.3.8)

It follows that the validity of the Wick rotation, and the convergence of the path

integral, requires us to subtract from ω2 a small imaginary part, i.e., ω2 → ω2 − iǫ,
ǫ → 0+. This is the so-called Feynman prescription, which allows us to avoid the

poles in the Fourier transform of the Green’s function. This is however, not the

only possible prescription: one may make the analytic continuations ω2 → ω2 + iǫ,

the so-called Dyson prescription; or the sign-dependent prescriptions ω2 → ω2+ iωǫ

and ω2 → ω2− iωǫ. Each leads to a Green’s function with slightly different analytic

structure. The Dyson prescription leads to the interchange of G> and G<, whereas

the sign-dependent prescriptions yield Green’s functions that vanish for t̃ > t̃′ and

t̃ < t̃′, respectively. These prescriptions lead then to retarded and advanced Green’s

functions. For a more comprehensive discussion, the reader is directed to the texts
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by S. Pokorski [71] and W. Greiner & J. Reinhardt [73]. However, we make note of

this issue in preparation for our treatment of the corresponding Green’s functions

of out-of-equilibrium systems.

We consider now the vacuum expectation value (vev) of the time-ordered prod-

uct of position operators — the time-ordered two-point correlation function —

i∆F(t̃− t̃′) = 〈0|T
[

q̂(t̃)q̂(t̃′)
]

|0〉 . (5.3.9)

This object is the Feynman propagator . For t̃ > t̃′, we may insert complete sets of

position eigenstates as before to derive the path-integral representation

〈0|q̂(t)q̂(t′)|0〉 = N
∫

[dq] q(t̃)q(t̃′)e
i
~
S. (5.3.10)

For t̃ < t̃′, we would obtain

〈0|q̂(t̃′)q̂(t̃)|0〉 = N
∫

[dq] q(t̃′)q(t̃)e
i
~
S. (5.3.11)

Comparing with the definition of the generating functional, it follows that

i∆F(t̃− t̃′) = 〈0|T[q(t̃)q(t̃′)]|0〉 =
(1

i

)2 1

Z[0]

δ2Z[j]
δj(t̃)δj(t̃′)

∣

∣

∣

j=0
, (5.3.12)

in which case

i∆F(t̃− t̃′) = −i~G(t̃− t̃′) =
i

m

∫ +∞

−∞

dω′

2π

e−iω′(t̃−t̃′)

ω′2 − ω2 + iǫ
. (5.3.13)

We may then write the generating functional in the form

Z[j] = Z[0] exp
[

− 1

2

∫∫ +∞

−∞
dt̃ dt̃′ j(t̃)i∆F(t̃− t̃′)j(t̃′)

]

. (5.3.14)

The Feynman propagator can be decomposed in the form

i∆F(t̃− t̃′) = θ(t̃− t̃′)i∆>(t̃− t̃′) + θ(t̃′ − t̃)i∆<(t̃− t̃′), (5.3.15)
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where we have introduced the Wightman propagators

i∆>(t̃− t̃′) = 〈0|q̂(t̃)q̂(t̃′)|0〉 , (5.3.16a)

i∆<(t̃′ − t̃) = 〈0|q̂(t̃)q̂(t̃′)|0〉 . (5.3.16b)

Using the time-dependent position operator in (4.5.33b) and the algebra of the

creation and annihilation operators explicitly, we can verify that

i∆>(t̃− t̃′) = ~

2mω
e−iω(t̃−t̃′), (5.3.17a)

i∆<(t̃− t̃′) = ~

2mω
eiω(t̃−t̃′) (5.3.17b)

consistent with (5.3.7).

Later, we will introduce a plethora of propagators, which will include those

corresponding to the Dyson, retarded and advanced prescriptions highlighted above.

However, these introductions are deliberately delayed until those propagators are of

specific use.
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6 Imaginary Time Formalism

The aim of this next chapter is to apply the path-integral, Green’s function approach

to the quantum harmonic oscillator in the context of quantum statistical mechanics.

This will lead us to the imaginary-time formalism due to Matsubara [22]. Combined

with the second quantisation of the chapter that then follows, we will have succeeded

in introducing all the prerequisites necessary to the formulation of our approach to

non-equilibrium quantum dynamics.

A full and exhaustive introduction to the imaginary-time and real-time for-

malisms of thermal field theory is beyond the scope of thesis. However, comprehen-

sive introductions are provided in [74–82].

6.1 The Bloch Equation

In the previous chapter, we obtained the canonical density operator of a quantum

mechanical subsystem in thermodynamic equilibrium at a temperature T :

ρ̂ = e−βĤ , (6.1.1)

where we emphasise that we have separated the density operator from its normali-

sation, for reasons that will now become apparent.

It is clear that this density operator satisfies the following first-order differential
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6. Imaginary Time Formalism

equation:
dρ̂

dβ
= −Ĥρ̂. (6.1.2)

— the Bloch equation. Writing the density operator in the form

ρ̂(β) = e−Ĥ(β−0) (6.1.3)

and comparing with (4.1.20), this looks very much like the Schrödinger-picture evo-

lution operator in imaginary time, subject to the boundary condition

ρ̂(0) = I. (6.1.4)

This suggests that we may introduce the evolution operator of a modified interaction

picture

Û(β) = eβĤ
0

e−βĤ , (6.1.5)

which satisfies
dÛ(β)

dβ
= −Ĥ int

I′ (β)Û(β), (6.1.6)

where the interaction of the Hamiltonian has become temperature-dependent. This

picture is modified in the sense that it is the distribution of temperature dependence

amongst operators and states that is of interest, not the distribution of real-time

dependence. Thus, we have denoted this modified interaction picture by a subscript

I ′ to differentiate it from that introduced previously. With respect to the real-time

dependence, this result could be in any picture. The solution to this equation may be

obtained in analogy to the real-time interaction-picture evolution operator, except

that we must introduce a time-ordering in an imaginary-time variable τ , which we

denote by the operator Tτ :

Tτ

[

Ô(τ1)Ô(τ2) · · · Ô(τn)
]

= Ô(τ1)Ô(τ2) · · · Ô(τn), τ1 > τ2 > · · · > τn. (6.1.7)

Hence, we find

Û(β) = Tτ

[

exp

(

−
∫ β

0

dτ Ĥ int
I′ (τ)

)]

. (6.1.8)
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This is just the Wick rotation t̃ = iτ to imaginary time of the real-time evolution

operator with the restriction of the range of integration to be over the interval [0, β].

Returning to the full canonical density operator, it follows that an operator

Ô(t̃i) evolves in this imaginary-time direction subject to

Ô(t̃i + iβ) = ρ̂(β)Ô(t̃i)ρ̂
−1(β), (6.1.9)

where we emphasise that this is true for all pictures with respect to the real time.

This interpretation of the canonical density operator as an evolution operator in

imaginary time is the basis of an approach to quantum statistical mechanics due

to Matsubara, known unimaginatively as the imaginary-time formalism. The intro-

duction of the key concepts of this approach to equilibrium statistical mechanics is

the subject of this chapter.

6.2 The KMS Relation

Having interpreted the canonical density operator as an evolution operator in imag-

inary time, we now consider the eev of the time-ordered product of interaction-

picture operators

〈T
[

ÔI(t̃)ÔI(t̃
′)
]

〉
β
=

1

Z
tr ρ̂I(β)T

[

ÔI(t̃)ÔI(t̃
′)
]

. (6.2.1)

We note that it has been necessary to specify a picture explicitly, since, for times

t̃ 6= t̃′, this object is picture-dependent. We may freely move the density operator

inside the time-ordering and we insert between the operators the product

ρ̂−1(β) ˆρ(β) = ˆρ(β)ρ̂(−β) = I. (6.2.2)

From (6.1.9), it follows that

tr ρ̂I(β)T
[

ÔI(t)ÔI(t
′)
]

= trT
[

ÔI(t+ iβ)ρ̂I(β)ÔI(t
′)
]

. (6.2.3)
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Using the cyclicity of the trace and the fact that we are free to reorder the operators

inside the time-ordering, we obtain the Kubo-Martin-Schwinger (kms) relation

〈T
[

ÔI(t̃)ÔI(t̃
′)
]

〉
β
= 〈T

[

ÔI(t̃+ iβ)ÔI(t̃
′)
]

〉
β
= 〈T

[

ÔI(t̃)ÔI(t̃
′ − iβ)

]

〉
β
. (6.2.4)

6.3 Thermal Propagators

In this final section, we generalise the vacuum expectation values of products of

operators to quantum statistical mechanics, introducing the thermal propagator, the

ensemble expectation value of products of operators. Hereafter, these thermal prop-

agators will be referred to simply as the propagators. Indeed, this seems reasonable

since we anticipate that in the zero-temperature limit, we should obtain the vacuum

expectation values with which we started.

The thermal Wightman propagators are defined via

i∆>(t̃− t̃′) = 1

Z
tr ρ̂(β)q̂(t̃)q̂(t̃′), (6.3.1a)

i∆<(t̃− t̃′) = 1

Z
tr ρ̂(β)q̂(t̃′)q̂(t̃). (6.3.1b)

Evaluating the trace of the former in the basis of energy eigenstates, we obtain

i∆>(t̃− t̃′) = Z−1
∞
∑

n,m=0

e−βEnei(En−Em)(t̃−t̃′)|〈n|q̂|m〉|2. (6.3.2)

In the limit that T → 0 (β →∞), we see that only the lowest energy state survives

due to the Boltzmann suppression. This lowest energy state is precisely the vacuum

and we see that we recover the familiar zero-temperature propagator. Analytically

continuing t̃ → t = t̃ − iτ ∈ C and t̃′ → t
′ = t̃′ − iτ ∈ C, we see also that the

propagator is convergent only for −β ≤ Im(t− t
′) ≤ 0. As a result, we interpret the

kms relation (6.2.4) as the requirement that the imaginary time τ must be periodic

on (0, β]. We note that this periodicity requirement supersedes the constraints in

(5.2.13), ensurinng the validity of the Wick rotation. In fact, this requirement is
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entirely equivalent to those constraints since in the zero-temperature limit β →∞.

Using the algebra of the creation and annihilation operators and performing

the summations we obtain

i∆>(t̃− t̃′) = 1

2mω
{[1 + fB(ω)]e

−iω(t̃−t̃′) + fB(ω)e
iω(t̃−t̃′)}, (6.3.3a)

i∆<(t̃− t̃′) = 1

2mω
{fB(ω)e−iω(t̃−t̃′) + [1 + fB(ω)]e

iω(t̃−t̃′)}. (6.3.3b)

It follows then that the Feynman propagator takes the form

i∆F(t̃− t̃′) =
1

m

∫

dω′

2π
e−iω′(t̃−t̃)

[

i

ω′2 − ω2 + iǫ
+ 2πfB(|ω′|)δ(ω′2 − ω2)

]

. (6.3.4)

The thermal Wightman propagators satisfy the kms relation

i∆>(t̃− t̃′) = i∆<(t̃− t̃′ − iβ), (6.3.5)

and equivalently in frequency space

i∆>(ω′) = eβω
′

i∆<(ω′), (6.3.6)

where

i∆>(ω′) = 2πε(ω′)[1 + fB(ω
′)]δ(ω′2 − ω2), (6.3.7a)

i∆<(ω′) = 2πε(ω′)fB(ω
′)δ(ω′2 − ω2), (6.3.7b)

and ε is the signum function, which may be written in terms of the unit step function

as

ε(ω′) = θ(ω′)− θ(−ω′). (6.3.8)

We can quickly convince ourselves of the consistency of these results with the relation

eβω
′

fB(βω
′) = 1 + fB(ω

′). (6.3.9)
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6.4 The Matsubara Propagator

If our interest is in the ensemble expectation value of thermodynamic observables,

the real-time dependence of the thermal propagators is seemingly redundant. In

which case, we may work entirely in terms of the imaginary-time dependence.

Hence, we wish to calculate Green’s functions in imaginary-time. Wick-rotating

the generating functional in (5.2.8) to negative imaginary-time t̃ = −iτ and com-

pactifying the imaginary-time direction on (0, β], we obtain the generating functional

of the imaginary-time formalism of the quantum harmonic oscillator

Z[j] = N
∫

[

dq
]

exp

[

−
∫ β

0

dτ
(

L̄(q̇, q)− j(τ)q(τ)
)

]

, (6.4.1)

where L̄ is the Euclidean or imaginary-time Lagrangian

L̄(q̇, q) =
1

2

[

mq̇2 +mω2q2
]

. (6.4.2)

The derivative

q̇ =
dq

dτ
(6.4.3)

is taken with respect to the imaginary time τ . We may then introduce the imaginary-

time propagator

∆̄(τ − τ ′) = 〈Tτ

[

q̂(τ)q̂(τ ′)
]

〉
β
=

1

Z[0]
δ2Z[j]

δj(τ)δj(τ ′)

∣

∣

∣

∣

∣

j=0

. (6.4.4)

Completing the square in the exponent as before, we may write the imaginary-time

generating functional in the form,

Z[j] = Z[0]
∫

[

dq
]

exp

[

1

2

∫∫ β

0

dτ dτ ′ j(τ)∆̄(τ − τ ′)j(τ ′)
]

, (6.4.5)
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where we have written

q(τ) = q0(τ) +

∫ β

0

dτ ∆̄(τ − τ ′)j(τ ′). (6.4.6)

The imaginary-time propagator must satisfy

m
[

− d2

dτ 2
+ ω2

]

∆̄(τ − τ ′) = δ(τ − τ ′). (6.4.7)

In the limit j = 0, the imaginary-time generating functional is precisely the partition

function.

The imaginary-time propagator, as argued above in the derivation of the kms

relation, must be periodic on (0, β], in which case,

∆̄(τ) = ∆̄(τ + β). (6.4.8)

Fourier transforming, it follows that

∫

dτ eiω
′τ∆̄(τ) =

∫

dτ eiω
′τ∆̄(τ + β). (6.4.9)

Making the change of variables τ ′ = τ + β on the right-hand side, this equality

requires that the frequencies ω′ are discrete:

ω′ → ωn =
2πn

β
. (6.4.10)

These are the so-called Matsubara frequencies. The inverse Fourier transform is then

replaced by the discrete form

∆̄(τ) =
1

β

+∞
∑

n=−∞
e−iωnτ∆̄(iωn), (6.4.11)

where ∆̄(iωn) is the Matsubara propagator. Substituting this result into (6.4.7), we

find

∆̄(iωn) =
1

ω2
n + ω2

. (6.4.12)
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We have suggested that, when working with equilibrium systems, the real-time

dependence is not of interest. This is of course not entirely true. For instance, we

might wish to calculate the decay rate of a particle in a heat bath. Here, it is clear

that we want to work in real time, in which case we want to continue results back

to real time. However, this analytic continuation is a subtle issue and for the sake

of clarity, we will postpone its discussion for now. Suffice to say, it is not merely a

question of performing the inverse Wick rotation −iτ = t̃ and replacing the discrete

Matsubara frequencies by their continuous counterparts.

The itf, for which there is a wealth of literature, will not be discussed in a

great deal more detail in this thesis, except to establish the correspondence with

the forthcoming approach in the thermodynamic equilibrium limit. This is for the

reason that the itf is, in essence, a mathematical convenience — albeit a useful one

— for calculations in thermodynamic equilibrium, in which the density operator is

of the canonical form. It is therefore inapplicable to the non-equilibrium systems in

which we are interested.
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In our discussions of the quantum harmonic oscillator, all modes had the same

frequency ω. The natural generalisation then is to sum over contributions from

oscillators of all possible frequencies. We move then to quantum field theory, in

which the position operator q̂(t̃) is superseded by some field operator φ̂(t̃,x), which

is a function of both space and time and acts to create and destroy the quanta of

energy that we interpret as particles.

In this chapter, we review the quantisation of a massive, scalar quantum field

theory. This toy theory will be our playground for the development of an approach

to the non-equilibrium dynamics of these fields.

7.1 Canonical Quantisation

In this section, we introduce the scalar field theory with which we will develop the

discussions of Part II. We consider a self-interacting theory with mass M , described

by the bare, interaction-picture Lagrangian density

L(x) = 1
2
∂µΦ(x)∂

µΦ(x)− 1
2
M2Φ2(x)− 1

3!
gΦ3(x)− 1

4!
λΦ4(x), (7.1.1)

where g and λ are dimensionful and dimensionless couplings respectively. The

shorthand x ≡ xµ = (x0,x) denotes the four-dimensional space-time arguments

of field operators. The Minkowski space-time metric is taken to have the signature

(+,−,−,−). For a more detailed introduction to the scalar field with reference to
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7. The Scalar Field

Lorentz-invariance and representations of the Poincaré, see for instance [83].

It will prove constructive to set out again from the Schrödinger picture intro-

duced in Chapter 4, in which we recall that state vectors are time-dependent and

basis vectors and operators are, in the absence of external sources, time-independent.

The time-independent Schrödinger-picture field operator, denoted by a subscript S,

may be written in the familiar, plane-wave decomposition

ΦS(x; t̃i) =

∫

dΠp

[

aS(p; t̃i)e
ip·x + a†S(p; t̃i)e

−ip·x
]

, (7.1.2)

where we have introduced the short-hand

∫

dΠp ≡
∫

d3p
(

2π
)3

1

2E(p)
=

∫

d4p

(2π)4
2πθ(p0)δ(p

2 −M2) (7.1.3)

for the Lorentz-invariant phase-space (lips). E(p) =
√

p2 +M2 is the energy of

the single-particle mode with three-momentum p and θ is the unit step function,

defined in (5.3.2).

As this point, we emphasise that we have defined the interaction-, Heisenberg-

and Schrödinger-pictures to be coincident at the finite, microscopic boundary time

t̃i, such that

ΦS(x; t̃i) = ΦI(t̃i,x) = ΦH(t̃i,x), (7.1.4)

where implicit dependence upon the boundary time t̃i is marked by separation from

explicit arguments by a semi-colon.

The time-independent, Schrödinger-picture operators a†S(p; t̃i) and aS(p; t̃i) are

the well-known creation and annihilation operators, superseding those introduced

in Chapter 4 for the quantum harmonic oscillator, which act on the stationary

vacuum |0〉, respectively creating and destroying time-independent, single-particle
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momentum eigenstates, according to

a†S(p; t̃i)|0〉 = |p; t̃i〉, (7.1.5a)

aS(p; t̃i)|p′; t̃i〉 = (2π)32E(p)δ(3)(p− p′)|0〉, (7.1.5b)

aS(p; t̃i)|0〉 = 0. (7.1.5c)

The momentum eigenstates |p; t̃i〉 respect the orthonormality condition

〈p′; t̃i|p; t̃i〉 = (2π)32E(p)δ(3)(p− p′). (7.1.6)

In analogy to the discussion in Section 4.2, we define the time-dependent,

interaction-picture field operator via

ΦI(x) = eiH
0
S
(x0−t̃i)ΦS(x; t̃i)e

−iH0
S
(x0−t̃i), (7.1.7)

where H0
S is the free-part of the Hamiltonian in the Schrödinger picture. Using the

commutators

[

H0
S, aS(p; t̃i)

]

= −E(p)aS(p; t̃i), (7.1.8a)
[

H0
S, a

†
S(p; t̃i)

]

= +E(p)a†S(p; t̃i), (7.1.8b)

the interaction-picture field operator may be written

ΦI(x) =

∫

dΠp

[

aS(p; t̃i)e
−iE(p)(x0−t̃i)eip·x + a†S(p; t̃i)e

iE(p)(x0−t̃i)e−ip·x
]

, (7.1.9)

or, equivalently, in terms of interaction-picture operators only,

ΦI(x) =

∫

dΠp

[

aI(p, 0)e
−iE(p)x0eip·x + a†I(p, 0)e

iE(p)x0e−ip·x
]

, (7.1.10)

where it should be stressed that the time-dependent, interaction-picture creation and

annihilation operators are evaluated at the microscopic time 0. Hereafter, we will

omit the subscript I on interaction-picture operators for convenience. We may write





7. The Scalar Field

the four-dimensional Fourier transform of the interaction-picture field operator as

Φ(p) =

∫

d4x eip.xΦ(x) = 2πδ(p2 −M2)
[

θ(p0)a(p, 0) + θ(−p0)a†(−p, 0)
]

. (7.1.11)

In the case that the interactions are switched off adiabatically at time t̃i, we

may define the asymptotic in creation and annihilation operators via

a
(†)
in (p) ≡ Z−1/2 lim

t̃i→−∞
a
(†)
S (p; t̃i)e

+(−)iE(p)t̃i , (7.1.12)

where Z = 1+O(~) is the wavefunction renormalisation. We then recover the more

familiar form of the interaction-picture scalar field operator. Herein, we see the

importance of keeping track of the finite boundary time t̃i: it is necessary to ensure

that our forthcoming generalisations are consistent with asymptotic field theory [84]

in the limit t̃i → −∞.

We choose to begin our quantisation by defining the commutator of interaction-

picture fields
[

Φ(x),Φ(y)
]

= i∆0(x, y;M2), (7.1.13)

where i∆0(x, y;M2) is the tree-level or free Pauli-Jordan propagator. Herein, we

denote free propagators by a superscript 0. The condition of micro-causality requires

that the interaction-picture fields commute for space-like separations (x − y)2 < 0.

This restricts i∆0(x, y;M2) to be invariant under spatial translations, having the

Poincaré-invariant form

i∆0(x, y;M2) =

∫

dΠp

[

e−iE(p)(x0−y0)eip·(x−y) −
(

x←→ y
)

]

. (7.1.14)

This is simply the difference of two counter-propagating packets of plane waves, as we

should expect. It is the Poincaré-invariant form of (7.1.14) that we wish to maintain

once thermal background effects are included. Pre-empting the forthcoming analysis,
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we introduce the double Fourier transform

i∆0(p, p′;M2) =

∫∫

d4x d4y eip·xe−ip′·y i∆0(x, y;M2) (7.1.15a)

= 2πε(p0)δ(p
2 −M2)(2π)4δ(4)(p− p′), (7.1.15b)

where ε is the signum function in (6.3.8). Note that we have defined the Fourier

transforms such that four-momentum p flows away from the point x and four-

momentum p′ flows towards the point y.

From (7.1.13) and (7.1.14), we may derive the familiar equal-time commutation

relations

i∆0(x, y)
∣

∣

x0=y0=t̃
=
[

Φ(t̃,x),Φ(t̃,y)
]

= 0, (7.1.16a)

∂x0
i∆0(x, y)

∣

∣

x0=y0=t̃
=
[

π(t̃,x),Φ(t̃,y)
]

= −iδ(3)(x− y), (7.1.16b)

∂x0
∂y0i∆

0(x, y)
∣

∣

x0=y0=t̃
=
[

π(t̃,x), π(t̃,y)
]

= 0, (7.1.16c)

where π(x) = ∂x0
Φ(x) is the conjugate momentum operator, cf. (4.1.7). In order

to satisfy the constraints of (7.1.13), the creation and annihilation operators must

respect the commutation relation

[

a(p, t̃ ), a†(p′, t̃ )
]

=
(

2π
)3
2E(p)δ(3)(p− p′), (7.1.17)

with all other commutators vanishing.

The vacuum expectation of the commutator of Heisenberg-picture field oper-

ators may be expressed as a superposition of interaction-picture field commutators

by means of the Källén-Lehmann spectral representation [85, 86]:

〈0|
[

ΦH(x),ΦH(y)
]

|0〉 = i∆(x, y) =

∫ ∞

0

ds σ(s)i∆0(x, y; s), (7.1.18)

where i∆0(x, y; s) is the free Pauli-Jordan propagator in (7.1.14) with M2 replaced

by s and i∆(x, y) is the dressed or resummed propagator. The positive spectral den-

sity σ(s) contains all information about the spectrum of single- and multi-particle
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states produced by the Heisenberg-picture field operators. Note that for the homo-

geneous, stationary vacuum |0〉, σ(s) is independent of the space-time coordinates

and the resummed Pauli-Jordan propagator maintains its translational invariance.

If σ(s) is normalised such that

∫ ∞

0

ds σ(s) = 1, (7.1.19)

the equal-time commutation relations of Heisenberg-picture operators maintain ex-

actly the form in (7.1.16). In this case, the spectral function cannot depend upon

any fluctuations in the background. It is clear then that for non-trivial ‘vacua’,

i.e., thermal backgrounds, the spectral density becomes a function also of the co-

ordinates. The spectral structure of the resummed propagators will then obtain

non-trivial space-time dependence. In this case, the convenient factorisation of the

Källén-Lehmann representation breaks down and the equal-time commutation rela-

tions of Heisenberg-picture field operators do not maintain their canonical form.

We define the retarded and advanced, causal propagators

i∆R(x, y) ≡ θ(x0 − y0)i∆(x, y), (7.1.20a)

i∆A(x, y) ≡ −θ(y0 − x0)i∆(x, y). (7.1.20b)

Using the Fourier representation of the unit step function in (5.3.2), we introduce a

convenient representation of these causal propagators in terms of the convolution

i∆R(A)(p, p
′) = i

∫

dk0
2π

i∆(p0 − k0, p′0 − k0;p,p′)

k0 + (−)iǫ . (7.1.21)

After substituting for the free Pauli-Jordan propagator in (7.1.15a), we find the

Fourier transform of the free causal propagators

i∆0
R(A)(p, p

′) =
i

(

p0 +(−)iǫ
)2 − p2 −M2

(2π)4δ(4)(p− p′), (7.1.22)

where we draw attention to the sign-dependent pole prescription discussed in Chap-
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ter 5.

The absolutely-ordered, Wightman propagators are defined as

i∆>(x, y) ≡ 〈Φ(x)Φ(y)〉, (7.1.23a)

i∆<(x, y) ≡ 〈Φ(y)Φ(x)〉. (7.1.23b)

We may then write the causality relation

∆(x, y) = ∆>(x, y)−∆<(x, y) = ∆R(x, y)−∆A(x, y). (7.1.24)

We also define the non-causal Hadamard propagator, which is the expectation

of the field anti-commutator

i∆1(x, y) ≡ 〈
{

Φ(x),Φ(y)
}

〉. (7.1.25)

The time-ordered, Feynman and anti-time-ordered, Dyson propagators are respec-

tively

i∆F(x, y) ≡ 〈T[Φ(x)Φ(y)]〉, (7.1.26a)

i∆D(x, y) ≡ 〈T̄[Φ(x)Φ(y)]〉, (7.1.26b)

where T and T̄ are the time- and anti-time-ordering operators. Explicitly,

∆F(x, y) = θ(x0 − y0)∆>(x, y) + θ(y0 − x0)∆<(x, y), (7.1.27a)

∆D(x, y) = θ(x0 − y0)∆<(x, y) + θ(y0 − x0)∆>(x, y). (7.1.27b)

We may then write the unitarity relation

∆1(x, y) = ∆F(x, y) + ∆D(x, y) = ∆>(x, y) + ∆<(x, y) = 2iIm∆F(x, y). (7.1.28)
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Finally, we define the principal-part propagator

∆P(x, y) =
1

2

[

∆R(x, y) + ∆A(x, y)
]

= Re∆F(x, y), (7.1.29)

where we are reminded that, in general,

Re
(

Im
)

F (x, y) 6=
∫∫

d4p

(2π)4
d4p′

(2π)4
e−ip·xeip

′·y Re
(

Im
)

F (p, p′), (7.1.30)

except when F (p, p′) = F (−p,−p′).

The definitions and the relations discussed above are valid for both free and

resummed propagators. In Appendix A, we list the properties of these propagators

in both coordinate and momentum representations as well as a number of useful

identities, which we will refer to throughout the forthcoming discussions. These

considerations and the analysis of the following sections are generalised to the com-

plex scalar field in Chapter 13. A comprehensive introduction to these propagators

and their contour-integral representations is provided in [73].
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8 Introduction to Part II

The aim of Part I was to cover those topics prerequisite to our development of a

quantum field-theoretic description of non-equilibrium statistical mechanics. In Part

II, we embark upon the formulation of this description.

We begin in Chapter 9 by introducing the Schwinger-Keldysh ctp formalism,

a means for calculating equal-time expectation values of products of field operators.

Proceeding then to generalise the eevs introduced previously to arbitrary density

operators, we derive in Chapter 10 the most general form of the various propagators

defined in 7 in the presence of non-homogeneous backgrounds. By means of the cjt

effective action, we derive a perturbation theory based upon these non-homogeneous

propagators. In Chapter 11, we show that the results from these chapters are entirely

consistent with established approaches in the thermodynamic equilibrium. With ref-

erence to these equilibrium results, we argue in Chapter 12 that the perturbation

series derived in Chapter 10 is free of the pinching singularities thought to spoil per-

turbative approaches to non-equilibrium thermal field theory. In Chapter 13 and in

preparation for the toy model discussed in Chapter 17, we outline the generalisation

of these ideas, including those from equilibrium thermal field theory, to the complex

scalar field. In Chapter 14, we introduce an unambiguous definition of the number

density of particles based upon the conserved Noether charge. This then permits

the derivation of perturbative time-evolution equations as outlined in Chapter 15

and in which we establish the consistency of this approach with those of the Boltz-

mann equation and gradient-expanded Kadanoff-Baym equations in the classical (or

at least, semi-classical) limit. Chapter 16 provides a detailed technical discussion
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of the calculation of loop integrals built out of our non-homogeneous propagators.

This is performed in a manner as close as is feasible to the more familiar results

from zero-temperature quantum field theory.

Finally, in Chapter 17, we apply the formalism to the thermalisation of a simple

toy model, comprising a massive real scalar field and a less massive complex scalar

field. Within this chapter, we derive the time-dependent width of the massive scalar

and show that it exhibits oscillations with time-dependent frequencies. These non-

Markovian oscillations are interpreted as a signal of memory effects. We show that,

as result of the microscopic violation of energy conservation due to systematic in-

clusion of finite-time effects, the particle width obtains contributions from processes

that would normally be kinematically forbidden. These evanescent contributions are

shown to be significant to the early-time evolution of these non-equilibrium systems.

For more general introductions to existing approaches to non-equilibrium ther-

mal field theory, see [87–89]
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It will prove illustrative to discuss the formalisms that we will subsequently apply

to theories with non-trivial vacua firstly in the context of the zero-temperature

quantum field theory with which we are well acquainted. In the following section, we

will motivate and outline the use of the so-called in-in or closed-time path (ctp)9.1

formalism due to Schwinger and Keldysh [23, 24]. Subsequently, we will justify the

introduction of a 2×2 matrix propagator, restricting the form of its elements subject

to the familiar constraints of causality and unitarity, outlined above in (7.1.24) and

(7.1.28).

In the calculation of scattering-matrix elements, we are concerned with the

transition amplitude between in and out asymptotic states, single-particle states

defined respectively in the infinitely-distant past and future. On the other hand,

in quantum statistical mechanics, we are interested in the calculation of eevs of

operators at defined times. In order to calculate such objects in a field-theoretic

framework, we require an approach that allows us to determine the transition am-

plitude between states of the same time. This approach is the Schwinger-Keldysh

ctp formalism.

Let us consider for illustration the following observable in the Schrödinger

picture:
∫

[dΦ] S〈Φ(z), t̃f |ΦS(x; t̃i)ΦS(y; t̃i)|Φ(z), t̃f〉S, (9.0.1)

where |Φ(z), t̃f〉S is a time-dependent eigenstate of the time-independent, Schrödinger-

picture field operator ΦS(x; t̃i) with eigenvalue Φ(z). [dΦ] represents the functional
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integral over field configurations Φ(z) and we recall that implicit dependence upon

the boundary time t̃i is marked by a semi-colon.

As an aside, we see that there are seven explicit degrees of freedom: the mi-

croscopic time t̃f and the two spatial coordinates x and y; and one implicit degree

of freedom, the boundary time t̃i. Pre-empting the forthcoming discussions, we

note that this is the number of degrees of freedom required to construct meaningful

statistical observables that depend simultaneously on macroscopic space-time coor-

dinates and three-momenta, without violating Heisenberg’s uncertainty principle.

These degrees of freedom will turn out to be the macroscopic, central space-time

coordinate (t = t̃f − t̃i, X = (x + y)/2) and the three-momentum p, conjugate to

the relative coordinate R = x− y.

In the interaction picture, the same observable is

∫

[dΦ] I〈Φ(z), t̃f |ΦI(t̃f ,x)ΦI(t̃f ,y)|Φ(z), t̃f〉I; (9.0.2)

and in the Heisenberg picture,

∫

[dΦ] H〈Φ(z); t̃i|ΦH(t̃f ,x)ΦH(t̃f ,y)|Φ(z); t̃i〉H. (9.0.3)

We see then that in the interaction and Heisenberg pictures, the physical observables

must be constructed from time-dependent vectors and operators that are evaluated

at equal times. Any observable built out of time-dependent vectors and operators

that are evaluated at different times would be picture dependent and therefore un-

physical.

9.1 The CTP Contour

In order to generate equal-time observables of the form in (9.0.3), we first introduce

the in vacuum state |0in; t̃i〉, which is at time t̃i a time-independent eigenstate of the

Heisenberg field operator ΦH(x) with zero eigenvalue (see [34,35]). We then require
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b

b

b

Re t

Im t

z(0) = t̃i

z(1/2) = t̃f − iǫ/2z(1) = t̃i − iǫ

C+

C−

Figure 9.1: The closed-time path, C = C+ ∪ C−, running first along C+ from t̃i to

t̃f − iǫ/2, before returning along C− from t̃f − iǫ/2 to t̃i − iǫ.

a means of driving the amplitude 〈0in, t̃i|0in, t̃i〉 by the appropriate introduction of

external sources.

We proceed as follows: we imagine evolving our in state at time t̃i forwards in

time under the influence of a source J+(x) to some out state at time t̃f in the future,

which will be an incoherent sum over all possible future states. We then evolve this

superposition of states backwards again under the influence of a second source J−(x),

returning to the same initial time t̃i and the original in state. The sources J±(x)

are assumed to vanish adiabatically at the bounds of the interval [t̃i, t̃f ]. We may

interpret the path of this evolution as defining a closed contour C = C+ ∪ C− in

the complex-time plane (t-plane, t ∈ C), which is the union of two anti-parallel

branches: C+, running from t̃i to t̃f − iǫ/2; and C−, running from t̃f − iǫ/2 back to

t̃i−iǫ, which we shall refer to respectively as the positive, time-ordered and negative,

anti-time-ordered branches (see Figure 9.1). The small imaginary part ǫ = 0+ has

been added to allow us to distinguish the two, essentially coincident, branches. We

parametrise the distance along the contour, starting from t̃i, by the real variable

u ∈ [0, 1], which increases monotonically along C. We may then define the contour

by a path z̃(u) = t̃(u)− iτ̃(u) ∈ t, where t̃(0) = t̃(1) = t̃i and t̃(1/2) = t̃f . Explicitly,

z̃(u) = θ(1
2
− u)

[

t̃i + 2u
(

t̃f − t̃i
)]

+ θ(u− 1
2
)
[

t̃i + 2
(

1− u
)(

t̃f − t̃i
)]

− iǫu, (9.1.1)

where we recall from (5.3.2) that θ(0) = 1/2.

The state |Φ(x); t̃f 〉H is an eigenstate of the Heisenberg field operator, satisfying
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the eigenvalue equation

ΦH(x)|Φ(x); t̃f〉H = Φ(x)|Φ(x); t̃f 〉H (9.1.2)

and forming a complete orthonormal basis, respecting the orthonormality condition

∫

[dΦ] |Φ(x); t̃f〉H H〈Φ(x); t̃f | = I, (9.1.3)

where we recall that [dΦ] represents the functional integral over field configurations.

We may then write our in-in generating functional as

Z[J±] =
∫

[dΦ] 〈0in, t̃i|Φ(x), t̃f〉J−〈Φ(x), t̃f |0in, t̃i〉J+

=

∫

[dΦ] 〈0in, t̃i|T̄e−i
∫ t̃f

t̃i
d4xΦH(x)J−(x)|Φ(x), t̃f〉

× 〈Φ(x), t̃f |Tei
∫ t̃f

t̃i
d4xΦH(x)J+(x)|0in, t̃i〉. (9.1.4)

We emphasise that the x0 integrations run from t̃i to t̃f and that the ‘latest’ time

(with u = 1) appears to the left. We note also that, due to the presence of the

external sources J±, the time dependence of the eigenstates of the Heisenberg field

operator are now explicit.

We denote by Φ±(x) ≡ Φ(x0 ∈ C±,x) fields with real-time variable x0 confined

to the positive and negative branches of the contour, respectively. We then define

the doublets [34, 35]

Φa(x) =

(

Φ+(x)
Φ−(x)

)

, Φa(x) = ηabΦ
b(x) = (Φ+(x) −Φ−(x)), (9.1.5)

where a, b = 1, 2 and the SO(1, 1) ‘metric’ ηab = diag(1,−1). Inserting into (9.1.4)

complete sets of eigenstates of the Heisenberg field operator at intermediate times,

we may derive a path-integral representation of the in-in generating functional:

Z[Ja] =
∫

[dΦa] exp

[

i

(

S[Φa] +

∫ t̃f

t̃i

d4x Ja(x)Φ
a(x)

)]

, (9.1.6)
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with action,

S[Φa, t̃i, t̃f ] =

∫ t̃f

t̃i

d4x
[

1
2
ηab∂µΦ

a(x)∂µΦb(x)− 1
2

(

M2ηab − iǫIab
)

Φa(x)Φb(x)

− 1
3!
gηabcΦ

a(x)Φb(x)Φc(x)− 1
4!
ληabcdΦ

a(x)Φb(x)Φc(x)Φd(x)
]

, (9.1.7)

where ηabc... is +1 for a = b = c = · · · = 1 and −1 for a = b = c = · · · = 2. The

ǫ = 0+ gives the familiar Feynman prescription, ensuring convergence of the in-in

path-integral. We note that the damping term is proportional to the identity matrix

Iab and not the ‘metric’ ηab. This prescription requires the addition of a contour-

dependent damping term, proportional to ε(1
2
−u), which has the same sign on both

the positive and negative branches of the contour.

In order to preserve the correspondence with scattering-matrix theory in the

asymptotic limit t̃i → −∞, we choose t̃f = −t̃i. This choice is made to ensure

that the action is manifestly CPT invariant (invariant under charge-, parity- and

time-reversal transformations), even when time-translation invariance, as will be

the case for out-of-equilibrium thermal backgrounds. As a result, the natural origin

for the macroscopic time t is the boundary time t̃i, that is the time at which all

pictures are coincident and there is no ambiguity in the specification of the boundary

conditions. The time t̃i is the point at which the interactions are switched on and

the macroscopic time t = t̃f− t̃i = 2t̃f is then simply the time over which the system

has been permitted to evolve.

The more familiar time- and anti-time-ordering operators, see (4.2.24) and

(4.2.29), are superseded by a path-ordering operator TC . In order to quantify this

path-ordering, we introduce the contour-dependent step function

θC(x
0 − y0) ≡ θ(ux − uy), (9.1.8)

where x0 = Re z̃(ux) and y0 = Re z̃(uy). This subsequently yields a contour-
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dependent delta function

δC(x
0 − y0) = δ(ux − uy)

∣

∣

dz̃
du

∣

∣

=
δ(ux − uy)
2|t̃f − t̃i|

=
δ(ux − uy)

2t
. (9.1.9)

We may then introduce the path-ordered propagator

i∆C(x, y) ≡ 〈TC[Φ(x)Φ(y)]〉. (9.1.10)

For x0 and y0 on the positive branch, the path-ordering is equivalent to the

familiar time-ordering and we obtain the time-ordered, Feynman propagator i∆F.

On the other hand, for x0 and y0 on the negative branch, the path-ordering is equiv-

alent to anti-time-ordering and we obtain the anti-time-ordered, Dyson propagator

i∆D. For x
0 on the positive branch and y0 on the negative branch, x0 is always ‘ear-

lier’ than y0 and we obtain the absolutely-ordered, negative-frequency Wightman

propagator i∆>. Conversely, for y0 on the positive branch and x0 on the negative

branch the opposite is true and we obtain the positive-frequency Wightman prop-

agator i∆<. In the SO(1, 1) notation, we write the ctp propagator as the 2 × 2

matrix

i∆ab(x, y) ≡ 〈TC[Φ
a(x)Φb(y)]〉 = i

[

∆F(x, y) ∆<(x, y)
∆>(x, y) ∆D(x, y)

]

. (9.1.11)

We may then write the in-in generating functional in the form

Z[Ja] = exp

[

i

∫

Ωt

d4xV

(

1

i

δ

δJa

)]

×
∫

[dΦa] exp

[

− i

2

∫∫

Ωt

d4x d4y Ja(x)∆
0, ab(x, y)Jb(y)

]

, (9.1.12)

where Ωt is the Minkowski space-time volume bounded by hypersurfaces x0 = ±t/2
and i∆0, ab(x, y) is the free ctp propagator. We may then express the resummed
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ctp propagator as follows:

i∆ab(x, y) =
1

i

δ

δJa(x)

1

i

δ

δJb(y)
Z[Ja]

∣

∣

∣

∣

∣

J1,2=0

, (9.1.13)

where the functional derivatives satisfy

δ

δJa(x)

∫

Ωt

d4y J b(y) = ηabδ(4)(x− y). (9.1.14)

In our forthcoming analysis, it will prove useful to rotate the ctp propagator into

the so-called Keldysh basis [30] by the orthogonal transformation

∆̃ab(x, y) ≡ Oa
cO

b
d∆

cd(x, y) =

[

0 ∆A(x, y)
∆R(x, y) ∆1(x, y)

]

, Oab =
1√
2

[

1 1
1 −1

]

.

(9.1.15)

In Chapter 10, we will generalise these discussions to macroscopic ensembles

by incorporating background effects in terms of physical sources. In this case, the

surface integral
∮

∂Ωt
dsµΦ

a(x)∂µΦb(x) may not in general vanish on the boundary

hypersurface ∂Ωt of the volume Ωt. However, by requiring that the ‘+’- and ‘−’-type
fields satisfy

Φ+(x)∂
µΦ+(x)

∣

∣

xµ∈∂Ωt
= Φ−(x)∂

µΦ−(x)
∣

∣

xµ∈∂Ωt
, (9.1.16)

we can ensure that surface terms cancel between the positive and negative branches

and the free part of the action may be rewritten in the form

S0[Φ
a, t] =

∫∫

Ωt

d4x d4y 1
2
Φa(x)∆0,−1

ab (x, y)Φb(y), (9.1.17)

defining the free inverse ctp propagator

∆0,−1
ab (x, y) =

[

−
(

�2
x +M2

)

ηab + iǫIab
]

δ(4)(x− y), (9.1.18)

where �2
x ≡ ∂

∂xµ
∂

∂xµ
is the d’Alembertian operator and �2

x + M2 is the familiar

Klein-Gordon operator. Note that the variational principle remains well-defined

irrespective of (9.1.16), since we are always free to choose the variation of the field





9. The CTP Formalism

δΦa(x) to vanish for xµ on ∂Ωt.

In the absence of interactions, eigenstates of the free Hamiltonian will propa-

gate uninterrupted from times infinitely distant in the past to times infinitely far in

the future and, as such, we may safely extend the limits of integration in the free

part of the action to positive and negative infinity, since

(

�2
x +M2

)

Φa(x)
∣

∣

x0 /∈[−t/2, t/2]
= 0. (9.1.19)

The free ctp propagator is then obtained by inverting (9.1.18) subject to the inverse

relation
∫

d4z∆0,−1
ab (x, z)∆0, bc(z, y) = η c

a δ
(4)(x− y), (9.1.20)

where the domain of integration over z0 is infinite. We expect to recover the familiar

propagators of the in-out formalism of asymptotic field theory, which we relate to

scattering-matrix elements by means of reduction techniques, such as that due to

Lehmann, Symanzik and Zimmermann [90]; and unitarity cutting rules [91–94] via

the optical theorem. It follows that the free Feynman (Dyson) propagators satisfy

the inhomogeneous Klein-Gordon equation

−
(

�2
x +M2

)

i∆0
F(D)(x, y) = (−)iδ(4)(x− y); (9.1.21)

and the free Wightman propagators satisfy the homogeneous equation

−
(

�2
x +M2

)

i∆0
>(<)(x, y) = 0. (9.1.22)

In the double momentum representation, the free part of the action is

S0[Φ
a, t→∞] =

∫∫

d4p
(

2π
)4

d4p′
(

2π
)4

1

2
Φa(p)∆0,−1

ab (p, p′)Φb(−p′), (9.1.23)
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where

∆0,−1
ab (p, p′) =

[

p2 −m2 + iǫ 0
0 −

(

p2 −m2 − iǫ
)

]

(

2π
)4
δ(4)(p− p′) (9.1.24)

is the Fourier transform of the free inverse ctp propagator, satisfying the inverse

relation
∫

d4q

(2π)4
∆0,−1

ab (p, q)∆0, bc(q, p′) = η c
a (2π)4δ(4)(p− p′). (9.1.25)

Given that the free inverse ctp propagator is proportional to a four-dimensional

delta function of the two momenta, it may be written more conveniently in the

familiar single Fourier representation as

∆0,−1
ab (p) =

[

p2 −m2 + iǫ 0
0 −

(

p2 −m2 − iǫ
)

]

, (9.1.26)

satisfying the inverse relation

∆0,−1
ab (p)∆0,bc(p) = η c

a . (9.1.27)

9.2 The Free CTP Propagator

We proceed now to make the following Ansatz for the most general form of the free

ctp propagator, without evaluating the correlation functions directly:

∆0,ab(p) =
[

[

p2 −M2 + iǫ
]−1

+ c̃1(p)δ(p
2 −M2) c̃3(p)δ(p

2 −M2)

c̃2(p)δ(p
2 −M2) −

[

p2 −M2 − iǫ
]−1

+ c̃4(p)δ(p
2 −M2)

]

.

(9.2.1)

The c̃i(p) ≡ θ(p0)ci(p) + θ(−p0)c′i(p) are as yet undetermined, analytic functions of

the four-momentum p, which may in general be complex. The elements of the leading

diagonal are the Fourier transforms of the most general translationally-invariant

solutions to the inhomogeneous Klein-Gordon equation (9.1.21) and the off-diagonal
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elements, the most general translationally-invariant solutions to the homogeneous

Klein-Gordon equation (9.1.22). The form of the elements is determined by the

following constraints:

(i) CPT The scalar field is even under CPT transformations, yielding the parity

relations in (A.4). As such, we require that

c̃1(4)(p) = c̃1(4)(−p), c̃2(p) = c̃3(−p). (9.2.2)

(ii) Hermiticity The Hermiticity relations outlined in (A.4) require

c̃4(p) = −c̃∗1(p), c̃2(p) = −c̃∗3(−p). (9.2.3)

We see then that c̃2(p) and c̃3(p) must be purely imaginary.

(iii) Causality The causality relation in (7.1.24) may be written in terms of the

elements of the ctp propagator as

∆(x, y) = ∆>(x, y)−∆<(x, y) = ε(x0 − y0)[∆F(x, y)−∆D(x, y)]. (9.2.4)

Given (A.3), we see that the Pauli-Jordan propagator is proportional only to the

real, dispersive part of the Feynman propagator. We can convince ourselves that an

even-parity, on-shell dispersive part will contribute to the free Pauli-Jordan propa-

gator terms which are non-vanishing for space-like separations, violating the micro-

causality condition outlined in Section 7.1. It follows then that c̃1(p) and c̃4(p) are

also purely imaginary-valued functions. We shall therefore replace the c̃i(p) by the

real-valued functions f̃i(p) through c̃i(p) ≡ −2πif̃i(p), where the minus sign and

factor of 2π have been included for later convenience. The explicit form of the free

Pauli-Jordan propagator in (7.1.15a) then yields the constraint

f̃2(p)− f̃3(p) = ε(p0). (9.2.5)
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(iv) Unitarity The unitarity relation in (7.1.28) requires

f̃2(p) + f̃3(p) = 1 + f̃1(p) + f̃4(p). (9.2.6)

Solving this system for the f̃i(p), we obtain the result

∆0,ab(p) =

[

1
p2−M2+iǫ

− 2πif̃(p)δ(p2 −M2) −2πi
[

θ(−p0) + f̃(p)
]

δ(p2 −M2)

−2πi
[

θ(p0) + f̃(p)
]

δ(p2 −M2) −1
p2−M2−iǫ

− 2πif̃(p)δ(p2 −M2)

]

,

(9.2.7)

where all elements contain terms dependent upon the same function

f̃(p) ≡ f̃1(p) = θ(p0)f(p) + θ(−p0)f(−p). (9.2.8)

These terms correspond to the vev of the normal-ordered product of fields 〈:Φ(x)Φ(y):〉,
which is vanishing for the trivial vacuum |0〉. Therefore, we must conclude that f̃(p)

is also vanishing in this case. We then obtain the set of propagators familiar from

the unitarity cutting rules of absorptive part theory (cf. [91, 92]):

∆0,ab(p) =

[

[

p2 −M2 + iǫ
]−1 −2πiθ(−p0)δ(p2 −M2)

−2πiθ(p0)δ(p2 −M2) −
[

p2 −M2 − iǫ
]−1

]

. (9.2.9)

We may arrive at the same result by considering the ctp propagator in the

Keldysh representation (9.1.15). The constraints outlined above permit us to add to

the free Hadamard propagator any purely imaginary, even function of p proportional

to δ(p2 −M2), that is

∆̃0,ab(p) =

[

0 [(p0 − iǫ)2 − p2 −M2]−1

[(p0 + iǫ)2 − p2 −M2]−1 −2πiδ(p2 −M2)

]

− 2πi2f̃(p)δ(p2 −M2)

[

0 0
0 1

]

. (9.2.10)

We note that there is no such freedom to add terms to the retarded and advanced

propagators as a result of the constraints on the form of the free Pauli-Jordan
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propagator. Given that

OT

[

0 0
0 1

]

O =
1

2

[

1 1
1 1

]

, (9.2.11)

we immediately arrive at (9.2.7).

9.3 The Resummed CTP Propagator

In the case of the resummed ctp propagator, we must invert on the restricted

domain [−t/2, t/2] subject to the inverse relation

∫

Ωt

d4z∆−1
ab (x, z)∆

bc(z, y) = η c
a δ

(4)(x− y). (9.3.1)

The momentum representation of this inverse relation takes the form

∫∫

d4q
(

2π
)4

d4q′
(

2π
)4 ∆

−1
ab (p, q)(2π)

4δ
(4)
t (q − q′)∆bc(q′, p′) = η c

a (2π)4δ
(4)
t (p− p′), (9.3.2)

where we have defined

δ
(4)
t (p− p′) = δt(p0 − p′0)δ(3)(p− p′) =

1

(2π)4

∫∫

Ωt

d4x d4y eip·xe−ip′·y δ(4)(x− y).
(9.3.3)

The restriction of the domain of integration has lead to the introduction of the

analytic weight function

δt(p0 − p′0) =
t

2π
sinc

[(p0 − p′0
2

)

t
]

, (9.3.4)

which has replaced the energy-conserving delta function that we would otherwise

anticipate. Using the fact that

lim
t→∞

δt(p0 − p′0) = δ(p0 − p′0), (9.3.5)

we can however quickly recover the more familiar, asymptotic form when the bound-

ary time t̃i = −t/2 is taken to be in the distant past. The weight function satisfies
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the convolution
∫

dq0 δt(p0 − q0)δt(q0 − p′0) = δt(p0 − p′0). (9.3.6)

The emergence of the function δt is a consequence of the assertion that the

time-evolution and the mapping between quantum-mechanical pictures are governed

by the familiar, interaction-picture evolution operator

U(t̃f , t̃i) = T exp

[

i

∫ t̃f

t̃i

dt̃ H int(t̃ )

]

, (9.3.7)

where the limits of integration are finite. This evolution is defined for times greater

than the boundary time t̃i. We recall that this boundary time is the point at which

the three pictures are coincident. It is at this point that we may be confident of the

unambiguous specification of boundary conditions. We stress then that δt is neither

a prescription nor is it an a priori regularisation of the delta function.

We shall see later that the oscillatory behaviour of the sinc function is funda-

mentally important to the dynamical behaviour of the system. Before proceeding

therefore, let us convince ourselves that these oscillations persist if we smear the

switching on of the interactions, that is we impose the adiabatic switching of the

interaction Hamiltonian for microscopic times outside the interval [−t/2, t/2]. We

proceed then to introduce to the interaction Hamiltonian the Gaussian function

At(t̃) = exp
(

− t̃2

2t2

)

, (9.3.8)

such that the evolution operator takes the form

U(t̃f , t̃i) = T exp

[

i

∫ t̃f

t̃i

dt̃ At(t̃)H
int(t̃)

]

. (9.3.9)

Clearly, for t̃≫ t, the interaction vanishes. In the free part of the action, where we

recall that we take the limit t → ∞, we see that At(t̃) → 1 as required. With this
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Figure 9.2: Comparison of δt(p0 − p′0) (black dotted) and δA(p0 − p′0) (blue dashed).

We have introduced a mass parameter M so that all axes are dimensionless.

in place, it is clear that we must make the following replacement:

δt(p0 − p′0)→ δA(p0 − p′0) ≡
1

2π

∫ t/2

−t/2

dt̃ e−i(p0−p′0)t̃At(t̃)

=
t

2
√
2π
e−

1

2
(p0−p′0)

2t2

[

erf

(

1− 2i(p0 − p0)′t
2
√
2

)

+ erf

(

1 + 2i(p0 − p0)′t
2
√
2

)]

, (9.3.10)

in which the oscillatory behaviour persists due to the error functions of complex

arguments. The behaviour of both of these functions is shown in Figure 9.2, in

which we see that the Gaussian function has little effect on the central region of the

sinc function as would expect.
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10 Non-Homogeneous

Backgrounds

Until now, we have considered the vacuum to be an ‘empty’ state with all quan-

tum numbers zero. In the following section, we replace that ‘empty’ vacuum state

with some macroscopic background, which may in general be inhomogeneous and

incoherent. This non-trivial ‘vacuum’ is described by the density operator ρ. The

density operator is necessarily Hermitian and, for a closed system, evolves in the

interaction picture according to the von Neumann or quantum Liouville equation

dρ(t̃)

dt̃
= −i

[

H int(t̃), ρ(t̃)
]

, (10.0.1)

where H int(t̃) is the interaction part of the Hamiltonian in the interaction picture.

Developing the usual Neumann series, we find that ρ(t̃) = U−1(t̃, t̃i)ρ(t̃i)U
−1(t̃, t̃i),

where U is the evolution operator in (9.3.7). In the absence of external sources,

the partition function Z = tr ρ is time-independent. In corollary, in the presence

of external sources, the partition function is in general time-dependent. We recall

that the field operators of the interaction picture evolve under the free part of the

Hamiltonian. We are interested in evaluating at the microscopic time t̃f = t/2 the

time-dependent ensemble expectation values (eevs) of field operators 〈•〉t, where
the bra-ket now denotes the weighted expectation

〈•〉t =
tr ρ( t

2
) •

tr ρ( t
2
)
. (10.0.2)
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As discussed in Chapter 9, the physical observables in the interaction-picture are of

the form

〈Φ( t
2
,x)Φ( t

2
,y)〉

t
=

tr ρ( t
2
)Φ( t

2
,x)Φ( t

2
,y)

tr ρ( t
2
)

, (10.0.3)

i.e., equal-time.

In the presence of this non-trivial background, the out state is replaced by the

density operator at the time t̃f = t
2
and as such, the in-in generating functional

becomes

Z[ρ, J±, t] = tr
[

T̄e−i
∫
Ωt

d4xJ−(x)ΦH(x)
]

ρH(t/2)
[

Tei
∫
Ωt

d4x J+(x)ΦH(x)
]

. (10.0.4)

We note that within the generating functional, the Heisenberg-picture density op-

erator has explicit time dependence due to the presence of the external sources J±.

10.1 The Schwinger-Dyson Equation in the CTP

Formalism

Proceeding by inserting complete sets of eigenstates of the Heisenberg field operator

at intermediate times, we obtain the path-integral representation

Z[ρ, Ja, t] =
∫

[dΦa] H〈Φ−(x), t/2|ρH(t/2)|Φ+(x), t/2〉H

× exp

[

i

(

S[Φa, t→∞] +

∫

Ωt

d4x Ja(x)Φ
a(x)

)]

. (10.1.1)

As before, we have extended the limits of integration to infinity in the free part of

the action. Following [35], we write the kernel H〈Φ−(x), t/2|ρH(t/2)|Φ+(x), t/2〉H as

an infinite series of poly-local sources:

H〈Φ−(x), t/2|ρH(t/2)|Φ+(x), t/2〉H = exp
(

iK[Φa, t]
)

, (10.1.2)
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where

K[Φa, t] = K +

∫

Ωt

d4xKa(x, t)Φ
a(x) +

1

2

∫∫

Ωt

d4x d4x′Kab(x, x
′, t)Φa(x)Φb(x′) + · · · .

(10.1.3)

Hereafter, all space-time integrals are assumed to run over the hypervolume Ωt. We

absorb K into the overall normalisation and Ka into a redefinition of the source Ja,

such that the in-in generating functional may be written

Z[Ja, Kab, · · · , t] =
∫

[dΦa] exp

[

i

(

S[Φa] +

∫

d4x Ja(x)Φ
a(x)

+
1

2

∫∫

d4x d4yKab(x, x
′)Φa(x)Φb(x′)

+
1

6

∫∫∫

d4x d4x′ d4x′′Kabc(x, x
′, x′′)Φa(x)Φb(x′)Φc(x′′) + · · ·

)]

,

(10.1.4)

where we have omitted the explicit t dependence of the sources for convenience.

The Cornwall-Jackiw-Tomboulis (cjt) effective action [33] is given by the Leg-

endre transform

Γ[Φ̂a,Gab,Gabc, · · · ] =W[Ja, Kab, Kabc]−
∫

d4x Ja(x)Φ̂
a(x)

− 1

2

∫∫

d4x d4x′Kab(x, x
′)
[

Φ̂a(x)Φ̂b(x′) + i~Gab(x, x′)
]

− 1

6

∫∫∫

d4x d4x′ d4x′′Kabc(x, x
′, x′′)

[

Φ̂a(x)Φ̂b(x′)Φ̂c(x′′)

+3i~G(ab(x, x′)Φ̂c)(x′′)− ~
2Gabc(x, x′, x′′)

]

+ · · · , (10.1.5)

whereW[Ja, Kab, Kabc, · · · ] = −i~ lnZ[Ja, Kab, Kabc, · · · ] is the generating functional
of connected ensemble Green’s functions. We obtain the infinite systems

Φ̂a(x) =
δW
δJa(x)

= 〈Φa(x)〉, (10.1.6a)
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i~Gab(x, x′) = 2
δW

δKab(x, x′)
− Φ̂a(x)Φ̂b(x′)

= −i~ δ2W
δJa(x)δJb(x′)

= 〈TC
[

Φa(x)Φb(x′)
]

〉 − 〈Φa(x)〉〈Φb(x′)〉,

(10.1.6b)

−~2Gabc(x, x′, x′′) = 6
δW

δKabc(x, x′, x′′)
− 3i~G(ab(x, x′)Φ̂c)(x′′)− Φ̂a(x)Φ̂b(x′)Φ̂c(x′′)

= −~2 δ3W
δJa(x)δJb(x′)δJc(x′′)

, (10.1.6c)

and

δΓ

δΦ̂a(x)
= −Ja(x)−

∫

d4x′Kab(x, x
′)Φ̂b(x′)

− 1

2

∫∫

d4x′ d4x′′Kabc(x, x
′, x′′)

×
[

Φ̂b(x′)Φ̂c(x′′) + i~Gbc(x′, x′′)
]

− · · · , (10.1.7a)

δΓ

δGab(x, x′) = −i~
2
Kab(x, x

′)− i~

2

∫

d4x′′Kabc(x, x
′, x′′)Φ̂c(x′′)− · · · , (10.1.7b)

δΓ

δGabc(x, x′, x′′) = −i~
6
Kabc(x, x

′, x′′)− · · · , (10.1.7c)

where the parentheses (abc) denote cyclic permutation of the indices a, b, c.

We may simplify this infinite system by assuming that the initial conditions do

not contain any three-point or higher correlations. We may then take the tri-local

and higher kernels (Kabc, Kabcd, · · · ) to be vanishing. We eliminate the three-point

and higher connected Green’s functions (Gabc, Gabcd, · · · ) as dynamical variables by

performing a second Legendre transform

Γ[Φ̂a,Gab] ≡ Γ[Φ̂a,Gab, G̃abc, · · · ], (10.1.8)

where the G̃’s are functionals of Φ̂a and Gab given by

δΓ

δGabc... [Φ̂
a,Gab, G̃abc, · · · ] = 0. (10.1.9)

The effective action is evaluated by expanding around the constant background
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field Φa
0(x) = Φa(x)− ~1/2φa(x), defined at the saddle-point

δS[Φa]

δΦa(x)

∣

∣

∣

Φ=Φ0

+ Ja(x) +

∫

d4x′Kab(x, x
′)Φb

0(x
′) = 0. (10.1.10)

The result of this expansion is well known (see [32, 33]) and we obtain the two-

particle-irreducible (2PI) cjt effective action

Γ[Φ̂a,Gab] = S[Φ̂a]

+
i~

2
trx

[

lnx detab G−1
ac ∗G0,cb +

δ2S[Φ̂a]

δΦ̂aδΦ̂b
∗ Gab − η a

a

]

+ ~
2Γ2[Φ̂

a,Gab], (10.1.11)

where we have used a subscript x and the ∗’s to remind us that the trace, logarithm

and products are intended in the functional sense. The overall normalisation has

been chosen such that the conventional effective action (see [95])

Γ[Φ̂a] ≡ Γ[Φ̂a, G̃ab] = S[Φ̂a] +
i~

2
trx lnx detab G

−1
ac ∗G0,cb +O(~2) (10.1.12)

is recovered in the limit Kab → 0, where G̃ab satisfies

δΓ

δG̃ab
[Φ̂a, G̃ab] = 0. (10.1.13)

G0,ab is defined in relation to the functional operator

G−1
ab (Φ̂

a; x, x′) =
δ2S[Φ̂a]

δΦ̂a(x)δΦ̂b(x′)
+Kab(x, x

′)

= G0,−1
ab (x, x′) +

δ2S int[Φ̂a]

δΦ̂a(x)δΦ̂b(x′)
+Kab(x, x

′) (10.1.14)

and S int[Φ̂a] is the interaction part of the action. It is clear then that all Green’s

functions depend upon the state of the system at the macroscopic time t through

the bi-local source Kab.
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For the Lagrangian in (7.1.1),

G−1
ab (Φ̂

a; x, x′)

= −
[

(

�x +M2
)

ηab + gηabcΦ̂
c(x) +

1

2
ληabcdΦ̂

c(x)Φ̂d(x)
]

δ(4)(x− x′) +Kab(x, x
′),

(10.1.15)

where the delta function arises from the locality of the Lagrangian. Γ2[Φ̂
a,Gab] is

the sum of all 2PI vacuum graphs

Γ2[Φ̂
a,Gab] = −i

∑

a,b

[

1

8 a
δab +

1

12
a b

]

, (10.1.16)

where combinatorial factors have been written explicitly and we associate with each

n-point vertex a factor of

iS(n)
a (Φ̂a; x) = i

δnS[Φ̂a]

δ
[

Φ̂a(x)
]n (10.1.17)

and each line a factor of iGab(Φ̂a; x, y). The three- and four-point vertices are

iS(3)
a (Φ̂a; x) = −igηaaa − iληaaaaΦ̂a(x), iS(4)

a (Φ̂a; x) = −iληaaaa. (10.1.18)

Functionally differentiating the effective action with respect to Gab(x, y), using
Jacobi’s formula to evaluate the variation of the determinant over the ctp indices,

we obtain the Schwinger-Dyson (SD) equation

G−1
ab (Φ̂

a; x, y) = G−1
ab (Φ̂

a; x, y) + Πab(Φ̂
a; x, y), (10.1.19)
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where

Πab(Φ̂
a; x, y) = −2i~δΓ2[Φ̂

a,Gab]
δGab(x, y) = −i~

[

a
δab+

a b ]

(10.1.20)

is the proper, truncated 1PI self-energy and a combinatorial factor of 1
2
has been

absorbed into the diagrammatics.

The ctp self-energy may be written in matrix form as

Πab(x, y) =

[

Π(x, y) −Π<(x, y)
−Π>(x, y) −Π∗(x, y)

]

, (10.1.21)

where Π(x, y) and −Π∗(x, y) are the time- and anti-time-ordered self-energies; and

Π>(x, y) and Π<(x, y) are the positive- and negative-frequency, absolutely-ordered

self-energies respectively. In analogy to the propagator definitions discussed earlier,

we also define

Π1(x, y) = Π>(x, y) + Π<(x, y) = Π(x, y)− Π∗(x, y) = 2iImΠ(x, y), (10.1.22a)

ΠP(x, y) =
1

2

[

ΠR(x, y) + ΠA(x, y)
]

= ReΠ(x, y), (10.1.22b)

Γ (x, y) = Π>(x, y)− Π<(x, y) = ΠR(x, y)−ΠA(x, y), (10.1.22c)

satisfying relations analogous to those described in Appendix A. We show in Chapter

11 that Γ (x, y) is related to the familiar Breit-Wigner width in the zero-temperature

limit. In the Keldysh representation [30], the ctp self-energy is

Π̃ab(x, y) =

[

Π1(x, y) ΠR(x, y)
ΠA(x, y) 0

]

. (10.1.23)

In the limit Φ̂a(x)→ 0, the SD equation reduces to

∆−1
ab (x, y, t) = ∆0,−1

ab (x, y) +Kab(x, y, t) + Πab(x, y, t), (10.1.24)

where ∆0,−1
ab (x, y) is the free inverse ctp propagator defined in (9.1.18) and we
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have re-introduced the explicit t dependence for clarity. In the double momentum

representation, this becomes

∆−1
ab (p, p

′, t) = ∆0,−1
ab (p, p′) +Kab(p, p

′, t) + Πab(p, p
′, t). (10.1.25)

In order to interpret ∆ab as the expectation value of products of field operators, as

we shall see in Sections 10.3 and 11, that is to make connection with the canonical

operator approach in Section 7.1, we must account for the fact that the interaction

picture creation and annihilation operators of the Fourier representation of the field

operator are defined at time 0, not the time t/2 of the density operator. We make

a redefinition of the field eigenvalues in the exponent of the generating functional

Φ(p) = eip0t/2Φ′(p). (10.1.26)

This amounts to multiplying through (10.1.25) by a phase ei(p0−p′
0
)t/2, which we

absorb into the definitions of the propagators, bi-local source and self-energy.

Convoluting from the right and left with the weight function δt and the re-

summed and free ctp propagators respectively, we obtain the Feynman-Dyson (FD)

series

∆ab(p, p′, t) = ∆0, ab(p, p′, t)−
∫

· · ·
∫

d4q

(2π)4
d4q′

(2π)4
d4q′′

(2π)4
d4q′′′

(2π)4
∆0, ac(p, q)

× (2π)4δ
(4)
t (q − q′)

[

Kcd(q
′, q′′, t) + Πcd(q

′, q′′, t)
]

(2π)4δ
(4)
t (q′′ − q′′′)∆db(q′′′, p′, t),

(10.1.27)

Given the form of δt in (9.3.3), we see that this series does not collapse to the resum-

mation familiar from zero-temperature field theory and as such we cannot write the

form of the resummed propagator directly in this double momentum representation.

We shall see in Chapter 11 that, beyond the tree-level, we may safely ignore

the contribution to the FD series of the bi-local source. In this case and given that

δt satisfies the convolution in (9.3.6), we absorb the weight functions into the self-
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10.2. Applicability of the Gradient Expansion

energy, attaching them to the vertices, see Chapter 17. The FD series may then be

written in the more concise form

∆ab(p, p′, t) = ∆0, ab(p, p′, t)−
∫∫

d4q

(2π)4
d4q′

(2π)4
∆0, ac(p, q, t)Πcd(q, q

′, t)∆db(q′, p′, t).

(10.1.28)

For t finite, δt(p0 − p′0) is analytic in the limit p0 = p′0 and, as we shall see in

Chapter 12, the systematic incorporation of these finite-time effects will ensure that

the perturbation expansion is free of pinch singularities [96, 97].

10.2 Applicability of the Gradient Expansion

It will prove instructive to consider further the possibility of resumming the ctp

propagator to a closed analytic form by working in a mixed representation of momen-

tum and space-time coordinates: the Wigner representation. Defining the relative

and central coordinates

Rµ
xy = xµ − yµ, Xµ

xy =
xµ + yµ

2
, (10.2.1)

such that

xµ = Xµ
xy +

1

2
Rµ

xy, yµ = Xµ
xy −

1

2
Rµ

xy, (10.2.2)

we introduce the Wigner transform: the Fourier transform with respect to the rela-

tive coordinate only. Explicitly, the Wigner transform of a function F (R,X) is

F (p,X) =

∫

d4Reip·RF (R,X). (10.2.3)

We recall that the resummed propagator satisfies the inverse relation

∫

Ωt

d4z∆−1
ab (x, z)∆

bc(z, y) = δ(4)(x− y), (10.2.4)

where we have omitted the t dependence of the propagators for convenience. We
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10. Non-Homogeneous Backgrounds

emphasise that the domain of integration is restricted in z0 to be in the range

[−t/2, t/2]. The Wigner transform of the inverse relation takes the form

∫

Ωt

d4z

∫∫

d4p

(2π)4
d4p′

(2π)4
e−ip·Rxze−ip′·Rzy ∆−1

ab (p,Xxz)∆
bc(p′, Xzy)

=

∫∫

d4p

(2π)4
d4p′

(2π)4
e−ip·xeip

′·y η c
a (2π)4δ(4)(p− p′). (10.2.5)

In the case where deviations from homogeneity are small, i.e., when the characteristic

scale of macroscopic variations in the background is large in comparison to the

microscopic single-particle excitations, we may perform a gradient expansion of the

inverse relation in terms of the soft derivative ∂µXxy
≡ ∂/∂Xxy,µ, writing Xxz =

Xxy +Rzy/2 and Xzy = Xxy − Rxz/2. After integrating by parts, we then obtain

∫∫

d4p

(2π)4
d4p′

(2π)4
e−ip·xeip

′·y (2π)4δ
(4)
t (p− p′)

×∆−1
ab (p,X) exp

[

− i

2

(←−
∂p ·
−→
∂X −

←−
∂X ·
−→
∂p′
)

]

∆bc(p′, X)

=

∫∫

d4p

(2π)4
d4p′

(2π)4
e−ip·xeip

′·y η c
a (2π)4δ(4)(p− p′). (10.2.6)

We now define the central and relative momenta

qµ =
pµ + p′µ

2
, Qµ = pµ − p′µ, (10.2.7)

conjugate to the relative and central coordinates, respectively. It follows that

pµ = qµ +
1

2
Qµ, p′µ = qµ − 1

2
Qµ, (10.2.8)

allowing us to rewrite (10.2.6) in the form

∫

d4Q

(2π)4
e−iQ·X (2π)4δ

(4)
t (Q)

× exp
[

− i(♦−
q,X + 2♦+

Q,X)
]

{∆−1
ab (q +Q/2, X)}{∆bc(q −Q/2, X)}

=

∫

d4Q

(2π)4
e−iQ·X η c

a (2π)4δ
(4)
t (Q), (10.2.9)
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10.3. Non-Homogeneous Free Propagators

where, following [36, 37], we have introduced the diamond operator

♦±
p,X{A}{B} =

1

2
{A,B}±p,X (10.2.10)

and {A,B}±p,X denote the symmetric and anti-symmetric Poisson brackets

{A,B}±p,X ≡
∂A

∂pµ
∂B

∂Xµ
± ∂A

∂Xµ

∂B

∂pµ
. (10.2.11)

For t > 0, we may perform the integral on the right-hand side, yielding

∫

d4Q

(2π)4
e−iQ·X (2π)4δ

(4)
t (Q)

× exp
[

− i(♦−
q + 2♦+

Q)
]

{∆−1
ab (q +Q/2, X)}{∆bc(q −Q/2, X)} = η c

a θ(t− 2|X0|),
(10.2.12)

For late times, t→∞, this result reduces to

e−i♦−

q,X{∆−1
ab (q,X)}{∆bc(q,X)} = η c

a , (10.2.13)

It is then clear that we may only evaluate the familiar closed form of the resummed

ctp propagator if we truncate the gradient expansion to zeroth order. However,

this is valid only for a static and spatially homogeneous system.

10.3 Non-Homogeneous Free Propagators

Herein, we relax any assumptions about the form of the density operator, taking it

to be in general non-diagonal but symmetric in both Hilbert and Fock spaces. We

may write the most general interaction-picture density matrix at the microscopic
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time t̃f = t/2 as

ρ( t
2
) = C exp

[

−
∫

dΠk1
W10(k1; 0)a

†(k1,
t
2
)−
∫

dΠk′

1
W01(0;k

′
1)a(k

′
1,

t
2
)

−
∫∫

dΠk1
dΠk′

1
W11(k1;k

′
1)a

†(k1,
t
2
)a(k′

1,
t
2
)− · · ·

− 1

n!

1

m!

∫

· · ·
∫

[

n
∏

i=1

dΠki

][

m
∏

j=1

dΠk′

j

]

Wnm({ki}; {k′
j})

n
∏

i=1

a†(ki,
t
2
)

m
∏

j=1

a(k′
j ,

t
2
)

]

,

(10.3.1)

where we shall set the constant C to unity without loss of generality. The real-valued

weights Wnm({k}n; {k′}m) depend on the state of the system at time t/2 and satisfy

Wnm({k}n; {k′}m) =Wmn({k′}m, {k}n). (10.3.2)

The density operator may be written in the basis of momentum eigenstates by

multiplying the exponential form above by the completeness relation of the basis of

Fock states at time t/2:

I = |0〉〈0|+
∞
∑

ℓ=1

1

ℓ!

[

ℓ
∏

k=1

∫

dΠpk

]

|{p}ℓ; t/2〉〈{p}ℓ; t/2| , (10.3.3)

where |{p}ℓ; t/2〉 is the multi-mode Fock state |p1; t/2〉 ⊗ |p2; t/2〉 ⊗ · · · ⊗ |pℓ; t/2〉.
This will yield an intractable infinite series of n-to-m-particle initial correlations.

Taking allWnm({k}n; {k}m) to be zero if n+m > 2, i.e. taking a Gaussian-like initial

density operator, it is still possible to generate all possible n-to-m-particle initial

correlations. In Appendix B, we include the expansion of the general Gaussian-like

density operator explicitly, where we include only sufficient terms to visualise the

form of the expansion.

By exploiting the remaining freedom in the commutation relations in (7.1.17),

we may hide our ignorance of the series expansion of the density operator by writ-

ing the eevs of two-point products of interaction-picture creation and annihilation
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10.3. Non-Homogeneous Free Propagators

operators as

〈a†(p′, 0)a(p, 0)〉t = 2 E (p,p′)f(p,p′, t)ei[E(p)−E(p′)]t/2, (10.3.4)

〈a(p′, 0)a(p, 0)〉t = 2 E (p,p′)g(p,p′, t)ei[E(p)+E(p′)]t/2, (10.3.5)

consistent with (7.1.13) and (7.1.16). The energy factor 2E (p,p′), having dimensions

E1, arises from the fact that the ‘number operator’ a†(p)a(p) of quantum field

theory has dimensions E−2, i.e., it does not have the dimensions of a number. The

statistical distribution functions f and g have dimensions E3 and, in particular, the

function f(p,p′, t) is related to the particle number density. The remaining two-

point products follow from the algebra of the creation and annihilation operators in

(7.1.17), yielding the constraints

f(p,p′, t) = f(p′,p, t), g(p,p′, t) = g(p′,p, t), (10.3.6)

with the added requirement that the energy factor is symmetric in p and p′. Taking

note that the density operator is constructed from on-shell Fock states, the natural

Ansatz for this energy factor is

E (p,p′) =
√

E(p)E(p′). (10.3.7)

This Ansatz constitutes a redefinition of the creation and annihilation operators such

that the lips measure of the plane-wave expansion of the field operator is replaced

by the non-covariant measure

∫

d3p

(2π)3
1

√

2E(p)
, (10.3.8)

which we immediately recognise from relativistic quantum mechanics.

In order that we may treat connected Green’s functions, it is in general neces-
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sary to consider the eevs of single creation or annihilation operators

〈a(p, 0)〉t = 2
√

E(p)w(p, t)eiE(p)t/2. (10.3.9)

We define the connected distribution functions

fcon(p,p
′, t) ≡ f(p,p′, t)− w(p, t)w(p′, t), (10.3.10a)

gcon(p,p
′, t) ≡ g(p,p′, t)− w(p, t)w(p′, t), (10.3.10b)

consistent with (10.3.6).

We are now in a position to derive the most general form of the Fourier trans-

form of the free ctp propagator, satisfying the inverse relation

∫

d4q

(2π)4
∆0,−1

ac (p, q, t)∆0,cb(q, p′, t) = η b
a (2π)4δ(4)(p− p′). (10.3.11)

It is worth clarifying that this propagator is ‘free’ in the spectral sense, i.e., it

corresponds to the free part of the action, see Chapter 9.

Proceeding as in Section 9.2, we make the following Ansatz:

∆0,ab(p, p′, t) =

[
[

p2 −M2 + iǫ]−1 −i2πθ(−p0)δ(p2 −M2)

−i2πθ(p0)δ(p2 −M2) −
[

p2 −M2 − iǫ
]−1

]

(2π)4δ(4)(p− p′)

− i
[

1 1
1 1

]

2π|2p0|1/2δ(p2 −M2)f̃(p, p′, t)ei(p0−p′
0
)t/22π|2p′0|1/2δ(p′2 −M2), (10.3.12)

which we confirm by evaluating the eevs directly, using the algebra above. The

form of the function f̃(p, p′, t) is

f̃(p, p′, t) =
∑

s=±1

[

θ(sp0)θ(sp
′
0)f(sp, sp

′, t) + θ(sp0)θ(−sp′0)g(sp,−sp′, t)
]

,

(10.3.13)

satisfying f̃(p, p′, t) = f̃ †(−p′,−p, t) = f̃(−p,−p′, t) and containing all information

about the state of the ensemble at time t. Hereafter, we shall assume that the

density operators under discussion are diagonal in particle number, so that we may
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10.3. Non-Homogeneous Free Propagators

set the g functions to zero for simplicity.

We stress that, in this most general case, the free phases have not cancelled

and appear explicitly in the free ctp propagator. The appearance of this phase is

a result of our choice to work in the interaction picture, where the density matrix

transforms under the interaction part of the Hamiltonian and the fields by the free

part.

The retarded and advanced propagators take the form

∆0
R(A)(p, p

′) =
1

(p0 + (−)iǫ)2 − p2 −M2
(2π)4δ(4)(p− p′); (10.3.14)

and the Pauli-Jordan, Hadamard and principal-part propagators become

∆0(p, p′, t) =− i2πε(p0)δ(p2 −M2)(2π)4δ(4)(p− p′), (10.3.15a)

∆0
1(p, p

′, t) =− i2πδ(p2 −M2)(2π)4δ(4)(p− p′)

− i2π|2p0|1/2δ(p2 −M2)2f̃(p, p′, t)ei(p0−p′
0
)t/22π|2p′0|1/2δ(p′2 −M2),

(10.3.15b)

∆0
P(p, p

′, t) =P 1

p2 −M2
(2π)4δ(4)(p− p′). (10.3.15c)

Having obtained a closed form for the free ctp propagators, we need then

to make connection with the bi-local source of the path-integral representation.

Replacing the exponent of the in-in generating functional in (10.1.4) with its Fourier

transform, keeping only sources up to and including Kab in the expansion of the

density operator, we complete the square in the exponent by making a shift in the

field:

Φa(p) = Φ′a(p)− ∆̂a
0,b(p)J

b(−p), (10.3.16)

where

∆̂0, ab(p) =

[ 1
p2−M2+iǫ

−2πiθ(−p0)δ(p2 −M2)

−2πiθ(p0)δ(p2 −M2) − 1
p2−M2−iǫ

]

(10.3.17)
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p p′

a b

Figure 10.1: The Feynman-diagrammatic interpretation of the free non-homogeneous

scalar propagator, where the double line represents momentum-violating coupling to

the thermal background through the bi-local source.

is the inverse of the ctp propagator with f̃ set to zero, cf. (10.3.12). The boundary

conditions on the normal-ordered product of fields are contained within the poly-

local sources and hence do not appear in ∆̂0. It is worth noting that

∆̂0
F(p) = Re∆0

R(p) + iε(p0)Im∆0
R(p), (10.3.18)

cf. the Feynman representation of the 2 × 2 matrix propagator as discussed in

[30]. This object has no physical interpretation. The in-in generating functional

subsequently takes the form

Z[J,K] = Z[0, K] exp

[

i

2

∫∫

d4p

(2π)4
d4p′

(2π)4

[

Ja(p)∆̂ c
0,a (p)Kcb(p, p

′)Φb′(p′) + Φa′(p)Kac(p, p
′)∆̂c

0,b(p
′)J b(p′)

− Ja(p)
(

∆̂0,ab(p)(2π)
4δ(4)(p− p′)− ∆̂ c

0,a (p)Kcd(p, p
′)∆̂d

0,b(p
′)
)

J b(p′)
]

]

. (10.3.19)

The remaining linear terms yield contributions to the free propagator proportional

to K2, which we shall see in Chapter 11 may be neglected. Keeping then the term

bi-linear in the source J , by (9.1.13), we find the free CTP propagator

i∆ab
0 (p, p′) = i∆̂ab

0 (p)(2π)4δ(4)(p− p′) + i∆̂ac
0 (p)iKcd(p, p

′)i∆̂db
0 (p′). (10.3.20)

Interpreting this result diagrammatically, we assign to the ctp propagator of our

real scalar field Feynman diagram in Figure 10.1.
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11 The Thermodynamic

Equilibrium Limit

For clarity, in the following section, we discuss the correspondence of the discussions

thus far with the familiar equilibrium results. The purpose is firstly to emphasise

the consistency of the generalised formulation described in the previous sections

and to derive relations between the elements of the equilibrium ctp propagator in

preparation for Chapter 12, in which we argue that our approach is free of pinching

singularities.

In the equilibrium limit, the density operator is diagonal in particle number

and, as such, we must set all amplitudes except W11 to zero in (10.3.1). The general

density operator, cf. (B.1), then reduces to the series

ρ = |0〉〈0|+
∫∫

dΠk1
dΠk′

1

[

(2π)32E(k1)δ
(3)(k1 − k′

1)−W11(k1;k
′
1)

+
1

2

∫

dΠq1
W11(k1;q1)W11(q1;k

′
1) + · · ·

]

|k1〉〈k′
1|

+
1

2

∫

· · ·
∫

dΠk1
dΠk2

dΠk′

1
dΠk′

2

[

(2π)32E(k1)δ
(3)(k1 − k′

1)−W11(k1;k
′
1)

+
1

2

∫

dΠq1
W11(k1;q1)W11(q1;k

′
1) + · · ·

][

(2π)32E(k2)δ
(3)(k2 − k′

2)

−W11(k2;k
′
2) +

1

2

∫

dΠq2
W11(k2;q2)W11(q2;k

′
2) + · · ·

]

|k1,k2〉〈k′
1,k

′
2|+ · · · ,

(11.0.1)

where we have omitted time arguments for convenience. In this case, the g function
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is trivially zero and the f function takes the form of the series

f(p,p′, t) = (2π)32E(p)δ(3)(p−p′)−W11(p;p
′)+

1

2

∫

dΠqW11(p;q)W11(q;p
′)+· · ·

+

∫

dΠq

[

(2π)32E(p)δ(3)(p− q)−W11(p;q) + · · ·
]

×
[

(2π)32E(q)δ(3)(q− p′)−W11(q;p
′) + · · ·

]

+ · · · , (11.0.2)

where disconnected parts have been cancelled order-by-order in the expansion by

the normalisation tr ρ in (10.0.2).

The equilibrium density operator must also be diagonal in momenta and is

thus obtained by taking

W11(k;k
′)→ βE(k)(2π)3δ(3)(k− k′), (11.0.3)

where β = 1/T is the inverse, thermodynamic temperature, consistent with familiar

Gaussian form

ρ = exp

[

−β
∫

dΠkE(k)a
†(k)a(k)

]

(11.0.4)

and corresponding to the expected canonical, Boltzmann form,

ρ = e−βH. (11.0.5)

By convention, we have chosen not to include the partition function in the definition

of the density matrix. After substituting for the equilibrium W11, we obtain

ρ = |0〉〈0|+
∞
∑

n=1

1

n!

∫

· · ·
∫ n
∏

i=1

[

dΠki
fβ(ki)

]

n
⊗

i=1

|ki〉
n
⊗

i=1

〈ki| , (11.0.6)

where the amplitudes are the Boltzmann factors fβ(k) = e−βE(k). The normalisation

in (10.0.2) is then the canonical partition function Z(β) = tr e−βH .

Substituting the limit (11.0.3) into the series expansion of the f function in
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(11.0.2) and using the summations

∞
∑

n=0

(−x)n
n!

= e−x,

∞
∑

n=1

xn =
x

1− x, (11.0.7)

we find the correspondence

f(p,p′, t) −→
eq.

(2π)3δ(3)(p− p′)fB
(

E(p)
)

, (11.0.8a)

g(p,p′, t) −→
eq.

0, (11.0.8b)

independent of time. These summations in (11.0.7) are precisely those that were

used to derive the Bose-Einstein distribution in Chapter 4. We again stress that

these expressions contain an implicit division by a phase-space volume. The de-

pendence upon only the magnitude of the three-momentum p is a consequence of

the homogeneity and isotropy implied by thermodynamic equilibrium. We note

that thermodynamic equilibrium implies homogeneity but the converse is not true:

homogeneity does not imply thermodynamic equilibrium. The presence of the three-

dimensional delta function necessarily restores translational invariance.

It is known that the pinch singularities present in perturbative expansions can-

cel in the equilibrium limit (see Chapter 12) and we can safely take the limit t→∞
throughout the in-in generating functional, as we should expect for a system with

static macroscopic properties. Working then in the single-momentum representa-

tion, we obtain the familiar free equilibrium, ctp propagators

i∆0
F(p) = i

[

p2 −M2 + iε
]−1

+ 2πfB(|p0|)δ(p2 −M2), (11.0.9a)

i∆0
>(p) = 2π

[

θ(p0) + fB(|p0|)
]

δ(p2 −M2)

≡ 2πε(p0)
[

1 + fB(p0)
]

δ(p2 −M2), (11.0.9b)

i∆0
<(p) = 2π

[

θ(−p0) + fB(|p0|)
]

δ(p2 −M2)

≡ 2πε(p0)fB(p0)δ(p
2 −M2). (11.0.9c)

These are to be compared with those derived for the quantum harmonic oscillator
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in Chapter 6. The form of the Wightman propagators written in terms of the

signum function are of particular convenience in the calculation of loop diagrams

(see Section 11.1), although we must take care when taking the zero-temperature

limit, as is clear in (11.0.9c) for p0 < 0.

Returning to (10.3.19), it follows from the results above that in equilibrium

the bi-local source must be proportional to a four-dimensional delta function of the

momenta, i.e.,

Kab(p, p
′) −→

eq.
(2π)4δ(4)(p− p′)Kab(p), (11.0.10)

where Kab(p) must satisfy

∆̂ac(p)Kcd(p)∆̂
db(p) = 2πiδ(p2 −M2)fB

(

E(p)
)

[

1 1
1 1

]

. (11.0.11)

Solving the resulting system of equations, keeping terms to leading order in ǫ, and

noting that the bi-local source should be written in terms of the three-momentum

only, we find

Kab(p) = 2iǫfB
(

E(p)
)

[

1 1
1 1

]

. (11.0.12)

By virtue of the limit representation of the delta function

δ(x) = lim
ǫ→0

1

π

ǫ

x2 + ǫ2
, (11.0.13)

we can quickly convince ourselves that we do indeed obtain the correct free ctp

propagator. We see also that the terms linear in J remaining in (10.3.19) may safely

be taken to zero, since they will on functional differentiation yield contributions to

the free propagator proportional to K2 ∼ ǫ2.

Alternatively, interpreting the Boltzmann factor as an evolution operator in

negative-imaginary time, as we did in Chapter 6, and using the cyclicity of the trace

in the eev, we find the kms relation of the scalar Wightman propagators

∆>(x
0 − y0;x− y) = ∆<(x

0 − y0 + iβ;x− y). (11.0.14)
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The momentum representation

∆>(p) = eβp0∆<(p) (11.0.15)

yields the final constraint on f̃(p) in (9.2.8):

f̃(p) = θ(p0)fB(p0) + θ(−p0)fB(−p0) = fB(|p0|), (11.0.16)

where fB(p0) = [eβp0−1]−1 is the Bose-Einstein distribution function. Furthermore,

the kms relation also leads to the fluctuation-dissipation theorem

∆1(p) =
[

1 + 2fB(p0)
]

∆(p), (11.0.17)

relating the causality and unitarity relations in (7.1.24) and (7.1.28). Subsequently,

by means of (11.0.15), we may write all propagators in terms of the retarded prop-

agator:

Re∆F(p) = Re∆R(p), (11.0.18a)

Im∆F(p) = ε(p0)Im∆R(p)
[

1 + 2fB(|p0|)
]

, (11.0.18b)

∆>(p) = 2iε(p0)Im∆R(p)
[

θ(p0) + fB(|p0|)
]

, (11.0.18c)

∆<(p) = 2iε(p0)Im∆R(p)
[

θ(−p0) + fB(|p0|)
]

. (11.0.18d)

The resummed ctp propagator is given by the homogeneous limit of the SD

equation in (10.1.24)

∆−1
ab (p) = ∆0,−1

ab +Kab(p) + Πab(p), (11.0.19)

where the ctp self-energy is

Πab(p) =

[

Π(p) −Π<(p)
−Π>(p) −Π∗(p)

]

. (11.0.20)

We note that the various self-energies satisfy identities analogous to those in Ap-
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11. The Thermodynamic Equilibrium Limit

pendix A. In the free case, the self-energy is zero and the equilibrium ctp propagator

is obtained by inverting with Kab given by (11.0.12). Beyond the tree-level, however,

the contribution from the bi-local source may safely be taken to zero, at which point

it follows that the inverse, resummed propagator is explicitly

∆−1
ab (p) =

[

p2 −M2 +Π(p) −Π<(p)
−Π>(p) −p2 +M2 −Π∗(p)

]

. (11.0.21)

This may be inverted exactly, yielding the resummed ctp propagator

∆ab(p) =
1

[

p2 −M2 + ReΠR(p)
]2

+
[

ImΠR(p)
]2

×
[

p2 −M2 +Π∗(p) −Π<(p)
−Π>(p) −p2 +M2 −Π(p)

]

. (11.0.22)

The self-energies satisfy the unitarity and causality relations

Π1(p) = Π>(p) + Π<(p) = Π(p)− Π∗(p) = 2iImΠ(p), (11.0.23a)

Γ (p) = 2iMΓ(p) = Π>(p)− Π<(p) = ΠR(p)− ΠA(p) = 2iImΠR(p), (11.0.23b)

where Γ(p) is the familiar Breit-Wigner width, relating the imaginary part of the

retarded self-energy to physical reaction rates [98, 99]. The kms relation leads also

to the detailed balance condition

Π>(p) = eβp0Π<(p), (11.0.24)

resulting from the implicit dependence of the self-energies on the boundary condi-

tions via the bi-local source. In combination with (11.0.23), we find, consistent with
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(11.0.18)

ReΠ(p) = ReΠR(p), (11.0.25a)

ImΠ(p) = ε(p0)ImΠR(p)
[

1 + 2fB(|p0|)
]

, (11.0.25b)

Π>(p) = 2iε(p0)ImΠR(p)
[

θ(p0) + fB(|p0|)
]

, (11.0.25c)

Π<(p) = 2iε(p0)ImΠR(p)
[

θ(−p0) + fB(|p0|)
]

. (11.0.25d)

In the limit ImΠ(p)→ ǫ = 0+, ignoring the dispersive parts of the self-energy,

we expect to recover the free propagators in (11.0.9). This limit is equivalent to

taking

ImΠR(p)→ ǫR ≡ ε(p0) ǫ, (11.0.26)

where ǫ = 0+. Rewriting the resummed ctp propagator in (11.0.22) in terms of the

retarded self-energy, we can convince ourselves that we do indeed obtain consistent

free propagators in this limit.

11.1 Imaginary-Time Correspondence

The equilibrium density operator in (11.0.5) permits a path-integral representation

in negative imaginary-time equivalent to that described in Chapter 6 for the quan-

tum harmonic oscillator. The imaginary-time generating functional of our real scalar

theory is

Z[J ] =
∫

[dΦ] exp

[

−S̄[Φ] +
∫ β

0

dτx

∫

d3x J(x̄)Φ(x̄)

]

, (11.1.1)

where

S̄[Φ] =

∫ β

0

dτx

∫

d3x
[

1
2
∂µΦ(x̄)∂µΦ(x̄) +

1
2
M2Φ2(x̄) + 1

3!
gΦ3(x̄) + 1

4!
λΦ4(x̄)

]

(11.1.2)

and τx ∈ (0, β]. We recall that in the limit β → ∞, this is precisely the familiar

Wick rotation of the Minkowski-space generating functional with x0 → −ix̄0, where
S̄ is the Euclidean action and Euclidean coordinates are denoted by a horizontal
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11. The Thermodynamic Equilibrium Limit

bar, i.e. x̄µ ≡ (x̄0,x).

The free, imaginary-time propagator is

∆̄0(x̄− ȳ) = 1

β

+∞
∑

ℓ=−∞

∫

d3p

(2π)3
ei[ωℓ(τx−τy)+p·(x−y)]∆̄0(iωℓ,p), (11.1.3)

where

∆̄0(iωℓ,p) =
1

ω2
ℓ + p2 +M2

(11.1.4)

is the Matsubara propagator with the discrete, Matsubara frequencies ωℓ = 2πℓ/β,

ℓ ∈ Z. The resummed Matsubara propagator is given by the imaginary-time

Schwinger-Dyson equation

∆̄−1(iωℓ,p) = ∆̄0,−1(iωℓ,p) + Π̄(iωℓ,p), (11.1.5)

yielding

∆̄(iωℓ,p) =
1

ω2
ℓ + p2 +M2 + Π̄(iωℓ,p)

, (11.1.6)

where Π̄(ωℓ,p) is the imaginary-time self-energy.

We may write the spectral representation of the free Matsubara propagator

∆̄0(iωℓ,p) = −i
∫

dk0
2π

∆0(k0,p)

iωℓ − k0
, (11.1.7)

where

i∆0(k0,p) = 2πε(k0)δ(k
2
0 − p2 −M2) (11.1.8)

is the single-momentum representation of the free Pauli-Jordan function, consistent

with (7.1.15a). Making the analytic continuation iωℓ → p0 + iǫ and comparing with

the spectral representation of the retarded propagator in (7.1.21), we see that

∆̄0(iωℓ → p0 + iǫ,p) = −∆0
R(p). (11.1.9)

This correspondence must also hold for the resummed Matsubara propagator. As
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such, the analytic continuation of the imaginary-time self-energy

Π̄(iωℓ → p0 + iǫ,p) = −ΠR(p), (11.1.10)

yields the equilibrium, retarded self-energy.

In order to convince ourselves of the relation between the imaginary-time self-

energy and the real-time, retarded self-energy, we consider the bubble diagram of

our toy scalar theory, described by the Lagrangian density in (7.1.1).

The one-loop, Wightman self-energy is given by

iΠ
(1)
> (p) =

(−ig)2
2

∫

d4k

(2π)4
i∆0

>(k)i∆
0
>(p− k). (11.1.11)

Using the signum form of the positive, frequency Wightman propagator in equation

(11.0.9b), we obtain

Π
(1)
> (p) = iπg2

∫

d3k

(2π)3

∫

dk0
1

4E(k)E(p− k)

[

1 + fB(k0)
][

1 + fB(p0 − k0)
]

×
[

δ
(

k0−E(k)
)

− δ
(

k0+E(k)
)

][

δ
(

p0−k0−E(p−k)
)

− δ
(

p0−k0+E(p−k)
)

]

.

(11.1.12)

We can show that the product of Bose-Einstein factors satisfies

fB(k0)fB(p0 − k0) = fB(p0)
[

1 + fB(k0) + fB(p0 − k0)
]

. (11.1.13)

On integration over k0, we then find

Π
(1)
> (p) = iπg2

[

1 + fB(p0)
]

∑

α1,α2=±1

α1α2

∫

d3k

(2π)3
1

4E(k)E(p− k)

×
[

1 + fB
(

α1E(k)
)

+ fB
(

α2E(p− k)
)

]

δ
(

p0 − α1E(k)− α2E(p− k)
)

. (11.1.14)
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The identity in (11.0.25) then yields

ImΠ
(1)
R (p) =

πg2

2

∑

α1,α2=±1

α1α2

∫

d3k

(2π)3
1

4E(k)E(p− k)

×
[

1 + fB
(

α1E(k)
)

+ fB
(

α2E(p− k)
)

]

δ
(

p0 − α1E(k)− α2E(p− k)
)

. (11.1.15)

The real part may be calculated from the time-ordered diagram directly and

is given by

ReΠ
(1)
R (p) = Re

[

−i(−ig)
2

2

∫

d4k

(2π)4
i∆0

F(k)i∆
0
F(p− k)

]

. (11.1.16)

Explicitly,

ReΠ
(1)
R (p) = −g

2

2

∫

d3k

(2π)3
1

4E(k)E(p− k)

×
{

∫

k2
0
6=E2(k)

dk0

(

1

k2 −M2

[1

2
+ fB(p0 − k0)

]

×
[

δ
(

p0 − k0 −E(p− k)
)

+ δ
(

p0 − k0 + E(p− k)
)

])

+

∫

(p0−k0)2 6=E2(p−k)

dk0

(

1

(p− k)2 −M2

[1

2
+ fB(k0)

][

δ
(

k0 − E(k)
)

+ δ
(

k0 + E(k)
)

]

)

}

,

(11.1.17)

where the integral subscripts remind us that the integration over the on-shell sin-

gularities are understood in the Cauchy principle-value sense. Integration over k0

then yields the result

ReΠ
(1)
R (p) = −g

2

2

∑

α1,α2=±1

α1α2

∫

d3k

(2π)3
1

4E(k)E(p− k)

× 1 + fB
(

α1E(k)
)

+ fB
(

α2E(p− k)
)

p0 − α1E(k)− α2E(p− k)
. (11.1.18)
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In the imaginary-time formalism, the self-energy is given by

−Π̄(1)(iωℓ,p) =
(−g)2
2β

+∞
∑

n=−∞

∫

d3k

(2π)3
∆̄(iωn,k)∆̄(i(ωℓ − ωn),p− k). (11.1.19)

After performing the frequency summation over n (see for instance [82]), we obtain

Π̄(1)(iωℓ,p) =
g2

2

∑

α1,α2=±1

α1α2

∫

d3k

(2π)3
1

4E(k)E(p− k)

× 1 + fB
(

α1E(k)
)

+ fB
(

α2E(p− k)
)

iωℓ − α1E(k)− α2E(p− k)
. (11.1.20)

Making the analytic continuation iωℓ → p0+ iǫ and subsequently extracting the real

and imaginary parts, we can convince ourselves that these results agree with the

correspondence quoted in (11.1.10).
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12 Pinching Singularities

Our aim is to provide a perturbative approach to non-equilibrium dynamics. As

such, it is necessary that we first establish that perturbation theory is well-behaved

applied in this context. In this chapter, we analyse the perturbative expansion of

the ctp propagator, illustrating the origin of the pinching singularities thought to

spoil such expansions out of equilibrium. We proceed then to describe how, with

the systematic inclusion of finite-time effects, these pinching singularities do not in

fact arise. The price that we pay for the absence of these pathologies is that our

perturbative expansion does not fully encompass the dynamics of the system: the

complete picture relies on the constraints provided by the inverse relation. However,

this constraint will allow us to derive from this perturbation series equations of

motion for the statistical distribution functions akin to those introduced by Kadanoff

and Baym [45, 46], as we shall see in Chapter 15.

In order to proceed perturbatively, we truncate the FD series in (10.1.28) to

leading order in the couplings, safely setting Kab to zero, cf. (11.0.12). Explicitly,

∆(1),ab(p1, p2, t) = ∆0,ab(p1, p2, t)

−
∫∫

d4q1
(2π)4

d4q2
(2π)4

∆0,ac(p1, q1, t)Π
(1)
cd (q1, q2, t)∆

0,db(q2, p2, t). (12.0.1)

It will prove convenient to work in a mixed ctp-physical basis by inserting between

the external legs and self-energies the transformation outlined in (9.1.15). In this
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12. Pinching Singularities

case, we may write

∆(1),ab(p1, p2, t) = ∆0,ab(p1, p2, t)

− 1

2

∫∫

d4q1
(2π)4

d4q2
(2π)4

∆0,ac
ret (p1, q1, t)Π

′(1)
cd (q1, q2, t)∆

0,db
adv (q2, p2, t), (12.0.2)

where, making use of the relations in Appendix A and dropping the time arguments

for convenience,

∆ac
ret(p1, q1) =

[

∆F(p1, q1) ∆<(p1, q1)
∆>(p1, q1) −∆∗

F(p1, q1)

][

1 1
−1 1

]

=

[

∆R(p1, q1) ∆R(p1, q1) + 2∆<(p1, q1)
∆R(p1, q1) −∆R(p1, q1) + 2∆>(p1, q1)

]

, (12.0.3)

and

∆ac
adv(p1, q1) =

[

1 −1
1 1

][

∆F(p1, q1) ∆<(p1, q1)
∆>(p1, q1) −∆∗

F(p1, q1)

]

=

[

∆A(p1, q1) ∆A(p1, q1)
∆A(p1, q1) + 2∆>(p1, q1) −∆A(p1, q1) + 2∆<(p1, q1)

]

. (12.0.4)

It follows then that the one-loop-inserted Feynman and positive-frequency

Wightman propagators may be written in the form

∆
(1)
F (p1, p2, t) = ∆0

F(p1, p2, t)

−
∫∫

d4q1
(2π)4

d4q2
(2π)4

[

∆0
R(p1, q1, t)Π

(1)(p1, q1, t)∆
0
A(q2, p2, t)

+ ∆0
R(p1, q1, t)Π

(1)
R (q1, q2, t)∆

0
>(q2, p2, t) + ∆0

<(p1, q1, t)Π
(1)
A (q1, q2, t)∆

0
A(q2, p2, t)

]

,

(12.0.5)
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and

∆
(1)
> (p1, p2, t) = ∆0

F(p1, p2, t)

−
∫∫

d4q1
(2π)4

d4q2
(2π)4

[

∆0
R(p1, q1, t)Π

(1)
> (p1, q1, t)∆

0
A(q2, p2, t)

+ ∆0
R(p1, q1, t)Π

(1)
R (q1, q2, t)∆

0
>(q2, p2, t) + ∆0

>(p1, q1, t)Π
(1)
A (q1, q2, t)∆

0
A(q2, p2, t)

]

,

(12.0.6)

where we have used the identities

Π1 +ΠR +ΠA = 2Π, (12.0.7a)

Π1 +ΠR − ΠA = 2Π>, (12.0.7b)

cf. Appendix A.

In the equilibrium limit, where translational invariance is restored, these ex-

pansions can be rewritten as

∆
(1)
F (p) = ∆0

F(p)−
[

∆0
A(p)Π

(1)(p)∆0
R(p)+∆0

>(p)Π
(1)
R (p)∆0

R(p)+∆0
A(p)Π

(1)
A (p)∆0

<(p)
]

,

(12.0.8)

and

∆
(1)
> (p) = ∆0

>(p)−
[

∆0
A(p)Π

(1)
> (p)∆0

R(p)+∆0
>(p)Π

(1)
R (p)∆0

R(p)+∆0
A(p)Π

(1)
A (p)∆0

>(p)
]

,

(12.0.9)

where the single-momentum representations of the propagators and self-energies are

those discussed in Chapter 11. Using the identities in (11.0.18) and (11.0.25), by

virtue of the kms relation, we can rewrite these expansions entirely in terms of the

real and imaginary parts of the retarded functions. Following the algebra through,

we can show that concerning terms involving δ2(p2−M2) — those terms containing

pinching singularities — cancel. We are left with terms depending upon the product

Re∆0
R(p)Im∆0

R(p), (12.0.10)
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where

Re∆0
R(p) = P

1

p2 −M2
, (12.0.11)

P denotes the principal value integral, and

Im∆0
R(p) = −πε(p0)δ(p2 −M2). (12.0.12)

Considering the limit representation

P 1

x
= lim

ǫ→0

x

x2 + ǫ2
, (12.0.13)

and that of the delta function in (11.0.13), we may show that

Re∆0
R(p)Im∆0

R(p) =
π

2
ε(p0)δ

′(p2 −M2), (12.0.14)

where δ′(x) is the derivative of the delta function, satisfying

∫ +∞

−∞
dx δ′(x)y(x) = −y′(0). (12.0.15)

This term then is also free of pinching singularities. In which case, we find the

results,

∆
(1)
F (p) =

p2 −M2 +Π(1)(p)
(

p2 −M2 + iε
)2 + 2πifB(|p0|)

[

δ(p2 −M2) + Π̂∗(1)(p)δ′(p2 −M2)
]

,

(12.0.16a)

∆
(1)
≷ (p) =

Π
(1)
≷ (p)

(

p2 −M2 + iε
)2

+ 2πi
[

θ(±p0) + fB(|p0|)
][

δ(p2 −M2) + Π̂∗(1)(p)δ′(p2 −M2)
]

,

(12.0.16b)

where we have introduced the self-energy function

Π̂(p) = ReΠR(p) + iε(p0)ImΠR(p), (12.0.17)
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cf. (10.3.18), which we note has no physical interpretation. We have included

the negative-frequency Wightman propagator for completeness. We may quickly

convince ourselves that these results are consistent with the properties and relations

in Appendix A and reduce to the expected form in the zero-temperature limit. In

conclusion, we see that the perturbative expansion of the ctp propagator is indeed

well-defined and free of pathologies in the thermodynamic equilibrium limit.

It is clear from the above analysis that the pinch singularities resulting from

products of delta functions with identical arguments cancelled as a result of the kms

relation, valid only in thermodynamic equilibrium. As such, it would appear that

the application of perturbation theory to non-equilibrium situations, in which the

kms relation does not hold, would be plagued by these pathologies.

However, we now realise the importance of our pedantic treatment of the finite

boundary times. For finite t, the usual energy-conserving delta functions have been

replaced by the time-dependent, sinc-like weight function δt. The systematic inclu-

sion of this finite-time effect leads to microscopic violation of energy conservation at

early times, as a result of Heisenberg’s uncertainty principle. Therefore, for t finite,

it is clear that these pinching singularities cannot occur, even for the most general

distribution functions, since products of δt remain analytic. It is only when t is large

that we might expect to encounter these pathologies.

We suspect then that these potential pathologies arise from terms like

δ2t (p0), (12.0.18)

where p0 =
∑

i pi,0 is the sum over all energies flowing into the vertices. For t large,

this term is dominated by the contribution from p → 0. By l’Hôpitals rule and

(9.3.5), we may show that these pathologies grow like

δ2t (p0) −→
t≫1/M

t

4π
δ(p0). (12.0.19)

Nevertheless, in taking the limit t to infinity, it is clear that our boundary


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conditions are specified in the infinitely distant past and as such our system must

have reached thermodynamic equilibrium. It follows therefore that in taking this

limit we must also replace the t-dependent distribution functions by their equilib-

rium forms. Since the pinching singularities cancel in the equilibrium limit, the

perturbative expansion remains free of pathologies.

The behaviour of the perturbative expansion can then be summarised as fol-

lows: for early times, the t-dependent vertices lead to microscopic violation of energy

conservation, preventing the appearance of pinching singularities; for late times, the

t-dependent distribution functions approach the equilibrium distributions and the

growing pathologies begin to cancel, until, in the limit t→∞, we obtain the familiar

equilibrium thermal field theory, known to be completely free of pathologies.
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13 The Complex Scalar Field

In this chapter, we generalise our discussions to the complex scalar field χ. The

global U(1) symmetry of the Lagrangian leads to a non-vanishing conserved charge,

which requires us to introduce the chemical potential. The complex scalar field is

then described by the grand canonical distribution function.

13.1 Canonical Quantisation

We consider then the Lagrangian density

L(x) = ∂µχ
†(x)∂µχ(x)−m2χ†(x)χ(x)− 1

4
λ
[

χ†(x)χ(x)
]2
, (13.1.1)

where the complex scalar field χ(x) may be written in the interaction picture in the

familiar representation

χ(x) =

∫

dΠp

[

a(p, 0)e−iE(p)x0eip·x + b†(p, 0)eiE(p)xe−ip·x], (13.1.2)

where a†(p, 0) and a(p, 0) (b†(p, 0) and b(p, 0)) are the interaction-picture, parti-

cle (anti-particle) creation and annihilation operators, respectively. Under charge-

conjugation, see (A.2a), the creation and annihilation operators satisfy

U †
c a(p, t̃)Uc = ηb(p, t̃), (13.1.3a)

U †
c b

†(p, t̃)Ucs = ηa†(p, t̃). (13.1.3b)
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Using (7.1.3), we may write the more convenient representations

χ(x) =

∫

d4p

(2π)4
e−ip·xχ(p), (13.1.4a)

χ†(x) =

∫

d4p

(2π)4
e−ip·xχ†(−p), (13.1.4b)

with the Fourier amplitude

χ(p) = 2πδ(p2 −m2)
[

θ(p0)a(p, 0) + θ(−p0)b†(−p, 0)
]

. (13.1.5)

For the scalar field, the quantisation scheme depended only on the restriction

placed upon the form of the field commutator. In the case of the complex scalar

field, we have two degrees of freedom to fix. Thus, we begin with the following two

field commutators:

[

χ(x), χ(y)
]

= 0, (13.1.6a)

[

χ(x), χ†(y)
]

= i∆(x, y;m2), (13.1.6b)

where the Pauli-Jordan function has precisely the form in (7.1.14). As for the real

scalar field, we may derive the equal-time commutation relations

i∆(x, y;m2)
∣

∣

x0=y0=t̃
=
[

χ(t̃,x), χ†(t̃,y)
]

= 0, (13.1.7a)

∂x0
i∆(x, y;m2)

∣

∣

x0=y0=t̃
=
[

π†(t̃,x), χ†(t̃,y)
]

= −iδ(3)(x− y), (13.1.7b)

∂y0i∆(x, y;m2)
∣

∣

x0=y0=t̃
=
[

χ(t̃,x), π(t̃,y)
]

= iδ(3)(x− y), (13.1.7c)

∂x0
∂y0i∆(x, y;m2)

∣

∣

x0=y0=t̃
=
[

π†(t̃,x), π(t,y)
]

= 0, (13.1.7d)

where π(t̃,x) = ∂t̃χ
†(t̃,x) is the conjugate momentum operator. The particle and

anti-particle creation and annihilation operators necessarily satisfy the algebra

[

a(p, t̃), a†(p′, t̃)
]

=
[

b(p, t̃), b†(p′, t̃)
]

= (2π)32E(p)δ(3)(p− p′), (13.1.8)

with all other commutators vanishing.
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In addition to the propagators listed in Appendix A, we also define the C-

violating propagator

i /∆(x, y) =
1

2
〈{χ(x), χ(y)}〉, (13.1.9)

which satisfies

/∆(x, y) = /∆(y, x) = −η2 /∆c∗
(x, y). (13.1.10)

Clearly this is vanishing at zero-temperature and in thermodynamic equilibrium.

However, such correlations cannot be ruled out for general non-homogeneous eevs.

In analogy to (10.3.4), we write the following set of eevs of two-point products

of particle and anti-particle creation and annihilation operators:

〈a†(p′, 0)a(p, 0)〉t = 2E (p,p′)f(p,p′, t)ei[E(p)−E(p′)]t/2, (13.1.11a)

〈b(p′, 0)a(p, 0)〉t = 2E (p,p′)g(p,p′, t)ei[E(p)+E(p′)]t/2, (13.1.11b)

〈a(p′, 0)a(p, 0)〉t = 2E (p,p′)h(p,p′, t)ei[E(p)+E(p′)]t/2, (13.1.11c)

〈b†(p′, 0)a(p, 0〉t = 2E (p,p′)d(p,p′, t)ei[E(p)−E(p′)]t/2, (13.1.11d)

where f , g, h and d are consistent with the identities in Appendix A and satisfy

f(p,p′, t) = f(p′,p, t), (13.1.12a)

g(p,p′, t) = gc(p′,p, t), (13.1.12b)

h(p,p′, t) = h(p′,p, t), (13.1.12c)

d(p,p′, t) = η2dc∗(p′,p, t). (13.1.12d)

The elements of the free ctp propagator, as well as the retarded, advanced,

Pauli-Jordan and Hadamard propagators, may be written in the same forms as

(10.3.12), (10.3.14) and (10.3.15), described in Chapter 10, with the substitution

f̃(p, p′, t) = θ(p0)θ(p
′
0)f(p,p

′, t) + θ(−p0)θ(−p′0)f c(−p,−p′, t)

+ θ(p0)θ(−p′0)g(p,−p′, t) + θ(−p0)θ(p′0)gc(−p,p′, t), (13.1.13)
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satisfying f̃(p, p′, t) = f̃(p′, p, t) = f̃ c(−p′,−p, t), as required. The charge-violating

propagator may be written

/∆(p, p′, t) = −i2πδ(p2 −m2)|2p0|1/22d̃(p, p′, t)ei(p0−p′
0
)t/2|2p′0|1/22πδ(p′2 −m2),

(13.1.14)

where

d̃(p, p′, t) = θ(p0)θ(p
′
0)d(p,p

′, t) + θ(−p0)θ(−p′0)η2dc∗(−p,−p′, t)

+ θ(p0)θ(−p′0)h(p,−p′, t) + θ(−p0)θ(p′0)η2hc∗(−p,p′, t). (13.1.15)

The inclusion of the C-violating distribution functions requires the addition

to the expansion of the density matrix in the in-in generating functional the C-

violating source lab. Hence, the in-in generating functional of connected Green’s

functions for the complex scalar field takes the form

W[ja, kab, lab] = −i~ ln
∫∫

[dχa†, χa]

× exp

[

i

~

(

S
[

χa†, χa
]

+

∫

Ωt

d4x
{

j†a(x)χ
a(x) + χ†

a(x)j
a(x)

}

+
1

2

∫∫

Ωt

d4x d4x′
{

χa†(x)kab(x, x
′)χb(x′) + χa(x)kcab(x, x

′)χb†(x′)

+ χa(x)l†ab(x, x
′)χb(x′) + χa†(x)lab(x, x

′)χb†(x′)
}

+ · · ·
)]

. (13.1.16)

The bi-local sources necessarily satisfy the identities

kab(x, x
′) = k†ba(x

′, x), (13.1.17a)

lab(x, x
′) = lba(x

′, x) = η2lc†ab(x, x
′), (13.1.17b)

to ensure that the exponent of the generating functional is Hermitian and C-

invariant. The subsequent derivation of the effective action then follows analogously

to Chapter 10.
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The Lagrangian in (13.1.1) is invariant under the global U(1) transformation

χ(x)→ χ′(x) = e−iαχ(x), (13.1.18a)

χ†(x)→ χ′†(x) = eiαχ†(x) (13.1.18b)

and as such we obtain the conserved, Noether current

jµ(x) = i
[

χ†(x)∂µχ(x)− [∂µχ
†(x)]χ(x)

]

(13.1.19)

with corresponding conserved charge

: Q(x0) : =
∫

d3x : j0(x) :=

∫

dΠp

[

a†(p, 0)a(p, 0)− b†(p, 0)b(p, 0)
]

. (13.1.20)

The existence of this conserved charge necessitates the introduction of the chemical

potential µ and, as such, the equilibrium density matrix is of the grand-canonical

form

ρ(β,N) = e−β(H−µN). (13.1.21)

The kms relation then generalises to

∆>(x
0 − y0;x− y) = e−βµ∆<(x

0 − y0 + iβ;x− y) (13.1.22)

or, in the momentum representation,

∆>(p) = eβ(p0−µ)∆<(p). (13.1.23)

Proceeding as in Chapter 9, we find that the final constraint on f̃(p), generalising

(11.0.16), is

f̃(p) = θ(p0)fB(p0) + θ(−p0)f c
B(−p0), (13.1.24)

where f
(c)
B (p0) = [eβ[p0−(+)µ]−1]−1 is the particle (anti-particle) Bose-Einstein distri-

bution function. In equilibrium, translational invariance is restored and the elements
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of the free ctp propagator take the single-momentum forms

i∆F(p) = i
[

p2 −m2 + iε
]−1

+ 2π
{

θ(p0)fB(p0) + θ(−p0)f c
B(−p0)

]

δ(p2 −m2),

(13.1.25a)

i∆>(p) = 2π
{

θ(p0)
[

1 + fB(p0)
]

+ θ(−p0)f c
B(−p0)

}

δ(p2 −m2), (13.1.25b)

i∆<(p) = 2π
{

θ(p0)fB(p0) + θ(−p0)
[

1 + f c
B(−p0)

]}

δ(p2 −m2). (13.1.25c)

13.2 Connection with the Imaginary-Time

Formalism

In order to define the itf generating functional for the grand canonical partition

function in (13.1.21), it is necessary to consider the Hamiltonian form of the path

integral directly (see for instance [82]). We may write

Z[j] =
∫∫

[d(π†, π)][d(χ†, χ)] exp

[

−
∫ β

0
dτx

∫

d3x
{

H(π(†), χ(†))

− i
[

π(x̄)∂τxχ(x̄) + π†(x̄)∂τxχ
†(x̄)

]

− iµ
[

π†(x̄)χ†(x̄)− π(x̄)χ(x̄)
]

− j†(x̄)χ(x̄)− j(x̄)χ(x̄)
}

]

. (13.2.1)

Expanding the fields and conjugate momenta in terms of two real degrees of freedom

χ(x̄) =
1√
2
[χ1(x̄) + iχ2(x̄)] , (13.2.2a)

π(x̄) =
1√
2
[π1(x̄)− iπ2(x̄)] , (13.2.2b)

we may perform the Gaussian integrals over π1 and π2, yielding

Z[j] =
∫

[d(χ†, χ)] exp

[

−
∫ β

0

dτx

∫

d3x
[

(∂τx + µ)χ†(x̄)(∂τx − µ)χ(x̄)

+∇χ†(x̄) · ∇χ(x̄) +m2χ†(x̄)χ(x̄)− j†(x̄)χ(x̄)− j(x̄)χ(x̄)
]

]

. (13.2.3)
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Inserting the Fourier transform,

χ(x̄) =
1

β

+∞
∑

ℓ=−∞

∫

d3p

(2π)3
ei[ωℓτx+p·x]χ(iωℓ,p), (13.2.4)

we see that the effect of the chemical potential is to shift the poles of the Matsubara

propagator, which becomes

∆̄0(iωℓ − µ,p) =
1

(ωℓ + iµ)2 + p2 +m2
. (13.2.5)

The retarded propagator is then obtained by the continuation

∆̄0(iωℓ − µ→ p0 + iε,p) = −∆0
R(p) (13.2.6)

and the retarded self-energy by

Π̄(iωℓ − µ→ p0 + iε) = −ΠR(p), (13.2.7)

cf. (11.1.9) and (11.1.10).







14 The Number Density

In order to derive equations governing the evolution of the statistical distribution

functions, so far appearing as unknowns in the perturbative expansion, we must first

arrive at an unambiguous definition of the number density of particles in terms of

the eev of two-point correlations of field operators. We begin by considering the

conserved charge for the scalar field

Q(x0) = i

∫

d3x
[

Φ†(x)π†(x)− π(x)Φ(x)
]

, (14.0.1)

which we may interpret in terms of the difference between the number of particles

and the number of anti-particles. We recall that π(x) = ∂0Φ
†(x) is the conjugate

momentum operator. Of course, for the real scalar field, this is zero (up to a zero-

point contribution) and herein lies the difficulty: we need somehow to extract from

this charge the particle and anti-particle contributions.

In order to describe the number density of particles of a spatially-inhomogeneous,

time-dependent system, we firstly need a generalisation of this operator with suf-

ficient degrees-of-freedom that we may write a mixed momentum- and coordinate-

space representation. We proceed by inserting unity in the form

1 =

∫

d4y

∫

d3p

(2π)3
e−ip·(x−y)δ(x0 − y0) (14.0.2)
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14. The Number Density

and subsequently symmetrising the integrand in x and y. This yields

Q(x0) =
i

2

∫

d3x

∫

d4y

∫

d3p

(2π)3
e−ip·(x−y)δ(x0−y0)

[

Φ†(x)π†(y)−π(x)Φ(y)+(x↔ y)
]

,

(14.0.3)

Introducing the relative and central coordinates, Rµ and Xµ respectively, we may

write the charge density

Q(p,X, X0) =
i

2

∫

d3R e−ip·R δ(R0)

×
[

Φ†(X + R
2
)π†(X − R

2
)− π(X + R

2
)Φ(X − R

2
) + (R→ −R)

]

. (14.0.4)

Recalling the discussion of physical, equal-time observables in Chapter 9, the eev

of the charge density at the macroscopic time t is obtained by taking the trace with

the density matrix in the equal-time limit X0 = t/2, such that

〈Q(p,X, t/2)〉t = lim
X0→t/2

−i
∫

d3R e−ip·R δ(R0) ∂R0

[

i∆>(R,X, t)− i∆>(−R,X, t)
]

,

(14.0.5)

where we have used the short-hand

i∆>(R,X, t) = 〈Φ†(X + R
2
)Φ(X − R

2
)〉

t
(14.0.6)

for the resummed ctp Wightman propagators.

Looking more closely at the two terms in (14.0.4), we see that the first com-

prises the difference of the forward-in-time propagation of background plus one

positive-frequency, particle modes and background negative-frequency, anti-particle

modes. The second comprises the difference of the forward-in-time propagation of

background positive-frequency, anti-particle modes and background plus one negative-

frequency, particle modes. For the real scalar field, the particle and anti-particle

contributions cancel, leaving only a zero-point term, which is removed by imposing

normal-ordering. The conserved charge of the real scalar field is then vanishing as

we would expect.
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We may then extract the number density of particles by adding the charge-

conjugate of the negative-frequency contribution from the first term in (14.0.5) and

the charge-conjugate of the positive-frequency contribution from the second, with

an overall minus sign for our convention on the charge of particles. We may separate

the positive- and negative-frequency parts by decomposing the delta function in the

form

δ(R0) =
1

2πi

[

1

R0 − iǫ
− 1

R0 + iǫ

]

, (14.0.7)

where the limit ǫ → 0+ is understood. At this point, it is important to note that

in separating out and combining the correct positive- and negative-frequency parts,

we have removed the zero-point term, effectively imposing normal ordering on the

definition of the number density. We may then define the number density of particles

at the macroscopic time t as

n(p,X, t) = − lim
X0→t/2

∫

d3R e−ip·R

×
∫

dR0

2π

[

1

R0 − iǫ
∂R0

i∆c
>(R,X, t) +

1

R0 + iǫ
∂R0

i∆c
>(−R,X, t)

]

. (14.0.8)

This may be recast in terms of the Wigner representation of the Wightman propa-

gators as

n(p,X, t) = lim
X0→t/2

∫

dp0
2π

p0
[

θ(p0)i∆
c
>(−p,X, t)− θ(−p0)i∆c

>(p,X, t)
]

, (14.0.9)

from which we may obtain the number density of anti-particles by charge-conjugation,

see Appendix A and Chapter 13. Using the identities in Appendix A, we may rewrite

this in terms of the negative-frequency Wightman propagators as

n(p,X, t) = lim
X0→t/2

∫

dp0
2π

p0
[

θ(p0)i∆<(p,X, t)− θ(−p0)i∆<(−p,X, t)
]

, (14.0.10)

We interpret this number density as the number of excitations with three-momentum

p in a unit volume centred on X at macroscopic time t. Trivially, the total number
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per unit volume is obtained by summing over all momentum modes, i.e.,

n(X, t) =

∫

d3p

(2π)3
n(p,X, t). (14.0.11)

By inserting the Wigner transform, this may be expressed in terms of the double-

momentum representation of the propagators as

n(X, t) = lim
X0→t/2

2

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0)p0i∆<(p+

P
2
, p− P

2
, t). (14.0.12)

If f is indeed to be interpreted as a distribution function, it follows also that

n(X, t) =

∫

d3p

(2π)3

∫

d3P

(2π)3
eiP·Xf(p+P/2,p−P/2, t). (14.0.13)

Substituting into (14.0.10) for the free, equilibrium Wightman propagators of

the complex scalar field, we obtain

n(c)(p,X, t) = f
(c)
B

(

E(p)
)

, (14.0.14)

exactly as we would expect for the number density of particles (anti-particles). In-

serting instead the resummed equilibrium Wightman propagators in the narrow-

width limit, we obtain

n(c)(p,X, t) = f
(c)
B

(

E(p)
)

, (14.0.15)

where E(p) is the solution to the gap equation

E2(p) = p2 +M2 − ReΠR(E(p) + iǫ,p), (14.0.16)

where n(p,X, t) is then the number density of quasi-particles.
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15 Perturbative Time-Evolution

Equations

In this chapter, we arrive at the discussion of the ultimate goal of this work: to

generalise the classical Boltzmann transport equation of Chapter 3 to quantum

field-theoretic systems.

The FD series alone is insufficient to describe the evolution of the distribution

function f(p,p′, t), since it appears as an unknown in the expansion. We proceed

then in analogy to the derivation of the well-known Kadanoff-Baym equations [45,46]

by using the inverse relation to constrain the statistical evolution of the two-point

functions. Our approach will nevertheless have a significant difference: we will trun-

cate the perturbative expansion in terms of the double momentum representation

of the free propagators, not the gradient expansion of the Wigner representation of

the resummed propagators, cf. Chapter 10 and Appendix C.

Beginning with the double-momentum representation of the SD equation (10.1.25),

we convolute from the right with the resummed ctp propagator and the weight func-

tion δt, making use of the inverse relation (9.3.2). This yields

∫∫

d4q1
(2π)4

d4q2
(2π)4

∆0,−1
ac (p1, q1)(2π)

4δ
(4)
t (q1 − q2)∆c

b(q2, p2, t)

= ηab(2π)
4δt(p1 − p2)−

∫∫

d4q1
(2π)4

d4q2
(2π)4

Πac(p1, q1, t)(2π)
4δt(q1 − q2)∆c

b(q2, p2, t),

(15.0.1)
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where we have safely taken Kab to zero. Recalling that the self-energy contains δt

functions in the vertices, we may perform the q1 integral on the right-hand side,

making use of (9.3.6). Inserting the explicit form of the inverse propagator on the

left, we may also perform the q1 integral on the left-hand side. We then obtain the

more manageable form

∫

d4q2
[

p21 −M2
]

δ
(4)
t (p1 − q2)∆ab(q2, p2, t)

= ηab(2π)
4δ

(4)
t (p1 − p2)−

∫

d4q2
(2π)4

Πac(p1, q2, t)∆
c
b(q2, p2, t). (15.0.2)

Outside the time interval [−t/2, t/2], the resummed propagators must satisfy the

Klein-Gordon equations in (9.1.21) and (9.1.22) and, as such, we may extend the

time integral to infinity in all but the right-most term in the coordinate-space rep-

resentation of (15.0.2), containing the self-energy. Correspondingly in (15.0.2), we

may replace the δt functions in all but the right-most, self-energy-dependent term

by exact delta functions, yielding

[

p21 −M2
]

∆ab(p1, p2, t) = ηab(2π)
4δ(4)(p1 − p2)−

∫

d4q

(2π)4
Πac(p1, q, t)∆

c
b(q, p2, t).

(15.0.3)

With the definition of the number density (14.0.10) in mind, we equate the

21-element of each side to extract the interacting Klein-Gordon equation of the

positive-frequency, resummed Wightman propagator:

[

p21 −M2
]

∆<(p1, p2, t) = −
∫

d4q

(2π)4
[

Π<(p1, q, t)∆
∗
F(q, p2, t) + Π(p1, q, t)∆<(q, p2, t)

]

.

(15.0.4)

Using the identities listed in Appendix A, we may show that

∆F(x, y) =
1

2

[

∆>(x, y) + ∆<(x, y) + 2∆P(x, y)
]

, (15.0.5)

with an analogous relation holding for the self-energies. Subsequently decomposing
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the right-hand side of (15.0.4), we may write

[

p21 −M2
]

∆<(p1, p2, t) +
1

2

∫

d4q

(2π)4
ΠP(p1, q, t)∆<(q, p2, t)

= −1
2

∫

d4q

(2π)4
[

Π>(p1, q, t)∆<(q, p2, t)−Π<(p1, q, t)
(

∆>(q, p2, t)− 2∆P(q, p2, t)
)]

,

(15.0.6)

where we recall that the subscript P denotes the principal-part functions in (7.1.29)

and (10.1.22b). We now re-introduce the central and relative momenta, p = (p1 +

p2)/2 and P = p1 − p2, writing

[

(p0+
P0

2
)2−E2(p+ P

2
)
]

∆<(p+
P
2
, p− P

2
, t)+F (p+ P

2
, p− P

2
, t) = C (p+ P

2
, p− P

2
, t),

(15.0.7)

where we have defined

F (p+ P
2
, p− P

2
, t) ≡ −

∫

d4q

(2π)4
iΠP(p+

P
2
, q, t)i∆<(q, p− P

2
, t) (15.0.8)

and

C (p+ P
2
, p− P

2
, t) ≡ 1

2

∫

d4q

(2π)4
[

iΠ>(p1, q, t)i∆<(q, p2, t)

− iΠ<(p1, q, t)
(

i∆>(q, p2, t)− 2i∆P(q, p2, t)
)]

. (15.0.9)

Still keeping the number density (14.0.10) firmly in mind, we integrate with

the measure
∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0). (15.0.10)
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We then obtain

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0)

[

(p0 +
P0

2
)2 − E2(p+ P

2
)
]

∆<(p+
P
2
, p− P

2
, t)

+

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0)F (p+ P

2
, p− P

2
, t)

=

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0)C (p+ P

2
, p− P

2
, t). (15.0.11)

Adding to this result the complex conjugate of the same expression with P → −P ,
using the identities in Appendix A, we may extract the pieces bi-linear in p and P

to obtain

2

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0) p · P ∆<(p+

P
2
, p− P

2
, t)

+

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0)

[

F (p+ P
2
, p− P

2
, t) + F

∗(p− P
2
, p+ P

2
, t)
]

=

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0)

[

C (p+ P
2
, p− P

2
, t) + C

∗(p− P
2
, p+ P

2
, t)
]

.

(15.0.12)

The first term of the left-hand side may be rewritten as

2

∫∫

d4p

(2π)4
d4P

(2π)4
θ(p0)

[

ip0∂X0
− p ·P

]

e−iP ·X ∆<(p+
P
2
, p− P

2
, t). (15.0.13)

Taking the limit X0 → t̃f = t/2, replacing ∂X0
with ∂t and comparing with (14.0.10),

we recognise the derivative term as precisely the time-derivative of the number

density. The propagators and self-energies in the F and C terms depend on f(p+

p

2
,p+ p

2
, t) and we have therefore obtained an evolution equation for the distribution

function akin to the classical Boltzmann equation.
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Truncating to leading order in perturbation theory, we obtain

∂tn(X, t)− 2

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X p ·P θ(p0)∆

(1)
< (p+ P

2
, p− P

2
, t)

+

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·X θ(p0)

[

F
(1)(p+ P

2
, p− P

2
, t) + F

(1)∗(p− P
2
, p+ P

2
, t)
]

=

∫∫

d4p

(2π)4
d4P

(2π)4
e−iP ·Xθ(p0)

[

C
(1)(p+ P

2
, p− P

2
, t) + C

(1)∗(p− P
2
, p+ P

2
, t)
]

,

(15.0.14)

where X0 = t/2. Recalling (14.0.13), we may rewrite this in terms of the distribution

function f as

∂tf(p+ P
2
,p− P

2
, t)− 2

∫∫

dp0
2π

dP0

2π
e−iP0t/2 p ·P θ(p0)∆

(1)
< (p+ P

2
, p− P

2
, t)

+

∫∫

dp0
2π

dP0

2π
e−iP0t/2 θ(p0)

[

F
(1)(p + P

2
, p− P

2
, t) + F

(1)∗(p− P
2
, p+ P

2
, t)
]

=

∫∫

dp0
2π

dP0

2π
e−iP0t/2 θ(p0)

[

C
(1)(p+ P

2
, p− P

2
, t) + C

(1)∗(p− P
2
, p+ P

2
, t)
]

,

(15.0.15)

where, for instance,

C
(1)(p+ P

2
, p− P

2
, t) ≡ 1

2

∫

d4q

(2π)4
[

iΠ
(1)
> (p+ P

2
, q, t)i∆0

<(q, p− P
2
, t)

− iΠ(1)
< (p+ P

2
, q, t)

(

i∆0
>(q, p− P

2
, t)− 2i∆0

P(q, p− P
2
, t)
)]

. (15.0.16)

The first two terms of the left-hand side of (15.0.14), originating from (15.0.13)

generalise the drift term ∂t+v·∇ of the Boltzmann equation to this non-homogeneous

double momentum representation, cf. (3.6.11). We see that it is possible to write

the spatial part of this drift term in terms of the distribution function f only when

we take the limit of on-shell, massless particles, in which case p0 = |p|. The F

terms then are the force terms generated by a potential due to the dispersive part

of the self-energy. The C terms are the collision terms where the principal-part

contribution encodes off-shell processes. Comparing with the full, non-truncated

form of Kadanoff-Baym kinetic equation in (C.4b), we see that the resummed prop-





15. Perturbative Time-Evolution Equations

agators have been replaced by the one-loop inserted propagators and the series of

nested Poisson brackets has been replaced by the single convolution integral over

the central momentum P .

Imposing energy conservation, we may replace the time-dependent weight func-

tions of the vertices with exact delta functions. Subsequently imposing spatial ho-

mogeneity, we recall that all propagators and self-energies are proportional to four-

dimensional delta functions of the momenta. In the same limit, the distribution

function satisfies the correspondence

f(p+ P
2
,p− P

2
, t) = (2π)3δ(3)(P)f(|p|, t). (15.0.17)

Working then in the single-momentum representation and integrating over the three

momentum P, we find the following evolution equation for the number density

f(|p|, t):

∂tf(|p|, t) =
∫

dp0
2π

θ(p0)
[

iΠ
(1)
> (p, t)i∆0

<(p, t)− iΠ(1)
< (p, t)i∆0

>(p, t)
]

, (15.0.18)

where the force term and off-shell effects have vanished. In the following section,

we will show that this is precisely the Boltzmann equation for the evolution of the

distribution function to leading order in perturbation theory. This equation is to be

compared with the truncated Kadanoff-Baym kinetic equation in (C.5b)
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16 Non-Homogeneous

Loop Integrals

In this chapter, we side step the development of our approach, in order to outline

the techniques necessary to perform loop integrals in the presence of the energy-non-

conserving vertices and non-homogeneous free propagators introduced in Chapters 9

and 10. We do not discuss the generalisation of the A-function (see [100]), however

an explicit calculation of tadpole graphs is described with reference to the toy model

and the inclusion of thermal masses in Chapter 17.

16.1 The Non-Homogeneous B0 Function

Let us define by

Bab
0 (q1, q2, m1, m2, t) ≡ (2πµ)4−dei(q

0
1
−q0

2
)t/2

∫

· · ·
∫

ddk1
iπ2

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)4δ
(4)
t (q1 − k1 + k2)(2π)

4δ
(4)
t (q2 − k′1 + k′2)

× ηacd∆0
ce(k1, k

′
1, t;m1)∆

0
fd(k

′
2, k2, t;m2)η

efb, (16.1.1)

where

Bab
0 =

[

B0 B<
0

B>
0 −B∗

0

]

, (16.1.2)
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16. Non-Homogeneous Loop Integrals

k1 k′1

k2 k′2

q q′

a b

Figure 16.1: The non-homogeneous Bab
0 function.

the generalisation of the more familiar zero-temperature B0 function (see, for in-

stance, [100]):

BT=0
0 (q,m1, m2) = (2πµ)4−d

∫

ddk

iπ2

1

k2 −m2
1 + iǫ

1

(k − q)2 −m2
1 + iǫ

. (16.1.3)

Under the assumption that the statistical distribution functions are appropriately

cut-off in the ultra-violet and in anticipation that any such divergence will result from

the homogeneous zero-temperature contribution, we have restricted the dimensional

regularisation of the integral only to the k1 dependence.

In order to deal with the product of t-dependent sinusoidal terms in the vertex

functions, we make the following replacement

δt(x)δt(y) =

∫ σ+i∞

σ−i∞

ds

2πi
est

2

π2

4s

(x− y)2 + 4s2
1

(x+ y)2 + 4s2
, (16.1.4)

where the right-hand side is the inverse Laplace transform and s ∈ C. The Bromwich

contour is chosen so that σ ∈ R is larger than the real part of the right-most

pole in the integrand to ensure convergence. We then introduce the representation

Bab
0 (q1, q2, m1, m2, s) through

Bab(q1, q2, m1, m2, t) =

∫ σ+i∞

σ−i∞

ds

2πi
estBab

0 (q1, q2, m1, m2, s). (16.1.5)
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16.1. The Non-Homogeneous B0 Function

We note thatBab
0 (q1, q2, m1, m2, s) is not the Laplace transform ofBab

0 (q1, q2, m1, m2, t)

as we do not transform the t dependence of the distribution functions.

Accordingly, we then obtain

Bab
0 (q1, q2, m1, m2, s) = 8(2πµ)4−dei(q

0
1
−q0

2
)t/2

∫

· · ·
∫

ddk1
iπ2

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 4s
[

[

q01 − q02 − k01 + k01
′
+ k02 − k02

′]2
+ 4s2

]−1

×
[

[

q01 + q02 − k01 − k01
′
+ k02 + k02

′]2
+ 4s2

]−1

× ηacd∆0
ce(k1, k

′
1, t;m1)∆

0
fd(k

′
2, k2, t;m2)η

efb, (16.1.6)

in which the analytic structure of the product of formerly t-dependent vertex func-

tions is now manifest.

Recalling the relations in Appendix A, we may fix all four components of

this generalised B0 function by the explicit evaluation of only two: one from the

diagonal and one from the anti-diagonal; specifically one of the time- or anti-time-

ordered functions and one of the positive- or negative-frequency absolutely-ordered

functions. Proceeding in the most nominal and aesthetic fashion, we opt to evaluate

the time-ordered and positive-frequency absolutely-ordered functions in the first

instance.

16.1.1 Time-Ordered Functions

The 11-element coincides with the time-ordered function, which we immediately

separate into four contributions, that is

B0 = I(i) + I(ii) + I(iiia) + I(iiib), (16.1.7)

corresponding to the zero-temperature, purely thermal and cross terms, respectively:

(i) The zero-temperature part may be extracted from the product of terms





16. Non-Homogeneous Loop Integrals

non-vanishing in the limit of vanishing statistical distribution functions and is

I(i)(q1, q2, m1, m2, s) = 8(2πµ)4−dei(q
0
1−q02)t/2

∫

· · ·
∫

ddk1
iπ2

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 4s
[

[

q01 − q02 − k01 + k01
′
+ k02 − k02

′]2
+ 4s2

]−1

×
[

[

q01 + q02 − k01 − k01
′
+ k02 + k02

′]2
+ 4s2

]−1

× 1

k21 −m2
1 + iǫ

(2π)4δ(4)(k1 − k′1)
1

k′2
2 −m2

2 + iǫ
(2π)4δ(4)(k′2 − k2). (16.1.8)

The k01
′
and k02 integrations are performed by means of the delta functions in the

final line, giving

I(i)(q1, q2, m1, m2, s) = (2πµ)4−dei(q
0
1−q02)t/2

∫

· · ·
∫

dd−1k1
iπ2

d3k′
1

(2π)3
d3k2

(2π)3
d3k′

2

(2π)3
dk01 dk

0
2
′

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 4s

π

[

[

q01 − q02
]2

+ 4s2
]−1[

[ q0
1
+q0

2

2
− k01 + k02

′]2
+ s2

]2
]−1

× 1

(k01)
2 −E2

1(k1) + iǫ

1

(k02
′
)2 − E ′

2
2(k′

2) + iǫ

× (2π)3δ(3)(k1 − k′
1)(2π)

3δ(3)(k′
2 − k2). (16.1.9)

The reason for the seemingly-gratuitous retention of the trivial phase-space inte-

grals and three-dimensional delta functions will become evident in the forthcoming

evaluation of the remaining contributions to the time-ordered function.

By virtue of the residue theorem, we may perform the k01 and k02
′
integrations

by closing contours in the lower-halves of the k01 and k02
′
complex-planes. After

collecting together the resulting terms and re-expressing the result with more illus-
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16.1. The Non-Homogeneous B0 Function

trative partial fractions, we find

I(i)(q1, q2, m1, m2, s) = −2(2π)3µ4−d
∑

α1=±1

∫

· · ·
∫

dd−1k1
(2π)d−1

d3k′
1

(2π)3
d3k2

(2π)3
d3k′

2

(2π)3

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02
]2

+ 4s2
]−1 α1

E1(k1)E
′
2(k

′
2)

[

q01+q02
2
− α1

[

E1(k1) + E ′
2(k

′
2)− is

]

]−1

× (2π)3δ(3)(k1 − k′
1)(2π)

3δ(3)(k′
2 − k2), (16.1.10)

or, in terms of the Lorentz-invariant phase-spaces,

I(i)(q1, q2, m1, m2, s) = −8(2π)3µ4−d
∑

α1=±1

ei(q
0
1
−q0

2
)t/2

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02
]2

+ 4s2
]−1[

q0
1
+q0

2

2
− α1

[

E1(k1) + E ′
2(k

′
2)− is

]

]−1

× α1(2π)
32E ′

1(k
′
1)δ

(3)(k1 − k′
1)(2π)

32E2(k2)δ
(3)(k′

2 − k2), (16.1.11)

where the superscript d − 1 identifies that the k1 integration is to be made over a

(d− 1)-dimensional phase-space.

Using the fact that the Laplace transform satisfies

Lt[ReF ](s) =
1

2

[

F(s) +
[

F(s∗)
]∗
]

, (16.1.12a)

Lt[ImF ](s) =
1

2i

[

F(s)−
[

F(s∗)
]∗
]

, (16.1.12b)

we may separate this result into the dispersive and absorptive parts of the original

t-dependent function, that is to say the parts symmetric and anti-symmetric in s
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respectively. In this form,

I(i)(q1, q2, m1, m2, s) = 8(2π)3µ4−d
∑

α1=±1

ei(q
0
1−q02)t/2

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02
]2

+ 4s2
]−1[

[ q01+q02
2
− α1

(

E1(k1) + E ′
2(k

′
2)
)]2

+ s2
]2
]−1

×
{

− α1

[

q01+q02
2
− α1

(

E1(k1) + E ′
2(k

′
2)
)

]

+ is
}

× (2π)32E ′
1(k

′
1)δ

(3)(k1 − k′
1)(2π)

32E2(k2)δ
(3)(k′

2 − k2), (16.1.13)

where the delineation is identified within the braces of the fourth line.

Isolating the dispersive part of this result and performing the superfluous

phase-space integrals, we find

DispB0(q1, q2, m1, m2, s) = −(2π)4
1

π

1
[

q01 − q02
]2

+ 4s2
δ(3)(q1 − q2)

× (2πµ)4−dei(q
0
1−q02)t/2

∑

α=±1

∫

dd−1k1
E1(k1) + E2(k1 − q1)

E1(k1)E2(k1 − q1)

× 1

π

1
[

q0 − iαs
]2 −

[

E1(k1) + E2(q1 − k1)
]2 , (16.1.14)

where Disp denotes that this is the dispersive part. We compare this result to the

form of the zero-temperature B0 function (16.1.3) after the k0 integration has been

performed:

BT=0
0 (q,m1, m2) = −(2πµ)4−d

∫

dd−1k1
E1(k1) + E2(k1 − q1)

E1(k1)E2(k1 − q1)

× 1

π

1

q20 −
[

E1(k1) + E2(q1 − k1)
]2 . (16.1.15)
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Hence, we may write

Disp I(i)(q1, q2, m1, m2, s)

= (2π)4
1

π

1
[

q01 − q02
]2

+ 4s2
δ(3)(q1 − q2)e

i(q01−q02)t/2
∑

α=±1

BT=0
0 (q01 + iαs,q, m1, m2),

(16.1.16)

where, for d = 4,

BT=0
0 (q01+iαs,q, m1, m2) =

[1

ǫ
−γE+ln

4πµ2

m1m2

]

+
1

(q0 − iαs)2 − q2

[

(m2
2−m2

1) ln
m2

1

m2
2

+ λ1/2((q0 − iαs)2 − q2, m2
1, m

2
2) cosh

−1
(m2

1 +m2
2 − (q0 − iαs)2 + q2

2m1m2

)]

, (16.1.17)

containing the familiar zero-temperature UV divergence [100]. γE is the Euler

gamma.

(ii) The product of ensemble contributions is more straightforward:

I(ii)(q1, q2, m1, m2, s) = −8(2πµ)4−dei(q
0
1−q02)t/2

∫

· · ·
∫

ddk1
iπ2

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 4s
[

[

q01 − q02 − k01 + k01
′
+ k02 − k02

′]2
+ 4s2

]−1

×
[

[

q01 + q02 − k01 − k01
′
+ k02 + k02

′]2
+ 4s2

]−1

× 2πδ(k21 −m2
1)|2k01|1/2f̃1(k1, k′1, t)ei(k

0
1
−k0

1

′

)t/2)|2k01
′|1/22πδ(k′12 −m2

1)

× 2πδ(k′2
2 −m2

2)|2k02
′|1/2f̃2(k′2, k2, t)ei(k

0
2

′−k2
0)t/2)|2k02|1/22πδ(k22 −m2

2). (16.1.18)
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Performing the four zeroth-component integrations, we find

I(ii)(q1, q2, m1, m2, s) = 8(2π)3µ4−dei(q
0
1−q02)t/2

∑

{α}=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

×
[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1) + α2E2(k2)− α′

2E
′
2(k

′
2)
]2

+ 4s2
]−1

×
[

[ q0
1
+q0

2

2
− α1E1(k1)+α′

1
E′

1
(k′

1
)

2
+

α2E2(k2)+α′

2
E′

2
(k′

2
)

2

]2
+ s2

]−1

×
{

is
}

2
√

2E1(k1)2E ′
1(k

′
1)f̃1(k1(k1), k

′
1(k

′
1), t)e

i[α1E1(k1)−α′

1
E′

1
(k′

1
)]t/2)

×
√

2E2(k2)2E
′
2(k

′
2)f̃2(k

′
2(k

′
2), k2(k2), t)e

i[α2E2(k2)−α′

2
E′

2
(k′

2
)]t, (16.1.19)

where {α} ≡ {α1, α
′
1, α2, α

′
2} and

ki(ki) ≡ (αiEi(ki),ki) (16.1.20)

identifies on-shell four-momenta. The braces of the fifth line are included for com-

parison with the separation of dispersive and absorptive parts in (16.1.13).

(iii) The cross-terms yield both dispersive and absorptive contributions. The first

yields

I(iiia)(q1, q2, m1, m2, s) = −8i(2πµ)4−dei(q
0
1−q02)t/2

∫

· · ·
∫

ddk1
iπ2

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 4s
[

[

q01 − q02 − k01 + k01
′
+ k02 − k02

′]2
+ 4s2

]−1

×
[

[

q01 + q02 − k01 − k01
′
+ k02 + k02

′]2
+ 4s2

]−1

× 1

k21 −m2
1 + iǫ

(2π)4δ(4)(k1 − k′1)

× 2πδ(k′2
2 −m2

2)|2k02
′|1/2f̃2(k′2, k2, t)ei(k

0
2

′−k0
2
)t/2|2k20|1/22πδ(k22 −m2

2). (16.1.21)

After evaluating the trivial k1
′0, k02, k

0
2
′
and finally the k01 integrals, with some
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16.1. The Non-Homogeneous B0 Function

transposition of the result, we find

I(iiia)(q1, q2, m1, m2, s) = −8(2π)3µ4−dei(q
0
1−q02)t/2

×
∑

α1,α2,α′

2
=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02 + α2E2(k2)− α′
2E

′
2(k

′
2)
]2

+ 4s2
]−1

×
[

q01+q02
2

+
α2E2(k2)+α′

2E
′

2(k
′

2)

2
− α1

[

E1(k1)− is
]

]−1

× α1(2π)
32E ′

1(k
′
1)δ

(3)(k1 − k′
1)

×
√

2E2(k2)2E ′
2(k

′
2)f̃2(k

′
2(k

′
2), k2(k2), t)e

i[α2E2(k2)−α′

2
E′

2
(k′

2
)]t/2. (16.1.22)

Separating again into dispersive and absorptive parts as in (16.1.13), this may be

written

I(iiia)(q1, q2, m1, m2, s) = 8(2π)3µ4−dei(q
0
1−q02)t/2

×
∑

α1,α2,α′

2
=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02 + α2E2(k2)− α′
2E

′
2(k

′
2)
]2

+ 4s2
]−1

×
[

[ q0
1
+q0

2

2
− α1E1(k1) +

α2E2(k2)+α′

2
E′

2
(k′

2
)

2

]2
+ s2

]−1

×
{

− α1

[

q01+q02
2
− α1E1(k1) +

α2E2(k2)+α′

2E
′

2(k
′

2)

2

]

+ is
}

× (2π)32E ′
1(k

′
1)δ

(3)(k1 − k′
1)

×
√

2E2(k2)2E ′
2(k

′
2)f̃2(k

′
2(k

′
2), k2(k2), t)e

i[α2E2(k2)−α′

2
E′

2
(k′

2
)]t/2. (16.1.23)
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Similarly, from the second of the cross terms, we obtain

I(iiib)(q1, q2, m1, m2, s) = 8(2π)3µ4−dei(q
0
1−q02)t/2

×
∑

α1,α′

1
,α′

2
=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1)
]2

+ 4s2
]−1

×
[

[ q01+q02
2
− α1E1(k1)+α′

1E
′

1(k
′

1)

2
+ α2E2(k2)

]2
+ s2

]−1

×
{

α2

[

q0
1
+q0

2

2
− α1E1(k1)+α′

1
E′

1
(k′

1
)

2
+ α2E2(k2)

]

+ is
}

×
√

2E1(k1)2E ′
1(k

′
1)f̃1(k1(k1), k

′
1(k

′
1), t)e

i[α1E1(k1)−α′

1E
′

1(k
′

1)]t/2

× (2π)32E2(k2)δ
(3)(k′

2 − k2), (16.1.24)

as we would expect from the symmetry of the original integral under the interchange:

k1 ↔ −k2, k′1 ↔ −k′2 and m1 ↔ m2.

Concatenating these four contributions, after some convenient introductions,

we find the time-ordered function

B0(q1, q2, m1, m2, s) = 8(2π)3µ4−dei(q
0
1−q02)t/2

∑

{α}=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1) + α2E2(k2)− α′

2E
′
2(k

′
2)
]2

+ 4s2
]−1

×
[

[ q0
1
+q0

2

2
− α1E1(k1)+α′

1
E′

1
(k′

1
)

2
+

α2E2(k2)+α′

2
E′

2
(k′

2
)

2

]2
+ s2

]−1

×
√

2E1(k1)2E ′
1(k

′
1)2E2(k2)2E ′

2(k
′
2)e

i[α1E1(k1)−α′

1
E′

1
(k′

1
)]t/2ei[α2E2(k2)−α′

2
E′

2
(k′

2
)]t/2

×
{

−
[

q0
1
+q0

2

2
− α1E1(k1)+α′

1
E′

1
(k′

1
)

2
+

α2E2(k2)+α′

2
E′

2
(k′

2
)

2

]

FR
{α}({k}, t) + isF 1

{α}({k}, t)
}

,

(16.1.25)

where {k} ≡ {k1(k1), k
′
1(k

′
1), k2(k2), k

′
2(k

′
2)}. We have kept the spectral information

explicit, whereas all statistical information has been condensed into the distributions
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16.1. The Non-Homogeneous B0 Function

FR
{α}({k}, t) and F 1

{α}({k}, t):

FR
{α}({k}, t) = (2π)3δ(3)(k1 − k′

1)(2π)
3δ(3)(k2 − k′

2)

×
[

θ(α1, α
′
1)θ(−α2,−α′

2)− θ(−α1,−α′
1)θ(α2, α

′
2)
]

+ (2π)3δ(3)(k1 − k′
1)f̃2(k

′
2(k

′
2), k2(k2), t)

[

θ(α1, α
′
1)− θ(−α1,−α′

1)
]

+ f̃1(k1(k1), k
′
1(k

′
1), t)(2π)

3δ(3)(k2 − k′
2)
[

θ(−α2,−α′
2)− θ(α2, α

′
2)
]

,

(16.1.26a)

F 1
{α}({k}, t) = (2π)3δ(3)(k1 − k′

1)(2π)
3δ(3)(k2 − k′

2)

×
[

θ(α1, α
′
1)θ(−α2,−α′

2) + θ(−α1,−α′
1)θ(α2, α

′
2)
]

+ (2π)3δ(3)(k1 − k′
1)f̃2(k

′
2(k

′
2), k2(k2), t)

[

θ(α1, α
′
1) + θ(−α1,−α′

1)
]

+ f̃1(k1(k1), k
′
1(k

′
1), t)(2π)

3δ(3)(k2 − k′
2)
[

θ(−α2,−α′
2) + θ(α2, α

′
2)
]

+ 2f̃1(k1(k1), k
′
1(k

′
1), t)f̃2(k

′
2(k

′
2), k2(k2), t). (16.1.26b)

We have introduced the short-hand

θ(x, y) = θ(x)θ(y) (16.1.27)

for the product of step functions. The reason for our choice of notation of these

F ’s will soon become apparent. We note that the statistical contributions to the

dispersive and absorptive parts of this function differ.
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For completeness, the anti-time-ordered function, obtained by taking s→ −s
and multiplying by an overall minus sign, is

−B∗
0(q1, q2, m1, m2, s) = 8(2π)3µ4−dei(q

0
1
−q0

2
)t/2

∑

{α}=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 1

π

[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1) + α2E2(k2)− α′

2E
′
2(k

′
2)
]2

+ 4s2
]−1

×
[

[ q0
1
+q0

2

2
− α1E1(k1)+α′

1
E′

1
(k′

1
)

2
+

α2E2(k2)−α′

2
E′

2
(k′

2
)

2

]2
+ s2

]−1

×
√

2E1(k1)2E ′
1(k

′
1)2E2(k2)2E ′

2(k
′
2)e

i[α1E1(k1)−α′

1E
′

1(k
′

1)]t/2ei[α2E2(k2)−α′

2E
′

2(k
′

2)]t/2

×
{[

q01+q02
2
− α1E1(k1)+α′

1E
′

1(k
′

1)

2
+

α2E2(k2)+α′

2E
′

2(k
′

2)

2

]

FR
{α}({k}, t) + isF 1

{α}({k}, t)
}

.

(16.1.28)

It follows then from (10.1.22a) that the ‘Hadamard’ self-energy is

B1
0(q1, q2, m1, m2, s) = 16(2π)3µ4−dei(q

0
1
−q0

2
)t/2

∑

{α}=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

×
√

2E1(k1)2E ′
1(k

′
1)2E2(k2)2E ′

2(k
′
2)e

i[α1E1(k1)−α′

1
E′

1
(k′

1
)]t/2ei[α2E2(k2)−α′

2
E′

2
(k′

2
)]t/2

× 1

π

[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1) + α2E2(k2)− α′

2E
′
2(k

′
2)
]2

+ 4s2
]−1

×
[

[ q0
1
+q0

2

2
− α1E1(k1)+α′

1
E′

1
(k′

1
)

2
+

α2E2(k2)+α′

2
E′

2
(k′

2
)

2

]2
+ s2

]−1

isF 1
{α}({k}, t), (16.1.29)

in which the conspiracy of our choice of notation for the F ’s becomes clear.





16.1. The Non-Homogeneous B0 Function

16.1.2 Absolutely-Ordered Functions

We turn our attention now to the 21-element; the positive-frequency, absolutely-

ordered function:

B>
0 (q1, q2, m1, m2, s) = −8(2πµ)4−dei(q

0
1−q02)t/2

∫

· · ·
∫

ddk1
iπ2

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

× 4s
[

[

q01 − q02 − k01 + k01
′
+ k02 − k02

′]2
+ 4s2

]−1

×
[

[

q01 + q02 − k01 − k01
′
+ k02 + k02

′]2
+ 4s2

]−1

× 2πδ(k21 −m2
1)|2k01|1/2

[

θ(k01, k
0
1
′
)(2π)3δ(3)(k1 − k′

1)

+ f̃1(k1, k
′
1, t)
]

ei(k
0
1−k01

′

)t/2|2k01
′|1/22πδ(k′12 −m2

1)

× 2πδ(k′2
2 −m2

2)|2k02
′|1/2

[

θ(k02
′
, k02)(2π)

3δ(3)(k′
2 − k2)

+ f̃2(k
′
2, k2, t)

]

ei(k
0
2

′−k0
2
)t/2|2k02|1/22πδ(k22 −m2

2). (16.1.30)

After completing the zeroth-component momentum integrals, this may be written

B>
0 (q1, q2, m1, m2, s) = 16(2π)3µ4−dei(q

0
1
−q0

2
)t/2

×
∑

{α}=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

×
√

2E1(k1)2E ′
1(k

′
1)2E2(k2)2E ′

2(k
′
2)e

i[α1E1(k1)−α′

1
E′

1
(k′

1
)]t/2ei[α2E2(k2)−α′

2
E′

2
(k′

2
)]t/2

× 1

π

[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1) + α2E2(k2)− α′

2E
′
2(k

′
2)
]2

+ 4s2
]−1

×
[

[ q01+q02
2
− α1E1(k1)+α′

1E
′

1(k
′

1)

2
+

α2E2(k2)+α′

2E
′

2(k
′

2)

2

]2
+ s2

]−1

isF>
{α}({k}, t), (16.1.31)

where

F>
{α}({k}, t) =

[

θ(α1, α
′
1)(2π)

3δ(3)(k1 − k′
1) + f̃1(k1(k1), k

′
1(k

′
1), t)

]

×
[

θ(−α2,−α′
2)(2π)

3δ(3)(k′
2 − k2) + f̃2(k

′
2(k

′
2), k2(k2), t)

]

. (16.1.32)
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It follows from the discussions of Appendix A that the negative-frequency

absolutely-ordered function is simply

B<
0 (q1, q2, m1, m2, s) = 16(2π)3µ4−dei(q

0
1
−q0

2
)t/2

×
∑

{α}=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

×
√

2E1(k1)2E ′
1(k

′
1)2E2(k2)2E ′

2(k
′
2)e

i[α1E1(k1)−α′

1
E′

1
(k′

1
)]t/2ei[α2E2(k2)−α′

2
E′

2
(k′

2
)]t/2

× 1

π

[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1) + α2E2(k2)− α′

2E
′
2(k

′
2)
]2

+ 4s2
]−1

×
[

[ q0
1
+q0

2

2
− α1E1(k1)+α′

1
E′

1
(k′

1
)

2
+

α2E2(k2)+α′

2
E′

2
(k′

2
)

2

]2
+ s2

]−1

isF<
{α}({k}, t), (16.1.33)

where

F<
{α}({k}, t) =

[

θ(−α1,−α′
1)(2π)

3δ(3)(k1 − k′
1) + f̃1(k1(k1), k

′
1(k

′
1), t)

]

×
[

θ(α2, α
′
2)(2π)

3δ(3)(k′
2 − k2) + f̃2(k

′
2(k

′
2), k2(k2), t)

]

. (16.1.34)

16.1.3 Causal Functions

Having established the functions that we intended, we are now in a position to obtain

their causal counterparts. Given the relations in (A.6c), the retarded and advanced

B-functions are

B
R(A)
0 (q1, q2, m1, m2, s) = −8(2π)3µ4−dei(q

0
1−q02)t/2

×
∑

{α}=±1

∫

· · ·
∫

dΠd−1
k1

dΠk′

1
dΠk2

dΠk′

2

× (2π)3δ(3)(q1 − k1 + k2)(2π)
3δ(3)(q2 − k′

1 + k′
2)

×
√

2E1(k1)2E
′
1(k

′
1)2E2(k2)2E

′
2(k

′
2)e

i[α1E1(k1)−α′

1
E′

1
(k′

1
)]t/2ei[α2E2(k2)−α′

2
E′

2
(k′

2
)]t/2

× 1

π

[

[

q01 − q02 − α1E1(k1) + α′
1E

′
1(k

′
1) + α2E2(k2)− α′

2E
′
2(k

′
2)
]2

+ 4s2
]−1

×
[

q01+q02
2
− α1E1(k1)+α′

1E
′

1(k
′

1)

2
+

α2E2(k2)+α′

2E
′

2(k
′

2)

2
+ (−)is

]−1

F
R(A)
{α} ({k}, t), (16.1.35)

where FR
{α}({k}, t) = −FA

{α}({k}, t).
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16.2 The Thermodynamic Equilibrium Limit

In the limit of thermodynamic equilibrium, we expect to be able to recover the

results from the discussions of Chapter 11, using the correspondence identified in

(11.0.8). It follows that the various distribution functions satisfy the factorisation:

F{α}({k}, t)→ (2π)3δ(3)(k1 − k′
1)
[

θ(α1, α
′
1)− θ(−α1,−α′

1)
]

×(2π)3δ(3)(k2 − k′
2)
[

θ(−α2,−α′
2)− θ(α2, α

′
2)
]

×Feq(α1,−α2,k1,k2), (16.2.1)

and

F 1
eq(α1, α2,k1,k2) =

[

1 + fB
(

α1E1(k1)
)

][

1 + f c
B

(

α2E2(k2)
)

]

+ fB
(

α1E1(k1)
)

f c
B

(

α2E2(k2)
)

(16.2.2a)

F>
eq(α1, α2,k1,k2) =

[

1 + fB
(

α1E1(k1)
)

][

1 + f c
B

(

α2E2(k2)
)

]

, (16.2.2b)

F<
eq(α1, α2,k1,k2) = fB

(

α1E1(k1)
)

f c
B

(

α2E2(k2)
)

, (16.2.2c)

FR
eq(α1, α2,k1,k2) = 1 + fB

(

α1E1(k1)
)

+ f c
B

(

α2E2(k2)
)

, (16.2.2d)

After performing the now superfluous phase-space integrations and summations and

redefining α2 → −α2 for aesthetics, we obtain the following set of ‘equilibrium’

functions:

B0(−B∗
0)(q1, q2, m1, m2, s) = (2π)4

1

π

1
[

q01 − q02
]2

+ 4s2
ei(q

0
1−q02)t/2δ(3)(q1 − q2)

× (2πµ)4−d
∑

α1,α2=±1

∫

dd−1k1
1

π

α1α2

E1(k1)E2(q1 − k1)

×
[

[ q0
1
+q0

2

2
− α1E1(k1)− α2E2(q1 − k1)

]2
+ s2

]−1

×
{

− (+)
[

q0
1
+q0

2

2
− α1E1(k1)− α2E2(q1 − k1)

]

FR
eq(α1, α2,k1,q1 − k1)

+ isF 1
eq(α1, α2,k1,q1 − k1)

}

, (16.2.3)





16. Non-Homogeneous Loop Integrals

B>,<,1
0 (q1, q2, m1, m2, s) = 2(2π)4

1

π

1
[

q01 − q02
]2

+ 4s2
ei(q

0
1−q02)t/2δ(3)(q1 − q2)

× (2πµ)4−d
∑

α1,α2=±1

∫

dd−1k1
1

π

α1α2

E1(k1)E2(q1 − k1)

×
[

[ q0
1
+q0

2

2
− α1E1(k1)− α2E2(q1 − k1)

]2
+ s2

]−1

× isF>,<,1
eq (α1, α2,k1,q1 − k1), (16.2.4)

B
R(A)
0 (q1, q2, m1, m2, s) = −(2π)4

1

π

1
[

q01 − q02
]2

+ 4s2
ei(q

0
1−q02)t/2δ(3)(q1 − q2)

× (2πµ)4−d
∑

α1,α2=±1

∫

dd−1k1
1

π

α1α2

E1(k1)E2(q1 − k1)

×
[

q0
1
+q0

2

2
− α1E1(k1)− α2E2(q1 − k1) + (−)is

]−1

× FR
eq(α1, α2,k1,q1 − k1). (16.2.5)

The word ‘equilibrium’ has deliberately been singled-out with inverted com-

mas, because this is in fact not an equilibrium result. For late times, we may use

the final value theorem

lim
t→∞

F (t) = lim
s→0

sLt

[

F
]

(s) (16.2.6)

to obtain the true, time-invariant equilibrium functions:

B0(−B∗
0)(q1, q2, m1, m2) = (2π)4δ(4)(q1 − q2)(2πµ)4−d

×
∑

α1,α2=±1

∫

dd−1k1
α1α2

E1(k1)E2(q1 − k1)

[

− (+)
1

2π

FR
eq(α1, α2,k1,q1 − k1)

q01 − α1E1(k1)− α2E2(q1 − k1)

+
i

2
δ
(

q01 − α1E1(k1)− α2E2(q1 − k1)
)

F 1
eq(α1, α2,k1,q1 − k1)

]

, (16.2.7)

B>,<,1
0 (q1, q2, m1, m2) = i(2π)4δ(4)(q1 − q2)(2πµ)4−d

×
∑

α1,α2=±1

∫

dd−1k1
α1α2

E1(k1)E2(q1 − k1)

× δ
(

q01 − α1E1(k1)− α2E2(q1 − k1)
)

F>,<,1
eq (α1, α2,k1,q1 − k1), (16.2.8)
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B
R(A)
0 (q1, q2, m1, m2) = −(2π)4δ(4)(q1 − q2)(2πµ)4−d

×
∑

α1,α2=±1

∫

dd−1k1
α1α2

E1(k1)E2(q1 − k1)

× 1

2π

1

q01 − α1E1(k1)− α2E2(k2) + (−)iǫF
R
eq(α1, α2,k1,q1 − k1), (16.2.9)

all of which are consistent with known results calculated in the imaginary-time

formalism or the more familiar equilibrium ctp formalism.

Returning to (16.2.3) and making the inverse Laplace transformations, we find

B0(−B∗
0)s(q1, q2, m1, m2, t) = (2π)4δ(3)(q1 − q2)(2πµ)

4−dei(q
0
1−q02)t/2

×
∑

α1,α2=±1

∫

dd−1k1
α1α2

E1E2

×
{

− (+)
1

2π

q0
1
+q0

2

2
− α1E1 − α2E2

[

q01 − α1E1 − α2E2

][

q02 − α1E1 − α2E2

]

×
[

δt(q
0
1 − q02)− δt

(

q01 + q02 − 2α1E1 − 2α2E2

)

]

FR
eq(α1, α2,k1,q1 − k1)

+
i

2
δt
(

q01 − α1E1 − α2E2

)

δt
(

q02 − α1E1 − α2E2

)

F 1
eq(α1, α2,k1,q1 − k1)

}

,

(16.2.10)

B>,<,1
0 (q1, q2, m1, m2, t) = i(2π)4δ(3)(q1 − q2)(2πµ)

4−dei(q
0
1
−q0

2
)t/2

×
∑

α1,α2=±1

∫

dd−1k1
α1α2

E1E2

× δt
(

q01 − α1E1 − α2E2

)

δt
(

q02 − α1E1 − α2E2

)

F>,<,1
eq (α1, α2,k1,q1 − k1),

(16.2.11)





16. Non-Homogeneous Loop Integrals

B
R(A)
0 (q1, q2, m1, m2, t) = (2π)4δ(3)(q1 − q2)(2πµ)

4−dei(q
0
1−q02)t/2

×
∑

α1,α2=±1

∫

dd−1k1
α1α2

E1E2

×
{

− 1

2π

q01+q02
2
− α1E1 − α2E2

[

q01 − α1E1 − α2E2

][

q02 − α1E1 − α2E2

]

×
[

δt(q
0
1 − q02)− δt

(

q01 + q02 − 2α1E1 − 2α2E2

)

]

+ (−) i
2
δt
(

q01 − α1E1 − α2E2

)

δt
(

q02 − α1E1 − α2E2

)

}

FR
eq(α1, α2,k1,q1 − k1).

(16.2.12)

We have omitted the arguments of E1 ≡ E1(k1) and E2 ≡ E2(q1 − k1) for conve-

nience.
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17 Thermalisation of a

Massive Scalar

With the formalism now in place, we shall consider a simple toy model involving

one massive real scalar field (Φ) and one less-massive pair of complex scalar fields

(χ†, χ), described by the Lagrangian density

L(x) = 1
2
∂µΦ(x)∂

µΦ(x)− 1
2
M2Φ2(x) + ∂µχ

†(x)∂µχ(x)−m2χ†(x)χ(x)

− gΦ(x)χ†(x)χ(x)− 1
4
λ
[

χ†(x)χ(x)
]2
, (17.0.1)

where M ≫ m.

17.1 Feynman Rules

Following the arguments of Chapters 9 and 10, we obtain the following modified

Feynman rules for this toy model:

• sum over all topologically-distinct diagrams at a given order in perturbation

theory;

• to each Φ line assign a factor of

p p′

a b
= i∆0,ab

Φ (p, p′, t); (17.1.1)
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• to each χ line assign a factor of

p p′

a b
= i∆0,ab

χ (p, p′, t); (17.1.2)

• to each three-point Φ vertex assign a factor of

p3

p2

p1

c

b

a = −igηabc(2π)4δt
(
∑3

i=1 p0,i
)

δ(3)
(
∑3

i=1 pi

)

,

where we recall the definition

δt(p0 − p′0) =
t

2π
sinc

[(p0 − p′0
2

)

t
]

; (17.1.3)

• to each four-point χ vertex assign a factor of

p3

p2

p4

p1

c

b

d

a

= −iληabcd(2π)4δt
(
∑4

i=1 p0,i
)

δ(3)
(
∑4

i=1 pi

)

;

• for each vertex attached to an external leg (amputated or otherwise) with four

momentum p, associate a phase factor

eip0t/2,

where p is the momentum flowing into the vertex, see Chapter 10;

• contract all internal ctp indices;
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17.1. Feynman Rules

• for each contracted pair of ctp indices, integrate over the corresponding four-

momentum with the measure,
∫

d4p

(2π)4
;

• multiply by the symmetry factor.

We emphasise the modification that has occurred in the vertices, where the more

familiar energy-conserving delta function has been replaced by the weight function

in (9.3.3). This loss of microscopic energy conservation results from Heisenberg’s

uncertainty principle due to our finite, macroscopic observation time t. As a result,

the vertices are now time-dependent, vanishing in the limit t → 0 as we should

expect. We also note that this modification has resulted in a doubling of the number

of integrations with respect to the zero-temperature case.

At one-loop, we have three diagrams: the local χ self-energy, shown in Figure

17.1:

iΠ
χ(1)
loc,ab(q, q

′, t) =
−iλ
2!

(2πµ)2ǫei(q0−q′
0
)t/2

∫∫

ddk

(2π)d
d4k′

(2π)4

× (2π)4δ
(4)
t (q − q′ − k + k′)ηabcdi∆

0,cd
χ (k, k′, t); (17.1.4)

and the non-local diagrams, shown in Figure 17.2:

iΠ
Φ(1)
ab (q, q′, t) =

(−ig)2
2!

(2πµ)2ǫei(q0−q′
0
)t/2

∫

· · ·
∫

ddk1
(2π)d

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)4δ
(4)
t (q − k1 − k2)(2π)4δ(4)t (q′ − k′1 − k′2)

× ηacdi∆0,ce
χ (k1, k

′
1, t)i∆

0,fd
χ (k′2, k2, t)ηefb. (17.1.5)

and

iΠ
χ(1)
ab (q, q′, t) =

(−ig)2
2!

(2πµ)2ǫei(q0−q′0)t/2

∫

· · ·
∫

ddk1
(2π)d

d4k′1
(2π)4

d4k2
(2π)4

d4k′2
(2π)4

× (2π)4δ
(4)
t (q − k1 − k2)(2π)4δ(4)t (q′ − k′1 − k′2)

× ηacdi∆0,fd
χ (k1, k

′
1, t)i∆

0,fd
Φ (k′2, k2, t)ηefb. (17.1.6)
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k k′

q q′
χ χ

a

Figure 17.1: One-loop, local χ self-energy: iΠ
χ(1)
loc,ab(q, q

′, t) ∝ ηab.

k1

χ
k′1

k2
χ

k′2

q q′
Φ Φ

a b

(a) iΠ
Φ(1)
ab (q, q′, t)

k1 k′1

k2 k′2
Φ

q q′
χ χ

a b

(b) iΠ
χ(1)
ab (q, q′, t)

Figure 17.2: One-loop, non-local Φ and χ self-energies.

These loop integrals may be performed using the techniques and results outlined in

Chapter 16.

17.2 Time-Dependent Width

We consider the following situation: we imagine preparing two isolated but coinci-

dent subsystems SΦ and Sχ, both separately in thermodynamic equilibrium and

at the same temperature T , with all interactions turned off. SΦ comprises only the

real scalar field and Sχ, only the complex scalar. At macroscopic time t = 0, we





17.2. Time-Dependent Width

turn on the interactions and allow the system S = SΦ ∪ Sχ to re-thermalise. For

definiteness, we shall take the thermodynamic temperature T = 10GeV, the mass

of the massive scalar M = 1GeV and the mass of complex scalar m = 0.01GeV.

When it is relevant to do so, we shall take g = 0.1GeV.

The free propagators of both fields at time t = 0 are the equilibrium propaga-

tors in (11.0.9) and (13.1.25), containing the Bose-Einstein distributions at tempera-

ture T . We shall take the chemical potential of the complex scalar to be vanishingly

small in comparison to its mass, i.e. µ ≪ m, and ignore the local self-interactions,

such that fχ(|p|, 0) = f c
χ(|p|, 0) = fB

(

Eχ(p)
)

. In order to get a handle on the be-

haviour of the time-dependent vertices, let us first assume that the heat bath of χ’s

is sufficiently large that it is unperturbed by the addition of the real scalar. In this

case, we may assume that the number density of χ’s remains unchanged, so that the

free equilibrium χ propagators in (13.1.25) persist for all times.

By the optical theorem, the width of the massive scalar Φ is defined in terms

of the absorptive part of the retarded self-energy via

ΓΦ(q1, q2, t) =
1

M
ImΠΦ

R(q1, q2, t), (17.2.1)

in which we recall that

ImΠΦ
R(q1, q2, t) =

1

2i

(

ΠΦ
>(q1, q2, t)− ΠΦ

<(q1, q2, t)
)

. (17.2.2)

At one-loop, these self-energies are given by (17.1.5).

Introducing the relative and central momenta Q = q1− q2 and q = (q1 + q2)/2

and using the results in Appendix 16.2, the Laplace transform with respect to t of


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the one-loop, massive scalar width is

ΓΦ(1)(q +Q/2, q −Q/2, s) = (2π)4
1

π

s

Q2
0 + 4s2

eiQ0t/2δ(3)(Q)

× g2

32π2M

∑

α1,α2=±1

∫

d3k
1

π

α1α2

Eχ(k)Eχ(q− k)

1 + fB
(

α1E(k)
)

+ fB
(

α2Eχ(q− k)
)

(

q20 − α1Eχ(k)− α2Eχ(q− k)
)2

+ s2
.

(17.2.3)

Taking the inverse Wigner transform with respect to Q in the equal-time limit and

performing the inverse Laplace transform with respect to s, we obtain

ΓΦ(1)(q, t) =
g2

64π2M

∑

α1,α2=±1

∫

d3k
α1α2

Eχ(k)Eχ(q− k)

× t

π
sinc

[(

q0 − α1Eχ(k)− α2Eχ(q− k)
)

t
][

1 + fB
(

α1E(k)
)

+ fB
(

α2Eχ(q− k)
)]

.

(17.2.4)

In the limit, t→∞, the sinc function yields the more familiar delta function

lim
t→∞

t

π
sinc

[(

q0−α1E1(k)−α2E2(q−k)
)

t
]

= δ
(

q0−α1E1(k)−α2E2(q−k)
)

(17.2.5)

and we may quickly convince ourselves that we do indeed obtain the correct equi-

librium result. We have generalised

E1 =
√

|k|2 +m2
1, (17.2.6a)

E2 =
√

|k|2 − 2|k||q| cos θ + |q|2 +m2
2 (17.2.6b)

to different masses for later convenience. For clarity, however, we emphasise that

we ultimately take m1 = m2 = m in all numerical analyses.

Figure 17.3 contains a series of contour plots of the differential, one-loop on-

shell Φ width evaluated over the dominant region of the |k|, θ phase space. For late
times, the integrand is highly oscillatory and, as we should expect, the dominant

peak of the sinc function approaches the region of phase space permitted in the limit
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Figure 17.3: Contour plots of the differential, one-loop Φ width, evaluated for a

series of dimensionless times Mt over the dominant region of the |k|, θ phase space

for q2 =M2 on-shell and |q| = 10GeV. The region of phase-space permitted in the

t → ∞ limit is shown by the blue, dashed line, corresponding to the delta function

in (17.2.5).
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17. Thermalisation of a Massive Scalar

t→∞, cf. (17.2.5), defined by

|k| =
M2|q| cos θ +

√

[

|q|2 +M2
][

M4 − 4m2
(

M2 + |q|2 sin2θ
)]

2
(

M2 + |q|2 sin2θ
) . (17.2.7)

For early times, the permitted region of phase space is greatly expanded. For later

times, the increasing frequency of oscillation and the narrowing peak, lying along

a curve in the phase space, leaves Monte Carlo methods unsuitable for performing

these phase-space integrals in their initial form—the integral is systematically un-

derestimated. In order to proceed further, we need a means of dealing with the

kinematics in the absence of the more familiar delta-function constraint.

17.3 Generalised Two-Body Decay Kinematics

At zero temperature and density, we normally determine the two-body decay kine-

matics by Lorentz-boosting to the rest frame of the decaying particle. However, at

finite temperature, the dependence on the thermodynamic temperature of the heat

bath breaks the Lorentz covariance of the integral and as such, we cannot eliminate

dependence upon the the three-momentum of the decaying particle by an appropri-

ate Lorentz boost — the dependence will reappear in the ‘boosted’ temperature:

T ′ = γ T, (17.3.1)

where, for the massive scalar,

γ =

(

1 +
|q|2
M2

)1/2

. (17.3.2)

As a result, we are forced to analyse the kinematics of the two-body decay in the

rest frame of the heat bath (or laboratory frame), which we shall define to be the

frame in which 〈k〉 (the eev of the three-momentum operator) is minimised. For an

isotropic heat bath, this is the frame in which 〈k〉 = 0, that is the comoving frame.
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We proceed by making the time-dependent Jacobian transformation

u ≡
(

q0 − α1E1 − α2E2

)

t, (17.3.3)

which may be interpreted in terms of energy borrowed from or lent to the heat bath

and which we shall hereafter refer to as the evanescent action of the process for

the reason that its non-zero values extend the kinematically-allowed region of phase

space beyond that permitted by energy-momentum conservation. We define the

evanescent energy

qu(t) ≡ q0 −
u

t
, (17.3.4)

which satisfies

lim
u/t→0

qu(t) = q0. (17.3.5)

With this substitution, we obtain the more familiar-looking kinematic constraint

qu(t)− α1E1 − α2E2 = 0. (17.3.6)

Since u can take large positive values, qu(t) is not necessarily restricted to positive

values for early times even for q0 =
√

|q|2 +M2 on-shell.

Solving for the internal momentum of the loop, we find

|k|(t) = 1

2
(

q2u(t)− |q|2 cos2θ
)

[

|q| cos θ
(

q2u(t)− |q|2 +m2
1 −m2

2

)

± qu(t)
√

λ
(

q2u(t)− |q|2, m2
1, m

2
2

)

− 4m2
1|q|2 sin2θ

]

, (17.3.7)

where

λ(x, y, z) = (x− y − z)2 − 4yz. (17.3.8)
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After some manipulation, we then obtain the energies

E1(t) =
α1

2
(

q2u(t)− |q|2 cos2θ
)

[

qu(t)
(

q2u(t)− |q|2 +m2
1 −m2

2

)

± |q| cos θ
√

λ
(

q2u(t)− |q|2, m2
1, m

2
2

)

− 4m2
1|q|2 sin2θ

]

, (17.3.9a)

E2(t) =
α2

2
(

q2u(t)− |q|2 cos2θ
)

[

qu(t)
(

q2u(t)− |q|2 cos 2θ −m2
1 +m2

2

)

∓ |q| cos θ
√

λ
(

q2u(t)− |q|2, m2
1, m

2
2

)

− 4m2
1|q|2 sin2θ

]

, (17.3.9b)

where the overall factors of α1 and α2 are necessary to satisfy the initial constraint

(17.3.6). It is clear that these results collapse to the familiar kinematics of equilib-

rium field theory in the limit u/t→ 0.

For t > 0, the width of the massive scalar, keeping for now m1 and m2 distinct,

is then

Γ
(1)
Φ (q, Z0 = 0, t) =

g2

64π2M

∑

α1,α2,b=±1

∫ π

0

dθ

∫ u+(t)

u−(t)

du sinc(u)
sin θ

(

q2u(t)− |q|2 cos2θ
)2

× 1
√

λ
(

q2u(t)− |q|2, m2
1, m

2
2

)

− 4m2
1|q|2 sin2θ

[

|q| cos θ
(

q2u(t)− |q|2 +m2
1 −m2

2

)

+ bqu(t)
√

λ
(

q2u(t)− |q|2, m2
1, m

2
2

)

− 4m2
1|q|2 sin2θ

]2

× α1α2

[

1 + fB
(

α1E1(t)
)

+ fB
(

α2E2(t)
)]

. (17.3.10)

The reality of the internal momentum requires that the discriminant

λ
(

q2u(t)− |q|2, m2
1, m

2
2

)

− 4m2
1|q|2 sin2θ ≥ 0. (17.3.11)

Furthermore, we require |k|(t) ≥ 0, E1(t) ≥ m1 and E2(t) ≥ m2. For t = 0, the

range of integration over u collapses to zero and given the analytic behaviour of the

integrand at these bounds, the integral vanishing, as we should expect. For t > 0,
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α1 = α2 = +1 α1 = −α2 α1 = α2 = −1

u+(t) ω0(q, α1, α2)t ω0(q, α1, α2)t +∞
u−(t) −∞ 0 ω0(q, α1, α2)t

Table 17.1: Limits of integration of the evanescent action u for each of the four

processes contributing to the non-equilibrium thermal width for t > 0, where the

angular frequency ω0(q, α1, α2) is as defined in (17.3.12).

the limits of integration are given in Table 17.1, where we have defined

ω0(q, α1, α2) = q0 −
(

α1m1 + α2m2

)

(

1 +
|q|2

(

m1 +m2

)2

)1/2

, (17.3.12)

which is the angular frequency of the sine-integral-like oscillations of the integral.

It follows for on-shell decay modes that

ω0(|q|, α1, α2) ≡ ω0(q, α1, α2)
∣

∣

q2=M2 =
√

|q|2 +M2 −
√

|q|2 +
(

m1 +m2

)2
,

(17.3.13)

such that the evolution of the phase space for on-threshold decays withM2 = (m1+

m2)
2 is critically damped. We note that in the large momentum limit, |q| >> M ,

ω0(|q|, α1, α2) =
M2 −

(

m1 +m2

)2

2|q| , (17.3.14)

such that the evolution of the phase space for high-momentum modes is similarly

critically damped.

The summation over α1 and α2 yields four distinct contributions to the decay

width: for α1 = α2 = +1, we obtain the contribution from the familiar 1→ 2-body

decay process (see Figure 17.5a); for α1 = −α2, we obtain the 2 → 1-body Landau

damping contributions (see Figure 17.5b and [82]); and for α1 = α2 = −1, we obtain
the 3→ 0-body process shown in Figure 17.5c, in which the decay ‘products’ appear

in the initial state along with the decaying particle — we shall refer to this process

as annihilation. It is important to note that this contribution is not the production
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m1 = m2 = m = 0.01GeV. We see that the phase-space for Landau damping (blue

dashed) and 3 → 0 annihilation (red dotted) processes is highly oscillatory. On the

other hand, the same modulation in the 1→ 2 decay process (solid black) is critically

damped for large momenta, as we expect from (17.3.14).
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Figure 17.6: Contour plots of the α1 = α2 = +1, 1 → 2-body decay contribution to

the differential, one-loop Φ width, evaluated for a series of dimensionless times Mt

over the dominant region of u, θ phase space for q2 =M2 on-shell and |q| = 10GeV.

The solid excluded regions to the right of the red-dotted line lie exterior to the limits

of integration in u. We see that the domain of integration grows to encompass the

full domain of the sinc function in the large-time limit.

rate, which would be given by the transformation q → −q of the decay width with

α1 = α2 = −1. We note that for late times, the Landau damping and annihilation

processes are kinematically disallowed, as we would expect, and are permitted only

in the evanescent regime at early times.

Figures 17.6, 17.7 and 17.8 contain contour plots of the 1 → 2-body decay

(α1 = α2 = +1), 3 → 0-body annihilation (α1 = α2 = −1) and Landau damping

(α1 − α2) contributions to the integrand in the dominant region of the u, θ phase

space. We see that with the coordinate transformation in terms of the evanescent

action u, the oscillation of the integrand is far better behaved. We see also how the

equilibrium limit is obtained in the large-time limit. For the 1 → 2 decay process,

the limits of integration grow to encompass the full range of the sinc function. At the

same time, the u dependence of the phase-space pre-factors vanishes. For the 3→ 0
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Figure 17.7: Contour plots of the α1 = α2 = −1, 3 → 0-body annihilation contri-

bution to the differential, one-loop Φ width, evaluated for a series of dimensionless

times Mt over the dominant region of u, θ phase space for q2 = M2 on-shell and

|q| = 10GeV. The solid excluded regions to the left of the red-dotted line lie exterior

to the limits of integration in u. We see that in the large-time limit, the domain of

integration shrinks to zero and the contribution vanishes.
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annihilation process, the domain of integration vanishes at infinity in the large-time

limit. Given that the integrand is finite in this limit, the contribution therefore

vanishes as we would hope. For the Landau damping contributions, the behaviour

is more subtle: for large times, the domain of integration covers approximately all

positive u. However, we see a reduction in the kinematically-allowed phase-space,

such that these contributions also vanish in the large-time limit, leaving only the

familiar 1→ 2 decay contribution.

In order to reduce the statistical error in the Monte Carlo integration (see

Appendix D), we use Gaussian importance sampling to ensure that the majority of

sampling points fall over the dominant region of the sinc function in u. We define

the weight function

du

dr
≡ exp

[

− (u− u0)2
2σ2

u

]

(17.3.15)

where

r(u) ≡
erf
(

1√
2
u−u0

σu

)

− erf
(

1√
2

u−−u0

σu

)

erf
(

1√
2

u+−u0

σu

)

− erf
(

1√
2

u−−u0

σu

) ∈ [0, 1]. (17.3.16)

After performing the change of variables, we obtain the added convenience that the

limits of integration lose their time dependence and become the same across the

decay, production and Landau-damping contributions, with the dependence upon

u+ and u− appearing in the integrand itself. We may then reduce the required

number of integrations by moving the summation over the contributions inside the

integral.

We centre the Gaussian on the central maximum of the sinc function, that

is u0 = 0. The width of the dominant region is taken to be the distance between

maxima at which the amplitude of the sinc function has fallen to 0.1% of its ampli-

tude at the central maximum (i.e. unity), such that we require 0 < sinc un ≤ 0.001.

Stationary points of the sinc function satisfy the transcendental equation

un = tanun, (17.3.17)
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(b) α1 = −α2 = −1

Figure 17.8: Contour plots of the α1 = −α2, Landau damping contributions to the

differential, one-loop Φ width, evaluated for a series of dimensionless times Mt over

the dominant region of u, θ phase space for q2 =M2 on-shell and |q| = 10GeV.
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with solution (see [101])

un = ±nπ exp
{

1

π

∫ 1

0

dξ
1

ξ
arg

[(

1 +
1

2
ξ ln

1− ξ
1 + ξ

± 1

2
πiξ

)2

+ n2π2ξ2

]}

, n ≥ 1.

(17.3.18)

The required width is then given by n = 318 with u318 = 1000, that is the 159th

maximum. The Gaussian weight function is taken to have a variance of (u318/2)
2,

such that 95% of sampling points fall within this dominant region.

In Figure 17.9, we plot the on-shell, one-loop Φ width, normalised to its equilib-

rium value, as a function of the dimensionless time-scaleMt for a series of momenta,

where we have defined

Γ̄
(1)
Φ (|q|, t) = Γ

(1)
Φ (|q|, t)

Γ
(1)
Φ (|q|, t→∞)

. (17.3.19)

We see that the width is vanishing forMt = 0, as we would expect. This is followed

shortly by a sharp rise (particularly apparent in the infra-red modes), resulting from

the prompt evanescent regime. This steep rise is followed by the superposition of

short time-scale transient oscillations, described by the angular frequency ω0, and

longer time-scale non-Markovian oscillations. The latter of these modulations show

time-dependent frequencies, the origin of which will be discussed in the following

Section 17.4. These non-Markovian modulations are emphasised in Figure 17.10,

in which we perform a moving time average over the higher-frequency oscillations

for the |q| = 1GeV mode. For later times, the oscillations are damped towards

the equilibrium limits. Figure 17.9 contains the summation of all four contributions

[102]. These contributions are shown separately in Figure 17.11, where we see that

the Landau damping terms yield a contribution to the lower momentum modes of

order 10–20% at early times. The annihilation process contributes similarly at the

level of about 5%.
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Figure 17.11: Plot of the four contributions to the the normalised one-loop Φ width

against Mt for on-shell decays with |q| = 1GeV, 10GeV and 100GeV. We empha-

sise that the two Landau damping contributions are, indeed, up to numerical errors,

identical.
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17.4 Non-Markovian Behaviour

In Figure 17.9, we observed that the time-dependent thermal width comprised a

superposition of damped, oscillatory contributions. Furthermore, the more long-

lived of these oscillations had time-dependent frequencies, see Figure 17.10. In

the following section, we attempt to shed some light on the origin of these time-

dependent modulations.

Returning to (17.2.4), in the high-temperature limit, for which

fB(E) ≈
T

E
, (17.4.1)

we may perform the angular integration by making the substitution

cos θ =
|k|2 + |q|2 +m2

2

2|k||q| (1− x)2. (17.4.2)

We then obtain

Γ
Φ(1)
T≫M(q, t) =

g2

32π2M

∑

{α}=±1

α1αθ

∫ ∞

0

d|k| |k||q|
1

E1

×
[(

1 +
T

α1E1

+
T

q0 − α1E1

)

Si
[(

q0 − α1E1 − α2E2

)

t
]

− T

q0 − α1E1

(

sin
[(

q0 − α1E1

)

t
]

Ci
(

α2E2t
)

− cos
[(

q0 − α1E1

)

t
]

Si
(

α2E2t
)

)]

, (17.4.3)

where Si and Ci are respectively the sine integral and cosine integral functions,

{α} = {α1, α2, αθ} and

E1 =
√

|k|2 +m2
1, (17.4.4)

E2 =
√

|k|2 − 2αθ|k||q|+ |q|2 +m2
2. (17.4.5)
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Again introducing the evanescent action u through the substitution in (17.3.3), we

obtain

Γ
Φ(1)
T≫M(q, t) =

g2

32π2Mt

∑

{α},b=±1

α1α2

∫ u+(t)

u−(t)

du

×
{

qu(t)

λ1/2
(

q2u(t)− |q|2, m2
1, m

2
2

)

[

m2
1 +m2

2

q2u(t)− |q|2
−
(

m2
1 −m2

2

q2u(t)− |q|2

)2 ]

+
bαθ

2|q|

(

1− m2
1 −m2

2

q2u(t)− |q|2

)}

×
[(

1 +
T

ω1(q, u, t)
+

T

qu(t)− ω2(q, u, t)

)

Si(u)

− T

ω1(q, u, t)

(

sin
(

ω1(q, u, t)t
)

Ci
(

ω2(q, u, t)t
)

− cos
(

ω1(q, u, t)t
)

Si
(

ω2(q, u, t)t
)

)]

, (17.4.6)

where we have defined

ω1(q, u, t) = q0 −
qu(t)

(

q2u(t)− |q|2 +m2
1 −m2

2

)

+ bαθ|q|λ1/2
(

q2u(t)− |q|2, m2
1, m

2
2

)

2
(

q2u(t)− |q|2
) ,

(17.4.7a)

ω2(q, u, t) =
qu(t)

(

q2u(t)− |q|2 −m2
1 +m2

2

)

− bαθ|q|λ1/2
(

q2u(t)− |q|2, m2
1, m

2
2

)

2
(

q2u(t)− |q|2
) .

(17.4.7b)

It is clear then that these non-Markovian modulations contribute only for T 6= 0

and are, therefore, a purely statistical effect. We interpret these time-dependent os-

cillations as a clear signal of memory effects and the departure from thermodynamic

equilibrium.
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Figure 17.12: Plot of the αθ = +1 contribution to ω1(q, u, t) with q
2 = M2 on-shell

and |q| = 10GeV for the first three extrema of sinc(u): u1 = 4.49 (black), u2 = 7.73

(blue) and u3 = 10.90 (red), as given by (17.3.18). The solid lines correspond to the

b = 1 solution of (17.4.7a) and the dashed line to b = −1. The b = 1 contribution

persists for late times, at which point the frequency of the modulations have decayed

to zero. The b = −1 contribution is disallowed for late times, such that the amplitude

of this constant-frequency modulation is damped to zero. The dotted lines mark the

upper limit of the kinematically disallowed region. For αθ = −1, the b = +1 and

b = −1 contributions are switched, such that the frequency of the b = −1 contribution

reduces to zero for late times. We have not plotted ω2 as it is indistinguishable from

ω1 as plotted here.
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17.5 Time-Evolution Equations

Before developing the evolution equations for our toy model, let us return to (15.0.18)

and for now maintain energy conservation. The collision terms on the right-hand

side for the real scalar read as

ΠΦ
>(p, t)∆

Φ
<(p, t)−ΠΦ

<(p, t)∆
Φ
>(p, t). (17.5.1)

At the initial time, the two systems are separately in thermodynamic equilibrium

at the same temperature. It follows then, for µ≪ m, that the Φ and χ propagators

satisfy the kms relation and the self-energies satisfy the detailed balance condition,

such that

∆>(p, 0) = eβp0∆<(p, 0) (17.5.2)

and

Π>(p, 0) = eβp0Π<(p, 0). (17.5.3)

It is clear then that these collision terms are exactly zero. Furthermore, with noth-

ing to then perturb the system away from this equilibrium, the number density will

not evolve away from the initial condition. This seems somewhat counter-intuitive.

Once the interactions have been switched on, energy will be stored within those

interactions and as such, the system should evolve to some interacting thermody-

namic equilibrium. We may see this explicitly in the one-loop-inserted propagators

in Chapter 12. It is clear then that the Boltzmann equation in this form is incapable

of describing this phenomenon correctly. This is true also of the truncated kinetic

equation of the Kadanoff-Baym approach in (C.5b). We are forced to conclude

therefore that the energy-non-conserving, evanescent regime outlined previously is

entirely necessary to account for the evolution of this system.

We proceed then to insert into (15.0.15) the one-loop integrals with the homo-

geneous number densities fΦ(|p|, t) and f
(c)
χ (|p|, t). We then obtain the evolution
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equation

∂tfΦ(|p|, t) = −
g2

2

∑

{α}

∫

d3k

(2π)3
1

2EΦ(p)

1

2Eχ(k)

1

2Eχ(p− k)

× t

2π
sinc

[(

αEΦ(p)− α1Eχ(k)− α2Eχ(p− k)
)

t/2
]

×
{

π + 2Si
[(

αEΦ(p) + α1Eχ(k) + α2Eχ(p− k)
)

t/2
]}

×
{[

θ(−α) + fΦ(|p|, t)
][

θ(α1)
(

1 + fχ(|k|, t)
)

+ θ(−α1)f
c
χ(|k|, t)

]

×
[

θ(α2)
(

1 + f c
χ(|p− k|, t)

)

+ θ(−α2)fχ(|p− k|, t)
]

−
[

θ(α) + fΦ(|p|, t)
][

θ(α1)fχ(|k|, t) + θ(−α1)
(

1 + f c
χ(|k|, t)

)]

×
[

θ(α2)f
c
χ(|p− k|, t) + θ(−α2)

(

1 + fχ(|p− k|, t)
)]}

.

(17.5.4)

where Si is the sine integral function. The dispersive force term and off-shell collision

term are vanishing in the spatially homogeneous case due to the symmetry of the

self-energy under P → −P .

In the large-time limit,

t

2π
sinc

[(

αEΦ(p)− α1Eχ(k)− α2Eχ(p− k)
)

t/2
]

×
{

π + 2Si
[(

αEΦ(p) + α1Eχ(k) + α2Eχ(p− k)
)

t/2
]}

→ 2πθ(α)δ
(

EΦ(p)− α1Eχ(k)− α2Eχ(p− k)
)

. (17.5.5)

The kinematic constraints then force α1 = α2 = +1 and we obtain the familiar

Boltzmann equation:

∂tfΦ(|p|, t)

= −g
2

2

∫

d3k

(2π)3
1

2EΦ(p)

1

2Eχ(k)

1

2Eχ(p− k)
2πδ
(

EΦ(p)− Eχ(k)− Eχ(p− k)
)

×
[

fΦ(|p|, t)
(

1 + fχ(|k|, t)
)(

1 + f c
χ(|p− k|, t)

)

−
(

1 + fΦ(|p|, t)
)

fχ(|k|, t)f c
χ(|p− k|, t)

]

. (17.5.6)
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At t = 0, the right-hand side may be written in terms of the Bose-Einstein distri-

butions:

− g2

2

∫

d3k

(2π)3
1

2EΦ(p)

1

2Eχ(k)

1

2Eχ(p− k)
2πδ
(

EΦ(p)− Eχ(k)− Eχ(p− k)
)

×
[

fB
(

EΦ(p)
)

(

1 + fB
(

Eχ(k)
)

+ f c
B

(

Eχ(p− k)
)

)

− fB
(

Eχ(k)
)

f c
B

(

E(p− k)
)

]

.

(17.5.7)

By virtue of the energy-conserving delta function, the product of distributions

fB
(

EΦ(p)
)

(

1 + fB
(

Eχ(k)
)

+ f c
B

(

Eχ(p− k)
)

)

= fB
(

Eχ(k)
)

f c
B

(

E(p− k)
)

(17.5.8)

and the right-hand side is exactly zero. We see explicitly that the Boltzmann equa-

tion is incapable of describing the evolution of the system S , see also (C.5b).

Analogously, for the complex scalar, we obtain

∂tfχ(|p|, t) = −
g2

2

∑

{α}

∫

d3k

(2π)3
1

2EΦ(p)

1

2Eχ(k)

1

2Eχ(p− k)

× t

2π
sinc

[(

αEχ(p)− α1EΦ(k)− α2Eχ(p− k)
)

t/2
]

×
{

π + 2Si
[(

αEχ(p) + α1EΦ(k) + α2Eχ(p− k)
)

t/2
]}

×
{[

θ(α)fχ(|p|, t) + θ(−α)
(

1 + f c
χ(|p|, t)

)][

θ(α1) + fΦ(|k|, t)
]

×
[

θ(α2)
(

1 + fχ(|p− k|, t)
)

+ θ(−α2)f
c
χ(|p− k|, t)

]

−
[

θ(α)
(

1 + fχ(|p|, t)
)

+ θ(−α)f c
χ(|p|, t)

][

θ(−α1) + fΦ(|p|, t)
]

×
[

θ(α2)fχ(|p− k|, t) + θ(−α2)
(

1 + f c
χ(|p− k|, t)

)]}

.

(17.5.9)

In the large-time limit, the kinematics restrict α = +1, α1 = +1 and α2 = −1 and
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we obtain

∂tfχ(|p|, t) = −
g2

2

∫

d3k

(2π)3
1

2EΦ(p)

1

2Eχ(k)

1

2Eχ(p− k)

× 2πδ
(

EΦ(k)−Eχ(p)−Eχ(p− k)
)

×
[

(

1+fΦ(|k|, t)
)

fχ(|p|, t)f c
χ(|p−k|, t)−fΦ(|k|, t)

(

1+fχ(|p|, t)
)(

1+f c
χ(|p−k|, t)

)

]

.

(17.5.10)

This is exactly the negative of ∂tfΦ as we would expect.

The rapidly evolving transient behaviour of the system means that the nu-

merical solution of this system of equations is non-trivial. However, we shall show

by contradiction that these equations do indeed constitute a non-trivial evolution

of the system to some new interacting thermodynamic equilibrium. Let us assume

then that the distribution functions on the right-hand side of (17.5.4) remain in

their initial, equilibrium forms for all times. If this right-hand side evaluates to zero

for all times, it is clear that this system of equations do not add to the pictures

provided by the classical Boltzmann or Kadanoff-Baym approaches. If however this

right-hand side does not evaluate to zero for all times, then we can be certain that

the system is indeed perturbed from the non-interacting equilibrium, presumably

evolving for late times to some new interacting thermodynamic equilibrium. These

evaluations are shown in Figure 17.13. It is clear that the the systematic inclusion

of finite-time effects and the subsequent energy-non-conserving, evanescent regime

do indeed push the system away from equilibrium, forcing it to attain a new equi-

librium state at late times. We emphasise that such behaviour cannot be described

by existing quantum Boltzmann or Kadanoff-Baym approaches.

These time-evolution equations differ from those derived previously [39, 103]

by our systematic treatment of finite-time effects and the generalised kinematics of

the evanescent regime. We also do not rely on obscure and partial quasi-particle

resummations.
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Figure 17.13: Behaviour of ∂tfΦ(|p|, t), assuming that the distribution functions of

the right-hand side of the time-evolution equation maintain their equilibrium form

for all times.
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17.6 Inclusion of Thermal Masses

In the following section, we describe how local, thermal-mass corrections may be

incorporated consistently into this approach.

The local contribution to the one-loop χ self-energy (see Figure 17.1) is

Πloc(1)
χ (p, p′, t) = −λ

2
(2π)4δ

(4)
t (p− p′)(2πµ)2εei(p0−p′0)t/2

×
∫∫

ddk

(2π)d
d4k′

(2π)4

[ i

k2 −m2 + iǫ
(2π)4δ(4)(k − k′)

+ 2πδ(k2 −m2)|2k0|1/2f̃χ(k, k′, t)ei(k0−k′0)t/2|2k′0|22πδ(k′2 −m2)
]

.

(17.6.1)

The first term yields the familiar zero-temperature ultra-violet divergence, which

we may remove by adding to the Lagrangian the usual mass renormalisation. The

second term is UV finite and yields

Πloc(1)
χ (p, p′, t) = −(2π)4δ(4)t (p− p′)ei(p0−p′

0
)t/2m2

th(t), (17.6.2)

where the time-dependent thermal mass is given by

m2
th(t) =

λ

2

∫

d3k

(2π)3
1

√

2Eχ(k)

∫

d3k′

(2π)3
1

√

2Eχ(k′)
[

fχ(k,k
′, t)ei[E(k)−E(k′)]t/2 + f c

χ(−k,−k′, t)e−i[E(k)−E(k′)]t/2
]

. (17.6.3)

The inverse quasi-particle χ propagator then has the form

∆−1
χ,ab(p, p

′) = (2π)4δ
(4)
t (p− p′)ei(p0−p′

0
)t/2
{[

p′2 −m2
th(t)

]

ηab + iǫIab
}

. (17.6.4)

If the χ self-interaction is switched on sufficiently long before t = 0, then for t ≥ 0,

we may replace the δt function in the inverse quasi-particle propagator by an exact
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energy-conserving delta function. We then obtain the quasi-particle χ propagators

∆0,ab
χ (p, p′, t)

=

[
[

p2 −m2
th(t) + iǫ]−1 −i2πθ(−p0)δ(p2 −m2

th(t))

−i2πθ(p0)δ(p2 −m2
th(t)) −

[

p2 −m2
th(t)− iǫ

]−1

]

(2π)4δ(4)(p− p′)

− i
[

1 1
1 1

]

2π|2p0|1/2δ(p2 −m2
th(t))f̃χ(p, p

′, t)ei(p0−p′
0
)t/22π|2p′0|1/2δ(p′2 −m2

th(t)),

(17.6.5)

where we have assumed mth(t)≫ m.

If Sχ is at t = 0 in a state of thermodynamic equilibrium, the thermal mass

reduces to the familiar result

m2
th(t = 0) =

λT 2

24
, (17.6.6)

where we have assumed that m = 0 and µ ≪ T . However, in order to describe

completely the dynamics of the system S = SΦ∪Sχ, we must couple the evolution

of the local, thermal-mass corrections to the evolution equations for the number

density through

∂tmth(t) =
λ

2mth(t)

∫

d3k

(2π)3
1

2Eχ(k)

1

2

[

∂tfχ(|k|, t) + ∂tf
c
χ(|k|, t)

]

, (17.6.7)

where, of course, ∂tfχ(|k|, t) and ∂tf
c
χ(|k|, t) depend implicitly upon mth(t). It is

clear that the solution of this equation will allow the inclusion of non-perturbative

effects, in fact, one would anticipate that the leading contribution to ∂tmth(t) is of

order λ1/2g.

17.7 Early-Time Regime

In this final section, we look more closely at the early-time behaviour immediately

after the instant the interactions are switched on. This behaviour must dominated

by the ultra-violet behaviour of the phase-space integral on the right-hand side of
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(17.5.4), by uncertainty arguments.

We take |p| = 0 and m = 0 and introduce the ultra-violet momentum cut-

off Λ. Assuming that the χ distribution functions are tempered, vanishing in the

ultra-violet, we may show that the ultra-violet contribution is

∂tfΦ(|p| = 0, t) ∼ − g2

32π3M

[

1 + 2fΦ(|p| = 0, t)
]

lim
Λ→∞

Si2Λt. (17.7.1)

It is clear that this vanishes in the limit t << 1/Λ → 0 as we expect. However,

expanding around Λt = 0, i.e., for times infinitesimally close to zero, we obtain

∂tfΦ(|p| = 0, t) ∼ − g2

32π3M

[

1 + 2fΦ(|p| = 0, t)
]

lim
Λ→∞

(Λt)2. (17.7.2)

We see however that for small but finite times, ultra-violet contributions yield rapidly

varying contributions. What is immediately apparent in this discussion and from

Figures 17.9 and 17.13 is the importance of the transient behaviour of the system

to the subsequent dynamics, the memories of which persist on long time scales.

The highly-oscillatory and rapidly-evolving early-time behaviour suggests that the

truncation of any gradient expansion of the evolution equations is unsuitable, at

least for these early times.

Furthermore, it is apparent that the numerical solution of these systems of

equations constitutes in itself a technical challenge. The presence of the non-singular,

but nevertheless highly-peaked phase-space integral leaves the problem unsuitable

for näıve discretisation, since any lattice would need to be relatively dense in order

to sample the integrand effectively; indeed, for the evaluations of Figures 17.9 and

17.13, 10× 106 sampling points were required to minimise sufficiently the statistical

error of the two-dimensional Monte Carlo integrations (performed using the quasi

Monte Carlo algorithm in Wolfram Mathematica [104]), even with the Gaussian

variance reduction. As such, implicit methods, i.e., Backward Euler or n-step Back-

ward Differentiation Formula methods or explicit Runge-Kutta iterative methods,

are unsuitable. On the other hand, the rapidly-oscillating transient behaviour sug-





17. Thermalisation of a Massive Scalar

gests a high degree of stiffness to the system and, as such, any explicit method, i.e.,

Forward Euler, explicit Runge-Kutta or other linear multi-step method would, for

early times at least, require a small and therefore computationally-intensive step

size.
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18 Conclusions

We have outlined a perturbative approach to non-equilibrium thermal quantum field

theory. Proceeding from the imposition of general boundary conditions on ensemble

expectation values (eevs) of interaction-picture creation and annihilation operators,

we have been able to arrive at time-evolution equations for statistical distribution

functions without the need for gradient expansion or quasi-particle Ansätzen of the

free propagators. The form of the free propagators and the behaviour of these

boundary conditions are constrained by the familiar requirements of causality, uni-

tarity, CPT invariance and Hermiticity. Allowing elements of the density matrix

off-diagonal in three-momenta, we account for initial spatial inhomogeneities in the

thermal background. Further allowing elements off-diagonal in particle number, we

may encode particle-non-conserving correlations in the initial conditions.

The systematic inclusion of finite-time effects ensures that the perturbation

theory is free of the pinching singularities thought to spoil such approaches to non-

equilibrium quantum field theory. This is achieved without prescription, but rather

by accounting consistently for the finite boundary time resulting from the switching

on of the interactions. In the early universe, such a switching on may result from

the explosive particle production in models of preheating following some inflationary

regime; in the decay of false vacua; or in phase transitions.

In systematically treating the generalised decay kinematics in the energy-non-

conserving, evanescent regime at early times, we see an expansion of the available

2 → 1 decay phase-space and contributions from processes that are normally kine-

matically forbidden. For the three-body processes in the model considered, these
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18. Conclusions

evanescent processes are the Landau damping and 3 → 0 annihilation processes.

Indeed, we see for the model considered that these processes contribute promptly

to the particle width as much as of order 10–20%. This early-time regime is a

manifestation of the Heisenberg uncertainty principle, included consistently in this

approach by careful treatment of finite-time effects. The switching on of the in-

teractions leads to a sudden deposition of energy in the system, which we see as a

rapid rise in both the particle width and the collision terms of the time-evolution

equations. Notably, these early-time effects persist in the oscillations visible in the

late-time behaviour. Furthermore, these late-time memory effects show evidence

of non-Markovian evolution with the appearance of modulations of time-dependent

frequency.

The rapid transient behaviour of the system suggests that the method of gra-

dient expansion is unsuitable for early times. We emphasise that at no point is any

assumption made as to the relative rate of thermalisation of either the statistical

or spectral behaviour of the system. Indeed, for the equilibrium initial conditions

considered, it is clear that the spectral evolution through the evanescent regime is

critical to the evolution of the system. The system of time-evolution equations is

highly stiff and their solution, in itself, presents a computational challenge. The

solution of these equations is therefore a predominate area for further investigation.

Having established closed forms for the most general form of the non-homogeneous

propagators, this approach may be appropriate for the consistent incorporation of

particle mixing [105, 106]. The non-homogeneous loop integrals presented in Chap-

ter 16 may be readily generalised to higher-point functions and the application of

Veltman-Passarino-like [107] reduction methods to the tensor equivalents of these

integrals are of interest.

The finite-time effects and the evanescent regime described by this formalism

are of particular relevance to processes occurring on time-scales shorter than the

thermalization time, the so-called prethermalization [108] and isotropization [109]

time-scales. In particular, these effects are relevent when the evolution of the sys-
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tem is driven over some finite characteristic time-scale. One such example occurs

during the first-order electroweak phase transition, in which this finite time-scale

is determined by the bubble wall velocity of the nucleation. For a bubble wall of

width L ≫ 1/T , where T is the thermodynamic temperature, and velocity vw, the

characteristic time-scale is of order Mtc ∼ Mvw/L. For mass-scales of order the

Higgs mass M ∼ mH ∼ 100GeV and bubble wall widths of order L ∼ 8GeV−1,

the authors of [110] find values of vw ∼ 0.55 for Standard Model scenarios, giving

Mtc ∼ 7. This time-scale is consistent with those over which we have found the

finite-time effects to be prominent, see Figure 17.9. One can anticipate that the

energy-non-conserving evanescent regime may contribute a rich phenomenology of

exotic processes.
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A Propagator Properties and Identities

In the following appendix, we summarise the transformation properties and identities

between the various propagators defined in Section 7.1, which we list below for the

complex-scalar field χ:

i∆(x, y) ≡ 〈[χ(x), χ†(y)]〉 , (A.1a)

i∆1(x, y) ≡ 〈{χ(x), χ†(y)}〉 , (A.1b)

i∆R(x, y) ≡ θ(x0 − y0)i∆(x, y), (A.1c)

i∆A(x, y) ≡ −θ(y0 − x0)i∆(x, y), (A.1d)

i∆P(x, y) ≡ 1
2
ε(x0 − y0) 〈[χ(x), χ†(y)]〉 , (A.1e)

i∆>(x, y) ≡ 〈χ(x)χ†(y)〉 , (A.1f)

i∆<(x, y) ≡ 〈χ†(y)χ(x)〉 , (A.1g)

i∆F(x, y) ≡ 〈T[χ(x)χ†(y)]〉 , (A.1h)

i∆D(x, y) ≡ 〈T̄[χ(x)χ†(y)]〉 . (A.1i)

The definitions of the charge-conjugate propagators follow from the unitary trans-

formation

Cχ(x) ≡ U †
cχ(x)Uc = χc(x) = ηχ†(x), (A.2a)

Cχ†(x) ≡ U †
cχ

†(x)Uc = χc†(x) = η∗χ(x), (A.2b)

where the complex phase η satisfies |η|2 = 1.

It follows from the definitions that the propagators satisfy the transformations
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listed below under charge- and Hermitian-conjugation:

∆(x, y) = −∆∗(y, x) = −∆c(y, x), (A.3a)

∆1(x, y) = −∆∗
1(y, x) = ∆c

1(y, x), (A.3b)

∆P(x, y) = ∆∗
P(y, x) = ∆c

P(y, x), (A.3c)

∆R(x, y) = ∆c∗
R (x, y) = ∆∗

A(y, x) = ∆c
A(y, x), (A.3d)

∆>(x, y) = −∆∗
>(y, x) = ∆c

<(y, x) = −∆c∗
< (x, y), (A.3e)

∆F(x, y) = ∆c
F(y, x) = −∆∗

D(y, x) = −∆c∗
D (x, y), (A.3f)

where the action of charge-conjugation is trivial in the case of the real-scalar field.

In the double-momentum representation, these identities take the form:

∆(p, p′) = −∆∗(p′, p) = −∆c(−p′,−p), (A.4a)

∆1(p, p
′) = −∆∗

1(p
′, p) = ∆c

1(−p′,−p), (A.4b)

∆P(p, p
′) = ∆∗

P(p
′, p) = ∆c

P(−p′,−p), (A.4c)

∆R(p, p
′) = ∆c∗

R (−p,−p′) = ∆∗
A(p

′, p) = ∆c
A(−p′,−p), (A.4d)

∆>(p, p
′) = −∆∗

>(p
′, p) = ∆c

<(−p′,−p) = −∆c∗
< (−p,−p′), (A.4e)

∆F(p, p
′) = ∆c

F(−p′,−p) = −∆∗
D(p

′, p) = −∆c∗
D (−p,−p′). (A.4f)

Finally, in the Wigner representation, the propagators satisfy the following:

∆(q,X) = −∆∗(q,X) = −∆c(−q,X), (A.5a)

∆1(q,X) = −∆∗
1(q,X) = ∆c

1(−q,X), (A.5b)

∆R(q,X) = ∆c∗
R (−q,X) = ∆∗

A(q,X) = ∆c
A(−q,X), (A.5c)

∆>(q,X) = −∆∗
>(q,X) = ∆c

<(−q,X) = −∆c∗
< (−q,X), (A.5d)

∆F(q,X) = ∆c
F(−q,X) = −∆∗

D(q,X) = −∆c∗
D (−q,X). (A.5e)
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We also list the following set of useful identities:

∆(x, y) = ∆>(x, y)−∆<(x, y) = ∆R(x, y)−∆A(x, y), (A.6a)

∆1(x, y) = ∆>(x, y) + ∆<(x, y) = ∆F(x, y) + ∆D(x, y), (A.6b)

∆R(A)(x, y) = ∆F(x, y)−∆<(>)(x, y) = ∆∗
F(x, y) + ∆>(<)(x, y), (A.6c)

∆P(x, y) =
1
2
ε(x0 − y0)∆(x, y) = 1

2

[

∆R(x, y) + ∆A(x, y)
]

, (A.6d)

∆F(x, y) =
1
2

[

∆R(x, y) + ∆A(x, y) + ∆>(x, y) + ∆<(x, y)
]

. (A.6e)

We note that analogous relations hold for the corresponding self-energies and that

these identities and relations are true for free and resummed propagators.
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B Non-Homogeneous Density Operator

In (B.1), we show the series expansion of the general Gaussian-like density matrix, in

which we keep terms linear, bilinear and quadratic in the creation and annihilation

operators. Symmetric and asymmetric outer products of multi-particle states are

built up by convoluting over all combinations of theW amplitudes. For convenience,

the time dependence has been omitted and it is understood that all momenta are

integrated with the lips measure. Please note that the expansion spans overleaf.

ρ =
(

1 +
1

2
W10(p1; 0)W01(0;p1) +

1

4
W20(p1,p2; 0)W02(0;p2,p1) + · · ·

)

×
{

|0〉〈0|

+
(

−W10(k1; 0) +
1

2
W11(k1;q1)W10(q1; 0)

+
1

2
W20(k1,q1; 0)W01(0;q1) + · · ·

)

|k1〉〈0|

+
(

−W01(0;k
′
1) +

1

2
W01(0;q1)W11(q1;k

′
1)

+
1

2
W02(0;k

′
1,q1)W10(q1; 0) + · · ·

)

|0〉〈k′
1|

+
(

(2π)32E(k1)δ
(3)(k1 − k′

1)−W11(k1;k
′
1) +W10(k1; 0)W01(0;k

′
1)

+
1

2
W11(k1;q1)W11(q1;k

′
1)

+
1

4
W20(k1,q1; 0)W02(0;q1,k

′
1) + · · ·

)

|k1〉〈k′
1|
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+
1

2

(

−W20(k1,k2; 0) +W10(k1; 0)W10(k2; 0) +
1

2
W11(k1;q1)W20(q1,k2; 0)

+
1

2
W11(k2;q1)W20(q1,k1; 0) + · · ·

)

|k1,k2〉〈0|

+
1

2

(

−W02(0;k
′
1,k

′
2) +W01(0;k

′
1)W01(0;k

′
2) +

1

2
W02(0;k

′
1,q1)W11(q1;k

′
2)

+
1

2
W02(0;k

′
2,q1)W11(q1;k

′
1) + · · ·

)

|0〉〈k′
1,k

′
2|

+
1

2

(

W11(k1;k
′
1)W10(k2; 0) +W11(k2;k

′
1)W10(k1; 0)

+W20(k1,k2; 0)W01(0;k
′
1) + · · ·

)

|k1,k2〉〈k′
1|

+
1

2

(

W11(k1;k
′
1)W01(0;k

′
2) +W11(k1;k

′
2)W01(0;k

′
1)

+W02(0;k
′
1,k

′
2)W10(k1; 0) + · · ·

)

|k1〉〈k′
1,k

′
2|

+
1

2

(

W20(k1,k2; 0)W10(k3; 0) + · · ·
)

|k1,k2,k3〉〈0|

+
1

2

(

W02(0;k
′
1,k

′
2)W01(0;k

′
3) + · · ·

)

|0〉〈k′
1,k

′
2,k

′
3|

+
[1

2

(

(2π)32E(k1)δ
(3)(k1 − k′

1)−W11(k1;k
′
1) +W10(k1; 0)W01(0;k

′
1)

+
1

2
W11(k1;q1)W11(q1;k

′
1) +

1

4
W20(k1,q1; 0)W02(0;q1,k

′
1) + · · ·

)

×
(

(2π)32E(k2)δ
(3)(k2 − k′

2)−W11(k2;k
′
2) +W10(k2; 0)W01(0;k

′
2)

+
1

2
W11(k2;q2)W11(q2;k

′
2) +

1

4
W20(k2,q2; 0)W02(0;q2,k

′
2) + · · ·

)

+
1

4

(

−W20(k1,k2; 0) +W10(k1; 0)W10(k2; 0) +
1

2
W11(k1;q1)W20(q1,k2; 0)

+
1

2
W11(k2;q1)W20(q1,k1; 0) + · · ·

)

×
(

−W02(0;k
′
1,k

′
2) +W01(0;k

′
1)W01(0;k

′
2) +

1

2
W02(0;k

′
1,q1)W11(q1;k

′
2)

+
1

2
W02(0;k

′
2,q1)W11(q1;k

′
1) + · · ·

)]

|k1,k2〉〈k′
1,k

′
2|

+ · · ·
}

. (B.1)
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C Kadanoff-Baym Equations

In the following appendix, we derive the well-known forms of the Kadanoff-Baym

equations [45, 46]. These results are included here for comparison with the pertur-

bative results of the main body.

Inverse Fourier transforming (15.0.4), we obtain the coordinate-space repre-

sentation of the partially-inverted SD equation

−
[

�2
x +M2

]

∆≷(x, y) +

∫

Ωt

d4z
[

Π≷(x, z)∆P (z, y) + ΠP(x, z)∆≷(z, y)
]

=
1

2

∫

Ωt

d4z
[

Π<(x, z)∆>(z, y)− Π>(x, z)∆<(z, y)
]

, (C.1)

where we include also the positive-frequency contribution for completeness. Using

the fact that

�2
x = �2

R + ∂R,µ∂
µ
X +

1

4
�2

X , (C.2)

we may show that the gradient expansion of the Wigner transform of the KB equa-
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tions takes the form

[

q2 −M2 + iq ·∂X −
1

4
�2

X

]

∆≷(q,X)

+

∫

d4Q

(2π)4
(2π)4δ

(4)
t (Q) exp

[

− i
(

Q ·X +♦−
q,X + 2♦+

Q,X

)]

[

{Π≷(q +Q/2, X)}{∆P(q −Q/2, X)}+ {ΠP(q +Q/2, X)}{∆≷(q −Q/2, X)}
]

=
1

2

∫

d4Q

(2π)4
(2π)4δ

(4)
t (Q) exp

[

− i
(

Q ·X +♦−
q,X + 2♦+

Q,X

)]

[

{Π<(q +Q/2, X)}{∆>(q −Q/2, X)} − {Π>(q +Q/2, X)}{∆<(q −Q/2, X)}
]

,

(C.3)

where we recall the definitions of the diamond operators and Poisson brackets in

(10.2.10) and (10.2.11) from Section 10.2. Subsequently separating the Hermitian

and anti-Hermitian parts of (C.3), we find the constraint and kinetic equations

[

q2 −M2 − 1

4
�2

X

]

∆≷(q,X) +

∫

d4Q

(2π)4
(2π)4δ

(4)
t (Q) cos

(

Q ·X +♦−
q,X + 2♦+

Q,X

)

[

{Π≷(q +
Q
2
, X)}{∆P(q − Q

2
, X)}+{ΠP(q +

Q
2
, X)}{∆≷(q − Q

2
, X)}

]

=
i

2

∫

d4Q

(2π)4
(2π)4δ

(4)
t (Q) sin

(

Q ·X +♦−
q,X + 2♦+

Q,X

)

[

{Π>(q +
Q
2
, X)}{∆<(q − Q

2
, X)}−{Π<(q +

Q
2
, X)}{∆>(q − Q

2
, X)}

]

,

(C.4a)

q · ∂X∆≷(q,X)−
∫

d4Q

(2π)4
(2π)4δ

(4)
t (Q) sin

(

Q ·X +♦−
q,X + 2♦+

Q,X

)

[

{Π≷(q +
Q
2
, X)}{∆P(q − Q

2
, X)}+{ΠP(q +

Q
2
, X)}{∆≷(q − Q

2
, X)}

]

=
i

2

∫

d4Q

(2π)4
(2π)4δ

(4)
t (Q) cos

(

Q ·X +♦−
q,X + 2♦+

Q,X

)

[

{Π>(q +
Q
2
, X)}{∆<(q − Q

2
, X)}−{Π<(q +

Q
2
, X)}{∆>(q − Q

2
, X)}

]

,

(C.4b)

respectively.

In the late-time limit, t → ∞, the Q dependence is removed and we neglect

the effects of the uncertainty principle (important for the early-time behaviour).





Subsequently keeping terms to zeroth order in the gradient expansion, the above

expressions reduce to the compact form of the Kadanoff-Baym (KB) equations (cf.

[1, 36, 37, 45, 46])

[

q2 −M2
]

∆≷(q,X) = −
[

Π≷(q,X)∆P(q,X) + ΠP(q,X)∆≷(q,X)
]

, (C.5a)

q · ∂X∆≷(q,X) =
i

2

[

Π>(q,X)∆<(q,X)− Π<(q,X)∆>(q,X)
]

. (C.5b)

The kinetic equation is then reminiscent of the classical Boltzmann equation.







D Monte Carlo Integration

This appendix is based on the concise introduction to Monte Carlo integration pro-

vided in [111]. We include this brief outline for completeness.

Let us consider the integral

〈f〉 =
∫ 1

0

dx f(x), (D.1)

which is just the mean of the function f(x) over the interval (0, 1). The variance of

this mean is

σ2 = 〈f 2〉 − 〈f〉2 =
∫ 1

0

dx
[

f(x)− 〈f〉
]2
. (D.2)

In order to estimate the value of this integral by generating N random numbers

rk uniformly distributed over the interval (0, 1). We may then sample the integral

above at N points and approximate it by the arithmetic mean

〈f̄〉 = 1

N

N
∑

k=1

f(rk). (D.3)

This is in itself a random variable with expectation value 〈f〉. The approximation

to the variance is therefore

σ̄2 =
1

N − 1

N
∑

k=1

[

f(rk)− 〈f̄〉
]2
. (D.4)

The factor of N − 1 arises because this variance is calculated from the arithmetic

mean and not the true value.
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[69] G. Szegö, Orthogonal polynomials, pp. 105–106. American Mathematical

Society, 1939.

[70] J. Zinn-Justin, Quantum field theory and critical phenomena.

[71] S. Pokorski, Gauge field theories, pp. 78–83. Cambridge University Press,

2nd ed., 2000.

[72] L. H. Ryder, Quantum field theory, pp. 154–181. Cambridge University

Press, 2nd ed., 1996.

[73] W. Greiner and J. Reinhardt, Field quantization, pp. 138–140. Springer,

1996.

[74] R. E. Norton and J. M. Cornwall, “On the formalism of relativistic many

body theory,” Ann. Phys. 91 (1975) 106.

[75] A. J. Niemi and G. W. Semenoff, “Finite temperature quantum field theory

in Minkowski space,” Ann. Phys. 152 (1984) 105.

[76] A. J. Niemi and G. W. Semenoff, “Thermodynamic calculations in relativistic

finite temperature quantum field theories,” Nucl. Phys. B230 (1984) 181.

[77] N. P. Landsman and C. G. van Weert, “Real and imaginary time field theory

at finite temperature and density,” Phys. Rept. 145 (1987) 141.





Bibliography

[78] T. Altherr, “Introduction to thermal field theory,” Int. J. Mod. Phys. A8

(1993) 5605–5628.

[79] J. I. Kapusta, Finite-temperature field theory. Cambridge University Press,

1993.

[80] J. I. Kapusta and C. Gale, Finite-temperature field theory; principles and

applications. Cambridge University Press, 2nd ed., 2006.

[81] A. Das, Finite temperature field theory. World Scientific, 1997.

[82] M. Le Bellac, Thermal field theory. Cambridge University Press, 2000.

[83] P. Ramond, Field theory: a modern primer. Westview Press.

[84] C. Itzykson and J.-B. Zuber, Quantum field theory, pp. 163–170.

McGraw-Hill, 1980.

[85] G. Kallen, “On the definition of the renormalization constants in quantum

electrodynamics,” Helv.Phys.Acta 25 (1952) 417.

[86] H. Lehmann, “On the properties of propagation functions and

renormalization contants of quantized fields,” Nuovo Cim. 11 (1954)

342–357.

[87] K. chao Chou, Z. bin Su, B. lin Hao, and L. Yu, “Equilibrium and

nonequilibrium formalisms made unified,” Phys. Rept. 118 (1985) 1.

[88] E. A. Calzetta and B.-L. B. Hu, Nonequilibrium quantum field theory.

Cambridge University Press, 2008.

[89] J. Rammer, Quantum field theory of non-equilibrium states. Cambridge

University Press, 2007.

[90] H. Lehmann, K. Symanzik, and W. Zimmermann, “On the formulation of

quantized field theories,” Nuovo Cim. 1 (1955) 205–225.

[91] M. J. G. Veltman, Diagrammatica; the path to Feynman diagrams,

pp. 183–206. Cambridge University Press, 1994.





Bibliography

[92] G. ’t Hooft and M. J. G. Veltman, “Diagrammar,” NATO Adv. Study Inst.

Ser. B Phys. 4 (1974) 177–322.

[93] R. Kobes and G. Semenoff, “Discontinuities of Green functions in field

theory at finite temperature and density,” Nucl.Phys. B260 (1985) 714–746.

[94] R. Kobes and G. Semenoff, “Discontinuities of Green functions in field theory

at finite temperature and density (II),” Nucl.Phys. B272 (1986) 329–364.

[95] R. Jackiw, “Functional evaluation of the effective potential,” Phys. Rev. D9

(1974) 1686.

[96] P. F. Bedaque, “Thermalization and pinch singularities in nonequilibrium

quantum field theory,” Phys.Lett. B344 (1995) 23–28.

[97] C. Greiner and S. Leupold, “Interpretation and resolution of pinch

singularities in nonequilibrium quantum field theory,” Eur.Phys.J. C8 (1999)

517–522.

[98] R. Kobes, “Retarded functions, dispersion relations, and Cutkosky rules at

zero and finite temperature,” Phys.Rev. D43 (1991) 1269–1282.

[99] M. van Eijck and C. van Weert, “Finite temperature retarded and advanced

Green functions,” Phys.Lett. B278 (1992) 305–310.

[100] G. ’t Hooft and M. Veltman, “Scalar one loop integrals,” Nucl.Phys. B153

(1979) 365–401.

[101] E. E. Burniston and C. E. Siewert, “The use of Riemann problems in solving

a class of transcendental equations,” Proc. Camb. Phil. Soc. 73 (1973)

111–118.

[102] H. A. Weldon, “Simple rules for discontinuities in finite temperature field

theory,” Phys.Rev. D28 (1983) 2007.

[103] D. Boyanovsky, H. J. de Vega, R. Holman, S. P. Kumar, and R. D. Pisarski,

“Real time relaxation and kinetics in hot scalar QED: Landau damping,”

Phys.Rev. D58 (1998) 125009.





Bibliography

[104] Wolfram Mathematica 8.0, Wolfram Research.

[105] G. Sigl and G. Raffelt, “General kinetic description of relativistic mixed

neutrinos,” Nucl.Phys. B406 (1993) 423–451.

[106] D. Boyanovsky and C. Ho, “Non equilibrium dynamics of mixing, oscillations

and equilibration: A Model study,” Phys.Rev. D75 (2007) 085004.

[107] G. Passarino and M. Veltman, “One loop corrections for e+-e− annihilation

into µ+-µ− in the Weinberg model,” Nucl.Phys. B160 (1979) 151.

[108] J. Berges, S. Borsányi, and C. Wetterich, “Prethermalization,”

Phys.Rev.Lett. 93 (2004) 142002.
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