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Introduction

Since the birth of particle physics, with the discovery of the electron by Thomson in 1897, much
progress has been made in explaining the observable phenomena in nature. In order to explain
the properties of particles at the (sub)atomic scale quantum mechanics was developed around
the nineteen-twenties. Based on experiments it was realized that all particles in nature have a
fundamental property called “spin”, the value of which divides them into two classes: bosons
and fermions, each with distinct properties. Somewhat earlier, in 1905, Einstein proposed his
theory of special relativity, which radically changed our notions of space and time; it showed
how both concepts are intricately connected. A combination of special relativity and quantum
mechanics finally led to the Standard Model around 1970, which quite successfully describes
the interactions between the elementary particles that form the building blocks of all observable
matter in the universe. There are three fundamental forces incorporated in the Standard Model:
the electromagnetic, the weak, and the strong force. Here the concept of gauge symmetry plays
an important role. By making this symmetry local, i.e. introducing coordinate dependent trans-
formation parameters, spin 1 gauge bosons are introduced that mediate the force between two
particles. The best known example is the photon that causes an electromagnetic field between
two charged particles, causing them to attract or repulse. Similarly, the additional fundamental
forces are carried by W/Z bosons and gluons respectively. The Standard Model has been veri-
fied to great precision, nevertheless there are some discrepancies. First of all there is the Higgs
boson which is responsible for giving masses to the other fundamental particles, but still has
not been found.1 Secondly, the Standard Model contains nineteen fine-tuned parameters – e.g.
corresponding to masses of elementary particles – that cannot be theoretically predicted, and is
not a fundamental theory.

Another major achievement of 20th century theoretical physics was Einsteins theory of gen-
eral relativity, dealing with the fourth fundamental force: gravity. The theory was constructed
in 1914 in an attempt to implement special relativity into Newtonian gravity and further im-
proved our knowledge about space and time. Some of its successes were the predictions of
small deviations of planetary orbits and the deflection of light from heavy objects. More specu-
lative predictions are black holes and gravitational radiation, which both only have been verified
indirectly. Furthermore, predictions could be made regarding the evolution of our universe.
Although this theory was capable of explaining the interactions between massive objects at rela-
tively large length scales, something goes wrong when trying to describe gravity at small scales
where quantum effects become important. Considering that the gravitational force is extremely

1There is hope that the new LHC accelerator, due 2006, will provide conclusive experimental proof of its existence.
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force mediating acts on range relative
particle strength

strong nuclear force gluon quarks nuclear distances 20

electromagnetism photon charged particles infinite 1

weak nuclear force W- or Z-boson quarks and leptons nuclear distances 10−7

gravity graviton? massive particles infinite 10−36

Table 1: The four fundamental forces. The relative strengths are based on two interacting up-
quarks separated by a distance of 10−18 m [1].

weak compared to the other three fundamental forces at small scales, see table 1, it is not strange
that general relativity theory has only been tested up to approximately 1 mm. An attempt to de-
scribe gravity by using similar quantization techniques as used for the Standard Model failed.
The theory suffered from infinities since the gravitational coupling constant κ = 8πG/c4 is not
dimensionless and is therefore unsuitable for performing perturbation expansions, which are
common in particle physics. The typical length scale where our classical ideas of gravity and
space-time lose their validity is given by the Planck length:

`P =

√
hG
c3 ≈ 4.1 · 10−35 m , (1)

with h Planck’s constant, G Newton’s gravitational constant, and c the velocity of light.
Summarizing, at both ends of the scale spectrum two quite successful theories were obtained,

that did not seem to be compatible. These arguments show the need for a theory of “quantum
gravity”, that can handle all four fundamental forces simultaneously. The quest for this unified
theory has been the main target for the research done in high energy physics during the last
twenty years.

A partial success was reached in 1976 by the discovery of supergravity; an extension of
general relativity theory that behaved better at high energies, i.e. the infinities were partially
cancelled. The crucial ingredient here was “supersymmetry”, a symmetry between bosons and
fermions, that predicts that for every boson in nature there exists a corresponding fermionic
particle, and vice versa. The gauge theory of supersymmetry is given by supergravity. The
spin 2 gauge boson responsible for mediating the gravitational force is called the graviton. Its
supersymmetric partner is the so-called gravitino. In order to measure these particles energies
would be needed that are way out of the range of our present (and future) accelerators.

The most promising candidate so far for a theory of quantum gravity is superstring theory.
String theory assumes that all particles can be represented by different oscillational modes of a
string, with a typical length `S of the order of the Planck length `P. One of the modes turns out
to be a spin 2 particle, behaving like a graviton. Subsequentially it was found that the low energy
limit of superstring theory is given by supergravity. There is an intuitive reason why superstring
theory is free from infinities. These infinities usually occur at singular points, however a string
moving in space-time sweeps out a two dimensional surface, as opposed to a line in the case of
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a point particle. Exactly this fact causes the interactions not to take place at one single point,
but to spread out over a small area. Intuitively that is the reason for string theory to be free from
infinities, which usually occur at singular points.

Unfortunately, this theory also has its disadvantages. String theory is only defined per-
turbatively, i.e. scattering amplitudes are expressed as an infinite expansion in powers of the
string coupling constant gS , associated with the “Feynman-diagrams” of string theory. The
main setback however was apparent when there seemed to exist five different superstring theo-
ries, whereas we hoped to obtain one unique theory of quantum theory.

This opinion was drastically changed after the discovery of dualities, that enabled us to relate
different energy regimes of different theories. An important role was played by the so-called
“brane” solutions of string theory. They are solitonic membrane-like objects that can be seen
as higher-dimensional generalizations of strings. The five apparently distinct theories and their
brane-solutions seemed to be related by a web of dualities, suggesting that they all represented
various limits of one single fundamental theory, called “M-theory”. Unfortunately there is not
much known about this theory. However, by studying the low energy limits of M-theory and the
various dualities between them, hopefully we will get closer to a unified theory.

We will now give a brief description of the topics discussed in this thesis. In chapter 1 we
will briefly describe the framework of string theory and supergravity, needed to understand the
context of the rest of the thesis. Chapter 2 will provide the motivations for the research described
in the remainder of the thesis. The main motivation is the concept of “brane-world scenarios”,
which assumes that our four-dimensional universe can be represented as a four-dimensional
brane-solution in five dimensions. With these types of models several problems in cosmology
were tried to be solved, e.g. the cosmological constant problem and the hierarchy problem.
The branes used in these models separate space-time into two regions and are called “domain-
walls”. A supersymmetrized version is not easy to construct; the domain-walls have to satisfy
several conditions in order to describe the correct vacuum structure of the five-dimensional
space-time. The determination of all possible domain-wall candidates requires a knowledge of
matter couplings of five-dimensional supergravity. The scalar fields occurring in such theories
can be interpreted as coordinates of a manifold. The potential energy of the scalars is given by
the scalar potential, which is a function of all the scalars of the scalar manifold. The vacuum-
structure of the five-dimensional space-time is determined by the minima of the scalar potential
and the geometry of the scalar manifold.

The five-dimensional matter-coupled supergravity theory is a special case of a “gauged su-
pergravity”, i.e. a supergravity theory where one or more global symmetries has been made local.
One way of constructing these gauged supergravities is by means of dimensional reduction. One
starts with a higher-dimensional supergravity theory and “curls up” some extra dimensions to
end up effectively with a supergravity in a lower space-time dimension. An extension of this
method is called generalized dimensional reduction; here one uses a symmetry of a theory to
obtain masses in lower dimensions. In this case, the symmetry used will appear as a gauged
symmetry of the reduced theory. When applied to supergravity one can construct gauged super-
gravities. A general introduction to this topic is given in chapter 3, after which it is applied to
eleven- and ten-dimensional supergravity in chapter 4.

The remaining three chapters 5, 6 and 7 provide another method to obtain gauged supergrav-
ities: the three-step superconformal program. We used the program in order to obtain a more
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general matter coupled five-dimensional N = 2 Poincaré supergravity than currently known in
the literature. The space-time symmetries in Poincaré supergravity are given by translations and
rotations, which are part of the super-Poincaré group. The conformal program extends this group
to the largest group of space-time symmetries, namely the superconformal group. By introduc-
ing extra symmetries, the corresponding conformal supergravity will contain more structure and
will be easier to analyze.

The first step of the program is given in chapter 5 which describes the construction and
gauging of the superconformal algebra in five dimensions, resulting in the so-called “Standard
Weyl multiplet” which is the minimal representation of the superconformal algebra containing
the graviton. The fields in this multiplet are the superconformal background fields.

The second step will be the subject of chapter 6 where we construct various matter multiplet
representations of the superconformal algebra, and determine their actions and supersymme-
try transformation rules in a background of the Weyl multiplet fields. We will only consider
vector-tensor multiplets and hypermultiplets. Both contain scalars that give rise to interesting
geometries on the corresponding scalar manifolds.

The last step is given in chapter 7 where the superconformal algebra is “broken down” to the
super-Poincaré algebra by making convenient gauge choices for the non-Poincaré symmetries.
This “gauge-fixing” process will produce five-dimensional matter coupled Poincaré supergrav-
ity, that can be used for many applications. Finally, in appendices A–C, we give our conventions
and some in-depth information about the geometrical properties of quaternionic-like manifolds
that are generated by the hypermultiplet couplings.



Chapter 1

String theory and supergravity

In this chapter we will briefly review some basic aspects of string theory, supergravity, dualities
and (membrane) solutions.

1.1 Free string theory
For obtaining the dynamics of a classical string it is natural to consider the higher dimensional
generalization of the relativistic particle. The trajectory of a free relativistic point particle is
described by the minimization of the length of its worldline. Equivalently, the action for a
free classical string in D dimensions will be proportional to the area of its worldsheet, i.e. the
two-dimensional surface it spans in space-time. The worldsheet can be parametrized by the
spacelike variable σ (0 ≤ σ ≤ `s), the coordinate along the string of length `s, and timelike
variable τ. The embedding of the string worldsheet in Minkowski space-time is given by the
functions Xµ(σ, τ) (µ = 0, . . . ,D − 1). The action describing the string dynamics is called the
Nambu-Goto action [2, 3],

S = −T
∫

dσdτ
√
|det(∂αXµ∂βXµ)| , (1.1)

where T is the string tension given by 1
2πα′ with α′ = `2

s
~

the so-called Regge-slope. The indices
α, β run over σ and τ. Although this form of the action is quite natural, there is a better formu-
lation more suitable for e.g. quantization of the string, without the square root. This action was
first discovered by Brink, Di Vecchia, Deser, Howe and Zumino [4,5] but is better known as the
Polyakov action [6]

S = −T
2

∫
dσdτ

√
|γ| γαβ∂αXµ∂βXµ , (1.2)

where an auxiliary worldsheet metric γαβ has been introduced (γ ≡ det γαβ). The two actions
are equivalent after eliminating γαβ by using its equation of motion. The reparametrization
invariance of the worldsheet can be used to choose the so-called conformal gauge in which
we take the worldsheet metric to be equal to the two-dimensional Minkowskian metric. Then
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particle open string closed string

t

x

Figure 1.1: Open and closed string worldsheets.

Type of string Boundary condition

closed periodic: Xµ(σ + `s) = Xµ(σ)

open Dirichlet: Xµ(σ) = constant , σ = 0, `s

Neumann: ∂σXµ(σ) = 0 , σ = 0, `s

Table 1.1: Boundary conditions for open and closed strings

using (1.2) the equation of motion for the string can be easily found:

ηαβ∂α∂βXµ = 0 . (1.3)

Note that this wave equation can be solved with two different types of boundary conditions (see
table 1.1) describing either open or closed strings (see figure 1.1). The solutions are now fully
determined in terms of oscillator expansions, both for left and right moving modes

Xµ(σ, τ) = Xµ

L(σ + τ) + Xµ

R(σ − τ) . (1.4)

At this point, consistently quantizing the string turns out to restrict the space-time dimension
to D = 26. The oscillation modes of the string behave as particles, having specific mass and
energy. Studying the spectrum one finds:

open string: tachyon (scalar) T1, massless vector Aµ, · · ·
closed string: tachyon (scalar) T2, dilaton (scalar) φ, graviton hµν (symmetric, traceless),

two-form Bµν (antisymmetric), · · ·
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The spin-2 graviton particle is believed to be the gauge-particle mediating the gravitational force.
So as a surprising result we see that theories with closed strings (or self-interacting open strings)
seem to contain gravity! This led people to believe that string theory could form the basis of a
theory of quantum gravity. However, the open string spectrum still contains a tachyon as ground
state, an unphysical particle with negative mass squared. Furthermore any unified theory of
elementary particle physics also should contain fermions. It turns out that including fermions
in our theory will provide us with a way to eliminate the tachyon from the spectrum. Also,
consistency of the theory will further restrict the number of dimensions to D = 10. We can
add fermions to (1.2) by again choosing the conformal gauge and adding a kinetic term for a
two-component worldsheet Majorana spinor

ψµ ≡
(
ψ
µ
+

ψ
µ
−

)
, (1.5)

transforming as vectors under the space-time Lorentz group, giving [7]

S = −T
2

∫
dσdτ

(
∂αXµ∂αXµ − i ψ̄µρα∂αψµ

)
, (1.6)

where ρα is a two dimensional representation of the Clifford algebra. This action turns out to
have a worldsheet symmetry called supersymmetry, mapping the fermions to bosons and visa
versa. Just like in the bosonic case we can have two types of boundary conditions for the open
string

Ramond (R): ψ
µ
+(0, τ) = ψµ−(0, τ) ψ

µ
+(`s, τ) = ψµ−(`s, τ) ,

Neveu-Scharz (NS): ψ
µ
+(0, τ) = ψµ−(0, τ) ψ

µ
+(`s, τ) = −ψµ−(`s, τ) . (1.7)

For the closed string the periodic Ramond or anti-periodic Neveu-Schwarz boundary condi-
tions for left and right moving modes can be chosen independently, resulting in four different
sectors: R-R, NS-NS, R-NS and NS-R. Demanding the spectrum of (1.6), apart from world-
sheet supersymmetry, also to have space-time supersymmetry, will lead to the so-called Gliozzi-
Scherk-Olive(GSO)-projection [8]. Since the fermionic spectrum does not have any negative
mass-squared states and the massless sector has to be supersymmetric, this projection will suc-
cessfully eliminate the tachyonic ground state from the spectrum. This theory, having manifest
worldsheet supersymmetry, is called the Neveu-Schwarz-Ramond (NSR) formalism; a GSO-
projection is needed to obtain space-time supersymmetry.

There is another formulation of superstring theory, called the Green-Schwarz (GS) formu-
lation. This theory describes the embedding of the bosonic worldsheet in superspace and is
therefore manifestly space-time supersymmetric. However, quantization of this theory until re-
cently [9–11] was only possible in the light-cone gauge.

Using either the NSR or the GS formalism, choosing several combinations of the boundary
conditions in the open and closed string case turns out to yield five different supersymmetric
string theories: Type IIA, Type IIB, Type I, Heterotic E8 ×E8 and Heterotic SO(32). Type IIA
and Type IIB are theories of closed strings and contain N = 2 space-time supersymmetry. In
Type IIA both supersymmetry parameters have opposite chirality, whereas in Type IIB they are
equal. Type I is the only open string theory, and has N = 1 supersymmetry. Both Heterotic
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theories also have N = 1 and differ by their gauge groups, under which the massless vector
fields transform.

1.2 Nonlinear sigma model
Until now we only considered non-interacting strings, moving in a flat Minkowski background.
Next consider the closed bosonic string in a more general background consisting of the mass-
less states (φ, hµν, Bµν), generated by vibrating closed strings in the bulk. The resulting action,
invariant under worldsheet reparametrizations, is called the nonlinear sigma model

S = −T
2

∫
dσdτ

{( √
|γ| γαβgµν − εαβBµν

)
∂αXµ∂βXν − α′

√
|γ| φR(2)(γ)

}
, (1.8)

where the background metric is given by gµν = ηµν + hµν and R(2) is the Ricci-scalar of the
worldsheet metric γµν. The last term in the action, with φ taken equal to 1, is proportional to a
topological invariant quantity in two dimensions, called the Euler characteristic χ

χ =
1

4π

∫
dσdτ

√
|γ|R(2)(γ) = 2(1 − g) , (1.9)

where g denotes the genus of the Riemann surface swept out by the string. A redefinition of
the dilaton in terms of its vacuum expectation value: φ → φ + 〈φ〉 gives a rescaling of the
classical path integral with a factor e〈φ〉χ. As a consequence, every interaction vertex will have
an associated string coupling constant

gs ≡ e〈φ〉 . (1.10)

Therefore a worldsheet with genus g can be seen as the g-th loop correction for string theory.
In contradistinction to the first two terms the topological term is not classically invariant under
the worldsheet Weyl symmetry γαβ → Λ2(σ, τ)γαβ. It has been included to enable us to get a
consistent conformal invariant theory at the quantum level, provided the β-functionals associated
to the “coupling constants” φ, hµν and Bµν vanish. In lowest non-trivial approximation in α′ one
obtains [12]

0 = β(h)
µν = Rµν − 1

4 HµρσHν
ρσ + 2∇µ∂νφ + O(α′) ,

0 = β(B)
µν =

1
2∇

ρHρµν − Hµνρ∇ρφ + O(α′) , (1.11)

0 = β(φ) = R + 1
12 H2 − 4∇ρ∂ρφ + 4∂ρφ ∂ρφ + O(α′) ,

where Rµν(g) is the Ricci tensor of space-time, R the corresponding Ricci scalar, and Hµνρ =

3∂[µBνρ] is the field strength of the two-form. The form of these equations suggests they can be
interpreted as equations of motion for the background fields. Indeed they can also be obtained
from the following low energy effective action

S =
1

2κ2
0

∫
d26x

√
|g|e−2φ

(
R(g) + 4(∂φ)2 − 1

2·3! HµνρHµνρ + O(α′)
)
, (1.12)
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where κ0 can be related to the gravitational coupling constant, defined in terms of Newton’s
constant in D = 26 as

κ = κ0e〈φ〉 =
√

8πG26. (1.13)

Observe that the leading order term is not the conventional Einstein-Hilbert kinetic term, due to
the dilaton pre-factor. This is because we are currently in the so-called string frame g = g(S ).
Performing the Weyl-rescaling g(S )

µν = eφ/2g(E)
µν we get the action in the Einstein frame

S =
1

2κ2
0

∫
d26x

√
|g(E)|

(
R(g(E)) − 1

2 (∂φ)2 − 1
2·3! e

−φHµνρHµνρ + O(α′)
)
. (1.14)

The analysis above can be repeated for open strings, having an extra massless vector field Aµ in
their background, coupling to the string endpoints. This interaction is described by the boundary
term

S = −T
2

∫

∂Σ

dτ Aµ∂τXµ , (1.15)

which gives rise to the following contribution to the low energy effective action for open strings

S =
1

2κ0

∫
d26x

√
|g(S )|

(
− 1

4 e−φFµνFµν
)
, (1.16)

where Fµν = 2∂[µAν]. This analysis, thus far purely bosonic and in D = 26, can be extended
to the supersymmetric case in D = 10, and it then turns out that the low energy effective de-
scriptions of all five superstring theories, except Type I, have one part in common, the so-called
“common sector”; namely the NS-NS sector given by the ten dimensional analog of (1.14). The
low energy limits of these superstring theories coincide with known supersymmetric extensions
of Einstein gravity, called supergravities, which will be described in more detail below.

1.3 Supergravity effective actions
As mentioned in the Introduction, supergravity (sugra), as a gauge theory for supersymmetry,
was first introduced in 1976 [13] as an extension of Einstein’s theory of general relativity. Al-
though it was not shown to be a finite perturbation theory in all orders, these effective actions
are still useful for many applications. Especially because of the remarkable fact that they turned
out to describe the low energy effective behavior of string theories. Several different methods
can be used to formulate supergravity. One approach is to directly gauge the supersymmetry
algebra, comparable to the procedure we will follow in chapters 5, 6 and 7 for constructing off-
shell supergravity in five dimensions. In this section we will give some more details about the
five different supergravity/superstring theories living in ten dimensions. Also see table 1.2.

1.3.1 Type II
Type II theory gives a description of oriented closed superstrings moving in a background con-
sisting of massless closed string vibration modes. It is called Type II since the theory contains
two space-time supersymmetries. Since the left and right moving modes of closed superstrings
are decoupled, the states are described by tensorial products of two open string states. The
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open closed String theory Low energy limit

x IIA N = 2 IIA sugra

x IIB N = 2 IIB sugra

x x Type I N = 1 sugra coupled to SO(32) YM multiplet

x Heterotic SO(32) N = 1 sugra coupled to SO(32) YM multiplet

x Heterotic E8 ×E8 N = 1 sugra coupled to E8 ×E8 YM multiplet

Table 1.2: superstring theories and their low energy limits.

massless string states transform under the little group SO(8) of the ten dimensional Lorentz
group SO(9, 1). These irreducible representations are given by the trivial irrep 1 (dilaton), the
fundamental vector 8v, the spinor reps 8c, 8s (two gauginos with opposite chirality), 28 (anti-
symmetric two-form), 35v (graviton), 35s (self-dual four-form), 56c, 56s (two gravitinos with
opposite chirality). Since the Ramond sector of an open string state transforms under a spinor
representation we can distinguish two possibilities for the closed string states. The Ramond
sectors of left and right moving string states can either have opposite or equal chirality, leading
to two different superstring theories, respectively called IIA and IIB:

IIA : (8v ⊕ 8c) ⊗ (8v ⊕ 8s) ,

IIB : (8v ⊕ 8c) ⊗ (8v ⊕ 8c) .
(1.17)

These direct product states can be decomposed into SO(8) irreps to give the full massless spec-
trum. Both theories have a common NS-NS sector

8v ⊗ 8v = 1 ⊕ 28 ⊕ 35v = φ ⊕ Bµν ⊕ hµν . (1.18)

The other bosonic degrees of freedom reside in the R-R sector

IIA : 8c ⊗ 8s = 8v ⊕ 56v = C(1) ⊕C(3) ,

IIB : 8c ⊗ 8c = 1 ⊕ 28 ⊕ 35c = C(0) ⊕C(2) ⊕C+(4) ,
(1.19)

and are therefore called RR gauge fields. The zero-form C(0) is called the axion. The fermionic
fields are found in the NS-R and R-NS sectors (chirality denoted by α or α̇)

IIA/IIB : 8v ⊗ 8c = 8s ⊕ 56c = λ
α̇ ⊕ ψαµ ,

IIA : 8v ⊗ 8s = 8c ⊕ 56s = λ
α ⊕ ψα̇µ .

(1.20)

The bosonic truncations of the IIA and IIB actions are given below (in the string frame). For
IIA we have

S IIA =
1

2κ2

∫
d10x

√
|g|

{
e−2φ

[
R(g) + 4(∂φ)2 − 1

2·3! H2
(3)

]
− 1

2·2!G
2
(2)

− 1
2·4!G

2
(4)

}
− 1

4κ2

∫
d10x dC(3) ∧ dC(3) ∧ B(2) , (1.21)
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where the field strengths are defined as follows (see appendix A for our conventions on form
notation)

H(3) = dB(2) , G(2) = dC(1) , G(4) = dC(3) − H(3) ∧C(1) . (1.22)

For IIB we have

S IIB =
1

2κ2

∫
d10x

√
|g|

{
e−2φ

[
R(g) + 4(∂φ)2 − 1

2·3! H2
(3)

]
− 1

2G2
(1) − 1

2·3!G
2
(3)

− 1
2·5!G

2
(5)

}
− 1

4κ2

∫
d10x C(4) ∧ dC(2) ∧ H(3) , (1.23)

with
H(3) = dB(2) , G(1) = dC(0) , G(3) = dC(2) − H(3) ∧C(0) . (1.24)

The above IIB action is called the non-self-dual action, since the self-duality condition for the
four-form gauge field does not follow from the action [14, 15]. The equations of motion have to
be supplemented by

G(5) =
∗G(5). (1.25)

1.3.2 Type I
Type I string theory is a theory with unoriented open strings and having N = 1 supersymmetry.
It also contains a closed string sector due to open string interactions. Since the open string
endpoints can interact with a one-form gauge field AI

(1), we can assign charges to them. The
only corresponding consistent gauge group turns out to be SO(32). The spectrum can be derived
from the IIB spectrum by a specific parity projection Ω on the left and right moving sectors,
keeping the left-right symmetric states, i.e. projecting out the NS-NS two-form. The action is
given by

S I =
1

2κ2

∫
d10x

√
|g|

{
e−2φ

[
R(g) + 4(∂φ)2

]
− 1

2·3! H2
(3) +

1
4 e−φF I

(2)F(2)I

}
, (1.26)

where
F I

(2) = dAI
(1) + [A(1), A(1)]I , H(3) = dC2 + AI

(1) ∧ dA(1)I , (1.27)

and the trace runs over all the group generators.

1.3.3 Heterotic
The last two theories are Heterotic superstring N = 1 theories with gauge groups E8 ×E8 and
SO(32) respectively. These theories contain oriented closed strings. The action is given by

S Het =
1

2κ2

∫
d10x

√
|g|e−2φ

{
R(g) + 4(∂φ)2 − 1

2·3! H2
(3) +

1
4 F I

(2)F(2)I

}
, (1.28)

where
F I

(2) = dAI
(1) + [A(1), A(1)]I , H(3) = dB2 +

1
2 AI

(1) ∧ dA(1)I . (1.29)



12 String theory and supergravity

1.4 Dualities
Although a lot information can be obtained from superstring theories by making use of per-
turbative techniques, non-perturbative studies of superstring theories turn out to be extremely
difficult. Furthermore, we saw in the previous section there are five different consistent theories
of quantum gravity at first sight.

The concept of duality could be used to solve this unification problem, by showing that the
five superstring theories are connected, suggesting that each of these five theories are merely
different vacua of a single theory called M-theory.

Some examples of dualities in physics have been known for a long time. For example,
assuming the existence of magnetic monopoles, Maxwell’s equations were found to be invariant
under the transformation

~E → ~B , ~B→ −~E , e↔ g , (1.30)

with e the electric charge and g the magnetic monopole charge. Dirac’s theory of monopoles [16]
showed that the following quantization condition has to hold

e · g = 2πn , n ∈ � , (1.31)

connecting a strongly coupled theory of electrodynamics to a weakly coupled theory of mono-
poles! Similarly it was found [17] that e↔ g is an exact symmetry ofN = 4 Yang-Mills theory.
In the following sections we will analyze dualities in the context of superstring theory. However,
first we will briefly introduce the concept of compactification.

1.4.1 T-duality
This duality, also called target space duality, connects different theories, compactified on inverse
radii. If we compactify one dimension, the periodicity along this coordinate y implies that fields
can be expanded into their eigenfunctions on the circle

Φ(xµ, y) =
∑

n

Φn(xµ)e i py y , (1.32)

where py ≡ n
R is the quantized conjugate momentum of y, and Φn are the so-called Kaluza-

Klein modes. For more details on compactification and dimensional reduction, see chapter 3.
To demonstrate this type of duality, let us consider a theory with coordinate x9 compactified on
a circle of radius R. In the simple case of a theory with only point particles, there are two clearly
discernable limits. R→ ∞ will lead to a continuous conjugate momentum spectrum in the com-
pact direction, restoring the uncompactified theory. On the other hand, when R shrinks to zero,
the momentum will be zero or infinite, effectively decoupling the compact coordinate. However,
in the case of string theory, closed strings can wrap w times around the circle, generalizing the
periodicity condition to

Xµ(τ, σ + `s) = Xµ(τ, σ) + 2πwR, (1.33)

for the string coordinates Xµ, where w ∈ � is called the winding number. Inspecting the con-
jugate momenta of left and right movers along the circle, and the altered mass spectrum, one
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observes a new ‘symmetry’ of the theory, called T-duality. It relates a theory compactified
on a circle with radius R, winding number w and momentum labelled by n, to another theory
compactified on a circle with inverse radius α′/R, and interchanged momentum and winding
numbers [18]. Furthermore, the right moving modes are changed by a parity transformation.
For the fermionic modes this means that the right moving Ramond ground state alters its chiral-
ity; a theory with two opposite chiralities maps to a theory with equal chiralities, i.e. it has been
found [19, 20] that the massless sectors of IIA and IIB supergravity are each others T-dual [21].
Also Heterotic SO(32) and Heterotic E8 ×E8 supergravity turn out to be T-dual. Both dualities
are conjectured to hold in the corresponding (non-perturbative) string theory limit.

In the case of open strings it can be shown that the boundary condition changes from Neu-
mann to Dirichlet under T-duality, i.e. their endpoints are localized on the circle. The hyper-
plane given by x9 = c turns out to describe a solitonic object in string theory, called a D-brane.
This particular class of solutions will be discussed in more detail in section 1.5.2.

Note that T-duality, because of its perturbative nature, does not give us any more insights
into the non-perturbative behavior of string theory.

1.4.2 S-duality
Another type of duality is the strong-weak duality. Similarly to the EM-duality it maps between
strongly and weakly coupled regimes of different theories, making it particularly useful for
obtaining non-perturbative information in one theory, using perturbative methods in the S-dual
theory. From (1.10) we see that this duality generally corresponds to changing the sign of the
dilaton: φ→ −φ.

In the supergravity approximation some simple examples are given by the S-duality between
Type I and Heterotic SO(32) [22], which can be easily observed after scaling the metric to
the Einstein frame. Secondly IIB turns out to be self-dual [23]. To see this, we write the
IIB action (1.23) in a manifestly S`(2,�) covariant manner. The dilaton and the RR-scalar
can be combined into a complex scalar τ = C(0) + i e−φ, which transforms under the Möbius
transformation

τ→ aτ + b
cτ + d

, (1.34)

with

Ω =

(
a b
c d

)
, ad − bc = 1 . (1.35)

The NS-NS and R-R two-forms transform as a doublet under S`(2,�)
(

C(2)
B(2)

)
−→

(
a b
c d

) (
C(2)
B(2)

)
=

(
aC(2) + bB(2)
cC(2) + dB(2)

)
, (1.36)

and the four-form transforms as a singlet. An S-duality transformation can now be seen as a
specific S`(2,�) transformation with a = d = 0 and b = −c = 1

φ→ −φ , C(2) → B(2) , B(2) → −C(2) , (1.37)

mapping IIB onto itself. Since quantum mechanics requires the charge, with respect to the
NS-NS two-form of the basic object of string theory, the fundamental string, to be quantized,
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the symmetry group is broken to the discrete subgroup S`(2,�). Due to the non-perturbative
nature of this duality type, S`(2,�) has been conjectured as being the symmetry group of non-
perturbative IIB superstring theory.

D = 11 supergravity

In D = 11 dimensions there is only one possible (physical) supergravity theory, having 32
supercharges. This N = 1 supergravity theory was found by Cremmer, Julia and Scherk in
1978 [24], with the bosonic part given by

S D=11 =
1

2κ2
11

∫
d11x

√
|g|

{
R(g) − 1

2·4!G
2
(4) +

1
1442 ε

(4)(4′)(3)G(4)G(4′)C(3)

}
, (1.38)

with field strength G(4) = dC(3). The supersymmetric version of this action will be the starting
point of chapter 4.

It was first realized by [25] that compactification of D = 11 supergravity onto a circle with
radius R11 = (gs)2/3 exactly yields D = 10 IIA supergravity. It was also found in [26, 27] that
compactification onto an interval R11 = S 1/�2 (called an orbifold) yields Heterotic E8 ×E8
supergravity. Led by these observations, a unified theory was conjectured, called M-theory, of
which the low energy approximation is given by D = 11 supergravity. The strong coupling limit
(large gs) of IIA/Heterotic string theory is given by M-theory.

The earlier mentioned S`(2,�) symmetry of IIB supergravity can now be easily explained.
Since we know that IIA and IIB are T-dual, a compactification of D = 11 supergravity onto two
circles S 1 × S 1 with radii R11 and R10, should be equal to IIB supergravity compactified on a
circle with radius 1/R10. This is true if gIIB = R11/R10. However, since the compact manifold
S 1 × S 1 forms a torus, with modular group S`(2,�), the IIB coupling constant gIIB is related to
its inverse g−1

IIB. It follows that the symmetry group of IIB is given by S`(2,�), and therefore the
theory is self-dual.

Some models of M-theory have been proposed, i.e. the matrix model [28], but until now there
is still little known about M-theory. However, it is believed that all five superstring theories in ten
dimensions somehow should follow from taking some particular low energy limit of M-theory,
leading to a web of dualities, as depicted in figure 1.2.

1.5 Solutions

In this section we will discuss several kinds of solutions of the supergravity equations of motion.
These solutions have played an essential role in strengthening our belief in dualities in the non-
perturbative limit. For reviews on this subject see [29, 30].

1.5.1 p-Branes

The existence of higher rank gauge fields in string theory suggest a further generalization of
strings is possible, namely p-branes, (p + 1)-dimensional objects in space-time, coupling to a
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Figure 1.2: M-theory and the web of string theories and their dualities.

(p + 1)-rank gauge field Aµ1...µp+1 as follows:
∫

dp+1ξ ∂α1 Xµ1 . . . ∂αp+1 Xµp+1 Aµ1...µp+1ε
α1...αp+1 , (1.39)

in the same way we know a point particle (p = 0) couples to a one-form gauge field, and the
NS-NS two-form Bµν couples to a string worldsheet. The electrical charge of such an object can
be found by a generalization of Gauss’ law to be

Qe ∼
∫

S D−p−2

∗F(p+2) , (1.40)

where ∗F(p+2) is the Hodge-dual (see appendix A) of the A(p+1) field strength, and S D−p−2 is a
sphere surrounding the p-brane. This charge is conserved due to the equation of motion for
the gauge field. Associated with this electrically charged p-brane solution is a dual magnetic
(D − p − 4)-brane, coupling to Ã(D−p−3), the dualization of the gauge field A(p+1). Its topological
magnetic charge is given by

Qm ∼
∫

S p+2
F(p+2) , (1.41)

which is conserved due to the Bianchi identity. Here we integrated over the transverse space of
the p-brane. These charges satisfy

Qe · Qm = 2πn , n ∈ � , (1.42)

generalizing Dirac’s quantization condition for electric and magnetic monopoles. In order to
explicitly find solitonic p-brane solutions in a given supergravity theory, let us consider a con-
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sistent bosonic truncation, only containing one (n − 1)-form gauge field

S =
1

2κ2

∫
dDx

√
|g|

(
R − 1

2∂µφ∂
µφ − 1

2·n! e
aφF2

(n)

)
. (1.43)

In order to solve the equations of motion following from (1.43), a convenient Ansatz is given
by

ds2 = e2A(r)dxµdxνηµν + e2B(r)dymdynδmn , φ = φ(r) ,
µ, ν = 0 . . . p m, n = p + 1, . . . ,D − 1 , (1.44)

with r ≡ √ymynδmn the isotropic radial distance in the transverse space. The above Ansatz is
consistent with a P(p+1) × SO(D − p − 1) symmetry of space-time, with Poincaré symmetry
along the worldvolume directions. There are two possible solutions of the equations of motion,
leading to an electric (p=n−2) or magnetic (p=D−p−2) p-brane [31, 32]:



ds2 = H
−4(D−p−3)

∆
(D−2)dx2

(p+1) + H
4(p+1)
∆

(D−2)dy2
(D−p−1) ,

eφ = H
2a
ζ∆ , ζ =

{
+1 electric
−1 magnetic ,

Fmµ1...µn−1 = 2√
∆
εµ1...µn−1∂m(H−1) electric ,

Fm1...mn = − 2√
∆
εm1...mnr∂rH magnetic ,

(1.45)

where the harmonic function H satisfies ∇2H = 0. For D − p − 1 > 2, H can be written as
H(r) = 1 + ( r0

r )D−p−3, where r0 is an integration constant related to the charge in the magnetic
case. The constant ∆ is given by

∆ = a2 +
2(p + 1)(D − p − 3)

D − 2
. (1.46)

Examples

The simplest example in Type II theories is the electric one-brane, coupling to the NS-NS two-
form, called the fundamental string (F1). This solution can be obtained from (1.45) by using
p = 1, a = −1 and D = 10. Its magnetic dual is called the Neveu-Schwarz five-brane (NS5).
Type II theories also contain RR-gauge fields, allowing for a separate class of solutions as de-
scribed in the following section.

The D = 11 supergravity theory only contains one three-form gauge field, and no dilaton
(take a = 0). The only sources we can have for a three-form are a two-brane or five-brane
solution, so we take ∆ = 4 in (1.45). The resulting solutions are called the electric M2-brane [33]
and magnetic M5-brane [34]. The compactification of the M2-brane along its spatial direction
was found to give exactly the F1 solution of IIA supergravity. The NS5 solution can be obtained
by compactifying the M5 brane along a transverse direction.

A special case of p-brane (p = D − 2) is the so-called domain-wall, a brane with one
transverse direction, separating space-time into two regions. As we will see later these objects
play an important role in so-called brane-world scenarios.
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1.5.2 D-branes
In section 1.4.1 we already encountered D-branes as hyperplanes where open strings can end.
They turn out to be a special class of p-brane solutions, coupling to RR potentials, and satisfy-
ing Dirichlet boundary conditions along their spacelike coordinates [35], i.e. they are fixed in
space. Their dynamics is generated by the open string modes. In the string frame the Dp-brane
geometry takes the following simple form



ds2 = H−
1
2 dx2

(p+1) − H
1
2 dx2

(D−p−1) ,

e−2φ = H
p−3

2 ,

F
RR

012...pm = ∂mH−1 (m = p + 1, . . . , 9) ,

(1.47)

Since IIA / IIB supergravity only contains odd / even-form gauge potentials, it only contains
D2p / D(2p+1)-branes. In IIB there are two special cases. There is a D(−1)-brane called the D-
instanton, whose position is fixed in space-time, coupling to the axion. There is also a self-dual
dyonic D3 brane solution.

The D-brane low energy effective worldvolume action was found by Leigh [36] by using the
same technique used in section 1.2, and is called the Dirac-Born-Infeld action

S DBI = −Tp

∫
dp+1ξ eφ

√
|g + F | , (1.48)

where Tp is the tension of the Dp-brane, and Fi j = 2πα′Fi j − Bi j (F = dA). When considering
D-brane actions in Type II supergravity it turns out one also has to include a Wess-Zumino term

S WZ = Tp

∫ (
eF ∧C

)
(p+1)

, (1.49)

where F is given as a formal sum over all odd (IIA) or even (IIB) RR-forms, and the expansion
picks out only forms of rank (p + 1).

1.5.3 Brane dualities
A lot of evidence for the conjectured dualities has been obtained by inspecting the solutions. The
solutions described in the last section are all related by the same dualities, and by dimensional
reduction. This is depicted in figure 1.3. Some other solutions that have not been mentioned are
Kaluza-Klein (KKD) monopoles and gravitational waves (WD).

1.6 BPS states
The presence of p-branes allows the D-dimensional supertranslation algebra to be extended with
central charges Z(p) related to the p-brane charges.

{
Qi
α,Q

j
β

}
= δi j (ΓµC)αβ Pµ +

∑

p

(Γµ1...µpC)αβ Zi j
µ1...µp , (1.50)
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Figure 1.3: Web of dualities between supergravity solutions in D = 10 and D = 11 [37].

with i = 1, . . . ,N . Positivity of the Q2 operator on the left hand side gives rise to the so-called
Bogomol’nyi-Prasad-Sommerfield (BPS) bound [38, 39], symbolically relating the mass and
charge by

M ≥ c|Z| . (1.51)

States saturating this bound are called BPS states. These states are stable against decay since
they minimize the energy for a given charge. Supersymmetry protects these states from renor-
malization by quantum effects; the mass-charge relation also holds non-perturbatively, therefore
these states have played an important role in the study of dualities.

The BPS states we consider are purely bosonic configurations, where the background fermi-
onic fields have been put to zero. Stability and consistency of this solution of the field equations
requires the supersymmetry variations of the fermions to vanish, leading to the BPS equations.
This provides a convenient way to explicitly derive BPS states. For example, if we consider a
Type II background with only one (p+1)-form present, the supersymmetry transformation rules
can be written as [40]

δψi
µ = (∂µ + 1

4ωµ
abγab) ε i +

(−1)p

8(p + 2)!
eφΓ · F(p+2)ΓµP(p)ε i ≡ Dµε

i = 0 ,

δλi = Γµ(∂µ + 1
4ωµ

abγab) φε i +
3 − p

4(p + 2)!
eφΓ · F(p+2)P(p)ε i = 0 , (1.52)

where P(p) is a p-dependent projection operator and ωab
µ the spin-connection. The first equation

is called the Killing spinor equation. These differential constraints on the background fields are
called the BPS equations. Substituting a p-brane Ansatz into these equations allows us to solve
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for the parameters. One also finds the following algebraic constraint on ε

ε + Γ01...pP(p)ε = 0 . (1.53)

As a consequence this breaks half of the supersymmetry, which is generally true for objects
saturating the BPS-bound. The above procedure is applied in chapter 4 in order to find 1

2 -BPS
solutions of D = 9 gauged supergravity.
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Chapter 2

Scalar potential: Domain-walls and
other applications

In this chapter we will give some motivations for the research described in the remainder of this
thesis. We will briefly show the relevance of scalar potentials and domain-walls to supergravity,
field theories and cosmology. In the next chapters we will give two methods to obtain scalar
potentials from supergravity, dimensional reduction and conformal supergravity.

2.1 Gauged and massive supergravities

Gauged supergravities have played an important role during the past 25 years in a broad range of
applications. In most of these cases the key factor is the so-called scalar potential. Scalar poten-
tials e.g. in bosonic scalar-gravity models are essentially non-restricted massive deformations;
for example φ4 theory coupled to gravity. However, in supersymmetric models, like gauged
and massive supergravities, the form of the potential is fully determined. In that case the gauge
coupling constant g can be related to the mass parameter m by: m = κg. Supersymmetry in
general not only restricts the form of the potential; it also imposes a geometrical structure on the
collection of scalars in the theory, called the scalar manifold. We will see explicit examples of
this in chapters 6 and 7.

Strictly speaking gauged supergravities are defined as supergravity theories where either
a subgroup of or the full R-symmetry group is gauged, using one or more vectors present in
the theory. In some cases this will involve the coupling of extra matter multiplets, e.g. vector
multiplets. In practice the term gauged supergravity is often used to denote a gauging of an
arbitrary global symmetry group.

The general procedure of gauging a supergravity theory consists of

• choosing an appropriate gauge group G.

• performing a minimal substitution, i.e. coupling vector fields AI
µ to matter fields ΦI by
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introducing covariant derivatives

DµΦ
I = ∂µΦ

I + g AJ
µ fJ K

IΦK , (2.1)

locally invariant under

δGΦ
I = −gΛJ fJ K

IΦK , δGAI
µ = ∂µΛ

I − gΛJ fJ K
I AK

µ , (2.2)

where g is the gauge coupling constant, ΛI is the gauge parameter, and fI J
K are the struc-

ture constants encoding the properties of the specific gauge group. Note that non-Abelian
gaugings also allow for self-couplings between the vector fields.

• restoring supersymmetry by adding terms to the action and/or transformation rules, mak-
ing use of the Noether method. This procedure generally gives rise to mass-terms for the
fermions and contributes to the scalar potential.

In some specific cases a wide range of possible gauge groups have been classified, e.g. for
N = 2, D = 5 supergravity in [41]. More details on this subject will be given in chapter 7.

Note that not all potentials necessarily have to come from gauging. A good example of a so-
called massive supergravity theory is Romans’ [42] deformation of IIA (1.21) in ten dimensions
with one mass parameter, consistent with supersymmetry. Although the string theory origin
of these theories is somewhat unclear, their importance should not be underestimated. E.g.
Romans’ theory contains the D8-brane as a natural solution, coupling to the ‘zero-form’ mass
parameter.

2.1.1 Vacua
In this section we will illustrate the way in which the vacua of gauged/massive supergravities are
determined by the extrema of the scalar (super)potential. In conventional gravity or supergravity
theories the vacua are those solutions of the field equations with maximal symmetry, i.e. the
largest number of isometries. Let us first consider the D-dimensional Einstein-Hilbert action,
with cosmological constant Λ

S =
1

2κ2

∫
dDx

√
|g| (R − 2Λ) . (2.3)

The corresponding field equation is given by the vacuum Einstein equation

Rµν − 1
2 R gµν + Λ gµν = 0 , (2.4)

which, after taking the trace, gives an expression of the cosmological constant in terms of the
Ricci-scalar

Λ =
(D−2)

2D R . (2.5)

Depending on the curvature of space-time, the vacua correspond to de Sitter (dS), anti-de Sitter
(AdS) or flat Minkowski space:

anti-de Sitter (AdS) : negative curvature
Minkowski : zero curvature
de Sitter (dS) : positive curvature
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φ

V(φ)

Figure 2.1: Critical points of the scalar potential.

Next consider a slight generalization corresponding to a minimal truncation of a gauged/massive
sugra action. The action for a scalar field coupled to gravity is given by

S =
1

2κ2

∫
dDx

√
|g|

(
R − 1

2∂µφ ∂
µφ − V(φ)

)
. (2.6)

The equations of motion of (2.6) are given by

∇µ ∂µφ =
∂V
∂φ

,

Rµν − 1
2 R gµν = 1

2∂µφ ∂νφ −
(

1
4∂ρφ ∂

ρφ + 1
2 V(φ)

)
gµν . (2.7)

In order to be consistent with maximum symmetry, the vacuum expectation value (v.e.v.) of the
scalar field has to be constant, and should correspond to a local extremum of the potential called
a critical point, see figure 2.1:

〈φ〉 = φc ,
∂V
∂φ

∣∣∣∣∣
φ=φc

= 0 . (2.8)

At these extrema the equations (2.7) reduce to the field equation describing three different
vacuum solutions, depending on the value and sign of the cosmological constant. In the (A)dS
cases the cosmological constant is given by

Λ = 1
2 V(φc) . (2.9)

In section 2.3 a specific class of vacuum solutions of (2.6) will be discussed, having (D − 1)-
dimensional Poincaré invariance and scalar v.e.v. that are dependent on the D-th coordinate. The
geometry of these half-supersymmetric solitons, called domain-walls, interpolates between two
conventional vacua with different cosmological constants.

2.1.2 Scalar (super)potential
Supergravity models generically consist of a basic supergravity multiplet coupled to any number
of supermultiplet representations of the underlying supersymmetry algebra. Interactions in those
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models are usually described by three types of potentials for the scalar fields in the theory: the
superpotential W and the potential V , derived from W.

The connection between V and W can be made clear by the following toy model. Let us
consider the same scalar-gravity model as given in (2.6) and describe scalar fluctuations ϕ around
the AdS vacuum associated with the critical point φc with V(φc) < 0

ϕ = φ − φc . (2.10)

Expanding the action (2.6) to lowest order around this critical point yields

S =
1

2κ2

∫
dDx

√
|g|

(
R − 1

2∂µϕ ∂
µϕ − 1

2 M2ϕ2 − V(φc)
)
, (2.11)

with the following equations of motion
(
∇µ ∂µ − M2

)
ϕ = 0 ,

Rµν − 1
2 R gµν + Λgµν = O(ϕ2) , (2.12)

describing a scalar particle of mass M in an AdS background with cosmological constant Λ

M2 ≡ ∂2V
∂φ2

∣∣∣∣∣∣
φ=φc

, Λ ≡ 1
2 V(φc) . (2.13)

A more general case was considered by Townsend [43]: supergravity coupled to vector multi-
plets, also called Einstein-Maxwell supergravity. This theory contains multiple scalars φx that
can be interpreted as coordinates on some manifold described by metric gxy

S =
1

2κ2

∫
dDx

√
|g|

(
R − 1

2 gxy(φ) ∂µφx ∂µφy − V(φ)
)
. (2.14)

In the bosonic case it was shown from stability requirements of the AdS vacua that the potential
can be expressed in terms of the superpotential

V(φ) = 4(D − 2)2
[
2gxy ∂W

∂φx

∂W
∂φy −

D − 1
D − 2

W(φ)2
]
. (2.15)

A similar result can be obtained by requiring supersymmetry invariance, where the superpoten-
tial can be read off from the transformation rules of the fermions

δψµ = (∂µ + 1
4ωµ

abΓab)ε +W(φ) Γµ ε ,

δλx = gxy /∂φ
yε − (D − 2)

∂W
∂φx ε . (2.16)

These contributions to the scalar potential are called the fermion-shifts. Note that not all po-
tentials in supersymmetric theories can be written in terms of a superpotential. We will see
examples of this in chapter 4.
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2.1.3 Applications

From the above it should be clear that it is very useful to study the properties of gauged su-
pergravities. In particular the scalar potential can provide crucial information about the vacua,
solutions and dynamics of supergravity theories, that can be used in many applications, some of
which will be further explained in the following sections.

• The DW/QFT correspondence is a conjectured duality between supergravity on a domain-
wall background and a quantum field theory. A special case of this duality is the AdS/CFT
duality. Useful properties of field theories can be obtained by studying domain-wall solu-
tions of supergravity, which are fully determined by the form of the scalar potential. By
using this duality, the domain-wall geometries describe renormalization group flows in
the dual field theory. See sections 2.2 and 2.3 for more details.

• Brane-world scenarios try to describe our four-dimensional world by assuming that we
live on the worldvolume of a domain-wall solution in five dimensions. Whether a su-
persymmetric embedding of these scenarios is possible or not depends on the vacuum
solutions of the scalar potential in gauged N = 2 supergravity in five dimensions.

• Inflationary models are used to study several issues in cosmology like the smallness of
the cosmological constant, the horizon problem and the isotropy of the universe. These
models try to explain the dynamical properties of the universe by studying the scalar-
potentials occurring in specific scalar-gravity systems. For certain values of the so-called
“slow-roll parameter” cosmic inflation occurs, as the result of the “rolling” of the scalar
field towards the minimum of the potential. For a review see [44, 45].

2.2 AdS/CFT

One of the most important developments of the past few years has been the conjecture of Mal-
dacena in 1997, called the AdS/CFT correspondence [46]. This was later generalized to the
DW/QFT correspondence [47, 48]. Before giving a brief explanation of this conjecture, let us
first give some relevant information about the geometry of anti-de Sitter.

2.2.1 (A)dS geometry

The geometry of AdS D is given by the SO(2,D−1) invariant hyperboloid in (D+1)-dimensional
space

−X2
−1 − X2

0 +

D−1∑

i=1

X2
i = −R2 , (2.17)
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Figure 2.2: AdS D and dS D as hyperboloids in �2,D−1.

whereR denotes the AdS-radius, see figure 2.2. This induces the following line element in terms
of so-called horospherical coordinates {xα,U,V}:

U = X−1 + XD−1 ,

xα =
XαR

U
, (α = 0, . . . ,D − 2) ,

V = X−1 − XD−1 =

( U
R2

)
x2 +

(
R

2

U

)
, (2.18)

ds2 =

(U
R

)2

dx2 +

(
R

U

)2

dU2 .

A more convenient parametrization in the context of brane-world scenarios, that we will en-
counter further on, are the so-called Poincaré coordinates

ds2 = e−2r/Rdx2 + dr2 , e−r/R =
U
R
. (2.19)

2.2.2 Maldacena conjecture
In 1997 a remarkable connection between string theory and gauge theory was conjectured by
Maldacena [46], proposing an equivalence between string theory on an AdS p × S D−p and a
conformal field theory (CFT) in (p − 1) dimensions, on the boundary of the AdS space. We will
illustrate this statement by briefly describing Maldacenas original motivation.

First imagine we have an open string with both endpoints ending on a single D3-brane.
As the lowest mode is given by a vector field with U(1) gauge invariance, this induces a four-
dimensional U(1) gauge theory on the brane. Since the D3-brane is a half-BPS solution, break-
ing half of the total number of supersymmetries, the D = 4 U(1) theory has N = 4 supersym-
metry.

Now extend this to a system of N parallel D3-branes, separated by a distance r. The open
strings stretching between the various branes again induce a U(1) gauge theory on each brane.
In the limit of r → 0 we have a stack of coinciding branes and the gauge symmetry on the branes
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is enhanced from U(1)N to U(N), which in the low energy limit describes a four-dimensional
CFT with gauge group SU(N), known as D = 4 N = 4 super-Yang-Mills (SYM) theory. The
bosonic symmetry group of this gauge theory is given by the product of the conformal group in
four dimensions, SO(4, 2) and the R-symmetry group SO(6).

On the other hand we know that the stack of D3-branes, like any massive object, causes the
space-time to curve. Far away from the branes the space-time is given by Minkowski space but
in the near-horizon limit, i.e. near the branes, the geometry can be shown to resemble that of the
space AdS 5 × S 5. Since the radii of the sphere and of the AdS space are proportional to N, the
resemblance gets better for increasing N. The isometry group of this background geometry is
given by SO(4, 2) × SO(6).

Consequently it was conjectured that IIB string theory on a AdS 5 × S 5 background in the
large N limit is dual to a CFT on the boundary of AdS 5, given by N = 4 SYM. This statement
was later generalized to the so-called Domain-wall/Quantum field theory (DW/QFT) correspon-
dance, that relates supergravity on a near-horizon geometry of a p-brane to a (non-conformal)
QFT on the brane. The most striking result of these correspondances is that they relate a gravi-
tational theory, like supergravity or string theory, to a non-gravitational conformal field theory.

In the context of this conjecture, it is useful to study N = 8, D = 5 gauged supergravity; the
dimensional reduction of IIB on AdS 5 × S 5 gives SO(6) gauged D = 5, N = 8 sugra [49, 50].
This reduction is believed to be a consistent nonlinear truncation, meaning that all classical
solutions of the five-dimensional theory can be uplifted to IIB solutions. For example, the
SO(6)-invariant AdS 5 groundstate can be uplifted to an AdS 5 × S 5 vacuum. Therefore the five-
dimensional theory should contain all relevant deformations ofN = 4 SYM, and all domain-wall
solutions in this theory can be uplifted.

During the past few years a considerable amount of evidence has been gathered in many
different applications to support the AdS/CFT conjecture. For more details we refer to the
reviews [46, 51].

2.3 Domain-walls
Domain-walls are (D-1)-dimensional solutions of the sugra equations of motion, separating two
regions of space-time. In the case of a (singular) (D-2)-brane solution, also called ‘thin’ domain-
wall, the brane couples to a volume form which can be dualized to a cosmological constant. The
value and/or sign of the cosmological constant usually is different when passing both sides of
the domain-wall. The other type of domain-wall is the ‘smooth’ or ‘thick’ domain-wall.

2.3.1 Solution

The ‘thin’ domain-wall solution is a δ-function singularity, given by (1.45) with p = D − 2

domain-wall =



ds2 = H(y)2αdx2
(D−1) + H(y)2βdy2 ,

eϕ = H(y)−
2a
∆ ,

F(D) =

√
4
∆

dd x ∧ dH−1 ,

H(y) = 1 + Q|y| .

(2.20)
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Figure 2.3: Warp-factor for singular and smooth branes.

with
α = 2

∆(D−2) , β = 2(D−1)
∆(D−2) , Q =

√
Λ∆ , (2.21)

where the parameter ∆ given by
∆ = a2 − 2 D−1

D−2 . (2.22)

This expression for ∆ is bounded from below by the value ∆AdS corresponding to the AdS
vacuum solution of pure supergravity1

∆ ≥ ∆AdS ≡ −2 D−1
D−2 . (2.23)

It was indeed shown [52] that the corresponding domain-wall solution describes two regions of
AdS-space. More generally it can be shown that the near-brane limit of solutions of this type
are flat Minkowski, and the asymptotic limit far away from the brane describes AdS geometry.
Domain-walls therefore are solutions interpolating between two vacua of the theory.

In phenomenological and cosmological models people are usually more interested in non-
singular solutions, where there is no δ-function source. A more general domain-wall Ansatz can
be written as

ds2 = a(y)2dx2
(D−1) + dy2 , (2.24)

where the function a is called the warp factor; see figure 2.3. For a(y) = e−|y|/L this corresponds
to the domain-wall consisting of two slices of AdS in Poincaré coordinates. Depending on the
properties of the scalar potential smooth solutions for a(y) can exist corresponding to so-called
thick domain-walls.

2.3.2 Toy model: domain-walls as RG-flows
In this section we will show how domain-walls can be associated with renormalization group
flows (RG-flows). The application of the AdS/CFT duality shows that supergravity flow equa-
tions, connecting critical points of the scalar potential, describe (holographic) RG-flows of quan-
tum field theories, connecting different fixed points.

An exact analysis of the scalar potential is in general not possible, due to the non-trivial
geometry of the scalar manifold and the large number of scalars appearing in the potential.
Instead of trying to solve the minimization problem at the level of the second order equations of
motion, there is a more appealing method.

1Corresponding to the case a = 0, i.e. constant dilaton; the metric therefore describing AdS-space.
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IR IRUVFixed point:
g

β(g)

Figure 2.4: Fixed points of the beta-function.

Our starting point is the smooth domain-wall Ansatz in the context of the scalar-gravity toy
model (2.6)

ds2 = e2A(y)ηµνdxµdxν + dy2 , φ = φ(y) . (2.25)

As we saw before, at the critical points of V(φ) the scalar φ is constant and the geometry be-
comes AdS with cosmological constant given by Λ = 1

2 V(φc). However, we also saw that these
AdS vacua are dual to a conformal field theory on the boundary of the AdS space-time. Rele-
vant deformations of these CFTs on the field theory side give rise to so-called RG-group flows
to other conformal theories. Mapped to its gravity dual this corresponds to scalar fluctuations
around AdS space-time. The RG-flow of the coupling constants is described by the U depen-
dence of the scalar fields. These scalars φ can be interpreted as coupling constants g and the
warp-factor a(y) = eA(y) behaves as a renormalization group scale or energy scale U in the dual
field theory side. The expression of the field theory beta-function is conventionally given by

β(g) ≡ U
∂g(U)
∂U

, (2.26)

and is depicted in figure 2.4. The arrows denote the flow-direction of the coupling constant g
with increasing energy U. The zeroes of the beta-function, called fixed points, correspond to
scale-independent conformal field theories. These fixed points correspond to critical points of
the scalar potential on the supergravity side. There are two types of fixed points: IR points
corresponding to low energy scales and UV points at high energy scales, behaving as attractors.
A small dictionary mapping between objects in gauge/gravity theory is given in table 2.1.

Returning to equation (2.25), we see that this geometry describes anti-de Sitter space if we
take A(y) = − y

L . Using the metric-Ansatz (2.25) the equations of motion (2.7) become [53]

φ′′(y) + (D − 1)A′(y)φ′(y) = ∂V
∂φ
,

(D − 2)A′′(y) + (D−1)(D−2)
2 A′(y)2 = − 1

4φ
′(y)2 − 1

2 V(φ) ,
(D−1)(D−2)

2 A′(y)2 = 1
4φ
′(y)2 − 1

2 V(φ) .

(2.27)

These equations can be interpreted as Euler-Lagrange equations for the energy functional

E =
∫ ∞

−∞
dy

e(D−1)A(y)

D − 2

(
−(D − 1)(D − 2)A′(y)2 +

1
2
φ′(y)2 + V(φ)

)
. (2.28)
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Sugra on AdS D (D − 1)-dim. gauge theory

Critical point: AdS space-time Fixed point: CFT β = 0

Warp-factor a(y) Energy scale U

Scalar φ(y) Coupling constant g(U)

Domain-wall flow-equations RG-flow

Table 2.1: A domain-wall/RG-flow dictionary.

Substituting equation (2.15), and using the Bogomol’nyi trick to write E as a sum of squares we
obtain

E =

∫ ∞

−∞
dy

e(D−1)A(y)

D − 2


1
2

[
φ′(y) ∓ (D − 2)

∂W
∂φ

]2

− (D − 1)(D − 2)
[
A′(y) ± 1

2
W(φ)

]2

±
[
e(D−1)A(y)W(φ)

]∞
−∞ . (2.29)

Written in this form the equations minimizing the energy are easily read off to be

φ′(y) = ∓(D − 2)
∂W
∂φ

,

A′(y) = ±1
2

W(φ) . (2.30)

These equations describe gradient-flows on the hypersurface given by the functional W(φi) in
the scalar manifold. Contrary to the second order equations of motion, the analysis of these first
order equations is much simpler. Solutions of the flow-equations are automatically solutions of
the equations of motion.

Remarkably, in gauged supergravity theories the flow equations could also have been ob-
tained by plugging the same Ansätze (2.25) and (2.15) into the BPS-equations corresponding to
the domain-wall solution

δψµ = (∂µ + 1
4ωµ

abΓab)ε +W(φ) Γµ ε = 0 ,

δλ = /∂φε − (D − 2)
∂W
∂φ

ε = 0 . (2.31)

In any theory there are generally different relevant deformations possible, all describing cer-
tain RG-flows: IR-UV, UV-UV, IR-IR. For instance, in [54, 55] a flow was constructed from
N = 4 SYM to N = 1 SYM by studying the scalar potential of N = 8, D = 5 supergravity.
Flows of the type IR-IR are of particular interest in the context of supersymmetric brane-world
scenarios as we will see in the following section. Figure 2.5 gives an example of a flow between
two IR-IR fixed points. The big question however still remains. . . does there exist a correspond-
ing domain-wall? The answer to this question can be given by studying the scalar potential of
the most general matter-coupled gauged supergravity theory.
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critical points AdS AdS

fixed points IR IR

AdS/CFTAdS/CFT

flow equations
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y −∞ +∞

φ(y)

V(φ(y))

Figure 2.5: Domain-walls as Renormalization Group Flows.

2.4 Brane-world scenarios

The idea of brane-worlds rests on the assumption that our four-dimensional space-time is given
by an infinitesimally thin three-brane floating in (4+n) dimensions. Standard model particles are
living on the brane but gravity extends in the transverse dimensions. In 1999 Randall and Sun-
drum proposed two specific brane-world models, motivated to solve a couple of long standing
problems in theoretical physics: the hierarchy problem and the cosmological constant problem.
The hierarchy problem covers the huge difference of order of magnitude between the Planck
scale and the weak scale. Some of the older models tried to explain this using large extra di-
mensions [56,57]. Although the idea by Randall and Sundrum is not completely new [58], their
approach came with remarkable new insights that stimulated further research until the current
moment. In their original two papers they gave two different models, RS I [59] and RS II [60]
which will be schematically described below. For more details we refer to the original papers or
the reviews [61–63].

2.4.1 Randall-Sundrum I: two branes

The two-brane scenario is a model of five-dimensional gravity on an orbifoldM4 × S 1/�2 with
two three-branes located on both �2 fixed points, separated by a distance πrc. The brane at
y = 0 is called the “hidden” or “Planck” brane and the one at y = πrc the “visible” or “Standard
model” brane (see figure 2.6). The idea is simple:
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Standard
Model

Planck brane (hidden) SM−brane (visible)

y = 0y = πrc y = πrc
y

a(y)

Figure 2.6: The two-brane Randall-Sundrum scenario.

• Symbolically write down an action for the combined system

S = S gravity + S vis + S hid ,

S gravity =

∫
d4x dy

√
|G|

(
2M3R − Λ

)
, (2.32)

S brane =

∫
d4x

√
|gind| (L − Vbrane) , (for both branes)

where gind is the induced metric on the brane, Vbrane the vacuum energy of the brane, and
M the five-dimensional Planck mass.

• Write down an Ansatz for the background metric, possessing four-dimensional Poincaré
invariance

ds2 = a(y)2ηµνdxµdxν + r2
c dy2 , a(y) = e−σ(y) . (2.33)

• Deduce the modified Einstein equations from (2.32) and (2.33). These equations are
solved by

σ(y) = rc|y|
√
−Λ

24M3 , Vhid = −Vvis = −Λ/k , Λ = −24M3k2 , (2.34)

where k is some integration constant. We see that the solution of the warp-factor requires
the background to consist of two slices of AdS in Poincaré coordinates.

As a result of the above procedure the effective Planck scale on the brane can be calculated to
be

M2
pl =

M3

k

(
1 − e−2πrck

)
. (2.35)

The hierarchy problem can now be solved by taking the five-dimensional Planck scale to be of
the order of the weak scale, and considering the effective theory on the visible brane at y = πrc. If
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Figure 2.7: The single-brane Randall-Sundrum scenario.

we take rck ≈ 50, this results in a scale hierarchy due to the exponential form of the warp-factor.
This was concluded by considering matter fields living on the visible brane. Although solving
the hierarchy problem, nevertheless this scenario is still problematic; it lacks the possibility of
localization of gravity on the visible brane. Also the presence of a negative tension brane was
required. Soon after the RS I model was proposed, another model was suggested, with only one
brane, to resolve these problems.

2.4.2 Randall-Sundrum II: one brane

The one-brane scenario initially starts off with the same setup as the one described in the pre-
vious section , but the invisible brane is sent to infinity, and is therefore physically removed
from the model, see figure 2.7. The brane-tension of the remaining brane is positive and again
fine-tuned against the bulk cosmological constant. Instead of solving the hierarchy problem, the
warp-factor is now used for the localization of the graviton to the brane. By studying fluctua-
tions of the metric G it was shown that they are effectively described by Newton’s equation on
the brane, predicting higher order corrections to the Newtonian potential

VN(r) = GN
m1m2

r

(
1 +

1
r2k2

)
. (2.36)

Although both these models have appealing properties, fermions will have to be included in
order to obtain phenomenologically interesting models.
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2.4.3 Supersymmetric Randall-Sundrum scenario
The simplest way of including fermions in the theory is by trying to embed the model in a
supersymmetric theory. The best candidate for this theory is thought to be D = 5, N = 2
supergravity. As we saw in the previous sections some parameter tweaking was necessary for
obtaining a consistent model. The main obstruction of a supersymmetric analog however is that
the scalar potential is now more restricted, not leaving a lot of room for tweaking the parameters
of the solution. Furthermore, the three-brane used in the model should be a valid supergravity
solution, namely a domain-wall in five dimensions. Several possible solutions were suggested
to resolve this issue.

One solution was given by [64, 65] who considered the insertion of singular brane sources
in order to restore supersymmetry in spaces with singularities such as the thin domain-walls.
This scenario is conjectured to be the dimensional reduction of the eleven-dimensional Hořava-
Witten model [27], on some six-dimensional Calabi-Yau manifold [66, 67].

Another, more appealing, solution would be to find a smooth soliton solution interpolating
between two AdS vacua. For such solutions to be compatible with a supersymmetric Randall-
Sundrum scenario, the scalar potential should have at least two connected stable IR critical
points with the same value of the cosmological constant. Secondly, the flow-equations should
be solvable for the smooth domain-wall Ansatz and the corresponding warp-factor should be
exponentially decreasing for y → ±∞. In order to find such solutions a thorough investigation
of the most general gauged N = 2, D = 5 sugra is needed. Note that brane-world models
can be given a place in string theory, by requiring this five-dimensional theory to follow from a
specific Calabi-Yau compactification of M-theory. Alternatively one could try to find an explicit
embedding of N = 2 in N = 8 sugra in D = 5, which could be related to string theory by the
AdS/CFT conjecture.

Let us give a brief description of the field content of ungauged N = 2, D = 5 supergravity
and its relevant matter multiplets (I labelling the representation of the gauge group):2

• (8 + 8) Gravity multiplet: vielbein eµa, two gravitinos ψi
µ, graviphoton Aµ

• (8 + 8) Vector multiplets: vector AI
µ, two gauginos ψiI , scalar σI

• (4 + 4) Hyper multiplets: four quaternions qX , two hyperinos ζA

In five dimensions we can also have self-dual tensor multiplets, provided the vectors are in
the adjoint representation. Otherwise the tensors can be dualized into vectors. Normally these
tensors are self-dual in the sense as explained in [68].

Pure ungauged N = 2, D = 5 sugra was constructed by Cremmer in 1980 [69]. A few years
later Günaydin, Sierra and Townsend constructed U(1)- and SU(2)-gauged N = 2, D = 5 sugra
coupled to an arbitrary number of vector multiplets [70–72]. Several years ago Günaydin and
Zagermann added tensor-couplings for specific gauge groups [73–75]. Finally, in 2000, Ceresole
and Dall’Agata constructed gauged N = 2, D = 5 sugra coupled to nV vectors, nT tensors and
nH hyper multiplets [76].

The analysis of the scalar potential in these such theories is highly non-trivial. Several
simplified cases therefore have been considered in the literature. Many NO-GO theorems have

2The bosonic and fermionic degrees of freedom are denoted between parenthesis.
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been posed [77–81]. It was found that without hyper-couplings no IR critical points could be
found [55, 77, 78, 82]. After including hypermultiplets several solutions were found yielding
only one single IR critical point [54, 55, 83]. In [79] multiple critical points were found, having
at least one IR direction 3, but they were not connected.

Last year however a possible solution of a smooth domain-wall was found, by Behrndt and
Dall’Agata [84], admitting a supersymmetric extension of the Randall-Sundrum scenario. They
considered N = 2 sugra coupled to a single hypermultiplet. The crucial ingredient was the
restriction to a specific class of non-homogeneous quaternionic manifolds. A generalization to
more general non-homogeneous quaternionic manifolds was recently considered by Anguelova
and Lazaroiu [85]. Although solutions already have been found, they are not by far the most
general solutions possible. First of all because only the coupling of one hypermultiplet was an-
alyzed. Secondly, because a specific type of tensor-couplings was overlooked in the literature,
corresponding to non-compact gaugings, which could have surprising implications. We con-
structed this extension in the context of N = 2, D = 5 conformal supergravity [86]; this will be
discussed in chapters 5, 6 and 7.

3Saddle points of the scalar potential.
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Chapter 3

Dimensional reduction

In this chapter we will explain how to obtain massive deformations, i.e. scalar potentials and
cosmological constants from dimensional reduction. We start by reviewing some aspects of
standard Kaluza-Klein reduction. Then we will introduce a mechanism to generate masses in
lower dimensions, called Scherk-Schwarz dimensional reduction, which will be used in chap-
ter 4 to construct gauged and massive supergravities in ten and nine dimensions. For reviews on
the subject of dimensional reduction see [87–90].

3.1 Kaluza-Klein dimensional reduction
Even before the advent of string theory, the possibility of extra dimensions was discussed.
As early as 1921, a few years after Einstein wrote down his theory of general relativity [91],
Kaluza attempted to unify gravitation with electromagnetism by assuming that we live in a
five-dimensional universe [92]. By ignoring the extra dimension1 he managed to obtain the
four-dimensional field equations of both gravity and electromagnetism from a five-dimensional
theory of pure gravity. Several years later Klein reformulated this theory using the action-
principle [93]. He also assumed that the extra coordinate was curled up as a circle with radius
of the order of `p, explaining why this coordinate had never been observed in experiment.

The same mechanism can now also be used for ten-dimensional string theories, in order to
try to obtain the four-dimensional world as we observe it and make contact with experiment.
For this purpose, one assumes that the ten-dimensional space-time can be written in the form
M4 × K6, where M4 is our four-dimensional space-time, and K6 a compact sub-manifold of
Planckian size. Dimensional reduction also plays an important role in the context of dualities in
string theory; many of these results have been obtained by using torus or sphere reductions. In
this chapter we will mostly restrict ourselves to compactifications of the typeMD+1 =MD×S 1,
splitting the coordinates xµ̂ into xµ and the compact coordinate z.2 In section 3.2.2 we will

1Kaluza considered our universe to be an isolated four-dimensional subspace of�5 where all derivatives with respect
to the fifth coordinate vanish, the so-called “cylinder condition”.

2We use hats to denote the dimensionality of a certain object or index. In this section hatted fields are living in (D+1)
dimensions and hatted indices run from 0 . . .D. See appendix B.1 for our conventions.
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generalize this to compactifications on higher dimensional compact manifolds.
First of all we observe that all fields in this (D + 1)-dimensional space have to satisfy the

boundary condition
Φ̂(xµ, z + 2πRz) = Φ̂(xµ, z) , (3.1)

and therefore can be Fourier-expanded in terms of the eigenfunctions of the circle

Φ̂(xµ, z) =
∑

n

Φn(xµ)e i n z/Rz , (3.2)

where Rz is the circle-radius. When we insert this Ansatz into the massless Klein-Gordon equa-
tion in flat space-time we obtain the equation of motion for a field with mass M = | n

Rz
| in the

non-compact subspace

�̂Φ̂(xµ, z) = 0 → [
� + ∂z∂

z]Φn(xµ) ≡
[
� +

(
n
Rz

)2
]
Φn(xµ) = 0 . (3.3)

The infinite set of fieldsΦn is called the tower of massive Kaluza-Klein (KK) modes. Taking the
limit where the radius of the circle goes to zero, these KK-modes become infinitely massive and
decouple from the massless theory. These modes can be neglected in any effective field theory.
In this limit the higher dimensional fields simply become independent of the compact coordinate.
This is equivalent to the assumption that the (D + 1)-dimensional space-time has an isometry
along z, with associated Killing vector Kz = ∂z. The process of compactification combined with
consistently truncating away the massive modes is called Kaluza-Klein reduction. In the next
sections we will give some explicit examples, demonstrating the KK-mechanism.

Metric

Let us first consider pure gravity in (D + 1) dimensions, given by the Einstein-Hilbert action

Ŝ =
1

2κ2
D+1

∫
dD+1 x̂

√
|ĝ| R̂ . (3.4)

The metric of (D + 1)-dimensional space-time can be decomposed into the following compo-
nents: ĝµν, ĝµz and ĝzz naively looking like a metric, vector and scalar in D dimensions respec-
tively. In order to have all components behave correctly under D-dimensional general coordinate
transformations (g.c.t.’s) one arrives at the following Ansatz for the metric

ĝµ̂ν̂ =
(

e2αφgµν + e2βφAµAν e2βφAµ

e2βφAν e2βφ

)
, (3.5)

with α and β arbitrary constants. This Ansatz corresponds to the line element

dŝ2 = e2αφds2 + e2βφ
(
dz + Aµdxµ

)2
. (3.6)

The scalar φ is called the dilaton and Aµ the Kaluza-Klein vector.
Since we will perform reductions of supergravity theories in the next chapter, it is convenient

to use the Palatini formalism. Namely in order to covariantly describe spinors we need to define
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a flat tangent space in each point of space-time. Vielbeins are the orthonormal basis vectors
defined over the manifold. The metric can be written in terms of these vielbeins as follows

ĝµ̂ν̂ = êµ̂âêν̂b̂η̂âb̂ . (3.7)

We can use the internal Lorentz gauge degrees of freedom to write the vielbein and inverse
vielbein in upper triangular form

êµ̂ â =

(
eαφeµa eβφAµ

0 eβφ

)
, êâ

µ̂ =

(
e−αφea

µ −e−αφAa

0 e−βφ

)
. (3.8)

Using the above Ansätze we obtain the following action (for details see appendix B.2)

S =
1

2κ2
D

∫
dDx e

(
R − 1

2 (∂φ)2 − 1
4 e−2(D−1)αφF(A)2

)
. (3.9)

Note that we had to use the following values for α and β to obtain the canonical Einstein-Hilbert
action in the Einstein-frame

α2 =
1

2(D − 1)(D − 2)
, β = −(D − 2)α . (3.10)

The D-dimensional gravitational constant is related to the (D+1)-dimensional one by the volume
of the compact space

κ2
D+1 = κ

2
D

∫
dz = 2πRz κ

2
D . (3.11)

The above mechanism demonstrates how Kaluza and Klein partly succeeded in unifying
Maxwell’s theory with gravity, by reducing pure gravity from five to four dimensions. The only
awkward feature they were not able to explain was the presence of the scalar field. Naively one
would put it equal to zero, but this would not be consistent with the field equations; it would
imply that the KK-vector should vanish as well.

Forms

Next consider antisymmetric forms in a gravitational background. The generic KK-Ansatz for a
(n − 1)-form gauge field is given by3

Âµ1...µn−1 ≡ Aµ1 ...µn−1 , Âµ1 ...µn−2 z ≡ Aµ1 ...µn−2 . (3.12)

Using these Ansätze, we obtain the lower-dimensional gauge invariant field-strengths

F̂α1...αn−1z = êα1
µ̂1 . . . êαn−1

µ̂n−1 êz
zF̂µ1...µn−1 z ≡ e(D−n−1)φFα1...αn−1 ,

F̂α1...αn = ê[α1
µ1 . . . êαn−1

µn−1
(
êαn]

µn F̂µ1...µn + n êan]
zF̂µ1...µn−1 z

)
≡ e−nαφFα1...αn , (3.13)

F(n−1) = dA(n−2) , F(n) = dA(n−1) − n F(n−1) ∧ A(1) .

Usually the reduction Ansätze will be of a slightly different form. This is because lower-
dimensional field redefinitions are already applied on the level of the Ansätze, in order to get a
nice expression for the reduced theory.

3Flat compact directions are denoted by z. These differ from the non-flat ones by the vielbein êz
z.



40 Dimensional reduction

3.1.1 Symmetries
Let us now have a look at the symmetries of the lower-dimensional theory, and how they are
obtained from the higher-dimensional symmetries. The (D + 1)-dimensional theory of gravity
contains two symmetries:

• General coordinate transformations (g.c.t.)
The g.c.t. can be written infinitesimally as

δg.c.t.xµ̂ = −ξ̂µ̂ , δg.c.t.ĝµ̂ν̂ = ξ̂ρ̂∂ρ̂ĝµ̂ν̂ + 2ĝρ̂(µ̂∂ν̂)ξ̂
ρ̂ . (3.14)

Demanding all fields (e.g. ĝµz) to stay independent of z after a g.c.t., one derives the
following constraints on the g.c.t.-parameter

∂zξ̂
µ = 0 , ∂z∂µ̂ξ̂

z = 0 , (3.15)

which are solved by
ξ̂µ = ξµ(xµ) , ξ̂z = cz + λ(xµ) . (3.16)

The g.c.t. corresponding to these parameters also leave invariant the KK-Ansatz (3.6), and
give rise to the following transformations after substituting (3.5) and (3.16) into (3.14).

δgµν = ξρ∂ρgµν + 2gρ(µ∂ν)ξ
ρ − 2αβ−1c gµν

δAµ = ξρ∂ρAµ + Aρ∂µξ
ρ − c Aµ + ∂µλ(x)

δφ = ξρ∂ρφ + β−1c
︸                  ︷︷                  ︸

g.c.t.
︸       ︷︷       ︸
scale symmetry

︸︷︷︸
U(1)

(3.17)

The emerging of a U(1) associated with z-independent reparametrizations of the compact
coordinate is in fact a generic feature of dimensional reduction. The KK-vector transforms
as a true gauge vector. As we will see in section 3.2.2, in general a lower-dimensional
gauge group G is generated by the Killing vectors on the internal manifold. The relevance
of the scale-symmetry will become clear after discussing the second symmetry.

• Global Weyl symmetry
Actually this is not a symmetry of the action, but of the equations of motion. Under this
symmetry the metric scales with a constant factor. Infinitesimally this becomes

δĝµ̂ν̂ = 2aĝµ̂ν̂ , (3.18)

reducing to
δgµν = 2a

[
1 − αβ−1

]
gµν , δAµ = 0 , δφ = aβ−1 . (3.19)

By taking two linearly independent combinations of both scale-symmetries we obtain a global
dilaton shift symmetry of the lower-dimensional action, and a uniform scaling symmetry4 that
is only valid at the level of the equations of motion

a = − c
D−1 : δgµν = 0 , δAµ = −cAµ δφ = − c

α(D−1) , (3.20)

a = −c : δgµν = 2agµν , δAµ = aAµ δφ = 0 . (3.21)
4Also called “trombone” symmetry in the literature [87].
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Both types of symmetries will turn out to be of use in chapter 4 when we consider scale sym-
metries in supergravity.

3.2 Scherk-Schwarz dimensional reduction
Even though the KK-mechanism has some very appealing features, it is clearly not the most
general way of dimensional reduction; all massive modes are truncated away and consequently
we can never obtain masses for gauge particles in lower dimensions. It also does not provide
a natural way of breaking some part of the supersymmetry, which clearly is needed to obtain
physically plausible theories. In 1979 Scherk and Schwarz posed an interesting alternative in a
series of two papers [94, 95], called generalized dimensional reduction, or also Scherk-Schwarz
(SS) reduction.

The general feature of SS-reduction is the usage of symmetries of the higher-dimensional
theory to introduce masses in lower dimensions. The generalization consisted of allowing the
higher-dimensional fields to depend on the compact coordinate z, in a way prescribed by the
symmetries of the action. This assures us that the z-dependence will be completely removed
from the equations of motion of the reduced action.

Two types of symmetries can be used:

1. global/internal symmetries: phase, scale and shift symmetries or other global symmetries

2. local/external symmetries: space-time symmetries, such as translations or rotations in the
compact manifold

3.2.1 Scherk-Schwarz I
In this section we will restrict ourselves to symmetries of the first kind; the latter type will be
briefly explained in section 3.2.2.

In the case of a global U(1) phase-symmetry Φ̂ → e iΛΦ̂, we generalize the periodicity con-
dition (3.1) by identifying the two fields up to an extra global phase-transformation, or “twist”

Φ̂(xµ, z + 2πRz) = e2π i mRzΦ̂(xµ, z) , (3.22)

resulting in the following mode-expansion

Φ̂(xµ, z) = e i mz
∑

n

Φn(xµ)e i nz/Rz . (3.23)

In the limit Rz → 0 the massive modes again decouple, and we are left with the effective Ansatz

Φ̂(xµ, z) = e i mzΦ0(xµ) , (3.24)

which can also be obtained by replacing the global symmetry parameter Λ by mz. More gen-
erally if there is a global symmetry group G acting on the fields: Φ̂ → g(Φ̂), we allow for a
specific z-dependence in our reduction Ansatz through a symmetry transformation dependent
on the compact coordinate(s)

Φ̂(xµ, z) = gz(Φ̂(xµ)) , gz = g(z) ∈ G . (3.25)
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This particular form of the Ansatz guarantees that the reduced theory will be independent of z,
and results in the gauging of the group G, producing a scalar potential or cosmological constant.
When a mass term is produced for the gravitino, there is even a spontaneous breaking of su-
persymmetry. Since the z-dependent transformation in general will not be periodic, as before,
going once around the compact coordinate will produce a twist, the so-called monodromy

M(g) = g(2πRz)g(0)−1 , M ∈ G . (3.26)

Writing the group element in terms of the generators of the Lie algebra

g(z) = eMz , M ∈ Lie(G) , (3.27)

we obtain an expression for the monodromy in terms of M

M = eM , M = g−1∂zg . (3.28)

In practice it turns out that the object M can be interpreted as the mass matrix of the reduced
theory, as we will see in chapter 4. The specific function g can now be determined by demanding
that M is independent of z.

One might wonder at this point whether the reduced theory we obtain this way is unique.
Not every choice for g will necessarily lead to a new reduced theory; provided these functions
are in the same conjugacy class, their reduced theories will only differ by a field redefinition.
Independent reductions can therefore be classified by the conjugacy classes of the mass matrix
M [96–98]. We will see examples of this in the next chapter.

Let us first look at some simple examples of the mechanism described above.

Complex scalar field in a gravitational background

The action for a complex scalar field in a curved background is given by

Ŝ =
1

2κ2
D+1

∫
dD+1 x̂ ê

(
R̂ − 1

2 ∂µ̂ϕ̂(x̂)∂µ̂ϕ̂∗(x̂)
)
. (3.29)

This action contains two global symmetries: invariance under phase transformations and under
shifts.

(1) Phase symmetry: ϕ̂→ e i cϕ̂

Following the above prescription, the corresponding SS-Ansatz becomes:

ϕ̂(x̂) = e i m1yϕ(x) , (m1 real) . (3.30)

The reduction of the scalar part of the action then gives:

ê ∂ϕ̂(x̂)∂ϕ̂∗(x̂) = ê ∂µ̂ϕ̂(x̂)∂ν̂ϕ̂∗(x̂)êâ
ρ̂êb̂

µ̂η̂âb̂

= e
(
|Dϕ(x)|2 + m2

1e2(α−β)φ |ϕ|2
)
, (3.31)

where the covariant derivative is defined as: Dµ = ∂µ − i m1Aµ.
This we recognize as the usual expression for the covariant derivative, associated with the
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gauging of a U(1) phase transformation of an Abelian gauge theory. So a straightforward
interpretation of m1 is that of a charge for the complex scalar field. Alternatively m1 can be
interpreted as mass parameter. Added up to (3.9), the complete reduced action describes
a real scalar φ (the dilaton) and a charged complex scalar ϕ in a curved background.
Most importantly, this procedure seems to have produced a scalar potential, describing
the interactions between both scalar fields. Finally note that the same result, except for
the scalar potential, could have been obtained by a KK-reduction, followed by the gauging
of the generated global U(1) symmetry. The scalar potential, however, is gauge-invariant
by itself and cannot be constructed by gauging alone. In supersymmetric theories however
the scalar potential can always be reconstructed by demanding invariance of the action.

(2) Shift symmetry: ϕ̂→ ϕ̂ + c.
As SS-Ansatz we now take

ϕ̂(x̂) = ϕ̂(x) + m2z (m2 complex) . (3.32)

This time the scalar part of the action reduces as

ê ∂ϕ̂(x̂)∂ϕ̂∗(x̂) = e
(
|Dϕ(x)|2 + |m2|2 e2(α−β)φ

)
, (3.33)

with covariant derivativeDµϕ = ∂µϕ−m2Aµ, invariant under the so-called massive gauge
transformations {

δϕ = m2 λ(x) ,
δAµ = ∂µλ(x) ,

(3.34)

induced by a general coordinate transformation along z in (D + 1) dimensions, as we saw
earlier in the Kaluza-Klein reduction. The complete reduced action becomes

S =
∫

dDx e
[
R − 1

2 (∂φ)2 − 1
4 e−2(D−1)αφF2(A) − 1

2 |Dϕ|
2 − 1

2 m2
2e2(α−β)φ

]
. (3.35)

If we now fix the massive gauge transformations, by taking<e(ϕ) = 0, the action consists
of the following parts:

1. a D-dimensional Einstein-Hilbert action + kinetic term for the dilaton

2.
∫

dDx e
[
− 1

4 e−2(D−1)αφF(A)2 − m2
2A2

]
,

which is the well known Proca action for a massive vector field, coupled to gravity,
with additional dilaton interaction terms.

3. a scalar potential.

Compared to the KK-reduction, obtained by taking m1 = m2 = 0, we gained a scalar potential
and masses for either the scalar or vector field.

Instead of the two separate global symmetries, we could have used the combination of both
symmetries for the Scherk-Schwarz reduction. The Ansatz then becomes

ϕ̂ = e i m1z (ϕ + m2z) . (3.36)

The reduced action corresponds to the sum of the separate actions corresponding to the phase-
and shift symmetry.
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O(N) scalar fields

The O(N) N-scalar model in (D+1)-dimensional flat space-time, is described by the Lagrangian
LD+1

LD+1 = − 1
2∂µ̂

~̂ΦT∂µ̂ ~̂Φ − 1
2 m2 ~̂ΦT ~̂Φ , (3.37)

invariant under global orthogonal transformations working on the scalar fields

~̂Φ→ ~̂
′
Φ = O~̂Φ , O ∈ O(N) , OT O = O OT = . (3.38)

In order to perform a generalized reduction of this theory, we again use the transformation
parameter of the global symmetry (group) to put the z-dependence into, yielding the following
Ansatz

~̂Φ(x, z) = O(z)~̂Φ(x) , (3.39)

resulting in the action

LD = − 1
2∂µ

~ΦT OT O︸︷︷︸
=

∂µ~Φ − 1
2

(
m2 + [OT ∂zO︸  ︷︷  ︸

≡O−1∂zO

]2
)
~ΦT ~Φ (3.40)

The only term in the lower-dimensional action, still containing the matrix O(z), is propor-
tional to O−1(z)∂zO(z). Since we do not want this term to contain any z-dependence, the term
O−1(z)∂zO(z) ≡ M again can be interpreted as a mass matrix, just like in (3.28). The exact form
of O(z) is not important since it does not explicitly appear in the reduced theory, but using the
properties of O(z), the constraint can in principle be solved.

3.2.2 Non-Abelian reductions and Scherk-Schwarz II
In order to generalize the five-dimensional KK-theory we replace the internal space S 1 with
some other (compact) space of higher dimension. The first generalization of the KK-mechanism
was first considered by Pauli in 1953 [99]. His starting point was the six-dimensional space-time
M4 × S 2. The extra dimensions form a two-sphere S 2 with internal symmetry group SO(3) '
SU(2)/U(1). Using an appropriate Ansatz (given below for general case) he constructed a non-
Abelian theory with gauge group SU(2), one year before Yang and Mills published their famous
paper [100].

In the years after that further generalizations were proposed [101–106], which can be roughly
classified in the following possibilities for the compact space En:

1. En = T n: Torus reduction from (D + n) to D dimensions on T n, i.e. n successive circle
reductions. Each reduction-step will give rise to a KK-vector and a dilaton. Also, p-
form gauge fields will reduce to a p-form and (p − 1)-form gauge field one dimension
lower. Further reductions will also create 0-form potentials or axions coming from the
KK-vector(s) in the compact directions. The reduced theory is ungauged and will finally
consist of a plethora of scalars and vectors, in the adjoint of the gauge group U(1)n.

2. En = G: Group manifold reduction, where G is the compact Lie-group associated with
general coordinate transformations on the compact manifold, which will become the
gauge group of the reduced theory.
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3. En = G/H: Coset space reduction, where H is the maximal compact subgroup of G.
The most common examples are sphere-reductions: S n ' SO(n + 1)/ SO(n). Note that
in most cases coset reductions are preferred above group manifold reductions, since less
extra dimensions are needed to obtain a certain gauge group. E.g. in order to obtain the
SO(8) gauge group one could use the SO(8) group manifold or the coset SO(8)/ SO(7)
corresponding to the seven-sphere. The first case would require dim(En) = 28 whereas
for the coset reduction one only needs dim(En) = 7.

4. inhomogeneous spaces or spaces without any isometries.

Note that not all these reductions can be performed in a consistent way. The only exceptions
where consistency can be understood from group-theoretic arguments are the circle, torus or
group-manifold reductions. All other reductions will have to satisfy certain requirements to get
a full decoupling of the massless and massive modes in the KK-spectrum [107].

For cases 2 and 3 the generic line-element Ansatz is given by

dŝ2 = ds2 + gαβ
[
dzα + Kα

I (z)AIµdxµ
][

dzβ + Kβ
J (z)AJνdxν

]
, (3.41)

where gαβ is the internal metric on En. The coordinates xµ̂ have been split into xµ and compact
coordinates zα. The functions Kα

I (z) are the Killing vectors of the internal metric, generating the
isometry group G with structure constants fIJ

K

KI ≡ Kα
I ∂α → LKI KJ = [KI ,KJ] = fIJ

K KK . (3.42)

These same structure constants also define the lower-dimensional gauge group since they end
up in the covariant derivatives of the lower-dimensional vector fields, after reducing the general
coordinate transformation of the metric under

δxµ̂ = −ξ̂µ̂ , ξ̂µ = 0 , ξ̂α = Kα
I (z)λI(x) . (3.43)

The second type of Scherk-Schwarz reductions (SS2) makes use of these z-dependent dif-
feomorphisms on the group manifold, to assign to some fields a specific dependence on the
compact coordinates. For details we refer to [95].
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Chapter 4

Scherk-Schwarz reductions and
gauged supergravities

In this chapter we will make use of the techniques explained in chapter 3 to construct five dif-
ferent two-parameter massive deformations of the unique nine-dimensionalN = 2 supergravity.
All of these deformations have a higher-dimensional origin via SS-reduction and correspond to
gauged supergravities. Although the ultimate goal is to do a full analysis of the scalar potentials
in lower-dimensional gauged supergravities, D = 4 and D = 5 in specific, in this chapter we
will study dimensional reductions from D = 11 via D = 10 down to D = 9; nine-dimensional
supergravity shares some of the complexities of the lower-dimensional cases, but is still simple
enough to study in full detail. Based on these results we will conclude by making a systematic
search for half-supersymmetric domain-walls and non-supersymmetric de Sitter space solutions.
Furthermore, we discuss in which sense the supergravities we have constructed can be consid-
ered as low-energy limits of compactified superstring theory.

Appendix B.1 contains our conventions and in appendix B.3 we discuss some manipulations
with spinors and gamma-matrices in ten and nine dimensions.

This chapter is based on the work published in [108]. In this chapter we will only treat
the generalized reduction from D = 11 to D = 10 in some detail; a detailed description of the
reductions to D = 9 is given in [108].

4.1 D = 11 supergravity

Our starting point is eleven-dimensional supergravity [24], which field content is given by1

D = 11 : { ˆ̂e ˆ̂µ
ˆ̂a, ˆ̂C ˆ̂µ ˆ̂ν ˆ̂ρ,

ˆ̂ψ ˆ̂µ} . (4.1)

1In order to distinguish between D = 11,D = 10 and D = 9 we indicate D = 11 fields and indices with a double hat,
D = 10 fields and indices with a single hat and D = 9 fields and indices without hat.
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�
+ ˆ̂e ˆ̂µ

ˆ̂a ˆ̂C ˆ̂µ ˆ̂ν ˆ̂ρ
ˆ̂ψ ˆ̂µ

ˆ̂ε ˆ̂L

ˆ̂α 1 3 1
2

1
2 9

Table 4.1: The �+-weights of the D = 11 supergravity fields, the supersymmetry parameters ˆ̂ε
and the Lagrangian ˆ̂L.

The Einstein-frame action and the corresponding supersymmetry transformations, up to quar-
tics, are given by

L =
ˆ̂e

2κ2
11

[
ˆ̂R( ˆ̂ω) − ¯̂̂

ψ ˆ̂µ
ˆ̂
Γ

ˆ̂µ ˆ̂ν ˆ̂ρ ˆ̂D ˆ̂ν( ˆ̂ω) ˆ̂ψ ˆ̂ρ − 1
92

ˆ̂G(4)
ˆ̂G(4) − 1

92

( ¯̂̂
ψ ˆ̂µ

ˆ̂
Γ

ˆ̂µ ˆ̂ν ˆ̂α ˆ̂β ˆ̂γ ˆ̂δ ˆ̂ψ ˆ̂ν + 12
¯̂̂
ψ

ˆ̂α ˆ̂
Γ

ˆ̂γ ˆ̂δ ˆ̂ψ
ˆ̂β
)

ˆ̂G ˆ̂α ˆ̂β ˆ̂γ ˆ̂δ

+ 1
(144)2

ˆ̂ε(4)(4′)(3) ˆ̂G(4)
ˆ̂G(4′)

ˆ̂C(3)

]
, (4.2)

δ ˆ̂e ˆ̂µ
ˆ̂a =

¯̂̂ε ˆ̂
Γa ˆ̂ψ ˆ̂µ ,

δ ˆ̂C ˆ̂µ ˆ̂ν ˆ̂ρ = −3 ¯̂̂ε ˆ̂
Γ[ ˆ̂µ ˆ̂ν

ˆ̂ψ ˆ̂ρ] , (4.3)

δ ˆ̂ψ ˆ̂µ =
ˆ̂D ˆ̂µ( ˆ̂ω) ˆ̂ε + 1

192 ( ˆ̂
Γ(4) ˆ̂
Γ ˆ̂µ − 1

3
ˆ̂
Γ ˆ̂µ

ˆ̂
Γ(4)) ˆ̂G(4) ˆ̂ε ,

with the field strength ˆ̂G(4) = d ˆ̂C(3) and ˆ̂D ˆ̂µ = ∂ ˆ̂µ +
1
4

ˆ̂ω ˆ̂µ
ˆ̂a ˆ̂b ˆ̂
Γ ˆ̂a ˆ̂b

. The 11D fermionic field
content consists solely of a 32-component gravitino, whose field equation reads

X0( ˆ̂ψ ˆ̂µ) ≡ ˆ̂
Γ

ˆ̂µ ˆ̂ν ˆ̂ρ ˆ̂D ˆ̂ν
ˆ̂ψ ˆ̂ρ = 0 , (4.4)

where we have set the three-form equal to zero for simplicity.2 Under supersymmetry this
fermionic field equation transforms into

δ0X0( ˆ̂ψ ˆ̂µ) = 1
2

ˆ̂
Γ

ˆ̂ν ˆ̂ε [ ˆ̂R ˆ̂µ
ˆ̂ν − 1

2
ˆ̂R ˆ̂g ˆ̂µ

ˆ̂ν] , (4.5)

which implies the bosonic Einstein equation for the metric. The supersymmetry rules and field
equations are covariant under an �+ symmetry with parameter ˆ̂α [109]. A generic field ˆ̂

Φ with
weight w scales as ˆ̂

Φ → ew ˆ̂α ˆ̂
Φ under this symmetry. The weights of the D = 11 fields under

this �+ are given in table 4.1. Note that the Lagrangian is not invariant but scales with weight
w = 9. Therefore this �+ is a symmetry of the equations of motion only.

No massive deformation of the eleven-dimensional supergravity theory is known; in partic-
ular, no cosmological constant can be added [110]. One problem with a D = 11 supersymmetric
cosmological constant is that its reduction gives rise to a D = 10 cosmological constant with
a dilaton coupling that differs from Romans’ massive deformation. A general deformation of
D = 11 supergravity involving the use of extra Killing vectors has been considered in [111], but
we will not pursue this possibility here.

2This is because we are only interested in solutions coupling to the metric and the dilaton.
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4.2 Massive deformations of D = 10 IIA supergravity
As already mentioned in section 1.4.2, the Kaluza-Klein reduction of eleven-dimensional su-
pergravity yields the effective IIA theory in ten dimensions. This gives us the following field
content of the D = 10 IIA supergravity theory

D = 10 IIA: {êµ̂â, B̂µ̂ν̂, φ̂, Âµ̂, Ĉµ̂ν̂ρ̂, ψ̂µ̂, λ̂} . (4.6)

For this reduction we use the reduction Ansätze3

ˆ̂e ˆ̂µ
ˆ̂a =

(
e−φ̂/12êµ̂â −e2φ̂/3Âµ̂

0 e2φ̂/3

)
, ˆ̂ψâ = eφ̂/24(ψ̂â − 1

24 Γ̂âλ̂) , ˆ̂ε = e−φ̂/24ε̂ ,

ˆ̂Cµ̂ν̂ρ̂ = Ĉµ̂ν̂ρ̂ ,
ˆ̂Cµ̂ν̂x = −B̂µ̂ν̂ ,

ˆ̂ψx =
1
3 eφ̂/24Γ̂xλ̂ . (4.7)

Applying these to the 11D transformation rules (4.3), we obtain the IIA transformation rules in
the Einstein frame and up to quartics4:

δ0êµ̂â = ε̂Γ̂âψ̂µ̂ ,

δ0ψ̂µ̂ =
(
D̂µ̂ +

1
48 e−φ̂/2( /̂HΓ̂µ̂ + 1

2 Γ̂µ̂
/̂H)Γ11

+ 1
16 e3φ̂/4( /̂FΓ̂µ̂ − 3

4 Γ̂µ̂
/̂F)Γ11 +

1
192 eφ̂/4( /̂GΓ̂µ̂ − 1

4 Γ̂µ̂
/̂G)

)
ε̂ ,

δ0B̂µ̂ν̂ = 2eφ̂/2ε̂Γ11Γ̂[µ̂(ψ̂ν̂] + 1
8 Γ̂ν̂]λ̂) ,

δ0Âµ̂ = −e−3φ̂/4ε̂Γ11(ψ̂µ̂ − 3
8 Γ̂µ̂λ̂) , (4.8)

δ0Ĉµ̂ν̂ρ̂ = −3e−φ̂/4ε̂Γ̂[µ̂ν̂(ψ̂ρ̂] − 1
24 Γ̂ρ̂]λ̂) + 3Â[µ̂δ0B̂ν̂ρ̂] ,

δ0λ̂ =
(
/∂φ̂ + 1

12 e−φ̂/2 /̂HΓ11 +
3
8 e3φ̂/4 /̂FΓ11 +

1
96 eφ̂/4 /̂G

)
ε̂ ,

δ0φ̂ =
1
2 ε̂λ̂ ,

with the field strengths:

F̂ = dÂ , Ĥ = dB̂ , Ĝ = dĈ + Â ∧ Ĥ , (4.9)

and D̂µ̂ = ∂µ̂ +
1
4 ω̂µ̂

âb̂Γ̂âb̂. For later purposes we indicate these (undeformed) supersymmetry
transformations by δ0. Upon (massless) reduction with the Ansätze (4.7) the 11D field equa-
tion (4.4) splits up into two field equations for the 10D IIA fermionic field content, a gravitino
and a dilatino:

X0(ψ̂µ̂) ≡ Γ̂µ̂ν̂ρ̂D̂ν̂ψ̂ρ̂ − 1
8 (/∂φ̂)Γ̂µ̂λ̂ = 0 ,

X0(λ̂) ≡ Γ̂ν̂D̂ν̂λ̂ − Γ̂ν̂(/∂φ̂)ψ̂ν̂ = 0 , (4.10)

3The flat x11-direction is denoted by x, and the curved x11-direction by x. The particular dilaton prefactors were
conveniently chosen to get the standard form of the IIA transformation rules.

4An additional field dependent 10D Lorentz transformation is needed to get the correct transformation rule for e.g.
the vielbein: δQ(ε) = δQ(ε̂) + δM .
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�
+ êµ̂â B̂µ̂ν̂ eφ̂ Âµ̂ Ĉµ̂ν̂ρ̂ ψ̂µ̂ λ̂ ε̂ L̂ Origin

α̂ 9
8 3 3

2 0 3 9
16 − 9

16
9
16 9 ˆ̂α

β̂ 0 1
2 1 − 3

4 − 1
4 0 0 0 0

Table 4.2: The�+-weights of the D = 10 IIA supergravity fields, the supersymmetry parameter
ε̂ and the Lagrangian L̂.

where we have set the vector, two- and three-form equal to zero. Under supersymmetry these
fermionic field equations transform into

δ0X0(ψ̂µ̂) = 1
2 Γ̂

ν̂ε̂ [R̂µ̂
ν̂ − 1

2 R̂ĝµ̂ν̂ − 1
2 (∂µ̂φ̂)(∂ν̂φ̂) + 1

4 (∂φ̂)2ĝµ̂ν̂] ,

δ0X0(λ̂) =ε̂ [�φ̂] , (4.11)

which imply the usual graviton-dilaton field equations. The corresponding action can be de-
duced from (4.2), using the same reduction Ansätze (4.7), and is e.g. given in [112] (in the
string frame). The transformation rules have two �+-symmetries, one with parameter α̂ that
scales the Lagrangian and one with parameter β̂ that leaves the Lagrangian invariant. The first
symmetry follows via dimensional reduction from the D = 11 �+-symmetry with parameter ˆ̂α.
The weights of these two�+-symmetries are given in table 4.2. The gauge symmetry associated
to the Ramond-Ramond vector, with parameter λ̂, reads

Â→ Â − dλ̂ , Ĉ → Ĉ − dλ̂ ∧ B̂ . (4.12)

The D = 10 IIA supergravity theory allows two massive deformations which we discuss one
by one below.

4.2.1 Deformation mR: D = 10 massive supergravity
The first massive deformation, with mass parameter mR, is due to Romans [42]. In this case (the
same is true for all other cases) the supersymmetry transformations receive two types of massive
deformations: explicit and implicit ones. The explicit deformations are terms, at most linear in
mR, that are added to the original supersymmetry rules. These explicit deformations are denoted
by δmR and define the fermion-shifts, used for determining the scalar potential. They are given
in terms of a superpotential W(φ̂) and derivatives thereof by

mR :


δmR ψ̂µ̂ = − 1

8 WΓ̂µ̂ ε̂ ,

δmR λ̂ = 4 δW
δφ̂
ε̂ ,

with W = 1
4 e5φ̂/4mR . (4.13)

There are further implicit massive deformations to the original supersymmetry rules δ0, which
are given in (4.8), due to the fact that in these rules one must replace all field strengths by
corresponding massive field strengths which are given by

F̂ = dÂ + mRB̂ , Ĥ = dB̂ , Ĝ = dĈ + Â ∧ Ĥ + 1
2 mRB̂ ∧ B̂ . (4.14)
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The Lagrangian contains terms linear and quadratic in mR. Again there are implicit defor-
mations, via the massive field strengths, and explicit deformations. The explicit deformations
quadratic in the mass parameter define the scalar potential which can be written in terms of the
superpotential W(φ̂) and derivatives thereof by using (2.15) and (2.16).

The linear deformations of the fermionic (gravitino and dilatino) field equations of Romans’
theory can be found by requiring closure of the supersymmetry algebra:

mR :


XmR (ψ̂µ̂) ≡ mRe5φ̂/4Γ̂µ̂ν̂( 1

4 ψ̂ν̂ +
5

288 Γ̂ν̂λ̂) ,

XmR (λ̂) ≡ mRe5φ̂/4Γ̂ν̂(− 5
4 ψ̂ν̂ − 21

160 Γ̂ν̂λ̂) .
(4.15)

The undeformed equations, X0(ψ̂µ̂) and X0(λ̂), are given in eqs. (4.10). Under supersymmetry
these fermionic field equations, X0 + XmR , transform into the deformed bosonic equations of
motion. Since we will only be interested in finding solutions that are carried by the metric and
the scalars it is convenient to truncate away all bosonic fields except the metric and the dilaton.5

After this truncation we find that under supersymmetry the fermionic field equations transform
into

(δ0 + δmR )(X0 + XmR )(ψ̂µ̂) = 1
2 Γ̂

ν̂ ε̂ [R̂µ̂
ν̂ − 1

2 R̂ĝµ̂ν̂ − 1
2 (∂µ̂φ̂)(∂ν̂φ̂) + 1

4 (∂φ̂)2ĝµ̂ν̂ + 1
4 m2

Re5φ̂/2ĝµ̂ν̂] ,

(δ0 + δmR )(X0 + XmR )(λ̂) = ε̂ [�φ̂ − 5
4 m2

Re5φ̂/2] . (4.16)

At the right-hand side we find the Romans’ bosonic field equations for the metric and the dilaton,
one solution of which is the D8-brane. Note that the bosonic field equations contain terms
quadratic in the mass parameter.

Romans’ theory is not known to have a higher-dimensional supergravity origin; neither is it
a gauged supergravity. A candidate symmetry of the Lagrangian to be gauged is the β̂ symmetry
of table 4.2. However, the candidate gauge field Âµ̂ has a nontrivial weight under β̂. This means
that the curl dÂ transforms with a non-covariant term proportional to Â∧dλ̂. Such a term cannot
be cancelled by adding an extra term, such as B̂, to the definition of the Â curvature. In short,
the β̂-symmetry cannot be gauged [113]. The same table shows that on the other hand Âµ̂ has
weight zero under the α̂-symmetry which is a symmetry of the equations of motion only. This
α̂-symmetry can indeed be gauged at the level of the equations of motion. This gauging leads to
the D = 10 gauged supergravity discussed below.

4.2.2 Deformation m11: D = 10 gauged supergravity
The second massive deformation, with mass parameter m11, has been considered in [114, 115]
and is a gauged supergravity. It can be obtained by generalized Scherk-Schwarz reduction of
D = 11 supergravity using the �+ symmetry ˆ̂α of table 4.1 [115]. The corresponding reduction
Ansätze can be obtained by adding the appropriate factors ew m11 x to the Ansätze in (4.7), using
the corresponding weights in table 4.1. This reduction leads to the following explicit massive
deformations of the D = 10 IIA supersymmetry rules

m11 :


δm11ψ̂µ̂ = 9

16 m11e−3φ̂/4Γ̂µ̂Γ11ε̂ ,

δm11 λ̂ = 3
2 m11e−3φ̂/4Γ11ε̂ .

(4.17)

5Note that a further truncation to φ = c is inconsistent.
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The implicit massive deformations of the original supersymmetry rules δ0 are given by the mas-
sive bosonic field strengths

Dφ̂ = dφ̂ + 3
2 m11Â , F̂ = dÂ , Ĥ = dB̂ + 3m11Ĉ , Ĝ = dĈ + Â ∧ Ĥ , (4.18)

while the covariant derivative of the supersymmetry parameter D̂µ̂ε̂ is replaced by

D̂µ̂ε̂ = (∂µ̂ + 1
4 ω̂µ̂

âb̂Γ̂âb̂ +
9
16 m11Γ̂µ̂ /̂A)ε̂ . (4.19)

The gauge vector in the definition of the covariant derivative is required to make the derivative
of the supersymmetry parameter and the spin connection �+-covariant.

The linear deformations of the fermionic field equations read in this case

m11 :


Xm11 (ψ̂µ̂) ≡ m11e−3φ̂/4Γ11Γ̂

µ̂ν̂(− 9
2 ψ̂ν̂ +

17
48 Γ̂ν̂λ̂) ,

Xm11 (λ̂) ≡ m11e−3φ̂/4Γ11Γ̂
ν̂( 3

2 ψ̂ν̂ − 9
16 Γ̂ν̂λ̂) .

(4.20)

We first consider the truncation where all bosonic fields except the metric and the dilaton are set
equal to zero. Under supersymmetry the fermionic field equations transform into

(δ0 + δm11 )(X0 + Xm11 )(ψ̂µ̂) = 1
2 Γ̂

ν̂ ε̂
[
R̂µ̂

ν̂ − 1
2 R̂ĝµ̂ ν̂ − 1

2 (∂µ̂φ̂)(∂ν̂φ̂) + 1
4 (∂φ̂)2ĝµ̂ ν̂

+ 36m2
11e−3φ̂/2ĝµ̂ ν̂

]
+ Γ11ε̂[3m11e−3φ̂/4∂µ̂φ̂] ,

(δ0 + δm11 )(X0 + Xm11 )(λ̂) = ε̂ [�φ̂] + Γ̂ν̂Γ11ε̂[9m11e−3φ̂/4∂ν̂φ̂] . (4.21)

The terms involving Γ11 are part of the vector field equation. Therefore, to obtain a consistent
truncation, we must further truncate the dilaton to zero. One is then left with only the metric
satisfying the Einstein equation with a positive cosmological constant, a solution of which is
10D de Sitter space [115].

The reduced theory is a gauged supergravity where the �+ symmetry α̂ of table 4.2 has
been gauged. In particular, the gauge parameter and transformation of the Ramond-Ramond
potentials read as follows6

α̂ : Λ = ewα̂m11λ̂ with Â→ Â − dλ̂ , Ĉ → e3m11λ̂(Ĉ − dλ̂ ∧ B̂) , (4.22)

where wα̂ are the weights under α̂. We note that one can take two different limits of the α̂ gauge
transformations. First, the limit m11 → 0 leads to the massless gauge transformations (4.12).
Note that Ĉ transforms trivially under this gauge symmetry in the sense that Ĉ can be made
gauge-invariant after a simple field-redefinition. Secondly, one can take the limit that α̂ is con-
stant. This leads to the ungauged �+ α̂-symmetry of table 4.2.

A noteworthy feature of the D = 10 gauged supergravity is that no Lagrangian can be
defined for it. In the search for supersymmetric domain-wall solutions in five dimensions other
examples of gauged supergravity theories without a Lagrangian have been found [86]; we will
encounter these in chapter 6. Note that one can write down a Lagrangian for the ungauged
theory. The reason that one cannot write down a Lagrangian after gauging is that the symmetry
that is gauged is not a symmetry of the Lagrangian but only of the equations of motion. It would
be instructive to construct the D = 10 gauged supergravity from the ungauged theory by gauging
the α̂-symmetry. Apparently, it shows that one can gauge symmetries that leave a Lagrangian
invariant up to a scale factor.

6It is understood that each field with wα̂ , 0 is multiplied by Λ.
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4.3 D = 10 IIB supergravity
The other ten-dimensional supergravity theory is chiral IIB, which field content is given by

D = 10 IIB: {êµ̂â, φ̂, χ̂, B̂(1)
µ̂ν̂
, B̂(2)

µ̂ν̂
, D̂µ̂ν̂ρ̂σ̂, ψ̂µ̂, λ̂} . (4.23)

The supersymmetry transformation rules of ten-dimensional IIB supergravity read (in complex
notation)

δêµ̂ â = 1
2 ε̂ Γ̂

âψ̂µ̂ + h.c. ,

δψ̂µ̂ = D̂µ̂ε̂ − 1
16·5! i /̂G(5)

Γ̂µ̂ε̂

+ 1
16·3! i eφ̂/2

(
Γ̂µ̂Γ̂

(3) + 2Γ̂(3)Γ̂µ̂

) (
Ĥ(1) − τ̂Ĥ(2)

)
(3)
ε̂∗ ,

δλ̂ = −eφ̂ /∂τ̂ε̂∗ − 1
2·3! e

φ̂/2Γ̂(3)
(
Ĥ(1) − τ̂Ĥ(2)

)
(3)
ε̂ ,

δB̂(1)
µ̂ν̂
= −eφ̂/2τ̂∗

(
ε̂
∗
Γ̂[µ̂ψ̂ν̂] − 1

8 i ε̂ Γ̂µ̂ν̂λ̂
)
+ h.c. , (4.24)

δB̂(2)
µ̂ν̂
= −eφ̂/2

(
ε̂
∗
Γ̂[µ̂ψ̂ν̂] − 1

8 i ε̂ Γ̂µ̂ν̂λ̂
)
+ h.c. ,

δD̂µ̂ν̂λ̂ρ̂ = 2 i ε̂ Γ̂[µ̂ν̂λ̂ψ̂ρ̂] − 3
2 εi jB̂

(i)
[µ̂ν̂δB̂( j)

λ̂ρ̂]
+ h.c. ,

δχ̂ = − 1
4 e−φ̂ε̂λ̂∗ + h.c. ,

δφ̂ = 1
4 i ε̂λ̂∗ + h.c. ,

with the complex scalar τ̂ = χ̂ + ie−φ̂ and the field strengths

~̂H = d ~̂B , Ĝ = dD̂ + 1
2
~̂BTη ~̂H , η =

(
0 1
−1 0

)
. (4.25)

The field strength Ĝ is subject to a self-duality constraint:

Ĝµ̂1···µ̂5 = − 1
5! ε̂µ̂1···µ̂10Ĝ

µ̂10···µ̂6 , (4.26)

which can be used to eliminate the four form potential C(4), after a dimensional reduction to
D = 9.

The covariant derivative of the IIB Killing spinor reads

D̂µ̂ε̂ = (∂µ̂ + 1
4 ω̂

âb̂
µ̂ Γâb̂ +

1
4 i eφ̂∂µ̂χ̂)ε̂ . (4.27)

The corresponding action can be found in [112]. The IIB supersymmetry rules transform co-
variant under the S`(2,�) transformations (omitting indices)

τ̂→ aτ̂ + b
cτ̂ + d

, ~̂B→ Ω ~̂B , D̂→ D̂ , with Ω =
(

a b
c d

)
∈ S`(2,�) ,

ψ̂µ̂ →
(
c τ̂∗ + d
c τ̂ + d

)1/4

ψ̂µ̂ , λ̂→
(
c τ̂∗ + d
c τ̂ + d

)3/4

λ̂ , ε̂ →
(

c τ̂∗ + d
c τ̂ + d

)1/4

ε̂ . (4.28)
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Here we have used the vector notation ~̂B =
(
B̂(1), B̂(2))T . The group S`(2,�) contains a set of

three one-parameter conjugacy classes defining one compact and two non-compact subgroups.
We will describe them shortly. Each of the subgroups is generated by a S`(2,�) group element
Ω with detΩ = 1. As a global symmetry group of IIB supergravity, S`(2,�) is suitable for
performing a Scherk-Schwarz reduction to D = 9. There are three different cases to consider,
corresponding to the three different subgroups listed below.

1. One non-compact subgroup � is generated by

Ωp = e
1
2 ζ̂ (σ1+ iσ2) =

(
1 ζ̂

0 1

)
. (4.29)

Each element defines a parabolic conjugacy class with TrΩ = 2. These parabolic transfor-
mations leave the combination (B̂(2))2 invariant. Therefore the invariant metric is given by
diag (0,1). The action of the� ζ̂-symmetry on the fields can not be expressed by assigning
weights to the standard basis of fields given in (4.23).

2. An SO(1, 1)+ subgroup which is generated by elements

Ωh = eγ̂ σ3 =

(
eγ̂ 0
0 e−γ̂

)
. (4.30)

Each element defines a hyperbolic conjugacy class with TrΩ > 2. These hyperbolic
transformations leave the combination B̂(1)B̂(2) invariant. After diagonalization this leads
to an invariant metric given by diag (1,-1). The weights corresponding to the SO(1, 1)+

γ̂-symmetry are given in table 4.3.

3. There is a SO(2) subgroup which is generated by elements Ω of S`(2,�) with

Ωe = e i θ̂ σ2 =

(
cos θ̂ sin θ̂
− sin θ̂ cos θ̂

)
. (4.31)

Each element defines an elliptic conjugacy class with TrΩ < 2. The elliptic transfor-
mations leave (B̂(1))2 + (B̂(2))2 invariant. After diagonalization this leads to an invariant
metric given by diag (1,1). The action of the SO(2) θ̂-symmetry on the fields can not be
expressed by assigning weights to the standard real basis of fields given in (4.23).

Table 4.3 contains the weights of the γ̂-symmetry defined above7 and of a new �+ symmetry δ̂
which is not a subgroup of S`(2,�) and that does not leave the Lagrangian invariant. One could
combine S`(2,�) with this new �+ into a G`(2,�) symmetry that leaves the IIB equations of
motion invariant. Its action is the product of the two separate transformations: Ω̃ = ΩΛδ̂. This
exhausts all the symmetries of D = 10 IIB supergravity.

The IIB supergravity theory is not known to have massive deformations. One of the reasons
for this is that there is no candidate vector field like in the IIA case.

7The other two symmetries defined above cannot be defined in terms of weights of real fields only.
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�
+ êµ̂â eφ̂ χ̂ B̂(1)

µ̂ν̂
B̂(2)
µ̂ν̂

D̂µ̂ν̂ρ̂σ̂ ψ̂µ̂ λ̂ ε̂ L̂ symmetry

γ̂ 0 −2 2 1 −1 0 0 0 0 0 SO(1, 1)+

δ̂ 1 0 0 2 2 4 1
2 − 1

2
1
2 8 �

+

Table 4.3: The scaling weights of the D = 10 IIB supergravity fields, the supersymmetry pa-
rameter ε̂ and the Lagrangian L̂.

�
+ eµa eφ eϕ χ Aµ A(1)

µ A(2)
µ B(1)

µν B(2)
µν Cµνρ ψµ λ λ̃ ε L Origin

α 9
7 0 6√

7 0 3 0 0 3 3 3 9
14 − 9

14 − 9
14

9
14 9 11D

β 0 3
4

√
7

4 − 3
4

1
2 − 3

4 0 − 1
4

1
2 − 1

4 0 0 0 0 0 IIA

γ 0 −2 0 2 0 1 −1 1 −1 0 0 0 0 0 0 IIB

δ 8
7 0 − 4√

7 0 0 2 2 2 2 4 4
7 − 4

7 − 4
7

4
7 8 IIB

Table 4.4: The scaling weights of the nine-dimensional supergravity fields, the supersymmetry
parameter ε and the Lagrangian L.

4.4 Massive deformations of D = 9,N = 2 supergravity

The Kaluza-Klein reduction of either (massless) IIA or IIB supergravity gives the unique D = 9,
N = 2 massless supergravity theory. Its field content is given by

D = 9 : {eµa, φ, ϕ, χ, Aµ, A(1)
µ , A

(2)
µ , B

(1)
µν , B

(2)
µν ,Cµνρ, ψµ, λ, λ̃} . (4.32)

The supersymmetry rules are given in [108]. The massless nine-dimensional theory inherits
several global symmetries from its parents: two �+ symmetries α, β from IIA supergravity
and one �+ symmetry δ plus a full S`(2,�) symmetry from IIB supergravity. The latter leads
in particular to an SO(2) symmetry θ, an SO(1, 1)+ symmetry γ and an �-symmetry ζ. The
weights of all these symmetries, except for the SO(2) θ-symmetry and � ζ-symmetry, and their
higher-dimensional origin are given in table 4.4 (see also [109]).

It turns out that only three out of the four scalings given in table 4.4 are linearly independent,
due to the relation

4
9α − 8

3β = γ +
1
2δ . (4.33)

We observe the following pattern. Using (4.33) to eliminate one of the scaling-symmetries we
are left with three independent scaling-symmetries. Each of the three gauge fields Aµ, A

(1)
µ , A

(2)
µ

has weight zero under the linear combination of two out of these three symmetries: one is a
symmetry of the action, the other is a symmetry of the equations of motion only.
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mass parameters S`(2,�)

(m1,m2,m3) triplet
(m4, m̃4) doublet

(m11,mIIA) doublet
mIIB singlet

Table 4.5: This table indicates the different multiplets that the D = 9 mass parameters form
under S`(2,�).

The D = 9 S`(2,�) symmetry acts in the following way:

τ→ aτ + b
cτ + d

, ~A→ Ω~A , ~B→ Ω~B , with Ω =
(

a b
c d

)
∈ S`(2,�) ,

ψµ →
(

c τ∗ + d
c τ + d

)1/4

ψµ , λ→
(
c τ∗ + d
c τ + d

)3/4

λ , (4.34)

λ̃→
(

c τ∗ + d
c τ + d

)−1/4

λ̃ , ε →
(

c τ∗ + d
c τ + d

)1/4

ε ,

while ϕ and C are invariant. We have used a vector notation for the two vectors and two anti-
symmetric tensors, like in D = 10. Again one can combine S`(2,�) with an �+ symmetry to
form G`(2,�) with parameter Ω̃ = ΩΛ�+ .

In addition to the global symmetries there is a number of local symmetries. In particular, the
gauge transformations of the vectors read

A(1) → A(1) − dλ(1) , A(2) → A(2) − dλ(2) ,

A → A − dλ , ~B → ~B − ~A ∧ dλ . (4.35)

We now turn to massive deformations of the 9D theory. Applying a SS dimensional reduc-
tion of the higher-dimensional supergravities we obtain a number of massive deformations in
nine dimensions, as illustrated in figure 4.1. By employing the different global symmetries of
11D, IIA and IIB supergravity we obtain seven deformations of the unique D = 9 supergravity.
Since the procedure is quite straightforward – though tedious – we will not give any details here;
these can be found in [108].

Note that the different massive deformations can be related. Symmetries of the massless
theory become field redefinitions in the massive theory that only act on the massive deforma-
tions. This means that the mass parameters transform under such transformations: they have
a scaling weight under the different scaling symmetries and fall in multiplets of S`(2,�). In
table 4.5 the multiplet structure of the massive deformations under S`(2,�) is given. The mass
parameter m̃4 is defined as the S-dual partner of m4 and can not be obtained by a SS reduction
of IIA supergravity.

All these deformations correspond to a gauging of a 9D global symmetry. In particular, it
is always the symmetry that is employed in the SS reduction Ansatz that becomes gauged upon
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KK−reduction
SS−reduction

No action

SUGRA

IIA IIB

Gauge Group

Gauge Vector

Gauged Symmetry

m4

β̂α̂ δ̂

ˆ̂α

IIA m11

mi = 0 mIIB

IIA mR

ζ̂, γ̂, θ̂

βα δζ ζ, γ, θ

A A(2) A(2)A(1) A A

m11 mIIA ~m

α

mR

� �
+

�
+

�
+

�
+

�,SO(1, 1)+,SO(2)

D = 9

D = 10

D = 11

Figure 4.1: Overview of all reductions performed in [108]. These cases can all be interpreted
as gauged supergravities, with gauged symmetry and corresponding gauge field as given in the
figure. Mass parameters in the same box, such as m11,mIIA or m1,m2,m3, form a multiplet under
S`(2,�). Further details of these cases will be given below. Note that the two ways of obtaining
the �-gauging give rise to the massive T-duality of [116], provided that m1 = m2 = mR and
m3 = 0.

reduction. The corresponding gauge vector is always provided by the metric, i.e. it is the Kaluza-
Klein vector of the dimensional reduction. In all but one case this is the complete story and one
finds an Abelian gauged supergravity. It turns out that there is one exception where we find a
non-Abelian gauge symmetry. This can be understood from the following general rule.8 As we
noted, the Kaluza-Klein vector gauges the symmetry employed in the SS reduction Ansatz. The
fate of either of the remaining two gauge vectors is restricted to three possibilities:

• The vector is a singlet under the gauge symmetry and its field strength acquires no modi-
fication, e.g. A(1) in the mIIA deformation.

• The vector transforms under the gauge symmetry and its field strength acquires a massive
deformation proportional to a two-form. The degrees of freedom of the vector are eaten
up by the two-form via the Stückelberg mechanism, e.g. A in the mIIA deformation.

• The vector transforms under the gauge symmetry and its field strength acquires no massive
deformation proportional to a two-form. In this case we must have gauge enhancement to
preserve covariance, e.g. A(1) in the m4 deformation.

All cases we find in D = 9 are consistent with this rule of thumb. Details can be found in [108].
8We thank Sergio Ferrara for clarifying discussions on this issue.
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4.5 Combining massive deformations

In this section we would like to consider combining the massive deformations discussed in
the previous section. The resulting theories will have more mass parameters characterizing
the different deformations. However, not all combinations will turn out to be consistent with
supersymmetry. This inconsistency only appears when turning to the bosonic field equations:
the supersymmetry algebra with a combination of massive deformations always closes, as can
be seen from the following argument.

Suppose one has a supergravity with one massive deformation m and supersymmetry trans-
formations δ0 + δm. In all cases discussed in this chapter the massive deformation of the su-
persymmetry rules satisfies the following property: δm(boson) = 0. In other words, only the
supersymmetry variations of the fermions receive massive corrections. This implies that the
issue of the closure of the supersymmetry algebra is a calculation with m-independent parts and
parts linear in m but no parts of higher order in m.9 On the one hand [δ(ε1), δ(ε2)] has no terms
quadratic in m since one of the two δ’s acts on a boson. On the other hand the supersymmetry
algebra closes modulo fermionic field equations which also have only terms independent of and
linear in m. Therefore, given the closure of the massless algebra, the closure of the massive
supersymmetry algebra only requires the cancellation of terms linear in m.

In the previous sections we have not checked the closure of the massive supersymmetry
algebras since this was guaranteed by the higher-dimensional origin, i.e. Scherk-Schwarz reduc-
tion of supergravity leads to a gauged supergravity. However, the argument of linearity allows
us to combine different massive deformations. Suppose one has two massive supersymmetry
algebras with transformations δ0+δma and δ0+δmb . Both supersymmetry algebras close modulo
fermionic field equations with (different) massive deformations. Then the combined massive
algebra with transformation δ0 + δma + δmb also closes modulo fermionic field equations whose
massive deformations are given by the sum of the separate massive deformations linear in ma

and mb. The closure of the combined algebra is guaranteed by the closure of the two massive
algebras since it requires a cancellation at the linear level.

Under supersymmetry variation of the fermionic field equations, one in general finds linear
and quadratic deformations of the bosonic equations of motion. In addition to these corrections,
we find that there are also ‘non-dynamical’ equations posing constraints on the mass parameters.
Solving these equations generically excludes the possibility of combining massive deformations
by requiring mass parameters to vanish. At first sight, one might seem surprised that the su-
persymmetry variation of the fermionic equations of motion leads to constraints other than the
bosonic field equations. However, one should keep in mind that the multiplets involved cannot
be linearized around a Minkowski vacuum solution. Therefore, the usual rules for linearized
(Minkowski) multiplets do not apply here.

We find that generically adding massive deformations is possible whenever the D = 10
symmetries, giving rise to the separate massive deformations, can be combined in D = 10
as symmetries of IIA or IIB supergravity only. The combined D = 9 supergravity is then a
gauged supergravity which just follows by performing a SS reduction on the combined D = 10
symmetry.

9That is, up to cubic order in fermions. We have not checked the higher-order fermionic terms but, based upon
dimensional arguments, we do not expect that these rule out the possibility of combining massive deformations.
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In the first subsection we will discuss the situation in D = 10 and in the next subsection we
will review the D = 9 situation; see [108] for details.

4.5.1 Combining massive deformations in 10D
The 10D IIA supergravity theory has two massive deformations parameterized by mR and m11.
Can we combine these two massive deformations? Based on the linearity argument presented
above one would expect a closed supersymmetry algebra. The bosonic field equations (with up
to quadratic deformations) can be derived by applying the supersymmetry transformations (with
only linear deformations) to the fermionic field equations (containing only linear deformations).
For simplicity, we truncate all bosonic fields to zero except the metric and the dilaton. We thus
find

(δ0 + δmR + δm11)(X0 + XmR + Xm11 )(ψ̂µ̂)

= 1
2 Γ̂

ν̂ε̂ [R̂µ̂
ν̂ − 1

2 R̂ĝµ̂ ν̂ − 1
2 (∂µ̂φ̂)(∂ν̂φ̂) + 1

4 (∂φ̂)2ĝµ̂ ν̂ + 1
4 m2

Re5φ̂/2ĝµ̂ ν̂ + 36m2
11e−3φ̂/2ĝµ̂ν̂]

+ Γ11ε̂[3m11e−3φ̂/4∂µ̂φ̂] + Γ11Γ̂
µ̂ε̂ [ 15

4 mRm11eφ̂/2] , (4.36)

(δ0 + δmR + δm11)(X0 + XmR + Xm11 )(λ̂)

= ε̂ [�φ̂ − 5
4 m2

Re5φ̂/2] + Γ̂ν̂Γ11ε̂[9m11e−3φ̂/4∂ν̂φ̂] + Γ11ε̂ [ 33
2 mRm11eφ̂/2] .

At the right-hand side we find four different structures. Three of them correspond to the field
equations of the metric, dilaton and RR vector. The vector field equation corresponds to the
terms linear in m11 and containing Γ11. They show us that truncating the RR vector to zero
forces us to further truncate the dilaton to φ = c. More interesting is the fourth structure which
is bilinear in mRm11. It leads to the constraint mRm11 = 0. This constraint cannot be a remnant
of a higher-rank form field equation due to its lack of Lorentz indices. It could only fit in the
scalar field equation but the Γ11 factor prevents this. It is an extra constraint which does not
restrict degrees of freedom but rather restricts mass parameters.

We conclude that, even though the closure of the algebra is a linear calculation and there-
fore always works for combinations, the bosonic field equations exclude the possibility of the
combination of massive deformations in D = 10 dimensions.

4.5.2 Combining massive deformations in 9D
Repeating the above analysis – i.e. requiring that the fermionic field equations transform under
supersymmetry to a complete set of bosonic field equations – restricts us to five cases, each
containing two non-zero mass parameters:

• Case 1 with {mIIA,m4}: this combination can also be obtained by Scherk-Schwarz reduc-
tion of IIA employing a linear combination of the symmetries α̂ and β̂, guaranteeing its
consistency. It is also a gauging of both this symmetry and (for m4 , 0) the parabolic
subgroup of S`(2,�) in 9D, giving the non-Abelian gauge group A(1).

• Case 2,3,4 with {~m,mIIB}: as in the case with mIIB = 0 and only ~m this combination
contains three different, inequivalent cases depending on ~m2 (depending crucially on the
fact that mIIB is a singlet under S`(2,�)):
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– Case 2 with {~m,mIIB} and ~m2 = 0.

– Case 3 with {~m,mIIB} and ~m2 > 0.

– Case 4 with {~m,mIIB} and ~m2 < 0.

All these combinations can also be obtained by Scherk-Schwarz reduction of IIB em-
ploying a linear combination of the symmetries δ̂ and (one of the subgroups of) S`(2,�),
guaranteeing its consistency. All cases (assuming that mIIB , 0) correspond to the gaug-
ing of an Abelian non-compact symmetry in 9D. Only the special case {~m2 < 0,mIIB = 0}
corresponds to a SO(2)-gauging.

• Case 5 with {m4 = − 12
5 mIIA,m2 = m3}: this case can be understood as the generalized

dimensional reduction of Romans’ massive IIA theory, employing the �+ symmetry that
is not broken by the mR deformations: β̂ − 5

12 α̂. It gauges both this linear combination of
�
+’s and the parabolic subgroup of S`(2,�) in 9D, giving the non-Abelian gauge group

A(1).

Another solution to the quadratic constraints has parameters {mIIA,m11}, but this combination
does not represent a new case. It can be obtained from only mIIA (and thus a truncation of
case 1) via an S`(2,�) field redefinition (since they form a doublet). Thus the most general
deformations are the five cases given above, all containing two mass parameters. All five of
these are gauged theories and have a higher-dimensional origin. Both case 1 and case 5 have a
non-Abelian gauge group provided m4 , 0.

4.6 Solutions
In the first part of this chapter we constructed a gauged supergravity with 32 supersymmetries
in D = 10; after that we illustrated how to obtain a variety of gauged supergravities in D = 9,
using the same methods. They all have in common that there is a scalar potential. Our next goal
is to make a systematic search for solutions that are based on this scalar potential. In the next
subsections we will search for two types of solutions: (i) 1/2 BPS domain-wall (DW) solutions
and (ii) maximally symmetric solutions with constant scalars, i.e. de Sitter (dS), Minkowski
(Mink) or anti-de Sitter (AdS) solutions.

4.6.1 1/2 BPS domain-wall solutions
The authors of [117] already made a systematic search for half-supersymmetric DW solutions of
the gauged supergravities corresponding to the cases 3, 4 and 5. Due to a one-to-one relationship
with seven-branes in D = 10 dimensions [111] they could even make a systematic investigation
of the quantization of the mass parameters by using the results of [118, 119].

The goal of this subsection is to investigate whether the five massively deformed super-
gravities we found in subsection 4.5.2 allow new half-supersymmetric DW solutions. In other
words, we will derive all 1/2 BPS seven-brane solutions to the nine-dimensional supergravities
described in the previous sections. This analysis should lead, as a check of our calculations, to
at least all the solutions of [117]. Since we are looking for 1/2 BPS solutions it is convenient to
solve the Killing spinor equations, which are obtained by setting the supersymmetry variation
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of the gravitino and dilatinos to zero. In this way we solve first order equations instead of sec-
ond order equations which we would encounter if we were to solve the field equations directly.
For static configurations a solution to the Killing spinor equation is also a solution to the field
equations, so we do not have to check explicitly that the field equations are satisfied. The pro-
jector10 for a DW is given by 1

2 (1±γy), where y denotes the transverse direction. We find that, in
order to make a projection operator in the Killing spinor equations, we are forced to set all mass
parameters to zero except for ~m, which corresponds to cases 3, 4 and 5 of section 4.5. This is
a consistent combination of masses and we obtain three classes of domain-wall solution which
were discussed in detail in [117]. As it turns out, there are no more half-supersymmetric DW
solutions.

To summarize, we find that there are no new codimension-one 1/2 BPS solutions to the
D = 9 supergravity theories we obtained in the previous sections, as compared to the three
classes of domain-wall solutions given in [117].

4.6.2 Solutions with constant scalars
In this subsection we will consider solutions with all three scalars constant. This is a consistent
truncation in two cases, both of which have two mass parameters. In this truncation one is left
with the metric only satisfying the Einstein equation with a cosmological term

Rµν − 1
2 gµνR = −Λgµν , (4.37)

with Λ quadratic in the two mass parameters. Depending on the sign of this term one then has
anti-de Sitter, Minkowski or de Sitter geometry.

We find that solutions with constant scalars are possible in the following massive supergrav-
ities:

• D = 10 with {m11} has Λ = 36m11
2e−3φ̂/2, which gives rise to de Sitter10 [115], breaking

all supersymmetry. The D = 11 origin of this solution is Mink11 written in a basis where
the x-dependence is of the required form [115]

Mink11 : ds2 = e2m11 x(−dt2 + e2m11tdx2
9 + dx2) . (4.38)

• D = 9, Case 1 with {mIIA = − 2
3 m4} has Λ = 63

4 m4
2eφ−3ϕ/

√
7, which gives rise to de Sitter9,

breaking all supersymmetry. This case follows from the reduction of Mink10 by using a
combination of IIA scale symmetries that leave the dilaton invariant (since Minkowski
has vanishing dilaton) so that, after reduction, one is left with a non-trivial geometry only.

• D = 9, Case 4 with {mIIB,m3} has Λ = 28mIIB
2e4ϕ/

√
7, which gives rise to de Sitter9 for

non-vanishing mIIB. This case follows from the reduction of Mink10 by using a combina-
tion of IIB scale symmetries that leave the dilaton invariant. Note that for vanishing mIIB
this reduces to Mink9, despite the presence of m3 [120]. For either mIIB or m3 non-zero
this solution breaks all supersymmetry.

10From a general analysis of the possible projectors in nine dimensions, i.e. demanding that the projector squares to
itself and that its trace is half of the spinor dimension, in order to yield a 1/2 BPS state, we find that there is a second
projector given by 1

2 (1± i γt). This projector would give a euclidean DW, i.e. a DW having time as a transverse direction.
Note that such a Euclidean DW can never be 1/2 BPS since if there existed a Killing spinor it would square to a Killing
vector in the transverse direction, i.e. time, which is not an isometry of the euclidean DW.
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4.7 Conclusions
In this chapter we have illustrated how to construct five different D = 9 massive deformations
with 32 supersymmetries, each containing two mass parameters. We found in [108] that all
these five theories have a higher-dimensional origin via SS reduction from D = 10 dimensions.
Furthermore, the massive deformations gauge a global symmetry of the massless theory. The
gauge groups we obtained are the Abelian groups SO(2), SO(1, 1)+, �, �+ and the unique two-
dimensional non-Abelian Lie group A(1) of scalings and translations on the real line.

We have analyzed the possibility of combining massive deformations to obtain more general
massive supergravities that are not gauged or do not have a higher-dimensional origin. Our
analysis shows that the only possible combinations are the five two-parameter deformations,
which are all gauged and can be uplifted. We have not made a systematic search for massive
D = 9 supergravities that are not the combination of gaugings and we cannot exclude that there
are more possibilities; this requires a separate calculation. In this context, it is of interest to point
out that examples of massive supergravities like Romans have been found in lower dimensions,
e.g. [121, 122]. In these cases the compactification manifolds are such that the candidate gauge
fields are truncated away.

It is intriguing that some of the gauged supergravities we have constructed result from gaug-
ing an�+ scale symmetry that does not leave the Lagrangian invariant but scales it with a factor.
Apparently, it is possible to gauge such symmetries at the level of the equations of motion.

Finally we would like to address the question of whether the gauged supergravities we con-
structed can be interpreted as the leading terms in a low-energy approximation to (compactified)
superstring theory. The nine-dimensional massive deformations split up in two categories: those
where only the theory to lowest order in α′ has a higher-dimensional origin and those where also
the higher-derivative corrections can be obtained from 10D. The latter category can be derived
using symmetries that extend to all orders in α′. We have two such symmetries:

• The S`(2,�) (or rather its S`(2,�) subgroup) symmetry of IIB. Thus the ~m = (m1,m2,m3)
deformations correspond to the low-energy limits of three different sectors of compactified
IIB string theory (depending on ~m2 = 1

4 (m1
2 + m2

2 − m3
2)). In [117] DW solutions were

constructed for all three sectors. Of these only the D7-brane has a well-understood role in
IIB string theory.

• The linear combination 1
12 α̂ + β̂ of �+-symmetries of IIA. Thus one can define a massive

deformation ms within case 1 with {mIIA =
1
12 ms,m4 = ms} which corresponds to the low-

energy limit of a sector of compactified IIA string theory. No vacuum solution has been
constructed for this sector. It would be very interesting to try to find a vacuum solution
and understand which role it plays in IIA string theory.

In fact, one can have a better understanding of the ms massive deformation and the 1
12 α̂ + β̂

symmetry of IIA from the following point of view. The combination 1
12 α̂ + β̂ of IIA can be

understood from its 11D origin as the general coordinate transformation x11 → λ x11; one can
easily check that this is indeed the case by comparing with (3.17). This explains why all α′

corrections transform covariantly under this specific �+: the higher-order corrections in 11D
are invariant under general coordinate transformations and upon reduction they must transform
covariantly under the reduced g.c.t.’s, among which is the 1

12 α̂ + β̂ scaling-symmetry.



Chapter 5

Conformal supergravity

As we saw in the previous chapters, Scherk-Schwarz dimensional reduction can be used as a
tool to obtain scalar potentials in lower dimensional gauged supergravity theories. There are
unfortunately many different ways in which the compactification process can be performed and
therefore it is a priori not clear how to obtain the most general vacuum solutions.

Another approach to this problem is the construction of matter coupled Poincaré supergravity
in lower dimensions. One possibility is the explicit coupling of matter multiplets of the super
Poincaré algebra to the supergravity multiplet. The method we will use in the following chapters
however, is that of conformal supergravity for reasons explained below.

Conformal supergravities have been constructed in various dimensions (for a review, see
[123]) but not yet in five dimensions. By using conformal tensor calculus, conformal super-
gravities form an elegant way to construct general couplings of Poincaré-supergravities to mat-
ter [124]. It also provides a method to find the auxiliary fields of off-shell Poincaré supergrav-
ities, like e.g. for N = 1,D = 4 supergravity [125]. The reason for using a theory based on
the superconformal group instead of the Poincaré group is the presence of more symmetries,
generally resulting in more structure and therefore simplifying the calculations. Furthermore,
the conformal group is the largest possible group of space-time symmetries and turns out to
be gauge equivalent to the Poincaré group. In the five-dimensional case these matter coupled
supergravities have recently attracted renewed attention for reasons motivated in chapter 2.

Although quite some progress has been made in these areas, it is clear that it is important to
have an independent derivation of the most general matter couplings derived in [76] where most
of the current results are based on. Especially since past experience has shown that supercon-
formal constructions lead to new insights in the structure of matter couplings. A recent example
is the insight in relations between hyper-Kähler cones and quaternionic manifolds, based on
the study of superconformal invariant matter couplings with hypermultiplets [126]. For these
reasons a superconformal construction of general matter couplings inN = 2, D = 5 is desirable.

The superconformal program

The procedure will be as follows.

• In this chapter we take the first step in this investigation by constructing theN = 2, D = 5
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conformal supergravity theory. In our construction we use the methods developed first for
N = 1, D = 4 [127,128], which were inspired by the geometrical methods of [129]. They
are based on gauging the conformal superalgebra [130] which in our case is F2(4). The
superconformal multiplet one obtains this way contains all the (independent) gauge fields
of the superconformal algebra and is called the Weyl multiplet. In general one needs to
include matter fields to have an equal number of bosons and fermions. Although there are
two sets of auxiliary fields one can use, in this chapter we will restrict to the one leading
to the so-called Standard Weyl multiplet.

• The second step will be performed in chapter 6, where we construct the actions for matter
multiplets in the background of the Standard Weyl multiplet. This step already produces
a nice geometrical framework on the scalar manifolds resulting from this construction.

• Finally, in chapter 7 we will gaugefix the symmetries not present in the Poincaré algebra
and construct N = 2, D = 5 matter coupled Poincaré supergravity.

This chapter is based on the work published in [131]. Note that many details have been left out
for reasons of brevity and clarity; we refer the reader to [131, 132] for more details. Note that
shortly after our publication interesting results have been obtained on conformal supergravity in
five dimensions [133] that have some overlap with our work.

For more information on the conformal supergravity approach, see [134–136].

5.1 Definition of rigid conformal (super-)symmetry
We start this chapter by giving a short review of rigid conformal supersymmetry; for a more
extended discussion, see e.g. [137]. We first introduce conformal symmetry and in a second step
extend this to conformal supersymmetry. Given a space-time with a metric tensor gµν(x), the
conformal transformations are defined as the general coordinate transformations that leave “an-
gles” invariant. The parameters of these special coordinate transformations define a conformal
Killing vector kµ(x). The defining equation for this conformal Killing vector is given by

δg.c.t.(k)gµν(x) ≡ ∇µkν(x) + ∇νkµ(x) = ω(x)gµν(x) , (5.1)

where ω(x) is an arbitrary function, kµ = gµνkν and the covariant derivative is given by ∇µkν =
∂µkν − Γρµνkρ. In flat D-dimensional Minkowski space-time, (5.1) implies

∂(µkν)(x) − 1
Dηµν∂ρk

ρ(x) = 0 . (5.2)

In dimensions D > 2, the conformal algebra is finite-dimensional. The solutions of (5.2) are
given by

kµ(x) = ξµ + λµνM xν + λDxµ +
(
x2Λ

µ
K − 2xµx · ΛK

)
. (5.3)

Corresponding to the parameters ξµ are the translations Pµ, the parameters λµνM correspond to
Lorentz rotations Mµν, to λD are associated the dilatations D, and ΛµK are the parameters of
‘special conformal transformations’ Kµ. Thus, the full set of conformal transformations δC can
be expressed as follows:

δC = ξ
µPµ + λ

µν
M Mµν + λDD + ΛµK Kµ . (5.4)
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The commutators between different generators define the conformal algebra which is isomorphic
to the algebra of SO(D, 2).

We wish to consider representations of the conformal algebra on fields φα(x) where α stands
for a collection of internal indices referring to the stability subalgebra of xµ = 0. From the
expression (5.3) for the conformal Killing vector, we deduce that this algebra is isomorphic to
the algebra generated by Mµν,D and Kµ. We denote the generators of this stability subalgebra by
Σµν,∆ and κµ. Applying the theory of induced representations, it follows that any representation
(Σ,∆, κ) of the stability subalgebra induces a representation of the full conformal algebra with
the following transformation rules [135] (we suppress any internal indices):

δPφ(x) = ξµ∂µφ(x) ,
δMφ(x) = 1

2λ
µν
M (xν∂µ − xµ∂ν)φ(x) + δΣ(λM)φ(x) ,

δDφ(x) = λDxλ∂λφ(x) + δ∆(λD)φ(x) , (5.5)
δKφ(x) = λ

µ
K(x2∂µ − 2xµxλ∂λ)φ(x)

+
(
δ∆(−2x · ΛK) + δΣ(−4x[µλKν]) + δκ(λK)

)
φ(x) .

We now look at the non-trivial representation (Σ,∆, κ) that we use in this chapter.

• Firstly, concerning the Lorentz representations, in this chapter we will encounter anti-
symmetric tensors φa1···an (x) (n = 0, 1, 2, . . .) and spinors ψα(x):

δΣ(λM)φa1···an (x) = −n(λM)[a1
bφ|b|a2 ···an](x) ,

δΣ(λM)ψ(x) = − 1
4λ

ab
Mγabψ(x) . (5.6)

• Secondly, we consider the dilatations. For most fields, the ∆ transformation is just deter-
mined by a number w, which is called the Weyl weight of φα:

δ∆(λD)φα(x) = wλDφ
α(x) . (5.7)

An exception is given in the next chapter for the scalars of the hypermultiplet, on which
dilatation transformations are realized nonlinearly. Namely, for scalar fields it is often
convenient to consider the set of fields φα as the coordinates of a scalar manifold with
affine connection Γαβγ. With this understanding, the transformation of φα under dilatations
can be characterized by

δ∆(λD)φα = λDkα(φ) . (5.8)

Requiring dilatational invariance of kinetic terms determined by a metric gαβ, leads to
the interpretation of the vector kα as a homothetic Killing vector, i.e. it should satisfy the
conformal Killing equation (5.1) for constant ω(x):

Dαkβ +Dβkα = (D − 2)gαβ , (5.9)

where D denotes the space-time dimension and Dαkβ = ∂αkβ − Γαβγkγ. However, (5.5)
shows that the ∆-transformation also enters in the special conformal transformation. It
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turns out that invariance of the kinetic terms under these special conformal transforma-
tions restricts kα(φ) further to a so-called exact homothetic Killing vector, i.e.

kα = ∂αK , (5.10)

for some function K(φ). One can show that the restrictions (5.9) and (5.10) are equiva-
lent to

Dαkβ ≡ ∂αkβ + Γαγβkγ = wδαβ . (5.11)

The constant w is identified with the Weyl weight of φα and is given by w = (D −
2)/2, i.e. 3/2 in five dimensions. The proof of the necessity of (5.11) can be extracted
from [138], see also [139, 140]. In these papers the conditions for conformal invariance
of a sigma model with either gravity or supersymmetry are investigated. Note that the
condition (5.11) can be formulated independent of a metric. Only an affine connection is
necessary.

For the special case of a zero affine connection, the homothetic Killing vector is given by
kα = wφα and the transformation rule (5.8) reduces to δ∆(λD)φα = wλDφ

α. Note that the
homothetic Killing vector kα = wφα is indeed exact with K given by

K = 1
(D−2) k

αgαβkβ . (5.12)

• Finally, all (non-gauge)fields that we will discuss in this thesis are invariant under the
internal special conformal transformations, i.e. δκφα = 0.

We next consider the extension to conformal supersymmetry. The parameters of these super-
symmetries define a conformal Killing spinor ε i(x) whose defining equation is given by

∇µε i(x) − 1
Dγµγ

ν∇νε i(x) = 0 . (5.13)

In D-dimensional Minkowski space-time this equation implies

∂µε
i(x) − 1

Dγµ /∂ε
i(x) = 0 . (5.14)

The solution to this equation is given by

ε i(x) = ε i + i xµγµηi , (5.15)

where the (constant) parameters ε i correspond to “ordinary” supersymmetry transformations
Qi
α and the parameters ηi define special conformal supersymmetries generated by S i

α. The
conformal transformation (5.3) and the supersymmetries (5.15) do not form a closed algebra.
To obtain closure, one must introduce additional R-symmetry generators. In particular, in the
case of 8 supercharges Qi

α in D = 5, there is an additional SU(2) R-symmetry with generators
Ui j = U ji (i = 1, 2). Thus, the full set of superconformal transformations δC is given by:

δC = ξ
µPµ + λ

µν
M Mµν + λDD + ΛµK Kµ + Λ

i jUi j + i ε̄Q + i η̄S . (5.16)

The factors of i in the last two terms appear due to the reality properties, as explained in ap-
pendix A. The full superconformal algebra F2(4) formed by (anti-)commutators between the
(bosonic and fermionic) generators will be given in section 5.2.1.
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To construct field representations of the superconformal algebra, one can again apply the
method of induced representations. In this case one must use superfields Φa(xµ, θi

α), where a
stands for a collection of internal indices referring to the stability subalgebra of xµ = θi

α = 0.
This algebra is isomorphic to the algebra generated by Mµν,D,Kµ,Ui j and S i

α.
An additional complication, not encountered in the bosonic case, is that the representation

one obtains is reducible. To obtain an irreducible representation, one must impose constraints
on the superfield. It is at this point that the transformation rules become nonlinear in the fields.
In this chapter we will follow a different approach; instead of working with superfields we will
work with the component “ordinary” fields. The different nonlinear transformation rules are
obtained by imposing the superconformal algebra.

In the supersymmetric case, we must specify the SU(2)-properties of the different fields as
well as the behavior under S -supersymmetry. Concerning the SU(2), we will only encounter
scalars φ, doublets ψi and triplets φ(i j) whose transformations are given by

δSU(2)(Λi j)φ = 0 ,
δSU(2)(Λi j)ψi(x) = −Λi

jψ
j(x) , (5.17)

δSU(2)(Λi j)φi j(x) = −2Λ(i
kφ

j)k(x) .

Note that the scalars of the hypermultiplet will also have an SU(2) transformation despite the
absence of an i index, as we will see in the following chapter in section 6.3.2.

This leaves us with specifying how a given field transforms under the special supersymme-
tries generated by S i

α. In superfield language the full S -transformation is given by a combination
of an x-dependent translation in superspace, with parameter ε i(x) = i xµγµηi, and an internal S -
transformation. This is a perfect analogy to the bosonic case. In terms of component fields, the
same is true. The x-dependent contribution is obtained by making the substitution

ε i → i /xηi (5.18)

in the Q-supersymmetry rules. The internal S -transformations can be deduced by imposing the
superconformal algebra.

5.2 Gauging the Superconformal Algebra
In this section we will construct the Standard Weyl multiplet by using the methods developed
first for N = 1 in four dimensions [128]. They are based on gauging the conformal superalge-
bra [130] which, in our case, is F2(4). We start by giving the commutation relations defining
the F2(4) algebra. Next we discuss the general method, and then apply this to construct the full
nonlinear Standard Weyl multiplet. For clarity, we have collected the final results in section 5.3.

5.2.1 The D = 5 superconformal algebra F2(4)

Our starting point is the five dimensional superconformal algebra. There exist many varieties
of superconformal algebras when one allows for central charges [141, 142]. However, so far a
suitable superconformal Weyl multiplet has only been constructed from those superconformal
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algebras1 that appear in the Nahm’s classification [144]. In that classification there appears one
exceptional algebra, which is F(4). The particular real form that we need here is denoted by
F2(4), see tables 5 and 6 in [137].

As we saw in section 5.1, the algebra consists of the bosonic generators Mab, Pa,Ka,D and
the fermionic generators Qiα and S iα, where a, b, . . . are Lorentz indices, α is a spinor index and
i = 1, 2 is an SU(2) index. Mab is the Lorentz generator, Pa are the conformal transformations,
Ka is the special conformal transformation, D the dilatation, Qiα and S iα are the supersymmetry
and the special supersymmetry generators, respectively, which are symplectic Majorana spinors,
8 real components in total. Finally, U i j = U ji are the generators of the SU(2) R-symmetry group.
For more details on the F2(4) algebra and the rigid superconformal transformations, see [137].
The non-trivial (anti)commutation relations of the generators defining the F2(4) algebra are
given by

[Pa, Mbc] = ηa[bPc] , [Ka, Mbc] = ηa[bKc] ,

[D, Pa] = Pa , [D,Ka] = −Ka ,[
Mab, Mcd

]
= −2δ[a

[cMb]
d] , [Pa,Kb] = 2(ηabD + 2Mab) ,

[Mab,Qiα] = − 1
4 (γabQi)α , [Mab, S iα] = − 1

4 (γabS i)α ,
[D,Qiα] = 1

2 Qiα , [D, S iα] = − 1
2 S iα ,

[Ka,Qiα] = i (γaS i)α , [Pa, S iα] = − i (γaQi)α ,

{
Qiα,Q jβ

}
= − 1

2εi j(γa)αβPa ,
{
S iα, S jβ

}
= − 1

2εi j(γa)αβKa ,{
Qiα, S jβ

}
= − 1

2 i
(
εi jCαβD + εi j(γab)αβMab + 3CαβUi j

)
,

[Qiα,Ukl] = εi(kQl)α , [S iα,Ukl] = εi(kS l)α ,[
Ui j,Ukl

]
= 2δ(i

(kU j)
l) ,

(5.19)

where Cαβ is the charge conjungation matrix, see appendix A. The first six commutation rela-
tions define the bosonic conformal subgroup SO(5, 2).

We give below some of the commutators of the (rigid) superconformal algebra expressed
in terms of commutators of variations of the fields. The commutators between Q- and S -
supersymmetry are given by

[δQ(ε1), δQ(ε2)] = δP

(
1
2 ε̄2γµε1

)
, (5.20)

[
δS (η), δQ(ε)

]
= δD

(
1
2 i ε̄η

)
+ δM

(
1
2 i ε̄γabη

)
+ δU

(
− 3

2 i ε̄(iη j)
)
, (5.21)

[
δS (η1), δS (η2)

]
= δK

(
1
2 η̄2γ

aη1

)
. (5.22)

Note that to verify these commutators one should use not only the internal but the full su-
perconformal transformation rules including the x-dependent translations (5.5) and Q-super-
symmetries (5.18).

1One exception is the ten dimensional Weyl multiplet [143], which is not based on a known algebra.
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Generators Pa Mab D Ka Ui j Qαi S αi

Fields eµa ωab
µ bµ fµa V i j

µ ψi
µ φi

µ

Parameters ξa λab ΛD Λa
K Λi j ε i ηi

Table 5.1: The gauge fields and parameters of the superconformal algebra F2(4).

5.2.2 The gauge fields and their curvatures
The D = 5 conformal supergravity theory is based on the superconformal algebra F 2(4) whose
generators are those in table 5.1. As a first step we assign to every generator of the supercon-
formal algebra a gauge field. These gauge fields and the names of the corresponding gauge
parameters are given in table 5.1.

The transformations are generated by operators according to

δ = ξaPa + λ
abMab + ΛDD + Λa

K Ka + Λi jUi j + i ε̄Q + i η̄S . (5.23)

Gauge fields hA
µ in general transform as

δB(εB)hA
µ = ∂µε

A + εChB
µ fBC

A , (5.24)

where the structure constants fBC
A can be read off from the algebra (5.19). We find

δeµa = Dµξ
a − λabeµb − ΛDeµa + 1

2 ε̄γ
aψµ ,

δωµ
ab = Dµλ

ab − 4ξ[a fµb] − 4Λ[a
K eµb]+ 1

2 i ε̄γabφµ− 1
2 i η̄γabψµ ,

δbµ = ∂µΛD − 2ξa fµa + 2Λa
Keµa+

1
2 i ε̄φµ + 1

2 i η̄ψµ ,

δ fµa = DµΛ
a
K − λab fµb + ΛD fµa+ 1

2 η̄γ
aφµ , (5.25)

δV i j
µ = ∂µΛ

i j − 2Λ(i
`V

j)`
µ − 3

2 i ε̄(iφ
j)
µ +

3
2 i η̄(iψ

j)
µ ,

δψi
µ = Dµε

i+ i ξaγaφ
i
µ − 1

4λ
abγabψ

i
µ − 1

2ΛDψ
i
µ − Λi

jψ
j
µ− i ea

µγaη
i ,

δφi
µ = Dµη

i − 1
4λ

abγabφ
i
µ +

1
2ΛDφ

i
µ − Λi

jφ
j
µ − iΛa

Kγaψ
i
µ + i f a

µ γaε
i ,

where Dµ is the covariant derivative with respect to dilatations, Lorentz rotations and SU(2)
transformations:

Dµξ
a = ∂µξ

a + bµξa + ωµ
abξb ,

Dµλ
ab = ∂µλ

ab + 2ωµc
[aλb]c ,

DµΛ
a
K = ∂µΛ

a
K − bµΛa

K + ωµ
abΛKb , (5.26)

Dµε
i = ∂µε

i + 1
2 bµε i + 1

4ω
ab
µ γabε

i − V i j
µ ε j ,

Dµη
i = ∂µη

i − 1
2 bµηi + 1

4ω
ab
µ γabη

i − V i j
µ η j .

The corresponding curvatures can be calculated by using the general rule

Rµν
A = 2∂[µhν] + hC

ν hB
µ fBC

A . (5.27)
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The structure constants can again be read off from the (anti)commutator expressions (5.19) and
we obtain the following curvatures (terms proportional to vielbeins are underlined for later use):

R a
µν (P) = 2∂[µeν]a + 2ω[µ

abeν]b + 2b[µeν]a− 1
2 ψ̄[µγ

aψν] ,

Rµν
ab(M) = 2∂[µων]

ab + 2ω[µ
acων]c

b + 8 f[µ[aeν]b] + i φ̄[µγ
abψν] ,

Rµν(D) = 2∂[µbν] − 4 f[µaeν]a− i φ̄[µψν] ,

R a
µν (K) = 2∂[µ fν]a + 2ω[µ

ab fν]b − 2b[µ fν]a− 1
2 φ̄[µγ

aφν] , (5.28)

Rµν
i j(V) = 2∂[µVν]

i j − 2V[µ
k(iVν] k

j)−3 i φ̄(i
[µψ

j)
ν] ,

Rµν
i(Q) = 2∂[µψ

i
ν] +

1
2ω[µ

abγabψ
i
ν] + b[µψ

i
ν] − 2V[µ

i jψν] j + 2 i γaφ
i
[µeν]a ,

Rµν
i(S ) = 2∂[µφ

i
ν] +

1
2ω[µ

abγabφ
i
ν] − b[µφ

i
ν] − 2V[µ

i jφν] j − 2 i γaψ
i
[µ fν]a .

Since the transformation laws given above satisfy the F2(4) superalgebra, we have constructed
a gauge theory of F2(4). However, this is not a gauge theory of diffeomorphisms of space-time
yet; this can only be realized if we take the spin connection as a composite field that depends on
the vielbein. So far we have it as an independent field.2

Furthermore, we see that the number of bosonic and fermionic degrees of freedom do not
match. The gauge fields together have 96 + 64 degrees of freedom. Therefore, we can not have
a supersymmetric theory with invertible general coordinate transformations generated by the
square of supersymmetry operations.

5.2.3 Curvature constraints

The solution to the problems described above is well known. In order to convert the P-gauge
transformations into general coordinate transformations and to obtain irreducibility we need to
impose curvature constraints. This will define some gauge fields to be dependent fields.

We will consider the fünfbein as an invertible field. Then some of the curvatures in (5.28)
are linear in some gauge fields. This is shown by the underlined terms in (5.28). Therefore,
we can impose constraints on these curvatures that are solvable for these gauge fields. Such
constraints are called conventional constraints, and imposing them reduces the Weyl multiplet,
such that we get closer to an irreducible multiplet. The conventional constraints are

Rµν
a(P) = 0 (50) ,

eνbRµν
ab(M) = 0 (25) , (5.29)

γµRµν
i(Q) = 0 (40) .

In brackets we denoted the number of restrictions each constraint imposes. These constraints are
similar to those for other Weyl multiplets in four dimensions withN = 1 [127,130],N = 2 [145]
or N = 4 [146], or in six dimensions for the (1, 0) [147] or (2, 0) [148] Weyl multiplets.

2One might think that the field equations can determine the spin connection as a dependent gauge field. This can
indeed be done for the spin connection, but it is not known how to generalize this for the gauge fields of special
(super)conformal symmetries, which we also want to be dependent gauge fields.
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Field # Gauge SU(2) w Field # Gauge SU(2) w

Elementary gauge fields Dependent gauge fields

eµa 9 Pa 1 −1 ω[ab]
µ − M[ab] 1 0

bµ 0 D 1 0 fµa − Ka 1 1

V (i j)
µ 12 SU(2) 3 0

ψi
µ 24 Qi

α 2 − 1
2 φi

µ − S i
α 2 1

2

Dilaton Weyl multiplet Standard Weyl multiplet

B[µν] 6 δBµν = 2∂[µΛν] 1 0 T[ab] 10 1 1

Aµ 4 δAµ = ∂µΛ 1 0

σ 1 1 1 D 1 1 2

ψi 8 2 3
2 χi 8 2 3

2

Table 5.2: Fields of the Weyl multiplets, and their roles. The upper half contains the fields that
are present in all versions. They are the gauge fields of the superconformal algebra (see section
5.2). The fields at the right-hand side of the upper half are dependent fields. The symbol #
indicates the off-shell degrees of freedom. The lower half contains the extra matter fields that
appear in the two versions of the Weyl multiplet. In the left half we have those of the Dilaton
Weyl multiplet, and at the right those of the Standard Weyl multiplet. We also indicated the
(generalized) gauge-symmetries of the fields Aµ and Bµν.

5.2.4 Adding matter fields

After imposing the constraints we are left with 21 bosonic and 24 fermionic degrees of freedom.
The independent fields are those in the upper left part of table 5.2. In order to get matching
bosonic and fermionic degrees of freedom, we have to introduce extra matter fields in the mul-
tiplet, to obtain the full Weyl multiplet. There turns out to be two possibilities for a D = 5 Weyl
multiplet, each with 32 + 32 degrees of freedom. The auxiliary fields (Aµ, Bµν, σ, ψ

i) lead to the
Dilaton Weyl multiplet, whereas the set (Tab,D, χi) leads to the Standard Weyl multiplet. The
latter type is the Weyl multiplet one would expect when comparing to four and six dimensional
theories with eight supercharges. Furthermore, since both Weyl multiplets are related by field
redefinitions [131] we will restrict ourselves to the Standard Weyl multiplet from now on.

Modified constraints. The extra matter fields will change the transformations of the gauge
fields. In fact, for the transformation of a general gauge field hI

µ we will have (apart from the
general coordinate transformations):

δJ(ε J)hI
µ = ∂µε

I + ε JhµA fAJ
I + ε J MµJ

I , (5.30)
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where we use the index I to denote all gauge transformations apart from general coordinate
transformations, and an index A includes the translations.

The last term depends on the matter fields, and its explicit form has to be determined below.
But also the second term has contributions from matter fields. This is due to the fact that the
structure ‘functions’ of the final algebra fIJ

K are modified from those of the F2(4) algebra which
was used for (5.25). These extra terms also lead to modified curvatures

R̂µν
I = 2∂[µhν] I + hνBhµA fAB

I − 2h[µ
J Mν]J

I . (5.31)

The commutator of two supersymmetry-transformations will also change. In particular we
will find transformations with field-dependent parameters. They can be conveniently written as
so-called covariant general coordinate transformations, which are defined as

δcgct(ξ) = δgct(ξ) − δI(ξµhµI) , (5.32)

namely a combination of general coordinate transformations and all the other transformations
whose parameter ε I is replaced by ξµhµ I .

Note that the curvature modifications also lead to modified curvature constraints:3

Rµν
a(P) = 0 , eνbR̂µν

ab(M) = 0 , γµR̂µν
i(Q) = 0 . (5.33)

In general one can add extra terms to the constraints (5.33), which just amount to redefinitions
of the composite fields. By choosing suitable terms simplifications were obtained in four and
six dimensions. In this case one could e.g. add a term TµbT ba to the second constraint rendering
all the constraints invariant under S -supersymmetry, but in five dimensions this turns out to be
impossible. Therefore we keep the constraints as written above.

Due to these constraints the fields ωµ
ab, fµa and φi

µ are no longer independent, but can be
expressed in terms of the other fields. In order to write down the explicit solutions of these
constraints, it is useful to extract the terms which have been underlined in (5.28). We define R̂′

as the curvatures without these terms. Formally,

R̂′µν
I = R̂µν

I + 2hJ
[µeν]

a faJ
I , (5.34)

where faJ
I are the structure constants in the F2(4) algebra that define commutators of translations

with other gauge transformations. Then the solutions to the constraints are

ωab
µ = 2eν[a∂[µe b]

ν] − eν[aeb]σeµc∂νeσc + 2e [a
µ bb] − 1

2 ψ̄
[bγa]ψµ − 1

4 ψ̄
bγµψ

a ,

φi
µ = − 1

12 i (γabγµ − 1
2γµγ

ab)R̂′ab
i(Q) , (5.35)

f a
µ = 1

6Rµ
a − 1

48 eµaR , Rµν ≡ R̂′ ab
µρ (M)ea

ρeνb , R ≡ Rµµ .

The constraints imply further relations between the curvatures through Bianchi identities.

3Note that the third constraint implies that γ[µνR̂ρσ]
i(Q) = 0.
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Modified transformation rules. To obtain all the extra transformations one imposes the su-
perconformal algebra, but at the same time allowing modifications of the algebra by field-
dependent quantities. The techniques are the same as already used in four and six dimensions
in [145, 146], and were described in detail in [147].

For the fields in the upper left corner of table 5.2, we now have to specify the extra parts M
in (5.30). This will in fact only apply to Q-supersymmetry. The other transformations are as in
(5.25). The full supersymmetry transformations of these fields are

δQeµa = 1
2 ε̄γ

aψµ ,

δQψ
i
µ = Dµε

i + i γ · Tγµε i ,

δQVµ
i j = − 3

2 i ε̄(iφ
j)
µ + i ε̄(iγ · Tψ j)

µ + 4ε̄(iγµχ
j) , (5.36)

δQbµ = 1
2 i ε̄φµ − 2ε̄γµχ ,

whereDµε is given in (5.27).
The modification M in (5.30) is the last term of the transformations of ψi

µ, V i j
µ and bµ. The

second term in the transformation of V i j
µ on the other hand is due to the fact that the structure

constants have become structure functions, and in particular there appears a new T -dependent
SU(2) transformation in the anti-commutator of two supersymmetries. We will give the full new
algebra in section 5.3.

The transformation rules for the matter fields of the Standard Weyl multiplet are as follows
(Q and S supersymmetry)

δTab = 1
2 i ε̄γabχ − 3

32 i ε̄R̂ab(Q) ,

δχi = 1
4 ε

iD − 1
64γ · R̂

i j(V)ε j +
1
8 i γab /DTabε

i − 1
8 i γaDbTabε

i

− 1
4γ

abcdTabTcdε
i + 1

6 T 2ε i + 1
4γ · Tη

i , (5.37)

δD = ε̄ /Dχ − 5
3 i ε̄γ · Tχ − i η̄χ .

There are no explicit gauge fields here, as should be the case for ‘matter’, i.e. non-gauge fields.
These are all hidden in the covariant derivatives and covariant curvatures. The covariant deriva-
tive for any matter field Φ is given by the rule

DaΦ = eµa
(
∂µ − δI(hI

µ)
)
Φ . (5.38)

The last term represents a sum over all transformations except general coordinate transforma-
tions, with parameters replaced by the corresponding gauge fields. In practice, the Lorentz
transformations and SU(2) transformations follow directly from the index structure and lead
to additions similar to those in (5.27). For the Weyl transformations there is a term −w bµΦ,
where w is the Weyl weight of the field that can be found in table 5.2, and then there remain the
terms for Q and S supersymmetry. There are no K transformations for any matter field in five
dimensions.

The covariant curvatures in (5.37) are given by the general rule (5.31), e.g.

R̂µν
i(Q) = Rµν

i(Q) + 2 i γ · Tγ[µψ
i
ν] ,

R̂µν
i j(V) = Rµν

i j(V) − 8ψ̄(i
[µγν]χ

j) − i ψ̄(i
[µγ · Tψ

j)
ν] , (5.39)
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where Rµν
i(Q) and Rµν

i j(V) are those given in (5.28). Given the transformation rules in (5.36)
and (5.37), we could calculate the transformations of the dependent fields. Their transforma-
tion rules are now determined by their definition due to the constraints. An equivalent way
of expressing this is that their transformation rules are modified w.r.t. (5.25) due to the non-
invariance of the constraints under these transformations. We have chosen the constraints to
be invariant under all bosonic symmetries without modifications. Therefore, only the Q- and
S -supersymmetries of the dependent fields are modified to get invariant constraints.

This finishes our discussion of the Standard Weyl multiplet. The final results for this multi-
plet have been collected in section 5.3.

5.3 Results for the Weyl multiplet
In this section we collect the essential results of the previous sections, and give the supersym-
metry algebra, which is modified by field-dependent terms. The transformation under dilatation
is for each field δDΦ = wΛDΦ, where the Weyl weight w can be found in table 5.2. The Lorentz,
and SU(2) transformations are evident from the index structure, and our normalizations can be
found in (5.25).

5.3.1 The Standard Weyl multiplet
The Q- and S -supersymmetry and K-transformation rules for the independent fields of the Stan-
dard Weyl multiplet are

δeµa = 1
2 ε̄γ

aψµ ,

δψi
µ = Dµε

i + i γ · Tγµε i − i γµηi ,

δVµ
i j = − 3

2 i ε̄(iφ
j)
µ + 4ε̄(iγµχ

j) + i ε̄(iγ · Tψ j)
µ +

3
2 i η̄(iψ

j)
µ ,

δTab = 1
2 i ε̄γabχ − 3

32 i ε̄R̂ab(Q) ,

δχi = 1
4 ε

iD − 1
64γ · R̂

i j(V)ε j +
1
8 i γab /DTabε

i − 1
8 i γaDbTabε

i (5.40)

− 1
4γ

abcdTabTcdε
i + 1

6 T 2ε i + 1
4γ · Tη

i ,

δD = ε̄ /Dχ − 5
3 i ε̄γ · Tχ − i η̄χ ,

δbµ = 1
2 i ε̄φµ − 2ε̄γµχ + 1

2 i η̄ψµ + 2ΛKµ .

The covariant derivative Dµε is given in (5.27). For other covariant derivatives, see the general
rule (5.38), with more explanation below that equation. The covariant curvatures R̂(Q) and R̂(V)
are given explicitly in (5.39). The expressions for the dependent fields are given in (5.35), where
the prime indicates the omission of the underlined terms in (5.28).

5.3.2 Modified superconformal algebra
The original algebra given in (5.19) is no longer satisfied on the Weyl multiplet; the algebra
closes up to matter field modifications. These modifications can be written as superconformal
transformations, with field dependent parameters. The algebra realized on the Weyl multiplet
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therefore is also called a ‘soft’ algebra. This is also the algebra that all matter multiplets will
have to satisfy, apart from possible additional transformations under which the fields of the Weyl
multiplet do not transform, and possibly field equations if these matter multiplets are on-shell.

The full commutator of two supersymmetry transformations is given by

[
δQ(ε1), δQ(ε2)

]
= δcgct(ξ

µ

3 ) + δM(λab
3 ) + δS (η3) + δU(λi j

3 ) + δK(Λa
K3) . (5.41)

Note that the Dilaton Weyl multiplet also gives rise to field dependent gauge transformations,
which have been omitted here. The covariant general coordinate transformations have been
defined in (5.32). The parameters appearing in (5.41) are

ξ
µ

3 = 1
2 ε̄2γµε1 ,

λab
3 = − i ε̄2γ

[aγ · Tγb]ε1 ,

λ
i j
3 = i ε̄(i

2 γ · T ε
j)
1 ,

ηi
3 = − 9

4 i ε̄2ε1χ
i + 7

4 i ε̄2γcε1γ
cχi

+ 1
4 i ε̄(i

2 γcdε
j)
1

(
γcdχ j +

1
4 R̂cd

j(Q)
)
, (5.42)

Λa
K3 = − 1

2 ε̄2γ
aε1D + 1

96 ε̄
i
2γ

abcε
j
1R̂bci j(V)

+ 1
12 i ε̄2

(
−5γabcdDbTcd + 9DbT ba

)
ε1

+ε̄2

(
γabcdeTbcTde − 4γcTcdT ad + 2

3γ
aT 2

)
ε1 .

For the Q, S commutators we find the following algebra:

[
δS (η), δQ(ε)

]
= δD( 1

2 i ε̄η) + δM( 1
2 i ε̄γabη) + δU(− 3

2 i ε̄(iη j)) + δK(Λa
3K) ,

[
δS (η1), δS (η2)

]
= δK( 1

2 η̄2γ
aη1) . (5.43)

with
Λa

3K =
1
6 ε̄

(
γ · Tγa − 1

2γaγ · T
)
η . (5.44)

This concludes our description of the Standard Weyl multiplet.
In this chapter we have taken the first step in the superconformal tensor calculus by con-

structing the Standard Weyl multiplet for N = 2 conformal supergravity theory in five dimen-
sions. We explained how the Weyl multiplet could be obtained by gauging the superconformal
algebra F2(4). The results of this chapter will be our starting point for the construction of general
supergravity/matter couplings in five dimensions.
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Chapter 6

Matter-couplings of conformal
supergravity

6.1 Introduction

In the previous chapter the first step in the conformal program has been performed by construct-
ing the Standard Weyl multiplet of N = 2 conformal supergravity in five dimensions. We will
now take the next step in the program and introduce the different D = 5 matter multiplets with
eight conformal supersymmetries together with the corresponding actions (when they exist).
Apart from reasons given before, there is a rather different, more general, motivation of why
the D = 5 matter-coupled supergravities are interesting to study. The reason is that they belong
to the class of theories with eight supersymmetries [149]. Such theories are especially interest-
ing since the geometry, determined by the kinetic terms of the scalars, contains undetermined
functions. Theories with thirty-two supersymmetries have no matter multiplets while the geom-
etry of those with sixteen supersymmetries is completely determined by the number of matter
multiplets. Of course, theories with four supersymmetries allow for more general geometries.
The restricted class of geometries, in the case of eight supersymmetries, makes these theories
especially interesting and manageable. For instance, the work of Seiberg and Witten [150, 151]
heavily relies on the presence of eight supersymmetries. Theories with eight supersymmetries
are thus the maximally supersymmetric theories that, on the one hand, are not completely deter-
mined by the number of matter multiplets in the model and, on the other hand, allow arbitrary
functions in their definition, i.e. continuous deformations of the metric of the manifolds.

The geometry related to supersymmetric theories with eight real supercharges is called ‘spe-
cial geometry’. Special geometry was first found in [152, 153] for local supersymmetry and
in [154, 155] for rigid supersymmetry. It occurs in Calabi-Yau compactifications of type II su-
perstrings as the moduli space of these manifolds [156–161].

In the following sections we will introduce the relevant basic superconformal matter mul-
tiplets: the vector-tensor multiplet and the hypermultiplet. We will start by discussing them in
a rigid superconformal context, at which level we already find all the interesting geometry. A
local superconformal extension will be given in the last section.
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Field SU(2) w # d.o.f.

AI
µ 1 0 4n

Y i jI 3 2 3n

σI 1 1 1n

ψiI 2 3/2 8n

Table 6.1: The off-shell non-Abelian vector multiplet, where n labels the number of vector mul-
tiplets.

6.2 The vector-tensor multiplet

In this section, we will discuss superconformal vector multiplets that transform in arbitrary
representations of the gauge group. From work onN = 2, D = 5 Poincaré matter couplings [73]
it is known that vector multiplets transforming in representations other than the adjoint have
to be dualized to tensor fields. We define a vector-tensor multiplet to be a vector multiplet
transforming in a reducible representation that contains the adjoint representation as well as
another, arbitrary representation.

We will show that the analysis of [73] can be extended to superconformal vector multiplets.
In doing this we will generalize the gauge transformations for the tensor fields [73] by allow-
ing them to transform into the field-strengths for the adjoint gauge fields. These more general
gauge transformations are consistent with supersymmetry, even after breaking the conformal
symmetry.

The vector-tensor multiplet contains a priori an arbitrary number of tensor fields. The re-
striction to an even number of tensor fields is not imposed by the closure of the algebra. If
one demands that the field equations do not contain tachyonic modes, an even number is re-
quired [68]. Closely related to this is the fact that one can only construct an action for an even
number of tensor multiplets. But supersymmetry without an action allows the more general
possibility. Note that these main results are independent of the use of superconformal or super-
Poincaré algebras.

6.2.1 Adjoint representation

We will start with giving the transformation rules for a vector multiplet in the adjoint represen-
tation [133]. An off-shell vector multiplet has 8+ 8 real degrees of freedom whose SU(2) labels
and Weyl weights we have indicated in table 6.1.

The gauge transformations that we consider satisfy the commutation relations (I = 1, . . . , n)

[
δG(ΛI

1), δG(ΛJ
2)

]
= δG(ΛK

3 ) , ΛK
3 = gΛI

1Λ
J
2 fIJ

K . (6.1)

The gauge fields AI
µ (µ = 0, 1, . . . , 4) and general matter fields of the vector multiplet as e.g. X I
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transform under gauge transformations with parameters ΛI according to

δG(ΛJ)AI
µ = ∂µΛ

I + gAJ
µ fJK

IΛK , δG(ΛJ)XI = −gΛJ fJK
IXK , (6.2)

where g is the coupling constant of the gauge group G. The expression for the gauge-covariant
derivative of XI and the field-strengths are given by

DµXI = ∂µXI + gAJ
µ fJK

I XK , F I
µν = 2∂[µAI

ν] + g fJK
IAJ

µAK
ν . (6.3)

The field-strength satisfies the Bianchi identity

D[µF I
νλ] = 0 . (6.4)

The rigid Q- and S -supersymmetry transformation rules for the off-shell Yang-Mills multiplet
are given by [133]

δAI
µ = 1

2 ε̄γµψ
I ,

δY i jI = − 1
2 ε̄

(i /Dψ j)I − 1
2 i gε̄(i fJK

IσJψ j)K + 1
2 i η̄(iψ j)I ,

δψiI = − 1
4γ · F

Iε i − 1
2 i /DσIε i − Y i jIε j + σ

Iηi , (6.5)

δσI = 1
2 i ε̄ψI .

The commutator of two Q-supersymmetry transformations yields a translation with an extra
G-transformation

[δ(ε1), δ(ε2)] = δP

(
1
2 ε̄2γµε1

)
+ δG

(
− 1

2 iσε̄2ε1

)
. (6.6)

Note that even though we are considering rigid superconformal symmetry, the algebra (6.6)
contains a field-dependent term on the right-hand side. Such soft terms are commonplace in
local superconformal symmetry but here they already appear at the rigid level. In Hamiltonian
language, it means that the algebra is satisfied modulo constraints.

6.2.2 Reducible representation

Starting from n vector multiplets we now wish to consider a more general set of fieldsH Ĩ
µν (Ĩ =

1, . . . , n+m). We writeH Ĩ
µν = {F I

µν, B
M
µν} with Ĩ = (I, M) (I = 1, . . . , n; M = n+1, . . . n+m). The

first part of these fields corresponds to the generators in the adjoint representation. These are
the fields that we used in subsection 6.2.1. The other fields form a tensor multiplet which may
transform in an arbitrary, possibly reducible, representation. Properties of the tensor multiplet
fields are given in table 6.2. The representation matrix can be written as

(tI)J̃
K̃ =

(
(tI)J

K (tI)J
N

(tI)M
K (tI)M

N

)
,

{
I, J,K = 1, . . . , n
M,N = n + 1, . . . , n + m .

(6.7)

It is understood that the (tI)J
K are in the adjoint representation, i.e.

(tI)J
K = fIJ

K . (6.8)
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Field SU(2) w # d.o.f.

BM
µν 1 0 3m

φM 1 1 1m

λiM 2 3/2 4m

Table 6.2: The on-shell tensor multiplet, where m labels the number of tensor multiplets.

If m , 0, then the representation (tI)J̃
K̃ is reducible. We will see that this representation can

be more general than assumed so far in treatments of vector-tensor multiplet couplings. The
requirement that m is even will only appear when we demand the existence of an action in
section 6.4.2, or if we require absence of tachyonic modes. The matrices tI satisfy commutation
relations

[tI , tJ] = − fIJ
K tK , or tIÑ

M̃tJM̃
L̃ − tJÑ

M̃tIM̃
L̃ = − fIJ

K tKÑ
L̃ . (6.9)

If the index L̃ is a vector index, then this relation is satisfied using the matrices as in (6.8).
Requiring the closure of the superconformal algebra, we find Q- and S -supersymmetry trans-

formation rules for the vector-tensor multiplet and a set of constraints. The transformations are

δH Ĩ
µν = −ε̄γ[µDν]ψ

Ĩ + i gε̄γµνt(J̃K̃)
ĨσJ̃ψK̃ + i η̄γµνψĨ ,

δY i jĨ = − 1
2 ε̄

(i /Dψ j)Ĩ − 1
2 i gε̄(i

(
t[J̃K̃]

Ĩ − 3t(J̃K̃)
Ĩ
)
σJ̃ψ j)K̃ + 1

2 i η̄(iψ j)Ĩ ,

δψiĨ = − 1
4γ · H

Ĩε i − 1
2 i /DσĨε i − Y i jĨε j +

1
2 gt(J̃K̃)

ĨσJ̃σK̃ε i + σĨηi , (6.10)

δσĨ = 1
2 i ε̄ψĨ .

The curly derivatives denote gauge-covariant derivatives as in (6.3) with the replacement of
structure constants by general matrices tI according to (6.8). We have extended the range of the
generators from I to Ĩ in order to simplify the transformation rules with the understanding that

(tM)J̃
K̃ = 0 . (6.11)

We find that the supersymmetry algebra (6.6) is satisfied provided the representation matrices
are restricted to

t(J̃K̃)
I = 0 , (6.12)

and provided the following two constraints on the fields are imposed:

Li jĨ ≡ t(J̃K̃)
Ĩ
(
2σJ̃Y i jK̃ − 1

2 i ψ̄iJ̃ψ jK̃
)
= 0 , (6.13)

E Ĩ
µνλ ≡ 3

g
D[µHνλ]

Ĩ − εµνλρσt(J̃K̃)
Ĩ
(
σJ̃HρσK̃ + 1

4 i ψ̄J̃γρσψK̃
)
= 0 . (6.14)

For Ĩ = I, the constraint (6.14) reduces to the Bianchi identity (6.4). The tensor F I
µν can therefore

be seen as the curl of a gauge vector AI
µ. Moreover, the constraint (6.13) is trivially satisfied for
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Ĩ = I. We conclude that the fields with indices Ĩ = I form an off-shell vector multiplet in the
adjoint representation of the gauge group.

On the other hand, when Ĩ = M, the constraint (6.14) does not permit the fields BM
µν to be

written as the curl of a gauge field and they should be seen as independent tensor fields. Instead,
the constraint (6.14) is a massive self-duality condition that puts the tensors BM

µν on-shell. The
constraint (6.13) implicitly allows us to eliminate the fields Y i jM altogether. The general vector-
tensor multiplet can then be interpreted as a set of m on-shell tensor multiplets in the background
of n off-shell vector multiplets.

Using (6.12) we have reduced the representation matrices tI to the following block-upper-
triangular form:

(tI)J̃
K̃ =

(
fIJ

K (tI)J
N

0 (tI)M
N

)
. (6.15)

In [73] it is mentioned that, “since terms of the form BM ∧ F I ∧ AJ appear to be impossible to
supersymmetrize in a gauge invariant way (except possibly in very special cases) we shall also
assume that CMIJ = 0”. This corresponds, as we will see in section 6.4.2, to the assumption that
the representation is completely reducible, i.e. tIJ

N = 0, meaning that gauge transformations do
not mix the pure Yang-Mills field-strengths and the tensor fields. However, we find that off-
diagonal generators are allowed, both when requiring closure of the superconformal algebra and
when writing down an action. We thus allow reducible, but not necessarily completely reducible
representations.

The constraints (6.13) and (6.14), with Ĩ = M, do not yet form a supersymmetric set; succes-
sive variations under S -supersymmetry and Q-supersymmetry lead to the equations of motion
for the spinors ψiĨ and scalars σĨ [86]. Although this procedure generates a set of constraints,
transforming to each other under Q- and S -supersymmetry, they do not seem to form a multiplet
by themselves. That is, the algebra is not realized on this set of transformation rules.

6.3 The hypermultiplet
In this subsection, we discuss hypermultiplets in five dimensions. As for the tensor multiplets,
there is in general no known off-shell formulation with a finite number of auxiliary fields.1

Therefore, the supersymmetry algebra already leads to the equations of motion.
A single hypermultiplet contains four real scalars and two spinors subject to the symplectic

Majorana reality condition. For r hypermultiplets, we introduce real scalars qX(x), with X =
1, . . . , 4r, and spinors ζA(x) with A = 1, . . . , 2r. The properties of the hypermultiplet fields are
given in table 6.3. To formulate the symplectic Majorana condition, we introduce two matrices
ρA

B and Ei
j, with

ρρ∗ = − 2r , EE∗ = − 2 . (6.16)

This defines symplectic Majorana conditions for the fermions and supersymmetry transforma-
tion parameters [163]:

αCγ0ζ
BρB

A =
(
ζA

)∗
, αCγ0ε

jE j
i =

(
ε i
)∗
, (6.17)

1An off-shell tensor-formulation can be constructed by extending the algebra with central charges [162]. A similar
procedure could also possibly be used to obtain an off-shell hypermultiplet.
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Field SU(2) w # d.o.f.

qX 2 3/2 4r

ζA 1 2 4r

Table 6.3: The on-shell hypermultiplet, where r labels the number of hypermultiplets.

where C is the charge conjugation matrix, and α is an irrelevant number of modulus 1. We can
always adopt the basis where Ei

j = εi j, and will further restrict to that.
The scalar fields are interpreted as coordinates of some target space, and requiring the on-

shell closure of the superconformal algebra imposes certain conditions on the target space, which
we derive below. Superconformal hypermultiplets in four space-time dimensions were discussed
in [164]; our discussion is somehow similar, but we extend it to the case where an action is not
needed, in the spirit explained in [149].

6.3.1 Rigid supersymmetry
We will show how the closure of the supersymmetry transformation laws leads to a ‘hypercom-
plex manifold’. The closure of the algebra on the bosons leads to the defining equations for this
geometry, whereas the closure of the algebra on the fermions and its further consistency leads
to equations of motion in this geometry, independent of an action.

The rigid supersymmetry transformations for the hypermultiplet are given by

δ(ε)qX = − i ε̄ iζA f X
iA ,

δ(ε)ζA = 1
2 i /∂qX f iA

X εi − ζBωXB
A(δ(ε)qX) , (6.18)

where the functions f X
iA(q), f iA

X (q) and ωXB
A(q) satisfy reality properties consistent with reality

of qX and the symplectic Majorana conditions, e.g.
(

f iA
X

)∗
= f jB

X E j
iρB

A ,
(
ωXA

B
)∗
=

(
ρ−1ωX ρ

)
A

B . (6.19)

A priori the functions f X
iA and f iA

X are independent, but the commutator of two supersymmetries
on the scalars only gives a translation if one imposes

f iA
Y f X

iA = δX
Y , f iA

X f X
jB = δ

i
jδ

A
B ,

DY f X
iB ≡ ∂Y f X

iB − ω A
YB f X

iA + Γ
X

ZY f Z
iB = 0 , (6.20)

where ΓXY
Z is some object, symmetric in the lower indices. This means that f X

iA can be inter-
preted as vielbeins on the hyperscalar manifold, i.e. f X

iA and f iA
X are each others inverse and are

covariantly constant with connections Γ and ω. It also implies that ρ is covariantly constant.
The conditions (6.20) encode all the constraints on the target space that follow from imposing
the supersymmetry algebra. Below, we show that there are no further geometrical constraints
coming from the fermion commutator; instead this commutator defines the equations of motion
for the on-shell hypermultiplet.
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Reparametrizations

The supersymmetry transformation rules (6.18) are covariant with respect to two kinds of repa-
rametrizations. The first ones are the target space diffeomorphisms, qX → q̃X(q), under which
f X
iA transforms as a vector, ωXA

B as a one-form, and ΓXY
Z as a connection. The second set are

the reparametrizations which act on the tangent space indices A, B, . . .On the fermions, they act
as

ζA → ζ̃A(q) = ζBUB
A(q) , (6.21)

where U(q)A
B is any invertible matrix. In general, such a transformation brings us into a ba-

sis where the fermions depend on the scalars qX . In this sense, the hypermultiplet is written
in a special basis where qX and ζA are independent fields. The supersymmetry transformation
rules (6.18) are covariant under (6.21) if we transform f iA

X (q) as a vector and ωXA
B as a connec-

tion,
ωXA

B → ω̃XA
B = [(∂XU−1)U + U−1ωXU]A

B . (6.22)

These considerations lead us to define the covariant variation of the fermions:

δ̂ζA ≡ δζA + ζBωXB
AδqX , (6.23)

for any transformation δ (supersymmetry, conformal transformations,. . . ). Two models related
by either target space diffeomorphisms or fermion reparametrizations of the form (6.21) are
equivalent; they are different coordinate descriptions of the same system. Thus, in a covariant
formalism, the fermions can be functions of the scalars. However, the expression ∂Xζ

A only
makes sense if one compares different bases. But in the same way also, the expression ζBωXB

A

only makes sense if one compares different bases, as the connection has no absolute value. The
only covariant object is the covariant derivative

DXζ
A ≡ ∂Xζ

A + ζBωXB
A . (6.24)

We will frequently use the covariant transformations (6.23). It can similarly be used on target-
space vectors or tensors. E.g. for a quantity ∆X:

δ̂∆X = δ∆X + ∆YΓZY
X δqZ . (6.25)

Geometry

The geometry of the target space is that of a hypercomplex manifold. It is a weakened version of
hyperkähler geometry where no hermitian covariantly constant metric is defined. We refer the
reader to appendix C for an introduction to these manifolds, references and the mathematical
context in which they can be situated.

The crucial ingredient is a triplet of complex structures, the hypercomplex structure, defined
as

JαX
Y ≡ − i f iA

X (σα)i
j f Y

jA . (6.26)

Using (6.20), they are covariantly constant and satisfy the quaternion algebra

JαJβ = − 4rδ
αβ + εαβγJγ . (6.27)
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At some places we also use a doublet notation, for which

JX
Y

i
j ≡ i JαX

Y (σα)i
j = 2 f jA

X f Y
iA − δ

j
i δ

Y
X . (6.28)

The same transition between doublet and triplet notation is also used for other SU(2)-valued
quantities.

The holonomy group of such a space is contained in G`(r,�) = SU∗(2r)×U(1), the group
of transformations acting on the A, B-indices. This follows from the integrability conditions
on the covariantly constant vielbeins f iA

X , which relates the curvatures of the ωXA
B and ΓXY

Z

connections (see appendix C.2 for conventions on the curvatures),

RXYZ
W = f W

iA f iB
Z RXYB

A , δi
j RXYB

A = f iA
W f Z

jB RXYZ
W , (6.29)

such that the Riemann curvature only lies in G`(r,�). Moreover, from the cyclicity properties
of the Riemann tensor, it follows that

f X
Ci f Y

jDRXYB
A = − 1

2εi jWCDB
A ,

WCDB
A ≡ f iX

C f Y
iDRXY B

A = 1
2 f iX

C f Y
iD f Z

jB f A j
W RXYZ

W , (6.30)

where W is symmetric in all its three lower indices. For a more detailed discussion on hyper-
complex manifolds and their curvature relations, we refer to appendix C. There we show that,
in contrast with hyperkähler manifolds, hypercomplex manifolds are not necessarily Ricci flat;
instead, the Ricci tensor is antisymmetric and defines a closed two-form.

So far we have only used the commutator of supersymmetry on the hyperscalars, and this
led us to the geometry of hypercomplex manifolds. Before continuing, we want to see what
the independent objects are that determine the theory, and what the independent constraints
are. We start in the supersymmetric theory from the vielbeins f iA

X . They have to be real in the
sense of (6.19) and invertible. With these vielbeins, we can construct the complex structures as
in (6.26). In the developments above, the only remaining independent equation is the covariant
constancy of the vielbein in (6.20). This equation contains the affine connection ΓXY

Z and the
G`(r,�)-connection ωXA

B. These two objects can be determined from the vielbeins if and only
if the (‘diagonal’) Nijenhuis tensor (C.24) vanishes. Indeed, for vanishing Nijenhuis tensor, the
‘Obata’-connection [165]

ΓXY
Z = − 1

6

(
2∂(X JαY)

W + εαβγJβ(X
U∂|U |JγY)

W
)

JαW
Z , (6.31)

leads to covariantly constant complex structures. Moreover, one can show that any torsionless
connection that leaves the complex structures invariant is equal to this Obata connection (similar
to the fact that a connection that leaves a metric invariant is the Levi-Civita connection). With
this connection one can then construct the G`(r,�)-connection

ωXA
B = 1

2 f iB
Y

(
∂X f Y

iA + Γ
Y
XZ f Z

iA

)
, (6.32)

such that the vielbeins are covariantly constant.
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Dynamics

Now we consider the commutator of supersymmetry on the fermions, which will determine the
equations of motion for the hypermultiplets. Using (6.20), (6.29) and (6.30), we compute the
supersymmetry commutator on the fermions, and find

[δ(ε1), δ(ε2)]ζA = 1
2∂aζ

Aε̄2γ
aε1 +

1
4Γ

Aε̄2ε1 − 1
4γaΓ

Aε̄2γ
aε1 . (6.33)

On-shell closure of the algebra on the fermion requires the last two terms to vanish. The ΓA are
therefore called non-closure functions, and define the equations of motion for the fermions,

ΓA = /DζA + 1
2 WCDB

AζBζ̄DζC = 0 , (6.34)

where we have introduced the covariant derivative with respect to the transformations (6.23)

Dµζ
A ≡ ∂µζA + (∂µqX)ζBωXB

A . (6.35)

By varying the fermion equation of motion under supersymmetry, we derive the correspond-
ing equations of motion for the scalar fields:

δ̂(ε)ΓA = 1
2 i f iA

X εi∆
X , (6.36)

where
∆X = �qX − 1

2 ζ̄
Bγaζ

D∂aqY f iC
Y f X

iAWBCD
A − 1

4DYWBCD
Aζ̄EζDζ̄CζB f iY

E f X
iA , (6.37)

and the covariant Laplacian is given by

�qX = ∂a∂
aqX +

(
∂aqY

) (
∂aqZ

)
ΓYZ

X . (6.38)

In conclusion, the supersymmetry algebra imposes the hypercomplex constraints (6.20) and
the equations of motion (6.34) and (6.37). These form a multiplet, as (6.36) has the counterpart

δ̂(ε)∆X = − i ε̄ i /DΓA f X
iA + 2 i ε̄ iΓBζ̄CζD f Y

BiRX
YCD , (6.39)

where the covariant derivative of ΓA is defined similar to (6.35). In the following, we will
derive further constraints on the target space geometry from requiring the presence of conformal
symmetry.

6.3.2 Superconformal symmetry
Now we define transformation rules for the hypermultiplet under the full (rigid) superconfor-
mal group. The scalars do not transform under special conformal transformations and special
supersymmetry, but under dilatations and SU(2) transformations, we parametrize

δD(ΛD)qX = ΛDkX(q) ,
δSU(2)(Λi j)qX = Λi jkX

i j(q) , (6.40)

for some unknown functions kX(q) and kX
i j(q).
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To derive the appropriate transformation rules for the fermions, we first note that the hy-
perinos should be invariant under special conformal symmetry. This is due to the fact that this
symmetry changes the Weyl weight with one. The special supersymmetry transformation of ζA

can be read off from the [K,Q]-commutator, giving rise to

δS (ηi)ζA = −kX f iA
X ηi . (6.41)

Realizing the commutator of regular and special supersymmetry (5.21) on the scalars, we deter-
mine the expression for the generator of SU(2) transformations in terms of the dilatations and
complex structures,

kX
i j =

1
3 kY JY

X
i j or kαX = 1

3 kY JαY
X . (6.42)

Realizing (5.21) on the hyperinos, we determine the covariant variations

δ̂Dζ
A = 2ΛDζ

A , δ̂SU(2)ζ
A = 0 , (6.43)

and furthermore the commutator (5.21) only closes if we impose

DYkX = 3
2δY

X , (6.44)

which also implies
DYkαX = 1

2 JαY
X . (6.45)

Note that (6.44) is imposed by supersymmetry. In a more usual derivation, where one considers
symmetries of the Lagrangian, we would find this constraint by imposing dilatation invariance
of the action, see (5.11). Our result, though, does not require the existence of an action. The
relations (6.44) and (6.42) further restrict the geometry of the target space, and it is easy to
derive that the Riemann tensor has four zero eigenvectors,

kXRXYZ
W = 0 , kαX RXYZ

W = 0 . (6.46)

Also, under dilatations and SU(2) transformations, the hypercomplex structure is scale invariant
and rotated into itself,

ΛD

(
kZ∂Z JαX

Y − ∂ZkY JαX
Z + ∂XkZ JαZ

Y
)
= 0 ,

Λβ
(
kβZ∂Z JαX

Y − ∂ZkβY JαX
Z + ∂XkβZ JαZ

Y
)
= −εαβγΛβJγX

Y . (6.47)

All properties derived above are similar to those derived from superconformal hypermulti-
plets in four space-time dimensions [164, 166]. There, the Sp(1) × G`(r,�) sections, or simply,
hypercomplex sections, were introduced

AiB(q) ≡ kX f iB
X , (AiB)∗ = A jC E j

iρC
B , (6.48)

which allow for a coordinate independent description of the target space. This means that all
equations and transformation rules for the sections can be written without the occurrence of the
qX fields.
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6.3.3 Symmetries
We now assume the action of a symmetry group on the hypermultiplet. We have no action, but
the ‘symmetry’ operation should leave invariant the set of equations of motion. The symmetry
algebra must commute with the supersymmetry algebra (and later with the full superconformal
algebra). This leads to hypermultiplet couplings to a non-Abelian gauge group G. The symme-
tries are parametrized by

δGqX = −gΛI
GkX

I (q) ,

δ̂Gζ
A = −gΛI

GtIB
A(q)ζB . (6.49)

The vectors kX
I depend on the scalars and generate the algebra of G with structure constants fIJ

K ,

kY
[I|∂YkX

|J] = − 1
2 fIJ

KkX
K . (6.50)

The commutator of two gauge transformations (6.1) on the fermions requires the following
constraint on the field-dependent matrices tI(q),

[tI , tJ]B
A = − fIJ

K tKB
A − 2kX

[I|DXt|J]B
A + kX

I kY
JRXYB

A . (6.51)

Requiring the gauge transformations to commute with supersymmetry leads to further relations
between the quantities kX

I and tIB
A, allowing us to determine tI(q) in terms of the vielbeins f iA

X
and the vectors kX

I
tIA

B = 1
2 f Y

iADYkX
I f iB

X , (6.52)

if the vectors kX
I satisfy the constraint

f Y(i
A f j)B

X DYkX
I = 0 . (6.53)

Equation (6.53) can be expressed as the vanishing of the commutator of DYkX
I with the complex

structures:2 (
DXkY

I

)
JαY

Z = JαX
Y
(
DYkZ

I

)
, (6.54)

which is equivalent to the vanishing of the Lie derivative of the complex structure in the direction
of the vector kI (LkI J

α)
X

Y ≡ kZ
I ∂Z JαX

Y − ∂ZkY
I JαX

Z + ∂XkZ
I JαZ

Y = 0 . (6.55)

According to part C.5 of the appendix, this means that (6.55) is a special case of the statement
that the vector kI normalizes the hypercomplex structures. The vanishing of this Lie derivative,
or (6.53), is expressed by saying that the gauge transformations act triholomorphic. Thus, it
says that all the symmetries are embedded in G`(r,�).

Vanishing of the gauge-supersymmetry commutator on the fermions requires

DY tIA
B = kX

I RYXA
B . (6.56)

Using (6.52) this implies a new constraint,

DXDYkZ
I = RXWY

ZkW
I . (6.57)

2This can be seen directly from lemma C.2.2 in appendix C.
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Note that this equation is in general true for any Killing vector of a metric. As we have no
metric here, we could not rely on this fact, but here the algebra imposes this equation. It turns
out that (6.53) and (6.57) are sufficient for the full commutator algebra to hold.

A further identity can be derived: substituting (6.56) into (6.51) one gets

[tI , tJ]B
A = − fIJ

K tKB
A − kX

I kY
JRXYB

A . (6.58)

The group of gauge symmetries should also commute with the superconformal algebra, in
particular with dilatations and SU(2) transformations. This leads to

kY
DYkX

I =
3
2 kX

I , kαY
DYkX

I =
1
2 kY

I JαY
X , (6.59)

coming from the scalars, and there are no new constraints from the fermions or from other
commutators. Since DYkX

I commutes with JαY
X , the second equation in (6.59) is a consequence

of the first one.
In the above analysis, we have taken the parameters ΛI to be constants. In the following, we

also allow for local gauge transformations. The gauge coupling is done by introducing vector
multiplets and defining the covariant derivatives

DµqX ≡ ∂µqX + gAI
µkX

I ,

Dµζ
A ≡ ∂µζ

A + ∂µqXωXB
AζB + gAI

µtIB
AζB . (6.60)

The commutator of two supersymmetries should now also contain a local gauge transformation,
in the same way as for the multiplets of the previous sections, see (6.6). This requires an extra
term in the supersymmetry transformation law of the fermion,

δ̂(ε)ζA = 1
2 i /DqX f iA

X εi +
1
2 gσIkX

I f A
iXε

i . (6.61)

With this additional term, the commutator on the scalars closes, whereas on the fermions, it
determines the equations of motion

ΓA ≡ /DζA + 1
2 WBCD

Aζ̄CζDζB − g( i kX
I f A

iXψ
iI + i ζBσItIB

A) = 0 , (6.62)

with the same conventions as in (6.33).
Acting on ΓA with supersymmetry determines the equation of motion for the scalars

∆X = �qX − 1
2 ζ̄

Bγaζ
D
D

aqY f iC
Y f X

iAWBCD
A − 1

4DYWBCD
Aζ̄EζDζ̄CζB f iY

E f X
iA

− g
(
2 i ψ̄iIζBtIB

A f X
iA − kY

I JY
X

i jY i jI
)
+ g2σIσJ

DYkX
I kY

J . (6.63)

The first line is the same as in (6.37), the second line contains the corrections due to the gauging.
The gauge-covariant Laplacian is here given by

�qX = ∂aD
aqX + gDaqY∂YkX

I AaI +DaqY
D

aqZΓX
YZ . (6.64)

The equations of motions ΓA and ∆X still satisfy the same algebra with (6.36) and (6.39).
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6.4 Rigid superconformal actions

In this section, we will present rigid superconformal actions for the multiplets discussed in the
previous section. We will see that demanding the existence of an action is more restrictive than
only considering equations of motion. For the different multiplets, we find that new geometric
objects have to be introduced.

6.4.1 Vector multiplet action

The rigid superconformal invariant action describing n vector multiplets was obtained from
tensor calculus using an intermediate linear multiplet in [167]. The Abelian part can be obtained
by just taking the cubic action of the improved vector multiplet as given in [131], adding indices
I, J,K on the fields and multiplying with the symmetric tensor CIJK . For the non-Abelian case,
we need conditions expressing the gauge invariance of this tensor:

fI(J
HCKL)H = 0 . (6.65)

Moreover one has to add a few more terms, e.g. to complete the Chern–Simons term to its
non-Abelian form. This leads to the action

Lvector =
[(
− 1

4 F I
µνF

µνJ − 1
2 ψ̄

I /DψJ − 1
2Daσ

IDaσJ + Y I
i jY

i jJ
)
σK

− 1
24ε

µνλρσAI
µ

(
F J
νλFK

ρσ +
1
2 g[Aν, Aλ]J FK

ρσ +
1
10 g2[Aν, Aλ]J[Aρ, Aσ]K

)

− 1
8 i ψ̄Iγ · F JψK − 1

2 i ψ̄iIψ jJYK
i j +

1
4 i gψ̄LψHσIσJ fLH

K
]
CIJK . (6.66)

The equations of motion for the fields of the vector multiplet following from the action (6.66)
are

0 = Li j
I = ϕ

i
I = Ea

I = NI , (6.67)

where we have defined

Li j
I ≡ CIJK

(
2σJY i jK − 1

2 i ψ̄iJψ jK
)
,

ϕi
I ≡ CIJK

(
iσJ /DψiK + 1

2 i ( /DσJ)ψiK + Y ikJψK
k − 1

4γ · F
JψiK

)

− gCIJK fLH
KσJσLψiH ,

EaI ≡ CIJK

[
Db

(
σJFba

K + 1
4 i ψ̄Jγbaψ

K
)
− 1

8εabcdeFbcJFdeK
]

(6.68)

− 1
2 gCJKL fIH

JσKψ̄Lγaψ
H − gCJKH fIL

JσKσLDaσ
H ,

NI ≡ CIJK

(
σJ
�σK + 1

2D
aσJDaσ

K − 1
4 F J

abFabK − 1
2 ψ̄

J /DψK + Y i jJYi j
K
)

+ 1
2 i gCIJK fLH

KσJψ̄LψH .

These equations themselves transform as a linear multiplet in the adjoint representation of the
gauge group for which the transformation rules have been given in appendix A of [86].
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6.4.2 The vector-tensor multiplet action
We will now generalize the vector action (6.66) to an action for the vector-tensor multiplets
(with n vector multiplets and m tensor multiplets) discussed in section 6.2.2.

The supersymmetry transformation rules for the vector-tensor multiplet (6.10) were obtained
from those for the vector multiplet (6.5) by replacing all contracted indices by the extended
range of tilde indices. In addition, extra terms of O(g) had to be added to the transformation
rules. Similar considerations apply to the generalization of the action, as we will see below.

To obtain the generalization of the Chern-Simons (CS) term, it is convenient to rewrite this
CS-term as an integral in six dimensions which has a boundary given by the five-dimensional
Minkowski space-time. The six-form appearing in the integral is given by

Ivector = CIJKF I ∧ F J ∧ FK , (6.69)

where we have used form notation. This six-form is both gauge-invariant and closed, by virtue
of (6.65) and the Bianchi identities (6.4). It can therefore be written as the exterior derivative of
a five-form which is gauge-invariant up to a total derivative. The space-time integral over this
five-form is the CS-term given in the second line of (6.66).

We now wish to generalize (6.69) to the case of vector-tensor multiplets. It turns out that the
generalization of (6.69) is somewhat surprising. We find

Ivec−tensor = C Ĩ J̃K̃H Ĩ ∧H J̃ ∧H K̃ − 3
gΩMNDBM ∧DBN . (6.70)

The tensor ΩMN is antisymmetric and invertible, and it restricts the number of tensor multiplets
to be even

ΩMN = −ΩNM , ΩMPΩ
MR = δP

R . (6.71)

The covariant derivative of the tensor field is given by

DλBN
ρσ = ∂λBN

ρσ + g AI
λtI J̃

NH J̃
ρσ

= ∂λBN
ρσ + g AI

λtIJ
N F J

ρσ + g AI
λtIP

N BP
ρσ . (6.72)

To see why (6.70) is a closed six-form, we write out the first term of (6.70)

C Ĩ J̃K̃H Ĩ ∧H J̃ ∧H K̃ = CIJKF I ∧F J ∧FK +3CIJMF I ∧F J ∧BM +3CIMNF I ∧BM ∧BN . (6.73)

Since the BM tensors in (6.73) do not satisfy a Bianchi identity, we also need the second term
in (6.70) to render it a closed six-form. This requirement of closure leads to the following
relations between the C and Ω tensors:

CIJM = t(IJ)
NΩNM , CIMN =

1
2 tIM

PΩPN . (6.74)

We stress that the tensor C Ĩ J̃K̃ is not a fundamental object: the essential data for the vector-
tensor multiplet are the representation matrices tI J̃

K̃ , the Yang-Mills components CIJK , and the
symplectic matrix ΩMN . The tensor components of the C tensor are derived quantities, and we
can summarize (6.74) as

CMJ̃K̃ = t(J̃K̃)
PΩPM . (6.75)
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From (6.74), we deduce that the second term of (6.73) only depends on the off-diagonal (between
vector and tensor multiplets) transformations. The first term of (6.73) will induce the usual five-
dimensional CS-term. The generalized CS-term induced by the third term of (6.73) was given
in [73]. With our extension to also allow for the off-diagonal term in (6.15), we also get CS-terms
induced by the CIJM components, which were not present in [73].

Gauge invariance of the first term of (6.70) requires that the tensor C satisfies a modified
version of (6.65)

fI(J
HCKL)H = tI(J

MtKL)
NΩMN . (6.76)

In addition to this, the second term of (6.70) is only gauge invariant if the tensor Ω satisfies

tI[M
PΩN]P = 0 , (6.77)

such that the second relation in (6.74) is consistent with the symmetry (MN). The two condi-
tions (6.76) and (6.77) combined with the definition (6.75) imply the following generalization
of (6.65)

tI(J̃
M̃CK̃L̃)M̃ = 0 . (6.78)

The superconformal action for the combined system of m = 2k tensor multiplets and n
vector multiplets contains the CS-term induced by (6.70) and the generalization of the vector
action (6.66) to the extended range of indices. Some extra terms are necessary to complete it to
an invariant action: we need mass terms and/or Yukawa coupling for the fermions at O(g), and
a scalar potential at O(g2). We thus find the following action:

Lvec−tensor =

(
− 1

4H
Ĩ
µνHµνJ̃ − 1

2 ψ̄
Ĩ /DψJ̃ − 1

2Daσ
ĨDaσJ̃ + Y Ĩ

i jY
i jJ̃

)
σK̃C Ĩ J̃K̃

+
1

16g
εµνλρσΩMN BM

µν

(
∂λBN

ρσ + 2gtIJ
N AI

λF J
ρσ + g tIP

N AI
λBP

ρσ

)

− 1
24ε

µνλρσCIJKAI
µ

(
F J
νλFK

ρσ + fFG
JAF

ν AG
λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

))

− 1
8ε

µνλρσΩMN tIK
MtFG

N AI
µAF

ν AG
λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

)

+

(
− 1

8 i ψ̄Ĩγ · H J̃ψK̃ − 1
2 i ψ̄iĨψ jJ̃Y K̃

i j

)
C Ĩ J̃K̃ +

+ 1
4 i gψ̄ĨψJ̃σK̃σL̃

(
t[Ĩ J̃]

M̃CM̃K̃L̃ − 4t(ĨK̃)
M̃CM̃J̃L̃

)

− 1
2 g2σKCKMNtIL̃

MσIσL̃tJP̃
NσJσP̃ . (6.79)

To check the supersymmetry of this action, one needs all the relations between the various
tensors given above. Another useful identity implied by the previous definitions is

t(Ĩ J̃)
MCK̃L̃M = −t(K̃L̃)

MC Ĩ J̃M . (6.80)

The terms in the action containing the fields of the tensor multiplets can also be obtained
from the field equations following from the on-shell closure of the algebra in section 6.2.2. Note
however that the equations of motion for the vector multiplet fields, obtained from this action,
are similar to those given in (6.68), but with the contracted indices running over the extended
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range of vector and tensor components. Furthermore, the AI
µ equation of motion gets corrected

by a term proportional to the self-duality equation for BM
µν:

δS vec−tensor

δAI
a

= Ea
I +

1
12 gεabcdeAJ

b Ecde
MtJI

NΩMN . (6.81)

Finally, we remark that the action (6.79) is invariant under supersymmetry for the general
form (6.15) of the representation matrices (tI)J̃

K̃ .
We thus conclude that in order to write down a superconformal action for the vector-tensor

multiplet, we need to introduce another geometrical object, namely a gauge-invariant anti-
symmetric invertible tensor ΩMN . This symplectic matrix will restrict the number of tensor
multiplets to be even. We can still allow the transformations to have off-diagonal terms between
vector and tensor multiplets, if we adapt (6.65) to (6.78). In this way, we have constructed more
general matter couplings than were known so far. Terms of the form A ∧ F ∧ B did not appear
in previous papers. We see that such terms appear generically in our Lagrangian by allowing
off-diagonal gauge transformations for the tensor fields.

6.4.3 The hypermultiplet

Until this point, the equations of motion we derived found their origin in the fact that we had an
open superconformal algebra; the non-closure functions ΓA, together with their supersymmetric
partners ∆X yielded these equations of motion. We discovered a hypercomplex scalar manifold
M, whose properties are described in appendix C.

Now, we will introduce an action to derive the field equations of the hypermultiplet. An
important point to note is that the necessary data for the scalar manifold we had in the previous
section are not sufficient anymore. This is not specific to our setting, but is a general property
of nonlinear sigma models. In such models, the kinetic term for the scalars is multiplied by a
scalar-dependent symmetric tensor gαβ(φ),

S = − 1
2

∫
dDx gαβ(φ)∂µφα∂µφβ , (6.82)

in which α and β run over the dimensions of the scalar manifold. The tensor g is interpreted
as the metric on the target spaceM. As the field equations for the scalars should now also be
covariant with respect to coordinate transformations on the target manifold, the connection on
the tangent bundle TM should be the Levi-Civita connection. Only in that particular case, the
field equations for the scalars will be covariant. In other words, in �φα + · · · = 0 the Levi-Civita
connection on TM will be used in the covariant box.

Therefore, in order to be able to write down an action, we will need to introduce a metric
on the scalar manifold. However, this metric will also restrict the possible target spaces for the
theory.

Observe that most steps in this section do not depend on the use of superconformal symme-
try.3 Only at the end of this section we make explicit use of this symmetry.

3Of course, the form of the field equations does reflect the superconformal symmetry.
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Without gauged isometries

To start with, we take the non-closure functions ΓA to be proportional to the field equations for
the fermions ζA. In other words, we ask

δS hyper

δζ̄A
= 2CABΓ

B . (6.83)

In general, the tensor CAB could be a function of the scalars and bilinears of the fermions.
If we try to construct an action with the above Ansatz, it turns out that the tensor has to be
anti-symmetric in AB and

δCAB

δζC = 0 , (6.84)

DXCAB = 0 . (6.85)

This means that the tensor does not depend on the fermions and is covariantly constant.4

This tensor CAB will be used to raise and lower indices according to the NW–SE convention
similar to εi j:

AA = ABCBA , AA = CABAB , (6.86)

where εi j and CAB for consistency should satisfy

εikε
jk = δi

j , CACCBC = δA
B . (6.87)

We may choose CAB to be constant. For this choice, the connection ωXAB is symmetric, so
the structure group G`(r,�) breaks to USp(2r − 2p, 2p). The signature is the signature of dCB,
which is defined as CAB = ρA

CdCB where ρA
C was given in (6.16). However, we will allow CAB

also to be non-constant, but covariantly constant.
We now construct the metric on the scalar manifold as

gXY = f iA
X CABεi j f jB

Y . (6.88)

The above-mentioned requirement that the Levi-Civita connection should be used (as ΓXY
Z) is

satisfied due to (6.85). Indeed, this guarantees that the metric is covariantly constant, such that
the affine connection is the Levi-Civita one. On the other hand we have seen already that for
covariantly constant complex structures we have to use the Obata connection. Hence, the Levi-
Civita and Obata connection should coincide, and this is obtained from demanding (6.85) using
the Obata connection. This makes us conclude that we can only write down an action for a
hyperkähler scalar manifold.

We can now write down the action for the rigid hypermultiplets. It has the following form:

S hyper =

∫
d5x

(
− 1

2 gXY∂aqX∂aqY + ζ̄A /Dζ
A − 1

4 WABCDζ̄
AζBζ̄CζD

)
, (6.89)

4This can also easily be seen by using the Batalin-Vilkovisky formalism.
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where the tensor WABCD can be proven to be completely symmetric in all of its indices (see
appendix C). The field equations derived from this action are

δS hyper

δζ̄A
= 2CABΓ

B ,

δS hyper

δqX = gXY∆
Y − 2ζ̄AΓ

BωXB
A . (6.90)

Also remark that due to the introduction of the metric, the expression of ∆X simplifies to

∆X = �qX − ζ̄A /∂qYζBRX
YAB − 1

4D
XWABCDζ̄

AζBζCζD . (6.91)

Conformal invariance

Due to the presence of the metric, the condition for the homothetic Killing vector (6.44) implies
that kX is the derivative of a scalar function as in (5.10). This scalar function K(q) is called
the hyperkähler potential [139, 164, 168]. It determines the conformal structure, but should be
restricted to

DXDY K = 3
2 gXY . (6.92)

The relation with the homothetic Killing vector is

kX = ∂XK , K = 1
3 kXkX . (6.93)

Note that this implies that, whenK and the complex structures are known, one can compute the
metric with (6.92), using the formula for the Obata connection (6.31).

With gauged isometries

With a metric, the symmetries of section 6.3.3 should be isometries, i.e.

DXkYI +DYkXI = 0 . (6.94)

This makes the requirement (6.57) superfluous, but we still have to impose the triholomorphicity
expressed by either (6.53) or (6.54) or (6.55).

In order to integrate the equations of motion to an action we have to define (locally) triples
of ‘moment maps’, according to

∂XPα
I = − 1

2 JαXYkY
I . (6.95)

The integrability condition that makes this possible is the triholomorphic condition.
In the kinetic terms of the action, the derivatives should now be covariantized with respect

to the new transformations. Supersymmetry invariance of the action also forces us to include
some new terms proportional to g and g2

S g
hyper =

∫
d5x

(
− 1

2 gXYDaqX
D

aqY + ζ̄A /Dζ
A − 1

4 WABCDζ̄
AζBζ̄CζD (6.96)

−g
(
2 i kX

I f A
iX ζ̄Aψ

iI + iσItIB
Aζ̄Aζ

B − 2PIi jY Ii j
)
− 1

2 g2σIσJkX
I kJX

)
,
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[where the covariant derivatives D now also include gauge-covariantization proportional to g as
in (6.60)], while the field equations have the same form as in (6.90).

Alternatively one can use the method explained in [169] to construct the action. Since the
field equations are linear in the non-closure functions and the Lagrangian should vanish on-shell,
we expect that the action itself can in fact be written as a linear combination of non-closure
functions, in the form of Σ[field]×[non-closure]:

L = 1
3 kX∆

X + ζ̄AΓ
A . (6.97)

The two coefficients can be fixed by looking at the normalization of the kinetic terms. Substi-
tuting the non-closure functions into (6.97) and partial integrating the covariant box, we indeed
find the correct action (6.96). This method is believed to be correct for any on-shell multiplet.
Note however that supersymmetry is a necessary ingredient. The invariance of the hypermulti-
plet action under supersymmetry can easily be checked by using the following transformation
rules for the non-closure functions:

δ∆X = − i ε̄ i /DΓA f X
iA + 2 i ε̄ iΓBζCζD f Y

iBRX
YCD + 2η̄iΓA f X

iA + ∆
YΓZY

XδqZ ,

δΓA = 1
2 i f iA

X εi∆
X − δqXω A

XB Γ
B , (6.98)

where the covariant derivative is given by

DµΓ
A = (∂µ − 3bµ + 1

4ω
ab
µ γab)ΓA + ∂µqXωXB

AΓB + gAI
µtIB

AΓB . (6.99)

Supersymmetry of the action imposes

kX
I JαXYkY

J = 2 fIJ
K Pα

K . (6.100)

As only the derivative of P appears in the defining equation (6.95), one may add an arbitrary
constant to P. But that changes the right-hand side of (6.100). One should then consider whether
there is a choice of these coefficients such that (6.100) is satisfied. This is the question about
the center of the algebra, which is discussed in [170, 171]. For simple groups there is always
a solution.5 For Abelian theories the constant remains undetermined. This free constant is the
so-called Fayet–Iliopoulos term.

In a conformal invariant theory, the Fayet–Iliopoulos term is not possible, since dilatation
invariance of the action requires

3Pα
I = kX∂X Pα

I . (6.101)

Thus, Pα
I is completely determined [using (6.95) or (6.59)] as (see also [172])

−6Pα
I = kX JαXYkY

I = − 2
3 kXkZ JαZ

Y
DYkIX . (6.102)

5We thank Gary Gibbons for a discussion on this subject.
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The proof of the invariance of the action under the complete superconformal group, uses the
equation obtained from (6.59) and (6.95):

kXα
DXkY

I = ∂
Y Pα

I . (6.103)

If the moment map Pα
I has the value that it takes in the conformal theory, then (6.100) is satisfied

due to (6.50). Indeed, one can multiply that equation with kXkZ JαZ
W
DW and use (6.54), (6.57)

and (6.46). Thus, in the superconformal theory, the moment maps are determined and there is
no further relation to be obeyed, i.e. the Fayet–Iliopoulos terms of the rigid theories are absent
in this case.

To conclude, isometries of the scalar manifold that commute with dilatations, see (6.59), can
be gauged. The resulting theory has an extra symmetry group G, whose algebra is generated by
the corresponding Killing vectors.

Gathering together our results (6.79) and (6.96) the total Lagrangian describing the most
general couplings of vector/tensor multiplets to hypermultiplets with rigid superconformal sym-
metry is given by

Ltotal = Lvec−tensor +Lg
hyper . (6.104)

Summarizing, in this section the actions of rigid superconformal vector/tensor-hypermulti-
plet couplings have been constructed. The full answer is (6.104). We found that the existence of
an action requires the presence of additional tensorial objects. A review of all the independent
objects needed to determine the transformation laws, or to determine the action, are given in
table 6.4. Note that these objects could already be introduced at the level of rigid supersymmetry.
In the next section these results will be generalized to the local case, by coupling the matter
multiplets to the Weyl multiplet, but this will not introduce any new constraints.
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ALGEBRA (no action) ACTION
multiplets objects Def/restriction objects Def/restriction

Vect. f[IJ]
K Jacobi identities C(IJK) fI(J

HCKL)H = 0 N

Vect./Tensor
(tI)J̃

K̃

Ĩ = (I,M)

[tI , tJ] = − fIJ
K tK

tIJ
K = fIJ

K , tIM
J = 0

Ω[MN]

invertible

fI(J
HCKL)H = tI(J

MtKL)
NΩMN

tI[M
PΩN]P = 0

Hyper fX
iA

invertible and real using ρ

Nijenhuis condition: NXY
Z = 0

C[AB] DXCAB = 0

Hyper +
gauging kX

I

DXDYkZ
I = RXWY

ZkW
I J

kY
[I|∂YkX

|J] = − 1
2 fIJ

KkX
K

LkI J
α = 0 J

Pα
I N

DXkYI +DYkXI = 0

∂XPα
I = − 1

2 JαXYkY
I N

kX
I JαXYkY

J = 2 fIJ
K Pα

K N

Hyper +
conformal kX

J DYkX = 3
2δY

X
J K DXDY K = 3

2 gXY

Hyper +
conformal + gauged kY

DYkX
I =

3
2 kX

I

Table 6.4: Various matter couplings with or without action. We indicate which are the geometrical objects that determine the theory
and what are the independent constraints. The symmetries of the objects are already indicated when they appear first. In general, the
equations should also be valid for the theories in the rows below (apart from the fact that ‘hyper+gauging’ and ‘hyper+conformal’
are independent, but both are used in the lowest row). However, the symbol N indicates that these equations are not to be taken over
below. E.g. the moment map Pα

I itself is completely determined in the conformal theory, and it should therefore no longer be given
as an independent quantity. For the rigid theory without conformal invariance, only constant pieces can be undetermined by the given
equations, and they are the Fayet–Iliopoulos terms. On the other hand, the equations indicated by J have not to be taken over for the
theories with an action, as they are then satisfied due to the Killing equation or are defined by K .
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6.5 Local superconformal multiplets
In this section we will extend the supersymmetry to a local conformal supersymmetry, by mak-
ing use of the off-shell 32 + 32 Standard Weyl multiplet constructed in chapter refch:weyl. We
restrict ourselves here to the Standard Weyl multiplet. One may wonder whether the use of the
dilaton Weyl multiplet could lead to other matter couplings. Though we can not exclude this,
we do not expect a physically different result. Whether the conformal gauge-fixing program will
also be insensitive to the choice of Weyl multiplet, remains to be seen.

The procedure for extending the rigid superconformal transformation rules for the various
matter multiplets is to introduce covariant derivatives with respect to the superconformal sym-
metries. These derivatives contain the superconformal gauge fields which, in turn, will also
transform to additional matter fields as explained in chapter 5.

Since in the previous sections we have explained most of the subtleties concerning the possi-
ble geometrical structures, we can be brief here. We will obtain our results in two steps. First, we
require that the local superconformal commutator algebra, as it is realized on the standard Weyl
multiplet (5.41)–(5.44) is also realized on the matter multiplets (with possible additional trans-
formations under which the fields of the standard Weyl multiplet do not transform, and possibly
field equations if the matter multiplet is on-shell). Note that this local superconformal algebra is
a modification of the rigid superconformal algebra (5.22), (5.20) where all modifications involve
the fields of the standard Weyl multiplet.

Now we will apply a standard Noether procedure to extend the rigid supersymmetric actions
to a locally supersymmetric one. This will introduce the full complications of coupling the
matter multiplets to conformal supergravity.

6.5.1 Vector-tensor multiplet
The local supersymmetry rules are given by

δAI
µ = 1

2 ε̄γµψ
I − 1

2 iσI ε̄ψµ ,

δBM
ab = −ε̄γ[aDb]ψ

M − 1
2 iσM ε̄R̂ab(Q) + i ε̄γ[aγ · Tγb]ψ

M

+ i gε̄γabt(J̃K̃)
MσJ̃ψK̃ + i η̄γabψ

M ,

δY i jĨ = − 1
2 ε̄

(i /Dψ j)Ĩ + 1
2 i ε̄(iγ · Tψ j)Ĩ − 4 iσĨ ε̄(iχ j) (6.105)

− 1
2 i gε̄(i

(
t[J̃K̃]

Ĩ − 3t(J̃K̃)
Ĩ
)
σJ̃ψ j)K̃ + 1

2 i η̄(iψ j)Ĩ ,

δψiĨ = − 1
4γ · Ĥ

Ĩε i − 1
2 i /DσĨε i − Y i jĨε j + σ

Ĩγ · T ε i + 1
2 gt(J̃K̃)

ĨσJ̃σK̃ε i + σĨηi ,

δσĨ = 1
2 i ε̄ψĨ .

The covariant derivatives are given by

Dµ σ
Ĩ = Dµσ

Ĩ − 1
2 i ψ̄µψĨ ,

Dµσ
Ĩ = (∂µ − bµ)σĨ + gtJK̃

Ĩ AJ
µσ

K̃ ,

Dµψ
iĨ = Dµψ

iĨ + 1
4γ · Ĥ

Ĩψi
µ +

1
2 i /DσĨψi

µ + Y i jĨψµ j − σĨγ · Tψi
µ (6.106)
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− 1
2 gt(J̃K̃)

ĨσJ̃σK̃ψi
µ − σĨφi

µ ,

Dµψ
iĨ = (∂µ − 3

2 bµ + 1
4 γab ωµ

ab)ψiĨ − V i j
µ ψ

Ĩ
j + gtJK̃

Ĩ AJ
µψ

iK̃ .

The covariant curvature Ĥ Ĩ
µν should be understood as having components (F̂ I

µν, Bµν) and

F̂ I
µν = 2∂[µAI

ν] + g fJK
I AJ

µAK
ν − ψ̄[µγν]ψ

I + 1
2 iσIψ̄[µψν] . (6.107)

The locally superconformal constraints needed to close the algebra are given by the fol-
lowing extensions of (6.13) and (6.14) (which are non-zero only for Ĩ in the tensor multiplet
range)

Li jM ≡ t(J̃K̃)
M

(
2σJ̃Y i jK̃ − 1

2 i ψ̄iJ̃ψ jK̃
)
= 0 ,

EM
µνλ ≡ 3

g
D[µBνλ]

M − εµνλρσt(J̃K̃)
M

(
σJ̃ĤρσK̃ − 8σJ̃σK̃T ρσ + 1

4 i ψ̄J̃γρσψK̃
)

− 3
2g
ψ̄Mγ[µR̂νλ](Q)

= 0 . (6.108)

Here, the supercovariant derivative on the tensor is defined as

D[µBM
νρ] = ∂[µBM

νρ] − 2b[µBM
νρ] + ψ̄[µγνDρ]ψ

M + 1
2 iσMψ̄[µR̂νρ](Q)

− i ψ̄[µγνγ · Tγρ]ψ
M − i φ̄[µγνρ]ψ

M

− i gψ̄[µγνρ]ψ
K̃σJ̃t(J̃K̃)

M + gtJK̃
MAJ

[µĤ K̃
νρ] . (6.109)

Analogously to subsection 6.2.2, the full set of constraints could be obtained by varying these
constraints under supersymmetry.

The action, invariant under local superconformal symmetry, can be obtained by replacing
the rigid covariant derivatives in (6.79) by the local covariant derivatives (6.106) and adding
extra terms proportional to gravitinos or matter fields of the Weyl multiplet, determined by
supersymmetry. It is convenient at this point to introduce a new S-invariant tensorfield B̃M

µν

which is defined as
BM
µν = B̃M

µν − ψ̄[µγν]ψ
M + 1

2 iσMψ̄[µψν] ,

such that the symbol Ĥ Ĩ
µν can be written as

Ĥ Ĩ
µν = H Ĩ

µν − ψ̄[µγν]ψ
Ĩ + 1

2 iσĨψ̄[µψν] , H Ĩ
µν ≡ (F I

µν, B̃
M
µν) .

The action then reads

e−1Lconf
vec−ten =

[(
− 1

4Ĥ
Ĩ
µνĤµνJ̃ − 1

2 ψ̄
Ĩ /DψJ̃ + 1

3σ
Ĩ
�

cσJ̃ + 1
6 Daσ

Ĩ DaσJ̃ + Y Ĩ
i jY

i jJ̃
)
σK̃

− 4
3σ

ĨσJ̃σK̃
(
D + 26

3 TabT ab
)
+ 4σĨσJ̃Ĥ K̃

abT ab

− 1
8 i ψ̄Ĩγ · Ĥ J̃ψK̃ − 1

2 i ψ̄iĨψ jJ̃Y K̃
i j + iσĨψ̄J̃γ · TψK̃ − 8 iσĨσJ̃ψ̄K̃χ



100 Matter-couplings of conformal supergravity

+ 1
6σ

Ĩψ̄µγ
µ
(
iσJ̃ /DψK̃ + 1

2 i /DσJ̃ψK̃ − 1
4γ·Ĥ

J̃ψK̃ + 2σJ̃γ·TψK̃ − 8σJ̃σK̃χ
)

− 1
6 ψ̄aγbψ

Ĩ
(
σJ̃ĤabK̃ − 8σJ̃σK̃T ab

)
− 1

12σ
Ĩψ̄λγ

µνλψJ̃Ĥ K̃
µν

+ 1
12 iσĨψ̄aψb

(
σJ̃ĤabK̃ − 8σJ̃σK̃T ab

)
+ 1

48 iσĨσJ̃ψ̄λγ
µνλρψρĤ K̃

µν

− 1
2σ

Ĩψ̄i
µγ

µψ jJ̃Y K̃
i j +

1
6 iσĨσJ̃ψ̄i

µγ
µνψ

j
νY K̃

i j − 1
24 i ψ̄µγνψĨψ̄J̃γµνψK̃

+ 1
12 i ψ̄i

µγ
µψ jĨψ̄J̃

i ψ
K̃
j − 1

48σ
Ĩψ̄µψνψ̄

J̃γµνψK̃ + 1
24σ

Ĩψ̄i
µγ

µνψ
j
νψ̄

J̃
i ψ

K̃
j

− 1
12σ

Ĩψ̄λγ
µνλψJ̃ψ̄µγνψ

K̃ + 1
24 iσĨσJ̃ψ̄λγ

µνλψK̃ψ̄µψν

+ 1
48 iσĨσJ̃ψ̄λγ

µνλρψρψ̄µγνψ
K̃ + 1

96σ
ĨσJ̃σK̃ψ̄λγ

µνλρψρψ̄µψν

]
C Ĩ J̃K̃

+
1

16g
e−1εµνρστΩMN B̃M

µν

(
∂ρB̃N

στ + 2g tIJ
N AI

ρF J
στ + g tIP

N AI
ρB̃P

στ

)

− 1
24 e−1εµνλρσCIJKAI

µ

(
F J
νλFK

ρσ + fFG
JAF
ν AG

λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

))

− 1
8 e−1εµνλρσΩMN tIK

MtFG
N AI

µAF
ν AG

λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

)

+ 1
4 i gψ̄ĨψJ̃σK̃σL̃

(
t[Ĩ J̃]

M̃CM̃K̃L̃ − 4t(ĨK̃)
M̃CM̃J̃L̃

)

− 1
4 gψ̄µγµψĨσJ̃σK̃σL̃t(J̃K̃)

M̃CM̃ĨL̃ − 1
2 g2σIσJσKσM̃σÑ tJM̃

PtKÑ
QCIPQ ,(6.110)

where the superconformal d’Alembertian is defined as

�
cσĨ = DaDaσ

Ĩ

=
(
∂a − 2ba + ω ba

b

)
Daσ

Ĩ + gtJK̃
Ĩ AJ

a DaσK̃ − 1
2 i ψ̄µDµψĨ − 2σĨψ̄µγ

µχ

+ 1
2 ψ̄µγ

µγ · TψĨ + 1
2 φ̄µγ

µψĨ + 2 fµµσĨ − 1
2 gψ̄µγµtJ̃K̃

ĨψJ̃σK̃ . (6.111)

6.5.2 Hypermultiplet

Imposing the local superconformal algebra we find the following supersymmetry rules:

δqX = − i ε̄ iζA f X
iA ,

δ̂ζA = 1
2 i /DqX f iA

X εi − 1
3γ · TkX f A

iXε
i + 1

2 gσIkX
I f A

iXε
i + kX f A

iXη
i . (6.112)

The covariant derivatives are given by

DµqX = DµqX + i ψ̄i
µζ

A f X
iA ,

DµqX = ∂µqX − bµkX − V jk
µ kX

jk + gAI
µkX

I ,

Dµζ
A = Dµζ

A − kX f A
iXφ

i
µ +

1
2 i /DqX f A

iXψ
i
µ +

1
3γ · TkX f A

iXψ
i
µ − g 1

2σ
IkX

I f A
iXψ

i
µ (6.113)

Dµζ
A = ∂µζ

A + ∂µqXωXB
AζB + 1

4ωµ
bcγbcζ

A − 2bµζA + gAI
µtIB

AζB .
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Similar to section 6.3, requiring closure of the commutator algebra on these transformation rules
yields the equation of motion for the fermions

ΓA
conf = /DζA + 1

2 WCDB
AζBζ̄DζC − 8

3 i kX f A
iXχ

i + 2 i γ · TζA

−g
(

i kX
I f A

iXψ
iI + iσItIB

AζB
)
. (6.114)

The scalar equation of motion can be obtained from varying (6.114):

δ̂QΓ
A = 1

2 i f iA
X ∆

Xεi +
1
4γ

µΓAε̄ψµ − 1
4γ

µγνΓAε̄γνψµ , (6.115)

where

∆X
conf = �

cqX − ζ̄BγaζCDaqYRX
YBC +

8
9 T 2kX

+ 4
3 DkX + 8 i χ̄iζA f X

iA − 1
4D

XWABCDζ̄
AζBζ̄CζD

−g
(
2 i ψ̄iIζBtIB

A f X
iA − kY

I JY
X

i jY Ii j)

+g2σIσJ
DYkX

I kY
J , (6.116)

and the superconformal d’Alembertian is given by

�
cqX ≡ DaDaqX

= ∂aDaqX − 5
2 baDaqX − 1

2 V jk
a JY

X
jkDaqY + i ψ̄i

aDaζA f X
iA

+2 faakX − 2ψ̄aγ
aχkX + 4ψ̄( j

a γ
aχk)kX

jk − ψ̄i
aγ

aγ · TζA f X
iA

−φ̄i
aγ

aζA f X
iA + ωa

abDbqX − 1
2 gψ̄aγaψ

IkX
I − DaqY∂YkX

I AaI

+DaqY DaqZΓX
YZ . (6.117)

Note that so far we did not require the presence of an action. Introducing a metric, the locally
conformal supersymmetric action is given by

e−1Lconf
hyper = − 1

2 gXYDaqXDaqY + ζ̄A /DζA + 4
9 Dk2 + 8

27 T 2k2

− 16
3 i ζ̄Aχ

ikX f A
iX + 2 i ζ̄Aγ · TζA − 1

4 WABCDζ̄
AζBζ̄CζD

− 2
9 ψ̄aγ

aχk2 + 1
3 ζ̄Aγ

aγ · Tψi
akX f A

iX +
1
2 i ζ̄Aγ

aγbψi
aDbqX f A

iX

+ 2
3 faak2 − 1

6 i ψ̄aγ
abφbk2 − ζ̄Aγ

aφi
akX f A

iX

+ 1
12 ψ̄

i
aγ

abcψ
j
bDcqY JY

X
i jkX − 1

9 i ψ̄aψbTabk2 + 1
18 i ψ̄aγ

abcdψbTcdk2

−g
(

iσI tIB
Aζ̄Aζ

B + 2 i kX
I f A

iX ζ̄Aψ
iI + 1

2σ
IkX

I f A
iX ζ̄Aγ

aψi
a

+ ψ̄i
aγ

aψ jI PIi j − 1
2 i ψ̄i

aγ
abψ

j
bσ

I PIi j

)

+ 2gY I
i jP

i j
I − 1

2 g2σIσJkX
I kJX . (6.118)

Indeed, no further constraints other than those given in section 6.3 were necessary in this local
case. In particular, the target space is still hypercomplex or, when an action exists, hyperkähler.
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This action leads to the following dynamical equations

δSconf
hyper

δζ̄A
= 2 CABΓ

B
conf ,

δSconf
hyper

δqX = gXY

(
∆Y

conf − 2ζ̄AΓ
B
confω

Y
B

A − i ψ̄i
aγ

aΓA
conf f Y

iA

)
. (6.119)

Again, this action can also be obtained by using the [field]×[non-closure] method. The trans-

formation rules for the non-closure functions now get gravitino-corrections:

δ∆X = − i ε̄ i /DΓA f X
iA + 2 i ε̄ iΓBζCζD f Y

iBRX
YCD + 2η̄iΓA f X

iA + ∆
YΓZY

XδqZ

+ 1
4 i f X

iAψ̄
i
µΓ

Aε̄ψµ − 1
4 i f X

iAψ̄
i
µγaΓ

Aγaε̄γaψ
µ ,

δΓA = 1
2 i f iA

X εi∆
X + 1

4γ
µΓAε̄ψµ − 1

4γ
µγaΓAε̄γaψµ − δqXω A

XB Γ
B , (6.120)

where the covariant derivative is given by

DµΓ
A = DµΓ

A + 1
3 i∆A

i ψ
i
µ − 1

8γ
νΓAψ̄µψν +

1
8γ

νγaΓAψ̄νγaψν ,

DµΓ
A = (∂µ − 3bµ + 1

4ω
ab
µ γab)ΓA + ∂µqXωXB

AΓB + gAI
µtIB

AΓB . (6.121)

There are several ways to determine the coefficients of the gravitino terms; for example by trying
to close the [Q, S ] commutator on ΓA and ∆X , or by using the non-closure functions in the [Q,Q]
of ζA and DµAiA, like explained in [147, p.19-21]. The extra term in the Ansatz can be obtained
by requiring S-invariance of the action:

e−1L = 1
3 kX∆

X + (ζ̄A − 1
3 i ψ̄i

µγ
µkX f X

iA)ΓA . (6.122)

Substituting the non-closure functions into (6.122) and partial integrating the covariant box, we
again find (6.118).

The Lagrangians (6.110) and (6.118) are the starting point for obtaining matter couplings to
Poincaré supergravity. This involves a gauge fixing of the local scale and SU(2) symmetries,
which will be studied in the next chapter.



Chapter 7

Gauge fixing

The general idea of this chapter can be illustrated by using a scalar-gravity toy model in four
dimensions. We start with a conformally invariant action for a scalar field ϕ

L =
√
|g|

[
1
2 (∂ϕ)2 + 1

12 Rϕ2
]
, (7.1)

which is invariant under the following local dilatations

δϕ = ΛDϕ , δgµν = −2ΛDgµν . (7.2)

This dilatation symmetry can be gauge fixed by choosing the gauge ϕ =
√

6/κ; this leads to the
Poincaré action

L = 1
2κ2

√
|g|R . (7.3)

Therefore the actions (7.1) and (7.3) are gauge equivalent. Alternatively, we could have chosen
new coordinates (g′µν = gµνϕ2), such that the resulting action is manifestly invariant under the
dilatation symmetry. Although ϕ still transforms under dilatations, the field does not appear in
the action anymore. The scalar ϕ has no physical degrees of freedom, and is called a “compen-
sating scalar”. Note that the scalar kinetic term has the wrong sign; this is a generic feature of
compensating scalars which we will also encounter in the more complicated case of conformal
supergravity.

The same mechanism will be used in this chapter to obtain five-dimensional matter coupled
Poincaré supergravity. In chapter 5 the Poincaré algebra was extended to the local superconfor-
mal algebra F2(4). We constructed the minimal representation of the superconformal algebra
containing the graviton, called the Standard Weyl multiplet. The fields of the Standard Weyl
multiplet and their properties were given in table 5.2. Next, in chapter 6, we constructed vector-
tensor multiplets and hypermultiplets in the background of this Weyl multiplet, see tables 6.1,
6.2 and 6.3 for the contents and properties of these multiplets. The corresponding actions, equa-
tions of motion and transformation rules were given in (6.110) and (6.118). As a third and final
step we now want to gaugefix the extra symmetries, not belonging to the super-Poincaré alge-
bra, and obtain Poincaré supergravity coupled to vector-tensor multiplets and hypermultiplets.
As compensators we will need one hypermultiplet and one vector-tensor multiplet. Therefore,
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the starting point of this chapter will be local D = 5,N = 2 conformal supergravity coupled to
(nV + nT + 1) vector-tensor multiplets and (nH + 1) hypermultiplets1:

Ltotal = LVector−Tensor +LHyper . (7.4)

This chapter is based on work to be published in [173, 174].

7.1 Conformal geometry
The superconformal tensor calculus performed in the last chapter resulted in the construction of
a hypercomplex manifold spanned by (4nH + 4) hyperscalars qX̂ (X̂ = 1, . . . , 4nH + 4). In this
chapter we will for simplicity assume the presence of a covariantly constant hermitian metric,
which promotes the hypercomplex manifold to a hyperkähler manifold. This manifold includes
the four scalars of the compensating hypermultiplet. In the end these compensating scalars
will be removed from the manifold; therefore it is convenient to split these coordinates off by
making a specific coordinate choice on the hyperkähler manifold. Details about this procedure
can be found in [174].2 Here we will skip the technical details and only give some of the
relevant results. We use the hat-notation for objects that are defined on the “higher dimensional”
hyperkähler manifold, spanned by the qX̂ .

As we saw in chapter 6, the manifold contains three generic isometries, generated by the

SU(2) Killing vectors ~̂kX̂ . These isometries were gauged using the vectors of the vector-tensor
multiplets. Using Frobenius’ theorem it can be shown that the three-dimensional subspace
spanned by the direction of the three SU(2) transformations can be parametrized by coordi-
nates zα (α = 1, 2, 3). Furthermore, using the homothetic Killing equation (6.44), one more
coordinate z0 can be singled out, which is associated with the dilatation transformation. The
other directions are indicated by qX (X = 1, . . . , 4nH). Thus, we split the coordinates on the
hyperkähler manifold as {qX̂} = {z0, zα, qX}. Similarly we can split the tangent space index as
{Â} = {i, A} (i = 1, 2; A = 1, . . . , 2nH), where i is an SU(2) index. Note that throughout this chap-
ter we will work in this coordinate basis. In this basis the Killing vectors take on the following
form

k̂X̂(z0, zα, q) = {3z0, 0, 0} , ~̂kX̂(z0, zα, q) = {0,~kα(z0, zα), 0} . (7.5)

We will choose the following metric parametrization:

dŝ2 ≡ ĝX̂ŶdqX̂dqŶ .

= − (dz0)2

z0 + z0hXY (zα, q)dqXdqY

−ĝαβ(z0, zα, q)[dzα + Aα
X(z0, zα, q)dqX][dzβ + Aβ

Y (z0, zα, q)dqY] , (7.6)

where we have chosen the signs and factors for later convenience. The object hXY denotes the
metric on the subspace spanned by the coordinates qX , and Aα

X(z, q) ≡ f̂ αi j f̂ i j
X .

1In comparison with chapter 6 we have: n = nV + 1, m = nT and r = nH + 1.
2In this reference we also discuss the case without a hyperscalar-metric.
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Note the resemblance of (7.6) with the generic form of the Kaluza-Klein Ansatz (3.41). This
is not that surprising, since we are in fact performing a “dimensional reduction” of the scalar
manifold. In the above coordinate basis we find the following expressions for the vielbeins3:

f̂ 0
i j = − i εi j

√
1
2 z0 , f̂ αi j =

√
1

2z0
~kα · ~σi j , f̂ X

i j = 0 ,

f̂ 0
iA = 0 , f̂ αiA = − f X

iAAα
X , f̂ X

iA = f X
iA ,

f̂ i j
0 = i εi j

√
1

2z0 , f̂ i j
α =

√
1

2z0
~kα · ~σi j , f̂ i j

X =

√
1

2z0
~kα · ~σi jAα

X ,

f̂ iA
0 = 0 , f̂ iA

α = 0 , f̂ iA
X = f iA

X .

(7.7)

Using the above expressions for the vielbeins, we find the following complex structures:

~̂J0
0 = 0 , ~̂Jα0 = ~kα , ~̂JX

0 = Aα
X
~kα ,

~̂J0
β = 1

z0
~kβ , ~̂Jαβ = 1

z0
~kα × ~kβ , ~̂JX

β = 1
z0 Aγ

X
~kγ × ~kβ − ~JX

Z Aβ
Z ,

~̂J0
Y = 0 , ~̂JαY = 0 , ~̂JX

Y = ~JX
Y .

(7.8)

Covariant constancy of the vielbeins furthermore leads to the expressions for the G`(nH + 1,�)
connections. The non-zero components are given by:

ω̂αi
j = − i 1

2z0
~kα · ~σi

j , ω̂αA
B = 1

2 f iB
Y ∂α f Y

iA ,

ω̂Xi
j = Aα

Xω̂αi
j , ω̂0A

B = 1
2 f iB

Y ∂0 f Y
iA +

1
2z0 δ

B
A ,

ω̂Xi
A = i

√
1

2z0 εik f̂ kA
X , ω̂XA

i = − i
√

z0

2 ε
i j f Y

jAhYX .

(7.9)

Using these results, some other relevant expressions can be derived

ĈAB = z0CAB , Ĉi j = εi j , ĈiA = 0 , (7.10)

ŴABC
D =WABC

D , (7.11)

~̂PI = ~PI , (7.12)

k̂X̂
I = {0,−2~kα(~ωXkX

I − 1
z0
~PI), kX

I } , (7.13)

whereWABC
D is the ‘quaternionic Weyl tensor’ defined in (C.54).

We found that for each point in the subspace {zα}, corresponding to a specific gauge fixing,
the {qX} space describes a quaternionic-Kähler manifold. These manifolds are all related to each
other by coordinate redefinitions.

We point out in appendix C.3 that the connections on a quaternionic manifold are not
uniquely defined; a certain ξ-transformation can be performed to choose a convenient gauge for
the connections. The gauge chosen in [174] leads to the following expressions for the G`(nH ,�)
and SU(2) connections:

ω̂X A
B = ωX A

B , ~ωX = − 1
2z0 Aα

X
~kα . (7.14)

Note that before gauge fixing the unhatted objects are dependent on the z-coordinates.
3These expressions do not represent reduction Ansätze, because the fields on the right hand side still depend on

{z0, zα}.
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7.2 Gauge fixing
The actions given in (6.110) and (6.118) are invariant under the full supercovariant group. In
order to break the symmetries that are not present in the Poincaré algebra, we will impose the
necessary gauge conditions in the following subsections.

7.2.1 Preliminaries
The first step in the gaugefixing process will be the elimination of the dependent gauge fields
φi
µ and fµa, associated to S- and K-symmetry respectively. Using the relations (5.35) together

with the definitions of the supercovariant curvatures, we find the following expressions for the
dependent gauge fields

f a
a = 1

16

(
−R(ω̂) − 1

3 ψ̄ργ
ρµνDµψν

+ 1
3 ψ̄

i
aγ

abcψ
j
bVci j + 16ψ̄aγ

aχ − 4 i ψ̄aψbTab +
4
3 i ψ̄bγabcdψ

aT cd
)
,

ω̂ ab
µ = ω ab

µ (e) − 1
2 ψ̄

[bγa]ψµ − 1
4 ψ̄

bγµψ
a+2eµ[abb] ,

φi
µ = 1

2 i γνD[µψ
i
ν] − 1

12 i γµνρDνψ
i
ρ − 1

2 i V[µ
i jγaψa] j +

1
12 i Va

i jγµ
abψb j (7.15)

−T a
µψ

i
a − 1

3 T abγbµψ
i
a − 2

3 Tbµγ
abψi

a − 1
3 Tbcγ

abc
µψa

− 1
12 i (γabγµ − 1

2γµγ
ab)baψ

i
b ,

with

Dµ = ∂µ +
1
4 ω̂µ

abγab . (7.16)

We only need the contracted version of fµa since the other components do not appear in the
action or transformation rules. Also, in order to simplify notation we will choose not to eliminate
ω̂µ

ab in most places.
First of all we observe that, after writing out all covariant derivatives, the gauge field bµ does

not appear in the action. This can be argued from K-invariance of the action. Although this
prohibits us from determining its equation of motion, we will choose the conventional gauge
choice for K-symmetry, namely bµ = 0.

This still leaves us with one more gauge field corresponding to a non-Poincaré symmetry:
the SU(2) gauge field V i j

µ . Solving for its equation of motion, corresponding to the action (7.4),
gives us the following expression

V i j
µ = 9

2k2

(
ĝX̂Ŷ(∂µqX̂ + gAI

µkX̂
I )ki jŶ + 1

2 i kX̂ f̂ iÂ
X̂
ζ̄Âγµνψ

ν j − i ki jX̂ f̂ Â
kX̂
ζ̄Âγνγµψ

kν

− 1
2C Ĩ J̃K̃σ

K̃ψ̄iĨγµψ
jJ̃ + 1

4 i C Ĩ J̃K̃σ
K̃σĨψ̄iJ̃γµνψ

jν
)
. (7.17)

The action contains four auxiliary matter fields: D, Tab and χi from the Weyl multiplet, and
Y Ĩ

i j from the vector-tensor multiplet. Both D and χi appear as Lagrange multipliers in the action,
leading to the following constraints, respectively

D : C − 1
3 k2 = 0 , with C ≡ C Ĩ J̃K̃σ

ĨσJ̃σK̃ , (7.18)

χi : −8 i C Ĩ J̃K̃σ
ĨσJ̃ψK̃

i − 4
3

(
C − 1

3 k2
)
γµψµi +

16
3 i AÂ

i ζÂ = 0 . (7.19)
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The equations of motion for Y Ĩ
i j and Tab are given by

Y i jJ̃C Ĩ J̃K̃σ
K̃ = −g δL

Ĩ
P̂i j

L +
1
4 i C Ĩ J̃K̃ψ̄

iJ̃ψ jK̃ , (7.20)

Tab =
9

64k2

(
4σĨσJ̃Ĥ K̃

abC Ĩ J̃K̃ + σ
ĨσJ̃ψ̄K̃γ[aψb]C Ĩ J̃K̃ + σ

ĨσJ̃ψ̄K̃γabcψ
cC Ĩ J̃K̃

+ iσĨψ̄J̃γabψ
K̃C Ĩ J̃K̃ +

2
3 kX̂ f̂ Â

iX̂
ζ̄Âγ[aψ

i
b] +

2
3 kX̂ f̂ Â

iX̂
ζ̄Âγabcψ

ic + 2 i ζ̄Âγabζ
Â
)
,(7.21)

which have been simplified by making use of (7.18).

7.2.2 Gauge choices and decomposition rules
Apart from the K-gauge we already introduced to fix the special conformal (K-)symmetry, we
will have to choose gauges for the other non-Poincaré (super)symmetries as well.

D-gauge

Having written out all dependent gaugefields in the action, the kinetic terms for the graviton and
the gravitino become

e−1LEH+RS =
1
24

(
C + k2

) (
R(ω̂) + ψ̄µγµνρDνψρ

)
. (7.22)

Similarly to the example given in (7.1)–(7.3) we can demand canonical factors for the Einstein-
Hilbert and Rarita-Schwinger kinetic terms means by imposing the following D-gauge:

1
24

(
C + k2

)
= − 1

2κ2 . (7.23)

Note that in order to get the conventional mass-dimensions for the Rarita-Schwinger term, we
identify the superconformal gravitino ψC

µ in terms of the gravitino ψP
µ from the super-Poincaré

multiplet as follows:
ψC
µ ≡ κψP

µ . (7.24)

The index P will be suppressed in the rest of this chapter. If we combine the D-gauge (7.23) and
the equation of motion for D (7.18) we obtain

k2 = − 9
κ2 , C = − 3

κ2 . (7.25)

The first constraint implies that z0 = 1
κ2 , whereas the second constraint effectively eliminates one

of the vector-tensor scalars.

S-gauge

Off-diagonal kinetic terms like e.g. ψ̄µDψ or ψ̄i
µDζA appear in the action with one overall co-

efficient. A canonical form of the action requires the vanishing of these terms, which can be
accomplished by demanding the overall coefficient to vanish. This leads to the following con-
straint, called the S-gauge:

C Ĩ J̃K̃σ
ĨσJ̃ψK̃

i = 0 . (7.26)

This constraint effectively eliminates one of the gauginos.
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SU(2)-gauge

The gauge for dilatations was chosen such that z0 = 1
κ2 . Similarly we may also choose a gauge

for SU(2). Such a gauge would be a specific point in the three-dimensional space of the zα.
Any fixed value of these coordinates would fix a gauge, however we will leave this arbitrary.
The dependence of objects on the hyperkähler manifold on the coordinates zα thus describes
the gauge dependence. By fixing the SU(2) gauge, i.e choosing zα to be constant, all fields
become particular functions of the quaternionic-Kähler coordinates qX only. These functions
may be different for different gauge choices, but once we make a choice, which is not relevant
for further considerations, they are fixed.

Using both the S-gauge (7.26) and the equation of motion for D (7.18) in equation (7.19) we
also get a constraint on the hyperino

AÂ
i ζÂ = 0 . (7.27)

In our coordinate basis, we obtain the following expression for the sections Ai
Â

Ai
Â
≡ εi jkX̂ f̂ X̂

jÂ
= −3εi j f̂ 0

jÂ
= −3 i

√
z0

2 δ
i
Â
. (7.28)

After applying the D-gauge, i.e. fixing one degree of freedom of qX̂ by (7.25), equation (7.28)
plays the role of SU(2) gauge since it fixes three of the degrees of freedom contained in Ai

Â
.

Moreover, combining it with (7.27) one discovers that our choice of coordinates on the hy-
perkähler manifold is consistent with the hyperinos of the compensating multiplet carrying no
physical information:

ζi ≡ ζ jε ji = 0 . (7.29)

Decomposition rules

As a consequence of the gauge choices, the corresponding transformation parameters can be
expressed in terms of the others by so-called decomposition rules. These rules will enable us
to eliminate the parameters ΛD,Λ

a
K ,Λ

i j
SU(2), η

i and determine the transformation rules for the
remaining symmetries in section 7.3. For example, the requirement that the K-gauge should
be invariant under the most general superconformal transformation, i.e. δbµ = 0, leads to the
decomposition rule for Λa

K :

Λa
K = − 1

2 eµa
(
∂µΛD +

1
2 i ε̄φµ − 2ε̄γµχ + κ

2 i η̄ψµ
)
. (7.30)

Similarly, demanding δz0 = 0 yields
ΛD = 0 . (7.31)

The decomposition rule for ηi can be found by varying the S-gauge and demanding that

δ
(
C Ĩ J̃K̃σ

ĨσJ̃ψiK̃
)
= 0 . (7.32)

We find

ηi = − κ2

12C Ĩ J̃K̃σ
ĨσJ̃γ · Ĥ K̃ε i + 1

3 gσI Pi j
I ε j +

1
32κ2 i γabε iζ̄Aγabζ

A

+ κ2

16 i C Ĩ J̃K̃σ
Ĩ
(
γaε jψ̄

iJ̃γaψ
jK̃ − 1

16γ
abε iψ̄J̃γabψ

K̃
)
. (7.33)



7.2 Gauge fixing 109

The SU(2) decomposition rule can be found by requiring that δzα = 0:

Λ
i j
SU(2) = ω

i j
X(δQ + δG)qX + κ2gΛI

GPi j
I . (7.34)

7.2.3 Hypersurfaces
The gauge condition for the vector/tensor scalars (7.25), defines a (nV + nT )-dimensional hy-
persurface of scalars ϕx called a “very special real” manifold, embedded into a (nV + nT + 1)-
dimensional space spanned by the scalars h Ĩ(ϕ). In order to find the kinetic term for the scalars
ϕx we need to identify the embedding metric gxy. At this point it is convenient to rescale the
C Ĩ J̃K̃ symbol and to redefine our scalars, in order to get a convenient normalization:

σĨ ≡ αhĨ , α =

√
3

2κ2 ,

C Ĩ J̃K̃ ≡ − 2
α

NĨ J̃K̃ , (7.35)

N ≡ NĨ J̃K̃hĨhJ̃hK̃ = 1 .

The metric on the hĨ-manifold can be determined by substituting the equation of motion for Tab

(7.21) back into the action, and defining the kinetic term for the vectors/tensors as

Lkin,vec−ten = − 1
4 aĨ J̃Ĥ Ĩ

µνĤµνJ̃ . (7.36)

We then find

aĨ J̃ = −2NĨ J̃K̃hK̃ + 3hĨhJ̃ , (7.37)

where

hĨ ≡ aĨ J̃hJ̃ = NĨ J̃K̃hJ̃hK̃ ⇒ hĨh
Ĩ = 1 . (7.38)

In the following we will assume that aĨ J̃ is invertible; this enables us to solve (7.20) for Y i jĨ .

Y i jĨ = −
(
aĨ J̃ − 3

2 hĨhJ̃
) (

g δL
J̃

P̂i j
L −

κ√
6

i NJ̃K̃L̃ψ̄
iK̃ψ jL̃

)
. (7.39)

This expression is needed to eliminate Y i jĨ from the action and transformation rules. For conve-
nience we introduce the following notation:

hĨ
x ≡ −

√
3
2 hĨ

,x(ϕ) , → hĨ x ≡ aĨ J̃hJ̃
x(ϕ) =

√
3
2 hĨ,x(ϕ) . (7.40)

It follows from (7.38) that:
hĨh

Ĩ
x = hx

Ĩ
hĨ = 0 . (7.41)

Let us now focus on the embedding manifold, spanned by the scalars ϕx. We define the embed-
ding metric on this surface as

gxy = hĨ
xhJ̃

y aĨ J̃ . (7.42)
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This metric indeed gives the required kinetic term for ϕ. Apart from a metric, we can also
introduce vielbeins f a

x that are covariantly constant with respect to the spin-connection ωãb̃
x and

Levi-Civita connection Γz
xy, defined on this manifold:

Γz
xy = 1

2 gzw
(
−gxy,w + gwx,y + gyw,x

)
, gxy;z = 0 ,

gxy = ηãb̃ f ã
x f b̃

y , (7.43)

f ã
y;x = f ã

y,x + ω
ãb̃
x fyb̃ − Γz

xy f ã
z = 0 , f[x,y] = ω

ãb̃
[x fy]b̃ ,

hã
Ĩ
≡ f ã

x hx
Ĩ
.

For future usage we also give the following useful relations, that follow from the above:

hĨ x;y = hĨ x,y − Γz
xyhĨz =

√
2
3 (hĨgxy + Txyzhz

Ĩ
)

Txyz ≡
√

3
2 hJ̃x;yhJ̃

z = −
√

3
2 hJ̃xhJ̃

z;y = hĨ
xhJ̃

y hK̃
z NĨ J̃K̃ (7.44)

Γw
xy = hw

Ĩ
hĨ

x,y +

√
2
3 Txyzgzw ,

The (nV + nT + 1) gauginos ψĨ are also still constrained fields, due to the S-gauge. In order to
translate these to (nV + nT ) unconstrained gauginos on the embedding space, we introduce λi ã,
which transforms as a vector in the tangent space. As we will see later, a convenient choice is
given by (for agreement with the literature [76]):

λi ã ≡ −ha
Ĩ
ψiĨ , ψiĨ = −hĨ

ãλ
i ã . (7.45)

Note that this choice for ψiĨ indeed solves the S-gauge (7.26).

7.3 Results
The scalar potential. We will now determine the scalar potential like it appears in the gauge-
fixed action. We will have to take into account all terms in (6.110) and (6.118) of order g2. As
the solution for Y i jI (7.39) contains a term linear in g, the Y2 and gYP terms in the actions will
both contribute to the scalar potential:

Vscalar = C Ĩ J̃K̃Y Ĩ
i jY

i jJ̃σK̃− 1
2 g2σIσJσKσM̃σÑ tJM̃

PtKÑ
QCIPQ+2gY I

i jP̂
i j
I − 1

2 g2σĨσJ̃ k̂X̂
Ĩ

k̂J̃X̂ . (7.46)

After performing the rescaling of C and σ into N and h, substituting the expression for Y and
applying the specific coordinate basis, the potential can be simplified to:

Vscalar =
g2

κ4

[
2W xWx − 4~P · ~P + 2~Px · ~Px + 2NiAN iA

]
, (7.47)

where we defined the following quantities

W x ≡
√

6
4 hI Kx

I = − 3
4 tJM̃

PhJhM̃hx
P , Kx

I ≡ −
√

3
2 tIM̃

P̃hM̃hx
P̃
,

~P ≡ κ2hI ~PI , ~Px ≡ κ2hI
x
~PI , N iA ≡

√
6

4 hIkX
I . (7.48)
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The composite object ~P, containing the moment map, also occurs with its derivative and is
indeed the superpotential for this scalar potential.

The action. After applying the special coordinate basis, substituting the expressions for the
dependent gauge fields and matter fields, and “reducing” the objects on the hyperkähler manifold
to the quaternionic-Kähler manifold, we obtain the following action:

e−1L = 1
2κ2 R(ω) − 1

4 aĨ J̃Ĥ Ĩ
µνĤ J̃µν − 1

2 gxyDaϕ
xDaϕy − 1

2κ2 hXYDaqXDaqY

+
1

16g
e−1εµνρστΩMN B̃M

µν

(
∂ρB̃N

στ + 2gtIJ
N AI

ρF J
στ + g tIP

N AI
ρB̃P

στ

)

− 1
2 ψ̄ργ

ρµνDµψν − 1
2 λ̄x /Dλx + 1

κ2 ζ̄A /DζA

+
g2

κ4

(
− 2WxW x + 4~P · ~P − 2~Px · ~Px − 2NiAN iA

)

+ κ
12

√
2
3 e−1εµνλρσNIJK AI

µ

[
F J
νλFK

ρσ + fFG
J AF

ν AG
λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

)]

− 1
8 e−1εµνλρσΩMN tIK

MtFG
N AI

µAF
ν AG

λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

)

− 1
4κhĨ xH Ĩ

bcψ̄aγ
abcλx − 3

8
√

6
κ i hĨH

cdĨψ̄aγabcdψ
b + 1

4

√
2
3κ i Txyzhz

Ĩ
λ̄xγ · H Ĩλy

+ 1
8
√

6
κ i hĨ λ̄

xγ · H Ĩλx +
1
4

√
3

2κ2 i hĨ ζ̄Aγ · H ĨζA + 1
2 i ψ̄a /Dϕxγaλx + i 1

κ
ζ̄Aγ

a /DqXψi
a f A

iX

−g
(√

3
2

1
κ3 i hI tIB

Aζ̄Aζ
B − 2 i 1

κ2 kX
I f A

iXhI
xζ̄Aλ

ix +

√
3
2

1
κ2 hIkX

I f A
iX ζ̄Aγ

aψi
a − κψ̄i

aγ
aλ jxhI

xPIi j

− 1
2

√
3
2κ i hI PIi jψ̄

i
aγ

abψ
j
b +

√
2
3κ i TxyzhIzPIi jλ̄

ixλ jy + κ

2
√

6
i hI PIi jλ̄

ixλ
j
x

+

√
3
2

1
κ

i hĨ
xhJ̃

y λ̄
xλyhK̃hL̃(tĨ J̃

M̃NM̃K̃L̃ + tK̃ Ĩ
M̃NM̃J̃L̃) − 3

4
1
κ
ψ̄aγ

aλxhĨ
xhJ̃hK̃ tJ̃ Ĩ

K̃
)

− κ2

16 ψ̄
i
aψ

jaλ̄x
i λ jx − κ2

16 ψ̄
i
aγbψ

jaλ̄d
i γ

bλ jx − κ2

64 ψ̄aγbcψ
aλ̄xγbcλx − κ2

96 ψ̄aψbλ̄
xγabλx

+ κ2

96 ψ̄aγbψcλ̄
xγabcλx − κ2

24 ψ̄
i
aγ

abψ
j
bλ̄

x
i λ jx − κ2

24 ψ̄
aiγbcψd jλ̄x

i γabcdλ jx +
κ2

8 ψ̄aγbψ
bψ̄aγcψ

c

− κ2

16 ψ̄aγbψcψ̄
aγcψb − κ2

32 ψ̄aγbψcψ̄
aγbψc + κ2

32 ψ̄aψbψ̄cγ
abcdψd − 3

16κ ζ̄Aγabcζ
Aψ̄aγbψc

+ 1
8 ψ̄aγ

bcψaζ̄Aγbcζ
A + 1

16 ψ̄
aψbζ̄Aγabζ

A + κ2

6

√
2
3 i Txyzψ̄aγbλ

xλ̄yγabλz

+ 1
32 λ̄

xγabλxζ̄Aγ
abζA + κ2

6

√
2
3 i Txyzψ̄

i
aγ

aλ jxλ̄
y
i λ

z
j +

9κ2

16 λ̄
ixγaλ

j
xλ̄

y
i γaλ jy

+ κ2

128 λ̄
xγabλxλ̄

yγabλy +
κ2

6 gztTxyzTtvwλ̄
ixλ jyλ̄v

i λ
w
j − κ2

48 λ̄
ixλ

j
xλ̄

y
i λ jy

− 1
4κ2WABCDζ̄

AζBζ̄CζD + 1
32κ2 ζ̄Aγabζ

Aζ̄Bγ
abζB . (7.49)

The covariant derivatives are given by

Dµϕ
x = ∂µϕ

x + gAI
µKx

I ,

Dµ hĨ = ∂µhĨ + gtJK̃
Ĩ AJ

µhK̃ = −
√

2
3 hĨ

xDµϕ
x ,

DµqX = ∂µqX + gAI
µkX

I ,

Dµλ
xi = ∂µλ

xi + ∂µφ
yΓx

yzλ
zi + 1

4ωµ
abγabλ

xi (7.50)
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+∂µqXωX j
iλx j + κ2gAI

µPI j
iλx j + gAI

µKx;y
I λi

y ,

Dµζ
A = ∂µζ

A + ∂µqXωXB
AζB + 1

4ωµ
bcγbcζ

A + gAI
µtIB

AζB ,

Dµψνi = (∂µ + 1
4ωµ

abγab)ψνi − ∂µqXωXi
jψν j − κ2gAI

µPIi
jψν j .

We chose to extract the fermionic terms from the spin connection and use ωµ
ab instead of ω̂µ

ab

in the covariant derivatives and the Ricci scalar, unless mentioned otherwise.

The transformation rules. The N = 2 Poincaré supersymmetry rules that leave the above
action invariant can be constructed as follows. We start from the transformation rules for the
vector-tensor multiplets (6.105), for the hypermultiplets (6.112) and the two remaining transfor-
mation rules from the Weyl-multiplet (5.40) for the vielbein and gravitino. Next, the parameters
corresponding to the gauge-fixed symmetries are replaced by the decomposition rules given in
section 7.2.2. The remaining transformations are Poincaré supersymmetry (ε i) and gauge trans-
formations (ΛG); they are given by:

δ(ε)eµa = 1
2κε̄γ

aψµ .

δ(ε)ψi
µ = 1

κ
Dµ(ω̂)ε i + 1

4
√

6
i hĨĤ Ĩab(γabµ − 4gµaγb)ε i + δQqXω

i j
Xψµ j − 1

κ2
√

6
i gPi jγµε j

− κ6 λ̄
ixγµλ

j
xε j +

κ
12 λ̄

ixγaλ
j
xγµaε j − κ

48 λ̄
ixγabλ

j
xγµabε j +

κ
12 λ̄

ixγµaλ
j
xγ

aε j

+ 1
16κ ζ̄Aγ

abζAγµabε
i ,

δ(ε)ϕx = κ
2 i ε̄λã f x

ã ,

δ(ε)AI
µ = ϑI

µ , (7.51)

δ(ε)λi ã = − 1
2 i /̂Dϕxε i − δ(ε)ϕxωãb̃

x fxb̃ + δ(ε)q
XωX

i jλã
j +

1
4γ · Ĥ

Ĩhã
Ĩ
ε i

− 1
4
√

6
T ãb̃c̃[−3λ̄i

b̃λ
j
c̃ + λ̄

i
b̃γµλ

j
c̃γ

µ + 1
2 λ̄

i
b̃γµνλ

j
c̃γ

µν]ε j − 1
κ2 gPã i jε j +

1
κ2 gW ãε i ,

δ(ε)B̃M
µν = 2D[µϑ

M
ν] −
√

6gε̄γ[µψν]hNΩ
MN − i gε̄γµνλxhxNΩ

MN ,

δ(ε)qX = − i ε̄ iζA f X
iA ,

δ(ε)ζA = 1
2 i γµD̂µqX f iA

X ε i − δ(ε)qXωXB
AζB + 1

κ
gNA

i ε
i ,

with

ϑĨ
µ ≡ − 1

2 ε̄γµλ
ã f x

ã hĨ
x −

√
6

4 i hĨ ε̄ψµ , D̂µϕ
x = Dµϕ

x − κ
2 i ψ̄µλx ,

Dµϑ
Ĩ
ν = ∂µϑ

Ĩ
ν + gAJ

µtJK̃
ĨϑK̃

ν , D̂µqX = ∂µqX + gAI
µkX

I + κ i ψ̄i
µζ

B f X
iB ,

(7.52)

and where the (gauge) covariant derivative of the Killing spinor is given by

Dµ(ω̂)ε i = Dµ(ω̂)ε i − ∂µqXω
i j
Xε j − gκ2AI

µPi j
I ε j . (7.53)

Notice that the fermion shifts, proportional to Pi j, Pãi j, W ã andNI
A, indeed appear quadratically

in the scalar potential.
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The transformations under the gauge group G are given by:

δ(ΛG)AI
µ = ∂µΛ

I
G + gAJ

µ fJK
IΛK

G ,

δ(ΛG)B̃M
µν = −gΛJ

GtJK̃
MHK̃

µν ,

δ(ΛG)ϕx = −gΛI
GKx

I ,

δ(ΛG)qX = −gΛI
GkX

I , (7.54)
δ(ΛG)ζA = −δ(ΛG)qXωXB

AζB − gΛI
GtIB

AζB ,

δ(ΛG)λi ã = (−ωãb̃
y fxb̃ +

√
2
3 f ã

wTxyzgzw)λxδ(ΛG)ϕy + δ(ΛG)qXω
i j
Xλ

t
ja + κ

2gΛI
GPi j

I λ
ã
j ,

δ(ΛG)ψi
µ = δ(ΛG)qXω

i j
Xψµ j + κ

2gΛI
GPi j

I ψµ j .

7.4 Simplified action for domain-walls
In the previous chapter we gave the full results, including the quartic fermion couplings. How-
ever, for determining the domain-wall solutions we only need the bosonic parts of the fermionic
transformation rules, and the bosonic action. In this section we have collected all relevant infor-
mation, needed for such an investigation.

The bosonic parts of the fermionic transformation rules immediately lead to the BPS equa-
tions:

δ(ε)ψi
µ = 0 = 1

κ
Dµ(ω)ε i + 1

4
√

6
i hĨH Ĩab(γabµ − 4gµaγb)ε i − 1

κ2
√

6
i gPi jγµε j ,

δ(ε)λi ã = 0 = − 1
2 i /Dϕxε i + 1

4γ · H Ĩhã
Ĩ
ε i − 1

κ2 gPã i jε j +
1
κ2 gW ãε i ,

δ(ε)ζA = 0 = 1
2 i γµD̂µqX f iA

X ε i + 1
κ
gNA

i ε
i ,

(7.55)

with
Dµ(ω)ε i = Dµ(ω)ε i − ∂µqXω

i j
Xε j − gκ2AI

µPi j
I ε j . (7.56)

These equations can in principle be solved by choosing a specific coset manifold, i.e. specifying
the constants NĨ J̃K̃ and by making the ϕx-embedding explicit. Since not every solution of the
BPS equations necessarily has to satisfy the equations of motion, we will also have to give the
truncated action. The bosonic equations of motion can be derived from the following truncated
action:

e−1L = 1
2κ2 R(ω) − 1

4 aĨ J̃H Ĩ
µνH J̃µν − 1

2 gxyDaϕ
xDaϕy − 1

2κ2 hXYDaqXDaqY

+ 1
16g e−1εµνρστΩMN B̃M

µν

(
∂ρB̃N

στ + 2gtIJ
N AI

ρF J
στ + g tIP

N AI
ρB̃P

στ

)

+
g2

κ4

(
− 2WxW x + 4~P · ~P − 2~Px · ~Px − 2NiAN iA

)

+ κ
12

√
2
3 e−1εµνλρσNIJK AI

µ

[
F J
νλFK

ρσ + fFG
J AF

ν AG
λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

)]

− 1
8 e−1εµνλρσΩMN tIK

MtFG
N AI

µAF
ν AG

λ

(
− 1

2 g FK
ρσ +

1
10 g2 fHL

K AH
ρ AL

σ

)
, (7.57)
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where the relevant covariant derivatives are given by

Dµϕ
x = ∂µϕ

x + gAI
µKx

I , DµqX = ∂µqX + gAI
µkX

I . (7.58)



Conclusions

In this thesis we have used two different techniques for the construction of gauged supergravi-
ties. The first method is generalized reduction - also called Scherk-Schwarz I reduction - which
exploits global symmetries of higher dimensional supergravity theories in order to introduce
masses into lower dimensional supergravity theories. The global symmetries used for dimen-
sional reduction generically appear as a gauged symmetry in the lower dimensional theory. The
group-manifold equivalent of this mechanism is called Scherk-Schwarz II and deals with dif-
feomorphisms of the compact group manifold. In this case the masses occur as components of
structure constants of a gauge group G in lower dimensions. In chapter 4 we demonstrated the
Scherk-Schwarz I mechanism by reducing from eleven down to nine dimensions, by making use
of several possible global scaling symmetries. Already at this level various different gaugings
could be obtained, among which also non-compact gaugings. Non-compact gaugings in general
are very interesting since they are believed to circumvent no-go theorems regarding the exis-
tence of de Sitter vacua and supersymmetrized brane-world scenarios. Furthermore, some of the
gaugings were only defined at the level of the field equations. A better understanding of these
special cases has been obtained recently in [175] in the context of eight-dimensional gauged
supergravity.

The second method used in this thesis is the conformal program, which is a tool to construct
matter-coupled gauged Poincaré supergravity. Motivated by recent developments like e.g. the
brane-world scenario, we performed the conformal program in five dimensions. In chapter 5 the
five-dimensional Poincaré algebra was extended to the full superconformal group. By gauging
the superconformal group, applying the curvature constraints and introducing auxiliary matter
fields, we constructed the minimal representation of the superconformal group, containing the
graviton, called the Standard Weyl multiplet. In chapter 6 matter multiplets were introduced:
vector-tensor multiplets and hypermultiplets. The transformation rules and corresponding ac-
tions were found in the background of the Weyl multipet fields. Finally, in chapter 7 the vector-
tensor and hyper action were combined and used as starting point of the gaugefixing procedure.
In this procedure we made convenient gauge choices for the symmetries that are not in the
Poincaré algebra, and solved for the dependent gaugefields and auxiliary matter fields. The fi-
nal result of this exercise indeed produced matter-coupled Poincaré supergravity. It furthermore
provided an improved understanding of the gauge-fixing procedure, in relation with hyperkähler
and quaternionic-Kähler geometry.

Note that we do not claim to have found the most general matter coupled N = 2 Poincaré
supergravity in five dimensions. First of all, in view of the applications, we chose to include only
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vector-tensor and hyper multiplets. Several other representations could have been included as
well, like the linear and nonlinear multiplet. Secondly, it can not be excluded that more general
gaugings can be found from dimensional reduction; especially if we drop the requirement of
an action, several new possibilities may be possible. In all these cases, including our five-
dimensional Poincaré action, it is not clear what the higher dimensional origin is, if any.

Compared to the existing formulations by e.g. Ceresole and Dall’Agata [76], or Günay-
din and Zagermann [73–75], we have found a generalization by allowing off-diagonal gauge-
transformations between the vector and tensor multiplets. This introduces extra terms propor-
tional to the representation matrices tIJ

M in the action, transformation rules and most importantly
in the scalar potential, that were not found in other literature.

The presence of the extra off-diagonal couplings in the action and transformation rules will
probably allow for non-compact gaugings in five dimensions, leading to new classes of solutions,
e.g. new domain-walls that can be used for supersymmetric brane-world models. It will be very
interesting to see whether these new couplings will lead to new de Sitter vacua and improved
realizations of brane-world scenarios. Hopefully, future research will teach us more.



Appendix A

Conventions

In this appendix, we will summarize our conventions. Furthermore, we will give some useful
identities that have been used in the previous chapters.

A.1 Indices

Below we will summarize the different ranges and meanings of the indices used in chapters 5
and 6. First of all, the metric that we use is mostly plus: i.e. in five dimensions, we have
gµν = (− + + + +). In chapter 5, we have used the following notations

µ, ν 0, 1, . . . , 4 space-time ,
a, b 0, 1, . . . , 4 tangent space ,
α, β 1, . . . , 4 spinor , (A.1)
i, j 1, 2 SU(2) ,

In chapter 6, we have furthermore used indices labelling the components of the matter multiplets.
In particular, we have used

Ĩ, J̃ 1, 2, . . .n + m vector-tensor multiplet ,
I, J 1, 2, . . . , n vector multiplet ,

M,N 1, 2, . . . ,m tensor multiplet ,
X, Y 1, 2, . . . , 4r hypermultiplet target space , (A.2)
A, B 1, 2, . . . , 2r hypermultiplet tangent space ,

i, j 1, 2 SU(2) .

In chapter 7 two compensating multiplets were introduced. The X, Y and A, B indices were
replaced by hatted ones to denote the increased ranges. The other indices are as above, but with
n = nV + 1, m = nT and r = nH , where nV , nT and nH respectively are the number of Poincaré
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vector-, tensor- and hypermultiplets. The following indices were used1:

Ĩ, J̃ 1, 2, . . .nV + nT + 1 vector-tensor multiplet ,
I, J 1, 2, . . . , nV + 1 vector multiplet ,

M,N 1, 2, . . . , nT tensor multiplet ,
x̃, ỹ 1, 2, . . . , nV + nT vector-tensor multiplet ,

X̂, Ŷ 1, 2, . . . , 4nH + 4 hyperkähler hypermultiplet target space ,
X, Y 1, 2, . . . , 4nH quaternionic-Kähler hypermultiplet target space , (A.3)

zα α = 1, 2, 3 SU(2) subspace of the hyperkähler hypermultiplet target space ,
Â, B̂ 1, 2, . . . , 2nH + 2 hyperkähler hypermultiplet tangent space ,
A, B 1, 2, . . . , 2nH quaternionic-Kähler hypermultiplet tangent space ,

i, j 1, 2 SU(2) ,
ᾱ, β̄ 1, 2, 3 SU(2) vector index .

In this thesis symmetrizations are denoted with parentheses, and anti-symmetrizations with
brackets around the indices. Furthermore, we (anti-)symmetrize with weight one:

X(ab) ≡ 1
2 (Xab + Xba) , X[ab] ≡ 1

2 (Xab − Xba) . (A.4)

A.2 Tensors
Our conventions for the D-dimensional Levi-Civita tensor εa1...aD are

ε01...(D−1) = −ε01...(D−1) = 1 . (A.5)

In the local case we use the Levi-Civita tensor density as a “constant tensor”. It can be obtained
from the Levi-Civita tensor by using vielbeins to convert the tangent space indices to space-time
indices and multiplying the result with the vielbein determinant

εµ1...µD = e−1eµ1
a1 · · · eµd

aDεa1...aD , εµ1...µD = e eµ1
a1 · · · eµD

aDε
a1...aD , (A.6)

where we have used the Einstein summation convention in which repeated indices are summed
over.

Note that raising and lowering the indices of the Levi-Civita tensor is done with the metric,
which for the Levi-Civita tensor density is done by using the definition (A.6). Contractions of
the Levi-Civita tensor give products of delta-functions which are normalized as

εa1...apb1...bqε
a1...apc1...cq = −p!q!δ[c1

[b1
. . . δ

cq]
bq] , (A.7)

We have defined the dual of five-dimensional tensors as

Ãa1...a5−n = 1
n! i εa1...a5−nb1...bn Abn...b1 . (A.8)

1For the hypermultiplets we now assume the presence of a metric on the scalar manifold.
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Using (A.7), one finds the following identities

˜̃A = A ,
1
n!

Aa1 ...an Ba1...an =
1
n!

A · B = 1
(n − 5)!

Ã · B̃ , (A.9)

where we have introduced the generalized inner product notation A · B that we use throughout
this thesis.

We use the same conventions for the Riemann tensor and its contractions as [176]. In par-
ticular, we define the Riemann tensor as

Rµ
νλρ = ∂λΓ

µ
ρν − ∂ρΓµλν + Γ

µ
σλΓ

σ
ρν − ΓµσρΓσλν . (A.10)

The Ricci tensor and Ricci scalar in this thesis are given by

Rµν = Rλ
µλν , R = gµνRµν . (A.11)

With these conventions, the Einstein-Hilbert action has a positive sign.

A.3 Differential forms
At several places in this thesis, we have used differential form notation. A p-form is related to a
rank-p anti-symmetric tensor according to

F(p) =
1
p!

dxµ1 . . . dxµp Fµ1...µp . (A.12)

The analog of the dual of an anti-symmetric tensor (A.8), is given by the Hodge-dual: i.e a
differential p-form A has a (D − p)-form B = ?A as its dual with components

Bµ1...µq =
1
p!

e εµ1...µqν1...νp Aν1 ...νp , q = D − p . (A.13)

Note in particular the different order in which the indices in (A.13) are contracted with respect
to (A.8). With this definition, we have the usual identity

? ? A(p) = (−)pq+1A(p) , q = D − p . (A.14)

A.4 Spinors in five dimensions
Our five-dimensional spinors are symplectic-Majorana spinors that transform in the (4, 2) of
SO(5) ⊗ SU(2). The generators Ui j of the R-symmetry group SU(2) are defined to be anti-
Hermitian and symmetric, i.e.

(Ui
j)∗ = −U j

i , Ui j = U ji . (A.15)

A symmetric traceless Ui
j corresponds to a symmetric U i j since we lower or raise SU(2) indices

using the ε-symbol contracting the indices in a northwest-southeast (NW–SE) convention

Xi = εi jX j , Xi = X jε ji , ε12 = −ε21 = ε
12 = 1 . (A.16)
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The actual value of ε is here given as an example. It is in fact arbitrary as long as it is antisym-
metric, εi j = (εi j)∗ and ε jkε

ik = δ j
i. When the SU(2) indices on spinors are omitted, NW-SE

contraction is understood
λ̄ψ = λ̄iψi , (A.17)

The charge conjugation matrix C and Cγa are antisymmetric. The matrix C is unitary and γa

is Hermitian apart from the timelike one, which is anti-Hermitian. The bar is the Majorana bar

λ̄i = (λi)TC . (A.18)

We define the charge conjugation operation on spinors as

(λi)C ≡ α−1B−1εi j(λ j)∗ , λ̄iC ≡ (λi)C = α−1
(
λ̄k

)∗
Bεki , (A.19)

where B = Cγ0, and α = ±1 when one uses the convention that complex conjugation does not
interchange the order of spinors, or α = ± i when it does. Symplectic Majorana spinors satisfy
λ = λC . Charge conjugation acts on gamma-matrices as (γa)C = −γa, does not change the order
of matrices, and works on matrices in SU(2) space as MC = σ2M∗σ2. Complex conjugation can
then be replaced by charge conjugation, if for every bi-spinor one inserts a factor −1. Then, e.g.
the expressions

λ̄iγµλ
j , i λ̄iλi (A.20)

are real for symplectic Majorana spinors. For more details, see [137].

A.5 Gamma-matrices in five dimensions
The gamma-matrices γa are defined as matrices that satisfy the Clifford-algebra

{γa, γb} ≡ γaγb + γbγa = 2ηab . (A.21)

Completely anti-symmetrized products of gamma-matrices are denoted in three different ways

γ(n) = γa1···an = γ[a1 · · ·γan] . (A.22)

The product of all gamma-matrices is proportional to the unit matrix in odd dimensions. We
use

γabcde = i εabcde . (A.23)

This implies that the dual of a (5 − n)-antisymmetric gamma-matrix is the n-antisymmetric
gamma-matrix given by

γa1...an =
1

(5−n)! i εa1...anb1...b5−nγ
b5−n...b1 . (A.24)

For convenience, we will give the values of gamma-contractions like

γ(m)γ(n)γ(m) = cn,mγ(n) , (A.25)

where the constants cn,m are given in table A.1. The constants for n,m > 2 can easily be obtained
from (A.24) and table A.1.

Changing the order of spinors in a bilinear leads to the following signs

ψ̄(1)γ(n)χ
(2) = tn χ̄(2)γ(n)ψ

(1)
{

tn = +1 for n = 0, 1
tn = −1 for n = 2, 3 (A.26)

where the labels (1) and (2) denote any SU(2) representation.
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cn,m m = 1 m = 2
n = 0 5 −20
n = 1 −3 −4
n = 2 1 4

Table A.1: Coefficients used in contractions of gamma-matrices.

A.6 Fierz-identities in five dimensions
The sixteen different gamma-matrices γ(n) for n = 0, 1, 2 form a complete basis for four-
dimensional matrices. Similarly, the identity matrix 2 and the three Pauli-matrices σi for
i = 1, 2, 3 form a basis for two-dimensional matrices. A change of basis in a product of two
pseudo-Majorana spinors will give rise to so-called Fierz-rearrangement formulae, which in
their simplest form are given by

ψ jλ̄
i = − 1

4 λ̄
iψ j − 1

4 λ̄
iγaψ jγa +

1
8 λ̄

iγabψ jγab , ψ̄[iλ j] = − 1
2 ψ̄λε

i j . (A.27)

Using such Fierz-rearrangements, other useful identities can be deduced for working with cubic
fermion terms

λ jλ̄
jλi = γaλ jλ̄

jγaλ
i = 1

8γ
abλiλ̄γabλ ,

γcdγabλ
iλ̄γcdλ = 4λiλ̄γabλ . (A.28)

When one multiplies three spinor doublets, one should be able to write the result in terms of(
8
3

)
= 56 independent structures. From analyzing the representations, one can obtain that these

are in the (4, 2) + (4, 4) + (16, 2) representations of SO(5) × SU(2). They are

λ jλ̄
jλi = γaλ jλ̄

jγaλ
i = 1

8γ
abλiλ̄γabλ ,

λ(kλ̄iλ j) , (A.29)
λ jλ̄

jγaλ
i .

As a final Fierz-identity, we give a three-spinor identity which is needed to prove the invariance
under supersymmetry of the action for a vector multiplet

ψi
[Iψ̄JψK] = γ

aψi
[Iψ̄JγaψK] . (A.30)

A similar identity was required to get the full hypermultiplet action from the [field]×[non-
closure] method

ψi
[µψ̄νψρ] = γaψ

i
[µψ̄νγ

aψρ] . (A.31)
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Appendix B

Reductions

B.1 Conventions
We use mostly plus signature (− + · · ·+). All metrics are Einstein-frame metrics. Unless stated
otherwise, doubly hatted fields and indices are eleven-dimensional, singly hatted fields and in-
dices ten-dimensional while unhatted ones are nine-dimensional. Greek indices µ̂, ν̂, ρ̂ . . . denote
world coordinates and Latin indices â, b̂, ĉ . . . represent tangent space-time. They are related by
the vielbeins êµ̂ â and inverse vielbeins êâ

µ̂. Explicit indices x, y, z are underlined when flat and
non-underlined when curved. When indices are omitted we use form notation.

B.2 Reduction of Ricci scalar
Covariant constancy of the metric translates to

Dµeνa = 0 = ∂µeνa − Γµνρeρa + ωµ
abeνb . (B.1)

Taking the antisymmetric part we obtain

Ωµν
a ≡ ω[µ

abeν]b = 2∂µeνa , Ωabc = ea
µeb

νΩµνc , ωabc =
1
2 (Ωabc + Ωcab −Ωbca) . (B.2)

The Riemann curvature and Ricci scalar in terms of the spin connection are given by

Rµν
ab = 2D[µων]

ab = 2∂[µω
ab
ν] + 2ω[µ

acων]c
b , R = Rµν

abea
µeb

ν . (B.3)

Using the vielbein-Ansätze (3.8) the spin connections reduce as follows

ω̂abc = e−αφ(ωabc + 2αηa[b∂c]φ) , ω̂abz =
1
2 e(β−2α)φFab(A) , ω̂azz = 0 ,

ω̂zbc = − 1
2 e(β−2α)φFbc(A) , ω̂zbz = −βe−αφ∂bφ , ω̂zzz = 0 . (B.4)

The determinant of the metric reduces to

ê = e(β+Dα)φe . (B.5)
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The Einstein-Hilbert action can now be written as

Ŝ =
1

2κ2
D+1

∫
dDxdz êR̂(ω̂)

= − 1
2κ2

D+1

∫
dDxdz 2ê

(
ω̂[µ̂

âĉω̂ν̂]ĉ
b̂êâ

µ̂êb̂
ν̂
)
. (B.6)

The dω term has been partially integrated, and the boundary term is assumed to be zero. Note
that in the case of non-trivial boundaries some extra requirements will have to be satisfied for
these terms to vanish. Substituting the expressions for the vielbeins and spin connections, we
obtain

S =
1

2κ2
D

∫
dDxdz e[β−(D−2)α]φe

{
2ω[a

acωb]c
b + 2

[
β + (D − 2)α

]
ωa

ac∂cφ

+
[
α2(D − 1)(D − 2) + 2αβ(D − 1)

]
(∂φ)2 − 1

4 e2(β−α)φF2(A)
}
. (B.7)

This action can be brought into a canonical form by choosing

α2 = 1
2(D−1)(D−2) , β = −(D − 2)α . (B.8)

This leads to the following scalar-gravity-Maxwell action:

S =
1

2κ2
D

∫
dDxdz e

{
R(ω) − 1

2 (∂φ)2 − 1
4 e−2(D−1)αφF2(A)

}
. (B.9)

B.3 Spinors and Γ-matrices in ten and nine dimensions
The Γ-matrices in ten (Γµ̂) and nine (γµ) dimensions can be chosen to satisfy

Γ
†
µ̂
= ηµ̂µ̂Γµ̂ and γ†µ = ηµµγµ , (B.10)

respectively. In ten dimensions we can also choose the Γ-matrices to be real, while in nine
dimensions they will be purely imaginary, which implies that

ΓT
µ̂ = ηµ̂µ̂Γµ̂ and γT

µ = −ηµµγµ . (B.11)

In ten dimensions the minimal spinor is a 32 component Majorana-Weyl spinor with 16 (real)
degrees of freedom. With the choice

Γ11 ≡ −Γ0···9 , Γ11 =

(
0

0 −

)
, (B.12)

we can write a ten-dimensional Majorana-Weyl spinor as being composed of nine-dimensional,
16 component, Majorana-Weyl spinors according to

ψMW
+ =

(
ψ1
0

)
, ψMW

− =

(
0
ψ2

)
, (B.13)
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where ψi are nine-dimensional Majorana-Weyl spinors and + or − denotes the chirality of the
ten-dimensional spinor. The split of an arbitrary ten-dimensional spinor into two Majorana-
Weyl spinors of opposite chirality can of course be done without reference to nine dimensions
(through the specific choice of Γ11), but each ten-dimensional Majorana-Weyl spinor will then
in general have 32 non-zero components even though it only has 16 degrees of freedom. In order
to reduce to nine dimensions we use

Γ11 = σ3 ⊗ , Γz = σ1 ⊗ , Γa = σ2 ⊗ γa , (B.14)

where z is the reduction coordinate and the Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.15)

As mentioned above the nine-dimensional γ-matrices are purely imaginary. If we work with a
reduction of type IIB, where the two spinors have the same chirality, it may be convenient to
introduce complex, nine-dimensional, Weyl spinors according to

ψc = ψ1 + iψ2 , λc = λ2 + iλ1 ,

εc = ε1 + iε2 , λ̃c = λ̃2 + iλ̃1 , (B.16)

which in ten-dimensional notation can be written as, e.g.

ψW
+ =

(
ψ1
0

)
+ i

(
ψ2
0

)
. (B.17)

If we instead work with a reduction of type IIA the two spinors will have opposite chirality, and
can thus be composed into a ten-dimensional Majorana spinor according to

ψM =

(
ψ1
0

)
+

(
0
ψ2

)
. (B.18)

With the above mentioned decomposition into nine-dimensional Majorana-Weyl spinors we can
write

ψM
µ =

(
ψ1
ψ2

)
, εM =

(
ε1
ε2

)
, λM =

(
λ1
λ2

)
, λ̃M =

(
λ̃1
λ̃2

)
(B.19)

and

ψW
µ =

(
ψ1 + iψ2

0

)
, εW

µ =

(
ε1 + iε2

0

)
, (B.20)

λW =

(
0

λ2 + iλ1

)
, λ̃W =

(
0

λ̃2 + iλ̃1

)
, (B.21)

where the spinors without an M or W superscript are Majorana-Weyl spinors. Note also that it
follows from the Clifford algebra and the choice of Γ11 that Γz is off-diagonal, which is crucial
for this construction.
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Appendix C

The geometry of scalar manifolds

In this appendix we will present the essential properties of hypercomplex manifolds, and show
the relation with hyperkähler and quaternionic (Kähler) manifolds. We show how properties of
the Nijenhuis tensor determine whether suitable connections for these geometries can be defined.
We give the curvature relations, and finally the properties of symmetry transformations of these
manifolds.

In [174] we showed that there is a map between conformal hypercomplex/hyperkähler and
quaternionic(-Kähler) geometry, based on the coordinate basis chosen in section 7.1. The re-
quired geometrical properties for quaternionic manifolds were obtained by using the special
coordinate basis for the identities and constraints given in chapter 6.

Hypercomplex manifolds were introduced in [177]. A very thorough paper on the subject
is [178]. Examples of homogeneous hypercomplex manifolds that are not hyperkähler, can be
found in [179,180], and are further discussed in appendix C of [86]. Non-compact homogeneous
manifolds are dealt with in [181]. Various aspects have been treated in two workshops with
mathematicians and physicists [182, 183]. To prepare this appendix, we extensively used [178].
However, in some parts we used original methods.

C.1 The family of quaternionic-like manifolds
Let V be a real vector space of dimension 4r, whose coordinates we indicate as qX (with X =
1, . . . , 4r). We define a hypercomplex structure H on V to be a triple of complex structures Jα,
(with α = 1, 2, 3) which realize the algebra of quaternions,

JαJβ = −δαβ 4r + ε
αβγJγ . (C.1)

A quaternionic structure is the space of linear combinations aαJα with aα real numbers. In this
case the three-dimensional space of complex structures is globally defined, but the individual
complex structures do not have to be globally defined.

LetM be a 4r-dimensional manifold. An almost hypercomplex manifold or almost quater-
nionic manifold is defined as a manifoldM with a field of hypercomplex or quaternionic struc-
tures.
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no preserved metric with a preserved metric
no SU(2) hypercomplex hyperkähler
curvature G`(r,�) USp(2r)

non-zero SU(2) quaternionic quaternionic-Kähler
curvature SU(2) · G`(r,�) SU(2) · USp(2r)

Table C.1: Quaternionic-like manifolds. These are the manifolds that have a quaternionic struc-
ture satisfying (C.1) and (C.2). The holonomy group is indicated. For the right column the metric
may give another real form as e.g. USp(2, 2(r − 1)).

The ‘almost’ disappears under one extra condition. Different terminologies are used to ex-
press this condition. Sometimes it is said that the structure should be 1-integrable. The same
condition is also expressed as the statement that the structure should be covariantly constant
using some connections, and it is also sometimes expressed as the ‘preservation of the struc-
ture’ using that connection. The connection1 here should be a symmetric (i.e. ‘torsionless’)
connection Γ(XY)

Z and possibly an SU(2) connection ωX
α. The condition is

0 = DX JαY
Z ≡ ∂X JαY

Z − ΓXY
W JαW

Z + ΓXW
Z JαY

W + 2εαβγωX
βJγY

Z . (C.2)

If the SU(2) connection has non-vanishing curvature, the manifold is called quaternionic.2 If
the condition (C.2) holds with vanishing SU(2) connection, i.e.

0 = DX JαY
Z ≡ ∂X JαY

Z − ΓXY
W JαW

Z + ΓXW
Z JαY

W , (C.3)

then the manifold is hypercomplex. If there is a hermitian metric, i.e. a metric such that

JαX
ZgZY = −JαY

ZgZX , (C.4)

and if this metric is preserved using the connection Γ (i.e. if Γ is the Levi-Civita connection
of this metric) then the hypercomplex and quaternionic manifolds are respectively promoted
to hyperkähler and quaternionic-Kähler manifolds. Hence this gives rise to the scheme3 of
table C.1.

We will show in section C.4 that the spaces in the upper row have a Ricci tensor that is an-
tisymmetric, and those in the right column have a Ricci tensor that is symmetric (and Einstein).
It follows then that the hyperkähler manifolds are Ricci-flat. The restriction of the holonomy
group when one goes to the right column, just follows from the fact that the presence of a metric
restricts the holonomy group further to a subgroup of O(4r).4

1The word ‘connection’ is by mathematicians mostly used as the derivative including the ‘connection coefficients’.
We use here ‘connection’ as a word denoting these coefficients, i.e. gauge fields.

2For r = 1 there are subtleties in the definition, to which we will return below.
3The table is essentially taken over from [178], where there is also the terminology unimodular hypercomplex or

unimodular quaternionic if the G`(r) is reduced to S`(r).
4The dot notation means that it is the product up to a common factor in both groups that does not contribute. In fact,

one considers e.g. SU(2) and USp(2r) on coset elements as working one from the left, and the other from the right. Then
if both are −1, they do not contribute. Thus: SU(2) · USp(2r) = SU(2)×USp(2r)

�2
.
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A theorem of Swann [168] shows that all quaternionic-Kähler manifolds have a correspond-
ing hyperkähler manifold which admit a quaternionically extended homothety [a homothety
extended to an SU(2) vector as in (6.42)] and which has three complex structures that rotate
under an isometric SU(2) action. It has been shown in [164] that this can be implemented in
superconformal tensor calculus to construct the actions of hypermultiplets in any quaternionic-
Kähler manifold from a hyperkähler cone. Similarly, it has been proven in [184, 185] that any
quaternionic manifold is related to a hypercomplex manifold.

Locally there is a vielbein f iA
X (with i = 1, 2 and A = 1, . . . , r) with reality conditions as

in (6.19). In supersymmetry we always start from these vielbeins and the integrability condition
can be expressed as

∂X f iA
Y − ΓZ

XY f iA
Z + f jA

Y ωX j
i + f iB

Y ωXB
A = 0 . (C.5)

C.2 Conventions for curvatures and lemmas
We start with the notations for curvatures. The main conventions for target space curvature,
fermion reparametrization curvature and SU(2) curvature are

RXYZ
W ≡ 2∂[XΓY]Z

W + 2ΓV[X
WΓY]Z

V ,

RXYB
A ≡ 2∂[XωY]B

A + 2ω[X|C|
AωY]B

C , (C.6)
RXYi

j ≡ 2∂[XωY]i
j + 2ω[X|k|

jωY]i
k .

The SU(2) curvature and connection ωXi
j are hermitian traceless,5 and one can make the transi-

tion to triplet indices α = 1, 2, 3 by using the sigma matrices

RXYi
j = i (σα)i

jRXY
α ,

RXY
α = − 1

2 i (σα)i
jRXY j

i = 2∂[XωY]
α + 2εαβγωX

βωY
γ . (C.7)

This transition between doublet and triplet notation is valid for any triplet object, e.g. the com-
plex structures. It is useful to know the translation of the inner product: Ri

jR j
i = −2RαRα.

The curvatures by definition all satisfy the Bianchi identities that say that they are closed
2-forms, e.g.

D[XRYZ]V
W = 0 . (C.8)

Furthermore, due to the torsionless (symmetric) connection, also the cyclicity property holds.

RXYZ
W + RZXY

W + RYZX
W = 0 . (C.9)

The Ricci tensor is defined as
RXY = RZXY

Z . (C.10)

This is not necessarily symmetric. When Γ is the Levi-Civita connection of a metric, then one
can raise and lower indices, RWZXY = RXYWZ and the Ricci tensor is symmetric. Then one defines
the scalar curvature as R = gXYRXY .

5This means symmetric if the indices are put at equal height using the raising or lowering tensor εi j (NW–SE
convention).
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We now present three lemmas that are useful in connecting scalar manifold indices with
G`(r,�) indices. These lemmas are used in section 6.3 and will simplify further derivations in
this appendix.

Lemma C.2.1 If a matrix MX
Y satisfies

[Jα, M] = 2εαβγJβmγ , (C.11)

for some numbers mγ, then the latter are given by

4 r mα = Tr (JαM) , (C.12)

and the matrix can be written as

M = −mαJα + N , [N, Jα] = 0 . (C.13)

A matrix M of this type is said to ‘normalize the hypercomplex structure’.

Proof. The first statement is proven by taking the trace of (C.11) with Jδ. Inserting this value of
mα in (C.13), it is obvious that the remainder N commutes with the complex structures.

Lemma C.2.2 If a matrix MX
Y commutes with the complex structures, then it can be written as

MX
Y = MA

B f iA
X f Y

iB . (C.14)

and vice-versa, any MA
B matrix can be transformed with (C.14) to a matrix commuting with the

complex structures.

Proof. The vice-versa statement is easy. For the other direction, one replaces Jα with Ji
j as

in (6.28). Then multiply this equation with f X
jA f kB

Z and consider the traceless part in AB.

Lemma C.2.3 If a tensor R[XY]Z
W satisfies the cyclicity condition (C.9) and commutes with the

complex structures,
RXYZ

V JαV
W − JαZ

VRXYV
W = 0 , (C.15)

it can be written in terms of a tensor WABC
D that is symmetric in its lower indices. If RXYZ

Z = 0,
then also W is traceless.

Proof. By the previous theorem, we can write

RXYW
Z = f iA

W f Z
iBRXYA

B , RXYA
B = 1

2 f W
iA f iB

Z RXYW
Z . (C.16)

We can change all indices to tangent indices, defining

Ri j,CDB
A ≡ f X

Ci f Y
jDRXYB

A = −R ji,DCB
A . (C.17)

The cyclicity property of R can be used to obtain

0 = f iA
Z R[WXY]

Z = f iB
[Y RWX]B

A . (C.18)
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We multiply this with f X
iC f Y

D j f W
kE , leading to

Rk j,ECD
A + Rk j,CDE

A + 2R jk,DEC
A = 0 . (C.19)

The symmetric part in ( jk) of this equation implies that R( jk),ABC
D = 0 [multiply the equation by

3, and subtract both cyclicity rotated terms in (CDE)]. Thus we find

Ri j,CDB
A = − 1

2εi jWCDB
A , (C.20)

with
WCDB

A ≡ εi j f X
jC f Y

iDRXYB
A = 1

2ε
i j f X

jC f Y
iD f Z

kB f Ak
W RXYZ

W . (C.21)

Now we prove that W is completely symmetric in the lower indices. The definition immediately
implies symmetry in the first two. The [ jk] antisymmetric part of (C.19) gives

WECD
A +WDCE

A − 2WEDC
A = 0 . (C.22)

Antisymmetrizing this in two of the indices gives the desired result.
Finally, it is obvious from (C.21) that the tracelessness of R and W are equivalent.
The full result for such a curvature tensor is thus

RXYW
Z = − 1

2 f Ai
X εi j f jB

Y f kC
W f Z

kDWABC
D . (C.23)

C.3 The connections
In the definition of hypercomplex and quaternionic manifolds, the affine connection ΓXY

Z and
an SU(2) connection ωX

α appear. In this subsection we will show how they can be obtained.
The crucial ingredient is the Nijenhuis tensor.

C.3.1 Nijenhuis tensor
A Nijenhuis tensor NαβZ

XY is defined for any combination of two complex structures, but we will
use only the ‘diagonal’ Nijenhuis tensor (normalization for later convenience)

NXY
Z ≡ 1

6 JαX
W∂[W JαY]

Z − (X ↔ Y) = −NYX
Z . (C.24)

It satisfies a useful relation
NXY

Z = JαX
X′NX′Y

Z′ JαZ′
Z , (C.25)

from which one can deduce that it is traceless.

C.3.2 Obata connection and hypercomplex manifolds
The torsionless Obata connection [165] is defined as

ΓOb
XY

Z = − 1
6

(
2∂(X JαY)

W + εαβγJβ(X
U∂|U |JγY)

W
)

JαW
Z . (C.26)
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First, note that if a manifold is hypercomplex, i.e. if (C.3) is satisfied, then by inserting the
expression for ∂J from that equation in the right-hand side of (C.26), one finds that the affine
connection of the hypercomplex manifold should be the Obata connection, Γ = ΓOb. One may
thus answer the question whether an almost hypercomplex manifold [i.e. with three matrices
satisfying (C.1)], defines a hypercomplex manifold [i.e. satisfies (C.3)]. As we now know that
the affine connection in (C.3) should be (C.26), this can just be checked. For that purpose, the
following equation is useful:

∂X JαY
Z −

(
ΓOb

XY
W + NXY

W
)

JαW
Z +

(
ΓOb

XW
Z + NXW

Z
)

JαY
W = 0 . (C.27)

It shows that any hypercomplex structure can be given a torsionful connection such that the
complex structures are covariantly constant. The condition for a hypercomplex manifold is
thus that this connection is torsionless, i.e. that the Nijenhuis tensor vanishes. In conclusion,
a hypercomplex manifold consists of the following data: a manifold M, with a hypercomplex
structure with vanishing Nijenhuis tensor. In the main text, we only use the Obata connection,
and we thus have Γ = ΓOb.

C.3.3 Oproiu connection and quaternionic manifolds
For the quaternionic manifolds, the affine connection and SU(2) connection can not be uniquely
defined. Indeed, one can easily check that (C.2) is left invariant when we change these two
connections simultaneously using an arbitrary vector ξW as

ΓXY
Z → ΓXY

Z + S WZ
XY ξW , ωX

α → ωX
α + JαX

WξW , (C.28)

where S is the tensor
S XY

ZW ≡ 2δX
(Zδ

Y
W) − 2JαZ

(X JαW
Y) , (C.29)

which satisfies the relation

S XV
ZW JαV

Y − JαW
VS XY

ZV = 2εαβγJβZ
X JγW

Y . (C.30)

Under this transformation, the G`(r,�) connection transforms as

ωXA
B → ωXA

B + 1
2 f iB

Y f Z
iAS YW

XZ ξW . (C.31)

An invariant SU(2) connection is

ω̃X
α = ωX

α + 1
3 JαX

Y JβY
ZωZ

β = 2
3ωX

α − 1
3ε

αβγJβX
YωY

γ . (C.32)

If we use (C.2) in the expression for the Nijenhuis tensor, (C.24), we find that quaternionic
manifolds do not have a vanishing Nijenhuis tensor, but the latter should satisfy

NXY
Z = −Jα[X

Zω̃Y]
α . (C.33)

This condition can be solved for ω̃. We find

(1 − 2 r) ω̃X
α = NXY

Z JαZ
Y . (C.34)
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Thus the condition for an almost quaternionic manifold to be quaternionic is that the Nijenhuis
tensor satisfies

(1 − 2 r) NXY
Z = −Jα[X

Z NY]V
W JαW

V . (C.35)

On the other hand, one may also use (C.2) in the expression for the Obata connection (C.26).
Then we find that the affine connection for the quaternionic manifolds is given by

ΓXY
Z = ΓOb

XY
Z − Jα(X

ZωY)
α − 1

3 S ZU
XY JαU

VωV
α , (C.36)

which exhibits the transformation (C.28).
One can take a gauge choice for the invariance. A convenient choice is to impose

JαY
ZωZ

α = 0 . (C.37)

With this choice ω̃X
α = ωX

α. The affine connection in (C.36) simplifies, and this expression is
called the Oproiu connection [186]

ΓOp
XY

Z ≡ ΓOb
XY

Z − Jα(X
ZωY)

α

= ΓOb
XY

Z + NZ
XY − JαY

ZωX
α . (C.38)

The last expression shows that the Oproiu connection, which up to here was only proven to
be necessary for solving (C.2), gives rise to covariantly constant complex structures under the
condition (C.33). Indeed, the first two terms give a (torsionful) connection that gives rise to
a covariantly constant hypercomplex structure, see (C.27), and the last term cancels the SU(2)
connection. The condition (C.33) is now the condition that the connection ΓOp is torsionless.

In conclusion, a quaternionic manifold consists of the following data: a manifoldM, with a
hypercomplex structure with Nijenhuis tensor satisfying (C.35).

Levi-Civita connection and hyperkähler or quaternionic-Kähler manifolds. For hyper-
kähler manifolds, the Obata connection should coincide with the Levi-Civita connection of a
metric. For quaternionic-Kähler manifolds, the connection that preserves the metric can be one
of the equivalence class defined from the Oproiu connection by a transformation (C.28).

C.4 Curvature relations

C.4.1 Splitting according to holonomy

There are two interesting possibilities of splitting the curvature on quaternionic-like manifolds.
First of all, the integrability condition of (C.5) yields that the total curvature on the manifold
is the sum of the SU(2) curvature and the G`(r,�) curvature which shows that the (restricted)
holonomy splits in these two factors:

RXYW
Z = RSU(2)

XYW
Z +RG`(r,�)

XYW
Z (C.39)

= −JαW
Z RXY

α + LW
Z

A
B RXYB

A , with LW
Z

A
B ≡ f Z

iA f iB
W .
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The matrices LA
B and Jα commute and their mutual trace vanishes

JαX
Y LY

Z
A

B = LX
Y

A
BJαY

Z , JαZ
Y LY

Z
A

B = 0 . (C.40)

For hypercomplex (or hyperkähler) manifolds, the SU(2) curvature vanishes. Then the Riemann
tensor commutes with the complex structures and using the cyclicity, one may use lemmas C.2.2
and C.2.3 to write

RXYW
Z = − 1

2 f Ai
X εi j f jB

Y f kC
W f Z

kDWABC
D . (C.41)

This W is symmetric in its lower indices. The Ricci tensor is then

RXY =
1
2εi j f iB

X f jC
Y WABC

A = −RYX . (C.42)

Thus the Ricci tensor for hypercomplex manifolds is antisymmetric. In general, the antisym-
metric part can be traced back to the curvature of the U(1) part in G`(r,�) = S`(r,�) × U(1).
Indeed, using the cyclicity condition:

R[XY] = RZ[XY]
Z = − 1

2 RXYZ
Z = −RU(1)

XY , RU(1)
XY ≡ RXYA

A . (C.43)

C.4.2 Splitting in Ricci and Weyl curvature
The separate terms in (C.39) for quaternionic manifolds do not satisfy the cyclicity condition,
and thus are not bona fide curvatures. We will now discuss another splitting

R = RRic
XYW

Z + R(W)
XYW

Z . (C.44)

Both terms will separately satisfy the cyclicity condition. The first part only depends on the Ricci
tensor of the full curvature, and is called the ‘Ricci part’. The Ricci tensor of the second part
will be zero, and this part will be called the ‘Weyl part’ [178]. We will prove that the second part
commutes with the complex structures. The lemmas of section C.2 then imply that the second
part can be written in terms of a tensorWABC

D, symmetric in the lower indices and traceless.
This tensor appears in supersymmetric theories, which is another reason for considering this
construction. The case r = 1 needs a separate treatment which will be discussed afterwards.

To define the splitting (C.44), we define the first term as a function of the Ricci tensor, and
R(W) is just defined as the remainder. The definition of RRic again makes use of the tensor S
in (C.29):

RRic
XYZ

W ≡ 2S WV
Z[X BY]V ,

BXY ≡ 1
4r

R(XY) −
1

2r(r + 2)
Π(XY)

ZWRZW +
1

4(r + 1)
R[XY] . (C.45)

Here, Π projects bilinear forms onto hermitian ones, i.e.

ΠXY
ZW ≡ 1

4

(
δX

ZδY
W + JαX

Z JαY
W
)
. (C.46)

The Ricci part satisfies several properties that can be checked by a straightforward calculation:

1. The Ricci tensor of RRic is just RXY .
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2. The cyclicity property (C.9).

3. Considered as a matrix in its last two indices, this matrix normalizes the hypercomplex
structure (see lemma C.2.1).

Especially to prove the last one, the property (C.30) can be used (multiplying it with BUX and
antisymmetrizing in [ZU]). The relation is explicitly

JαZ
W RRic

XYW
V − RRic

XYZ
W JαW

V = 2εαβγJβZ
V RRic

XY
γ ,

with RRic
XY

α =
1
4r

JαW
ZRRic

XYZ
W = 2Jα[X

Z BY]Z . (C.47)

The important information is now that the full curvature also satisfies these 3 properties. The
latter one is the integrability property of (C.2):

0 = 2D[XDY]JαZ
V = RXYW

V JαZ
W − RXYZ

W JαW
V − 2εαβγRXY

γJβZ
V . (C.48)

As in general for matrices normalizing the complex structure, we can also express RXY
α as

RXYZ
W JαW

Z = 4rRXY
α . (C.49)

This leads to properties of the Weyl part of the curvature. First of all, it implies that this
part is Ricci-flat. Secondly it also satisfies the cyclicity property. Third, it also normalizes the
hypercomplex structure, defining some R(W)α

XY . We will now prove that the latter is zero for r > 1.
The expression for this tensor satisfies a property that can be derived, starting from its defi-

nition, by first using the cyclicity of R(W), then the equation saying that it normalizes the hyper-
complex structure, and finally that it is Ricci-flat

rR(W)α
XY = 1

4 JαU
V R(W)

XYV
U = − 1

2 JαU
VR(W)

V[XY]
U

= −εαβγR(W)β
V[X JγY]

V . (C.50)

Multiplying with JαV
Y and antisymmetrizing leads to

Jα[V
YR(W)α

X]Y = 0 . (C.51)

Secondly, multiplying (C.50) with JδZ
X JδW

Y , and using (C.50) again for multiplying the com-
plex structures at the right-hand side, leads to

JβX
Z JβY

VR(W)α
ZV = −R(W)α

XY or ΠXY
ZVR(W)α

ZV = 0 . (C.52)

Finally, multiplying (C.50) with εαδε JδZ
Y leads to

R(W)α
XY = 0 , if r > 1 . (C.53)

Therefore R(W)
XYZ

V is a tensor that satisfies all conditions of lemma C.2.3, and we can thus write

RXYZ
W = RRic

XYZ
W − 1

2 f Ai
X εi j f jB

Y f kC
W f Z

kDWABC
D . (C.54)

For hypercomplex manifolds, we found that the full curvature can be written in terms of a tensor
WABC

D, see (C.41), which is symmetric in the lower indices, but not necessarily traceless. One
can straightforwardly compute the correspondingW, and find that this is its traceless part, the
trace determining the Ricci tensor:

WABC
D = WABC

D − 3
2(r + 1)

δD
(AWBC)E

E , RXY = −RXYA
A = 1

2εi j f iA
X f jB

Y WABC
C . (C.55)
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C.4.3 The one-dimensional case
As

G`(1,�) = S`(1,�) × U(1) = SU(2) × U(1) , (C.56)

we have now two SU(2) factors in the full holonomy group. This can be written explicitly by
splitting L in (C.39) in a traceless and trace part:

LX
Y

A
B = 1

2 i (σα)A
BJ−αX

Y + 1
2δ

Y
Xδ

B
A . (C.57)

This leads to the r = 1 form of (C.39):

RXYW
Z = −J+αW

ZR+αXY − J−αW
ZR−αXY + δ

Z
WR

U(1)
XY , (C.58)

where for emphasizing the symmetry, we indicate the original complex structures as J+αX
Y .

We saw that for r = 1 we could not perform all steps to get to the decomposition (C.54).
However, some authors define quaternionic and quaternionic-Kähler for r = 1 as a more re-
stricted class of manifolds such that this decomposition is still valid [187]. For quaternionic-
Kähler manifolds, the definition that is taken in general leads for r = 1 to the manifolds with
holonomy SU(2) × USp(2), which is just SO(4). Thus with this definition all four-dimensional
Riemannian manifolds would be quaternionic-Kähler. Therefore a further restriction is imposed.
This further restriction is also natural in supergravity, as it is equivalent to a constraint that fol-
lows from requiring invariance of the supergravity action.

In general, as R(W) normalizes the hypercomplex structure, we can by lemma C.2.1 and
lemma C.2.2 write

R(W)
XYZ

W = −R(W)α
XY JαZ

W + R(W)
XYA

B LZ
W

A
B = R(W)+

XYZ
W + R(W)−

XYZ
W . (C.59)

We impose
R(W)α

XY = 0 , (C.60)

as part of the definition of quaternionic manifolds with r = 1. This is thus the equation that
is automatically valid for r > 1. Using lemma C.2.3, this implies that (C.54) is valid for all
quaternionic manifolds.

In the one-dimensional case, we can see that a possible metric is already fixed up to a mul-
tiplicative function. Indeed, the CAB that is used in (6.88) can only be proportional to εAB.
Therefore, it is said that there is a conformal metric, i.e. a metric determined up to a (local) scale
function λ(q):

gXY ≡ λ(q) f iA
X f jB

Y εi jεAB . (C.61)

One can check that this metric is hermitian for any λ(q), i.e. JαXY = JαX
ZgZY is antisymmetric.

The remaining question is whether this metric is covariantly constant, which boils down to the
covariant constancy of CAB. This condition can be simplified using the Schouten identity:

DXCAB = ∂XCAB + 2ωX[A
CC|C|B] = ∂XCAB + ωXC

CCAB = εAB

(
∂Xλ(q) + ωXC

Cλ(q)
)
. (C.62)

We can choose a function λ(q) such that C is covariantly constant iff ωXC
C is a total derivative,

i.e. if the U(1) curvature vanishes. Thus in the one-dimensional case hypercomplex manifolds
become hyperkähler, and quaternionic manifolds become quaternionic-Kähler if and only if the
U(1) factor in the curvature part G`(1,�) vanishes.
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C.4.4 The curvature of Quaternionic-Kähler manifolds
In quaternionic-Kähler manifolds, the affine connection is the Levi-Civita connection of a met-
ric. Therefore, the Ricci tensor is symmetric. As we have already proven that in the hypercom-
plex case the symmetric part vanishes, hyperkähler manifolds have vanishing Ricci tensor. Now
we will prove that the quaternionic-Kähler spaces are Einstein, and that moreover the SU(2) cur-
vatures are proportional to the complex structures with a proportionality factor that is dependent
on the scalar curvature.

We start again from the integrability property (C.48). Multiplying with JδV
X gives

RYZδ
αδ − εαδβRXYZ

W JβW
X + JαZ

WRXYW
V JδV

X −
−2εαβδRZY

β + 2δαδRXY
βJβZ

X − 2RXY
δJαZ

X = 0 . (C.63)

The second and third term can be rewritten

RXYW
V JδV

X = −RYWX
V JδV

X − RWXY
V JδV

X

= −RYWX
V JδV

X + RYXW
V JδV

X , (C.64)
2RXYW

V JδV
X = −4rRYW

δ .

In the first line, the cyclicity property of the Riemann tensor is used. Then, the symmetry in
interchanging the first two and last two indices (here we use that the curvature originates from
a Levi-Civita connection) and finally interchanging the indices on the last complex structure,
using its antisymmetry (Hermiticity of the metric). This leads to

RYZδ
αδ + εαδβ2(r − 1)RYZ

β − 2(r − 1)RYX
δJαZ

X + 2δαδRβXY JβZ
X = 0 . (C.65)

Multiplying with δαδ gives
RYZ = − 2

3 (r + 2)JβZ
XRXY

β . (C.66)

On the other hand, multiplying (C.65) with εαδγ gives only a non-trivial result for r , 1, in
which case we find

for r > 1 : 2RYZ
α = εαβγJβY

XRXZ
γ . (C.67)

We impose the same equation for r = 1. We will connect this equation to another requirement
below.

By replacing εαβγJβY
X by −(JαJγ)Y

X − δX
Yδ

αγ we get

RXY
α = − 1

3 JαX
Z JβZ

VRVY
β =

1
2(r + 2)

JαX
ZRZY . (C.68)

We also have
JαX

ZRZY
β = εαβγRXY

γ − 1
2(r + 2)

δαβRXY . (C.69)

The final step is obtained by using (C.48) once more. Now multiply this equation with
εαβγJβYX JγV

U , and use for the contraction of the Riemann curvature tensor with JβYX that we
may interchange pairs of indices such that (C.49) can be used. Then everywhere JαRβ appears,
for which we can use (C.69). This leads to the equation expressing that the manifold is Einstein:

RXY =
1
4r

gXYR . (C.70)
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With (C.68), the SU(2) curvature is proportional to the complex structure:

RXY
α = 1

2νJαXY , ν ≡ 1
4r(r + 2)

R . (C.71)

The Einstein property drastically simplifies the expression for B in (C.45) to

BXY =
1
4νgXY . (C.72)

The Ricci part of the curvature then becomes proportional to the curvature of a quaternionic
projective space of the same dimension:

(
R�Pn)

XYWZ
= 1

2 gZ[XgY]W +
1
2 JαXY JαZW − 1

2 JαZ[X JαY]W =
1
2 JαXY JαZW + L[ZW]

ABL[XY]AB . (C.73)

The full curvature decomposition is then

RXYWZ = ν(R�Pn
)XYWZ +

1
2 LZW

ABWABCDLXY
CD , (C.74)

with WABCD completely symmetric. The constraint appearing in supergravity fixes the value
of ν to −κ2. The quaternionic-Kähler manifolds appearing in supergravity thus have negative
scalar curvature, and this implies that all such manifolds that have at least one isometry are
non-compact.

Finally, we should still comment on the extra constraint (C.67) for r = 1. In the mathematics
literature [187] the extra constraint is that the quaternionic structure annihilates the curvature
tensor, which is the vanishing of

(Jα · R)XYWZ ≡ JαX
VRVYWZ + JαY

VRXVWZ + JαZ
VRXYWV + JαW

VRXYVZ

= εαβγ
(
RXY

βJγZW + RZW
βJγXY

)
, (C.75)

where the second expression is obtained using once more (C.48). We have proven that (C.67)
was sufficient extra input to have RαXY proportional to JαXY implying Jα · R = 0. Vice versa:
multiplying (C.75) with εαδε JεYZ leads to (C.67) if Jα · R = 0. Thus indeed the vanishing
of (C.75) is an equivalent condition that can be imposed for r = 1 and that is automatically
satisfied for r > 1.

C.5 Symmetries
Symmetries of manifolds are most known as isometries for Riemannian manifolds (i.e. when
there is a metric). They are transformations δqX = kX

I (q)ΛI , where ΛI are infinitesimal parame-
ters. They are determined by the Killing equation6

D(XkY)I = 0 , kXI ≡ gXYkY
I . (C.76)

6See also ‘conformal Killing vectors’ in section 5.1.
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This definition can only be used when there is a metric. However, there is a weaker equation that
can be used for defining symmetries also in the absence of a metric, but when parallel transport
is defined. Indeed, the Killing equation implies that

−RYZX
WkWI = DYDZkXI −DZDYkXI = DYDZkXI +DZDXkYI . (C.77)

Using the cyclicity condition on the left-hand side to write

RYZX
W = 1

2

(
RYZX

W − RZXY
W − RXYZ

W
)
, (C.78)

we obtain
DXDYkZ

I = RXWY
ZkW

I . (C.79)

This equation does not need a metric any more. We will use it as definition of symmetries when
there is no metric available. We will see that it leads to the group structure that is known from
the Riemannian case.

Of course, we will require also that the symmetries respect the quaternionic structure. This
is the statement that the vector kX

I normalizes the quaternionic structure:

LkI J
α

X
Y ≡ kZ

I ∂Z JαX
Y +

(
∂XkZ

I

)
JαZ

Y − JαX
Z
(
∂ZkY

I

)
= bαβI JβX

Y , (C.80)

for some functions bαβI (q). This bI is antisymmetric, as can be seen by multiplying the equation
with JγY

X .
Thus we define symmetries in quaternionic-like manifolds as those δqX = kX

I (q)ΛI , such that
the vectors kX

I satisfy (C.79) and (C.80).
We first consider (C.80). One can add an affine torsionless connection to the derivatives,

because they cancel. As a total covariant derivative on J vanishes, we add in case of quaternionic
manifolds the SU(2) connection to the first derivative. This addition is of the form of the right-
hand side. Thus defining Pγ

I by bαβI − 2εαβγωX
γkX

I = 2εαβγνPγ
I , the remaining statement is that

there is a Pα
I (q) (possibly zero) such that7

JαX
Z
(
DZkY

I

)
−

(
DXkZ

I

)
JαZ

Y = −2εαβγJβX
YνPγ

I . (C.81)

The equation now takes on the form of (C.11) in lemma C.2.1. Thus, using this lemma, as well
as lemma C.2.2, we have

DXkY
I = νJαX

Y Pα
I + LX

Y
A

BtIB
A . (C.82)

tIB
A is the matrix that we saw in the fermion gauge transformation law (6.49). The rule (C.12)

gives an expression for Pα
I , which is called the moment map:

4r ν Pα
I = −JαX

Y
(
DYkX

I

)
. (C.83)

Using the second equation, (C.79) we now find

RZWX
YkW

I = DZDXkY
I = νJαX

Y (DZPα
I ) + LX

Y
A

B
(
DZtIB

A
)
. (C.84)

7Here we introduce in fact νP. The factor ν is included for agreement with other papers and allows a smooth limit
ν = 0 to the hypercomplex or hyperkähler case. In fact, we have seen in (6.55) that supersymmetry in the setting of
hypercomplex manifolds demands that the right-hand side of (C.80) is zero. We will see below that this is unavoidable
for hypercomplex manifolds even outside the context of supersymmetry.
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Using the curvature decomposition (C.39) and projecting onto the complex structures and L, we
find two equations

RZW
αkW

I = −νDZ Pα
I , RZWB

AkW
I = DZtIB

A . (C.85)

The algebra that the vectors kX
I define is

2kY
[IDYkX

J] + fIJ
KkX

K = 0 , (C.86)

where fIJ
K are structure constants. Multiplying this relation with JαX

Z
DZ , and using (C.79),

and (C.83) gives

2JαX
Z(DZkY

[I)(DYkX
J]) + 2JαX

Z RZWY
XkY

[Ik
W
J] − 4rν fIJ

K Pα
K = 0 . (C.87)

The trace that appears in the first term can be evaluated by using (C.81) and once more (C.83),
while in the second term we can use the cyclicity condition of the curvature and (C.49) to obtain

−2ν2εαβγPβ
I Pγ

J + RYW
αkY

I kW
J − ν fIJ

K Pα
K = 0 . (C.88)

We thus found that the moment maps, defined in (C.83) satisfy (C.85) and (C.88). The first of
these shows that we can take ν = 0 for the hypercomplex or hyperkähler manifolds. Both these
two relations vanish identically in this case. However, for quaternionic-Kähler and hyperkähler
manifolds, we can use (C.71), and dividing by ν leads to

JαZWkW
I = −2DZPα

I , (C.89)

−2νεαβγPβ
I Pγ

J +
1
2 JαYWkY

I kW
J − fIJ

K Pα
K = 0 . (C.90)

These equations are thus equivalent to the previous ones for ν , 0 if there is a metric. This is thus
the quaternionic-Kähler case, for which these relations appear already in [188]. But we did not
derive these equations for the ν = 0 (hyperkähler) case. Rather, the first one is taken as the def-
inition of P for this case. This equation also follows from supersymmetry requirements, where
the moment map Pα

I is an object that is needed to define the action, see (6.95). The moment
map is then determined up to constants. As we saw in section 6.3, the constants are fixed when
conformal symmetry is imposed. Similarly, the second equation appears in supersymmetry as a
requirement, see (6.100). For a conformal invariant theory, the constants in Pα

I are determined
and the moment map again satisfies (C.90) automatically due to a similar calculation as the one
that we did above for ν , 0. Note, however, that for the quaternionic manifolds that are not
quaternionic-Kähler, we can only use (C.85) and (C.88), as (C.89) and (C.90) need a metric.
For hypercomplex manifolds, on the other hand, the moment maps are not defined.
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Samenvatting

Sinds de geboorte van de deeltjesfysica, na de ontdekking van het elektron door Thomson in
1897, is er enorme vooruitgang geboekt in de beschrijving van waarneembare processen in de
natuur. Om het gedrag van deeltjes te kunnen verklaren op (sub)atomaire schaal, werd om-
streeks 1920 de quantummechanica ontwikkeld. Men realiseerde zich, afgaand op de uitkom-
sten van experimenten, dat alle deeltjes een fundamentele eigenschap bezitten: genaamd ‘spin’.
De waarde hiervan splitst de deeltjes in twee klassen: bosonen en fermionen, elk met zeer spe-
cifieke eigenschappen. Enige tijd daarvoor, in 1905, revolutioneerde Einstein ons denken over
ruimte en tijd met zijn speciale relativiteitstheorie. Deze theorie liet zien hoe de concepten ruim-
te en tijd zijn verweven en niet apart kunnen worden beschouwd. Een combinatie van deze twee
theorieën leidde omstreeks 1970 uiteindelijk tot het Standaard Model, dat perfect in staat bleek
om de wisselwerkingen te beschrijven tussen de elementaire deeltjes die de bouwstenen vormen
van alle observeerbare materie in het universum. Het Standaard Model beschrijft drie soor-
ten fundamentele interacties: de elektromagnetische, de zwakke en de sterke wisselwerking.
Het begrip ijksymmetrie speelt hierbij een belangrijke rol. Door het lokaal maken van deze
symmetrie, dat wil zeggen het invoeren van een coördinaatafhankelijke transformatieparameter,
worden spin-1-ijkdeeltjes ingevoerd die krachten kunnen overbrengen tussen twee deeltjes. Het
bekendste voorbeeld is het foton, dat het elektromagnetisch veld tussen twee geladen deeltjes
veroorzaakt, waardoor deze deeltjes elkaar aantrekken of afstoten afhankelijk van hun ladingen.
Op vergelijkbare wijze worden de overige fundamentele krachten ‘gedragen’ door respectieve-
lijk de W/Z-bosonen en de gluonen. Alhoewel het Standaard Model met zeer grote precisie
experimenteel bevestigd is, is er een aantal discrepanties. Zo is het Higgs-deeltje, dat nodig is
om massa’s te geven aan de andere elementaire deeltjes, nog niet gevonden.8 Een ander bezwaar
is de noodzaak voor 19 ad-hocparameters — onder andere de massa’s van de elementaire deel-
tjes — die niet theoretisch kunnen worden bepaald, terwijl in een fundamentele theorie alles uit
basisprincipes zou moeten volgen.

Een andere grootse prestatie in de 20e eeuw was Einsteins algemene relativiteitstheorie, die
de vierde fundamentele kracht voor zijn rekening neemt: zwaartekracht. Deze theorie werd ge-
construeerd in 1914 in een poging de grondbeginselen van de speciale relativiteit te implemen-
teren in Newtons zwaartekrachttheorie en vergrootte ons begrip van de samenhang van ruimte
en tijd. Enkele successen waren bijvoorbeeld de voorspellingen van kleine afwijkingen van pla-
neetbanen en de buiging van licht langs massieve objecten. Van meer speculatieve aard zijn de
voorspellingen van zwarte gaten en zwaartekrachtsgolven, die beide slechts indirect zijn geveri-

8Men hoopt dat de nieuwe LHC-versneller hier in 2006 uitsluitsel over zal kunnen geven.
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kracht ijkdeeltje werkt op bereik relatieve
sterkte

sterke nucleaire kracht gluon quarks nucleaire afstanden 20

elektromagnetisme foton geladen deeltjes oneindig 1

zwakke nucleaire kracht W- of Z-boson quarks en leptonen nucleaire afstanden 10−7

zwaartekracht graviton? massieve deeltjes oneindig 10−36

Tabel C.2: De vier fundamentele krachten. De relatieve sterktes zijn gebaseerd op twee wissel-
werkende up-quarks, op een afstand van 10−18 m van elkaar [1].

fieerd. Tevens konden voorspellingen worden gedaan over de evolutie van ons heelal. Alhoewel
de theorie de interacties tussen massieve objecten perfect kan verklaren op relatief grote leng-
teschaal, gaat er iets mis wanneer men probeert algemene relativiteit te beschrijven in het ge-
bied waar de quantummechanica heerst. Aangezien de zwaartekrachtseffecten op kleine schaal
verwaarloosbaar zijn ten opzichte van de andere drie fundamentele krachten, zie tabel C.2, is
het niet verwonderlijk dat de algemene relativiteitstheorie slechts is getest tot een afstand van
ongeveer 1 millimeter. Een poging om zwaartekracht te beschrijven met de standaard quantisa-
tiemethoden, die ook werden gebruikt voor het Standaard Model, faalde. De theorie kampte met
oneindigheden vanwege een niet-dimensieloze koppelingsconstante κ = 8πG/c4, waardoor de
theorie ongeschikt is om storingsrekening op toe te passen. De typische lengteschaal waar onze
klassieke ideeën over zwaartekracht en de ruimte-tijd hun geldigheid verliezen wordt gegeven
door de Planck-lengte:

`P =

√
hG
c3 ≈ 4.1 · 10−35 m , (C.91)

waarbij h de constante van Planck is, G Newtons zwaartekrachtsconstante en c de lichtsnelheid.
Samenvattend, aan beide uiteinden van het schaalspectrum hebben we twee succesvolle the-

orieën die niet verenigbaar lijken te zijn. De oplossing zou gegeven moeten worden door een the-
orie van ‘quantumzwaartekracht’, die alle vier de fundamentele krachten omvat. De zoektocht
naar deze geunificeerde theorie is het hoofddoel geweest van de hoge-energiefysica gedurende
de laatste twintig jaar.

Een gedeeltelijk succes werd bereikt in 1976 door de ontdekking van superzwaartekracht;
een uitbreiding van de algemene relativiteitstheorie die zich beter gedroeg bij hoge energieën,
vanwege een gedeeltelijk tegen elkaar wegvallen van oneindigheden. Het cruciale ingrediënt
hierbij was supersymmetrie, een symmetrie tussen bosonen en fermionen die voorspelt dat voor
iedere boson in de natuur een corresponderend fermionisch deeltje bestaat, en visa versa. De
ijktheorie van supersymmetrie wordt gegeven door superzwaartekracht. Het spin-2-ijkdeeltje dat
verantwoordelijk is voor het overdragen van de zwaartekracht wordt het graviton genoemd. Zijn
supersymmetrische partner is het zogenaamde gravitino. Om deze deeltjes te meten zijn echter
energieën nodig die ver buiten het bereik liggen van hedendaagse (en toekomstige) versnellers.

De meest veelbelovende kandidaat tot op heden is de supersnarentheorie. Snarentheorie ver-
onderstelt dat alle deeltjes gerepresenteerd worden door trillingstoestanden van een snaar met
een typische lengte `S in de orde van de Planck lengte `P. Eén van de trillings toestanden bleek
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een massaloos spin-2-deeltje te beschrijven dat zich gedraagt als een graviton. Vervolgens werd
gevonden dat de lage-energielimiet van supersnarentheorie wordt gegeven door superzwaarte-
kracht. Alhoewel deze laatste niet vrij van oneindigheden was gebleken, is er een intuïtieve
reden waarom supersnarentheorie dat vermoedelijk wel is. Deze oneindigheden treden namelijk
meestal op in singuliere punten. Echter, een snaartje dat beweegt in de ruimte-tijd bestrijkt een
tweedimensionaal oppervlak, in tegenstelling tot een lijn voor een puntdeeltje. Precies dit feit
zorgt ervoor dat de interacties tussen snaren niet in één singulier punt plaatsvinden, maar ver-
spreid zijn over een kleine ruimte. Helaas heeft ook deze theorie haar nadelen. Snarentheorie
is alleen perturbatief gedefinieerd, met andere woorden: verstrooiingsamplitudes worden uitge-
drukt als een oneindige reeks in machten van de snarenkoppelingsconstante gS , die geassocieerd
wordt met de ‘Feynman diagrammen’ van snarentheorie. De grootste tegenslag was het bestaan
van maar liefst vijf supersnarentheorieën, terwijl men hoopte op één unieke theorie van quan-
tumzwaartekracht. Enkele jaren geleden veranderde dit, door de ontdekking van dualiteiten, die
verschillende energieregimes van verschillende theorieën met elkaar relateerden. Een belang-
rijke rol was hierbij weggelegd voor zogenaamde braanoplossingen van snarentheorie. Dit zijn
solitonische membraanachtige oplossingen die kunnen worden gezien als hogerdimensionale
generalisaties van snaren. De vijf op het eerste gezicht verschillende theorieën en hun braan-
oplossingen bleken hierdoor gerelateerd door een web van dualiteiten. Dit suggereerde echter
dat de vijf supersnarentheorieën allemaal een andere limiet vormden van één fundamentele the-
orie, genaamd ‘M-theorie’. Veel is helaas nog niet bekend over deze theorie. Echter, door de
lage-energielimieten van M-theorie en de vele dualiteiten hiertussen te bestuderen, komen we
hopelijk steeds een stapje dichter bij een geunificeerde theorie.

We zullen nu een korte beschrijving geven van de onderwerpen die in dit proefschrift aan bod ko-
men. In hoofdstuk 1 beschrijven we het raamwerk van snarentheorie en superzwaartekracht, om
de in dit proefschrift behandelde onderwerpen in een context te kunnen plaatsen. Hoofdstuk 2
bevat de motivatie voor het onderzoek dat in het resterend deel van deze dissertatie wordt behan-
deld. De hoofdmotivatie is het concept ‘braanwerelden’, waarbij ervan wordt uitgegaan dat ons
vierdimensionaal universum kan worden gerepresenteerd als een vierdimensionale braanoplos-
sing in vijf ruimte-tijddimensies. Dit type modellen werd gebruikt om verscheidene problemen
in de kosmologie op te lossen; bijvoorbeeld het kosmologische-constanteprobleem en het hiërar-
chieprobleem. De branen die in dergelijke modellen worden gebruikt splitsen de ruimte-tijd in
twee gebieden en worden domeinvlakken genoemd. Een supersymmetrische versie is echter niet
gemakkelijk te construeren; de domeinvlakken moeten aan bepaalde voorwaarden voldoen om
de juiste vacuümstructuur van de vijfdimensionale ruimte-tijd te kunnen beschrijven. Het bepa-
len van alle mogelijke domeinvlakkandidaten vereist een goede kennis van materiekoppelingen
in de vijfdimensionale superzwaartekrachttheorie. De scalarvelden die in dergelijke theorieën
voorkomen, blijken te kunnen worden opgevat als coördinaten van een manifold. De potentiële
energie van deze deeltjes wordt gegeven door de scalaire potentiaal, welke een functie is van
alle scalairen van de manifold. De vacuümstructuur van de vijfdimensionale ruimte-tijd wordt
bepaald door de minima van de scalaire potentiaal en de geometrische eigenschappen van de
scalaire manifold.

De vijfdimensionale materiegekoppelde superzwaartekrachttheorie is een speciaal geval van
een geijkte superzwaartekrachttheorie, dat wil zeggen een superzwaartekrachttheorie waar één
of meer globale symmetrieën lokaal zijn gemaakt. Eén manier om dergelijke theorieën te con-
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strueren, is door middel van dimensionele reductie. Men begint hiertoe met een hogerdimen-
sionale superzwaartekrachttheorie en ‘rolt’ enkele extra dimensies op om effectief te eindigen
met een superzwaartekrachttheorie in een lagere ruimte-tijddimensie. Een uitbreiding van deze
methode wordt ‘algemene dimensionele reductie’ genoemd; hierbij benut men een symmetrie
van een theorie om massa’s te verkrijgen in lagere dimensies. In dit geval zal de gebruikte
symmetrie verschijnen als een geijkte symmetrie van de gereduceerde theorie. Wanneer deze
techniek wordt toegepast op superzwaartekrachttheorie, kan men geijkte superzwaartekracht-
theorieën construeren. Een algemene inleiding tot het onderwerp dimensionele reductie wordt
gegeven in hoofdstuk 3, waarna deze techniek in hoofdstuk 4 zal worden toegepast op super-
zwaartekracht in tien en elf dimensies.

De overige hoofdstukken 5, 6 en 7 geven een tweede manier om geijkte superzwaarte-
kracht te verkrijgen: het drie-stappen superconforme programma. We gebruikten dit programma
voor de constructie van een algemenere materiegekoppelde vijfdimensionale Poincaré-super-
zwaartekrachttheorie dan momenteel bekend in de literatuur. De ruimte-tijdsymmetrieën van
Poincaré-superzwaartekracht worden gegeven door translaties en rotaties, die deel uitmaken van
de super-Poincaré-groep. Het conforme programma breidt deze groep uit tot de grootste groep
van ruimte-tijdsymmetrieën, namelijk de superconforme groep. Door het invoeren van extra
symmetrieën bevat de corresponderende superzwaartekrachttheorie meer structuur en is derhal-
ve gemakkelijker te analyseren.

De eerste stap van het programma wordt behandeld in hoofdstuk 5, waar de constructie en
ijking van de vijfdimensionale superconforme algebra wordt beschreven. Dit resulteert in het
zogenaamd ‘Standaard Weyl-multiplet’; dit is de minimale representatie van de superconforme
algebra die het graviton bevat. De superconforme achtergrondvelden worden gegeven door de
velden in dit Weyl-multiplet.

De tweede stap is het onderwerp van hoofdstuk 6, waar we verscheidene materiemultiplet-
representaties van de superconforme algebra construeren, inclusief hun acties en supersymme-
trietransformatieregels in de achtergrond van de Weyl-multipletvelden. Het betreft hier voor-
namelijk vector-tensormultipletten en hypermultipletten. Beide bevatten scalaire deeltjes die
aanleiding geven tot interessante geometrie op de bijbehorende scalaire manifolds.

De laatste stap wordt gegeven in hoofdstuk 7. Hier wordt de superconforme algebra weer
teruggebracht naar de super-Poincaré-algebra door het kiezen van geschikte ijkkeuzes voor de
niet-Poincaré-symmetrieën. Door het kiezen van de juiste ijk vinden we vijfdimensionale ma-
teriegekoppelde Poincaré-superzwaartekracht die in tal van toepassingen kan worden gebruikt,
zoals beschreven in hoofdstuk 2. Ten slotte geven we in appendices A–C onze conventies en
enige extra informatie over de eigenschappen van de scalaire manifolds die gegenereerd worden
door de hypermultipletkoppelingen.
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