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ABSTRACT

NOvA is a long-baseline neutrino oscillation experiment that uses the NuMI beam from Fermi-

lab. Its physics goals include providing constraints to the neutrino mass hierarchy and the CP-

violating phase δ by precision measurements of the electron (anti)neutrino appearance in a muon

(anti)neutrino beam. Similarly, new limits on the values of sin2 θ23 and ∆m2
32 will be achieved

by measurements of the muon (anti)neutrino disappearance probabilities. A combined analysis

measurement will allow a better resolution of the θ23 octant.

The NuMI beam is produced by the collision of high energy protons into a target, giving rise to kaon

and pion mesons that decay to neutrinos of a specific flavor. This thesis presents a measurement

of the kaon production normalization scale using uncontained charged-current muon neutrinos at

the Far Detector. Because the neutrino beam is not pure in flavor, it contains an admixture of

other different neutrino flavors that become a source of background. Therefore, it is of paramount

importance for accelerator experiments, such as NOvA, to have a reliable flux prediction of the

neutrino beam in order to achieve its physics goals.

One method to constrain the flux is to constrain and measure each flux component independently.

The kaon component contributes to the intrinsic νe contamination of the beam, a key background

for the νe-appearance analysis. We observed that the uncontained sample in the 10-20 GeV region

corresponds to the kaon component of the NuMI beam at the Far Detector. We also found a 60-80%

correlation between the Near Detector νe background and the Far Detector νµ uncontained signal.

The data used for this analysis was collected from October 2014 to February 2017, corresponding to

7.99× 1020 protons-on-target (POT). The ratio between the Far Detector data and the simulation

is fitted to a line in the 10-20 GeV energy region. Calibration, energy scale, final state interactions
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and neutrino flux (e.g. beam transport and hadron production shape only) systematic uncertainties

are considered. The kaon production normalization scale is measured to be SK = 1.07± 0.16.
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CHAPTER 1. INTRODUCTION AND HISTORY

A period of remarkable scientific discoveries in physics occurred between the end of the nineteenth

century and the beginning of the twentieth century. We began to explore matter at a fundamental

level, such as the idea that physical quantities can have only discrete values. And also, we began

to explore the cosmos. In midst of such revolution, the main subject of this thesis -the neutrino-

appears as a answer to an unexpected experimental problem. The aftermath results in one of the

most prominent endeavors of scientific research, which continues until today.

1.1 The Neutrino

Neutrinos were theoretically postulated by Wolfgang Pauli in the early 1930s. The idea that a low-

mass neutral particle, entitled by Enrico Fermi as the neutrino, was emitted with the electron in

the β decay, solved the problem of the continuous energy spectrum first observed by J. Chadwick

in 1914 and later confirmed by C. Ellis and W. Wooster in 1927 [68], In the three-body decay

n → p + e + ν, the electron was allowed to share the energy of the reaction with the neutrino,

keeping the conservation laws intact. The task in the following years was to detect these neutrinos

postulated by Pauli.

Most of the time, neutrinos pass through matter without actually interacting. But Fermi’s theory of

the weak force predicts that a neutrino can produce an inverse beta decay process. The antineutrino

(antiparticle of the neutrino) will occasionally interact with a nucleus N(n, p), with n as the number

of neutrons and p the number of protons, through the weak force via the reaction

ν +N(n, p)→ e+ +N(n+ 1, p− 1).
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In 1951, Fred Reines and Clyde Cowan began to collaborate in a series of novel experiments that

culminated in the detection of the neutrino. They decided to use the inverse beta decay as a

signature of a neutrino reaction.

Figure 1.1: The signature of an inverse beta decay process [136].

As seen in Fig. 1.1, the final state particles in an antineutrino-nucleon reaction are a positron and a

neutron. The positron eventually will encounter an electron and annihilate, producing two gamma

rays. If this reaction occurs in a detector filled with liquid scintillator, the two gamma rays will

produce a flash of light that would be detected by photomultiplier tubes. After approximately

10 µs, the neutron will be captured by a neutron-friendly element, in this case cadmium, which

when dissolved in the medium releases about 9 MeV of energy in the form of gamma rays after the

neutron capture. This gamma burst is also detected by the photomultiplier tubes. The sequence

of two flashes of light separated by roughly ten microseconds is the signature of an inverse beta

decay.

In 1956 Cowan and Reines conducted a decisive experiment at the Savannah River Plant, in South

Carolina. After substantial improvements in the cosmic background and signal separation, two

large flat plastic tanks were filled with water. The protons in the water served as the targets for
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the inverse decay process. Cadmium chloride dissolved in tanks provided the cadmium nuclei that

would capture the neutrons. The target tanks were sandwiched between three large scintillator

detectors, having photomultiplier tubes on their sides.

On June of the same year, a telegram was sent to Pauli in which both announced the experimental

detection of the neutrino [60]. In 1995, Fred Reines won the Nobel Physics Prize (C. Cowan

deceased).

1.2 How many neutrino types?

Following the results of the Cowan and Reines experiment, physicist were intrigued by two ques-

tions related to the nature of the neutrino. The first question was whether the neutrino and the

antineutrino were the same particle (Majorana particle) or a different particle (Dirac particle).

The second was about the number of neutrino species, e.g. if the neutrino associated with the beta

decay was the same as the neutral particle from the pion or muon decay.

In 1962, by using the recently developed high energy beam of neutrinos produced from the collision

of protons with a fixed target and subsequent meson decay (π → µ + ν), the team of Schwartz,

Lederman, Steinberger and collaborators at Brookhaven tested the hypothesis of whether νe = νµ,

e.g. if the reactions

ν + n→ p+ e− ν + p→ n+ e+ (a)

ν + n→ p+ µ− ν + p→ n+ µ+ (b)

occur at the same rate. They observed a deficit of electron shower-like events and concluded

that νe 6= νµ, i.e. there are two types of neutrinos. This also resolved the problem raised by

the forbiddenness of the µ+ → e+ + γ decay, noted by T.D. Lee and C.N. Yang [63]. Schwartz,

Lederman, Steinberger won the 1988 Nobel Physics Prize for this effort.

The tau-neutrino ντ was inferred after the evidence of a new lepton in an electron-positron ex-

periment at the Stanford Linear Accelerator Center (SLAC). The group led by Martin Perl found
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events of the form e+ + e− → e+ + µ∓ + missing energy and noted that this was the signature for

a new type of particle [132, 71, 131]. The Direct Observation of The Tau (DONUT) experiment

observed two events identified as τ → e+ ντ + νe and concluded that these events were indeed tau

neutrino ντ charged-current (CC) interactions. Martin Perl won the Nobel Prize in Physics jointly

with Fred Reines in 1995.

Figure 1.2: Measurements of the hadron production cross-section around the Z resonance. The

curves indicate the predicted cross-section for two, three and four neutrino species with Standard

Model (SM) couplings and negligible mass [145].

The current consensus is that there are three types of neutrinos: νe, νµ, and ντ . The evidence

comes from measurements of the Z boson. The Heisenberg uncertainty principle states that if a

particle has a finite lifetime then it also must have an intrinsic width. The shorter the lifetime of

the particle, the larger the width. Both, lifetime and width depend on the number of ways in which

a particle can decay. The more decay modes, the shorter the lifetime. The measurement of the

Z decay width took place at the LEP storage ring (Large Electron-Positron collider) in 1989 [70].

The production of Z as a function of energy is shown in Fig. 1.2. The number of neutrino types is
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consistent to N = 3, whereas by measuring the primordial helium 4He abundance, physicists have

set limits to the number of neutrino types consistent with N ∼ 3 [93]. Any new family of neutrinos

would therefore be non-standard. Sterile neutrinos νs, if they exist, are either very massive or do

not participate in the weak interaction, that is, will not be able to interact with the Z and W

bosons [1].

Finally, the question of whether the neutrino is a Dirac or a Majorana particle is still open. In all

our discussions of the three known types or flavors of neutrinos (νe, νµ, ντ ), it was assumed that

there is a distinction between the neutrino and its antiparticle. This is a consequence of Dirac’s

theory in which there are two solutions to the Dirac equation, one with positive energy and one

with negative energy. For charged particles is easy to notice that particle and antiparticle have the

same mass but opposite charges. For neutral particles is less obvious, for example the neutron and

antineutron have opposite magnetic moments. Some other neutral particles such as the photon

and the neutral pion (π0) are their own antiparticles. A way to distinguish between the Dirac and

Majorana hypothesis for the neutrino is through double beta decay, as first noted by Wendell Furry

in 1939 [82].

Double beta decay is a process in which a radioactive nucleus with charge Z and mass A decays into

a daughter nucleus with charge Z ± 2 and mass A, with the emission of two electrons (positrons)

and two antineutrinos (neutrinos) in the Dirac framework. For example, considering neutrinos as

Dirac particles, a possible reaction with two antineutrinos in the final state would be

82Sr→82 Kr + 2e− + 2νe

(and abbreviated 2ν2β) but in the case of neutrinos being Majorana particles, one could have

neutrinoless double beta decay,

82Sr→82 Kr + 2e−

(abbreviated 0ν2β) that is, without the emission of neutrinos. Both processes are very rare, but

Furry calculated that the rate for 0ν2β would be higher that the expected rate for (2ν2β). Cur-

rent experiments searching for 0ν2β processes are CUORE [26], GERDA [13], EXO-200 [29] and
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KamLAND-Zen [83]. KATRIN is an experiment looking for the mass of the electron antineutrino

by using the single β decay of tritium 3H→3 He + e− + νe.

Understanding the Dirac or Majorana nature of neutrinos will help us understand why this elusive

particles have such a small mass.

1.3 The solar neutrino anomaly

The detection of neutrinos by Cowan and Reines opened up a new are of research1. It was suggested

that one application of the new detector technology was the investigation of the interior of the sun.

Ray Davis led the construction of a chloride experiment designed to catch solar neutrinos. Located

more than 1 km underground in the Homestake Mine, in South Dakota, Davis’s experiment used

a large tank filled with perchloroethylene (C2Cl4). The electron neutrinos νe from the Sun are

detected by the means of an inverse beta decay reaction

νe +37 Cl→37 Ar + e−.

with an argon nucleus and the emission of an electron. The incoming neutrino must have at least

an energy of 0.814 MeV in order to drive this reaction. This means that the chloride experiment is

sensitive to neutrinos from the 7Be, pep and 8B reactions as shown in Fig. 1.3. After being produced,

the unstable 37Ar atoms decay by recapturing an orbital electron and become 37Cl again. X-rays

are emitted as signature of the decay, but they can be only detected after the 37Ar atoms have

been removed from the chloride tank using helium gas and a highly efficient extraction procedure.

After 27 years of operation, the chloride experiment of Ray Davis measured an average neutrino

flux that falls by a factor of 3 below the predictions of the standard solar model [53]. This was

known as the solar neutrino anomaly.

A second generation of experiments was build in order to further investigate the solar neutrino

problem. The Kamiokande experiment, situated 1 km underground the Kamioka mine in Japan,

1Just as today’s LIGO detection of gravitational waves opened up a new era in astronomy.
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Figure 1.3: The solar neutrino flux [64].

was originally constructed to search for proton decay (as predicted by Grand Unified Theories).

The Kamiokande detector was a large cylindrical Cherenkov detector, filled with 3 000 tons of

purified water (H2O). Incoming neutrinos undergo elastic scattering with electrons in the water

via

νe + e− → νe + e−.

The neutrino imprints its energy to the electron, which streaks the water at ultrarelativistic speeds.

This produces Cherenkov radiations which is collected by an array of photomultiplier tubes sur-

rounding the tank. Kamiokande was the first experiment to verify that the detected neutrinos

originated in the Sun. The experiment was sensitive to the high energy portion of the 8B solar

neutrino flux. After nearly 2000 days of running, the collaboration reported a factor of 2 below the

predictions of the standard solar model [80].

Two radio-chemical experiments using gallium as neutrino target, SAGE (Soviet-American Gallium

Experiment) [2] and GALLEX (Gallium Experiment) [89] used the properties of gallium and become
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sensitive to the lower energy pp neutrinos by the reaction

νe +71 Ga→71 Ge + νe

and, again by looking at Fig. 1.3, to most of the solar neutrino flux spectrum. These experiments

confirmed what theorists postulated about the sun shining by thermonuclear fusion, confirming

astrophysical models. But they also confirmed the solar neutrino deficit, since only half of the

expected flux was observed.

1.4 Neutrino Oscillations

Cumulative experimental evidence showed that the observed solar neutrino flux was far less than

that predicted by the standard solar model, the latter also being consolidated by experimental data.

Two alternative explanations started to circulate within the community. The first idea was that

neutrinos have a finite lifetime (less than 8 minutes coming from the sun) and simply decay before

being detected. But that idea was ruled out when (anti)neutrinos from the supernova SN-1987A

were observed here on Earth [91], implying survival times (if any) much longer than the Sun-Earth

distance.

The second alternative was that neutrinos oscillate, that is, one type of neutrino (say νe) can

transform into a second type (νe → νµ), and vice versa as it travels. By studying atmospheric

neutrinos, an upgraded water-Cherenkov experiment such as Super-Kamiokande found a deficit

in the number of muon neutrinos going up to the detector with respect to the number of muon

neutrinos going down the detector (see Fig. 1.4). This zenith angle relation was inconsistent with

the calculations of the atmospheric flux. Nevertheless, the data was consistent with the neutrino

oscillation hypothesis, in particular, with a two flavor νµ ←→ ντ oscillation [81].

In 2002, the Sudbury Neutrino Observatory (SNO) determined the total flux of 8B neutrinos [16]

after measuring the rate of charged-current electron neutrino events and the rate of neutral current

events. The former event rate is relevant for electron neutrinos only, whereas the latter is sensitive
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Figure 1.4: The discovery of atmospheric neutrino oscillations in Super-Kamiokande. The observed

number of muon-neutrinos going up to the detector through the Earth was only half of the observed

number of muon neutrinos going down the detector.

to all neutrino flavors. The SNO collaboration found a deficit in the measured flux of electron

neutrinos but the measured neutral current flux was consistent with the solar model prediction.

Neutrino oscillations was interpreted as the solution to the solar neutrino anomaly.
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1.5 Current status and outlook

1.5.1 Current reactor and accelerator experiments

After the experimental confirmation of neutrino oscillations, the physics community transitioned

towards precision experiments whose goal was to characterize the properties of the neutrino. Most of

the effort has been invested in the measurement of the parameters governing neutrino oscillations,

the value of their masses, their interaction with matter, and an accurate understanding of the

neutrino flux, just to mention a few.

Reactor experiments, for example, use electron antineutrinos coming from β-decay fission isotopes,

with energies in the MeV range, to measure the mixing angle parameter θ13 (see Section 2.2.1) via

νe- disappearance. Advancement in detector technology combined with better understanding of

detector systematics and backgrounds led to experiments such as Daya Bay [22], the Reactor Ex-

periment for Neutrino Oscillations (RENO) [17] and Double Chooz [4] to provide precise constraints

on the value of θ13 and to help understand the reactor neutrino flux.

Accelerator experiments, which measure neutrinos at the GeV range, use a beam of high energy

protons colliding into a target, producing secondary particles (e.g. kaons and pions) which later

decay into a beam of neutrinos. These experiments differ from solar and atmospheric experiments

in that they are able to control the neutrino flux, the distance L between the source and the detector

(baseline), and the energy E of the neutrinos. NOvA, which will be described in Chapter 3, is an

example of accelerator experiment. Other examples of accelerator-based oscillation experiments

are MINOS [8], T2K [3], which uses a similar off-axis technology (see Section 3.3) as NOvA, and

DUNE [5], which is currently in the design phase.

1.5.2 The neutrino flux from accelerator beams

In this era of precision experiments, it is of paramount importance for accelerator experiments,

such as NOvA, to have a reliable prediction of the neutrino flux, and its composition. The neutrino
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flux is used as input for measuring neutrino cross sections and provides an estimate of the expected

signal for neutrino oscillation analysis.

Experiments such as MiniBooNE [15], determine the expected neutrino flux and background con-

tamination from simulation tuned with external measurements. The proton-target interaction is

modeled by custom tables with double differential cross section information on hadron production

as a function of transverse (pT ) and forward (pZ) momentum, based on external data [14]. In

particular, the external measurements of pion and kaon production from proton-target interactions

overlap in the same phase space with the kaons and mesons that contribute the majority of the

neutrino flux in the MiniBooNE detector. Unfortunately, for charged kaons whose decay result in

the significant contribution to the high energy neutrino flux as well as for the electron neutrino flux

component, no measurements are available from the HARP or BNL E910 experiments [14], and ap-

proximations were used instead. The estimated flux uncertainties are dominated by proton-target

production cross section, which correspond to 15% [45].

MINOS in contrast, used data from the Near Detector with six different beam configurations

(including target positions and horn currents) in order to constrain the particle production at the

target. There were large uncertainties (∼ 40%) between data and simulation, reported due to

discrepancies in the calculations of the neutrino flux. Ultimately, this was tracked down to poor

knowledge of the hadron production in the target [45].

NOvA uses a comprehensive flux prediction package that uses all available and relevant hadron

production data (discussed in Section 4.1.1). It uses data from the pion and kaon yields measured

by the MIPP [127] and from NA49 [21] experiments. The uncertainty in the flux prediction when

integrated from 0-20 GeV is 7.8%, with hadron production uncertainties still dominating [18]. This

method can be applied to similar beams, in particular, for future experiments such as DUNE.
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1.5.3 Unanswered questions and summary

Today we know that neutrinos exist, that there are three different types (νe, νµ, ντ ) each associated

with a lepton, that the Sun is a source of neutrinos and that neutrinos oscillate between flavors,

the latter fact solving the solar neutrino anomaly. But several questions remain open in the field.

For example,

• we do not know what is the mass of neutrinos, what is their order and why is so “small”

compared with the other particles,

• we do not know if neutrinos are their own antiparticle (Majorana) or if they are different

(Dirac) particles,

• we do not know if the parameters describing neutrino oscillations mix the neutrino types (e.g.

flavors states) with the neutrino mass states in a maximal fashion and if neutrinos behave

different than antineutrinos (CP-violation),

• we do not know very well how neutrinos interact with matter (nucleons, nuclei),

• we do not know if sterile neutrinos really exist, opening the door to new physics.

For each of the above statements, a set of neutrino experiments are currently running, or being

constructed, or in the process of conception. For the subsequent chapters we will focus more deeply

in the physics of neutrino oscillations, and the reach of the long-baseline neutrino accelerator NOvA

experiment.

The main uncertainty for the prediction of the neutrino flux in accelerator based experiments comes

from uncertainties associated to the interaction of hadrons in the target. Historically, the mayor

uncertainties arise from the production yields of kaons.

The main work on this thesis is presented on Chapter 7. By using kaon-related charged current

muon neutrinos of the type νµ +X → µ+X ′, where the muon escaped the Far Detector, we make
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a measurement of the kaon production normalization scale. This is later linked to events in the

Near Detector constraint some of the backgrounds that are associated to oscillation analysis.
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CHAPTER 2. THEORY OF NEUTRINO OSCILLATIONS

2.1 The Standard Model

The Standard Model (SM) describes three out of four interactions known in nature (electromagnetic,

weak and strong) that affect the behavior of the elementary particles. The SM is a renormalizable

(i.e. calculable) gauge theory that is build in the framework of quantum field theory [85].

Even though the SM has great predicting power and is able to explain a large amount of physical

phenomena (such as predicting the third family of quarks or the anomalous magnetic moment of

the electron) consolidating it as a precise theory [47], the SM needs to be extended in order to

explain other fundamental phenomena. For example, the SM does not explain the masses of the

fermions (spin-1/2 particles) or the number of families of quarks and leptons (see Table 2.1).

Table 2.1: Table of elementary particles

Quarks (mass) Charge Q[e]

u (2.2 MeV) c (1.27 GeV) t (173.2 GeV) 2/3

d (4.7 MeV) s (96 MeV) b (4 GeV) −1/3

Leptons Q[e]

e (0.510 MeV) µ (105.66 MeV) τ (1.77 GeV) −1

νe (< 2 eV) νµ (< 2 eV) ντ (< 2 eV) 0

Force carries and Higgs

γ (< 1× 10−18 eV) gluons (0 eV) W± (80.38 GeV)

Z0 (91.18 GeV) graviton (?) Higgs (125.09 GeV)

In the SM, quarks and leptons obtain their masses in the same way W and Z0 bosons obtain

theirs: through interactions with the Higgs boson. Neutrinos being spin-1/2 with no electric

charge, however, do not follow the same path, and therefore are predicted with zero mass. But
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experimental evidence provided by the SuperKamiokande [28] and SNO [16] collaborations have

shown that neutrinos oscillate, and as a consequence, they have non-zero mass. The mechanism

that originates the neutrino mass could be different from the one prescribed in our current theories.

Therefore, neutrino properties are a link beyond standard model physics.

Neutrino oscillation is one of the most interesting phenomena related to these particles, which has

a direct connection to the fact that they have mass. Since flavor states are a mixture of mass states,

a neutrino with an initial flavor α may be observed as a flavor state β when it propagates. The

details of this transitions will become evident in the following sections.

2.2 Neutrino oscillations in vacuum

Neutrino oscillations is a quantum mechanics phenomenon proposed for the first time by Bruno

Pontecorvo [36] in analogy to the oscillations of the neutral mesons K0 → K̄0. These oscillations

are generated by the interference of different massive neutrino states, which are produced and

detected coherently due to its tiny mass differences. Since at that time only one active neutrino

species was known (νe), in order to explain the phenomena of oscillations Pontecorvo invented the

concept of sterile neutrino, which is a neutral fermion that does not interact with the weak force.

Only massive neutrinos oscillate and as a consequence, observing neutrino oscillations gives infor-

mation about the neutrino masses, specifically, difference of the squared masses.

As we will see in subsequent sections, neutrino oscillation depend upon the ratio of the distance

traveled (L) to the neutrino energy (E). The typical sensitivity of an experiment is given by

∆m2(eV2) ≈ E(MeV)/L(m), which for some experiments can be as small as 10−11eV2 (see Ta-

ble 2.2).

The muon neutrino (νµ) was discovered in 1962 by an experiment in Brookhaven, thanks to the

efforts of Lederman, Schwartz, and Steinberger [63] and recommendations of Pontecorvo himself

back in 1959. Since then it was clear that the oscillations between different active flavor states
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are possible if and only if neutrinos were massive and mixed. In the same year of 1962, Maki,

Nakagawa and Sakata [111] considered for the first time a model with the mixing of different

neutrino flavors. In 1967 Pontecorvo predicted the solar neutrino problem as a consequence of

the νe → νµ (or νe → νsterile) transition way before the first actual measurement of the electron

neutrino flux realized by Homestake experiment [54]. In 1969 Gribov and Pontecorvo introduced

seminal work on the theory of solar neutrino oscillations in a similar fashion due to mixing [36].

Finally, the theory of neutrino oscillations using the plane wave approximation was first developed

between 1975 and 1976 by Eliezer, Swift, Bilenky, Pontecorvo, among others [85]. In the following

sections we will derive the transition probabilities for the case of two and three neutrino families.

2.2.1 Derivation of the oscillation probability

Let us suppose we have a quantum mechanic state |να〉 written as a superposition of the mass

eigenstates |νi〉 (with 〈νi|νj〉 = δij), whose coefficients are constants given by the elements of the

unitary matrix U (where U †U = 1) expressed in the (Dirac) notation as

|να〉 =
∑
i

Uαi|νi〉 (α = e, µ, τ). (2.1)

Such quantum state is called flavor state1, with a flavor (weak charge) α and will be describing a

neutrino created in some charged-current process or attached to a given charged anti-lepton due

to the weak interaction. This neutrino state will be assumed to have a defined momentum p. The

corresponding bra vector is given by

〈να| =
∑
i

U∗αi〈νi|. (2.2)

1According to [85], the number of massive neutrinos in the equation (2.1) is not explicitly limited as in the flavor
case. As far as we know, three active neutrino flavors have been found νe, νµ and ντ , therefore the number of massive
neutrinos must be equal or greater than three. In the latter case, additional neutrinos in the flavor base will be
sterile since will not participate in the electroweak interactions. Active to sterile transitions could be observed by the
disappearance of active neutrino states.
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The unitary matrix U can be parametrized in several ways [51]. The most accepted version has 3

mixing angles and, depending whether or not neutrinos are Majorana or Dirac particles, by one or

three additional Charge-Parity (CP) violating phases

UPMNS =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =


U11 U12 U13

U21 U22 U23

U31 U32 U33



=


c12 s12 0

−s12 c12 0

0 0 1


︸ ︷︷ ︸

Solar, Reactor


c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13


︸ ︷︷ ︸

Mixing sector


1 0 0

0 c23 s23

0 −s23 c23


︸ ︷︷ ︸
Atm., Accelerator

=


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 (2.3)

Where cij = cos θij , sij = sin θij , the angles θ12, θ13, θ23 and the CP-violating phase δCP
2. The

reason for using the above ordering is since most of the information on this matrix comes from νe

and νµ disappearance experiments, which measure |Ue2|2, |Ue3|2 and |Uµ3|2, we want the first row

(Ue1, Ue2, Ue3) and the third column (Ue3, Uµ3, Uτ3) of UPMNS
3 to be as simple as possible. Any

other ordering makes elements of either the first row or the third column or both more complicated.

Given that U †U = 1, then

∑
i

UαiU
∗
βi =

∑
i

UαiU
†
iβ U∗βi = U †iβ

=
∑
i

〈α|U |i〉〈i|U †|β〉 Urs = 〈r|U |s〉

= 〈α|UU †|β〉 = 〈α|I|β〉∑
i

UαiU
∗
βi = δαβ (2.4)

2For the Majorana case, UPMNS = U · diag(1, eiα21/2, eiα31/2)
3Also known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS).
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Similarly, ∑
α

UαiU
∗
αj = δij (2.5)

hence, when computing the bra-ket product, we have

〈νβ|να〉 =
∑
i

U∗βi〈νi|
∑
i

Uαi|νi〉

=
∑
i

U∗βiUαi
∑
i

|νi〉〈νi| completeness
∑

i |νi〉〈νi| = 1

=
∑
i

U †iβUαi U∗βi = U †iβ

=
∑
i

UαiU
†
iβ UU † = U †U

〈νβ|να〉 = δαβ. (2.6)

We conclude that the flavor states are orthonormals. For the antineutrino case, the element Uαi is

replaced by U∗αi

|ν̄α〉 =
∑
i

U∗αi|ν̄i〉. (2.7)

Mass states |νi〉 are eigenstates of the Hamiltonian

H|νi〉 = Ei|νi〉 (2.8)

with energy eigenvalues given by

Ei =
√

p2 +m2
i . (2.9)

By the time dependent Schrödinger equation (with natural units ~ = c = 1)

i
d

dt
|νi(t)〉 = H|νi(t)〉 (2.10)

and after solving the differential equation, we obtain that the neutrino mass states evolve in time

as plane waves

|νi(t)〉 = e−iEit|νi〉. (2.11)

Now let us consider the time evolution of a flavor state |να〉. Such state describes physically a

neutrino created with definite flavor α at time t = 0. Using equation (2.11) we can substitute (2.1)
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obtaining

|να(t)〉 =
∑
i

Uαie
−iEit|νi〉 (2.12)

such that

|να(t = 0)〉 = |να〉.

Using (2.5) on equation (2.1)

|να〉 =
∑
i

Uαi|νi〉

∑
α

U †iα|να〉 =
∑
α

∑
i

UαiU
†
iα|νi〉

=
∑
α

∑
i

〈α|U |i〉〈i|U †|α〉|νi〉

=
∑
α

∑
i

|i〉〈i|〈α|UU †|α〉|νi〉

=
∑
α

〈α|I|α〉|νi〉

∑
α

U∗αi|να〉 = |νi〉 (2.13)

where the mass states can be expressed in flavor state terms after inverting expression (2.1).

|νi〉 =
∑
α

U∗αi|να〉 (2.14)

Substituting the previous expression (2.14) in (2.12) we obtain

|να(t)〉 =
∑

β=e,µ,τ

(∑
i

Uαie
−iEitU∗βi

)
|νβ〉 (2.15)

The last expression is worth discussing. It tell us that starting from a superposition of mass states

given by (2.12), that is, a pure flavor state that identifies a single particle (the general case of (2.1)

when t = 0), such state becomes a superposition of different flavor states for future times t > 0

(assuming the mixing matrix is non-diagonal, that is, neutrinos mix).

Now, when combining with the bra |νβ〉

Aνα→νβ (t) ≡ 〈νβ|να(t)〉 =
∑
i

UαiU
∗
βie
−iEit (2.16)
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we obtain the transition amplitude between states να → νβ as a function of time. Similarly, for

antineutrinos

Aν̄α→ν̄β (t) =
∑
i

UβiU
∗
αie
−iEit (2.17)

The transition probability να → νβ becomes

Pνα→νβ (t) = |Aνα→νβ (t)|2 =
∑
i

∑
j

UαiU
∗
βiU

∗
αjUβje

−i(Ei−Ej)t. (2.18)

For ultra-relativistic neutrinos (|p| � mi) the energy equation (2.9) can be approximated by

Ei =
√

p2 +m2
i ' |p|+

m2
i

2|p|
' E +

m2
i

2E
where E ≈ |p| (2.19)

where the neutrino energy is approximated to its momentum magnitude. Because of the above

Ei − Ej '
m2
i −m2

j

2E
=

∆m2
ij

2E
(2.20)

in this case ∆m2
ij is the squared mass difference. Hence, the transition probability (2.18) is approx-

imately

Pνα→νβ (t) =
∑
i

∑
j

UαiU
∗
βiU

∗
αjUβj exp

(
−i

∆m2
ij t

2E

)
(2.21)

The last step is to note that in most (if not all) of the neutrino oscillation experiments, propagation

time is not the usual measured quantity but the distance L between the neutrino source and the

detector location. Assuming again that neutrinos travel nearly the speed of light (ultra-relativistic

case) is possible to approximate t = L given that c = 1, thus

Pνα→νβ (L,E) =
∑
i

∑
j

UαiU
∗
βiU

∗
αjUβj exp

(
−i

∆m2
ij L

2E

)
(2.22)

while for antineutrinos

Pν̄α→ν̄β (L,E) =
∑
i

∑
j

U∗αiUβiUαjU
∗
βj exp

(
−i

∆m2
ij L

2E

)
. (2.23)

It is important to notice that the transition probability (2.22) and (2.23) satisfy two rules of

conservation of probability which are a consequence of the unitary evolution of the states
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1. The sum of the transition probabilities of a flavor neutrino state να to all the remaining flavors

νβ, including α = β, is equal to one.

∑
β

Pνα→νβ (L,E) = Pνα→νe + Pνα→νµ + . . . = 1 (2.24)

2. The sum of the transition probabilities of any neutrino flavor να, including α = β, to a specific

flavor νβ is equal to one.

∑
α

Pνα→νβ (L,E) = Pνe→νβ + Pνµ→νβ + . . . = 1 (2.25)

By inspection is evident that the transition probability is function of two parameters (distance

source-detector L and the neutrino energy E) associated to the experiment, which will help to

determine the oscillation phase

Φij =
−∆m2

ijL

2E
(2.26)

that is also function of the squared mass difference ∆m2
ij . On the other hand, the oscillation

amplitude is determined by the mixing matrix elements, also natural constants. We conclude that

by studying neutrino oscillations we will gain insights on the values of both the squared mass

differences ∆m2
ij and the values of the elements of the mixing matrix U . The transition between

different flavors is shown for values L > 0 only due to the relation (2.4) implies that

Pνα→νβ (L = 0, E) =
∑
i

∑
j

UαiU
∗
βiU

∗
αjUβj = (δ2

αβ) = δαβ.

Some comments on the transition probability expression (2.22) A convenient way to write

equation (2.22) is as follows [172]. Expanding by each entry and grouping, we obtain

Pνα→νβ (L,E) =
∑
i

|UαiU∗βi|2 + 2Re
∑
j>i

UαiU
∗
βiU

∗
αjUβj exp

(
−2πi

L

Loscij

)
(2.27)

where we obtain a constant term separated from the oscillatory term. We can now define the

oscillation length

Loscij =
4πE

∆m2
ij

. (2.28)
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The oscillation length is the distance on which the phase generated by the squared mass difference

∆m2
ij equals 2π. The first term of (2.27) is an average of the transition probability, which can be

written as

〈Pνα→νβ 〉 =
∑
i

|UαiU∗βi|2 =
∑
i

|Uαi|2|Uβi|2 =
∑
i

|U∗αiUβi|2 = 〈Pνβ→να〉. (2.29)

On the other hand, an useful way of expressing equation (2.22) is if first we separate the real and

imaginary parts of the UαiU
∗
βiU

∗
αjUβj factor and then square the expression (2.4). After substituting

in (2.27) we obtain

Pνα→νβ (L,E) = δαβ − 4
∑
i>j

Re[UαiU
∗
βiU

∗
αjUβj ] sin2

(
∆m2

ij L

4E

)

+ 2
∑
i>j

Im[UαiU
∗
βiU

∗
αjUβj ] sin

(
∆m2

ij L

2E

)
(2.30)

and for the antineutrino case

Pν̄α→ν̄β (L,E) = δαβ − 4
∑
i>j

Re[UαiU
∗
βiU

∗
αjUβj ] sin2

(
∆m2

ij L

4E

)

− 2
∑
i>j

Im[UαiU
∗
βiU

∗
αjUβj ] sin

(
∆m2

ij L

2E

)
. (2.31)

which is different to the previous expression only in the sign of the imaginary part.

When α = β, the transition probability is called survival probability να → να. In this case the

products UαiU
∗
βiU

∗
αjUβj are real and equal to |Uαi|2|Uβi|2, therefore the survival probability acquires

the form

Pνα→να(L,E) = 1− 4
∑
i>j

|Uαi|2|Uαj |2 sin2

(
∆m2

ij L

4E

)
. (2.32)
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2.2.2 Neutrinos under transformations CPT, CP and T

The state of a particle can be identified by the three components of the momentum p and by the

helicity, defined as

H =
s · p
|s · p|

, (2.33)

that is, the projection of the spin vector in the direction of the particle’s vector momentum. Until

the 1950s, it was believed that the laws of physics were invariant under a mirror reflection or

inversion of spatial coordinates (parity inversion). If parity were conserved, a spin-1/2 particle

such as the neutrino, would exist in both left- and right helicity states (see Fig. 2.1). But in 1956,

C. N. Yang and T. D. Lee suggested that the weak force might violate parity conservation, and six

months later C. S. Wu confirmed it in an experiment measuring the beta decay of cobalt-60 [165].

Figure 2.1: The four states of a spin-1/2 particle.

Physically, neutrinos and antineutrinos are related by a charge-parity (CP) transformation that

interchange neutrinos with antineutrinos and inverts its helicity4

να ↔ ν̄α (CP). (2.34)

4For the case of Majorana neutrinos, the the charge (C) transformation equals unity, by convention the states
with negative helicity are called neutrinos and the states with positive helicity are called antineutrinos.



24

Therefore, a CP transformation interchange the channels να → νβ and ν̄α → ν̄β

να → νβ ↔ ν̄α → ν̄β (CP). (2.35)

A time T transformation interchanges the initial and final states. Therefore, a T transformation

interchanges the channels να → νβ and νβ → να,

να → νβ ↔ νβ → να (T), (2.36)

or for antineutrinos

ν̄α → ν̄β ↔ ν̄β → ν̄α (T). (2.37)

Finally, the transformation CPT interchanges

να → νβ ↔ ν̄β → ν̄α (CPT). (2.38)

This CPT transformation is a symmetry in any quantum field theory, such as the SM. By extension,

CPT is a symmetry of the transition probabilities

Pνα→νβ = Pν̄β→ν̄α . (2.39)

We can infer the latter from the equations (2.22) and (2.23) and from the fact that its invariant

under CP changes U � U∗, following a transformation T that changes α� β.

In the case of three neutrino mixing, the matrix (2.3) is in general complex and has a CP violating

phase associated to it. Such asymmetry can be revealed by neutrino oscillation when measuring

the difference

ACPαβ = Pνα→νβ − Pν̄α→ν̄β . (2.40)

and is only accessible between transitions of different flavors, due to (2.39), Pν̄α→ν̄β = Pνβ→να .
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Noticing the expression (2.30) and (2.31) we can state the the only term that contributes to the

CP violation is given by

ACPαβ (L,E) = 4
∑
i>j

Im[UαiU
∗
βiU

∗
αjUβj ] sin

(
∆m2

ij L

2E

)
(2.41)

Thus, the CP asymmetry can be measured only in transitions between different neutrino flavor

states, because for the survival α = β, the imaginary part of (2.41) becomes zero.

2.2.3 Two flavor neutrino mixing

We now consider the case of two flavor states να, νβ as an approximation that is used for simpli-

fication. Such states are superposition of the two mass states ν1, ν2 with coefficients given by the

mixing matrix

U =

 cos θ sin θ

− sin θ cos θ

 =

Uα1 Uα2

Uβ1 Uβ2

 (2.42)

with θ as the mixing angle with range 0 ≤ θ ≤ π/2. This simplified model results in a single

squared mass difference

∆m2
21 ≡ m2

2 −m2
1. (2.43)

Conveniently, we define the ν1 as the lightest of the two states, such that ∆m2
21 is positive.

From (2.22) we derive the transition probability να → νβ with α 6= β

Pνα→νβ (L,E) = cos2 θ sin2 θ − cos2 θ sin2 θ exp

(
i
∆m2

21L

2E

)
− cos2 θ sin2 θ exp

(
−i∆m

2
21L

2E

)
+ cos2 θ sin2 θ

where we have used ∆m2
21 = −∆m2

12

= cos2 θ sin2 θ

[
2−

(
exp

(
i
∆m2

21L

2E

)
+ exp

(
−i∆m

2
21L

2E

))]
= 2 cos2 θ sin2 θ

[
1− cos

(
∆m2

21L

2E

)]
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finally using the identity sin 2θ = 2 sin θ cos θ

Pνα→νβ (L,E) =
1

2
sin2 2θ

[
1− cos

(
∆m2

21L

2E

)]
(2.44)

or in similar fashion

Pνα→νβ (L,E) = sin2 2θ sin2

(
∆m2

21L

4E

)
(2.45)

When α = β, the survival probability Pνα→νβ (L,E) (e.g., the probability that a flavor state neutrino

α remains in that state after its propagation over a distance L), becomes

Pνα→να(L,E) = 1− Pνα→νβ (L,E) = 1− sin2 2θ sin2

(
∆m2

21L

4E

)
. (2.46)

The oscillation length defined in (2.28) in this case is

Losc21 =
4πE

∆m2
21

(2.47)

and the average value of the transition probability can be calculated using the relation (2.29) or

from the expression (2.44) directly (where we know that the average value of cosine is zero)

〈Pνα→νβ 〉 =
1

2
sin2 2θ. (2.48)

We can rewrite (2.45) with the proper units and 1/4~c ∝ 1.27 as

Pνα→νβ (L,E) = sin2 2θ sin2

(
1.27

∆m2
21[eV2]L[m]

E[MeV]

)

= sin2 2θ sin2

(
1.27

∆m2
21[eV2]L[km]

E[GeV]

)
(2.49)

and the oscillation length (4π~c ∝ 2.47) becomes

Losc = 2.47
E[MeV]

∆m2[eV2]
m = 2.47

E[GeV]

∆m2[eV2]
km. (2.50)
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Figure 2.2: Transition probability of να → νβ for a maximal value of sin2 2θ = 1. The dashed line

represents the expression (2.49), where the first zero of the function after the origin corresponds

to Losc = 2.47. The average value (solid line) is the graph of the expression (2.52) with the cosine

value given by (2.55) and σL/E = 0.2 (the greater the value of σL/E the bigger the suppression).

The constant line at P = 0.5 is the plot of (2.48).

At this point, let us analyze in detail the expression (2.45). Suppose a maximal amplitude (sin2 2θ =

1→ θ = π/4). A graph related to (2.49) as function of the ratio ∆m2L/E is shown in Figure 2.2.

For fixed values of the squared mass difference ∆m2 and the energy E, the parameter L is shown on

the horizontal axis. Is important to note that the value of the oscillation length in (2.50) will give

us the distance in which the probability becomes zero after the origin. In the figure we normalize

to Losc = π/1.27 ' 2.47. The transition probability is very small for values L� Losc and oscillates

dramatically when L� Losc.

Due to the absence of phases in the matrix for the two-neutrino case given by (2.42), there are no

CP or T symmetry violations and the transition probabilities of both neutrinos and antineutrinos,

are equal

Pνα→νβ (L,E) = Pνβ→να(L,E) = Pν̄α→ν̄β (L,E) = Pν̄β→ν̄α(L,E). (2.51)
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It is convenient for practical reasons to calculate the averaged oscillation probability over the

distance L and energy E distributions. For example, the transition probability is obtained by

averaging the cosine from the expression (2.44) over a distribution φ(L/E) de L/E, with α 6= β

〈Pνα→νβ (L,E)〉 =
1

2
sin2 2θ

[
1−

〈
cos

(
∆m2L

2E

)〉]
(2.52)

from where 〈
cos

(
∆m2L

2E

)〉
=

∫
cos

(
∆m2L

2E

)
φ

(
L

E

)
d
L

E
(2.53)

As an illustration, let us consider the simplest case of a Gaussian distribution L/E with average

〈L/E〉 and standard deviation σL/E

φ

(
L

E

)
=

1√
2πσ2

L/E

exp

[
(L/E − 〈L/E〉)2

2σ2
L/E

]
(2.54)

In this case, the average cosine from equation (2.52) can be calculated analytically resulting in〈
cos

(
∆m2L

2E

)〉
= cos

(
∆m2

2

〈
L

E

〉)
exp

[
−1

2

(
∆m2

2
σL/E

)2
]

(2.55)

therefore, the value

〈Pνα→νβ (L,E)〉 =
1

2
sin2 2θ

[
1− cos

(
∆m2

2

〈
L

E

〉)
exp

[
−1

2

(
∆m2

2
σL/E

)2
]]

(2.56)

is plotted in Figure 2.2 next to the oscillation given in (2.49).

2.2.4 Three neutrino mixing

A more realistic case is when we consider three neutrino flavors. In this case the mixing ma-

trix is given by the unitary matrix UPMNS, similar to the UCKM from the quarks, which can be

parametrized by three mixing angles (θ12, θ13θ23) and one physical phase (δCP ), assuming Dirac

neutrinos.
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In the absence of any matter effects, the transition probability of a flavor state to another for the

three neutrino case is given by

Pνα→νβ (L,E) = δαβ − 4

3∑
i>j=1

Re(Kαβ,ij) sin2

(
∆m2

ijL

4E

)

+ 2
3∑

i>j=1

Im(Kαβ,ij) sin

(
∆m2

ijL

2E

)
(2.57)

where Kαβ,ij = UαiU
∗
αjU

∗
βiUβj .

2.3 Neutrino oscillations in matter

In an article published in 1978, L. Wolfenstein [164] showed that neutrinos propagating in matter

are subject to a potential due to head-on coherent elastic dispersion with particles in the media,

such as electrons and nucleons. This potential is in analogy compared with an index of refraction,

which modifies the frequency of neutrino mixing.

In the case of two-neutrino flavors, the mixing angle in vacuum is replaced by an effective angle in

matter, that for certain densities can increase in its magnitude even if the vacuum angle is small. In

the 80’s, Wolfenstein and other physicists studied the neutrino propagation of neutrinos in constant

density media. In 1985, S.P. Mikheev y A.Yu. Smirnov [36] discovered that is possible to have

resonance effects in the flavor neutrino transitions if they propagate in media with variable density

and if the region along the neutrino trajectory reaches an effective angle near the maximal π/2.

The Mikheyev-Smirnov-Wolfenstein (MSW) mechanism was able to explain the solar neutrino con-

versions during the propagation outside the sun despite the small value in the mixing angle [142].

Propagation of neutrino flavor states Let us suppose we have a left-handed ultra-relativistic

neutrino with flavor α(i.e.α = e, µ, τ) and momentum p. Such neutrino is described by the state

(2.1)

|να〉 =
∑
i

Uαi|νi〉
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with the normalization conditions 〈νβ|να〉 = δαβ, 〈νj |νi〉 = δij . The mass state |νi〉 with momentum

p is an eigenstate of the vacuum Hamiltonian H0

H0|νi〉 = Ei|νi〉, Ei =
√

p2 +mi. (2.58)

The total Hamiltonian in matter is

H = H0 +HI , HI |να〉 = Vα|να〉, (2.59)

where Vα, the ultra-relativistic neutrino potential energy with flavor α is given by

Vα = VCCδαe + VNC =
√

2GF (Neδαe −
1

2
Nn) (2.60)

and as we can see, GF is the Fermi constant, Ne and Nn are electron and neutrino density in the

media. This potential is very small

√
2GF ' 7.63× 10−14 eV cm2/NA (2.61)

with NA ∼ 1023 being Avogadro’s number.

A state with initial flavor state α obeys the equation given by

i
d

dt
|να〉 = H|να(t)〉, |να(0)〉 = |να〉 (2.62)

(Schrödinger picture). The transition amplitude να → νβ after a time t is given by

ψαβ(t) = 〈νβ|να(t)〉, with ψαβ(0) = δαβ. (2.63)

As a consequence, the probability that a neutrino created at t = 0 with flavor α is detected with a

flavor β after a time t is

Pνα→νβ (t) = |ψαβ(t)|2. (2.64)

Using the previous equations, it is possible to show that the time evolution expression for the

transition amplitudes is

i
d

dt
ψαβ(t) =

∑
η

(∑
k

U∗βηEkUηk + δηβVβ

)
ψαη. (2.65)
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It is easy to see ∑
η

ψαη(t)ψ
∗
βη(t) = δαβ. (2.66)

The previous expression gives the conservation of probability when α = β. For ultra-relativistic

neutrinos,

Ek ' E +
m2
k

2E
, p ' E, t ' x, (2.67)

where x is the distance to the source. With this, expression (2.65) describes spatial evolution

i
d

dt
ψαβ(x) =

(
p+

m2
1

2E
+ VNC

)
ψαβ(x)

+
∑
η

(∑
k

U∗βη
∆m2

k1

2E
Uηk + δβeδηeVβ

)
ψαη. (2.68)

We have separated the term (p + m2
1/2E + VNC)ψαβ(x) because is irrelevant when generating a

common phase for all the flavor states that can be eliminated with a phase change, leaving the

transition probability invariant.

Thus, the equation for the transition amplitude is

i
d

dt
ψαβ(x) =

∑
η

(∑
k

U∗βη
∆m2

k1

2E
Uηk + δβeδηeVβ

)
ψαη. (2.69)

showing once again its similarity with the vacuum oscillations, where the matter neutrino oscil-

lations also depend on the squared mass differences. As an example, consider the three-flavor

oscillation probability P (νµ → νe) with matter effects

P (νµ → νe) = P1 + P2 + P3 + P4 (2.70)

where

P1 = sin2(θ23) sin2(2θ13)

(
∆13

B±

)2

sin2

(
B±L

2

)
(2.71)

P2 = cos2(θ23) sin2(2θ12)

(
∆12

A

)2

sin2

(
AL

2

)
(2.72)
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P3 = J · cos(δCP )

(
∆13

B±

)(
∆12

A

)
cos

(
∆13L

2

)
sin

(
AL

2

)
sin

(
B±L

2

)
(2.73)

P4 = ∓J · sin(δCP )

(
∆13

B±

)(
∆12

A

)
cos

(
∆13L

2

)
sin

(
AL

2

)
sin

(
B±L

2

)
(2.74)

where ∆ij = ∆m2
ij/(2E), A =

√
2GFNe, B± = |A±∆13| and J = cos(θ13) sin(2θ12) sin(2θ13) sin(2θ23),

the Jarlskog-invariant. The + sign is for neutrinos and (−) for antineutrinos. It is intresting to

note that the CP-phase appears as a product with all the mixing angles.

2.4 Experimental landscape

In the previous sections, the theory of neutrino oscillations in both, vacuum and matter was de-

scribed. Having established that, one of the major goals in the field is to determine within reason-

able errors the values of the PMNS matrix elements and the CP-violation phase described in (2.3).

Since the value of ∆m2 is fixed by nature, choosing L/E appropriately allows different designed

experiments to be sensitive to the values of ∆m2. The sensitivity to ∆m2 in an experiment is the

value of ∆m2 for which

∆m2L

2E
∼ 1.

Neutrino oscillation experiments tend to be classified by the value of the L/E ratio, as shown by

Table 2.2.

Table 2.2: Regions of sensitivity for different neutrino oscillation experiments [129]

Source Neutrino E L sensitivity

type [MeV] [km] ∆m2 [eV]2

Reactor νe ∼ 1 1 ∼ 10−3

Reactor νe ∼ 1 100 ∼ 10−5

Accelerator νµ, νµ ∼ 103 1 ∼ 1

Accelerator νµ, νµ ∼ 103 1000 ∼ 10−3

Atmospheric νµ,e, νµ,e ∼ 103 104 ∼ 10−4

Solar νe ∼ 1 1.5× 108 ∼ 10−11
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Reactor experiments use isotropic fluxes of electron-antineutrinos, such as Chooz, Daya Bay, RENO,

Double Chooz have a typical baseline (neutrino source-to-detector distance) of L ∼ 1 km. Acceler-

ator experiments, which use a beam of (anti)neutrinos produced by the decay of pions and kaons

produced by colliding high energy protons into a target, have a baseline of L ∼ (250 − 1300) km.

Examples are K2K, MINOS, OPERA, T2K, NOvA, and in the near future, DUNE. A short-baseline

neutrino (SBN) program has been developed at Fermilab in order to resolve previous experiment

anomalies (appearance excess at the LSND experiment), search for sterile neutrinos at the eV-mass

scale, and serve as prototype for the large scale DUNE experiment [25]. Finally, experiments such

as Super-Kamiokande, MINOS, IceCube use cosmic rays interacting with the upper layers of the

atmosphere, producing mesons that decay into neutrinos. The source-detector distance ranges from

20 km from neutrinos coming from above, to about 1.3× 104 km for neutrinos coming from below,

initially produced on the other side of the Earth. Solar experiments detect neutrinos produced at

the core of the Sun by thermonuclear reactions (discussed in the previous chapter). Experiments

which have been performed in the past are Homestake, Kamiokande, SAGE, GALLEX. Some of

the experiments which were contemporary to the latter are SNO, KamLAND, BOREXINO.

2.5 The νe-appearance case

According to Eqs. 2.70 and 2.71, the oscillation probability of muon neutrinos to electron neutrinos

P (νµ → νe) is proportional to sin2(2θ13), and from measurements of reactor experiments [17, 22] we

know the value of the mixing angle θ13 is non zero. This allows NOvA to make statements about

the CP-violation phase δ and the neutrino mass ordering by measuring electron (anti)neutrino

appearance in a muon (anti) neutrino beam. To observe muon neutrino to electron neutrino os-

cillations, νe-charged current interactions must be properly identified at the Far Detector. Signal

events will be characterized by an electromagnetic shower, attached to the vertex of interaction

with any other hadronic activity. NOvA uses an energy spectrum strategically tuned with a peak

at about 2 GeV, which is where the maximal νe signal is expected to appear given the beamline
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distance. Backgrounds to the electron appearance signal are the intrinsic beam νe component of

the beam, originated from the decay of kaons after exiting the target. Neutral current (NC) events

are also background to this signal specially when the hadronic system contains a neutral pion,

which decays into two photons π0 → γ + γ. Muon neutrino charged-current events are a relatively

small background in the Far Detector since most of them are suppressed by oscillations. In an even

smaller fraction are the backgrounds due to tau charged-current interactions and muon antineutri-

nos. The total background selected in the Near Detector is broken down into NC, beam νe CC, and

νµ CC components, using a data driven approach [50]. They are broken independently since each

of them gets affected differently by oscillations. These components are later used to compute the

corresponding components in the Far Detector. From the pion and muon decays π+ → µ+ +νµ and

µ+ → e+ +νµ+νe the intrinsic νµ and νe components of the beam arise. At higher energies (Eν & 4

GeV), this is produced by kaons. In order to correct the νe CC rate in sumulation, the pion and

kaon yields are derived from the low and high energy νµ CC Near Detector rate, respectively. The

former is computed in bins of transverse (pT ) and longitudinal (pZ) momentum from the neutrinos

whose particle exiting the target is a pion. The kaon yield is computed as a single scale. This

results in a pion yield 3% lower and a kaon yield 17% higher than simulation and translates in

an overall 1% increase in the estimated Near Detector beam νe background rate in the 1-3 GeV

region [10].

The muon neutrino disappearance measurement will be discussed in detail on Chapter 6. In the

next chapter we will start the description of the NOvA experiment and its role in the neutrino

physics community.
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CHAPTER 3. THE NOvA EXPERIMENT

In this chapter we will present a description of the NOvA experiment. We will first discuss how

the beam of neutrinos is produced at Fermilab, starting from the Linac to the target area. Then

we will comment on the motivation for the off-axis technology and how it will help NOvA achieve

its physics goals. Finally, we will talk about the NOvA detectors and how they work, concluding

with a description of readout electronics and the data acquisition system.

3.1 Experimental design and and physics goals

NOvA is a long baseline neutrino oscillation experiment with L/E ∼ 400 km/GeV (where L is the

source-detector distance and E is the neutrino energy), sensitive to the atmospheric mass splitting

parameter ∆m2
32 (where ∆m2

ij = m2
i −m2

j ). It consists of two functionally identical, high sampling

liquid scintillator calorimeters: the 0.3 kton Near Detector (ND) located 105 m underground, 1 km

from the production target at Fermilab and a 14 kton Far Detector (FD) located on the surface

810 km from the source along the Ash River Trail, MN.

The NOvA experiment uses the NuMI beam with both detectors aligned 14.6 mrad off the main

axis. The off-axis location provides a neutrino flux narrowly peaked at around 2 GeV. With such

configuration, the suppression of the high energy tail reduces the neutral current background at

the measured energies where the probability of electron neutrino appearance is greatest.

The NOvA physics portfolio includes measurements of the νµ → νµ(νµ → νµ) muon disappearance

probability, allowing NOνA to measure sin2 2θ23 and the atmospheric ∆m2
32, and measurements of

νµ → νe(νµ → νe) electron appearance probability. From these measurements, NOvA will have a

chance to resolve the mass hierarchy, a chance to measure the δCP phase in the neutrino sector using
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electron appearance and the θ23 octant using the information from muon disappearance. NOvA

will also look for evidence of new physics and make measurements of a variety of neutrino-nucleus

interaction cross sections.

Figure 3.1: Geographical location of the NOvA detectors. The Near Detector is located on the

Fermilab campus, 100 meters underground and about 1 km from the NuMI target. The Far

Detector is located on the surface along the Ash River Trail, Minnesota, 810 km from the target.

Both detectors are 14 mrad off-axis the center of the beam. The beam is bent 58 mrad into Earth’s

crust in order to reach the location at Minnesota.

3.2 The NuMI neutrino beam

The Fermilab accelerator complex is a set of seven facilities that together produce and deliver a

diversity of particle beams (as shown in Fig. 3.2), including the most powerful high energy neutrino

beam for neutrino experiments, a muon beam for muon experiments, and proton beams for various

fixed-target experiments as well as Research and Development (R&D) programs [73].
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Figure 3.2: The Fermilab accelerator complex is composed of seven parts including five accelerators

and two storage rings: Radio-frequency quadrupole (RFQ), Linear Accelerator, Booster, Recycler,

Main Injector, Muon Delivery Ring and the Fermilab Accelerator Science and Technology Facility

(FAST).

The NuMI beamline was built at Fermilab with the original idea of producing the neutrinos for

the Main Injector Neutrino Oscillation Search experiment (MINOS), a long-baseline neutrino ex-

periment designed to observe the phenomena of neutrino oscillations with significant contributions

to the measurement of the parameter ∆m2
32. With the addition of several hardware upgrades over

time and thanks to the flexibility of its design, the NuMI beam has been delivering neutrinos not

only to MINOS but to other neutrino experiments such as MINERvA and NOvA.

The accelerator chain starts in the radio-frequency quadrupole (RFQ) accelerator, which provides

the particle beam source for the entire accelerator complex. This 3-meter-long accelerator takes in

negative hydrogen ions H− from an ion source and accelerates them in pulses of approximately 100

µs long at a rate of 15 Hz from 35 keV to 750 keV towards the linear accelerator.
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The Linac is a 150-meter long linear accelerator that brings the ion beam up to 400 MeV. The

Linac contains two sections: the Low Energy (LE) Linac and the High Energy (HE) Linac. There

is a transition section between the two. The LE Linac is a Drift Tube Linac (also known as Alvarez

Linac) that operates at a resonant frequency of 201.24 MHz and accelerates the beam from 750

keV to 116.5 MeV. The HE Linac is a Side-Coupled cavity Linac that accelerates the beam from

116.5 MeV to 400 MeV at a resonant frequency of 804.96 MHz [6].

The ion beam is then sent to the Booster, which is a synchroton ring of approximately 470 meters

in circumference, made up primarily of magnets and radio-frequency (RF) cavities. Booster accel-

erators are used to increase the energy of the beam from the Linac stage to an acceptable input

energy for the final accelerator (e.g. the Main Injector). The beam of H− ions passes through a

stripping foil at the injection point to remove the electrons, in a process called “charge exchange

injection” which reduces beam losses. The resulting protons are accelerated from 400 MeV to 8

GeV. Since the Booster is a synchroton, the cavity resonant frequency sweeps from 37.8 MHz to

52.8 MHz as the beam revolution period decreases from 2.2 µs at injection to 1.6 µs at extraction.

Bunches are discrete groups of beam created by interaction with the RF waveform. The maximum

number of bunches the Booster can accelerate is 84. All 84 bunches are extracted from the Booster

at once, and each string of 84 bunches is called a Booster batch. It is in this step that the 8

GeV proton beam is either directed towards the Booster Neutrino Beam target and/or towards the

Recycler and Main Injector (MI) rings.

The Recycler is a fixed energy machine of 8 GeV composed mostly of permanent magnets and

located on top of the MI with the same circumference of 3.3 km. The current role of the Recycler

is to facilitate proton injection to the Main Injector. The Recycler receives beam from the Booster,

performs radio-frequency manipulation technique called “slip-stacking”, and extracts the beam to

MI. The Recycler RF cavity resonant frequency is at 52.8 MHz, the same resonant frequency of the

Booster at extraction and MI at injection.
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Figure 3.3: Technical diagram of the Fermilab accelerator complex [9].

Slip-stacking is the process of injecting pairs of batches into the Recycler and then merging the pairs

to form double-intensity batches. The Recycler is capable of slip-stacking up to twelve batches,

which results in six double-intensity batches for extraction to MI.

The Main Injector is another synchroton machine with an injection energy of 8 GeV and an ex-

traction energy of 120 GeV. The RF frequency ranges from 52.8 MHz to 53.1 MHz. It is made up

of dipoles, quadrupoles and RF cavities. A typical MI machine cycle is 1.33 s.

The NuMI beamline directs the 120 GeV protons from the MI to the NuMI target located un-

derground at MI-65, as shown in Fig. 3.3. In order to reach the MINOS detector located in the

Soudan mine in Minnesota, the proton beam is bent downward at an angle of 58 milliradians.

The beam is transported 350 meters from the extraction hall to the target hall where the NuMI

target is located. Figure 3.4 shows the schematics of the NuMI beamline from the extraction hall

to the MINOS hall. The target hall is located 41 meters underground. The high energy protons
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collide with a 1 meter-long, graphite-and-beryllium NuMI target [103, 90] with a graphite density

of 1.78 g/cm3. The recent addition of 3 fins of beryllium were the result of a set of studies that show

its superior resistance to radiation damage compared to graphite and due to its similar density, the

replacement implied no mayor effect in the physics of the experiment.

Carrier Tunnel
(10’ x 10’)

Target Hall
(25’W x 30-60’H x 175’L)

Decay Tunnel
(21’6”D + 4’walkway) Beam Absorber

Muon Detectors

MINOS
Service Bldg .

MINOS Hall
(35’W x 32’H x 150’L)

MINOS Near Detector

MINOS Hall Tunnel

Target Shaft Area MINOS Shaft Area
600ft 225ft 2,200ft 1,100ft

Extraction Hall

Target Service

EAV-2&3EAV-1
EAV-4

Target Service
MINOS Service Bldg .

Beam Absorber Access Tunnel

Figure 3.4: Aerial view (top) and side view (bottom) of the NuMI beamline from the extraction

hall to the MINOS hall.

Figure 3.5: Schematic diagram for the particle beam used in NOvA. The dimensions shown in the

horns correspond for the Low Energy (LE) tune, not the Medium Energy (ME) tune relevant for

NOvA. In particular, horn 2 has been moved from the LE position (10 m from zero point) to the

ME position (19.18 m from zero point) [100]

The particle beam used in NOvA is shown in Fig. 3.5. After the interaction of protons with the

carbon/beryllium nuclei, secondary particles are produced in the neighborhood of the target. Two

parabolic aluminum horns act as hadron lenses, producing a magnetic field that focus or defocus the

outgoing flux of charged particles according to the sign of the current. For example, a magnetic field
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produced by a forward current in the horn will focus positive mesons (and deflect negative mesons)

towards the center (see Fig. 3.6). The position of the target with respect to the first horn, as well as

the intensity of the current through the horns and the separation between them shapes the neutrino

energy spectrum and its background contamination. Once secondary particles are focused (mainly

pions and kaons), they decay via the weak interaction π+ → µ+ + νµ and K+ → µ+ + νµ resulting

in a muon neutrino νµ beam. There is also a small component of antineutrinos coming from the

negatively charged low-transverse momentum pions and kaons, and even a electron neutrino νe

component, from the analogous K+ → e+ + νe reaction. This secondary particles exit the horns

and decay in the 2 m wide decay pipe, whose nearly 700 meters in length was calculated to closely

match the decay length of a 10 GeV pion. At the end of the decay pipe there is a absorber made of

aluminum, steel and concrete, whose function is to stop most of the particles that are not neutrinos

and protect from irradiation downstream the line.

Focusing	HornsTarget Decay	Pipe

π-

π+ νµ

νµ/νµ

p

Figure 3.6: Forward horn current (FHC) configuration of the NuMI beam line. The magnetic field

produced by this configuration focuses positively charged mesons, producing neutrinos in the final

state.

3.3 Off-axis technology

NOvA is an off-axis neutrino experiment. Historically, the idea was first proposed and developed

in the E-889 experiment, in Brookhaven National Laboratory [135]. The physics motivation will

be explained as follows. Let us suppose we have a reaction producing a muon neutrino in the final

state,

π+ → µ+ + νµ.
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In the frame of reference of the pion, which is also the frame of the center of mass (CM), the

reaction can be written using four-vector as

qπ = qµ + qν

where q = (E,ppp) and q2 = E2−p2 = m2. Since we are solving for the neutrino energy in the center

of mass frame, we get

qπ − qν = qµ

taking squares (and since q2
ν = 0)

(qπ − qν)2 − 2qπ · qν = m2
µ

q2
π − 2qπ · qν =

Once again, in the frame of reference of the pion, we have that qπ = (mπ, 0, 0, 0), and under the

assumption that mν = 0, then pppν = 0 and Eν = pν , therefore

m2
π − 2ECMν mπ = m2

µ

hence,

ECMν =
m2
π −m2

µ

2mπ
. (3.1)

We can also rewrite the previous expression as

ECMν = pCMν =
mπ

2

(
1−

m2
µ

m2
π

)
' 29.79 MeV (3.2)

Let us consider the motion of the pion as seen from the Lab frame of reference, with speed given

by V = pπ/Eπ ' 1 along the z axis and γ = (1 − V )−1/2 = Eπ/mπ � 1 with c = 1. The energy

and momentum transformations in general from Lab to CM is given by

ECM = γ(ECM − βpz) (3.3)

pz = γ(pCMz − βECM ) (3.4)
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Figure 3.7: Pion decay given by the reaction π+ → µ+ + νµ. Figure A shows the Lab frame of

reference whereas figure B shows the center of mass frame of reference.

but since Eν = pν and pz = p cos θ, then

ECMν = γ(ELabν − V · ELabν cos θ) = γELabν (1− V · cos θ) (3.5)

Our goal is to find an angular relation for the neutrino energy Eν = Eν(θ), for small θ. Solving for

ELabν and approximating cos θ ' 1− θ2/2, from the previous expression we get

ELabν =
ECMν

γ(1− · cos θ)
' ECMν γ(1 + V )

1 + γ2θ2V (1 + V )/2

where we had multiplied both numerator and denominator by a γ(1+V ) factor. Noting that V ' 1,

we get

ELabν ' 2γECMν
1 + γ2θ2

(3.6)

and using Eq. (3.2) together with γ = Eπ/mπ for simplification, we finally obtain

ELabν '

(
1−

m2
µ

m2
π

)
Eπ

1 + γ2θ2
=

(
1−

m2
µ

m2
π

)
Eπm

2
π

m2
π + E2

πθ
2

(3.7)

The expression (3.7) is crucial, because shows the monochromatic nature of the neutrino energy

when using the off-axis idea.

For a detector located along the beam axis (e.g. when θ = 0) it follows that the energy spectrum

is proportional to the pion energy, resulting in a wide-band beam. On the other hand, if we locate

the detector off-axis, it can be shown that the neutrino energy depends less on the pion energy and

it reaches a maximum value (see 3.8). This can be calculated by taking the derivative with respect

to Eπ,

dE

dEπ
' 0.43m2

π(m2
π − E2

πθ
2)

(m2
π + E2

πθ
2)2

. (3.8)
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Figure 3.8: Neutrino energy as function of pion energy given by Eq. (3.7). At θ = 14 mrad the

pion decays yield neutrinos in the 1-2 GeV range, optimal for neutrino oscillations, compensating

for the decrease in flux.

The previous equation has a critical value when θ = mπ/Eπ = 1/γπ, that is

E ' 0.43
mπ(Eπmπ)

2m2
π

' 30 MeV

θ
. (3.9)

As a consequence, if 〈Eπ〉 represents the average pion beam energy, then a detector located on an

angle θ ' mπ/〈Eπ〉 with respect to the beam axis will receive a neutrino beam energy given by

(3.9), which is independent of the pion energy. This is the essence of the off-axis concept.

The neutrino flux produced by the pion decay is given by

φ =

∫
ELabν dE

dS
dA =

∫
ELabν dE

r2dΩ
dA =

∫
ELabν dE

A

4πz2
(3.10)

where dΩ = 4π, A is the detector area, z is the distance between the decay point and the detector.

Using the expression (3.6) we get

φ =

(
2γ

1 + γ2θ2

)2 A

4πz2
. (3.11)

Figure 3.9 shows the ratio φ(θ)/φ(0) of the neutrino flux as function of the off-axis angle for values

of θ = 0, 7, 14, 21, 28, with respect to on-axis θ = 0. We can see that the neutrino flux suppression
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Figure 3.9: Neutrino flux suppression with respect to off-axis. Curves represent off axis values

θ = 0, 7, 14, 21 and 28 mrad respectively.

is considerable for off-axis detectors. To counteract this and the small neutrino cross section, a

more intense beam and a detector with a large mass are needed.

The NOvA experiment uses the off-axis concept by locating the detector at θ = 14.6 mrad off-

axis the neutrino beam. This results in a narrow band, ∼ 2 GeV-peaked, quasi-monochromatic

neutrino spectrum. This is fundamental, since the neutrino energy that maximizes the oscillation

probability of electron neutrino appearance in a muon neutrino beam is approximately 1.6 GeV for

a baseline of 810 km and ∆m2
32 = 2.3×10−3eV2. Other angle configurations are shown in Fig. 3.10

for comparison.

An off-axis configuration has important advantages [55, 128] if used for an electron neutrino appear-

ance experiment such as NOvA. For example, the high energy tail is reduced substantially, decreas-

ing the neutral current (NC) and tau decay backgrounds. Tau neutrinos are mainly suppressed since

the peak of the beam is slightly below the threshold of tau particle production (mτ = 1.78GeV).

High energy NC events can have the outgoing lepton (neutrino) carrying away most of the inter-

action energy, and since they are not observed, they can shift down into the signal region when

reconstructed. This is a common background for both νµ-disappearance and νe-appearance analysis
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in NOvA. Therefore, the off-axis configuration reduces the high energy tail, shifting most of the

NC distribution to the lower energy part as shown by Fig. 3.11. Another important background is

the intrinsic beam νe component, which comes from the kaon and muon decays after being focused

by the horns and produces a broad spectrum even off-axis.
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Figure 3.10: Charged-current muon neutrino energy spectra (flux times cross-section) using Fluka11

simulation software for the NOvA Near Detector (left) and Far Detector (right). Different angle

configurations are shown: on-axis and at 7, 14 and 21 mrad respectively.

Figure 3.12 shows the event rate of charged current neutrino interactions in both NOvA detectors

for the forward-horn current NuMI configuration. The νµ component shown in red is substantially

larger than the wrong sign and intrinsic νe components. In contrast, Fig. 3.13 shows the antineutrino

charged current event rate in reverse-horn current, where the νµ and wrong sign components are

almost equivalent in magnitude, specially at high energies. This is a mayor difference between the

two event rates.

3.4 The NOvA detectors and the physics of detection

Neutrino detection is a challenge. Due to the very small nature of the neutrino cross section

when compared to other particles, neutrino detectors tend to be massive in order to collect data

from interactions. For example, the cross section of a 2 GeV neutrino scattering-off a nucleon is

approximately 0.8× 10−38 cm2/nucleon [129]. Therefore, for a 60 meter detector target filled with
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Figure 3.11: Simulated signal and background rates at the NOvA Far Detector as a function of the

true neutrino energy, except for the NC (shown in blue), which are shown as function of the visible

energy (e.g. the energy not carried away by the neutrino). The muon neutrino rates are shown

with (green dashed) and without (solid green) oscillations applied. The light magenta curve shows

intrinsic beam νe component. The dark violet filled histogram represents the appearance νe signal.

Simulation parameters used ∆m2
32 = 2.32× 10−3 eV2, sin2(2θ23) = 1. Source [109].

mineral oil, the interaction probability is [88]

R = σ ·NA[mol−1]/g · d · ρ

R = 0.8× 10−38 cm2 · 6.023× 1023g−1 · 6× 103cm · 0.85
g

cm3
= 2× 10−11. (3.12)

Therefore, is very unlikely that neutrinos interact even with massive detectors. This very small

likelihood of interaction motivates high intensity neutrino beams, such as NuMI.

As mentioned earlier, NOvA uses a neutrino beam from Fermilab and two highly active, segmented,

liquid scintillator off-axis detectors. They are identical in design and functionality, which signifi-

cantly reduces systematic uncertainties in the oscillation analyses.

The Near Detector measures the neutrino energy spectrum close to the source and before oscillations

have occurred, mitigating the significant uncertainties in the neutrino flux, cross sections, and
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Figure 3.12: Neutrino charged-current event rate (flux times cross section) for the NOvA Near

Detector (left) and Far Detector (right) using the forward-horn current (FHC) NuMI configuration.

In solid black is shown the total neutrino component, in red is shown the νµ-only component, in

blue is shown the wrong sign contamination, and green the intrinsic beam νe contamination. No

oscillation weights applied. Source [146].

detector acceptance. Any differences between the prediction and the Far Detector data may be

then associated to neutrino oscillations or some other hypothesis.

The basic unit of detection in NOvA is a rectangular cell made of polyvinyl-chloride (PVC) and

filled with liquid scintillator. The cell walls are made of highly reflective by adding titanium dioxide

(TiO2) to the PVC resin. The cells have a cross section size of 3.9 cm by 6.6 cm and a length of

3.9 meters in the Near Detector and 15.5 meters in the Far Detector. Inside each cell, a 0.7 mm in

diameter, Kuraray-Y11 wavelength-shifting (WLS) fiber is contained in a U-shaped fashion, with

both ends terminating on a single pixel of a Hamamatsu avalanche photodiode (APD). A set of

two 16-PVC cell extrusions glued together its called a module, and a custom number of modules,

different for each detector, forms a plane. Planes of PVC cells with their long axis alternating 90

degrees allow three dimensional reconstruction of particles (shown in Fig. 3.14).

The Far Detector has 384 cells per plane and a total of 895 planes with a total of 344k channels.

The detector dimensions are 15.5 m tall by 15.5 m wide by 59.8 m long and the total mass of 14

ktons [58]. The Near Detector is 15.3 m long and consists of an active region of 192 planes with 96

cells each. At the far end of the Near Detector, a muon range stopper is placed and consists of 11
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Figure 3.13: Antineutrino charged-current event rate (flux times cross section) for the NOvA Near

Detector (left) and Far Detector (right) using the reversed-horn current (RHC) NuMI configuration.

In solid black is shown the total antineutrino component, in blue is shown the νµ-only component,

in red is shown the wrong sign contamination, and green the intrinsic beam νe contamination. No

oscillation weights applied. Source [146].

pairs of active PVC planes with a 10 cm thick steel plate between them. The muon range stopper

is two thirds the height of the upstream component of the detector and its purpose is to contain

muons produced in the upstream active region, as shown in Fig. 3.15. The total mass of the Near

Detector is 0.3 ktons [57].

When a charged particle enters the detector, the electromagnetic field in the surroundings will

interact with the liquid scintillator molecules, exciting them and releasing photons as a byproduct,

photons which later will be internally reflected by the inner walls of the cell and ultimately collected

by the WLS fibers.

The components of the NOvA scintillator blend are

• Mineral oil (96% by mass fraction) that serves as a mainly as solvent, with a specific gravity

in the range of 0.850-0.865 and with an attenuation length at 420 nm greater than 5 meters

• Pseudocumene (4.1% by mass fraction) a benzene derivative that gets excited by traversing

ionizing particles and releases photons in the UV-range, serves as the main scintillant
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Figure 3.14: The NOvA Far and Near Detectors, at scale. Planes of PVC cells are rotated 90

degrees to allow 3D reconstruction.

• Scintillator waveshifter 1: PPO, or 2,5-diphenyloxazole (0.091% by mass fraction) takes in

the UV-photons from the pseudocumene shifts them to the absorbing region of the WLS fiber

• Scintillator waveshifter 2: bis-MSB, or 1,4-di(methylstyryl)benzene (0.0013%) also shifts the

UV-photons to the absorbing WLS fiber region

• Stadis-425 (0.0003%) used as antistatic agent since liquid scintillators are extremely non-

conductive fluids, potentially developing charges through triboelectric effect during flow, that

can lead to sparks

• Vitamin E (0.001%) used as antioxidant, preventing slow degradation of mineral oil

For the baseline scintillator, the output spectrum peaks in the wavelength range of 410 nm to 440

nm.

The plastic wavelength shift fibers are made of polystyrene in its core, with a refractive index of

n = 1.59. Violet light (∼ 425 nm) emitted by the scintillator mix, is absorbed by the commonly

chosen K27 fluorescent dye imprinted in the fiber. By total internal reflection, the blue-green

(450 − 650 nm) light emitted by the dye is trapped within the fiber. Unfortunately most of the
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Figure 3.15: Near Detector schematics.

short wave part of the spectrum (< 520 nm) is attenuated as it travels through the entire WLS

fiber. However, the longer wavelengths are only weakly attenuated. When this light signal is later

registered by a APD designed with high quantum efficiency at long wavelengths, it results in a

strong signal for minimal ionizing particles (MIPs) such as muons, as they travel anywhere in the

cell.

After the light is collected and transmitted by the WLS fiber, the analog signal is then transmitted

to the electronic readout, being the first step, the avalanche photodiode (APD), shown in Fig. 3.16.

The APDs are silicon photodetectors packed in arrays of 32 pixels an mounted on a carrier board

substrate using flip-chip mounting. Since both ends of a WLS fiber fit in single pixel, there is a

one-to-one correspondence between a pixel and a PVC cell. After light is absorbed in the collection

region, electron-hole pairs are generated and propagate towards the p-n junction due to the influence

of an electric field. The electric field is so high at the junction, that avalanche multiplication occurs.

One signature of silicon devices is the thermal generation of electron-hole pairs that mimic the

signal. The APDs operate at a temperature of −15 ◦C to keep the noise contribution from the

current of electrons generated at the photo-conversion region small.

One advantage that APDs have over other photodetectors is a high number of signal electrons

created per incident photon, or quantum efficiency, which for NOvA is of 85% for a wavelength of
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500-550 nm. Another advantage is that APDs have a uniform spectral quantum efficiency, as can

be seen in Fig. 3.18.

Figure 3.16: Top left: a NOvA liquid scintillator-filled PVC cell, which is the basic unit of detection.

Bottom: APD module consisting of the pixel array, the carrier and the TEC. Top right: a picture

of a FEB v5 installed at the sidewalk of the Near Detector. The NOvA readout electronics requires

(at minimum) a 40 photoelectron signal in response to MIPs at the far end of a 15.4 meters cell,

which is set by the average threshold of digital sampling oscilloscope (DSO) scans.

The APD crystal arrays are mounted on a carrier board, and the whole device is called an APD

module. The APD module consists of a 32-channel APD array, a carrier printed circuit board on

which the APD itself is mounted, a thermoelectric cooler (TEC), a heat sink for removal the heat

from the TEC and an enclosure.

Given that each TE cooler will generate approximately 3 watts of heat per APD pixel, a water

cooling system circulates water at a rate of 2 mL/s to remove this heat. In addition, dry air also
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circulates through the APD modules in order to reduce any moisture that might originate in the

neighborhood of the high voltage APD array, potentially causing electrical shorts.

Figure 3.17: Basic diagram showing the physical process inside an avalanche photodiode (APD).

3.5 The Data Acquisition System and Data Triggers

The digitization and processing of the APD signal is dead-time free and continuous. The Front-end

electronic board (FEB), is connected to the APD carrier by a ribbon cable, therefore, a one-to-one

correspondence between APDs and FEBs exists. This electronics board is home to a customized

application-specific integrated circuit (ASIC), an analog-to-digital converter (ADC), a carrier board

connector for interfacing with the data acquisition system (DAQ), a thermoelectric cooler controller

(TECC),a digital-to-analog converter (DAC), a field-programmable gate array (FPGA), and I/O

functions among other general board monitoring functions. The main purpose of the FEB is to

amplify and shape the discrete charge q from the signal of the APD given by

Q(t) = e−(t−t0)/tf ·
(

1− e−(t−t0)/tr
)

(3.13)
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Figure 3.18: Wavelength shifting fiver emission spectrum and quantum efficiencies for avalanche

photodiodes (APDs) and bi-alkali photodiodes (PMTs).

where tf and tr are the fall an raising times from the pulse respectively. Data from the ADC is

sent to the FPGA where multiple correlated sampling is used to remove low frequency noise. This

type of Digital Signal Processing (DSP) has the advantage of reducing the noise level and increases

the time resolution.

The FPGA uses the DSP algorithm to extract time and amplitude signals from the APD. Any

signal above the preprogrammed threshold will be time stamped and sent to the DAQ for further

processing.

The waveforms from the detector cells are sampled at by the ADC at a frequency of 2 MHz (500 ns

time resolution) to obtain multiple sample points along the baseline, rising edge and failing tail of

the waveform. A dual correlated sampling algorithm is then used to establish a rising edge triggered

threshold under which the sampling points are zero suppressed. This threshold is set independently

for each channel of the detector.

A collection of 64 FEBs feeds a single data concentrator module (DCM), which aggregates and

sorts data into windows corresponding to 50 µs, called microslices [173]. The DCM event builder

constructs larger 5 ms long time units (millislices) which are optimized for Ethernet transmission.
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The DCMs are synchronized through the use of a sophisticated timing system [123]. This system

provides a stable master clock line as well SYNC and command lines, that allow the time stamp

counters that are present in all the FEBs, DCMs and timing system, to be loaded and synchronized

with an universal time based on GPS. Once the data streams are built by the DCMs, the 5 ms

microslices of data from a specific time window are transmitted to a buffer farm in a round-robin

pattern, as illustrated in Fig. 3.19.
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Figure 3.19: A summary of the data acquisition system for the Far Detector. The Near Detector

has a similar one but in a smaller scale.

Neutrinos are sent into bunches within the NuMI spill, which extends 12 µs in time at a rate of

0.66 Hz. The NuMI beam spill trigger collects all the data within the 500 µs time window centered

around the NuMI beam spill (see Fig. 3.20). There is also a ±9µs time relief margin centered

around the beam spill, which gives a 30µs total time window (208 − 238µs) where the chance of

seeing a neutrino in the NOvA detectors is high. This region is called “in-time” window and is

blinded to analysis until the “box opening” (looking at our data) is done. Similarly, the time region

outside the 30µs is called “out-of-time” window and is used for side-band cross check studies and

to predict backgrounds for the in-time data.
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Since the Far Detector is on the surface, we use the advantage of having an abundant flux of cosmic

rays to generate another data set orthogonal to the neutrino sample using a periodic minimum-bias

cosmic trigger. This cosmic trigger is similar in length size to the NuMI beam spill trigger and has a

rate of 10 Hz. The data from the cosmic trigger is used for training and testing the boosting decision

tree algorithm used for cosmic rejection of the sample for this thesis, and also to understand the

performance of the Far Detector (e.g. calibration purposes). For the Near Detector, the all activity

trigger collects data (mostly muons originated by the rock material outside the active volume) that

also helps understand its performance.

0 500

time (μs)

47525

12μs

208 238

+9

183μs 237μs

-9

Figure 3.20: Neutrinos come in bunches within the NuMI spill, which spans 12 µs in time at a

0.66 Hz rate. The NuMI beam spill trigger collects the data from a 500 µs time window centered

around the neutrino beam spill.

In the next chapter we will discuss the steps involved in the NOvA simulation of neutrino events,

and how the NOvA detectors are calibrated using some of the features described in here.
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CHAPTER 4. SIMULATION AND CALIBRATION

This chapter describes the steps involved in the simulation and calibration of the NOvA data.

Monte Carlo (MC) simulation is key to understand the physics of particle interactions with the

materials in the NOvA detectors. Simulating the production of neutrinos, their propagation and

interaction allow us to optimize selection cuts, tune particle identification algorithms and compare

reconstruction metrics with data. The calibration process serves as the connection between the

hardware and the physics analysis worlds. These processes are discussed in detail in the following

sections.

4.1 Simulation modeling

The simulation of the neutrino interactions and the backgrounds in the NOvA detectors is divided

in three main stages (see Table 4.1). The first stage is the simulation of neutrino beam and

flux through the NOvA detectors. This consists of simulating the hadron production within the

target and the propagation through the horns and other beam components until the final meson

decay. The second stage uses the previous information and simulates neutrino interactions in the

detectors, taking into account initial and final-state interactions involving nuclear models. Finally,

the third stage simulates the passage of final-state particles through the detectors, and the electronic

response of the readout, including detector features like generation and propagation of scintillation

light through the fiber, APD response and electronic noise.

Table 4.1: Stages of simulation for the NOvA experiment.

Step 1: Beam simulation (G4NuMI/PPFX/FLUKA)

Step 2: Neutrino interactions (GENIE)

Step 3: Detector simulation (GEANT4)
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(a) (b)

Figure 4.1: (a) Hadron production fractional uncertainties. Solid black line represents the total,

calculated in quadrature for each interaction type. At the oscillation peak (1-3 GeV) the fractional

uncertainty is around 8%. The pion flux component uncertainty is around 4% in the oscillation peak,

whereas the kaon flux component is ∼ 1% at higher energies. PPFX assumes high uncertainties for

low energy interactions. (b) νµ flux spectrum integrated over the νµ cross section fiducial volume

in the Near Detector. Grey band corresponds to the total beam uncertainty (hadron production

plus focusing) added in quadrature. The ratio between the simulation output and the total beam

uncertainty is shown on the bottom.

4.1.1 Beam simulation

The beam neutrino flux produced by the NuMI beamline is based on the recently developed

G4NuMI [72], which uses GEANT4 [12] with a detailed description of NuMI beamline materi-

als and geometry. When the high energy proton beam interacts with the NuMI target, it generates

a cascade of pions, kaons, protons and other particles (hadronic production for short). They might

interact again within the target producing a reaction chain or travel further and get focused (de-

focused) by the magnetic horns depending on their charge. The simulation tracks every particle

through the target, horn and decay pipe until they lose all their energy or decay into neutrinos.

G4NuMI records parent and grandparents information along the way so that, for example, one

knows if a neutrino came from a pion of kaon decay.
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A correction to the G4NuMI hadron production is made using the customized Package to Predict

the Flux or PPFX [18]. This package calculates the corrections and their uncertainties using mea-

surements from dedicated hadron-nucleus collision experiments. PPFX corrects the FTFP BERT

hadronic model of GEANT4, which is the recommended reference physics list for high energy

physics, and uses FLUKA [48, 75] to remove residual energy dependencies of data for NuMI. There

are two types of output corrections (weights) produced by PPFX: one for the probability that an

interaction happened (attenuation correction) and one for the production of the particle with the

right yield, given an interaction (interaction correction). These corrections when applied to the

simulation stage are of the order of 7-10% for both νe and νµ flux predictions, with uncertainties in

the peak of about 8%. The pion flux component uncertainty is around 4% in the oscillation peak,

whereas the kaon flux component is ∼ 1% at higher energies (see Fig.4.1).

4.1.2 Neutrino and particle interactions simulation

The simulation of neutrino interactions in the NOvA detectors and the surrounding rock material

was achieved by using GENIE [23]. This neutrino event generator uses the flux produced in the

previous stage and models the primary interaction inside the nucleus, the production of all the final

state particles in the nucleus (process known as hadronization), and the transport and rescattering

of the final state particles through the nucleus (or intranuclear transport).

This analysis uses GENIE v2.12.2 with some modifications in physics modeling. These modifica-

tions include an updated multi-nucleon ejection weight (or 2p2h, two-particle, two-hole) via meson

exchange currents (MEC), and a nuclear charge screening correction, technically described as the

Random Phase Approximation (RPA). From the theoretical point of view, modeling the interaction

scattering from correlated nucleon-nucleon pairs, where both nucleons are ejected from the nucleus,

is called two-particle, two-hole (2p2h). The most heavily researched subset of these reactions arise

from the exchange of mesons (mostly pions) between the nucleons to bind them into pairs. The

models describing this are referred as MEC models. This analysis uses an empirical MEC model,
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which assumes a Gaussian shape in W, the reconstructed invariant mass given by the expression

W =
√
M2
p + 2Mp(Eν − Eµ)−Q2,

with the four momentum transfer Q2 as

Q2 = −qµqµ = 2Eν(Eµ − pµ cos θµ)−m2
µ,

where Eν is the energy of the neutrino, Eµ the muon energy, θµ the angle between the incoming

neutrino and the outgoing muon, and Ehad the calorimetric hadronic energy. We can rewrite in

terms of the magnitude of the three-momentum transferred to the nucleus from the neutrino as

|~q| =
√
Q2 + q2

0,

with

q0 = Ehad.

In our model, W is distributed between the quasielastic and ∆-resonance peaks. This empirical

MEC model derives its normalization based on the difference between MiniBooNE’s data for QE

scattering and free electron scattering [163]. The global Fermi gas model was used as the nuclear

model, which assumes all nucleons exist in a simple, non interacting gas. Overall, this correction

results in a 20% increase in the yield of events from GENIE’s empirical MEC model (see Fig. 4.2).

Evidence from the MINERvA experiment [141] suggests the need for a correction to the quasielastic

scattering prediction to account for a weak charge screening effect that modifies the response of the

nucleus to a weak probe (e.g. a neutrino), particularly at low Q2 values. This correction is based

on the long-range nuclear correlation effects computed with the RPA method. Our implementation

of this correction is based on the work of the IFIC Valencia group and Rick Gran [86] mainly by

correcting the energy and momentum transfer variables. Some features of this correction include a

reduction of the cross section at lower values of Q2 and a broad enhancement of the charged-current

quasielastic cross section across most values of Q2.

The region of interest in which the work on this thesis was focused corresponds to neutrino in-

teractions with reconstructed neutrino energy Ereco
ν > 5 GeV. This implies a transition region
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Figure 4.2: (a) Distributions in true energy transfer q0 for various models in GENIE. (b) Before

and after comparison of the muon neutrino energy spectrum illustrating the effect of tuning Meson

Exchange Current component in bins of true momentum transfer |~q|, which after being fit, matches

the ND data.

where baryon resonant production (RES) and non-resonant inelastic scattering (DIS) events take

a natural place. But also where development in neutrino interaction modeling is taking place. GE-

NIE considers the neutrino-nucleon charged current cross section as the direct sum of individual

contributions

σtot = σQE ⊕ σ1π ⊕ σ2π ⊕ · · ·σnπ ⊕ σ1K ⊕ · · · ⊕ σDIS

≈ σQE ⊕ σRES ⊕ σDIS . (4.1)

Thus, the total inelastic differential cross section is modeled as

d2σinel

dQ2dW
=
d2σRES

dQ2dW
+
d2σDIS

dQ2dW
, (4.2)

where the first term represents the contribution from all low multiplicity inelastic reactions via

resonance production, as prescribed by the Rein-Sehgal model [140] and the Feynman-Kislinger-

Ravndal (FKR) relativistic quark model of baryonic resonances [76]. The second term represents the

DIS contribution as predicted by the Bodek-Yang model [46] and tuned in the resonance dominance
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region with W < Wcut (Wcut being a configurable parameter in GENIE), making the RES and DIS

components agree with experimental data [24].

The final stage of the simulation takes in all the particles generated by GENIE and propagates them

through the detector geometry model. The interactions and decays of final state particles in addition

with their trajectories and energy loss within the boundaries of the detector are simulated by

GEANT4, producing a list of Fiber-in-Liquid-Scintillator-Hits (FLSHits) as output and representing

the true energy deposited by the particle in the active (scintillator) volume of the detector.

4.1.3 Detector response simulation

The last stage in our simulation deals with modeling the scintillation light production, transport

and conversion to electrical signals.

High energy particles interacting with organic scintillator materials have a non-linear response

of the energy loss per unit length, dL/dx, due to recombination and quenching effects. This is

described by Birk’s law, which is a first order correction given by [44]

dL

dx
=

L0
dE
dx

1 + kB
dE
dx

(4.3)

where kB is the measured Birk’s constant. Birk’s law can include a second order correction term,

and this is known as Birks-Chou law [52]

dL

dx
=

L0
dE
dx

1 + kB
dE
dx + kC

(
dE
dx

)2 (4.4)

with kC being the Chou constant. Both kB and kC constants were obtained by first selecting Near

Detector events with exactly two reconstructed tracks (muon and proton) and comparing data

versus Monte Carlo simulation distributions of dE/dx as a function of the number of planes from the

end of the track [133]. But even after the tuning, data/simulation differences persisted for protons

and muons, requiring a much larger Birks constant that reported by scintillator experiments (e.g.

Kamland and Borexino [31]). It was also necessary to use a negative Chou term, which combined

caused the quenching factor to reach large nonphysical values at βγ ≈ 0.1
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Figure 4.3: (a) The Cherenkov light emitted for particles of various β as a function of wavelength.

Very few photons are emitted in the k-27 dye absorption band of the NOvA wavelength shifting

fibers. Instead, photons emitted at short wavelengths are absorbed by the scintillator and re-emitted

in the absorption band. (b) The number of scintillation photons/cm (after Birks suppression) and

the number of Cherenkov photons/cm absorbed and re-emitted in the k-27 dye absorption band as

a function of βγ.

Including Cherenkov light modeling in the NOvA scintillation process improved substantially the

simulation of the hadronic system and helped to remove the nonphysical Birks-Chou constants.

The number of Cherenkov photons produced per distance traveled at a given wavelength is given

by the Frank-Tamm formula [95]

d2Nγ

dxdλ
=

2παz2

λ2

(
1− 1

β2n2
λ

)
(4.5)

where nλ is the refractive index, β = v/c is the particle velocity, Nγ is the number of photons, z is

the electric charge and α is the fine structure constant.

We can see from Fig. 4.3(a) that very few Cherenkov photons are produced in the 400-500 nm

region where the k-27 dye in the NOvA wavelength shifting fibers can absorb. In contrast, a large

amount of these photons are produced in shorter wavelengths. Hence, integration over wavelengths

that can be absorbed/reemitted at wavelengths that can be captured by the WLS fiber must be

performed. The caveat here is that most of the 200-400 nm wavelengths are absorbed instantly.
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Figure 4.4: (a) Comparisons between scintillation only and scintillation + Cherenkov light models.

Since the calibration procedure fixes the scale at the minimum ionization point regardless of the

light model, the ratio is fixed to 1 at that point. Assuming a scintillation only light model produces

an 5% energy bias for low βγ particles. (b) Comparisons of the 2017 scintillation + Cherenkov

light with the linear light model, the 2016 light model using Birks-Chou suppressed scintillation,

and the 2017 light model using scintillation only.

The number of Cherenkov photons emitted per centimeter is shown in Fig. 4.3(b). Since Cherenkov

light depends on the velocity, only high energy protons emit Cherenkov light.

The impact of the inclusion of this Cherenkov light in our simulation is shown in Fig. 4.4(a). The

figure shows the ratio between the number of photons produced by the 2017 model neglecting the

addition of Cherenkov light (scintillation only model) and the full 2017 model (scintillation plus

Cherenkov). If no Cherenkov light is modeled in the simulation, that leads to an over-estimate

of the energy deposited by slow protons and pions. A comparison of the number of photons per

centimeter from a variety of light models is shown in Fig. 4.4(b). After implementing Cherenkov

light in the simulation we obtain kB = 0.01 g/cm2/MeV and kC = 0.0 cm2/MeV2 [33] consistent

with the results from KamLAND and Borexino.

Some WLS fibers attenuate light more than others. This 20-30% variation in the average light

output has a significant effect on signals that are close to the threshold. This fiber brightness

variation found only in the Far Detector is added to the NOvA simulation.
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Since it is located on the surface, energy depositions from cosmic rays are a significant background

that must be well understood. Therefore, the Far Detector Monte Carlo contains cosmic ray data

combined with the simulated beam neutrinos [67]. This procedure accounts for the loss of efficiency

due to neutrinos events overlapping in space and time (pile-up) with cosmic ray muons. It also

helps to better understand the detector noise and requires no modeling of neutrons and Michel

electrons produced by cosmic rays.

A run-by-run beam intensity is included in the simulation in order to model the significant power

increase of the NuMI since NOvA started taking data. We would expect multiple neutrino interac-

tions per beam spill1 in the Near Detector as well in the rock material surrounding it. Pile-up can

reduce the expected number of neutrino interactions per protons-on-target (POT) and shift the

reconstructed energy spectrum to higher values. The average POT/spill included in the simulation

comes from the calculated total POT/run and number of spills stored in the NOvA runs database.

All pixels in the NOvA detectors share a common voltage source. When a large deposit of energy

occurs in one pixel, the baseline current of the others momentarily “sag”. This sag effect is included

in the simulation if the total amount of light captured by all pixels of an APD is greater than 5000

ADC counts in any 15 ns window.

4.2 Calibration

The calibration of the NOvA detectors can be divided in two main parts: energy and timing

calibration. The purpose of the energy calibration is to relate the recorded digitized amplitude of

the light in any cell to an energy deposition in physical units. The purpose of the timing calibration

is to correct for any time offsets between the data concentrator modules (DCMs) so that energy

depositions in different cells from the same particle are property correlated in time.

Cosmic ray muon data is used for the energy calibration. For clarification purposes, a brief descrip-

tion of the energy calibration units used in subsequent sections is as follows:

1Also refers to the 500µs of detector readout around the neutrino beam.
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• ADC: the peak of the dual correlated sampling value from raw data

• PE: a simple uncalibrated scaling of the ADC value to approximate the number of photoelec-

trons

• PECorr: the number of photoelectrons after threshold, shielding, fiber brightness and atten-

uation corrections

• GeV: estimated energy deposited in the active material (scintillator)

In terms of offline coordinates, the z-axis is along the detector in the beam direction, x-axis hor-

izontally and y-axis vertically. The coordinate W represents the distance along the cell length,

therefore W = 0 is at the center of the detector and more positive values of W are closer to the

readout.

4.2.1 Attenuation calibration

The first step of the energy calibration is to correct for the attenuation of light in the WLS fiber,

which is performed on a cell-by-cell basis. We start by converting the ADC pulse height to uncor-

rected PE by multiplying a 0.5 scale factor, which is an approximation to the effect of the FEB

electronics. Then we select hits from cosmic ray tracks and then make distributions of uncorrected

photoelectrons by path length through the cell, PE/cm, as a function of the distance along the

cell, W . The distance along the cell (W) is calculated for each track by taking the position of the

straight line defined by the two neighbouring trajectory points at the z-coordinate of the cell. Since

we require a reliable estimate of the path length, not all the hits from the muon track are suitable.

If a cell has its neighbors in the same plane, then we can assure that, for an Y-view cell, the track

entered through the upper wall and exited through the lower one, striking the neighbor cells as

show in Fig. 4.5. The path length is just the width of the cell divided by the direction cosine Cy.

This selection is known as tricell hit selection, since it requires hit neighbors in the x or y-axis and

has the property of reducing the chance of noise hits.
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Figure 4.5: The tricell hit criteria requires a selected hit to be surrounded by two hits on both

adjacent same-plane cells, ensuring a well reconstructed hit path length.

Tricell hits are used to calibrate both real and simulated data in the Near and Far Detectors. Once

we have the selected sample of hits, we determine the average PE/cm vs W for each cell and view.

At this point we are now ready for the next stage in the calibration.

4.2.1.1 Threshold and shadow corrections

It was noted that the Far Detector data and MC simulation had discrepancies between the calibrated

and true energies as function of W [34]. Two effects were considered mayor players for this:

threshold and shadowing or self-shielding. The number of photoelectrons (PE) generated in an

APD follows a Poisson distribution. As an ADC threshold cut is applied (usually 43 ADC for

Far Detector), it truncates the lower part of the Poisson distribution and it shifts the mean of

the PE distribution to higher values. On the other hand, as a charged particle deposits energy

during its propagation in the detector, the momentum changes and therefore the spectrum of

dE/dx energy deposition (PE/cm) changes. These two effects add a bias to the hits used for the

attenuation calibration, which implies an overestimate of the light-level and an under-estimate of

the real hit energies. The way to correct these effects has recently two approaches: a simulation-

driven approach [153], currently used as part of the official NOvA calibration process, and data-

driven [166], currently in development.
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The simulation-driven approach computes a combined correction factor that is a function of view,

cell, W and fiber brightness (for Far Detector only). This correction is given by

Corr = CorrThresh × CorrShadow =
PE

λ
· ETrue

EMIP
, (4.6)

where Corr is the combined threshold-shadow correction factor, PE is the simulated number of

photoelectrons at the readout, λ is the number of expected photons in the readout in the absence of

fluctuations, ETrue is the true energy deposited in the cell and EMIP is the reconstructed expected

energy based on the path through the cell. A separate threshold and shadow correction is calculated

for each sample of fiber brightness according to a fiber brightness map [49]. This correction is

applied to the PE/cm distribution of each cell just before attenuation fits.

The data-driven correction approach was initially developed in late 2014 [167, 168, 166]. The idea

was to follow the same definition of the simulated driven corrections and replace the true variables

with reconstructed ones.

We started by selecting a sample of hits coming from cosmic muons. We then loop over the hits in

the muon track and select all the hits that are within a range of 100-300 cm from the detector end

point. This defines our core sample of hits. This range was subject to study and tuning. Original

work [166] used the 100-200 cm region instead based on the flat profile of the distance to track end

versus PECorr/cm distributions. Increasing the region from 200 to 300 cm was motivated again by

increasing the sample size of hits selected.

We then divide the sample of hits coming from stopping muons within a window from the end in

four categories, in principle overlapping as follows. The first category is from the sample of hits

that come from stopping muon tracks, which we labeled as minimal ionizing particle (MIP) hits.

Second, the sample of hits that do not follow this criteria are labeled as Non-MIP. The fiducial

boundary was subject to study. While the original of 50 cm from the detector edge was used at the

beginning, other fiducial definitions were studied through the development stage, in particular, in

terms of projected cells and planes to the edge of the detector, in order to increase the size of the

selected muon sample. Now, if the path length within the cell exceeds the width of the cell for each
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view (e.g. 6 cm for X-view and 4.5 cm for Y-view) then that hit is labeled as “long” and defines

the third category. The fourth category corresponds to the hits with no restriction of path length.

With these criteria in mind, for each cell and for each view we create PE/cm vs W distributions

and compute each data driven shadow (CorrDDShadow) and threshold (CorrDDThresh) corrections

as the ratio

CorrDDShadow =
Mean[(PE/cm)(MIP+NonMIP)&Long]

Mean[(PE/cm)MIP&Long]
(4.7)

CorrDDThreshold =
Mean[(PE/cm)MIP&AllLength]

Mean[(PE/cm)MIP&Long]
(4.8)

where the common denominator requires the sample of hits be part of a stopping muon (MIP),

thus avoiding the impact of shadow effect by construction, and have a long path length (Long),

which assumes same path length shape when no threshold cut is applied. The shadow correction

numerator requires hits also having long path length, independently of coming from a stopper, and

the numerator of the threshold requires hits stopping muons independently of their path length.

A combined correction is simply given by the product

CorrDD = CorrDDThresh × CorrDDShadow (4.9)

in analogy to the simulation driven approach. The final correction to the number of photoelectrons

is implemented as PECorr = PE/CorrDD.

A comparison of the simulated and data-driven approaches is shown in Fig. 4.6. For each view, a

combined correction is shown against the distance along the cell (W ) for all cells in the detector.

The red points represent the simulation-driven correction given by Eq. 4.6 and currently used in the

calibration procedure. The blue points represent the data driven approach using Eq. 4.9 and the

standard tricell hits, in analogy to the simulation driven. The green points also represent the data

driven approach using Eq. 4.9 but using a different instance of reconstruction hits more related to

the track itself, called trajectory points. The trajectory point study was used in order to investigate

potential biases of the tricell selection itself. As we can see, agreement in the central region of the
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Figure 4.6: Combined data driven shadow and threshold corrections using tricells (blue), trajectory

points (green) compared with simulation driven (red) for all X-view cells (a) and Y-view cells (b).

Images from [147].

detector for the X-view cells is within error bars for both data driven approaches except at the

edges, due to the low efficiency in the number of hits selected. In contrast, there is a slight over

estimation of the correction for central values in the Y-view for the tricell data driven approach,

whereas for the trajectory points it seems to under compensate.

Once the simulation-driven threshold and shadow corrections are applied, the next step is to de-

termine the attenuation calibration constants, which will be discussed in the following part.

4.2.1.2 Attenuation fits

The attenuation fit for the profile of each cell is mathematically defined using the following expres-

sion

y = C +A

(
exp

(
W

X

)
+ exp

(
−L+W

X

))
(4.10)

where y is the sum of the response at the two fiber ends, W the distance along the cell, L is the cell

length and C,A and X are free parameters in the fit, with the latter giving the attenuation length

as well. This function describes the response in the center of the cell for both NOvA detectors.
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Figure 4.7: Examples of attenuation fits before (red) and after (blue) LOWESS corrections for a

Far Detector vertical X-view cell (a) and for a Near Detector horizontal Y-view cell (b).

An interesting effect found in data shows pronounced “roll-offs” of the attenuation fit at the end

of the cells which are absent or less pronounced in simulation. This feature can be explained by

the behaviour of reflected light given the geometric constraints of the edges and the uncertainty of

the varying fiber position within the cell. For this analysis we use the non-parametric regression

LOWESS2 fit method in order to capture this behaviour. The LOWESS curve at each point is

formed from the weighted mean of deviations, given by the weighted function

wi =


(

1−
∣∣∣W−Wi

3

∣∣∣3)3

for |W −Wi| < σ

0 for |W −Wi| ≥ σ
(4.11)

where Wi is the ith neighbor point around W in the range given by σ on the LOWESS curve, wi

is the local weight on Wi and W is the distance from the readout. A typical value for the length

scale σ is 30 cm. There might be instances of cells that deviate from the norm even though have

a successful LOWESS fit. To prevent this cases, the mean fractional deviation of the data from the

fit in quadrature is monitored and serves as metric that asses the quality of the fit. If this metric

exceeds the 0.2 value, the cell is marked as uncalibrated, representing an average 0.9% and 1.7%

2Locally Weighted Scatterplot Smoothing
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from the total for the Far and Near Detectors respectively [152]. The result of the fit in Eq. 4.10

in addition with the LOWESS correction is shown for two cells in Fig. 4.7.

4.2.2 Drift calibration

The drift calibration applies corrections for changes in the detector response over time. These

changes could be from the degradation in the composition of the liquid scintillator, aging of the

detector components or in the electronics response. The energy deposited by cosmic rays passing

through the detector are used to track the detector response over time. The drift calibration is

computed at the front-end board (FEB) level [42, 157]. The procedure starts by selecting the hits

from cosmic muons in a similar fashion to the ones selected by the attenuation correction. The

information is stored in 2D histograms containing information about the FEB and their corrected

photoelectron (PECorr) hits combined across all the subruns in a run. The mean PECorr RMS

and their errors are determined for each FEB in each run. The drift correction factor is computed

as

CorrDrift =
Average PECorr value for a week of combined data (fit to constant)

Average PECorr value for all combined data (fit to constant)
(4.12)

where the numerator is the average PECorr over approximately one week of data, or 51 runs,

and the denominator is the average PECorr in all the runs in the subset of data. The drift scale

factor is given by 1/CorrDrift [42]. A before and after comparison including drift calibration in a

subsample of data is shown in Fig. 4.8.

The drift calibration is shown to be a very small component. This correction has been developed

and validated and it is expected to be applied to the calibration chain for future analysis.

4.2.3 Absolute energy calibration

The final step in the energy calibration chain comes from determining absolute energy scales that

allow to convert PECorr measurements into GeV in data and simulation for both detectors. This is
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Figure 4.8: Before and after comparison of the drift correction applied to a sample of Far Detector

data. The corrected drift correction value shows a ∼ 0.4% variation for the period shown. Image

from [42].

done by using stopping muons and the Bethe-Bloch formula. The Bethe-Bloch formula describes the

rate of energy loss of muons passing through matter in the range 0.1 < βγ < 1000 as follows [129]

〈
−dE
dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(γβ)

2

]
(4.13)

where K = 4πNAr
2
emec

2 includes Avogadro’s number NA, the classical electron radius re, and

the rest mass of the electron mec
2, Wmax is the maximum energy transfer in a single collision,

Z/A is the ratio of the atomic number to the mass number, I is the mean excitation energy,

δ(γβ) is the density effect correction to ionization energy loss, z is the incident charge, and β

and γ the relativistic velocity and gamma factors of the incident particle. From Eq. 4.13 we can

see that the energy loss rate depends on the material as well as the incident particle’s mass and

momentum. Therefore, we can use the Bethe-Bloch equation to calculate dE/dx if we have muons

that stop inside the detector, since we have access to the energy at any point. In NOvA, the energy

that a muon deposits within each cell is estimated using GEANT4 and stored in Fiber-in-Liquid-

Scintillator-Hits (FLSHits), which represent that deposition in the active material (scintillator)

only. The minimum dE/dx for a muon passing through mineral oil (polyethylene) in the NOvA
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detectors is [87] (
dE

dx

)
MIP

= 2.079 MeV cm2/g.

The linear stopping power, in MeV/cm is given by 〈−dE
dx 〉 ·ρ, where ρ is the density in g/cm3, which

for the liquid scintillator in NOvA is (0.8617± 0.0017)g/cm3 at 15.6 ◦C [117], which translates in

a value of (
dE

dx

)
MIP

= 2.079× 0.8617 = (1.7915± 0.0035) MeV/cm. (4.14)

This calculation gives an estimate of the minimum dE/dx deposited in liquid scintillator by muons

stopping in the NOvA detectors. The calorimetric energy scale calibration will be described below.

We started by selecting contained stopping muons by either looking at the tracks whose recon-

structed end point is contained within the detector or by looking at the tracks that have a Michel

electron associated at one end. A Michel electron is an electron produced when the muon decays.

We then select all the hits in those tracks that are tricell hits and are between 100 and 200 cm from

the end of the track. Two new additional cuts, one for each detector, have been implemented in the

lates analysis. The first one (Near Detector) selects hits in the range −100 < W < 100 cm along

the position in the cell in order to remove edge effects from relative calibration (differences between

detectors). The second one (Far Detector) selects hits in the range 200 < W < 600 cm along the

position in the cell in order to remove edge effects and threshold bias. The selected hits produce

distributions of Muon Energy Units (MEUs) for each detector and for data and MC simulation.

The MEU is defined as the mean detector response in units of PECorr of a stopping muon tricell

within the track divided by the length of the track inside the cell. A calorimetric energy scale factor

that converts PECorr to GeV is found from the ratio [161, 112]

calorimetric energy scale =
MEUTruth

MEUReco
(4.15)

where MEUTruth is the mean of the simulated MeV/cm distribution, whereas MEUReco is the mean

of the PECorr/cm in both data and simulation. Each view is calibrated separately to avoid biasing.

The resulting differences in the averaged scale factors per view were around ∼ 1% for Far Detector

data [20]. Figure 4.9 shows some results after applying the absolute energy calibration correction.



75

(a) (b)

Figure 4.9: (a) Calibrated dE/dx distribution versus tricell hits on a stopping muon track for Far

Detector data (black) and Monte Carlo simulation (red). (b) Distance to the end muon track

point versus calibrated dE/dx. The black solid line represents the mean of a fit to the peak of the

calibrated dE/dx for a given distance from the track end point.

The substantial results in Fig. 4.10 show the comparisons before and after the calibration is applied

to both detectors.

After the complete calibration the residual disagreement between data and MC simulation in the

muon response using beam muons is 3.1%. For protons, there is a 5% dE/dx difference between Near

Detector data and MC simulation that is interpreted as the absolute calibration uncertainty [84].

4.2.4 Timing calibration

The recorded hits in each detector must be synchronized in order to temporally identify interactions

within them and correlate them with the neutrino beam. The beam is pulsed and delivers a 10

µs spill of neutrinos every 1.33 seconds. It is not possible to know the arrival time of a spill

because its frequency changes depending on accelerator operating conditions and the number of

experiments running on campus. Due to the overwhelming 140 kHz cosmic muon background at the

Far Detector compared to the few contained neutrinos expected per week, activity based triggers

are not an option for selecting signal events. This motivates a software driven trigger, with 100%
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Figure 4.10: Profiles of the reconstructed and true energy ratios as a function of W for the Near

Detector X-view cells (a) and for the Far Detector Y-view cells (b) comparing before and after

calibration is applied.

of the data stored in a buffer for up to minutes before a decision is made to readout data. When

a neutrino spill is generated at Fermilab, it gets time stamped by the NOvA clock and a message

is sent to both detectors to readout data from from the corresponding time window in the buffer.

This requires both detectors synchronized to an absolute wall clock that also records spill triggers.

The NuMI beam spill trigger initiates a readout of 500 µs of data centered at the beam spill. The

extra readout window allows for side-band analysis of backgrounds. For the Near Detector it is

required that all readout channels be in sync with the global clock within 10 ns in order to reduce

event pile-up.

Figure 4.11 shows the schematics of the timing system used in NOvA. A Master Timing Distribution

Unit (MTDU) interfaces with a GPS receiver and sends signals to the slave units, one per diblock.

Each slave unit transmits commands to DCMs and they transmit back with a loop-back connector

for calibration purposes and to the 64 FEBs (Far Detector) where the sync return line is exchanged

for the data link[120].

The timing calibration was determined using data in both NOvA detectors. Neutrino interactions

are separated in space and time by an algorithm that creates groups of hits, known as slices. A
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Figure 4.11: Schematics of the timing system used for the NOvA Far Detector (for Near Detector

similar layout at lower scale). Image from [125].

series of customized quality cuts is used to select cosmic ray muons or muons induced from neutrinos

interacting with the rock outside the Near Detector. After the hits from these tracks are selected,

the hit times get corrected for the time-of-flight along the muon path and for the distance of hit

to APD readout. Later, the time difference between all pairs of hits within a DCM on the track

is calculated. A two dimensional histogram is filled with this information versus the number of

uncorrected photoelectrons (PE). The resolution was fit to a function given by

σt =
p0

p1 + np2pe
+ p3 (4.16)

where npe is the number of photoelectrons, σt is the timing resolution, and p0, . . . , p3 are fit param-

eters. The actual timing resolutions is 5 ns for the Near Detector and 10 ns for the Far Detector.

An absolute timing offset calibration between DCMs is also performed. First, the time t′i of each

selected hit in DCM is taken after fitting readout samples from the ADC pulse-shape curve. This

time has time-of-flight correction but it does not include corrections for fiber speed variations or the

time to takes to the scintillator light to be absorbed. It is intended that t′i represents simultaneous

readout time of each hit on a track within one DCM. Second, a weighted average of the time of each

DCM on a track is computed. Third, the relative timing offsets between pairs of DCMs on a track
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(a) (b)

Figure 4.12: The absolute DCM timing offsets for the first two diblocks at the Far Detector. The

red line is the measured DCM offset based on cable delays from a calibration pulse issued by the

master timing unit. (a) The black points represent data from early 2014. The blue points represent

MC simulation to mimic data conditions and the offset for DCM 6 was fixed at zero when solving

the matrix of relative offsets for the absolute values (pre-sync). (b) The black points represent data

from early 2014 after cable delay between diblocks was corrected. That is why there is a shift in

diblock 2 delays compared to (a) (post-sync).

are also computed. This creates a matrix of relative offsets. Finally, the matrix of relative offsets

is solved for the absolute timing offsets between DCMs. One DCM is picked as a reference with a

fixed time and and all other DCMs will be solved for the time difference between hits in it and the

reference DCM. An example of the results of this time offset calibration is shown in Fig. 4.12.
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CHAPTER 5. EVENT RECONSTRUCTION AND PARTICLE

IDENTIFICATION

After data has been collected (or neutrinos simulated) and detector response properly calibrated,

the next step is to use single channel readout quantities to fully characterize particles interacting

in the detector. In this chapter we explain how this reconstruction process is implemented in the

NOvA experiment. We describe the algorithms and methods that create reconstructed objects,

such as tracks and vertices, and particle identifiers in a preamble for oscillation analysis.

5.1 Interaction separation using slicing algorithm

The basic unit of detection in the NOvA framework is the cell hit. Each cell hit by construction

has information from only two spatial coordinates, XZ or Y Z. Each hit contains the plane and

cell number of that channel, the total charge in terms of ADC counts and time information such as

the hit time and hit resolution. In order to have three dimensional reconstructed objects, we must

be able to combine sets of hits that are correlated spatially and temporally to the same physics

interaction. A NOvA event is a collection of hits that occur within the NuMI beam trigger window

of 550 µs. All hits in an event can be divided in two categories: signal hits and noise hits. Signal

hits come from interactions of charged particles traversing the cell, and are usually correlated by

time. Noise hits come from the electronics, are uncorrelated by time and do not deposit energy.

Separating hits into sets of correlated groups, called clusters, is referred as “slicing”. The plan is

to be able to separate noise hits from signal hits and the signal hits into clusters coming from the

same physical source (one slice per neutrino interaction, or cosmic ray).

The slicing algorithm implemented in NOvA is based in the Density-Based Clustering algorithm

(DBSCAN) [69]. It uses space and time information to separate clusters using regions where the
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density of points in some parameter space drops below a threshold. The clusters made by this

algorithm contains two types of points: core and border points. Core points have at least the

minimum number of nearby hits within a critical distance from each of them. Border points have

less than the minimum number of neighbors and are included to a given cluster as long as they

are the neighbor of a core point. Clusters are made by adding points around core points until all

expanding branches are border points. Any point not assigned to a cluster is labeled as noise.
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Figure 5.1: NOvA event display showing the 550µs NuMI beam spill trigger window in the Far

Detector. The charge distribution of raw hits in shown in cyan color at the bottom right.

A local density is constructed for each hit by counting the number of nearby hits within a given

distance of that hit. This distance is parametrized in terms of a custom neighbor function (NS),

that includes a causality term, two terms that penalize hits far in space and a term that penalizes

low energy hits [39]

NS =

(
|∆T | − |∆~r|/c

Tres

)2

+

(
∆Z

Dpen

)2

+

(
∆XY

Dpen

)2

+

(
PEpen
PE

)5

, (5.1)

where Tres is the timing resolution of the two hits added in quadrature, Dpen is the distance

penalty, PEpen is the uncorrected number of photoelectrons, PE is the number of photolectrons

(PE) for both hits added in quadrature, ∆T is the time in nanoseconds between the hits, and
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Figure 5.2: NOvA event display showing the 550µs NuMI beam spill trigger window in the Far

Detector. The reconstructed slices using the DBSCAN-inspired slicing algorithm are shown in

both views. Each color represents an interaction. Matching colors in each view represent the same

interaction.

∆XY , ∆Z are the distances in centimeters between hits in each view. For hits in the same view

|∆~r| =
√

∆Z2 + ∆XY 2, whereas for hits in opposite views |∆~r| = ∆Z.

The parameters in the NS function were tuned using a data-driven method and optimized using

two metrics: the efficiency or completeness defined as

Completeness =
Energy from interaction deposited in the slice

Total energy from interaction deposited in the detector
, (5.2)

and the purity,

Purity =
Energy from interaction deposited in slice

Total energy in slice
. (5.3)

Using Far Detector cosmic simulation, slicing had a completeness and purity of 99.3%. Near

Detector neutrino simulation predicts a completeness of 94.4% and a purity of 98.5% [38].

5.2 Lines found with Multi-Hough transform

After a physics interaction has been sliced, the next step is to identify converging lines in order to

find the vertex, which is the point where the primary neutrino interaction occurred in the detector.
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This is performed in NOvA by using the Hough transform algorithm [74]. It starts by taking pairs

of hits in each detector view (XZ, YZ) separately to later calculate the line that passes through the

hit pair using polar coordinates. For each of these lines, a “vote” metric is created

Vote(ρ, θ) = exp

(
−ρ− ρ0

2σ2
ρ

)
× exp

(
−θ − θ0

2σ2
θ

)
, (5.4)

where the uncertainties are given by σρ = 3√
12

, σθ = 3
d
√

6
, d is the distance between the two points,

determined by the NOvA cell size, ρ is the perpendicular distance from the line to the origin and θ is

the angle between ρ and the x-axis. The vote metric populates a (ρ, θ) phase space. Accumulations

in this “Hough map” are associated to the coordinates of the line of interest in a given event.

Once the Hough map is created, it is smoothed by averaging hits using a Gaussian smoothing

weight. The peaks in the parameter space need to be above a threshold, which is determined by

the number of hits in the event, in order to be considered a valid line. To create new lines, the

algorithm removes all the hits from the tallest peak associated to the dominant line, and looks

again for new peaks associated with new lines in the new parameter map. This “Multi-Hough”

procedure [37] is iterated until no more peaks above threshold are found. In terms of performance,

the key feature is checking if the dominant Hough lines form intersections and if so, check they are

near the primary interaction point of the slice. Results showing the average distance to the vertex

using Far Detector simulation are shown in Table 5.1.

Table 5.1: Average distance from the vertex in centimeters by interaction type of primary and

secondary Hough lines using simulation Far Detector events.

Interaction νe CC νµ CC NC

Primary line 2.7 cm 4.1 cm 6.9 cm

Secondary line 8.8 cm 8.2 cm 9.9 cm
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5.3 Vertex finding using elastic-arms

Once we have a cluster of hits sliced and a set of valid lines produced by the Multi-Hough algorithm,

the NOvA reconstruction chain uses this an input to find the primary neutrino interaction point

and a set of “arms” emanating from that point in the detector. A simple description of an arm a

is in terms of a straight line described by parametric equations

x(s) = x0 + s(sin θa) cosφa

y(s) = y0 + s(sin θa) sinφa

z(s) = z0 + s(cos θa) (5.5)

where (x0, y0, z0) is the spatial location of the arm origin, θa the polar and φa azimuthal angles as

function of the distance s. The goal of the elastic arms algorithm [126] (also known as deformable

templates) is to find the parameters (x0, y0, z0, ~θ, ~φ) which best describes the interaction. In most

applications the vertex is known and highly constrained. In the NOvA implementation [124], that

is not the case which requires custom tools outlined below.

The algorithm looks for the optimal vertex and M arms which describe the N hits recorded in the

event. The parameters are considered optimal if they minimize the energy cost function

E =
N∑
i=1

M∑
a=1

ViaMia + λ
N∑
i=1

(
M∑
a=1

Via − 1

)2

+
2

λv

M∑
a=1

Da (5.6)

where Mia is the distance between the hit i projected into the arm a in the XZ or Y Z view, Via

is the strength of the association between hit i and arm a, and Da is a distance measure from the

vertex to the first hit on arm a. The first term quantifies the goodness of fit between the arms

and the hits and its minimum is reached when the arms pass through the hits. The second term

penalizes hits that are not associated to any arm. The third term is also a penalty term but for

the arms whose first hits are located far from the vertex location. This is important when finding

a vertex for the NC events in NOvA, where two photons produced by the decay of the π0 travel

some distance . In fact, the likelihood for a photon to travel a distance d before converting is
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proportional to e−dλv , where λv = (7/9)X0 or ∼ 30 cm, which leads to a penalty term factor of

χ2 = −2 lnL = 2
d

λv
.

Hence, λ and λv regulate the strength of these penalty terms [116, 43]. The explicit form of the

parameter Mia is given by

Mia =

(
d⊥ia
σi

)2

, (5.7)

with the spatial resolution σi being half cell depth over
√

12 or σi ' 3cm/
√

12 = 0.9 cm. The

strength of the association between hit i and arm a is computed from the Potts factor [116],

Via =
e−βMia

e−βλ +
∑M

b=1 e
−βMib

, (5.8)

with e−βMia being the likelihood that hit i is associated with arm a, and the constant term e−βλ

the likelihood that a hit is noise. The parameter β is the range of influence of each arm and λ is the

distance at which a noise hit has a 50/50 chance of being associated with an arm or being noise.

For all the vertex candidates, arms are seeded and the directions are scanned in order to minimize

the energy cost function Eq. 5.6. The minimization, performed by the MINUIT class in ROOT,

depends in great part on the performance of the Multi-Hough input. The fit is initialized using low

values of β to avoid local minima in the energy lost function, and then β is gradually tuned until

it reaches the final 3D vertex point in the slice. When combined, Multi-Hough and Elastic Arms

algorithms achieve vertex resolutions of 11.6 cm for νµ-CC events, 10.9 cm for νe and 28.8 cm for

neutral currents [124]. This translates in a reconstructed vertex for charged-current interactions

within 2 cell widths of the true vertex on average. Figure 5.3 shows a NOvA event display with

and isolated slice associated to a neutrino interaction. In golden are the Multi-Hough lines and the

red cross shows the reconstructed vertex.

5.4 Prongs and the Fuzzy-K algorithm

After the global vertex candidate has been reconstructed by the Elastic Arms method, the next

stage is to assign a group membership to each cell within the event. We call this group of member
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Figure 5.3: NOvA event display showing a selected neutrino interaction filtered by the DBSCAN-

inspired slicing algorithm. The golden lines the reconstructed Hough lines. The red cross at the

center left represents the vertex reconstructed by the elasticarms algorithm.

hits a prong. A prong is a cluster of hits with a well defined starting point and direction. Each

prong is intended to represent hits from a single particle track or shower. This is accomplished

with a “possibilistic” Fuzzy-K Means algorithm [105, 169, 121]. Possibilistic means the sum of the

membership of each hit across all prongs is not forced to be one, allowing isolating hits be treated

as noise. “Fuzziness” allows a particular hit to belong to more than one prong.

The general idea is that when at the reconstructed vertex and for each cell view, the cell hits in the

slice should appear as peaks of deposited energy in a 1D-angular space around that vertex. The

Fuzzy-K algorithm determines how many prong peaks (centers) are present and assigns a prong

membership value to the hits in the slice. Each hit is converted to an angle with respect to the

vertex, in a range [−π, π] with zero being the Z-axis. The uncertainties were assigned empirically

from simulation to incorporate multiple scattering effects. An iterative process finds the prong

centers and determines the membership for each cell. It begins by assuming one prong is centered

on the region of highest density in the 1D-hit angular space. A metric that computes a degree of
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membership Uij for each hit θj in each prong center θi is computed using

Uij = exp

(
−dijm

√
c

β

)
, (5.9)

where dij is the distance to prong centers given by

dij =

(
θj − θi
σj

)2

, −π ≤ (θj − θi) ≤ π. (5.10)

In this case, σj is the angular uncertainty, m is the degree of “fuzziness” which allows hits to retain

partial membership in multiple prongs, c is the number of prong centers, and β is a normalization

term that represents the expected spread of the hits around a normal prong center. Later, the

prong centers are updated to a new θ′i value according to [38]

θ′i = θi +

∑n
j=1Aij(θj − θi)∑n

j=1Aij
(5.11)

where Aij = Umij /σ
2
j and the process is repeated until the difference ∆θ = |θ′i − θi| is below a

tolerance value for all centers.
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Figure 5.4: NOvA event display showing a selected neutrino interaction filtered by the slicing

algorithm. The blue, green and red regions are the reconstructed 3D Fuzzy-K prongs. The red

cross is the Elastic Arms based reconstructed vertex.

Additional prongs are created until all cell hits have at least 1% membership to a prong or the

maximum number of prong seeds has been reached. Prongs with significant membership overlaps
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are merged, whereas prongs with large spatial gaps that indicate two collinear particles are split.

Since this process is performed for each view, the last step is to match 2D prongs between views in

order to form 3D prongs. This matching involves comparing the energy profile of a prong in each

view [43]. A Kuiper metric K = D+−D−, based on a modified Kolmogorov-Smirnov test [106, 124],

is used to find the best match for the prong, where D+/− is the sum of the largest absolute positive

(negative) vertical distances between profiles. The view matching pairs together clusters from each

view best matched by the Kuiper metric, and continues until all clusters are matched. In terms of

performance [38], the metric used is the completeness for hits produced in the primary lepton in

charged-current interactions shown on Table 5.2.

Table 5.2: Average hit completeness for the Fuzzy-K algorithm by interaction type.

Interaction Charged Current Quasielastic Non-Quasielastic

νe completeness 88% 95% 86%

νµ completeness 93% 98% 92%

The 3D matched prongs will keep the membership information for the cells and become a useful

starting point for other reconstruction algorithms that make high level reconstruction objects such

tracks and showers as well as particle identifiers (PIDs). Figure 5.4 shows the 3D reconstructed

prongs associated to an interaction in the Far Detector.

5.5 Tracking

Let us now discuss the steps to recreate the tracks associated to the final state particles that

interact in the NOvA detectors. The tracks are reconstructed using individual slices (interactions).

We are interested in methods that reconstruct the tracks of particles that do not create large

electromagnetic or hadronic showers, like muons and protons. The first class of tracks that we will

discuss in this section are the ones based on the Kalman filter, namely Kalman tracks.
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5.5.1 Kalman Filters

A Kalman filter [102] is an optimization algorithm that can estimate a system state when the

variables of interest can only be measured indirectly or when the measurements are available from

various sources (sensors) but might be subject to noise. In general, they solve the problem of

estimating the true value of a real n dimensional state x at discrete k-steps with z measurements.

The relationship between the step k and the previous k − 1 is given by

xk = A · xk−1 +B · uk−1 + wk−1, (5.12)

where u represents any input into the system and w represents the inherent noise in the system

process. The matrices A,B transform the state and input at step k−1 to k, respectively. Similarly,

the relationship between the measurements of the system and its true state is given by

zk = H · xk + vk, (5.13)

where vk represents the noise inherent in the measurements and the matrix H defines how the

measurement of the system relates to the true state of the system [138].

The Kalman filter determines the best estimate of a state xk assuming a linear system, with noise

and measurement independent of each other and their probability following a normal distribution.

The estimate x̂k of the state at step k is computed such that minimizes the mean square error

between the estimated and true states.

An early example on the application of the Kalman filter algorithm in particle physics was imple-

mented in the data analysis program of the DELPHI experiment [79]. In NOvA, a Kalman filter

based tracker algorithm is used to reconstruct long single tracks associated to charged particles

traversing the detector. It was optimized for muons produced in charged current muon neutrino

interactions.

In the context of tracking, the Kalman filter is used to reconstruct the true position of a final

state particle given the measurements of the cell hits in the data. The true position and direction
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represent the state of the system and the noise associated with the system is the noise originated

from the detector cells having finite dimensions. The process noise is the noise originated from the

chance that a particle scatters off between measurements that modify the true particle position

from the one expected. Non-showering charged particles are expected to follow a straight line in

the NOvA detectors due to energy loss by ionization and the lack of an external magnetic field.

Any deviations from the straight line assumption are taking into account by multiple scattering,

which can be approximated as a normal distribution with a width given by

θ0 =
13.6 MeV

βp
z

√
x

X0

[
1 + 0.0038 ln

(
x

X0

)]
, (5.14)

that for the case of 2 GeV muon in NOvA, θ0 = 5.4× 10−3 radians.

The Kalman filter applied to NOvA is divided in three steps: track finding, track fitting and view

matching. Track finding sorts out which hits in a slice belong to a single track per view. First

the algorithm finds segments of tracks called seeds, which are formed from combinations of two

hits separated by less than 4 cell from each other. These pair of hits are used to estimate position

and slope of the track. The location of the adjacent hits is predicted using the estimated position

and direction of the track assuming a linear fit, process errors coming from scattering, and the

measurement errors from the uncertainty of the particle location within the cell [137]. Hits that are

less than eight χ2 units away from the track prediction are added the track. Once a new hit is added,

the track position and direction are updated given the measurement and the process continues until

no more track hits can be added. The propagation process starts from high Z-axis values to low

Z-axis values of the detector, since it is assumed that in that region particles emerging from a

neutrino interaction will be the most separated from each other. Once the tracks are propagated

to the point where no other hits are found to be added to the track, propagation is switched in

direction to go to high Z-values, picking up any missing hits. One third final propagation is repeated

to go to low Z-values again to separate tracks near the interaction vertex.

Track fitting is the process of determining the best particle trajectory to all the hits in a single track

view using the Kalman filter algorithm. At any given location along the track, the fit is determined
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from a step-wise forward (backward) propagation of all the hits that came before (after) the current

location. A weighted sum of the forward (backward) location and direction is used to fit the final

trajectory.

Finally, view matching gets the 2D tracks found in each view, if any, and combines them into a

single 3D track. The only dependence in location and direction of the 2D tracks comes from the

Z-axis. Therefore, they are matched based on a scoring metric, S, that measures the degree of

overlap between the two dimensional tracks in the Z direction

S =
Startdiff − Stopdiff

Overlap
, (5.15)

where Startdiff is the difference in planes between the starting point of the tracks in the two views,

Stopdiff is the difference in planes between the stopping point of tracks in the two views

Startdiff = |Zlow XZ view on track − Zlow YZ view on track|

Stopdiff = |Zhigh XZ view on track − Zhigh YZ view on track|

and Overlap is the number of planes that overlap each other over the length of the two tracks in

the z-direction. Combinations of 2D tracks are ranked against each other and the combination

with the lowest value of S are matched together as 3D reconstructed kalman tracks. Once a match

is found, the corresponding 2D tracks are removed from the pool and the matching continues until

no more 2D tracks are available. In terms of performance, the kalman filter tracking algorithm

completeness and purity results are shown in Table 5.3.

5.5.2 Cosmic tracker

The rate of cosmic ray induced muons at the surface of the Far Detector in the NOvA experiment

is approximately 140 kHz. A computationally fast and simple tracking algorithm that models the

trajectory of long muons is performed by the cosmic tracker [139]. The cosmic tracker algorithm is

a basic straight line-type fitter. It finds the best fit line to a collection of points in each of the cell

views by minimizing the squared perpendicular distance from the points to the line. The algorithm
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Table 5.3: Performance of the Kalman filter based tracking algorithm by interaction type for both

Near and Far Detectors. Numbers taken from [138].

Interaction CC-Quasielastic CC-Resonance CC-Deep Inelastic

FD νµ completeness 97% 97% 92%

ND νµ completeness 95% 95% 88%

FD νµ purity 99% 98% 90%

ND νµ purity 97% 95% 85%

takes in the slices as input and loops over all the hits in it, fitting using the X and Y positions

in each view, including a weight proportional to the number of hits in each view. After that, the

algorithm looks for hits furthest to the fit. It such hit happens to be more than 10 cm (2 cells), its

weight is set to zero and the hit is dropped, moving on to the next furthest hit. Before the final

fit, the algorithm loops back over dropped hits to see if they can be added back to the track. In

case they are not, a linear fit on the final collection of hits is performed. The output corresponds

to the start and end points for each line for each view. There is a swap between the start and end

points in case the timing of these points indicate that the 2D track goes upstream (slope is positive

if time increases with high values of z-axis, negative otherwise) [65]. Performance results of the

cosmic tracker algorithm show an efficiency of 98% and purity of 99% where efficiency is defined as

Efficiency =
Np

Nu
,

and purity

Purity =
Np

Nv
,

with Np being the number of cell hits in the track that belong to the particle, Nu the number of

cell hits that belong to a particle and Nv the number of cell hits in the track [66, 27].
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5.6 ReMId and CVN classifiers

After vertices and particle trajectories have been reconstructed, the next step is to use data driven

algorithms that exploit the interaction topologies of signal and background like events in order to

classify particles, and ultimately, neutrino interactions. A particle identifier (PID) is a classifier

metric constructed upon trained and tested data whose output helps discriminate between signal

and background. Specifically for the muon neutrino disappearance analysis, two PIDs are used

in order to select neutrino interactions (slices) with a muon-like particle in the final state, which

is the label of a muon neutrino interaction. The first one to describe is the Reconstructed Muon

Identifier (ReMID) classifier, which uses the k-nearest neighbors algorithm [59] and four variables

to produce an output metric that discriminates between muon tracks coming from νµ charged

current interactions and background tracks coming from other charged current and neutral current

interactions. Later, we will discuss the Convolutional Visual Network (CVN) classifier, which uses

pattern recognition, neural network and deep learning techniques.

5.6.1 The Reconstructed Muon Identifier (ReMId) classifier

The signal for the νµ disappearance analysis is a muon neutrino interacting in the detector pro-

ducing a muon particle in the final state in addition to one or more hadrons via a charged-current

process. Therefore, proper observation of the outgoing lepton categorizes the interaction as a νµ-CC

interaction. The principal background component comes from neutral current (NC) interactions,

where one of the outgoing particles is a π±, which could have features similar to muons in a νµ-CC

interaction. About 10% of the νµ-CC events have a final state muon with a track length shorter

than other final state particles. Therefore, track length is an important feature but could be mis-

leading. Another potential background to νµ-CC events are the νe-CC interactions, which result in

a electron in the final state. This electron results in an electromagnetic shower which most of the

time can be easily distinguished from muons using proper variables.



93

The ReMId classifier [138] uses four variables as input in order to classify the νµ-CC muon-like track:

the dE/dx log-likelihood (LL), scattering log-likelihood (LL), track length, and the non-hadronic

plane fraction. A brief description of each one is as follows:

dE/dx log-likelihood Charged particles deposit energy in the NOvA detectors according to the

Bethe-Bloch equation. Pions lose energy through hadronic scattering. Since the interaction length

for a charged pion is 82 cm [115], by using the shape of the dE/dx distribution is possible to

distinguish between muons and pions. The dE/dx is measured at plane by plane basis, by adding

the total calorimetric visible energy associated to the reconstructed track in the plane and dividing

by the total path length in active material that the track goes through in that plane. Using planes

instead of cells avoids potential issues with the calculation of the active path length, due to missing

cells, resulting in unnecessary uncertainties. To characterize the dE/dx, the log-likelihood (LL)

that a particle of type i created the energy deposition profile of the track is defined as

LLEi =
1

Nplane

∑
j

P ij , (5.16)

where the rate of energy loss dE/dx is measured at plane j and the probability P ijof the particle

of type i to have the measured dE/dx is calculated as a function of the distance from the track

end. The number of planes Nplane normalizes the LL among tracks of different lengths. The planes

that go into the sum in Eq. 5.16 are all the planes in which the track has deposited energy and

does not have energy contamination from vertex activity. In case they have, the planes with energy

contamination are determined from an algorithm designed to look for excess energy [144]. The

difference in the dE/dx LL between the muon and pion assumptions, LLEµ − LLEπ± forms the final

variable used as input into the ReMId classifier. The difference is used since both muon and pion

energy deposition distributions look alike thus the difference measures the likelihood a track is a

muon compared to a charged pion.

Scattering log-likelihood The scattering LL looks at the scatter of the reconstructed track as

a function of the distance measured from the end of the track, similarly to the dE/dx LL. The
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NOvA detectors have no magnet, therefore any deviation from straight line in the reconstructed

tracks is linked to scattering. Muons get this curvature from multiple scattering at small angles

and occasionally hard Coulomb scattering. Charged pions experience the same Coulomb scattering

with the addition of hadronic interactions due to the strong force. To characterize the scattering

of a reconstructed track, the scattering LL is defined as

LLSi =
1

NS

∑
j

P ij , (5.17)

where P ij is the probability of the particle of type i to have a measured scatter value at position j

as a function of the distance from the end of the track. The factor NS normalizes the LL among

tracks of different lengths. The amount of scattering is measured as

s =
θ2

d
, (5.18)

where θ is the scattering angle and d is the distance from the last scatter. The scattering mea-

surements are made at every trajectory point along the track, except at the start and end points.

As in the previous variable, the difference between the scattering LL of the muon and the pion,

LLSµ − LLSπ± is used as input in the ReMId classifier.

Track length The track length of the reconstructed Kalman track is another input to the ReMId

classifier. By construction, hadronic showers produce several short-length reconstructed tracks,

whereas muon-like particles produce long single tracks. This metric thus provide with discrimination

power between tracks from muons and hadronic showers.

Non-hadronic plane fraction Also by construction, the dE/dx LL is computed using a limited

range of planes where the track is free of contamination from activity around the vertex. By

excluding the planes with contamination, information about the hadronic energy deposition in the

track is lost. Muons tend to have very little hadronic contamination as they travel inside the

detector. Therefore, in order to recover the information about the hadronic energy deposition, the
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fraction of planes used in the dE/dx LL out of the total number of planes in the track with energy

deposition is used as input to the ReMId classifier.

The sample of simulated events used for the ReMId classifier use muon tracks from νµ-CC interac-

tions and pions from NC events. The reconstructed tracks used have both the starting and ending

points at least 50 cm away from the detector edges. Tracks are associated to particles based on the

particle type that is most pure according to the hits contained in the track.

5.6.2 The k-nearest neighbors algorithm

The ReMId classifier is built upon a k-nearest neighbor (kNN) classifier algorithm [59], that uses

the four input variables described above and outputs an overall score that characterizes a track

likeness to a muon coming from a νµ-CC interaction. The kNN method is implemented as part of

the TMVA 1 or Tool for Multivariate Data Analysis with ROOT2. The kNN algorithm works by

sampling a training set that includes signal and background events, and uses the input distributions

to create weights in a multidimensional parameter space that measure how signal-like and event is.

The kNN algorithm searches for k-nearest training events around a query test point

k = kS + kB (5.19)

where kS(B) is the number of signal (background) events in the training sample. How close they

are is measured by the multidimensional Euclidean distance

R =

(
nvar∑
i=1

|xi − yi|2
)1/2

, (5.20)

where nvar is the number of input variables used for classification (four in our case), xi are the

coordinates from the training sample and yi are the variables of the observed event. The probability

that the input event is signal-like is

PS =
kS

kS + kB
=
kS
k

(5.21)

1Official website http://tmva.sourceforge.net/
2Official website http://root.cern.ch/
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The ReMId score of a reconstructed track is set as PS . The value of k determines the size of

the neighborhood for which the probability density function is evaluated. Large values of k do not

capture local behavior whereas small values of k cause statistical fluctuations. The ReMId classifier

uses k = 80 and the score goes from 0 to 1, with values close to 1 indicate high chance of being a

muon and values close to 0 indicate the opposite. The value of k was chosen as the lowest value

that maximized the figure of merit (FOM) given by

FOM =
S√
S +B

(5.22)

with S is the number of signal events and B is the number of background events.

The efficiency and purity at which the νµ-CC events can be identified is estimated from all the

events that have a higher than threshold ReMId score, relative to the total events. For a ReMId

score of 0.50, the selection efficiency 86% is and purity is 95% [138]. Figure 5.5 shows comparison

of the predicted and data distributions of the ReMId score variable in the NOvA Near Detector,

which for this analysis, the optimal cut was set to ReMId > 0.5 for events with muon like tracks.

Figure 5.5: The reconstructed muon identifier (ReMId) variable in the Near Detector for contained

neutrino interactions.
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5.6.3 The Convolutional Visual Network (CVN) classifier

The most recent event classification method used in NOvA uses a machine learning algorithm known

as a convolutional neural network (CNN). CNNs extract features of varying levels of complexity

by using kernels, filters and convoluted layers, in order to learn correlations. The inputs are image

representations of the physics interactions in our detectors, using calibrated hit information only,

which means it does not require track or vertex reconstruction. The Convolutional Visual Network

classifier, which is a specific application of the CNN technique, is combined with the ReMId classifier

in order to select muon neutrino events for the disappearance analysis in NOvA.

This technique was inspired by the studies of the visual cortex of animals [92] in which simple

cells are sensitive to edge-like features within the retina, and complex cells are sensitive to position

independent edge-like features. CNNs mimic this structure using a series of convoluted layers

that extract sets of features from the input image, and pooling layers that perform dimensionality

reduction and add translational invariance. The data passed from layer to layer in a CNN has a

three dimensional structure (height, width and channel number) in analogy to the RGB channels

of color images. For an n×m convolutional layer, the input data is transformed according to [32]

(f ∗ g)p,q,r =
n∑
i=1

m∑
j=1

c∑
k=1

fi,j,k,r · gp+1,q+j,k, (5.23)

where (f ∗ g)p,q,r refers to the (p, q) pixel of the r channel of the transformed image, n and m are

the height and width of the convolutional kernel, c is the number of channels of the input image,

f is a filter and g is an array of pixel intensities of the input image. The filter f is a 4D tensor

trained to identify features within the image, where i, j are the height and width of the filter, k is

the input channel and r is the output channel.

The application of CNN to NOvA event classification was performed after developing and further

training a convolutional visual network (CVN).The CVN classifier was constructed to characterize

neutrino events into one of the following interaction types:

• νµ CC - a muon with a hadronic component,
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• νe CC - an electron with a hadronic component,

• ντ CC - a tau particle with a hadronic component,

• ν NC - only hadronic component.

The input to the CVN classifier consisted in slices of hits separated in space and time, associated

to neutrino interactions and with almost zero noise. Grids of 100 planes deep and 80 cells wide are

chosen as containers of the slice, one for each XZ and Y Z views. This grids correspond to a 14.52 m

deep and 4.18 m wide windows of detector, representative of the typical muon neutrino interaction

dimension. The intensity of each pixel is proportional to the calibrated energy deposition, allowing

these projections to be interpreted as “grayscale” images. An example of this with signal and

background like events is shown in Fig. 5.6.

The implementation of CVN was developed using Caffe [98], which is an open source framework for

deep learning applications. The CVN was trained using 4.7 million simulated events approximately

including cosmic ray interactions coming from Far Detector data. A 15 hit event requirement was

imposed for the training events. The CVN architecture initially uses two separate branches, one

for each of the cell X-view and Y-view respectively. The branches are later merged to a single

convoluted output, which is normalized to one and can be loosely interpreted as a probability of

falling in each of the training categories. In that sense, a value of zero is more likely be background

whereas a value of one is signal. Distributions of the CVN classifier for νe-CC and νµ-CC events

with NuMI backgrounds are shown respectively in Fig. 5.7.

Implementation of the CVN classifier in the NOvA experiment resulted in an increase exposure of

30% compared to the previous classifier method used for the νe appearance analysis [43]. It is also

the first reported case of a CNN used in a high energy physics result.

Efficiency, purity and the FOM give all a general insight of the performance of the ReMId classifier.

But these metrics where not used to determine the optimal selection cut for this variable. Instead,

a combination of the ReMId classifier with a Convolutional Visual Network (CVN) algorithm was
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(a) νµ-CC

(b) NC (c) νe-CC

Figure 5.6: (a) A Y-view example of a true νµ-CC interaction in the cell-plane space next to

the feature maps extracted from that event by the end of the first inception module in the CVN

network, and the three highlighted feature maps from the ensemble, which appear to have become

sensitive to muons (green square), electromagnetic showers (blue square) and hadronic activity

(purple square) respectively. For comparison, an example of neutral current (b) and νe-CC (c)

events, both backgrounds to our signal, are also shown.
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Figure 5.7: The CVN classifier score distribution for νe-CC (left) and νµ-CC (right) simulated

events. Distributions scaled to a NuMI exposure of 18× 1020 protons on target and a full 14-kton

Far Detector. Images from [32].

performed in order to determine the best cut value at which the maximal mixing rejection of

sin2 2θ23 could be determined under different assumptions [113].

With the reconstruction and particle identificiation details covered, in the next chapter we will

describe all the steps involved in the muon disappearance analysis in NOvA.
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CHAPTER 6. THE νµ DISAPPEARANCE ANALYSIS IN NOvA

This chapter describes an overview of the steps used to produce the 2017 NOvA νµ disappearance

analysis, corresponding to 9.38 × 1020 POT. The νµ disappearance measurement is performed by

comparing the reconstructed energy distribution of the selected νµ-like candidate events from data

to the predicted energy distribution of νµ-like events in the Far Detector. Details on the analysis

framework, event selection, energy reconstruction and event rate predictions will be presented in

the following sections.

6.1 Analysis Software

The νµ disappearance analysis presented herein used Common Analysis Format (CAF) files [122],

which only contain the final stage variables needed to perform fits and plots of interest. CAF files

have a tree structure in which each branch groups variables alike (e.g. header information, energy,

simulation) and each leaf represents that variable. Each tree entry corresponds to a reconstructed

slice, which as discussed in previous chapters, is a collection of correlated hits in space and time.

CAFAna [35] is the software framework in which CAF files are interpreted and actual analysis

constructed. By design, CAFAna is histogram-based and flexible. It facilitates the creation of

custom cuts and variables, implements classes that predict the estimation of events under different

oscillation assumptions, enables the inclusion of systematics uncertainties and computes the fit to

the data using MINUIT [96], among others.
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6.2 Event selection and analysis improvements

The first step in the νµ disappearance data analysis is to select, measure and characterize the νµ

CC events in both NOvA detectors. The collection of cell hits that have an APD signal above

threshold get selected. They are later clustered in space and time using the slicer algorithm [39] in

order to obtain individual neutrino candidate interactions. Charged particles leaving trajectories

in the detectors are reconstructed using the Kalman-filter inspired tracking algorithm [138]. An

example typical neutrino interaction topologies is shown in Figure 6.1. The top rectangle shows

a quasielastic νµ CC interaction with a muon neutrino incoming and interacting with a nucleus

producing a short track associated with a proton and long track associated with a muon, with the

distinction that both particles are attached to the same vertex. The color is proportional energy

deposited. This is an example of a signal event for the νµ disappearance analysis.

Two main background sources are associated to the νµ CC disappearance signal: beam-induced

backgrounds inside the fiducial volume, including νe (ντ ) CC interactions (center rectangle of

Fig. 6.1 shows a νe CC event) and neutral current interacions (e.g. bottom rectangle of Fig.6.1),

and backgrounds induced by particles from outside the fiducial volume. The latter arise from cosmic

ray interactions and neutrino interactions that occur in the material outside the detectors. A set

of selection algorithms have been developed in order to identify signal candidates while rejecting

background events.

6.2.1 Basic data quality and preselection

A good data quality selection is responsible to account for any potential problems related to the

electronics, data acquisition system, timing and/or the NuMI beam that could impact the analysis.

It consists of three parts [156]. The first looks at the detector condition over a subrun, where a sub-

run is about 2 minutes of data taken at the Far Detector (1 hour at the Near Detector). It mainly

uses instrumentation and timing information of the detectors to ensure its good performance [143].

Second, metrics constructed to look for short lived transient issues in a spill-by-spill basis were
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Figure 6.1: Typical neutrino interaction topologies in the NOvA detectors. Each point represents

a detector cell and the color is proportional to the charged deposited. Top: a quasielastic νµ-CC

interaction, with a muon neutrino coming from the left producing a short track associated to a

proton and a long track associated to the muon, and both particles attached to the same vertex.

Middle: a quasielastic νe-CC interaction, with an electron neutrino coming from the left and also

producing a low-range track associated with the proton, and an electromagnetic shower associated

to the outgoing electron, with both particles attached to the same vertex. Bottom: a neutral

current neutrino interaction ν-NC, with an incoming neutrino producing no final lepton but energy

deposits through hadronization.
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developed. In particular, the selection requires zero DCMs missing during a spill, and that there

is no excess of tracks stoping at the DCM edge boundaries, which indicates an out-of-sync detec-

tor [104]. Third, we monitor the condition of the NuMI beam spill and apply a selection on those

events with sufficient beam quality parameters. These include spills within acceptable time ranges,

number of protons on target, horn current, beam position on target, and beam width [134].

After the events have passed the good data quality selection, a preselection is applied requiring

basic reconstructed objects to be present, such as a minimum non-zero number of cell hits, tracks

and continuous planes. It is at this stage where events with reconstructed neutrino energy less than

5 GeV are selected for further analysis.

6.2.2 Containment

A containment cut is applied to events that pass the previous stage. A neutrino interaction is said

to be contained if such interaction has both the vertex and all the final state particles contained

within the detector. This is in order to reduce the background due to rock muons and cosmic rays,

and to improve the accuracy of the reconstructed energy of neutrino interactions. The selection

requires that the projected forward (backward) end (start) of the Kalman track passes through at

least 6 cells before exiting the Far Detector; that the projected forward (backward) end (start) of

the Cosmic track passes through at least 0 (7) cells before exiting the Far Detector; a two (first, last)

plane gap between the interaction and the detector edge; and that the distance of all reconstructed

prong objects to be inside a fiducial volume with respect to the detector edges. The containment

criteria for the Near Detector is slightly different since includes the muon catcher, which is around

2/3 the height of the active region. First, it requires that all the reconstructed shower-like objects

within the slice are contained, that is, that the starting and ending points are well within the

fully active volume; that if a particle reaches the muon catcher, such particle is associated to the

muon-like track; a two (first, last) plane gap between the interaction and the detector edges of the
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active region with a muon-like track starting also in the active region; and that the interaction

vertex occurs upstream of the muon catcher.

6.2.3 Muon particle identification

After containment, a particle identifier is applied to the event in order to determined the likelihood

of being a νµ CC interaction. This translates into finding a muon candidate within the particles

in the slice. As discussed previously, the track reconstruction is performed using a Kalman-filter-

inspired algorithm [137], whereas track identification is achieved by using ReMId, a kNN-based

classifier [138]. A new addition to the analysis has been the inclusion of a Convolutional Visual

Network (discussed also in previous chapter) to increase the selection efficiency, specially at low

track lengths. The CVN classifier identifies muon neutrino candidate interactions based on event

topology (see Fig. 6.1). Both ReMId and CVN classifiers range from 0 (less muon-like) to 1 (more

muon-like), as shown in Figures 5.5 and 5.7. For this analysis, if a neutrino interaction has a ReMId

value greater than 0.5 and a CVN value greater than 0.5, such event is cataloged as νµ CC and

selected for further analysis.

6.2.4 Cosmic Rejection

The NOvA Far Detector is located on the surface 810 km away from the target where protons

collide at an energy of 120 GeV producing neutrinos. The expected rate of cosmic-ray induced

muons is about 140 kHz. The length of the NuMI beam window is 10 µs every 0.75 Hz. The

expected number of cosmic-ray induced muons per day that will be inside the NuMI beam window

is given by

(64, 800 spills/day)·(365day/year)·(1.4 cosmics/spill) ≈ 3.3×107 cosmics/year (in NuMI spill),

where

(86, 400 s/day) · (0.75 spills/s) = 64, 800 spills/day,
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and

(1.4× 105 cosmics/s) · (10× 10−6 s/spill) = 1.4 cosmics/spill.

Compare the previous numerical value with the number of neutrino events given by the expres-

sion [115]

Nobs =

[∫
Φν(Eν) · σ(Eν) · ε(Eν , · · · )dEνd · · ·

]
M

A ·mN
· T

where Φν is the flux of neutrinos (e.g. 1/cm2/s for a super beam at 1000 km), σ is the neutrino

cross section per nucleon (e.g. ' 0.7 · (Eν/[GeV])× 10−38 cm2), ε is the detection efficiency, M is

the total detector mass (kg), A is the effective atomic number of detector, mN is the nucleon mass

and T is the exposure time (2 × 107 s typical accelerator up-time in one year). Computing the

estimate gives

Nobs =

[
1

cm2s

] [
0.7× 10−38 Eν

GeV
cm2

]
[ε] [1 GeV]

[
M

20 · 1.67× 10−27kg

] [
2× 107s

]
Nobs = 4× 10−6 Eν

GeV
· ε · M

kg
.

Assuming a 14 kton detector with organic scintillator being 62% of the fiducial mass and a 62%

efficiency for selecting contained νµ-CC interactions, the number of observed neutrinos at say,

Eν = 2 GeV per year, is

Nobs = 4× 10−6 · 2 · (0.62) · 14× 106 · (0.62) ≈ 43 neutrinos/year.

Cosmic rejection is of vital importance for reducing the number of background events that mimic our

signal at the Far Detector. A boosted decision tree (BDT) algorithm was trained and tested using

7 input variables whose output, when applied to events within the beam spill, classifies between

signal and background [40]. The cosmic rejection BDT uses the cosine of the angle between the

lepton and the neutrino, the reconstructed y-direction of the muon, the reconstructed muon-like

track length, the largest y-position of either the start or the end of the muon-like track (whichever

is larger), the cosmic PID output of the CVN algorithm (included in order to make the BDT less

susceptible to calibration uncertainties), the ratio between the number of hits in the Kalman track

and the number of hits in the slice (hadronic energy fraction), and the projected distance from
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both track start and end points to the detector edges. The optimal cut for the cosmic rejection

PID was set to a score of 0.5 and larger as shown in Figure 6.2.
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Figure 6.2: Area normalized distributions showing the cosmic rejection PID output for simulated

signal (solid black) and cosmic background (solid red). The dashed distributions show a comparison

with the previous tuning. The purple arrow at 0.5 shows the optimal cut value [40].

Overall, an increase of 17% in the efficiency with respect to previous analysis was achieved with the

improvements in the muon and cosmic rejection PIDs. Is important to note that the optimal cut

values for ReMId, CVN and the cosmic rejection were chosen based on the sensitivity to maximal

mixing [114].

6.2.5 Beam and cosmic background estimation

The beam induced backgrounds are estimated directly from simulated events in the detectors. If

an interaction that passes the selection does not have a true muon associated to it, such interaction

is labeled background. The Far Detector cosmic ray background is estimated using two samples of

data. The first corresponds to the events selected using the timing sideband region, just outside

the 10 µs NuMI beam spill window. This sample has the advantage of having the same detector

exposure to the NuMI beam, but given that our entire chain of selection has been optimized to
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reject cosmic ray events, the sample is statistically limited. The second sample corresponds the

events selected using the cosmic data trigger during a 500 µs window that does not include the

NuMI beam spill. Given the high rate of cosmic rays in the surface of the Far Detector (140 kHz),

the events on this sample are enough to produce a continuous and well populated distribution,

whose shape is used to fit the sideband sample. After converting to the same exposure, the total

count of this shape-fitted distribution is used as the estimate of the cosmic background. Figure 6.3

shows the number of signal and background events after each stage of selection. The optimization

of the selection reduces the cosmic background by six orders of magnitude, representing a ∼ 5%

from the total selected beam signal.

Events
1 10 210 310 410 510 610 710

Cosmic Rej

Particle ID

Containment

Quality

NoCut

Predicted Num. Events
Beam Background
Cosmic Background
Recorded data

NOvA Preliminary

Figure 6.3: Cut flow chart showing the number of events after each selection has been applied.

Recorded data corresponds to NuMI events, along with estimates from simulation and cosmic

sidebands.

6.2.6 Energy estimation

After a contained νµ CC interaction has been identified and reconstructed, the next step is to

reconstruct its energy. The muon neutrino energy Eνµ is estimated as the sum of the reconstructed
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muon energy and the energy of the hadronic system,

Eν = Eµ + EHad. (6.1)

The muon energy is reconstructed from the range of contained tracks, adjusted to true muon

energy using piecewise linear (spline) fits from simulation. The hadronic energy is estimated using

calorimetry by adding up all the visible energy from cell hits not associated to the muon. A piecewise

linear fit is also used to map the summed visible energy to the total hadronic energy [107]. The

muon energy resolution is about 3% in the Far Detector and 3.2% in the Near Detector due to

the contribution from the muon catcher. The hadronic energy resolution is about 24% for the Far

Detector and 28% for the near detector. Finally, the overall neutrino energy resolution is 6.6% for

the Far Detector and 6.8% for the Near Detector [158].

6.2.7 Energy binning

The main goal of the νµ disappearance analysis is to optimize the sensitivity to (sin2 θ23,∆m
2
32).

One strategy is to separate the neutrino events by energy resolution. Neutrino interactions with well

defined energy resolutions are less likely to migrate across bins of reconstructed neutrino energy,

which is of special importance for events within the oscillation region. We already showed that at

the Far Detector, the muon energy resolution is about 3%, whereas the hadronic energy resolution

is about 24% (slightly larger for events at the Near Detector). This implies that events with a

large fraction of hadronic activity will have a worse energy resolution, becoming susceptible to bin

migration. The ratio between the reconstructed hadronic energy and the reconstructed neutrino

energy,

hadronic energy fraction =
EHad

Eνµ
=

EHad

Eµ + EHad
(6.2)

or hadronic energy fraction, was the metric used to estimate the neutrino energy resolution. A map

between the reconstructed neutrino energy and the hadronic energy fraction is shown in Figure 6.4.

Using that map, the selected sample is divided into “quantiles” of equal number of events, shown

by the solid black line boundaries. These quantile boundaries are defined in a period by period
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scheme in order to incorporate any change in performance that affected the detectors. The number

of quantiles was determined by studies where the sensitivity to maximal mixing rejection and the

computational resources required to make the final fit were optimized [159].

Figure 6.4: Hadronic energy fraction versus reconstructed neutrino energy for selected simulated

events at the Far Detector for a subset of data (Period 2). The solid black lines show the quantile

boundaries for each neutrino energy bin using the 4-hadronic bin strategy.

The left plot on Figure 6.5 shows the sensitivity to maximal mixing rejection versus the number of

quantiles on the left and the distribution of hadronic energy fraction for selected events with four

boundaries on the right, both for a subset of the total data taken (Period 2). When comparing

with the no-quantile division approach, the improvement is increased by roughly ∼ 16%. After four

quantiles, the rejection sensitivity is low compared to the memory print and computational resources

used, therefore, 4 quantiles were chosen. The quantile with the lowest hadronic energy fraction

contains the 25% of the sample with best neutrino energy resolution, whereas the quantile with the

highest hadronic energy fraction contains the 25% with the worst neutrino energy resolution.

Another improvement to the sensitivity for the disappearance analysis was optimizing the binning

of the reconstructed neutrino energy. Previously, a 20 bin template in the range from 0-5 GeV

with constant bin size of 0.25 GeV was used. A binning wider than the energy resolution of the

event will diminish any relevant information on the shape of the oscillated spectrum. A smaller
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Figure 6.5: Left: Maximal mixing rejection significance (sin2 θ23 = 0.5) versus the number of

hadronic energy fraction quantiles. Comparison with the no-quantile division approach shown in

the first bin. Right: hadronic energy fraction for selected simulated events in the Far Detector for a

subset of data (Period 2). Vertical lines determine the limits for each of the four quantiles dividing

the sample evenly.

binning will increase the number of bins used in the fit and ultimately, computational resources. An

optimal binning, specially in the region of 1-3 GeV (maximal oscillation) could increase our ability

to extract information of the oscillation parameters. Several binning schemes were studied [159]

and at the end, the one that gave a better maximal mixing rejection sensitivity was a scheme with

19 bins (0, 0.75, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 5).

6.3 Extrapolation

After the events have been selected the next step is to make a prediction of the number of selected

interactions in the Far Detector. The process of predicting the Far Detector spectrum using the

Near Detector data is called extrapolation [7]. NOvA uses Monte Carlo simulation to derive a

transfer method that extrapolates the neutrino energy spectrum measured in the Near Detector to

the Far Detector. This method [101, 108] extrapolates the Near Detector measurement in three

steps, starting from a selected charged-current-like reconstructed energy spectrum:

1. A Near Detector conversion from reconstructed to true signal neutrino energy spectrum
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2. Conversion from Near Detector true energy to Far Detector true energy using Far-over-Near

ratio and neutrino oscillations applied

3. Conversion from true neutrino energy to reconstructed energy spectrum, and adding back-

grounds

In the first step, signal channel events (νµ → νµ and νµ → νµ) are selected from Near Detector

data, Nµ(Erecoi )|data where i represents the bin index of reconstructed energy and µ represents the

(νµ + νµ)-CC selection. Background are subtracted from the Near Detector data spectrum using

simulation

Nµ(Erecoi )|∗data = Nµ(Erecoi )|data −N bkg(Erecoi )|sim. (6.3)

The resulting spectrum represents the reconstructed energy of charged current events, Nµ(Erecoi )|∗data

with no backgrounds. A reco-to-true migration matrix from simulation, Mµ,ND, is used to convert

the reconstructed energy spectrum (X-axis) to a true neutrino energy spectrum (Y-axis) using the

signal νµ selection. The matrix must encode the probability that a neutrino with reconstructed

energy Ei came from a neutrino with true energy Ej (where j is the index over true energy) [108].

Therefore, each column of reconstructed energy is normalized to one. The predicted Near Detector

true energy spectrum becomes

Nµ(Etruej )|pred =
∑
i

Nµ(Erecoi )|∗data ×Mµ,ND(Erecoi , Etruej )|sim
Nµ(Erecoi )|sim

(6.4)

where the data/simulation ratio per bin helps to correct the Near Detector prediction. In the second

step, a far-over-near (F/N) ratio is later applied to each bin of true energy to predict the number of

events at the Far Detector. The advantage of this approach is that many systematic uncertainties

that affect both detectors cancel out in the far-over-near ratio, resulting in a smaller error on the

measurement. For example, major sources of relative near to far differences in the neutrino flux

(and hence, neutrino energy) are due to angular acceptance, decay kinematics, beamline geometry

and focusing of the particles. The ratio is created using the simulated events that have passed the

same selection, with no oscillations applied, and defined as Fµ,unosc(Etruej )|sim/Nµ(Etruej )|sim. The
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number of predicted unoscillated Far Detector events for each bin j becomes

Fµ,unosc(Etruej )|pred =
Nµ(Etruej )|pred × Fµ,unosc(Etruej )|sim

Nµ(Etruej )|sim
(6.5)

= Nµ(Etruej )|pred ×
Fµ,unosc(Etruej )|sim
Nµ(Etruej )|sim

=
Nµ(Etruej )|pred
Nµ(Etruej )|sim

× Fµ,unosc(Etruej )|sim

Note that the second expression describes a reweighting of the Near Detector prediction by a Far-

over-Near ratio (hence the name) whereas the third expression describes a reweighting of the Far

Detector simulation by a Near Detector data (prediction) over MC ratio [108]. The survival three-

flavor neutrino oscillation probability Pνµ→νµ(Etruej ; ~θ) for a given set of oscillation parameters,

including matter effects

~θ = {θ12, θ23, θ13,∆m
2
12,∆m

2
32, δCP , ρ, L}

is applied to the corrected Far Detector true energy spectrum by the product

Fµ,osc(Etruej )|pred = Fµ,unosc(Etruej )|pred × Pνµ→νµ(Etruej ; ~θ). (6.6)

In the third step, the Far Detector oscillated true energy spectrum is migrated back to bins of

reconstructed energy using the migration matrix Mµ,FD, where the rows of true energy are nor-

malized to one, making the probability that a neutrino of true energy Ej leaves a reconstructed

energy Ei

Fµ,osc(Erecoi )|pred =
∑
j

Fµ,osc(Etruej )|pred ×Mµ,FD(Etruej , Erecoi )|sim. (6.7)

This spectrum is later combined with the trivially extrapolated beam-induced backgrounds (νe-CC,

ντ -CC),

FBeam(Erecoi )|pred =
∑
j

FBeam(Etruej )|sim ×MBeam,FD(Etruej , Erecoi )|sim (6.8)

and the neutral current background, which gets reweighted by reconstructed energy

FNC(Erecoi )|pred = NNC(Erecoi )|data ×
∑

j F
NC(Etruej )|sim ×MNC,FD(Etruej , Erecoi )|sim

NNC(Erecoi )|sim
, (6.9)
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Figure 6.6: Schematics of the νµ extrapolation procedure for the NOvA disappearance analysis.

First, the Near Detector background-subtracted neutrino energy spectrum from data is converted

into a true energy spectrum via a migration matrix. Then, this true energy spectrum is multiplied

by a Far-to-Near Detector ratio, that takes into account flux, acceptance and converts it into a

Far Detector spectrum. In addition, it is multiplied by an oscillation probability assuming a set

of parameters and mapped into a reconstructed neutrino energy spectrum using a Far Detector

migration matrix from simulation. At the end, the cosmic a beam induced backgrounds are added

completing the extrapolated Far Detector prediction [130].

and finally, the cosmic ray induced muon background selected from outside the 10 µs beam spill

window. A schematic diagram of the extrapolation method used in NOvA is shown in Fig. 6.6.

With all the improvements in the event selection from the cosmic rejection and hybrid PID, and

the use of quantiles of hadronic energy fraction with optimized binning described in early sections,

a Far Detector prediction is shown in Figure 6.7. The solid purple line represents the extrapolated

neutrino energy prediction, with the cosmic in and beam expected backgrounds shown.

6.4 Systematic Uncertainties

Systematic errors are defined as having a nonzero mean, affecting the accuracy of a measurement

by shifting away from the correct value, in a reproducible fashion independently of the number of

trials. They are related to measuring devices (such as a neutrino detector) or measuring methods
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Figure 6.7: Far Detector prediction showing the total number of events that have passed the

Numu2017 selection criteria (solid purple), beam-induced (light blue) and cosmic sideband (black

dot) events also shown. No NuMI data included.

(such as the energy of a muon-like event). The two detector design of the NOvA experiment

allows for a reduction or cancellation of the systematic errors in the Far-over-Near ratio step. The

assessment of the oscillation parameters sin2 θ23 and ∆m2
θ32

takes into account remainder systematic

uncertainties in the neutrino flux, calibration, energy scale, neutrino cross sections, final state

interactions, scintillator light modeling, and energy independent scale factors. These systematic

uncertainties can be absolute, in the sense that affect both detectors in the same way, or relative,

contributing differently depending on the detector due to differences between them. To study the

effects of systematic uncertainties, two procedures are used. A direct approach, in which events are

reweighted in order to quantify the effect of an uncertainty, for example, on a particular interaction

type. An indirect approach, in which the reweighting is not possible, motivates the generation

of a new sample of simulated events with shifts applied. In these shifted samples which may

affect reconstruction, the central value becomes the ±1σ bound on the uncertainty. For systematic

uncertainties due to different models, such as the light modeling, a new simulation sample is created

assuming different parameters. In the end, the effect of each source of systematic uncertainty is

included into the analysis by shifts and normalization reweights to the neutrino energy spectrum
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from simulation. This section describes the errors incorporated in the official νµ-disappearance

analysis that uses contained events.

6.4.1 Calibration Uncertainties

A study on proton energy in Near Detector data and MC simulation found that the calorimetric

detector in data is 5% lower than the MC simulation [84]. This is interpreted as a 5% absolute

calibration uncertainty. The effect of this uncertainty is evaluated by generating two simulation

sample sets with a +5% or a −5% shift applied and known as “XY” shifted samples, corresponding

to different calibration constants, before the reconstruction and particle identification stages. Since

the proton study was only performed in the Near Detector, a 5% discrepancy is assumed to be

present in the Far Detector as well. A reconstructed versus true energy comparison of simulated

cosmic hits as function of their position along the length of a cell (W ) shows a residual disagree-

ment after calibration corrections where applied [19]. This disagreement arises when all cell hits

with energy > 15 MeV are used, instead of the standard “tricell” hits used for calibration [19].

A polynomial was fit to the ratio and the resulting function was used to change the calibrated

“shape” response versus W. This sample is known as the “func” shifted sample and also was used

in extrapolation in place of the nominal to gauge the impact on the predictions.

6.4.2 Beam Uncertainties

Both NOvA detectors are exposed to the neutrino flux of the NuMI beam. Systematic uncertainties

associated to this flux can be divided in two components: hadron production and beam transport

uncertainties. The uncertainties of the hadronic production are related to the modeling of the

production of pions and kaons in the target and horns, whereas the beam transport uncertainties

refer to the specifications of the proton beam, the simulated beam geometry and the focusing horns

and magnetic fields. Assessment of the hadron production uncertainty used the PPFX method [18]

recently implemented in NOvA. It constraints the GEANT4 flux simulation by generating a number
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of alternative weights where hadron production cross-section assumptions are varied within their

uncertainties. A covariance matrix describing the uncertainty in the NuMI flux is generated using

these alternative weights. A principal component analysis (PCA) disentangles these correlations

and re-arranges the components based on the largest impact to the oscillation fit [118], which are

set to ∼ 3% signal and ∼ 6% background uncertainties. Beam transport uncertainties, including

horn current miscalibrations, horn position, beam position on target, horn geometry and water

layer, target position, beam divergence, and magnetic field a the decay pipe uncertainties, are

motivated by data from beam monitoring devices [61]. For each beam parameter described above,

neutrino fluxes were calculated from simulation for each detector. The ratio of each variation with

respect to the nominal were converted into weights in true energy bins. These weights were applied

to the nominal simulation spectrum for both detectors when using the extrapolation method. A

conservative overall effect was computed by adding each component in quadrature, which showed

that all the components contributed below 5%, except the ±3 mm uncertainty in the horn 1 X-

position, which has an effect of 10% at 3.5 GeV [61].

6.4.3 Neutrino Interaction Uncertainties

Another source of systematic uncertainty is how well we are able to model neutrino interactions

in our detectors. A way quantify this is by evaluating the uncertainties due to cross sections, final

state interactions and hadronization models using GENIE’s reweighting tools which are applied to

simulated events. The modeling of the interactions depends on different parameters, or “knobs”,

which can be tuned to enhance/suppress cross sections and final-state particle kinematics. A ±1σ

reweight variation for a subset of GENIE knobs is determined after a careful revision of the interac-

tion model and inputs from other experiments, such as MINERvA. These one-sigma variations are

propagated in the analysis using the extrapolation method and compared to an unshifted nominal

prediction, for both signal and background. For this latest analysis, the uncertainty in the shape

of the 2p2h cross section is decribed using three degrees of freedom. First, use the empirical MEC

with the energy transfer (q0) reshaped in such a way that the ±1σ errors match the GENIE QE
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and RES predictions. Second, the neutrino energy cross section dependence, whose ±50% impact

events with Etrueν ∼ 0.2 GeV, but monotonically aproaches to ±10% for Etrueν ∼ 4 GeV. Third, the

nn/np composition of the scattering off initial-state nucleon pair, set at a central value of 80%, with

a ±1σ set to 10%. A one-sided +1σ effect for the RPA correction on the resonant pion production

is applied as function of true Q2 in a range of −30% to 15%. Based on Near Detector data/simula-

tion discrepancies, a 50% uncertainty is applied to the non-resonant pion production with invariant

hadronic mass W < 3 GeV, and a 5% for W ≥ 3, for 1−, 2− and +2−pion cases. The full list

of uncertainties used in the latest official NOvA analysis can be found in [163]. Considering all

quantiles in the oscillated Far Detector, the yield shifts with larger effects were of the order of ∼ 4%,

corresponding to the knobs affecting the axial mass for resonant pion production MRES
A , the MEC

transfer q0 shape, and resonant production RPA correction. The next eight had a contribution of

' 0.5%, whereas the vast majority of the ∼ 70 knobs, when combined in quadrature, had a impact

of ∼ 1% [56].

6.4.4 Light yield modeling

Three special datasets were produced to account for the uncertainty in modeling light yields in

the liquid scintillator. In the first one, both Cherenkov and Birk’s suppression are tuned in such a

way that Cherenkov light efficiency increases but standard scintillation light production is reduced,

in order to make muons match data and simulation. By doing this, the 2% dE/dx discrepancy

observed in Near Detector data versus MC simulation proton and muon comparisons is removed.

The other two samples were created with Birk-Chou constants set to alternative values. These were

motivated by disagreements between PE/cm distributions in data and MC event after a ∼ 10%

tune and a similar sized systematic in the overall light model normalization when looking at the

distribution of fiber brightness values [31]. But since a change in the normalization of the light

model would be removed by an absolute calibration scale, when the scintillation light levels are

shifted ±10%, the absolute calibration needs to be shifted by 10% in the opposite direction, which
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occurred for this two datasets. They were used to evaluate the effect of hits rising above or falling

below the readout threshold.

6.4.5 Muon Energy scale

The full uncertainty in the muon energy scale was constructed by including all the individual

uncertainties in the simulation of the muon energy loss. The uncertainties in the composition and

mass of the detectors, including the muon catcher, were taken into account [155]. The relative

muon energy scale uncertainty is applied by shifting events in both detectors by half the amount

in opposite directions, e.g. for a +1σ shift, the Near Detector is shifted by +0.5σ and the Far

Detector by −0.5σ. Since we use a function to map track length onto energy, the shifts are applied

to the track length instead before the energy is calculated. The relative (uncorrelated component)

muon energy scale uncertainty is set to 0.27%. The absolute muon energy scale is fully correlated

between the Near and Far Detectors and is set to 0.94% [155].

6.4.6 Hadronic Energy scale

Relative and absolute hadronic energy scale uncertainties were motivated by a 5% data/simulation

discrepancy in the response to protons at the Near Detector [84] and by comparing different hadronic

interaction models in our simulation [119]. Since the study on protons was only performed in the

Near Detector, it was cautiously assumed that the same 5% discrepancy occurs at the Far Detector.

For the absolute scale, the uncertainty is applied to the reconstructed hadronic energy (both in the

hadronic system and in the hadronic hits on the muon-like track). For the relative scale, the scale

is also applied to the reconstructed hadronic energy but as a positive scale in the Near Detector

and as a negative scale at the Far Detector.
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6.4.7 Other systematic uncertainties

The uncertainty on the neutral current background is obtained for the GENIE cross section uncer-

tainties, motivated by the validation of the simulated NC contamination in the Near Detector [154].

The constraint of the NC contamination comes from the differences in neutron production from

stopped muons and pions. Simulated neutrinos interacting with material outside the detector in

conjunction with cosmic activity originated outside the detectors were studied under the assump-

tion that pile-up with contained events occur, causing them to fail selection and therefore, creating

acceptance differences. It was found that the effect is negligible at the Far Detector [150] but

a 3% Near Detector normalization uncertainty is required [160]. The uncertainty on ντ is taken

as 100%, and is not included as a systematic since has negligible impact on the analysis. Beam

intensity effects are negligible since our Near Detector simulation matches the intensity of the data

in a run-by-run basis. Detector alignment was shown to also be small [171] and not included. The

uncertainty due to the noise model is estimated by comparing two noise models (versions 1 and 2).

Studies show that the effect is negligible [30, 162].

6.4.8 Summary of systematic uncertainties

The list of systematic uncertainties for this round of the disappearance analysis and their contri-

bution to the measurement of the mixing parameters sin2 θ23 and ∆m2
θ32

are shown in Fig. 6.8.

The bottom two rows show the total systematic error added in quadrature, and the total statistical

error in light red. We can notice that calibration is the largest contribution for both parameters,

followed by cross section systematic uncertainties, and that the analysis is statistically limited.

6.5 Discussion of official analysis results

In this final section we will discuss the NOvA 2017 νµ CC disappearance results. This analysis

uses the Near and Far Detector data sets from February 6th, 2014 to February 20th, 2017. This is
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Figure 6.8: Systematic uncertainties for each mixing parameter for the 2017 analysis. Largest con-

tribution are the calibration and cross section systematics. Both analysis are statistically limited.

equivalent to 8.85× 1020 protons on target (POT) on the full 14 kton NOvA Far Detector, a 46%

increase since the last analysis.

Figures 6.9, 6.10, and 6.11 show data and simulation comparisons for the reconstructed muon,

hadronic and neutrino energies in the Near Detector for each of the hadronic energy fraction

quantiles. These Near Detector comparisons where used to validate the agreement between data

and MC before looking at the Far Detector data. The data, represented by the black dots, is shown

with the simulated selected events (solid red) and the 1σ systematic uncertainties (shaded red).

The simulated background that passes the selection is shown in solid blue.

For the reconstructed muon energy, the agreement between data and simulation is within expec-

tations for all the quantiles of hadronic energy fraction. But the first quantiles have a data mean

and simulation mean difference of around 0.02 GeV, whereas for the last two quantiles and the

all-quantiles combined, such difference is of 0.01 GeV. In interest to see that the majority of the

simulated background is located in the quantile with higher hadronic energy fraction. Similarly, for

the reconstructed hadronic energy, the agreement across the four quantiles is within expectations.

But all except one quantile have a data mean and simulation mean difference of 0.01 GeV, in-

cluding the all-quantiles combined distributions. Finally, the reconstructed neutrino energy shows
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0.01 GeV data mean and simulation mean differences in all quantiles except the one with highest

hadronic energy fraction, and the all-quantiles combined.

When looking at the Far Detector, a spectrum prediction is created by extrapolating the Near

Detector data distribution (with simulated background subtracted), with a 3-flavor neutrino hy-

pothesis applied. In order to extract the oscillation parameters ~θ, this predicted Far Detector

spectrum is fitted to the measured data by minimizing

−2 log λ(~θ) = 2
bins∑
i

[
ei(~θ)− oi + oi · ln

oi

ei(~θ)

]
(stats only) (6.10)

where oi is the number of observed events in each bin, and ei(~θ) is the number of events expected at

these oscillation parameters. In the large sample limit, the minimum of −2 lnλ given by Eq. 6.10

follows a χ2 distribution [129]. For the general case of including systematics uncertainties, the

minimization is taken with respect to the systematic parameters with the addition of a penalty

term,

−2 lnλ(~θ) = 2
bins∑
i

[
ei(~θ)− oi + oi · ln

oi

ei(~θ)

]
+

systs∑
j=1

∆s2
j

σ2
αj

(with systematics) (6.11)

where ∆sj is the difference from the nominal value for the systematic parameter sj , and σsj , treated

as the penalty term which is the estimated 1σ uncertainty on sj .

For this analysis we observed a total 126 candidate events, with an expected prediction of 129.20

at best fit point, and a total expected background of 9.24 events, of which 5.82 are cosmics, 2.50

neutral currents and 0.96 beam induced events. Figure 6.12 shows the Far Detector reconstructed

neutrino energy spectrum with the data (black points), best fit prediction (solid red) and the ±1σ

systematics band, with beam induced and cosmic background for each and all quantiles of hadronic

energy fraction.

In the absence of neutrino oscillations, a total of 763 are expected in the Far Detector. The left

side of Figure 6.13 shows the reconstructed neutrino energy distribution of data (black points),

the oscillated prediction (solid red) with its total background (dashed blue) and the unoscillated

prediction (dashed blue). This shows a remarkable evidence for muon neutrino disappearance at
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Figure 6.9: Numu 2017 analysis Near Detector area normalized reconstructed muon energy spec-

trums showing data, simulated selected events with ±1σ systematics band and simulated back-

ground for quantile 1 (top left), quantile 2 (top right), quantile 3 (center left), quantile 4 (center

right) and all quantiles combined (bottom).
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Figure 6.10: Numu 2017 analysis Near Detector area normalized reconstructed hadronic energy

spectrums showing data, simulated selected events with ±1σ systematics band and simulated back-

ground for quantile 1 (top left), quantile 2 (top right), quantile 3 (center left), quantile 4 (center

right) and all quantiles combined (bottom).
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Figure 6.11: Numu 2017 analysis Near Detector area normalized reconstructed neutrino energy

spectrums showing data, simulated selected events with ±1σ systematics band and simulated back-

ground for quantile 1 (top left), quantile 2 (top right), quantile 3 (center left), quantile 4 (center

right) and all quantiles combined (bottom).
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Figure 6.12: Numu 2017 analysis Far Detector reconstructed neutrino energy spectrums showing

data, best fit prediction with ±1σ systematics band, beam-induced and cosmic backgrounds for

quantile 1 (top left), quantile 2 (top right), quantile 3 (center left), quantile 4 (center right) and all

quantiles combined (bottom). A total of 126 events were observed from data, with 129 expected

events at the best fit, and a total of 9.24 background events, including 5.82 cosmics, 2.50 neutral

current and 0.96 beam-induced events.
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the NOvA Far Detector. The right side shows the ratio to no oscillations for data and simulation

(all quantiles) after background has been subtracted.

The oscillation parameters ∆m2
32 and sin2 θ23 are varied in a 2-dimensional parameter space. Con-

fidence limit contours ∆χ2 = χ2~θ − χ2
best are used to show the (∆m2

32, sin
2 θ23) regions allowed by

the fit to the data. The best fit point is determined by a χ2 statistic similar to Eq. 6.11.

The best fit to the data gives ∆m2
32 = 2.431+0.079

−0.070×10−3 eV2 and sin2 θ23 = 0.466 or 0.562 (0.428−

0.598). Figure 6.14 shows the sensitivity contours from the fit to the data with systematics. The

solid black line represents the 90% confidence level using the best fit νµ disappearance results for

NOvA. A comparison with combined νµ and νµ oscillation results from 2016 T2K analysis [3] and

from the combined νµ disappearance and νe appearance 2014 MINOS analysis [8] are shown in

dotted blue and dashed red at the 90% C.L. respectively.
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Figure 6.13: Left: Reconstructed energy spectrums of the unoscillated prediction (dashed green),

data, best fit prediction with no systematics, and backgrounds for selected events for all quantiles

combined. In the absence of oscillations, a total of 763 events are expected. Right: Reconstructed

energy spectrum showing the ratio of data over unoscillated prediction and best fit prediction over

unoscillated prediction. Backgrounds from predictions have been subtracted before taking the ratio.
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Figure 6.14: Sensitivity contours showing 90% confidence levels for the NOvA disappearance anal-

ysis result with systematics and overlayed with T2K 2016 and MINOS 2014 results for comparison.

Maximal mixing rejection is 0.47σ and best fit value is at ∆m2
32 = 2.431+0.079

−0.070 × 10−3 eV2 and

sin2 θ23 = 0.466 or 0.562 (0.428− 0.598).
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CHAPTER 7. UNCONTAINED EVENTS AND THE KAON

PRODUCTION MEASUREMENT

Precise knowledge of the neutrino flux, produced by the decay of pions and kaons during proton

collisions in the NuMI target, is required for long-baseline neutrino experiments. In NOvA, the

flux is used to measure neutrino cross sections at the Near Detector, whereas at the Far Detector it

provides an estimate of the expected number of events for oscillation analysis. Understanding the

kaon component of the NuMI beam is key for accurately predicting the NOvA neutrino flux. In

addition to decay into muon neutrinos, kaons also decay into high energy electron neutrinos, which

form a major background for the νe appearance measurement in NOvA (see Figure 7.1).

As shown in the previous chapter, NOvA has used only events with an interaction vertex and all

secondary particles fully contained in the detectors. We found that the kaon component of the NuMI

beam can be studied using high energy Far Detector uncontained νµCC neutrino interactions. This

chapter is devoted to present and explain the measurement of the kaon production normalization

using uncontained events in the 10-20 GeV energy range at the Far Detector. In particular, we

will discuss the custom event selection based on the event topology with νµ +X → µ+X ′, where

the muon is uncontained but the hadronic system is contained. We will show how multivariate

techniques (such as boosted decision trees) were used to develop a cosmic rejection classifier and a

muon energy estimator using regression for these type of events.

7.1 Cosmic rejection tuning

As discussed in Section 6.2.4, because the Far Detector is on the surface and the cosmic rate is about

140 kHz, we would expect ∼ 1.4 cosmics/spill. In order to reduce such amount of background, all

previous analysis have used neutrino events that are contained, meaning all the final state particles
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Figure 7.1: Distribution of parent particles of νµ (left) and νe (right) for the forward horn current

mode in the NOvA Near Detector. Neutrinos coming from kaons become a significant component

at higher energies.

are within the boundaries of the PVC detector. Our goal is to look now at the sample of events

that have the muon-like particle in the final state leaving the detector, but having the hadronic

component and the vertex contained. We call this specific set of events the uncontained sample.

Figure 7.2 shows the neutrino energy distribution of events failing containment when compared

with other samples not currently used for analysis. We noted that this sample contains a well

defined, broader high energy peak at around 13 GeV and that its shape does not change much

when requiring a muon-like particle in the final state. The situation becomes extremely challenging

when trying to separate an uncontained muon from a neutrino interaction from a stopping muon

of cosmogenic origin in the Far Detector. Therefore, in order to explore in more detail this sample,

a tuned cosmic rejection discriminator, in the form of a boosted decision tree classifier (BDT) has

been developed, inspired by previous works on this subject [41].

The training and testing of the cosmic rejection classifier used Far Detector NuMI GENIE simu-

lation files with cosmic ray induced muons overlaid with the neutrino interactions as signal files,

whereas actual data files from cosmic-ray induced muons were used as background input. Our first

step was to process all the cosmic data available at the time, in order to gain enough statistics.



131

True Neutrino Energy (GeV)
0 5 10 15 20

E
ve

nt
s

0

10

20

30

40
Fail Containment

Uncont'd, pass CosRej

Contained, fail CosRej

Official, no < 5 GeV cut

NOvA Simulation

True Neutrino Energy (GeV)
0 5 10 15 20

E
ve

nt
s

0

20

40

60

80

100 Fail official
Fail official, fail containment

Fail official, pass quality
Fail official, pass PID

Fail official, pass cosmic rejection

NOvA Simulation

Figure 7.2: True neutrino energy spectrum for events not used in analysis at the Far Detector in the

range 0-20 GeV. The solid red distribution shows events that have failed the official disappearance

analysis selection because they have failed containment. Left: comparison of the uncontained sam-

ple (red) with other samples. The light green shows the distribution of events failing containment

but pass all the other criteria, including cosmic rejection tuned for contained events. The magenta

distribution shows events that have passed all the other official selection criteria except cosmic

rejection. The solid blue is the distribution of events that are contained when looking at Eν > 5

GeV range. Right: comparison of the uncontained sample (red) with complementary samples. We

can infer that if we combine uncontained events with events that have a muon in the final state

(dark yellow), its number in the oscillation region (0 − 5 GeV) will be decreased, but the high

energy tail remains mostly unchanged.
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But due to the nature of our uncontained sample, file size will become an issue since containment

selection removes nearly 98% of cosmic events and large files are not optimal when training/test-

ing. Therefore, a quick study on preselection was performed [151] in order to look for a few set

of variables that help remove cosmic events without compromising our signal. This preselection

consists in selecting well behaved and properly reconstructed Far Detector events that have failed

the current official νµ-analysis criteria by failing the νµ-analysis contained selection (in order to

potentially recover them), that have passed a basic quality selector (which establishes the minimal

required for well-reconstructed events), and that have a reconstructed muon-like particle in the

final state. This sets the stage for a tuned cosmic rejection.

7.1.1 Boosted decision tree: training and testing

A decision tree is a set of questions organized in hierarchical manner and represented graphically as

a tree, which is a collection of nodes and edges [62]. It has been shown that by combining ensembles

of weak learners (or models) with low correlation among them, it is possible to produce a stronger

one with greater accuracy and generalization power. By combining the ideas of decision trees and

ensemble methods resulted in decision forests, that is, the ensembles of randomly trained decision

trees.

In the boosting algorithm [77], iterative re-weighting of training data can be used to build strong

classifiers as linear combination of many weak ones. In particular, the adaptive boosting (AdaBoost)

penalizes a correctly classified event but enhances the weight of a misclassified event using an

exponential form.

The cosmic rejection problem for uncontained events is a classification problem: given an event

that has passed our basic preselection, we want to know if it is a signal (charged current νµ) event

originated from a neutrino interaction or if it is a background (cosmic-ray induced) event. We will
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use the method of boosted decision trees implemented in the ROOT Toolkit for Multivariate Data

Analysis (TMVA) framework1 to develop a classifier that help us answer those questions.

7.1.1.1 Input variables

A set of eleven input variables gave the best overall performance when tested on uncontained Far

Detector events. Such variables were inspired by the topology of the events and by previous results.

Below is a description of each of them and its purpose:

• anglekal: this variable was inspired by the quasielastic energy formula and is the cosine of the

angle between the reconstructed muon-like kalman track and the incoming beam direction,

• kaldiry: the Y-axis component of the cosine direction of the reconstructed muon-like kalman

track, used due to its discrimination power during the test phase,

• tracklen: track length (in cm) of the reconstructed muon-like kalman track; without it

classifier performance is substantially damaged,

• nhitcos/nhit: ratio of the number of hits from the reconstructed cosmic track and the total

number of hits from the interaction (slice); a truly cosmic-ray induced interaction should have

this ratio close to one,

• max(vty,endy): maximum position value (in cm) between the Y-axis projection of the

starting point of the reconstructed muon-like kalman track and its end Y-axis projection;

discriminates between incoming cosmic-ray induced muons from the top of the detector,

• cvncosmic: Convolutional Visual Network (CVN) particle identifier (PID) output for cosmic-

like events; state of the art PID, discriminates between cosmic and non-cosmic-like events,

• hadEPerNHit: ratio between the hadronic calorimetric energy and the number of hits in

the hadronic system; for cosmic-like events, a low hadronic activity is expected, so the ratio

should tend to zero,

1Visit https://root.cern.ch/tmva

https://root.cern.ch/tmva
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• slcCalEPerNHit: ratio between the calorimetric energy in the slice and the number of hits

in the slice; similar philosophy as above,

• trkEPerNHit: ratio between the calorimetric energy in the reconstructed muon-like kalman

track and the number of hits of such track; similar philosophy as above,

• vetoangl: product between the absolute value of the cosine of the reconstructed muon-like

kalman track vs NuMI beam times the Y-axis projection of the track direction plus one,

• scatt/tracklen: the scattering angle of the reconstructed muon-like kalman track (cumula-

tive sum of angular changes, in degrees) normalized by the track length; experimental use

based in overall performance

The distributions of the input variables are shown in Fig. 7.3 and Fig. 7.4. Both signal and

background distributions are normalized according to the scale factor:

scale =
1

N · dx
, (7.1)

where N is the sum of weights or the total sum of all the content in each bin of the distribution

(integral) whereas dx is the optimal width given by

dx =
Max. value in axis range−Min. value in axis range

Number of bins in histogram
. (7.2)

Some benchmark quantities give some guidance when assessing the performance of a given set of

inputs for a given classifier algorithm. For example, the separation 〈S2〉 of a classifier y, defined by

the integral 2 of

〈S2〉 =
1

2

∫
dy

(ŷS(y)− ŷB(y))2

ŷS(y) + ŷB(y)

where ŷS and ŷB are the signal and background probability density function (PDF) of y, respec-

tively. The separation is zero 〈S2〉 = 0 for identical signal and background shapes, and 〈S2〉 = 1

for shapes with no overlap.

2TMVA User’s guide http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf

http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf
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Figure 7.3: First set of input variables for the tuned cosmic rejection PID for uncontained events:

anglekal, kaldiry, tracklen, nhitcos/nhit, max(vty,endy), cvncosmic.

Table 7.1 summarizes the separation value (shown in percentage) for the input variables of the

tuned cosmic rejection classifier for uncontained events.

For the specific case of a BDT, the TMVA framework provides a ranking of the variables after

training and testing. The method is described as a combination of counting how often such variables

are used to split decision tree nodes, and similarly, by weighting each split occurrence by the

separation gain-squared it has achieved and by the number of events in the node. Table 7.2 shows

the ranking by importance (in percentage) of the input variables for the cosmic rejection of the

classifier for uncontained events.

After training and testing, the TMVA framework gives the linear correlation coefficients (shown also

in percentage) among the input classifier variables for both signal and background. For example,

the top of Fig. 7.5 shows the 11× 11 matrix where the lighter color represent the value of positive

correlation whereas darker colors represent a negative correlation. From there we can clearly observe

a cluster of correlation among the hadronic, slice, and track energy per hit variables at the upper

left, that is explained by the own nature of their definition but necessary for the sake of overall

performance. A similar trend is observed in the bottom of Fig. 7.5.
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Figure 7.4: Second set of input variables for the tuned cosmic rejection PID for uncontained events:

hadEPerNHit, slcCalEPerNHit, trkEPerNHit,vetoangl, scatt/tracklen.

7.1.2 Performance

Given the input variables described in earlier sections, a BDT with 700 trees and adaptive boosting

(AdaBoost) was implemented over more than 7 million events (slices), including signal and back-

ground (see Table 7.3).

The results after the training/testing phase of the tuned CosRej classifier and the type of events

selected are shown in Fig. 7.6. The data points in the top image represent the output distribu-

tion during the training phase whereas the color-filled histogram shows the output of the testing

sample. The fact that both distributions are superimposed indicates that there is no substantial

sign of over-training. The author believes the values for the Kolmogorov-Smirnov test 3 for signal

(0.793) and background (0.784) probabilities can be improved but that is left for future studies.

Bottom image of Figure 7.6 shows the result of the PID classifier divided by interaction type from

simulation. The red arrow indicates events are selected to the right of the optimal cut value. As

expected, at higher neutrino energies, most selected events will be produced from deep-inleastic

(DIS) and baryonic resonant (RES) interactions.

3Statistical test of compatibility in shape between two distributions
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Figure 7.5: Correlation among input variables in the case of signal events (a) and background

events (b). Empty values refer to correlation of the order of 0.
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Table 7.1: Ranking of variable separation for our BDT classifier.

Rank Variable name Separation (%)

1 cvncosmic 79.73

2 slcCalEPerNHit 48.86

3 hadEPerNHit 44.57

4 vetoangl 29.92

5 trkEPerNHit 29.87

6 tracklen 28.46

7 nhitcos/nhit 27.06

8 kaldiry 23.70

9 anglekal 22.68

10 scatt/tracklen 12.20

11 max(vty,endy) 3.77

Finally, efficiency performance is shown in Fig. 7.7. Given the values used for testing in Table 7.3

the figure of merit (FOM) is computed using the expression s/
√
s+ b, focusing on reducing the

amount of cosmic ray induced muons classified as signal. The optimal cut for the cosmic rejection

classifier is set where the maximal FOM is computed, that is, at 0.5184 that translates in a signal

efficiency of roughly 96%.

7.2 Event selection

The next step after tuning the cosmic rejection was to construct a selection criteria that filters

out the background and selects well-reconstructed signal events with the interaction vertex within

an optimal fiducial volume, the hadronic component contained and the final state muon leaving

boundaries of the Far Detector.

7.2.1 Fiducial selection

From the subset of events that have passed the optimal cut of the tuned cosmic rejection, we

focused on the distributions for the interaction vertex in the three spatial coordinates. For a
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Table 7.2: Ranking of variable importance for our BDT classifier.

Rank Variable name Importance (%)

1 cvncosmic 18.75

2 max(vty,endy) 15.79

3 tracklen 11.00

4 kaldiry 8.60

5 hadEPerNHit 8.07

6 vetoangl 7.95

7 nhitcos/nhit 7.67

8 anglekal 6.44

9 slcCalEPerNHit 5.96

10 trkEPerNHit 5.49

11 scatt/tracklen 4.25

Table 7.3: Description of the sample of raw events used for training and testing. These numbers

have neither POT normalization nor oscillation probabilities applied.

Signal Background Total

Training 639 430 1 368 317 2 007 747

Testing 639 430 1 368 317 2 007 747

Total 1 278 860 2 736 634 4 015 494

charged-current muon neutrino interaction, the vertex is defined at the starting point of the muon-

like reconstructed track, with some hadronic activity attached in the neighbor cells. One would

expect that such neutrino interactions occur inside the boundaries of the detector, therefore any

indication of a reconstructed vertex at these boundaries or outside, will be inferred as non-physical

and rejected. An example of this situation is shown in Fig. 7.8, where a long muon-like track

has its vertex right at the corner in the side view, and traveling all the way in crossing the entire

detector. The problem with this event is that we do not know how much energy hadronic energy

was deposited outside the detector. In addition, we do not know how long the reconstructed track

is. The solution is to apply an optimal fiducial cut that deals with this sort of topologies.
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Table 7.4: Efficiency values for the tuned cosmic rejection classifier based on BDT with 700 trees

and AdaBoost. Raw numbers with neither POT nor oscillation probability applied.

Optimal cut FOM NSig NBkg EffSig EffBkg

BDTA 700 0.5184 772.347 610 895 14 721 0.9554 0.01076

Figure 7.7: Performance of the cosmic rejection classifier.

Figure 7.9 shows the distributions of the vertex of the neutrino interactions after passing cosmic

selection for different metrics. On the left column, we present the area normalized distributions for

each coordinate. As expected, most of the events occur near the edges. The central column shows

the efficiency of the cosmic rejection cut versus each coordinate. The efficiency is defined as the

ratio between all the events being signal (background) and passing the cosmic rejection optimal

cut, divided by all the events left (that is, the union of the events passing the BDT cut and the

events that fail the BDT cut),

Efficiency(signal) =
Signal AND passes BDT cut

Total events left
,

and in similar way for background. This metric shows a remarkable drop around the values of vertex

x,y-axis positions (−800, 800) and for vertex z-axis position (0, 6000), clearly indicating detector
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Figure 7.8: Run 23266, subrun 27, event 645, slice 48 from simulation. Vertex (indicated by a

cross) and muon-like track close to detector edges.

edges. Flat behavior indicate invariance along the coordinate. There seems to be an excess of

interactions in the lower part of the detector, as indicated by the middle-central figure. The drops

within the middle of the detector shown by the middle-bottom figure (Vertex Z position) show

partial detector configurations applied (e.g. the final diblock is different or less than the 14th

diblock).

Finally, the right column shows the purity of the cosmic rejection versus interaction coordinate.

This metric is defined as

Purity(signal) =
Signal AND passes BDT cut

Signal
,

and in similar fashion for the background. We expect most of the time the signal events get selected

by the cosmic rejection criteria. Once again, the drops indicate detector boundaries.

The method for finding the optimal vertex fiducial volume for uncontained events used the distri-

butions showed before as a starting point in addition to an iterative method that maximizes the

figure of merit (FOM) given by s/
√
s+ b. By keeping parallel sides of a two-dimensional box fixed,

while leaving the others as parameters, we loop over cell-size incremental steps and set the limits

where FOM reached the largest value. Once the parameter sides were found optimal, they become
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Figure 7.9: Distributions of the vertex position projected on each coordinates for signal (blue) and

background (red) for selected events (left side); efficiency of vertex position spectrum for selected

events (center); purity of vertex for selected events (right).
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fixed and moved to the next orthogonal dimension. In the end, the optimal vertex fiducial values

were set as the ones indicated by Table 7.5. For comparison, the position of the detector edges are

shown.

Table 7.5: Selection criteria for the vertex of the uncontained interaction based on fiducial opti-

mization. Numbers in centimeters.

Fiducial cut (cm) Detector edges (cm)

12 < Vertex Z-pos < 5400 (0, 5977.60)

−720 < Vertex Y-pos < 650 (−761.50, 763.50)

|Vertex X-pos| < 700 (−761.60, 762.60)

Values of vertex z-axis position > 12 cm prevent rock-induced muons to be classified as signal,

whereas vertex z-axis position < 5400 cm comes from the fact that a 1 GeV muon will have an

average track length of approximately 500 cm in the detector (assuming dE/dx ∼ 2 MeV/cm).

Therefore, this average quantity is subtracted from the detector edge. Values of vertex x-axis

position < ±700 cm resemble the features discussed earlier by looking at Fig. 7.9 where we noted

a high activity on the edges of the detector.

7.2.2 Track end point quality selection and exiting muon

A critical metric that was needed to monitor was the behavior of the end point of the muon-like

track for selected uncontained interactions. When visually scanning simulation selected events, it

was found that a small but non-zero number of events had very large reconstructed track lengths,

not congruent with the expected detector sizes but with reconstruction issues (e.g. see Fig. 7.10).

In addition, the Kalman-filter inspired algorithm that reconstructs the 3D tracks, is known to

match 2D tracks in each view with points that not necessarily are within the detector in one of

these views (see Fig. 7.11). This features motivated the need for a track end point quality selection.

Its purpose is to eliminate ill-reconstructed muon-like tracks from selected events that exit the



145

NOvA - FNAL E929

Run:   24743 / 29
Event: 532 / PerCal

UTC Sat Dec 10, 2016
12:35:2.960000000 sec)µt (

0 100 200 300 400 500

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210
310
410

4000 4200 4400 4600 4800 5000 5200
x 

(c
m

)

400−

200−

0

200

z (cm)
4000 4200 4400 4600 4800 5000 5200

y 
(c

m
)

600−

500−

400−

300−

Figure 7.10: Run 24743, subrun 29, event 532, slice 31 from simulation. Yellow muon-like track

greater than 60 meters, the length of the Far Detector.

detector. Following the philosophy of the previous section, the left column of Fig. 7.12 shows the

area normalized distributions of the track end points for each spatial coordinate. Naturally, the

majority of the selected events have their end points at the neighborhood of the detector edges.

The middle column shows the efficiency of the selection, defined as

Efficiency(signal) =
Signal AND passes BDT cut AND Fiducial

Total events left
,

where the in addition to passing the cosmic rejection selection and being a signal, the events also

have to pass the vertex fiducial cut, while the denominator remains the same. This metric shows

slightly more events in the negative values of the End X-position (more towards the center of the

NuMI beam), more events in the positive values of End Y-position (top of the detector) and almost

none in the first 10 meters upstream of the detector in the z-coordinate. The purity of the selection

is also slightly modified after the inclusion of the vertex fiducial

Purity(signal) =
Signal AND passes BDT cut AND Fiducial

Signal
,

where we can appreciate an almost symmetric distribution for the x-coordinate, a deep region

at the bottom of the detector in the y-coordinate and a drop downstream for high values in the

z-coordinates.
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Figure 7.11: Run 18187, subrun 46, event 124, slice 29 from cosmic simulation. Reconstructed

track (dashed-blue) is matched outside boundaries of detector.

The optimal track end point quality values are described in Table 7.6 where for both perpendicular

coordinates to the beam (X,Y) the end points are taken outside the detector edges just enough

so the overall signal does not get substantially diminished. For the z-coordinate, the minimal end

point is taken such that a 2 GeV muon starting at the second plane travels its expected length

and its maximal point when exits the last plane in the detector. And to enforce the absence of

ill-reconstructed tracks that have lengths beyond detector-comparable sizes, a requirement in the

reconstructed track length is also included.

Table 7.6: Track end point quality selection summary describing the values that define the selection.

Numbers in centimeters.

Cut (cm)

Track length < 6500

End X-pos > −800

End X-pos < 775

|End Y-pos| < 800

End Z-pos > 1000

End Z-pos < 6500
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Figure 7.12: Distributions of the vertex position projected on each coordinates for signal (blue) and

background (red) for selected events (left side); efficiency of vertex position spectrum for selected

events (center); purity of vertex for selected events (right).
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The official containment selection cut used for the main NOvA disappearance analysis is defined

using reconstructed objects and metrics not necessarily associated to the end point of the final state

muon. Therefore, events that have failed this cut are not guaranteed to have the main muon track

exiting the detector. In order to ensure the main hypothesis of this sample of νµ CC events, we

added a selection cut that requires the muon to “touch” the vicinity edges of detector, and those

values are listed in Table 7.7.

Table 7.7: Exiting muon selection table. Numbers in centimeters.

Cut (cm) Detector edges (cm)

End Z-pos > 5961 5977.60

End X-pos < −753 −761.60

End X-pos > 760 762.60

End Y-pos < −753 −761.50

End Y-pos > 755 763.05

With the vertex and muon-like track under control for our sample of events, the next part to

investigate is the hadronic system and guarantee that is within reasonable distance from the detector

edges. The following section describes the requirements of the hadronic containment part for

uncontained interactions.

7.2.3 Hadronic containment selection

We recall that a slice is simply a collection of hits correlated in time and space. Each slice cor-

responds to a single neutrino interaction in the vast majority of cases. All the hits that are in

the slice and are not associated with the main muon-like reconstructed track are considered the

hadronic cluster of hits. The containment of the hadronic cluster of hits within the boundaries of

the detector is the main goal of the hadronic containment selection. After passing cosmic rejection

and vertex fiducial with track end point quality selections applied, distributions of area normalized

hadronic cluster variables are shown in Fig. 7.13. We can notice that the fraction of background

events has been reduced significantly. The top row shows the distribution of most upstream plane
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of a hit in the hadronic cluster system (first plane), the distribution of most downstream plane a

hit has in the hadronic system (last plane) and total number of continuous planes the hadronic

system took, which is a proxy for how shower-like the event was. The middle row shows the distri-

bution of the number of calibrated hadronic hits in the interaction, the distribution of the minimum

projected number of cells to a given edge for hits in the hadronic cluster, and the distribution of

the total hadronic calorimetric energy of the cluster. The bottom row shows the mean position of

the hadronic cluster for each of the coordinates. As expected, there is no information outside the

detector edges. These distributions were the metrics that showed potential application in helping

the construction of the hadronic containment selection.
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Figure 7.13: Area normalized distributions of supplementary hadronic variables for signal (blue)

and background (red) for selected events.
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Figure 7.14: Efficiency distributions of supplementary variables for signal (blue) and background

(red) for selected events.
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In addition to the area normalized distributions, we looked at the efficiency of the same distributions

for the selected events. This metric is defined as the ratio:

Efficiency(signal) =
Signal AND passes BDT cut AND Fiducial AND RecoQual

Signal AND passes BDT cut AND RecoQual
,

where RecoQual refers to a well defined reconstructed end of track and to enforce a well recon-

structed 3D hadronic cluster of hits, and Fiducial refers to vertex fiducial selection. Similarly for

the background (combined neutral current and cosmic) as shown in Fig. 7.14. Although there is not

clearly signal/background discrimination power in the latter set of distributions, they were used

to draw quantitative values in the hadronic containment selection. We already know that no hit

from the hadronic system should touch the edges of the detector, therefore we apply a restriction

in the mean position for each coordinate. Also we know that a 2 GeV neutrino will not produce a

hadronic cluster with more than (1000 cm / 4 cm/hit) 250 hits, and will not propagate through the

entire of the planes in the detector. The proposed numbers for this selection are shown in Table 7.8.

Table 7.8: Hadronic containment selection table.

Variable name Value

|Hadronic mean X pos.| < 700

Hadronic mean Y pos. (−720 to 650)

Hadronic mean Z pos. (16 to 5500)

Hadronic first plane (2 to 800)

Hadronic last plane (2 to 896)

Hadronic # cont. planes (1 to 170)

# hadronic cells to edge > 0

Hadronic # calib. hits < 320

Hadronic calorimetric energy > 0

As a final note, we decided to add two more constraints to the definition of the cosmic rejection,

in order to guarantee the quality of the selected events. Adding a restriction on the angle between

the muon-like track and the incoming neutrino beam will prevent vertical tracks to be considered

part of a neutrino interaction. This is because vertical tracks are associated to cosmic ray-induced

muons. Additionally, a restriction in the number of hits in the slice will prevent very high energy
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events possibly associated with cosmic rays striking the top of the detector, or even interactions

very close in time such that get sliced together (piled-up events). Table 7.9 shows the proposed

cuts for the cosmic rejection selection for uncontained events.

Table 7.9: Cosmic rejection table.

Cut

BDTA 700 > 0.5184

NHitsSlc (20 to 1200)

AngleKal > 0.6

In the next section we will discuss the overall performance of our selection.

7.3 Event cut flow and preliminary performance

The question of how many uncontained neutrino interactions do we expect at the Far Detector

using the set of selection cuts described in the previous sections is addressed in Table 7.10. Data

comes from processing NuMI beam simulation files and each row represents a cumulative selection,

progressing from top to bottom. We can see that the cosmic background, predicted using out of

beam spill events, is reduced seven orders of magnitude, but the expected signal is almost 29 times

this background. From the total of events, only 11% have failed the official disappearance analysis

containment cut, or from the total of events passing the particle identifier, only 6% pass the tuned

cosmic rejection classifier. All numbers have been normalized to 7.99 × 1020 protons-on-target

(POT) corresponding to the total POT after removing all events from Period 1 (early August 2014

beam shutdown) and applying a 14 diblock spill cut, in order to ensure events with full Far Detector.

The third to sixth rows (top block) represent the preselection stage for this sample. We start with

events that have failed the official containment selection, in order to potentially rescue them, later

we apply basic quality reconstruction and performance cuts, which also were used for the contained

sample. Finally we require an interaction with a muon using the muon-identifier developed for the

contained sample and tuned to its latest version, and that such interaction fails containment, either
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the muon exits the detector or the vertex is outside the boundaries. The bottom block (rows seven

to eleven) represent the customized and tuned uncontained selectors (note the label “UC”).

Table 7.10: Cut flow for uncontained event selection. Scaling to 7.99× 1020 POT. The simulation

POT is 7.10× 1024, corresponding to the entire simulation dataset.

Selection All MC All νµ CC NC Out-of-time All MC+Cos (Rel %)

No cut 1.51e+03 845 547 3.79e+07 3.79e+07 100

Failed Official 1.25e+03 716 421 4.05e+06 4.05e+06 11

Failed Containment 761 559 164 4.03e+06 4.03e+06 99.5

Basic Quality 719 554 129 3.6e+06 3.6e+06 89

PID 2017 440 437 2.28 7.77e+03 8.21e+03 0.2

Tuned CosRejUC 414 412 1.45 64.5 478 6

FiducialUC 314 313 0.678 16.9 331 69

RecoQualityUC 303 302 0.58 15.2 319 96

Hadronic ContUC 212 211 0.365 7.4 219 69

Muon Exits 192 191 0.163 6.69 199 91

Complementary to the cut-flow table, the selection efficiency for the uncontained events is shown

in the left side of Fig. 7.15. It is defined as the ratio

Eff[i] =
Base Cut && UCSelection[i]

Base Cut
, (7.3)

where “Base Cut” refers to the number of true νµ CC signal events that have failed the official

NOvA disappearance selection and have failed containment explicitly, whereas “UCSelection” refers

to each of the steps in the uncontained selection chain in the range from 0-20 GeV. The black line

represents the fraction of true νµ CC events that have failed the official containment selection and

therefore, could be rescued for further analysis, after passing basic quality selection. It is interesting

to note the shape in the 0-2 GeV region, which shows the efficiency is reduced considerably. The

high energy component (> 5 GeV) seems unperturbed. The dark-yellow distribution shows the

events that have passed the muon identifier selector, which is constructed when combining a single

cut the outputs of a k-Nearest Neighbor and a convolutional visual network (CVN) algorithms as

discussed in the previous chapter. This is the last curve that uses official selection not optimized



154

for uncontained events. The navy blue line shows the events that have passed the cosmic rejection

selector, tuned for our sample of escaping muon events. The red and gray lines show the events

that have an interaction vertex within the defined fiducial volume, and the end of the muon-like

track without failures in reconstruction, respectively. Finally, the light green shows the events that

have the hadronic component contained within the detector and without reconstruction failures,

and the magenta line shows the events that have the final state muon exiting the detector. As

noted in Table 7.11, the selection efficiency is 32.36% for the whole range of energy events (0-20

GeV). For comparison purposes, the signal selection efficiency for simulated contained events at

the Far Detector in the 0− 5 GeV region is 62% [11]. The right side of Figure 7.15 shows the true

neutrino energy distribution for uncontained events after each selection step has been applied, in

order to show the nature of the sample.
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Figure 7.15: Uncontained selection performance. Left: Selection efficiency versus true neutrino

energy for each selection step. Right: True neutrino energy distribution for uncontained events

after each selection step is applied.

We now discuss the neutrino energy spectrum with the uncontained selection of events separated

by neutrino interaction type. For example, from Fig. 7.16 we can see that there is a second peak of

events around 13 GeV. If we allow a region of 10− 20 GeV, almost 74% of these events correspond

to deep-inelastic events (DIS), in contrast with only 15.4% from baryonic resonance (RES), or 6.5%

from quasielastic (QE) events. Table 7.12 shows the rest of the fractional components by interaction
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Table 7.11: Selection efficiency table.

Efficiency (%)

Selection (0-20 GeV)

Uncont’d and basic quality 97.79

Muon PID 73.73

Cosmic Rejection 68.64

Vertex Fiducial 50.79

Reco Quality 48.85

Hadronic Containment 36.31

Muon Exits 32.36

type of the selected sample. The peak of DIS events in the 10 − 20 GeV region will become of

special interest for this work when we explore in detail its relation to neutrinos coming from kaon

decay.
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Figure 7.16: Selected uncontained events at the Far Detector shown by interaction type. The true

energy events expected in the 10-20 GeV region are: DIS 73.8%, RES 15.4%, QE 6.5%, MEC 3.6%,

and COH 0.8%.

We have discussed the details of the selection criteria for our analysis. In the next section, we

will explain the development of a tuned energy estimator for uncontained events using multivariate

analysis tools, its performance and application to our study sample.
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Table 7.12: Selected uncontained events by interaction type. QE indicates quasielastic, RES indi-

cates production of ∆-resonance particle events, DIS indicates deep-inelastic events, COH indicates

coherent events, MEC indicates meson-exchange events. No cosmic ray induced muon events in-

cluded.

Integral Integral Percentage

Component (0-20 GeV) (10-20 GeV) (%)

Total MC 166.90 121.67 100

QE 13.87 8.01 6.59

RES 32.65 18.88 15.52

DIS 111.40 89.41 73.48

COH 1.39 0.98 0.81

MEC 7.58 4.37 3.59

7.4 Uncontained muon energy estimator

A comparison between the official NOvA muon energy estimator and the true energy estimator

when applied to the uncontained sample is shown in Fig. 7.17. The residual for uncontained events

shows negative figures across a wide spread of energy values, indicating this estimator is always

underestimating the truth energy. This is explained since the official energy estimator was not

tuned for this sample of events. This motivates the development of a new estimator.
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Figure 7.17: Difference between the official muon energy estimator and the muon true energy for

selected events. This motivates a tuned energy estimator for uncontained muons.
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The problem of energy estimation using learning methods is a regression problem, since the expected

output values are in the continuum. In our current analysis framework, there are energy estimators

for both the muon and the νµ-CC interactions but none of them are tuned for neutrino events

that have a muon escaping our detectors. The sample of events that are going to be studied have

already pass basic selection and the proposed uncontained preselection, including cosmic rejection

tuned for this class of events, and fiducial/hadronic containment.

7.4.1 Input variables

A set of five input variables gave the best overall performance when tested on uncontained Far

Detector events. Most of these were also used for the development of the cosmic rejection PID.

Figure 7.18 shows the distributions of the five input variables, including the target muon energy

from simulation. Below is a description of each of them and its purpose:

• anglekal: this variable was inspired by the quasielastic energy formula and is the cosine of

the angle between the reconstructed muon-like kalman track and the incoming beam direction

• tracklen: track length (in cm) of the reconstructed muon-like kalman track; without it

classifier performance is substantially damaged

• hadclustcalE: the calibrated hadronic calorimetric energy from the cluster of hits not in the

muon-like track (hadronic system)

• trkEPerNHit: ratio between the calorimetric energy in the reconstructed muon-like kalman

track and the number of hits of such track; similar philosophy as above

• scatt: the scattering angle of the reconstructed muon-like kalman track (cumulative sum of

angular changes, in degrees) normalized by the track length; experimental use based in overall

performance

After training and testing, the TMVA framework gives the linear correlation coefficients (shown

also in percentage) among the input variables for regression. For example. Fig. 7.19 shows the
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Figure 7.18: Set of input variables for the muon energy estimator for uncontained events: anglekal,

tracklen, hadclustcalE, trackEPerNHit, scatt

5×5 matrix where the lighter color represent the value of positive correlation whereas darker colors

represent a negative correlation.

If we sum the off-diagonal entries for a given column and divide by four (that is, the total number

of variables minus one), we obtain the average correlation per input variable. For this case, the

minimal value corresponds to the muon scattering angle scatt variable, and the maximum to the

cosine angle anglekal variable. Regression performance metrics will be explained in the following

section.

7.4.2 Performance

The performance for regression is based on the correlation strength between input variables and

the regression target and between the multivariate (MVA) method response and the target. Several

correlations metrics are implemented in the framework to characterize any dependencies.
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Figure 7.19: Correlation among input variables for the uncontained muon energy estimator.

For example the (Pearson’s) correlation between two random variables X and Y is measured with

the correlation coefficient ρ and defined by

ρ(X,Y ) =
cov(X,Y )

σXσY

where ρ ∈ [−1, 1], and quantifies by definition a linear relationship. The case ρ = 0 holds for

variables with no linear correlation, but the inverse is not true. Higher non-linear relationships are

usually hard to reflect in the value of ρ.

Table 7.13: Ranking of input variables according to the correlation with target distribution (top

variable is best ranked).

Rank Variable name | Correlation with target |

1 tracklen 0.60

2 scatt 0.56

3 anglekal 0.51

4 trkEPerNHit 0.24

5 hadclustcalE 0.07
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The absolute value of the correlation with the target for the input variables is shown on Table 7.13.

Top variable is best ranked. We see that there is indication of a correlation between three out of

five inputs and the true muon energy (target).

Finally, the mutual information metric (originated from information theory) measures mutual

dependence between two variables ,

I(X,Y ) =
∑
X,Y

P (X,Y ) · ln P (X,Y )

P (X)P (Y )

where P (X,Y ) is the joint probability density function and P (X), P (Y ) are the marginal proba-

bilities. Mutual information is the reduction of the uncertainty in variable X due to the knowledge

of Y. It takes positive values and is symmetric. Completely independent variables, I(X,Y ) = 0.

High values of ρ result in high values of I. Table 7.14 shows the values for the input variables.

Table 7.14: Ranking of input variables according to the mutual information metric for our energy

estimator.

Rank Variable name Mutual information

1 anglekal 2.77

2 scatt 2.13

3 hadclustcalE 1.43

4 trkEPerNHit 1.35

5 tracklen 0.72

Several methods were tested using the input variables shown Fig. 7.18 for the uncontained muon

energy estimator. Linear methods such as linear discriminant (LD), k-nearest neighbors (kNN)

and non-linear methods such as multilayer perceptrons (MLP) and decision trees (gradient and

adaptive boosting) were used.

In order to evaluate the performance of a regressor method on our data set, we need some way to

measure how well observed data and prediction actually match. The metric that helped quantify

performance across methods was the average deviation from target (e.g. the true muon energy



161

distribution), given by

average deviation =
√∑

(fMVA − ftarget)2

which as shown on Fig. 7.20. The average deviation from target is smaller for the cases of gradient

boosted trees and to some extent, kNN methods. The blue squares represent the score for the entire

sample population (for both testing and training). The black squares corresponds to the best 90%.
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Figure 7.20: Comparison across linear and non-linear methods for the uncontained muon energy

estimator. Best performance (least deviation from target) achieved by decision trees with gradient

boosting, in particular, when number of trees is 100. Second best was kNN method, but needs

further tuning.

The accuracy of f̂MVA as a prediction for for ftarget depends on two quantities, which we will name

reducible and irreducible errors. We can improve the accuracy of f̂MVA by choosing the best learning

method (BDT, kNN, etc) and its best tuning, therefore decreasing the reducible error. But even if

we make a perfect match, our prediction will still have some error on it. This is because ftarget is

also a function of ε, which by definition cannot be predicted using any of our input variables.
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Figure 7.21: Muon energy resolution (a) and muon energy fractional resolution (b) for selected

uncontained events using different algorithms. As a comparison, mean and RMS (sigma) values

are shown on the top left corner. Similarly (c) and (d) but with true neutrino energy Eν > 5 GeV.
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Figure 7.22: Muon energy resolution (left) and muon energy fractional resolution (right) for con-

tained events. The fractional resolution is 3%.
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It can be shown [97] that the expected test error can always be decomposed into the sum of three

fundamental quantities: the variance of f̂MVA, its variance and the variance of the error terms ε

E(ftarget − f̂MVA(x0))2 = Var(f̂MVA(x0)) + [Bias(f̂MVA(x0))]2 + Var(ε)

where the first two terms refer to the reducible error and the last one, to the irreducible error.

This is know as the bias-variance trade-off. Variance refers to the amount by which fMVA

would change if we estimated it using a different training dataset. Bias refers to the error that is

introduced by approximating a complex quantity, such as the energy of the uncontained muon, by

a much simpler model such as its relation with the input variables in Fig. 7.18.

To address the question of how our tuned muon energy estimator compares with the official con-

tained muon energy estimator and the outputs of other methods, distributions of the resolution

and fractional resolution are shown in Fig. 7.21. The top left image shows the difference between

the reconstructed muon energy estimator output and the true energy of the muon, using different

algorithms (boosted decision trees, kNN, etc) represented by each color. Printed in the same image

are the mean and standard deviation of the distributions. Similarly, the top right shows the muon

energy fractional resolution. We can see that the boosted decision tree method with gradient boost-

ing (BDTG) has the relative smaller standard deviation of 38%. The bottom row shows the same

distributions than before but now selecting events away from oscillation region, with true neutrino

energy Eν > 5 GeV. We observe that the fractional resolution of the best method (BDTG), quoted

as the muon resolution for this sample is 37%. For comparison, the contained energy estimator

is shown in black. The muon energy resolution and fractional resolution for the contained muon

sample is quoted as 3% and is shown in Fig. 7.22. Figure 7.23 shows the effect of including

the tuned muon energy estimator to the neutrino energy of the uncontained events. Once again,

different methods were tested and the BDTG method showed the smaller standard deviation. The

fractional resolution quoted is 28%, and for events away from the oscillation region with true neu-

trino energy Eν > 5 GeV is 25%. For comparison, Fig. 7.24 shows the neutrino energy resolution

and fractional resolution for contained events, quoted as 8%.
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Figure 7.23: Neutrino energy resolution (a) and neutrino energy fractional resolution (b) for selected

uncontained events using different algorithms. As a comparison, mean and sigma values are shown

on the top left corner. Similarly (c) and (d) but with true neutrino energy Eν > 5 GeV.
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Figure 7.24: Neutrino energy resolution (left) and neutrino energy fractional resolution (right) for

contained events. The fractional resolution is 8%.
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In order to describe the behavior of the tuned muon energy estimator using the decision tree

(BDTG) method, Fig. 7.25 shows the difference between the tuned muon estimator and the true

muon energy, quantity that we have introduced earlier as the resolution (or residual) versus each

of the input variables. The range of distributions (a1-a5) represent the selected uncontained events

with mixing parameters set to one of the NOvA 2016 best fit points. The other range of distribu-

tions (b1-b5) represent the set of interactions with true neutrino energy Eν > 5 GeV, away from

oscillation region.

As described in earlier sections, the angle between the main muon-like track and the NuMI beam

direction gives information about the kinematics of the interaction. By inspection with the residual

we can see that the majority of events have a large forward-like component which is parallel to

the neutrino beam. Also, some indication that the regressor becomes uncertain, with tendency to

overestimate, when looking at muons parallel to the beam. The calorimetric hadronic energy is a

measure of the neutrino energy not deposited in the muon but in the detector by hadronization.

By inspection we can note a large uncertainty across the residuals, with tendency to overestimate

at low hadronic energy values. The scattering of the muon normalized by the track length was a

compound metric targeted to quantify the interaction scattering of the muon-like particle through

the detector. It was found that very forward-like muons have a constant value of this metric (around

0.3 degrees/cm) independently of their track length, whereas non-forward-like muons (that is, with

a reasonable angle with respect to the beam) the value of this metric tends to be a small. Put it

in another way, for a fixed relatively small track length (say 6 m), and a value of cos θNuMI = 0.8,

the value decreases to 0.1 degrees per centimeter, which means the amount of scattering decreased.

Overestimation in the residuals is again linked to forward-like muons. The ratio of track energy

and number of track hits also shows similar behavior than our normalized scattering variable, in

the sense that shows a high concentration at a constant value with high uncertainty in the residuals

at that point. This is a consequence of the fact that the most typical energy of a track is around

10-14 GeV. Finally, the track length of the muon-like track shows a reasonable wide spread when
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including all the interactions, but this is reduced when looking at only low energy events. The

residuals are consistent within errors.

The combined behavior of the input variables is summarized when comparing the regression output

with the true muon energy, as shown in Fig. 7.26. The top left image shows the difference between

the tuned muon energy estimator and the true muon energy versus the true muon energy. At low

muon energies, the residual tends to be more or less centered around zero, but at high energies, the

residual tends to be negative. This can be explained as a consequence of missing information at

higher energies. The top left image shows what happens when we look at the bias of the residuals

versus the true energy. Taking the 2D distribution from the left, for each bin of true energy we apply

a Gaussian fit. Each point then represents the mean of that fit, which is associated to the bias, and

the error bar represents the sigma value of the same Gaussian fit, associated to the resolution. For

a range of true muon energies between 0-2 GeV, the bias is within 0.5 GeV with very small error.

But as the true energy increases, the bias increases and then it decreases, with error bars more or

less constant. This is represented by the bottom right plot with the resolution versus true muon

energy. The bottom left plots shows the bias versus versus the tuned reconstructed muon energy.

Since we expect to have a reconstructed muon energy resolution of approximately 2 GeV for events

with true energy Etrue ≥ 6 GeV, we developed a custom binning based on the findings of the bottom

right plot in Figure 7.26. We noticed that resolution remains more or less constant in the region

above from oscillations, where the DIS and RES events take place. Table 7.15 shows the binning

scheme adopted.

We showed that the BDT method with gradient boosting obtained the smallest fractional uncer-

tainty relative to the others. A briefly description of the details of this algorithm will be presented

in the next section.
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Figure 7.25: On the Y-axis, each plot represents the difference between the muon energy estimator

(using gradient boosting) and the muon true energy. On the X-axis, each plot shows one of the

input variables of the estimator. (a1-a5) Color represents the number of events, with oscillation

parameters set to sin2 θ23 = 0.404 and ∆m2
32 = 2.67 × 10−3 eV2. (b1-b5) Shows the same input

variable but with a cut in true neutrino energy of Eν > 5 GeV.
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Figure 7.26: Results of regression using gradient boosted decision tree. (a) Shows the difference

between the uncontained muon energy estimator and its true energy versus the muon true energy

for selected events, using oscillation parameters sin2 θ23 = 0.404 and ∆m2
32 = 2.67× 10−3 eV2. (b)

Shows the bias versus true muon energy, where each point represents the mean of a Gaussian fit to

all the events in that bin and the error bar is the sigma value of the same Gaussian fit. (c) Shows

the bias versus tuned reconstructed muon energy, indicating a flat behavior across energies. (d)

Shows the resolution versus true muon energy, where each point represents the sigma value of the

Gaussian fit per bin and the error bars the uncertainty in the sigma value.

Table 7.15: Binning scheme for the uncontained sample based in the resolution of the muon selected

events.

Energy range (GeV) No of bins

0.0-2.5 5

2.5-3.5 1

3.5-5.0 1

5.0-20.0 6

Total 13
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7.4.3 Gradient boosting

Gradient boosting consists in applying the method of gradient descent to the idea of boosting,

which means that a set of weak learners (those which label slightly better than random guessing)

when combined in a methodical manner, usually weighted, can create a stronger learner. Seminal

work on this subject was done by J. H. Friedman in 2001 [78]. For the case of the uncontained

muon, we have a set of input distribution variables X1, X2 . . . , X5 and a target distribution Y and

our task is to fit a model F ( ~X) to minimize some loss function. Using the boosting idea, we can

add an additional model (regression tree) h to F so the new prediction will be F ( ~X) + h( ~X). Or

equivalently h( ~X) = Y − F ( ~X), which are nothing but the residuals. The overall role of h is to

compensate for the imperfections of the existing model F . In gradient boosting, this imperfections

are identified by gradients.

Minimize a function by gradient descent is to minimize a function by moving in the opposite

direction of the gradient. Given a loss function J(~x), and a point θi, then J(~x) decreases fastest if

θj = θi − γ
∂J

∂θi

with γ is a step size multiplier. Given a loss function L(Y, F (X)), we want to minimize J =∑
i L(Y, F (Xi)) by adjusting F (X1i), F (X2i), . . .. We can interpret residuals as negative gradients

Yi − F ( ~Xi) = − ∂J

∂F ( ~Xi)

For this study, TMVA uses the Huber loss function,

L(Y, F ( ~X)) =


1
2(Y − F ( ~X))2 |Y − F ( ~X)| ≤ δ

δ(|Y − F ( ~X)− δ/2|) |Y − F ( ~X)| > δ

which is known to be more robust to outliers. An example of the gradient boosted decision tree

based on the input variables is given by Fig. 7.27.
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Figure 7.27: First of the 100 gradient decision trees used for the regression of the uncontained

muon energy estimator. The leaves nodes show the response value, which is a proxy for the

energy regressor.

7.4.4 Comparisons and validation

We discuss some results of the neutrino energy estimator tuned for uncontained events. From the

events passing the uncontained selection, the neutrino energy is computed as simply the sum of the

tuned muon energy estimator and the contained energy of the hadronic system

Êunc
νµ = Êunc

µ + Econt
Had . (7.4)

The relation between the tuned neutrino energy estimator and its components is shown in Fig. 7.28.

The top left distribution shows the relation between the true neutrino energy and the reconstructed

energy estimator defined by Eq. 7.4, where the black points represent the average value of the Y

axis. Top center shows the absolute resolution as a function of the true neutrino energy with

the average values superimposed. Finally, top right shows the fractional energy resolution as a

function of true energy. In a similar manner, the relations between true and reconstructed energies,

absolute, and fractional resolutions for the muon and hadronic component are shown in the middle

row (b1-b3) and bottom row (c1-c3).

The fact that we have small discrepancies between the tuned and the true neutrino energies raised

the question of whether or not a correction to the tuned muon energy is needed. Explanation for
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this discrepancy is traced back to the limitations in modeling the energy for uncontained muons

given by the choice of input variables.

First, note again the comparison between tuned muon energy and true muon energy in the bottom

left, for selected events. We can observe a linear behavior, as in the case of the tuned neutrino

energy, but it gets broader at higher energies.

Nevertheless, we performed studies related to potential corrections to the output of the tuned muon

energy and to the hadronic energy component as well [148]. The idea was to compute the residuals

between the tuned energy estimator and truth, map them into a 2D distribution versus tuned muon

energy estimator, and apply a spline fit to this distribution. The resulting values from the fit were

later applied to the tuned muon energy and compared again, with truth. Similar mechanism was

performed for the hadronic energy. In the end, findings showed no substantial improvement in the

fractional resolution after applying this corrections to both the tuned muon and hadronic energy

estimators.

After having established the comparison with true neutrino energy and using the customized bin-

ning given by the resolution of our events, Figure 7.29 shows the distribution of reconstructed

tuned neutrino energy with the full selection applied, in the 5-20 GeV range, away from the main

oscillation region. Solid red line represents the total simulation distribution with all backgrounds

included, such as the cosmic ray induced in gray, and neutral current plus beam induced back-

grounds added together in magenta. The total number of reconstructed events in the 10-20 GeV

energy region, where the DIS events reach almost 74% of the total is expected to be 148 events.

As part of the validation performed to the neutrino energy estimator, we study the hypothesis of

whether or not a flux-model dependency is present in the energy estimator, resulting in a potential

bias that could affect the resulting value for our selected events. The idea was to variate the flux

while keeping the true neutrino event rate in the 10-20 GeV region constant. Assuming a Gaussian

distribution with parameters Afit, µfit, σfit, we want the integral between the true energy range
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Figure 7.28: Two dimensional distributions for selected uncontained events. The true neutrino

energy is shown in the top row versus reconstructed neutrino energy (a1), neutrino energy resolution

(a2), and neutrino fractional resolution (a3), for oscillation parameters sin2 θ23 = 0.558 and ∆m2
32 =

2.444 × 10−3 eV2. Similarly, middle row shows true muon energy versus the reconstructed muon

energy (b1), muon energy resolution (b2), and the muon fractional resolution (b3). The bottom

row shows the true hadronic energy versus reconstructed hadronic energy (c1), hadronic energy

resolution (c2), and hadronic fractional resolution (c3).
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Figure 7.29: Distribution of reconstructed neutrino energy for selected events normalized to 7.99×
1020, using the customized binning in the 5-20 GeV region away from oscillations. A total of 148

reconstructed events are expected in the range 10-20 GeV, where the mayority of DIS events are

located. Cosmic and other backgrounds included.

10 < Etrue < 20 be equal to some constant C, in other words∫ 20

10
Gauss(Etrue|Afit, µfit, σfit) dEtrue = C. (7.5)

The next step is to model a flux dependence acting on the neutrino energy in the form of a weight

function, such that the neutrino rate remains constant,∫ 20

10
w(Etrue) ·Gauss(Etrue|Afit, µfit, σfit) dEtrue = C. (7.6)

For simplicity, we assume a linear model w(Etrue) = w0±m ·Etrue. Our task was to find the values

of w0 and m, and apply those weight functions to the neutrino energy distribution, propagating

through the full sample selection. In the end we find that if the true neutrino energy Etrue is

10 ≤ Etrue < 20, then

w(Etrue) = 0.5 + 0.0353 · Etrue flux up,

w(Etrue) = 2.0− 0.0706 · Etrue flux down,

otherwise, w(Etrue) = 1. The results of this study is shown in Figure 7.30. The solid red distribution

represents the nominal value of the reconstructed tuned neutrino energy, the solid blue represents
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a flux-model dependency that increases linearly with the reconstructed energy, whereas the solid

green represents a linear dependency that decreases with energy. We apply a Gaussian fit in the

reconstructed energy range of 7.5-20 GeV for each distribution, with the resulting fitted mean

values shown at the top corner for comparison. We concluded that applying a linear dependence in

the reconstructed neutrino energy does not impact substantially the shape of its distribution. We

can explain this by the fact that, since NOvA is an off-axis experiment, any changes in the flux

will become relevant if the off-axis angle itself is changed.
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Figure 7.30: Reconstructed energy distribution for selected events. Gaussian fit applied to the

region 7.5-20 GeV. Mean of each fit shown in plot.

7.5 Neutrino parent components and background constraint

Let us consider the decay of a positively charged kaon via the weak force, into a muon neutrino

and an antimuon, as in the following reaction

K+ → νµ + µ+.

We say that the positively charged kaon K+ is the parent of the muon neutrino νµ in the final

state. Now, consider the subsequent decay of the antimuon from the previous reaction into a muon
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Figure 7.31: For uncontained selected events, true neutrino energy distribution for neutrinos whose

parent is a kaon or pion. In the 10-20 GeV region, ∼ 94% of neutrinos are coming from kaons. Our

goal is to fit the high energy neutrinos, constraining the flux uncertainty from kaon production.

antineutrino, an electron neutrino and a positron,

µ+ → νµ + νe + e+.

In this case, we say that the positively charged kaon K+ is the ancestor of the muon antineutrino

νµ. Figure 7.31 shows the distribution of true neutrino energy for selected events when looking at

the neutrino parents. On the left side, the solid magenta distribution shows the contribution of

neutrinos coming from the charged current decay of kaon mesons. A 94% of the neutrinos in the

10-20 GeV region comes from the decay of kaons. The dashed magenta line corresponds to the

contribution of neutrinos coming from the decay of pions, which translates in a 5% from the total

in the 10-20 GeV range (see Table 7.16). Therefore, we can conclude that in the 10-20 GeV range,

a high component of uncontained νµCC events at the NOvA Far Detector are mainly produced via

deep-inelastic scattering of the nucleus (74%), and come from neutrinos which are produced mostly

from the decay of kaons (94%).

Given that our selection is sensitive to a majority of uncontained kaon-parent neutrinos in the

Far Detector, we decided to investigate any possible link between this sample and the kaon-parent

beam νe in the Near Detector, known to be a background for the νe-appearance analysis (see
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Table 7.16: Neutrino parent component for the uncontained events at the Far Detector. The sample

νµ-CC only is made of K+ and π+ components.

Integral Percentage Integral Percentage

Component (0-20 GeV) (%) (10-20 GeV) (%)

Total MC 166.90 100 121.67 72.90

νµ CC 154.89 92.80 114.96 68.88

νµ CC 11.63 6.97 6.51 3.90

NC 0.15 0.09 0.08 0.05

K± parent 137.32 82.28 114.53 68.73

K+ parent 132.30 79.27 110.82 66.40

K− parent 5.02 3.00 3.90 2.34

π± parent 28.32 16.97 6.41 3.84

π+ parent 22.31 13.37 4.03 2.41

π− parent 6.02 3.61 2.38 1.43

Section 2.5). First, a study of the momentum space of the kaon-parent neutrinos was performed

in order to characterize these two sets of events. Figure 7.32 shows the Near Detector beam νe-

contained selection applied to simulated events resulting in blue bins, whereas the Far Detector

uncontained νµ selection is applied to simulated events, shown in solid red boxes. The axis show

the forward (pZ) and transverse (pT ) momentum components of the neutrino as the kaon-parent

exits the NuMI target. It is shown that both samples are not clustered in separate phase spaces,

but rather overlaping, suggesting a kinematic equivalence.

Two more Near Detector samples were also investigated: the neutral current background from

the selected νµ CC contained events and the uncontained νµ CC events. Figure 7.33 shows the

momentum space distributions of the NC background (left) and uncontained νµ CC (right). We

also see an overlap between the Near and Far Detector phase spaces, that could be used to find

relationships.

Next, we performed a more quantitative study in order to answer whether or not the 10-20 GeV Far

Detector uncontained kaon-parent neutrinos are influenced by the kaon-parent beam νe in the Near



177

0

2

4

6

8

 (GeV)
Z

Forward momentum p
0 20 40 60 80

 (
G

eV
)

T
T

ra
ns

ve
rs

e 
m

om
en

tu
m

 p

0

0.2

0.4

0.6

0.8

1
NOvA Simulation

Figure 7.32: Momentum space distributions from selected neutrinos whose parent is a kaon. Near

Detector beam νe-contained selection is applied to simulation files resulting in the blue bins. The

Far Detector uncontained νµ selection is applied to simulation files, resulting in the solid red boxes.

The horizontal axis shows the forward momentum component (pZ) of the parent kaon as it exists

the target, whereas the vertical axis shows the transverse momentum component (pT ).
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Figure 7.33: Momentum space distributions from selected neutrinos whose parent is a kaon. Near

Detector in blue bins. Left: neutral current νµ-contained selection is applied to simulation files.

Right: νµ-uncontained charged-current selection is applied to simulation files. The Far Detector

uncontained νµ selection is applied to simulation files, resulting in the solid red boxes. The hori-

zontal axis shows the forward momentum component (pZ) of the parent kaon as it exists the target,

whereas the vertical axis shows the transverse momentum component (pT ).
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Detector, and if so for how much. We started by defining a covariance matrix Covsyst that includes

the set of flux systematics (beam transport and hadron production normalization and shape). The

uncertainties are computed as [99].

erri =
1

2

(∣∣σ+
i − σ

nom
i

∣∣+
∣∣σ−i − σnomi

∣∣) (7.7)

where σ±1 corresponds to the ±1 shift variation from simulation, and σnom is the nominal or central

value. The contribution of all the systematic uncertainties are marginalized and then combined

with the nominal using a function fi as follows

fi = fnomi +

systs∑
k=1

errik (7.8)

Finally, the entries of the covariance matrix are computed using the expected values

Covsystij = 〈fi · fj〉 − 〈fi〉〈fj〉 (7.9)

and the correlation matrix becomes

Corrsystij =
Covsystij√

Covsystii

√
Covsystjj

(7.10)

When applied to the sets of Near and Far Detector events, the covariance matrix becomes non-

diagonal as shown in Figure 7.34. Since the beam νe events are selected only to values of recon-

structed neutrino energy Erecoνe < 5 GeV, white band gaps appear, indicating no events selected.

The binning size for the Far Detector sample is set to 2.5 GeV whereas for the Near Detector is

set to 0.25 GeV. In a similar note, the covariance matrix for these two sample sets is shown in

Figure 7.35. If we restrict ourselves to the Far Detector 10-20 GeV and Near Detector 0-5 GeV

regions, we can observe that a 60 − 80% correlation exist between these two samples. Therefore,

any measurement of the kaon production normalization in the 10-20 GeV region of Far Detector

will be correlated at the 60 − 80% level when trying to constrain the beam νe background in the

Near Detector.

When looking at the possible relationships between the NC and νµ CC Near Detector backgrounds

with the Far Detector uncontained sample, we find interesting features too. Figure 7.36 shows the
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Figure 7.34: Covariance matrix between the sets of Near Detector beam νe-contained and Far

Detector νµ-uncontained kaon-parent neutrinos in the 0-20 GeV true energy range. The bin size for

the beam νe-sample is 0.25 GeV whereas for νµ-uncontained sample is 2.5 GeV. The Near Detector

sample region is between 0-5 GeV, therefore the white bands and white region corresponds to no

events selected. The Far Detector distribution is scaled by a factor of 2.6 for visualization.
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Figure 7.35: Correlation matrix between sets of Near Detector beam νe-contained and Far Detector

νµ-uncontained kaon parent neutrinos in the 0-20 GeV true energy range. The bin size for the beam

νe-sample is 0.25 GeV whereas for νµ-uncontained sample is 2.5 GeV. The blue bands in the Near

Detector sample corresponds to no events selected. From the 10-20 GeV region in the Far Detector

we can see a 60− 80% positive correlation with the 0-5 GeV region at the Near Detector.
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covariance and correlation matrices these two extra samples, respectively. The Near Detector NC

sample on the left (a1-b1) has less events selected, which translates in a coarser histogram. But

at the same time, its peak almost matches with the Far Detector uncontained. When looking at

the correlation between the two samples, we can see a 30% positive relationship between the 0-5

GeV Near Detector and 10-20 GeV Far Detector energy ranges. Finally, the Near Detector νµ

CC uncontained sample has more events populating the covaraince matrix, with a peak around a

similar energy range compared to the uncontained Far Detector sample. The correlation between

these two samples shows also a 30% positive relationship between the 0-5 GeV Near Detector and

10-20 GeV Far Detector energy regions.

After looking at these three samples, we can conclude that there is a non-zero positive correlation

between the 10-20 GeV signal region due to Far Detector uncontained events coming from the high

energy kaon-component of the beam and the Near Detector most important backgrounds of the νe

appearance signal.

In the next section, we will present an overview to the systematic uncertainties and discuss in detail

the ones that are important for our study.

7.6 Systematic uncertainties

A description of the treatment of the systematic uncertainties for the uncontained sample is showed

below. A main characteristic of this analysis is that low energy data (0-5 GeV) from the Near

Detector data was not used to predict the high energy signal region (10-20 GeV) at the Far Detector.

7.6.1 Beam transport and hadron production

For the uncontained sample, both the beam transport systematic uncertainties, associated to the

neutrino beam focusing, and the hadron production, which uses the PPFX method, are taken as

shape only uncertainties. That is, the ±1σ variation is area normalized to the nominal case and
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Figure 7.36: Covariance and correlation matrices between the Near Detector NC νµ-contained

sample and the Far Detector νµ-CC uncontained sample (left), and the Near Detector νµ CC-

uncontained sample and the Far Detector νµ-CC uncontained sample (right). Top row (a1-a2)

shows the covariance between the two samples. The Far Detector has a scale of 0.7 and 6.5× 105

was applied for visualization in order to compare to each Near Detector sample respectively. Bottom

row (b1-b2) shows the correlation matrices. From the 10-20 GeV region in the Far Detector we can

see a 30% positive correlation with the 0-5 GeV region at the Near Detector The bin size for the

Near Detector sample is 0.25 GeV whereas for Far Detector sample is 2.5 GeV.
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the resultant distribution added in quadrature to the rest. Since an indirect measurement of the

neutrino flux is performed when looking at the neutrinos in the energy range 10-20 GeV, the shape

only systematic uncertainty treatment helps avoid redundancy. The prescription took the top four

largest principal components, optimized to cover the expected PPFX systematic uncertainty for the

hadronic production. Similarly, all the eleven beam transport parameters were taken into account

for the beam transport. Even the large normalization impact of the flux uncertainties, when taken

the shape only, did not show as a mayor contribution to the overall uncertainty.

7.6.2 Muon and hadronic energy scales

The treatment of the muon energy scale systematic is slightly different to the one used for the main

disappearance analysis, as described in Section 6.4.5. The 1% variation originally prescribed was

applied to the input variable of the tuned estimator associated to the calorimetric energy of the

selected track, instead of applying to the track length. Therefore, the variation gets applied at run

time when requested. The prescription for the hadronic energy scale systematic did not change. It

describes a 5% variation applied to both, the hadronic calorimetric energy coming from hits not

associated to the muon-like track, and the hadronic energy contamination in the main muon-like

track.

7.6.3 Calibration

The absolute energy calibration systematic uncertainty is expected to have a 5% variation from

nominal, motivated by discrepancies between data and simulation related to non-muon particles.

This variation is applied to all the events in a special dataset of files created for investigation

purposes. But the tuned energy estimator developed for uncontained events is based mostly on

muon-related variables, which we already know, have a 1% variation. Figure 7.37 shows the dis-

tribution of reconstructed neutrino energy for selected events with the absolute energy calibration

variation. We expect the this variation to shift the distribution from right to left (or viceversa),
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since increases (decreases) the energy response at the cell hit level. But given the size of the energy

bins, the amount of events shifting one or more bins is expected to be small.
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Figure 7.37: Distribution of reconstructed neutrino energy for selected simulated events in the

signal region 10-20 GeV, including the absolute energy calibration variation. Left: Nominal versus

shifted distributions for signal events only, with the shifted-nominal ratio. Right: Background

decomposition of selected events in signal region with shifted-nominal ratio.

7.6.4 Cross section and final state interactions

The mayor impact in the overall systematic uncertainty comes from the final state interactions sys-

tematics, in particular, the ones associated with deep-inelastic interaction with pion multiplicity.

GENIE prescribes that for each input physics quantity P , such as any simulated prediction, pa-

rameter of function, the uncertainty is taken into account as a systematic parameter xP , modifying

the physical quantity P as

P 7→ P ′ = P

(
1 + xp ·

δP

P

)
(7.11)

where δP is the estimated standard deviation of P . NOvA applies a 50% uncertainty to events

with true hadronic invariant mass W < 3 GeV but only a 5% to events with W ≤ 3 GeV (see

Figure 7.38) for any DIS event with a neutrino-nucleon interacting producing 1,2 or 3 final state
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Figure 7.38: Distribution of the true invariant hadronic mass W for selected uncontained events

with the deep-inelastic neutrino-neutron CC3π interaction systematic uncertainty applied. A 50%

variation is applied to events W < 3 whereas events with W ≤ 3 have a 5% variation.

pions. Figure 7.39 shows the nominal and ±1σ variation for both signal and background events

in the case of the DIS neutrino-neutron CC3π interaction. This systematic showed as the mayor

contribution to the overall uncertainty when tabulated against all considered.

Nevertheless, evidence that the DIS pion multiplicity systematic uncertainty is overestimated in the

10-20 GeV signal region, is suggested as indicated by Figure 7.40. In the absence of any selection we

notice that the systematic variations applied as weights according to Equation 7.11 tend to deviate

from unity, suggesting the possibility that the well known value of the total cross section is not

being conserved. Another important factor to consider is that any possible correlations between all

the pion multiplicity DIS systematics are not taken into account.

7.6.5 Summary and impact

Although all the systematic uncertainties were considered in the final result, a list of the top 13

which have the largest impact in the measurement are shown in Table 7.17. The metric that helped

to tabulate is given by Equation 7.12

val[i] =
SystUp[i]− SystDown[i]

SystUp[i] + SystDown[i]
, (CC, 10-20 GeV) (7.12)
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Figure 7.39: Distribution of reconstructed neutrino energy for selected simulated events in the

signal region 10-20 GeV, including the deep-inelastic neutrino-neutron CC3π reaction variation.

Left: Nominal versus shifted distributions for signal events only, with the shifted-nominal ratio.

Right: Background decomposition of selected events in signal region with shifted-nominal ratio.

where for the charged current component of each systematic in the region of 10-20 GeV, the integral

of the difference between the +1σ variation is subtracted from the integral of the −1σ variation

and divided by their sum. As stated before, the main contributions come from the deep-inelastic

neutrino-nucleon CC Nπ interacting cross section. But recalling that a 15.5% of the events in the

10-20 GeV region arise from CC RES interactions, the second most important contribution comes

from the axial mass MA for CC resonance neutrino production, which is set to ±20%.

A pictorial description of the systematic table summary is shown in Figure 7.41, where the size

of each blue box reflects the uncertainty (in %) given by the Eq. 7.12 metric. The systematic

uncertainty from the top 13 systematics added in quadrature corresponds to 12.39% for signal

events, and 10.23% for background events. The statistical uncertainty for signal is ≈ 8%.

7.6.6 Systematic uncertainties not used

The following systematic uncertainties were cross-checked with thorough studies but we decided

not to implement them in the final part of the analysis for reasons being explained below.
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Figure 7.40: Deep-inelastic neutrino-neutron CC3π interaction ±1σ weights with no selection ap-

plied.

7.6.6.1 Formation Zone

The Formation Zone systematic is a final state interaction (FSI) systematic uncertainty defined

as the region in space and time needed to produce a hadron in its physical ground state. It is

implemented in GENIE for all hadrons produced in deep-inleastic interactions, initialized as

fz =
pcτ0

m
,

where τ0 = 0.342fm/c is the formation time, p is the hadron momentum, m is the hadron mass, and

c is the speed of light. When the weights are calculated for each interaction, the formation zone is

computed from the distance between the intranuclear vertex and the hadron position, as recorded

at the beginning of the intranuclear cascade routine. The formation zone alters the amount of

nuclear matter that the hadron must propagate before exiting the target nucleus. For example,

if it gets shortened, more pions will be created out of events that began with a neutrino-neutron

reaction, increasing the hadronic visible energy. As a systematic, the formation zone is modified as

fz 7→ f ′z = fz

(
1 + xfz ·

δfz
fz

)
,

where xfz = {. . . ,−2,−1,+1,+2, . . .} and δfz/fz is set to 50%. Figure 7.42 shows the distribution

of reconstructed neutrino energy for selected uncontained events in the 10-20 GeV region. The
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Table 7.17: Top 13 systematics with a variation of ≤ 1% according to Eq. 7.12 in the 10-20 GeV

region.

ID
Systematic 1σ set

Description
Impact on

name value Signal (%) Background (%)

1 DISvnCC3pi 50%,5% DIS neutrino-neutron 3π uncertainty 6.17 3.95

2 MaCCRES 20% Tweak axial mass Ma CC-RES (shape and norm) 4.39 5.20

3 DISvpCC3pi 50%,5% DIS neutrino-proton 3π uncertainty 4.21 2.42

4 DISvnCC1pi 50%,5% DIS neutrino-neutron 1π uncertainty 3.97 3.19

5 DISvnCC2pi 50%,5% DIS neutrino-neutron 2π uncertainty 3.96 3.04

6 MECq0Shape model Empirical MEC with q0 reshaped 3.96 3.82

7 RPAShapeenh model Stronger RPA enhancement at higher Q2 3.12 2.16

8 MFP pi 20% Tweak to mean free path for pions 2.29 2.22

9 DISvpCC2pi 50%,5% DIS neutrino-proton 2π uncertainty 2.16 1.42

10 MvCCRES 10% Tweak vector mass Mv CC-RES (shape and norm) 2.09 2.55

11 DISvpCC0pi 50%,5% DIS neutrino-proton 0π uncertainty 1.96 1.20

12 BhtBY 25% Tweak Bodek-Yang model parameter BHT -1.43 -1.24

13 MFP N 20% Tweak to mean free path for neutrons 1.14 1.08
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Figure 7.41: For the energy 10-20 GeV range, the total systematic uncertainty added in quadra-

ture corresponds to 12.39% for signal events, and 10.23% for background events. The statistical

uncertainty for signal is 100 ·
√

158/158 ≈ 7.96%.
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left side plot shows the nominal with the ±1σ variation included for true signal events. The

right side shows the ±1σ variation but for background events. Intuitively, our expectation is that

the formation zone would have no impact on the actual cross section, and only just impact the

distributions of the final-state hadrons. But the large error bands in the signal region shown in the

ratio as a +5%, −13% effect, indicate something might be amiss at the energies relevant for this

measurement.
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Figure 7.42: Distribution of reconstructed neutrino energy for selected simulated events in the signal

region 10-20 GeV, including the formation zone variation. Left: Nominal versus shifted distributions

for signal events only, with the shifted-nominal ratio. Right: Background decomposition of selected

events in signal region with shifted-nominal ratio.

The result of comparing the formation zone weights applied to the neutrino events as a function

of the true energy is shown in Figure 7.43. The black points represent the average value for each

X-axis bin of the 2D histogram, whereas the red-dashed line shows a linear fit to a constant from

0-20 GeV. Once again, our expectation is not met since deviations from unity are clearly visible,

at least for the −1σ case.
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Figure 7.43: Formation zone ±1σ weights with no selection applied.

7.6.6.2 Light yield modeling

The light level systematic uncertainty is related to the addition of Cherenkov light modeling into the

NOvA custom simulation. As discussed in the previous chapter, three special datasets were created

(a modified nominal and two shifted). Unfortunately, discrepancies in the ±1σ shifted variations

with respect to the nominal were found (see Fig. 7.44). When comparing with the contained sample

in the oscillation region 0-5 GeV, such discrepancies are absent, indicating a possible cancellation

by means of the extrapolation method, which uses the Near Detector information. But since by

construction, this analysis does not use Near Detector data, the discrepancies persist. In the end,

it was decided not to include this systematic in the final result.
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Figure 7.44: Distribution of reconstructed neutrino energy for selected simulated events in the

signal region 10-20 GeV, including light level variation. Left: Nominal versus shifted distributions

for signal events only, with the shifted-nominal ratio. Right: Background decomposition of selected

events in signal region with shifted-nominal ratio. Note the small discrepancies between nominal

and shifted distributions.

7.7 Results and discussion

We discuss the results obtained after looking at the Far Detector data in the region of 10-20 GeV.

Comparison with our simulation prediction with systematics applied followed by the measurement

of the kaon normalization scale will be presented.

7.7.1 Data sets and events selected

The datasets used for this analysis correspond to Periods 2, 3 and 5 in forward horn current (FHC)

NuMI neutrino beam mode which dates from the 24th of October, 2014 to February 20th, 2017.

The early data coming from Period 1 was decided not to be used for this analysis, given the large

fraction of Far Detector runs with incomplete active detector. The total POT accumulated in

the analysis without data from Period 1 corresponds to 8.25 × 1020 POT, dropping to the final
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7.99× 1020 POT after applying a full 14-diblock detector spill quality cut and a cosmic veto cut as

part of data quality.

The main simulation sample corresponds to 7.11 × 1024 POT after exactly the same preselection

and data quality cuts were applied as in the data.

A sample of uncontained data events are shown in Figures 7.8, 7.10, and 7.11. As expected, the

interaction vertex and hadronic system are contained within the boundaries of the detector but the

long track associated to the final state muon is leaving the detector. All these events are shown

within the 10 µs spill window.

7.7.2 Uncontained events and (sin2 θ23,∆m
2
32) sensitivity

We explored the posibility of using the uncontained muon neutrino sample in the 0-20 GeV energy

region combined with the contained muon neutrino sample in order to test whether or not the

sensitivity to (sin2 θ23,∆m
2
32) improves. The result is shown in Figure 7.45. The solid blue line

represents the 90% C.L sensitivity contour for the contained muon neutrino sample, with neither no

systemtics or cosmic background applied. The dashed-red line represents the 90% C.L sensitivity

contour for the uncontained muon neutrino sample, similarly with neither no systematics nor cosmic

background applied. The red and blue (superimposed) dots represent the best fit values. It was

found that the νµ-CC uncontained sample has a minimal impact (∼ 3%) on the (sin2 θ23,∆m
2
32)

sensitivity, even when combined with the contained sample and when the uncontained events use

true energy during the fit [149].

7.7.3 Measurement of the kaon normalization scale

A measurement of the normalization scale from neutrinos originated from kaons is made using the

muon neutrino uncontained events in the range 10-20 GeV at the Far Detector. As we discussed

earlier, a well known prediction of expected neutrino flux is required for long-baseline neutrino

experiments. This flux is used to measure neutrino cross sections and sterile neutrino searches at
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Figure 7.45: Sensitivity contours (stats only) with the contained sample (in blue) using recon-

structed neutrino energy and combined uncontained sample (dashed red) using true energy assum-

ing maximal mixing. The red and blue (superimposed) dots show the best fit result. The additional

sample improves the sensitivity contour by ∼ 3%.

the Near Detector, while at the Far Detector it gives an estimate of the predicted number of signal

events after oscillations. From Chapter 2, the NuMI beam contains neutrinos from the decay of

kaons and pions, which are generated by proton collisions in the carbon target. Due to the random

decay position of this pions and kaons, the neutrino beam is far from being monochromatic, and

contains a significant mixture of different neutrino flavors νe, νe, νµ (νe, νe, νµ) in addition to the

main component νµ (νµ). This mixture of neutrinos from different kinds is an major source of

systematic uncertainties.

Historically, there have been measurements of the charged pion production yields off the NuMI

target [127] and flux predictions using all available data from hadron production [18], but the yield

of kaon production has not been well measured [94].

We developed a measurement of the kaon flux normalization scale using uncontained events in

the 10-20 GeV range at the Far Detector. It has been shown that the muon neutrino energy

spectrum is dominated by neutrinos coming from kaons in this energy range. In addition, this

sample is a relatively high statistics sample, with the main source of background -cosmic ray induced
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muons- kept at a minimum thanks to the selection criteria discussed in Section 7.2. Finally, the νµ

CC interactions have a well defined and clear signal, with a high energy muon emitted from the

interaction attached to the vertex with the contained hadronic system. By measuring the data/MC

ratio of the selected uncontained events at the Far Detector we expect to have a constraint in the

uncertainty of the kaon normalization scale. Previous works used Near Detector data [110, 50, 170]

to give an estimate of the kaon component for the νe-appearance analysis. But the nalysis here

described uses Far Detector data for the first time.

We define the kaon scale as the ratio

SK =

∑
j(N

FDdata
νµ −Nπ

νµCC
−N beam

ν −N cosmics)∑
j(N

K
νµCC

)
(7.13)

where NFDdata
νµ is the number of uncontained selected events from the Far Detector data, Nπ

νµCC

is the charged-current pion-component of neutrinos in the 10-20 GeV region, N beam
ν is the neutral

current and beam νe expected backgrounds, N cosmics the expected cosmic background and NK
νµCC

the charged current kaon component from simulation.

The results after looking at data are as follows. Figure 7.46 shows the Far Detector data in

black points with poisson errors, the red solid line represents the total simulation prediction with

oscillation parameter sin2 θ23 = 0.558 and ∆m2
32 and all backgrounds included, the light-red error

bands represent the 1σ systematic error variations in quadrature including oscillation parameters

uncertainty, as well as the cosmic normalization uncertainty. The dashed cyan line represents the

charged current pion component from simulation, dashed red the charged current kaon component,

dashed gray the cosmic ray expected background, and in solid magenta, the neutral current with

beam νe backgrounds combined. As we noted, the data agrees with the prediction within errors.

The result of the measurement is given by the ratio in Figure 7.47. After subtracting the charged

current pion, beam and cosmic components from the selected data, the kaon data component is

normalized by the kaon charged current component from simulation. The error bars are computed

in quadrature using propagation of errors and including all the systematic, cosmic, and beam

plus neutral current components in them. The dashed blue line represents the value of unity, for
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reference, the dashed red represents the linear fit over the four data points. The final result of the

fit is quoted as SK = 1.07± 0.16.
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Figure 7.48: Event display of selected uncontained events in the 10-20 GeV range at the Far

Detector.
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Figure 7.49: Event display of selected uncontained events in the 10-20 GeV range at the Far

Detector.
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Figure 7.50: Event display of selected uncontained events in the 10-20 GeV range at the Far

Detector.
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CHAPTER 8. CONCLUSION

Neutrinos are among the most abundant yet most elusive known particles in the universe. Sig-

nificant understanding of the neutrino properties was achieved thanks to the several experiments

developed in the last six decades.

NOvA is a neutrino oscillation experiment with the longest baseline of any accelerator experiment

at the time, and user of the most intense neutrino beam currently build from Fermilab. The

two functionally similar, high sampling, liquid scintillator calorimeters, are 14 mrad off-axis from

the beam, providing a neutrino flux narrowly peaked at around 2 GeV. It is designed to address

the important open questions in the neutrino sector through precision measurements of νe/νe

appearance and νµ/νµ disappearance.

Accelerator based experiments require a reliable prediction of both the main component of the

neutrino flux and its background. This is because the neutrino flux is used as input for measuring

neutrino cross sections and provides an estimate of the expected signal for neutrino oscillation anal-

ysis. The main uncertainty for the prediction of the neutrino flux in accelerator based experiments

comes from uncertainties associated to the interaction of hadrons in the nuclear target. NOvA uses

a comprehensive flux prediction package that uses all available and relevant hadron production

data. It uses data from the pion and kaon yields measured by the MIPP and NA49 experiments.

In NOvA, the uncertainty in the integrated flux prediction from the 0-20 GeV energy range is

around 8%.

A measurement was made of the kaon production normalization scale using uncontained charged

current muon neutrinos at the Far Detector. The kaon component of the beam contributes to the

intrinsic νe contamination, a key background for the νe-appearance analysis. We also explored the

link of the uncontained sample at the Far Detector to events in the Near Detector such as the
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neutral current background for muon neutrinos, and the uncontained sample of muon neutrinos,

another background for the νe-appearance analysis.

We developed a custom selection for these events, with an overall efficiency of 32% in the 0-20

GeV energy range. Using multivariate techniques, a cosmic rejection PID was developed based on

boosted decision trees. The signal selection efficiency of this classifier is 95.5%, allowing to reduce

the cosmic background seven orders of magnitude, while keeping the signal 29 times larger after all

cuts applied. A custom energy estimator, also based on boosted decision trees, was developed in

order to reconstruct the energy of the escaping muon. A neutrino energy fractional resolution of

25% was achieved after combining the muon energy estimator with the hadronic energy estimator,

tuned for contained events. In terms of systematic uncertainties, the main contributions arise from

deep-inelastic neutrino-nucleon CC Nπ interaction cross sections. The current prescription sets the

±1σ value to 50% for events with hadronic invariant mass W < 3 GeV, but only a 5% to events

with W ≤ 3 GeV. We believe further investigation on this topic is needed, since correlations among

these systematics are not taken into account, resulting in a conservative measurement of the kaon

normalization scale.

We observed that around 94% of the uncontained muon neutrinos in the 10-20 GeV region corre-

sponds to the kaon component of the NuMI beam at the Far Detector. We also found a 60-80%

correlation between the Near Detector νe background and the Far Detector νµ uncontained signal.

We measured the kaon production normalization scale to be SK = 1.07 ± 0.16 after applying a

linear fit in the 10-20 GeV energy region of the data/simulation ratio.
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