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The surface-plasmon contribution to the energy losses experienced by an electron beam in a cylindrical
channel in a metal is derived. The work is motivated in part by considerations relevant to an electron ring
accelerator. The nonrelativistic limit is used for convenience in order to display the effect in a simpler manner.
A relativistic derivation previously given by Merkel, which includes only ohmic losses, may be improved
upon with the methods shown here. We include surface-plasmon energy losses in the nonrelativistic limit, but
it is well known that surface-plasmon excitation increases with increasing beam energy well into the keV
regime. The results obtained here can be generalized to the relativistic case quite easily and show how the
optical properties of the metal surrounding the channel affect the energy losses.

A charged particle traveling near a surface experiences a potential arising from the
polarization it induces in the medium. The interaction between the charged particle
and the induced field produces the energy loss of the particle. The energy loss for a
charged ring traveling in a cylindrical metal shell was derived previously by Merkel* in
the consideration of ohmic loss in a metal shell. In particular, Merkel was interested in
examining energy losses to the walls in an electron ring accelerator. A more general
version of the energy loss of charged particles in a cylindrical channel, which includes
the excitation of surface plasmons, is given here. However, in order to display the effect
most simply, the nonrelativistic limit is used. The results demonstrate that the charged
particle has maximum energy loss when the surface-plasmon dispersion relation is
satisfied in the formula for the stopping power. While our results do not directly yield
the energy losses in an electron ring accelerator, they do show that a detailed
calculation for that case should include more than simple ohmic losses.

We consider a charge g traveling with velocity v « ¢ paraxially in a cylindrical
channel of radius a surrounded by a metal with a local dielectric function e(w). Without
losing generality, the charge g can be set to travel in the x—z plane (see Fig. 1). The
quasi-electrostatic potential inside and outside the channel can be solved from the
equations

VIO, = ———8(r — ro) 8($) 3(z — vt), (1

" Work sponsored by the Office of Health and Environmental Research, U.S. Department of Energy,
under contract W-7405-eng-26 with Union Carbide Corporation.
* Presently at Bell Laboratories, Murray Hill, New Jersey.

13



14 Y. T. CHU ET AL.

X

N N N AN

a (5,0,vt)
—>
q

S Va4
FIGURE 1 Schematic of configuration.

and V2, =0, )

where we have chosen a cylindrical coordinate system (r, ¢, z), and the coordinates of
the charge are (ry, 0, vt).
The solutions of Egs. (1) and (2) are
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with
< 0 “ dk ik(z —vt)
O =29 Y (2= 8,00cosm) | 5" L,(kir lkiro).  (3b)

— o0

and
- 0 * dk ikz
D, = ;0 (2 = 3,,")cos(md) s B, (k, t)L,(|k|a) K, (|k|r), 4

where A,, and B,, are coefficients that are determined by the boundary conditions, K,,
and I, are modified Bessel functions, and L,, is defined as

L,(Iklr, 1klro) = Ku(IkIr)L(Iklro)0(r — 1o) + K, (Iklro)L(IkIr)8(ro — 1), (5)

which satisfies

d’L 1dL ,  m? 1
m 10 _ "L, = —28¢ — ro).
dr? + r dr <k + r? )L"' r (r = ro)
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The function 6(x) that appears in Eq. (5) is the Heaviside step function and is defined as

1 for x > 0,
Ox) = {0 for x < 0.

We note that I,, and K,, are finite at the origin and infinity, respectively.
The potential is continuous at the surface of the cylinder, so we have

(Di = (Dout Ir =a- (6)

n'r=a

The coefficient A4,,(k, t) can be obtained from the boundary condition given in Eq. (6):
An(k, 1) = By(k, t) — 2qe™ ™" I (Ik|ro)/I.(IK|a). (7)

The dielectric function e(w) is a function of angular frequency ®. Thus the second
boundary condition of continuity of the electric displacement vector becomes

acI)in out
o e, —e@ or |—. ®
where @,, and ®_,, are the Fourier potentials, given as
&)in = Jv dt ®;, el
out — o0 out
From Eq. (8), we obtain the Fourier transform of the coefficient B,, as
B,(k, ©) = 4nq 8(0 — ko)l (k|ro){(Ik|@) [I.(k|a)] [Kn(|Kla)L, (Ik|a)
— e()(kla)K,/ (|kla)]} ', )

and A4,,(k, ®) follows then from Eq. (7). The prime appearing in Eq. (9) represents the
derivative with respect to the argument.
The homogeneous portion of the potential inside the cylinder is

0

d " Ak, ) K| kla) (| K7). (10)

@ = 3 (2= 8,)c0s(m) f -

Using Eqgs. (7) and (9), we get the Fourier transform of @,

o)

~ @© dk .
®, = 4ng Z:O Q- Smo)cos(md))j I 3w — kv)e™**

X {Un(IKlro) Kn(Ik|@)L(|k|7)]/L(1kla) }
x {(Ikla)™ ' [Ku(lkla)], (Ikla) — e(@)L,(kla)K, (Ikla)]~* — 1} (11)
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Now, taking the inverse Fourier transform of &)O, we obtain

dk

(Do = 2(] Zo (2 — Smo)cos(md))J‘ E eiklz =)

X {[La(1klro) Kn(lkla) L(Ik|r)]/ Ln(Ik|a) }
x {(Ikla) ™ [Kn(kla) L,/ (Ikla) — e(ko)L(Ikla)K(kla)] ™! — 1} (12)

The stopping power for the charged particle is

aw _ do,
E B _qE r=ro,0=0,z=vt
2 = [0) 00 dk 2
= —(4q°/a) };O 2 =5, ) Eez(kv)lm (Iklro) Fu(lk|a), (13)
where
Fu(lkla) = K, (Ikla)K,'(1kla)/{[Gu(lkla)]* + [e,(kv),(Ikla)K,, (Ik|a)]*},
with

Gu(lkla) = K,(|kla)L, ([kla) — €,(kv)L,(kla)K,/'(|k|a),

where €, and €, are the real and imaginary part of €, respectively. We note that the
charged particle has maximum energy loss if the relation is satisfied

G.(lkla) = 0. (14)

The dispersion relation, Eq. (14), is satisfied at the surface-plasmon frequencies w,,(|k|a)
characteristic of the mode, the material, and the geometry. Given Eq. (14), one may use
optical data for the dielectric function of the material to obtain the contribution of the
energy loss peak.

In the nonrelativistic limit described above, the planar limit is obtained at distances
from the surface at which the energy-loss probability is not negligible unless the
cylinder radius is less than the order of 10 nm. In this event, Eq. (13) simplifies
considerably, as found by Echenique and Pendry.?

In order to compare the surface plasmon losses and ohmic losses, one may write in
the planar limit Eq. (13) as

aw  2q* [ e(w) — 1
o = m? L do mKO(2mzo/v)Im[m], (15)

where z, is the distance from the surface. Then the ohmic losses produce a stopping
power equal to

aw q*v

17 16
dz  2mno(2zy)*’ (16)
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FIGURE 2 Plot of the ratio of the surface plasmon losses and ohmic losses versus m,z,/v.

where o is the dc conductivity of the metal. The ratio of these results is

o0

do 0Ky(2wz,/v)Im [i"i);—l] . (17)

f= 40(220/0)3f @) 11

0

Using the optical data table given by Hagemann et al.? for silver, we can calculate the
integral in Eq. (17). A graph of f versus w,z,/v, where ®, = 0.1367 a.u. = plasma
frequency for silver, in Hartree atomic units for the case of a silver surface is shown in
Fig. 2.
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