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Abstract

To exclude a possible signal, or to compute the significance of one that is observed,
the measured data must be compared with the predictions of a model which includes new
physics, and also a model which does not, to see which of the two (if either) can be excluded,
and at what confidence level. Typically, these two models are only imperfectly specified.
Uncertainties in the rates and distributions of Standard Model background processes are
always present, and can be larger than the predicted signals. Often an uncertain prediction
can be constrained by a subsidiary measurement, for example, by counting events in a control
region separate from the signal sample. In this case, the uncertainties in the modeling are at
least partly, and often mostly, statistical in nature. There remain systematic uncertainties
in the extrapolation (or interpolation) from a control region to the signal region, and there
may remain uncertainties in the prediction of the kinematic distributions of events in the
signal region. Monte Carlo (or data) statistical uncertainties in each bin of a histogram
provide an additional source of uncertainty. A limit calculator is described which includes
the effects of all of these sources of uncertainty, based on the CLs procedure used at LEP.
This note updates CDF 6525, and describes a program to compute limits using ROOT.

1 Introduction

A search for new physics at the Tevatron typically involves collecting data in one or more
histograms, binned in variables designed to separate events produced by a particular signal
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process from those produced by a set of background processes. Various signal hypotheses
may be tested, parameterized by masses, cross sections, branching ratios, and possibly other
parameters. The signals and backgrounds too may depend on a variety of parameters which
are not of primary interest but which are needed for the measurement – examples include
efficiencies, acceptances, integrated luminosity, and background production cross sections. The
parameters which describe the signal and background processes which are not being measured
or constrained by the analysis are called “nuisance parameters.” Their values are needed in
order to extract measurements of, or limits on, the parameters of interest, and uncertainty in
their values usually results in reduced sensitivity to the parameters of interest. The systematic
errors on observables are parameterized in terms of these nuisance parameters.

In the CLs limit-setting technique used at LEP [10], the data are compared against two
models at a time [2]. One is the null hypothesis, which asserts that the Standard Model describes
the data, while the other is the signal+background hypothesis, which asserts that the data are
modeled by SM physics plus one or more processes not included in the SM. Models of new
physics are tested one at a time against the Standard Model, using the data to decide which
is preferred. Many other techniques, such as Bayesian techniques and Cousins-Feldman, test a
large class of possible models at once, to see which of a large number of models is preferred.
The main objection to these techniques is that the limit or discovery significance of testing a
particular model with the data depends on the space of models of new physics that is considered.
In Bayesian techniques, the space of possible models together with their weights is encoded in
the prior, while the Cousins-Feldman construction requires exploring an entire model space.
For some models of new physics, the model space may not be fully explored theoretically, or
may be of too high a dimension to study fully.

Model predictions always have uncertainties associated with them, and these uncertainties
arise from a variety of sources. To compute discovery or exclusion signficances, the uncertainties
in the model predictions must be taken into account; uncertainty in model predictions allows
models to be more compatible with any observed data. Choosing which of two models is
preferred by the data is made more difficult if the models have degrees of freedom which allow
them to accomodate the data by adjusting their nuisance parameters appropriately. Estimations
of the sensitivity of an analysis depend crucially on controlling the systematic uncertainties of
the model predictions, as well as on collecting large data samples. For Higgs searches at CDF,
for example, with large data samples, the systematic effects of controlling the model predictions
become important compared to the statistical fluctuations, and must be handled with care.

Typical model uncertainties in histograms of predicted event counts from various processes
are rate uncertainties and shape uncertainties. The parameters describing our uncertainty in
rates and shapes may be constrained by statistically-limited subsidiary measurements, or they
may have a priori constraints from theory or from long-past measurements for which the data
are no longer available but a measured parameter is reported in a publication with a (possibly
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asymmetric) error bar. Monte Carlo (or data) statistical uncertainties are present in each bin
of a histogram used as part of a model.

A typical analysis on CDF may fit a function to a data histogram, using, for example, mass
sidebands and a background fit function to predict the background underneath a signal peak.
Alternatively, events in a separate histogram, collected with different selection requirements,
may be used to normalize one or more background contributions in the signal region. Limits are
calculated in the CLs technique by generating pseudoexperiments, randomly varied within the
statistical and systematic uncertainties, and comparing the distribution of a test statistic, such
as the logarithm of the likelihood ratio, of the data against distributions obtained assuming
just the null hypothesis or the hypothesis that new physics is present. It is important to
treat each pseudoexperiment in the same way as the data are treated – hence sideband fits
or subsidiary experiments must be also simulated and fit, and backgrounds projected into
the signal region. In this manner, a large class of “systematic” uncertainties can be treated
in a frequentist manner [8], although there may remain additional sources of nonstatistical
systematic uncertainty.

This note is an extension of the procedure considered in CDF 6525, and a program is
descibed here, which runs in ROOT, which considers a broader class of possible systematic uncer-
tainties. The handling of shape uncertainties is also improved, using a histogram interpolation
procedure [6] pioneered by the DELPHI experiment at CERN.

2 Procedure for Computing Limits

2.1 The Test Statistic

As described in [10] and CDF 6525, a choice of a test statistic which is usually optimal is the
likelihood ratio

Q =
P (data|H1)
P (data|H0)

(1)

where H1 is a model including new physics, and H0 is the null hypothesis, that new physics is
absent. There is no requirement that H1 predicts more data events than H0. In fact, for some
searches, such as the search for charged Higgs bosons in top decays, observing fewer events than
predicted is the sign of new physics. Other new physics processes may interfere destructively
with the SM background, as is the case with some Z ′ searches for some mass ranges. CDF 6525
uses expressions assuming that signal processes add incoherently to background processes and
thus is not applicable to these searches. Both H1 and H0 predict data counts in each bin
of the data histograms to be studied, and these predictions are usually sums from distinct
processes, added incoherently. Processes that add coherently should be treated as a single
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process. For example, in a Z ′ search, (Z/γ∗/Z ′) can be considered just one process if interference
is important, while fakes are another process.

At issue is the fact that P (data|H1) and P (data|H0) are sensitive to the fact that H1 and
H0 may be poorly specified. The approach taken here is that used by analysis techniques
which find the best-fit model to the data, where these probabilites are maximized over the
space of of possible values of the nuisance parameters. This procedure is usually called the
“profile likelihood” technique, although its interpretation and use are different here. This topic
is discussed below, in Section 3.3.

The subject of finding the P (data|H1) which is maximal over variations of nuisance param-
eters is discussed in CDF 7904 [9]. The uncertainties which are considered in that chisquared
function are rate uncertainties, histogram shape uncertainties, bin-by-bin Poisson statistical
uncertainties in the model predictions, and correlations between nuisance parameters. The
χ2 calculator of CDF 7904 has been updated to compute a global χ2 summed over several
histograms which share correlated systematic uncertainties, and to allow for 2D histograms
with shape errors. Furthermore, the treatment of asymmetric errors has been improved, as is
described in Section 2.2.

The χ2 function described in CDF 7904 (inspired by T. Devlin’s CDF 3126) is based on the
likelihood function, and in fact, the test statistic of Equation 1 is given by

−2 ln Q = χ2(data|H1)− χ2(data|H0) = ∆χ2 (2)

The minimization of χ2 over the nuisance parameters must be done separately for the two
hypotheses H1 and H0.

2.2 Asymmetric Errors

The χ2 function of CDF 7904 uses systematic uncertainties on rates that are parameterized by a
symmetric, multiplicative scale factor. The rate for a specific process prediction in a particular
bin is sensitive to a particular nuisance parameter

rvaried
ij = rcentral

ij

∏
k

(1 + skfkj) (3)

where i runs over histogram bins, j indexes which model component is being considered, and
k indexes the nuisance parameters sk which are Gaussian distributed around zero with unit
width (except when truncated to keep the model prediction non-negative for all components of
the model). The quantity fkj is the fractional uncertainty on the rate of the rij histogram due
to the kth nuisance parameter. Often, f will have two values – one positive and one negative.
An interesting discussion of asymmetric uncertainties is given in Reference [11]. The approach
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taken here is to use Model 2 of [11], to parameterize the effect of a Gaussian-distributed nuisance
parameter on a physical quantity with a quadratic function. This procedure makes the PDF’s
of the physical quantities continuous. One conundrum which arises in a complicated analysis
is that a particular nuisance parameter (like the jet energy scale) can have a symmetric impact
on, say, a background contribution, but an asymmetric impact on a signal contribution. Rather
than generating pseudoexperiments with a discontinuous PDF for a nuisance parameter (like
the signal efficiency), it is better to just parameterize the efficiency quadratically on a smoothly
varying nuisance parameter. The variation considered here is given by

rvaried
ij = rcentral

ij

∏
k

(
1 + sk

(
f+

kj − f−
kj

2

)
+ s2

k

(
f+

kj + f−
kj

2

))
(4)

The quantity f+
kj is the fractional change in the rate for process j when the nuisance parameter

sk is positive one unit. It may be positive or negative. The quantity f−
jk is the fractional change

in the rate of process j when the nuisance paramter sk is negative one unit. For symmetric
uncertainties, f+

kj = −f−
kj .

2.3 Histogram Interpolation and Extrapolation

Because the distributions of reconstructed variables are uncertain in addition to their rates, the
limit calculator must know about such uncertainties in order to provide the most honest limits.
Such uncertainties, such as the jet energy scale error shifting the background template in the
mjj distribution can easily mask a small signal on the steeply falling edge of the background
distribution.

Histograms are interpolated within their shape uncertainties on each pseudoexpeirment
using PVMORPH [6]. In general, histogram interpolation is a much more reliable procedure than
histogram extrapolation, and so the MINUIT minimization procedure used to minimize the
χ2 test statistic is not allowed to venture into a portion of nuisance parameter space which
requires histogram extrapolation. It is therefore up to the user of the software to provide shape
variations of several sigma. Providing ±1σ shape variations will truncate the considered space of
nuisance parameter values to ±1σ. Fortunately, a routine is provided which can also extrapolate
histograms in the cases for which shape variations are available but only for relatively small
excursions of the nuisance parameters. Extrapolations must be checked by hand to make sure
that they make sense, however. The software described below does not pay any attention to
the contents of overflow and underflow bins, so the histograms must be binned adequately to
cover not only all relevant entries, but also those of the varied shapes as well.
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2.4 Equations of Constraint

In some problems, the parameterization given above of the rate of a particular process in terms
of multiplicative factors computed from the nuisance parameters sk, which may be shared among
different histograms introducing correlations, still is insufficient to describe how a subsidiary
measurement in one subset of the data affects the interpretation of another subset of the data.
An example of this is the very common four-sector Missing-ET vs. Iso. method of computing
the non-W background contribution in top, electroweak, and Higgs analyses. In the spirit of
including the three control sectors in the MET vs. Iso plot as subsidiary experiments and
treating them in a frequentist manner, it is necessary to express relations such as D = A∗C/B,
where A, B, C and D are event counts in the four regions from a particular process. The
strategy suggested here is to define three separate, one-bin (or more, if a shape is of some
use here), histograms, for the A, B and C regions, each with a separate nuisance parameter
describing the rates found in the three regions. Typically, no external Gaussian constraint is
applied to these parameters (the mechanism for removing the Gaussian constraints is described
in Section 4). The nuisance parameters still express relative changes with respect to a standard
rate, so that they may be treated in the program like all other nuisance parameters.

A function should be supplied describing how the nuisance parameter for region D depends
on those describing the event counts in regions A, B and C. We construct a model which
predicts a(1 ± fasa) events in region A, b(1 ± fbsb) events in region B, c(1 ± fcsc) events in
region C, and d(1 ± fdsd) events in region D, where ac = bd and a, b, c and d are what’s
expected in the data (these rates will be needed for generating pseudoexperiments), and fa, fb,
fc and fd are numbers of the order of 0.1 (for generating pseudoexperiments, they represent
the amount by which the true mean value of these rates will be fluctuated). Then sd can be
computed in terms of sa, sb and sc by requiring

a (1 + safa) c (1 + scfc)
b (1 + sbfb)

= d (1 + sdfd) (5)

which can be solved to obtain

sd =
a(1+safa)c(1+scfc)

b(1+sbfb)
− 1

fd
(6)

If no external Gaussian constraints are applied to the s’s, the precise values of the f ’s do not
matter in the χ2 minimization procedure. The f ’s used for the pseudoexperiment generation
may be chosen to be different from the f ’s used in the fit.

In the software described below, there is currently there is no implementation of an a priori
Gaussian constraint in the chisquare function for a nuisance parameter which is computed
explicitly as a function of other nuisance parameters.
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3 Confidence Level Calculation

CDF 7904 raises the issue that the number of degrees of freedom is ill-defined for computing χ2

for a general counting experiment. The Gaussian χ2 distribution, computed by routines such
as CERNLIB’s PROB function, do not apply in the more general case considered here, since the
variations of each measaurement are Poisson and not Gaussian. To interpret the χ2 values,
pseudoexperiments must be generated and the observed χ2 values must be compared against
distributions obtained in different hypotheses.

3.1 Pseudoexperiments and p-Values

The confidence level for excluding H1, given some experimental data and a null hypothesis, is
given by

CLH1 = PH1(Q ≤ Qobs), (7)

the probability that Q is less than that obtained in the data, Qobs, assuming the new-physics
hypothesis H1. This hypothesis is excluded at the 95% CL if CLH1 = 0.05, and at more than
the 95% CL if CLH1 < 0.05. Using our ∆χ2 test statistic, this can be written as

CLH1 = PH1(∆χ2 ≥ ∆χ2
obs), (8)

The confidence level for excluding the background hypothesis is another p-value, known in
the LEP literature as 1− CLb, and for consistency, we can call it 1− CLH0 It is defined as

1− CLH0 = PH0(Q ≥ Qobs). (9)

or
1− CLH0 = PH0(∆χ2 ≤ ∆χ2

obs), (10)

1 − CLH0 is the probability that the null hypothesis will give an outcome that looks at least
as signal-like as the one observed. For discovery, 1 − CLH0 is required to be no more than
2.87 × 10−7, or twice that, depending on how one interprets what is meant by “five sigma,”
including just one side of a Gaussian tail or both. A “three sigma” excess is defined to be
1− CLb = 1.3× 10−3 or twice that.

The quantity

CLs =
PH1(∆χ2 ≥ ∆χ2

obs)
PH0(∆χ2 ≥ ∆χ2

obs)
(11)

is used by the LEP experiments because it is better behaved for exclusion than CLH1 alone
because it cannot be used to exclude a hypothesis to which there is no experimental sensitivity,
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while in the case of CLH1 , 5% of those hypotheses for which there is no sensitivity will be
excluded at the 95% CL. CLs introduces overcoverage in doing this. There is a detail here
in that CLs is not exactly equal to CLH1/CLH0 as they are defined above, although this is
approximately true. The problem arises because of the use of ≤ and ≥ instead of < and >
above. The definition of a p-value includes the probability of the observed outcome, and so
1 − CLH0 is a p-value which can be used to test H0. Unfortunately, the numerator and the
denominator denominator of CLs must also include the probability of the observed outcome,
and so the definitions above with the appropriate inequalities are a precise statement of what
needs to be done. The difference between using ≤ and < becomes large for experiments with a
small number of expected events and only one bin in the histogram. Splitting the data up into
many bins with different signal-to-noise ratio expecations reduces the probability of any single
outcome and also makes the analysis more optimal.

3.2 Ensembles

These probabilities, PH0(Q ≥ Qobs) and PH1(Q ≤ Qobs) need to be computed assuming a
sample space from which the observed experiment is drawn, commonly called an “ensemble.”
To compute these probablilites, pseudoexperiments are drawn from this ensemble, and the
pseudodata are analyzed in the same way as the real data, to compute ∆χ2 for each possible
outcome. If the hypotheses H1 and H0 were perfectly specified, this would consist of generating
Poisson random numbers in each bin of each histogram according to the perfect predictions.
We could then estimate just how probable each possible experimental outcome is. The problem
is that systematic uncertainties in the models prevent us from interpreting a specific outcome
of the data precisely. We know exactly what we observed in the data, but we do not know from
what sample space it was drawn.

A Bayesian approach to this problem is to integrate the probability of each outcome over
the values of all of the nuisance parameters, weighted by the prior belief functions for each
nuisance parameter (typically Gaussians, or truncated Gaussians to keep predictions from be-
ing negative). This procedure is called “marginalization” and is in common use in Bayesian
techniques and mixed Bayesian-Frequentist techniques such as the variant of CLs used at LEP.

A frequentist appraoch to handling this problem is to go back to the source of uncertainty in
a nuisance parameter and treat the variation in the nuisance parameter in a frequentist way [8].
It is in this manner that the results of subsidiary measurements, such as counting events in
control samples and sidebands is treated statistically instead of systematically. Unfortunately,
non-statistical uncertainties are nearly always present, and can be sometimes dominant. Un-
certainties from model predictions which arise from comparing different Monte Carlos, or by
asking theorists what the errors are on a calculation, usually have no statistical interpretation
and correspond instead to relative amounts of belief. Even the procedure for applying the
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measured result of a subsidiary experiment to make a prediction of a needed parameter (like a
background component) may be subject to non-statistical uncertainty. The goal here is to treat
all the statistical uncertainties in a frequentist manner, by generating Poisson random numbers
for event-counting processes in the main and subsidiary experiments, and by marginalizing over
the remaining nuisance parameters.

3.3 Profiling and Marginilazation

One might ask if a profile likelihood is employed, which is commonly used to incorporate
systematic uncertainties in limits, why then marginalization is necessary. The answer is that the
profile likelihood is the test statistic, and its value is not used directly to compute the required
p-values. Instead, an ensemble of pseudoexperiments needs to be generated to determine its
distribution, since the structure of an analysis, with complicated sideband fits and subsidiary
experiments and bins with very different values of the signal-to-background ratios may be
present. No general assumption is made on the distribution of ∆χ2 in either hypothesis, instead
it must be computed anew for each model tested.

Marginalization is necessary in order to incorporate the effects of systematic uncertainty in
the limits at all. If the search consists of counting events passing just one set of selection criteria,
that is, the final histogram has just one bin, then minimizing and fitting does not re-order the
outcomes. An experimental outcome with more observed events looks more signal-like than one
with fewer1, and all test-statistics are equivalent to the event count. Without marginalization
of the probabilities of each outcome, systematic uncertainties would be ignored entirely in this
case.

One might then ask if marginalization must be included, why the profile likelihood is nec-
essary. The reason is to improve the sensitivity of a search. If we seek a small peak on top of
a large and a priori uncertain background, then fitting the background shape and comparing
the data to the fit is the most sensitive thing to do. To start with an a priori guess of the
background rate and shape with large uncertainties and to do no fit allows the marginalization
procedure to assign very weak discrimination power to the events observed in the region of the
bump. Another way of looking at this is that if the background rate is underestimated and
the background uncertainty is underestimated, one obtains a high rate of false discoveries (no
statistical procedure can protect against incorrectly estimated uncertainties). Similarly, if the
background is overestimated and its uncertainty is underestimated, one obtains exclusions that
are too powerful (almost all experiments come out with deficits of candidate events). Properly
marginalized, we are uncertain whether a particular outcome represents an excess or a deficit,

1This is true for processes with signals that add incoherently to the background. The Likelihood-Ratio test
statistic proposed here has the same ordering whether the new physics hypothesis has more or fewer events (or
a mixture of relative signs in different channels or even bins of histograms).
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since we do not know what the right value of the background is. Fitting for the background,
possibly using correlated fits with several histograms of differently selected data, allows us to
constrain the background better than our a priori estimations.

Coverage is always defined relative to some ensemble, and because of the construction of the
p-values CLH1 and 1− CLH0 , they cover exactly or have the usual overcoverage from Poisson
discreteness.

3.4 Sensitivity

Before the experiment is conducted, the sensitivity should be estimated, to see if it is a worth-
while experiment to do and to decide what resources are to be devoted to it. Furthermore,
the sensitivity should be used as a figure of merit to decide how to optimize the analysis. All
activities of experimentalists should be devoted to improving the sensitivity of their analyses
– from designing and upgrading the detector to choosing cuts and selecting among different
advanced analysis techniques.

There is more than one figure of merit of course. One is the median expected CLs value
in an ensemble of experiments assuming H0 – lower is better. Another is the median limit on
the mass of a new particle, or the median limit on the cross section times branching ratio of
a new particle, again in an ensemble of experiments assuming the null hypothesis (these last
two are often equivalent). The median is used because of its invariance under transformations
of variables. If we place limits on a coupling constant or a cross section (which is usually
proportional to a coupling constant squared), then the median limit on one corresponds to the
median limit on the other, while an average will be pulled to one side by the transformation.

One may also compute the amount of luminosity required for a desired median rate or mass
limit, or the amount of luminosity required for a desired median 1 − CLH0 discovery p-value.
Optimizing an analysis for discovery can result in a different set of event selection requirments
than optimizing for exclusion. Properly done, however, events should be collected in histograms
with different bins, segregating regions of high signal-to-background ratios from those with low
signal-to-background ratios. Optimizing for discovery usually involves finding the subsample
of data which has a very high signal-to-background ratios, even at the cost of acceptance and
efficiency. Optimizing for exclusion usually involves improving signal acceptance at the cost of
letting in more background. Separating events into high signal-to-background ratios and low
signal-to-background ratios classes and combining the results gives optimal sensitivity for all
cases.

One problem with estimating the sensitivity, particularly when the a priori systematic
uncertainties on the signal acceptance and background rates are very large, is that some estimate
of the acceptance and background rates must be supplied before the experiment is conducted,
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even if these will be fit to the data once data are collected. One must do the best to provide
realistic estimations of these quantities for computation of sensitivity even if they later will not
be needed.

3.5 The 5σ Problem

One of the issues that has plagued for a long time the computation of discovery p-values is
how to quantify the significance of an outcome which is unlikely to happen in the null hypothesis
– usually the question is just how unlikely in the null hypothesis the particular outcome or one
that looks more like new physics could have happened. When excluding new physics models,
95% CL exclusion is usually the criterion chosen, and one only has to compute CLs with enough
precision to tell that an observed outcome is less probable than about 5% of the time assuming
a signal is present. But forming discovery p-values, we must compute 1−CLb values of the order
of 1× 10−7. This computation involves generating of the order of 1× 108 pseudoexperiments,
just to be on the safe side. The program described here runs rather slowly, and computers are
not yet fast enough to do the calculation comfortably many times. The calculation may be
parallelized, but there is always competition for computer resources.

The traditional solution is to compute the probability in the tail of a χ2 distribution if one
knows the number of degrees of freedom, using the CERNLIB PROB function. One problem here
is that the distribution of the −2 ln Q test statistic is not a true chisquared distribution due to
the Poisson nature of the data. If the s/b of all bins of the analysis is � 1, one can approximate
the distributions as Gaussian and do away with needing to run psuedoexpeirments (although
enough should be run to verify the shape of the core of the distribution).

A trick used at LEP is that the likelihood ratio Q is in fact the ratio of the PDF’s evaluated
at that particular Q. The inclusion of systematic uncertainties makes the argument less clear,
and in this instance, where Q is a ratio of likelihoods maximized over nuisance parameters, and
the values of the nuisance parameters which maximize the likelihoods in the H1 and H0 cases
may be different.

No practical solution is proposed yet here. One may arbitrarily parameterize the PDF
of −2 ln Q for the two hypotheses and integrate the tails of the parameterization, although
it is best to check it at least once with a very high-statistics calculation. Sometimes one
must compute many such small p-values, particularly when estimating the sensitivity of a
measurement. Typically one wants to know in what fraction of signal experiments one gets a
result of a chosen significance, as a function of various physics parameters (such as the mass
of a new particle), the integrated luminosity, acceptance and background rates, and systematic
uncertainty parameterizations.

An issue comes up when the search analysis has a mixture of one or more channels or bins
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with a low expected s/b and a large expected event rate, which are combined with one or more
bins with low backgrounds and higher s/b. The PDF of the test statistic then is a convolution
of a Gaussian chisquare distribution with a discrete Poisson distribution. The inclusion of the
fit to maximize the likelihood for each hypothesis further distorts the picture. It is hard to make
a prediction of the form of the PDF of the test statistic without doing pseudoexperiments.

4 Available Software

This section describes a limit calculator based on the ∆χ2 test statistic described above, and
the program runs as a compiled script in ROOT. The inputs are TH1 histograms and histograms
of classes which inherit from TH1, such as 2D histograms. It is built on the χ2 calculator
described in CDF 7904, which has been extended to compute a joint chisquare over many
histograms of data, so that several searches for new physics may be combined together. The
code is available at http://www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.
html, along with some examples of how to use it.

One uses this package by creating a member of the class mclimit csm and creating in-
stances of the class csm model which describe the signal and null hypotheses. Instances of
class csm model have inside of them template histograms which are fit to the data, as well as
descriptions of all of the systematic uncertainties and their correlations. Separate instances of
csm model are used to generate pseudoexperiments and to fit them, so that the user may study
the effects of estimated central values used in the fits for backgrounds, for example, which are
systematically different from the ones used to generate pseudoexperiments. No statistical tech-
nique can protect against incorrectly estimated backgrounds with underestimated systematic
uncertainties, but at least the tools to minimize the impact and to study the residual effects
are provided here.

A channel corresponds to one data histogram, and typically corresponds to a single analysis
team’s result. An example is to use the dijet mass distribution in a Higgs boson search, or a
neural-net output distribution. Subsidiary experiments should be included as separate channels,
although mass sidebands that are included in the same histogram and fit together are included
in the same channel as the signal. A channel model, of class csm channel model, consists of
template histograms for the components to sum up to predict the event counts in each bin, as
well as uncertainties in rates and shapes. A csm model is a collection of csm channel model’s,
along with optional constraint relationships between nuisance parameters. Most correlations
in systematic uncertainties are handled simply by using the same nuisance parameter name
to refer to effects on two different distributions. For example, if the jet energy scale affects
the signal acceptance and the background rate and their shapes, then the nuisance parameter
named after the jet energy scale should be re-used to parameterize all of those uncertainties, so
that they move together in the pseudoexperiments and in the fits. Nuisance parameters with the
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same name are taken to be 100% correlated and nuisance parameters with different names are
taken to be 0% correlated (unless an equation of constraint is supplied). Arbitrarily-correlated
systematic errors can always be decomposed into 100% and 0% correlated pieces.

The data histograms are supplied, identified by their channel names. The members of class
csm model refer all template histograms to the channel to which they correspond.

4.1 Member Methods of csm model

---------------------------------------------------------------------

void csm_model::add_template(TH1 *template_hist,
Double_t sf,
Int_t nnp,
char* npname[],
Double_t *nps_low,
Double_t *nps_high,
TH1 *lowshape[],
Double_t *lowsigma,
TH1 *highshape[],
Double_t *highsigma,
Int_t pflag,
Int_t signalflag,
char *channame)

Adds a component of the total prediction to be compared with the data,
and parameterizations of the errors on this model component.
Typically each component corresponds to a separate physics process,
such as ‘‘background from diboson events’’ which is to be added to
the predictions of other processes to get the total prediction.
All of the template histograms, shape histograms, and errors are copied into
dynamically allocated storage within the csm_model class,
and thus the originals do not need to persist after the add_template
method is called.

template_hist may be a Poisson or non-Poisson histogram. If this
histogram comes from a Poisson subsidiary process (like MC
or a subsidiary measurement), be sure that its normalization
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corresponds to the entries made in it. (That is, let sf
do all of the scaling).

sf scale factor to multiply template by to compare w/ data
(e.g., (data_lum/MC_lum) for a MC Poisson histogram

nnp number of nuisance parameters -- each is constrained to
zero by a Gaussian of unit width. Each nuisance parameter
corresponds to one entry in the nps_low, nps_high,
lowshape, highshape, lowsigma, highsigma arrays below.

npname nuisance parameter names. Correlations between systematic
errors across templates are handled by labeling the
separate nuisance nuisance parameters by name.

nps_low These are the f’s, fractional uncertainties on the
nps_high normalization (sf) due to each nuisance parameter.

Fractional uncertainties may be asymmetric -- when a
nuisance parameter is negative, it may have a different
effect on sf than when it is positive. Typically
nps_low and nps_high will have opposite signs, as
opposite variations of a nuisance parameter will have
opposite effects on sf -- these signs need to be
input as opposite in this case. But sometimes you get
the same sign of variation, in which case nps_low and
nps_high may have the same sign. The relative sign
is important across templates too. If one template’s
normalization goes up while another goes down when
a nuisance parameter is fluctuated (anticorrelation),
this is reflected in the relative signs of these f’s.

lowshape Histogram corresponding to a variation of a nuisance
parameter in the negative direction. Used to parameterize
shape uncertainty. The normalization of this histogram
is unimportant. Set this pointer to zero if you do
not have a shape variation for this template for this
nuisance parameter. If the template histogram is
Poisson, then lowshape and highshape should have the
same number of entries as the template histogram in order
to make the interpolated histogram follow Poisson
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statistics too.

lowsigma How many sigma of variation the lowshape corresponds to.
(example: you may make a histogram of a variable that
corresponds to changing the jet energy scale by two sigma.
set this number to 2. The sign of this 2 doesn’t matter).
Note: histogram extrapolation is not allowed -- the nuisance
parameter this shape uncertainty corresponds to is constrained
to lie between -|lowsigma| and +|highsigma|.

highshape Same as lowshape, but for positive variations of the
corresponding nuisance parameter. Set it to zero if you
don’t have this uncertainty evaluated.

highsigma See the description of lowsigma.

pflag Set to 1 if the template histogram is Poisson distributed
and set to 0 otherwise.

signalflag Set to 1 if this template histogram is to be scaled when
computing rate limits and zero if not. Typically identifies
signal histograms from background histograms when appropriate.

channame Name of the channel to which this template corresponds.

----------------------------------------------------------------------------

void csm_model::add_chanmodel(csm_channel_model *chanmodel,char *channame)

You can use the class csm_chanmodel to build a model for each channel
separately, and add them all in to the multichannel model using this if you
like.

----------------------------------------------------------------------------

void csm_model::add_npcons(Int_t nparinput, char **inputparnames,
char *outputparname,
Double_t (*f)(Double_t*))

For nuisance parameters which are functions of other nuisance parameters.
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Call this once per constraint function (you may supply more than one
constraint function, but circular references are not allowed).

nparinput Number of nuisance parameters the one to be
computed depends on.

inputparnames The names of the input nuisance parameters as an
array of pointers to strings

outputparname The name of the constrained nuisance parameter

f A pointer to a function which takes as its argument an array
of nuisance parameter values which correspond in number,
order, and name to inputparnames, and computes the resulting
nuisance parameter named by outputparname. When generating
pseudoexperiments and when fitting, f is called on each
iteration to compute outputparname as a function of the
other nuisance parameters.

----------------------------------------------------------------------------

void csm_model::plotwithdata(char *channame, TH1 *datahist)

Makes a stacked histogram of the model predictions compared against the
supplied data histogram.

----------------------------------------------------------------------------

void csm_model::print()

Prints some debugging information to stdout.

----------------------------------------------------------------------------

csm_model* csm_model::Clone()

Makes an exact copy of the model. Useful if you’re using the background model
for some search as a subset of the model for signal+background.

----------------------------------------------------------------------------
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csm_model* csm_model::add(csm_model &modeltoadd)

Includes all the channels, template histograms, and constriants of
modeltoadd to the model of which this method is a member and returns
a new model which is the union of all of these things. Leaves the two
original models unchanged.

----------------------------------------------------------------------------

csm_model* csm_model::scale(Double_t scalefactor)

Scales all of the template histograms (really just their {\tt sf}’s)
and returns a pointer to the new scaled model. Leaves the orignal
model alone.

----------------------------------------------------------------------------

csm_model* csm_model::scalesignal(Double_t scalefactor)

Scales only those template histograms which are identified as
‘‘signal’’ histograms and returns a pointer to the new
scaled model. Leaves the orignal model alone. This is ideal for
computing cross-section times branching ratio limits for new signals
which add incoherently to backgrounds (used in the
mclimit_csm::s95 routines below), but may be inappropriate when
the presence of a signal reduces the expected event count.

----------------------------------------------------------------------------

csm_model* csm_model::scale_err(Double_t scalefactor)

Works like csm_model::scale, but reduces all systematic error
components proportional to 1/sqrt(scalefactor), to allow projections
of how much luminosity is needed for a particular level of sensitivity,
assuming systematic uncertainties scale inversely with collected data.

17



4.2 Member Methods of mclimit csm

----------------------------------------------------------------------------
Specifying Inputs to the limit calculator:

void set_null_hypothesis(csm_model *null_hypothesis)
void set_test_hypothesis(csm_model *test_hypothesis)
void set_null_hypothesis_pe(csm_model *null_hypothesis_pe)
void set_test_hypothesis_pe(csm_model *test_hypothesis_pe)

The null hypothesis model is fit to the data and pseudodata using the
chisquared minimization fit, as is the test hypothesis model, which is
used to form the delta-chisquared test statistic. Separate models are
used to generate pseudoexperiments. These may be the same as those used
in the fits, but may also be different in order to study the effects
of biases.

void set_datahist(TH1 *datahist, char *channame) The histograms
for the observed events in the experiment.

void set_npe(Int_t npe) Sets the number of pseudoexperiments to do.
The default is set in the constructor to 10000

Int_t get_npe() returns the value set in set_npe

-------------------------------------------------------------------------
Running pseudoexpeirments for a single model comparison:

void run_pseudoexperiments() Runs pseudoexperiments for both hypotheses

-------------------------------------------------------------------------
Accessing CLs and associated quantities

Double_t cls() Returns the value of CLs defined in the text
Double_t clsb() Returns CL(H1), the numerator of CLs
Double_t clb() Returns P(Delta chisquared >= Delta chisquared(obs)|H0),

the denominator of CLs.
Double_t omclb() "1-clb" computed as a p-value, including the probability
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of the exact outcome observed in the data.

Double_t ts() The delta chisquared test statistic (=-2lnQ) computed
for the data histogram

-------------------------------------------------------------------------
Distributions of test statistic in null hypothesis (H0) pseudoexperiments.
Useful for drawing bands on plots of expected test statistics vs.
a parameter like new particle mass or cross-section times branching ratio.

Double_t tsbm2() 2 sigma low edge
Double_t tsbm1() 1 sigma low edge
Double_t tsbmed() median test statistic in null hyp pseudoexperiments
Double_t tsbp1() 1 sigma upper edge
Double_t tsbp2() 2 sigma upper edge

-------------------------------------------------------------------------
Distributions of test statistic in null hypothesis (H1) pseudoexperiments.
Useful for drawing bands on plots of expected test statistics vs.
a parameter like new particle mass or cross-section times branching ratio.

Double_t tssm2() 2 sigma low edge
Double_t tssm1() 1 sigma low edge
Double_t tssmed() median test statistic in null hyp pseudoexperiments
Double_t tssp1() 1 sigma upper edge
Double_t tssp2() 2 sigma upper edge

-------------------------------------------------------------------------
Distributions of expected CLs values

Double_t clsexpbm2() Expected cls in null hyp -- 2 sigma low edge
Double_t clsexpbm1() Expected cls in null hyp -- 2 sigma low edge
Double_t clsexpbmed() Expected cls in null hyp -- median
Double_t clsexpbp1() Expected cls in null hyp -- 1 sigma upper edge
Double_t clsexpbp2() Expected cls in null hyp -- 2 sigma upper edge

Double_t clsexpsm2() Expected cls in test hyp -- 2 sigma low edge
Double_t clsexpsm1() Expected cls in test hyp -- 2 sigma low edge
Double_t clsexpsmed() Expected cls in test hyp -- median
Double_t clsexpsp1() Expected cls in test hyp -- 1 sigma upper edge
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Double_t clsexpsp2() Expected cls in test hyp -- 2 sigma upper edge

These accessors below use the CLs definition of CLb which includes the
probability of observing exactly the data outcome
(subtracting it from 1 makes 1-CLb computed with these routines omit the
probability of observing exactly the data outcome)
Double_t clbexpsm2() Expected clb in test hyp -- 2 sigma low edge
Double_t clbexpsm1() Expected clb in test hyp -- 2 sigma low edge
Double_t clbexpsmed() Expected clb in test hyp -- median
Double_t clbexpsp1() Expected clb in test hyp -- 1 sigma upper edge
Double_t clbexpsp2() Expected clb in test hyp -- 2 sigma upper edge

These accessors below use the p-value definition of 1-CLb
which includes the probability of observing exactly the data outcome
Double_t omclbexpsm2() Expected clb in test hyp -- 2 sigma low edge
Double_t omclbexpsm1() Expected clb in test hyp -- 2 sigma low edge
Double_t omclbexpsmed() Expected clb in test hyp -- median
Double_t omclbexpsp1() Expected clb in test hyp -- 1 sigma upper edge
Double_t omclbexpsp2() Expected clb in test hyp -- 2 sigma upper edge

These accessors below use the CLs definition of CLb which includes the
probability of observing exactly the data outcome
(subtracting it from 1 makes 1-CLb computed with these routines omit the
probability of observing exactly the data outcome)
Double_t clbexpbm2() Expected clb in null hyp -- 2 sigma low edge
Double_t clbexpbm1() Expected clb in null hyp -- 2 sigma low edge
Double_t clbexpbmed() Expected clb in null hyp -- median
Double_t clbexpbp1() Expected clb in null hyp -- 1 sigma upper edge
Double_t clbexpbp2() Expected clb in null hyp -- 2 sigma upper edge

These accessors below use the p-value definition of 1-CLb which includes the
probability of observing exactly the data outcome
Double_t omclbexpbm2() Expected 1-clb in null hyp -- 2 sigma low edge
Double_t omclbexpbm1() Expected 1-clb in null hyp -- 2 sigma low edge
Double_t omclbexpbmed() Expected 1-clb in null hyp -- median
Double_t omclbexpbp1() Expected 1-clb in null hyp -- 1 sigma upper edge
Double_t omclbexpbp2() Expected 1-clb in null hyp -- 2 sigma upper edge

-------------------------------------------------------------------------
Probabilities of having excesses at various levels of significance
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Double_t p2sigmat() Probability of a 2-sigma evidence
assuming test hyp. is true

Double_t p3sigmat() Probability of a 3-sigma evidence
assuming test hyp. is true

Double_t p5sigmat() Probability of a 5-sigma discovery
assuming test hyp. is true

Double_t p2sigman() Probability of a 2-sigma
evidence assuming null hyp. is true

Double_t p3sigman() Probability of a 3-sigma
evidence assuming null hyp. is true

Double_t p5sigman() Probability of a 5-sigma
discovery assuming null hyp. is true

-------------------------------------------------------------------------
Rate limite calculators -- These run CLs calculations many times inside
of them in order to find the amount of signal which is just barely excluded
at 95%. These work only for signals which add incoherently to the
backgrounds. If new physics processes reduce the predicted event yields,
the user has to do the hunting around himself for a model which is just
barely excluded.

Double_t s95() Scale factor on signal which is excluded
at exactly 95% CL. Note -- this and other
s95 variants rely on the identification of
part of the test hypothesis to be scalable.
See the argument ‘‘signalflag’’ in
csm_model::add_template

Double_t s95m2() variation around the median expected s95
in the null hypothesis, -2 sigma

Double_t s95m1() variation around the median expected s95
in the null hypothesis, -1 sigma

Double_t s95med() median expected s95 in the background hypothesis
Double_t s95p1() variation around the median expected s95

in the null hypothesis, +1 sigma
Double_t s95p2() variation around the median expected s95

in the null hypothesis, +2 sigma

Double_t lumi95() Calculates the lumi needed for a median experiment
to exclude at 95% CL.
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What’s returned is a multiplicative factor on
whatever luminosity was used
to construct the test and null hypotheses.

Double_t lumi3s() calculates the lumi needed for a median experiment
to exclude the null hypothesis at 3 sigma assumming the
test hypothesis

Double_t lumi5s() calculates the lumi needed for a median
experiment to exclude the null hypothesis at 5 sigma

(the criterion for discovery)
assuming the test hypothesis.

-------------------------------------------------------------------------
Looking at the PDF’s of -2lnQ

void tshists(TH1*,TH1*) Fills histograms with test statisic values
in the pseudoexperiments
(you define the binning). First histo:
test hypothesis, second histo:
null hypothesis

4.3 Chisquared Calculator Routines

void csm::set_htofit(TH1 *h, char *channame)

This method identifies a histogram of Poisson-distributed
data. The histogram is cloned when the method is called,
and the clone is deleted when the csm destructor is called
or when set_htofit is called again.
The overflow and underflow bins are ignored in the chisquare
calculation. Define a data histogram for each channel.

Double_t csm::chisquared()

The chisquared calculation described here.

Int_t csm::ndof()

Very naive calculation of the number of degrees of freedom
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csm_model* csm::getbestmodel()

Returns a pointer to a model with varied nuisance parameters which
is the best comparison with the data (minimizes chisquared).
Be sure to call the chisquared method to do the minimization
calculation before accessing the best model. This method returns
a pointer to a piece of static memory so don’t delete it. This method
is best used with the plotwithdata method of csm_model to make a stacked
histogram of the best fit model with the data for diagnostic purposes.

Calls to add_template may refer to nuisance parameters multiple times
and so an internal list is made in csm of all the parameters,
identified by name. These methods access that list.

Int_t csm::getnparams()

Returns the number of independent nuisance parameters given in the
add_template calls.

Double_t csm::getparam(Int_t iparam)

Access to value of a nuisance parameters after the minimization. Be sure
to call the chisquare method before calling this method.

Double_t csm::getperror(Int_t iparam)

MINUIT’s uncertainty. Don’t believe it. Because of discrete behavior of
interpolated Poisson histograms, a nuisance parameter can vary by a tiny
amount and an event can flip from one bin in a model histogram to another,
changing the chisquared by a discrete amount. The chisquared function
therefore has discontinuities in it and MINUIT may get a strange derivative
if it chooses too small a finite difference.

char* csm::getpname(Int_t iparam)

The corresponding parameter’s name.

csm::~csm()
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Be sure to delete your instance of csm before setting up another chisquared
calculation. There is not facility to edit an existing list of template
histograms -- in order to change a chisquared calculation, the csm instance
should be deleted and the setup repeated. One exception to this -- you can
call set_htofit again to find the chisquared of a new data histogram without
rebuilding the list of model templates. This is designed for convenience
when running pseudoexperiments.

4.4 Histogram Interpolation and Extrapolation

void csm_interpolate_histogram(TH1 *h1, Double_t x1,
TH1 *h2, Double_t x2,
TH1 *h3, Double_t x3)

Interpolates/extrapolates 1D and 2D histograms. h1 and h2 are the
input histograms to interpolate, and x1 and x2 are parameters corresponding
to h1 and h2. x3 is the input parameter corresponding to the desired
interpolated (extrapolated) histogram h3 (output). The chisquared minimizer
is designed not to extrapolate a histogram in its minimization procedure --
the nuisance paramters are bounded so that x3 stays between x1 and x2.
Users of these routines are encouraged to supply several-sigma-varied
histograms in the model templates and if these are not available from
fluctuated Monte Carlos, then this routine can be used by hand to extrapolate
the histograms. A warning message is printed in this case to the effect
that histogram extrapolation is attempted, and the resulting histogram
should be inspected and validated. Overflow and underflow
bins are not included in the interpolation, and are, in general ignored
by this suite of routines.
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