

Scale out databases for CERN use cases

Zbigniew Baranowski, Maciej Grzybek, Luca Canali, Daniel Lanza Garcia,
Kacper Surdy
European Organization for Nuclear Research (CERN), CH-1211, Geneve 23,
Switzerland

Abstract. Data generation rates are expected to grow very fast for some database
workloads going into LHC run 2 and beyond. In particular this is expected for data
coming from controls, logging and monitoring systems. Storing, administering
and accessing big data sets in a relational database system can quickly become a
very hard technical challenge, as the size of the active data set and the number of
concurrent users increase. Scale-out database technologies are a rapidly
developing set of solutions for deploying and managing very large data
warehouses on commodity hardware and with open source software. In this paper
we will describe the architecture and tests on database systems based on Hadoop
and the Cloudera Impala engine. We will discuss the results of our tests, including
tests of data loading and integration with existing data sources and in particular
with relational databases. We will report on query performance tests done with
various data sets of interest at CERN, notably data from the accelerator log
database.

1. Introduction
CERN and high energy physics in general, have developed over the years many techniques to store
and manage large amounts of data. Experiments at the Large Hadron Collider [1], for example, have
generated around 30 Petabytes of data annually during run 1.
At the same time Terabytes of data are produced and stored daily by various monitoring, measurement
and control systems that supports the operations of LHC itself and of the many online systems for the
LHC experiments.
 Unlike physics data, which are stored on tape and on disk-based file systems, controls data coming
from LHC subsystems are inserted into relational databases. Thanks to the structured data model and
usage of indexes this model has the advantage of allowing quick access to particular data of interest.
Also building visualization and management application on top of data stored in a Relational Database
Management System (RDBMS) is relatively easy to implement, deploy and maintain. At the same
time storing data on a dedicated database installations means that those systems are critical for LHC
and have to be highly available, reliable and provide the needed performance level. A potential
problem when deploying very large databases on many of the available RDBMS engines, for the use
cases of running analytic workloads is with the performance of sequential I/O. In those cases
sequential access to the database has an intrinsic bottleneck at the level of the storage connection. To
work around such bottleneck the deployment of specialized hardware may be necessary to scale up the
database hardware infrastructure and reach the required performance levels.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

1.1. Very large relational database system at CERN
The largest production database currently deployed on a RDBMS engine at CERN is the LHC logging
service [2], which is a consolidated system for data coming from over 30 subsystems that are part of
the LHC infrastructure (like Cryogenics, Vacuum, Quench Protection System). This database has
grown to a size of over 250TB from 2008 till 2015. The data rate is expected to increase during the
coming years, as new data sources have been added during the recent LHC maintenance period. As a
result, the current insertion rate into the database is 50 thousands data points per second, which makes
it growing by more than 100GB every day. Some estimation says that after restart of LHC in 2015 the
LHC logging service will be adding 90TB annually.
 The SCADA systems [3] that control and monitor all the most important hardware elements of LHC
and experiments are also important sources of data for relational databases deployed at CERN.
Historical values of all data points are stored in the databases at a relatively high rate. For example the
Quench Protection System [4] can generate 150 thousand insertions every second. This results in data
growth of about 2TB per day. Data are kept for 40 days and are subsequently dropped after being
processed, filtered out and logged in the LHC logging system. Analysing data in real time has the
additional challenge that queries should be performed with a very low footprint in order not to
interfere with the performance of the critical write workload to the database.
 The time series data being produced by controls and monitoring systems and stored in Oracle
databases at CERN will typically make use of special structures called Index-Organized Tables (IOT)
[5]. This amounts to storing the table key and data in a B+tree index structure and has the advantage of
reducing the amount of I/O requests on the storage when retrieving data by a key, therefore increasing
the performance and scalability of the system. In order to keep the IOT segments to a manageable size
another technique is used: partitioning [6]. Very often data that has been produced within a single day
are stored in a dedicated partition. Typically the index key for the time series data in these databases is
compounded of two columns: an identifier (variable id) and a timestamp. This means that the data
blocks in an index are optimally stored for the retrieval certain variable values from a specified time
range. This is because values of the same ‘variable id’ will be stored by the database engine in close
physical proximity and also ordered by time.

1.2. Ad-hoc data analysis
Single-variable look-ups are very fast when using IOTs, as described above. However this approach
does not provide any performance advantage when performing ad-hoc analytical, statistical or report
queries that normally have to process multiple or even all variables in a data set. Mainly because such
data access requires sequential scanning of the full data set instead of traversing through an index for
each variable in the data set. Sequential scanning of a full partition delivers better performance when
reading large amounts of data as in such case the storage receives aggregated asynchronous multi-
block IO requests that can be handled in an optimal way by a database and in the end deliver very high
data reading throughput.

1.3. Sequential data access on CERN infrastructure
Sequential data scan operations deliver high throughput for data processing and are normally bound by
limits of a database server or storage hardware configuration or whatever medium is between both of
them for data transport. At CERN most of the database installations are clustered using Oracle Real
Application Clusters [7] technology. The use of clusters (typically of two or three nodes) has an
important advantage for availability of the database by allowing many maintenance operations to be
performed in a seemingly transparent way. However this approach implies significant limitations on
the data access throughput due to the requirement of using shared storage among the cluster nodes. In
particular the speed of the connection between the database server nodes and the storage can be a
bottleneck in this architecture, especially when the requirements for throughput increase. In the
computing infrastructure currently deployed for database services, connectivity to storage is deployed
on 10 Gigabit Ethernet, which limits the throughput that a single node can support to about 1GB per

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

2

second. Moreover the storage units themselves have internal limits on the throughput (of the order of a
few GB per second, depending on the model). This obviously has its consequences on the speed at
which big data stored in a database can be processed. One Gigabyte per second in contrast to hundreds
of Gigabytes stored every day is not a speed that can deliver performance in many of the related data
analytic use cases. Of course this situation can be improved by scaling up all the components
including the network. However there are always technological upper boundaries for each single
element of the shared architectures that will not let to go beyond certain throughput values.
 In this paper we will discuss potential solution for achieving highly scalable performance (beyond
1GB/s) for SQL (and not only) queries by integrating relational databases with platform using the
shared nothing architecture, notably Hadoop.

2. Hadoop-based solution for scale out
Hadoop [8] is currently the most representative platform in a new wave of scalable systems for dealing
with ‘Big Data’ problems. Thanks to simplified data models and specialized architectures these
systems are able to process data at very high speed and at the same time to offer a variety of interfaces
to the data.

2.1. Hadoop as an open platform
One of the peculiarities of Hadoop is that it is not a single product, but rather a framework or an
ecosystem that consist of many components that can work together or may co-exists independently.
The core component of the Hadoop ecosystem is the Hadoop Distributed File System (HDFS). HDFS
provides a file store layer for all other components. Such open architecture centralizes around a file
system and makes Hadoop unique compared to other platforms in the ‘Big Data arena’. There is a
large and thriving developer community that contributes to the Hadoop project by adding components
that extend the system with new features and functionalities or just improve the already existing ones.

Currently Hadoop offers multiple ways for storing and processing data located on HDFS. The most
popular data analytic approach available on Hadoop is MapReduce [9]. Apache Spark [10] is a
modern, improved and more efficient successor of the MapReduce. Imperative interfaces are available
both for Spark and MapReduce. Typical languages used in this area include Java, Scala and Python.
The SQL-language interface for declarative data processing is also available and implemented in a few
specialized engines. Apache Hive [11] was one of the first implementation of an engine for running
SQL on Hadoop by translating queries into MapReduce jobs. A newer and more efficient generation
of SQL engines for massive parallel processing (MPP) include Cloudera Impala [12], Apache Spark
SQL [13] and the extended Hive functionality obtained by running Hive on Tez framework [14]. The
mentioned mainstream data processing engines can work with multiple data file formats that are
available on HDFS, this lets users choose the most suitable approach for their data and application
design. It is not uncommon to store data in a semi-structured text format like CSV. However more
sophisticated and demanding systems are very likely to use binary data formats like SequenceFiles
[15], RCFiles [16] (or the improved version, OCR [17]), Avro [18] or Parquet [19]. Finally data files
on HDFS can be compressed in order to reduce their data volume.
 A great variety of available techniques and tools for data processing and storage make Hadoop a
strong solution for consolidating and handling data coming from many sources and for running
analytic workloads.

2.2. Shared nothing for scale out
The Hadoop architecture was designed to deliver scalable performance: the more machines in a
Hadoop cluster, the better the overall performance of data processing. Shared nothing architecture is a
key for achieving scalability and ultimately the needed levels of performance: data are partitioned into
equal shards and distributed evenly across all nodes of a Hadoop cluster. Whenever data stored on
HDFS is to be processed, all the processing logic is distributed and applied locally on all the data
shards. In a subsequent step the products of such processing are consolidated and/or aggregated to

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

3

output the final result. This approach of running the initial data processing locally on server nodes can
reduce considerably the amount of data that has to be shipped between cluster machines. This is a
clear advantage for scalability in comparison with the shared storage architecture.
 As an example of the potential of this architecture we would like to mention the tests done at CERN
in 2013 [20] which showed near-linear scalability of a Hadoop cluster of 50 commodity servers. Each
node of the cluster had 3 local disks attached and the setup scaled up to the overall throughput for
sequential I/O to almost 9 GB/s. Overall, Hadoop is a very good candidate for building solutions for
data warehousing and analytic workloads given its flexible architecture capable of handling diverse
workloads in combination with the scale-out capability that provides the required performance level.

3. Using of Hadoop for accelerating data analytics at CERN
Given the variety of available solutions a series of tests and investigations have been performed to find
a right set of technologies suitable for processing large time series datasets of interest for CERN use
cases. The format in which the data is stored in the file system, i.e. in HDFS in Hadoop, impacts the
performance of the analytic framework. Similarly, the choice of compression algorithm affects both
storage size and performance by reducing the amount of data that have to be read and transferred. This
comes as a trade-off with an additional load on the CPU for compression and decompression
operations.

3.1. Data formats
Several data formats representing different design approaches are available in the Hadoop ecosystem.
The most basic data format is the CSV file, where each row is stored as one line with fields separated
by a delimiter, usually a comma. The simplicity of this format makes it very easy to read/write from/to
it and to use it as a format to exchange data between applications. SequenceFile is another file format,
which contains binary-encoded sequence of key-value pairs. Avro is a data serialization system. When
referring to Avro we mean serialization format for persistent data. The format stores binary data in
files together with a schema defined in JSON. Parquet stores data in column-oriented arrangement.
Files are composed of row groups. Within a row group all values of a given column are stored
sequentially. Column and file metadata is located after the data to allow single-pass writing.

3.2. Compression
On all the formats mentioned in the previous paragraph compression algorithms can be applied. The
obvious reason for using compression is to lower space usage. In the case of massive processing of
data compression can be a mean to accelerate computing as well. When the data is compressed reading
time can be lowered at the expanse of increased demand for CPU cycles or memory. With the respect
to that comprehensive performance tests have been done – taking into consideration not only
compression rates but also decompression speed. The tests have been done using bzip2 [21], snappy
[22] and with no compression. bzip2 has proven to provide good compression ratios. Snappy was
designed to strike a compromise between having good compression ratios and fast compression and
decompression operations.

3.3. Data partitioning
Data partitioning can be used to improve the performance of storage-related operations. Horizontal
partitioning allows to optimize data access by allowing pruning operations based on the partitioning
condition. List-based partitioning, for example, is implemented by clustering data according to a list of
discrete values. In the Hadoop platform, for example, partitioning is typically adopted by placing files
into separate folders depending on the value of one or more partitioning fields. Respectively, vertical
(column based) partitioning allows to read only values from selected columns. This can be achieved
by using columnar-oriented storage formats like Parquet. Architecting data layouts where both
partitioning techniques are used in combination can deliver the best results thanks to improved
selectivity of the data.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

4

3.4. Query engines
For data stored in Hadoop a selection of tools mentioned in section 2.1 can be used. In our evaluation
Hive, Impala, and Spark-SQL have been tried.

3.5. Test results and data format comparisons
In this paragraph we report on a series of tests on data formats. Data used for the tests was stored as
tuples composed of: source identifier, timestamp, and value. As numerical data is the most commonly
used type of data for control systems, we limit our tests to numeric value fields. This is also a choice
that allowed to simplify the implementation of the tests.
 Table 1 contains a comparison of file sizes for 8 days of numerical data imported from the LHC
logging database. The original data volume stored in compressed IOT structures on RDBMS system
was 650GB. Avro and Parquet showed to be 2.2 to 2.8 times more space efficient than CSV and
SequenceFile for storing uncompressed data. As expected storing data in plain text in CSV format is
very inefficient. The cause of large space consumption of SequenceFile is different. In uncompressed
SequenceFile the key is repeated for each stored record. The size difference became less substantial
after enabling compression. Avro format created the smallest snappy compressed files. CSV appeared
to be the most favourable for bzip2 compression.

 no compression snappy bzip2
CSV 1240 GB 331 GB 109 GB
SequenceFile 1545 GB 265 GB 117 GB
Avro 542 GB 226 GB 171 GB
Parquet 558 GB 288 GB -

Table 1. File sizes of 8 days of LHC log numerical data as a function of the data format and compression algorithm
used

 Table 2 contains the measurements of the run time for querying the data set described above and in
Table 1 (i.e. 8 days of numerical data imported from the LHC logging database). The test query
performs a full scan of the data set and applies some additional data filtering. At the end the final
result set is ordered by time.
 The comparison of the execution times on the data sets compressed by snappy with the
uncompressed data, illustrates that the beneficial effects of compression. The resulting reduction of the
data set size and consequently the reduction of the I/O operations in most cases justify the additional
computing complexity introduced by compression. For all the tested formats the execution time was
lower on the snappy compressed files then on the uncompressed ones, with the biggest benefit
observed on Parquet. A different case can be seen when comparing snappy and bzip2 compressed
Avro files. Even though the bzip2 compressed file is smaller, the additional algorithm complexity
slows the query execution time to the point that compression is no more beneficial for performance.

 no compression snappy bzip2
CSV 757 s 687 s -
SequenceFile 682 s 572 s 1800 s
Avro 216 s 113 s 118 s
Parquet 328 s 117 s -

Table 2. Measured query execution times for 8 days of LHC log numerical data as a function of the data format and
compression algorithm used

 Table 3 shows throughput measurements obtained by running the same test query while varying the
SQL engine and cluster size. The data format used is Parquet.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

5

 4 nodes 8 nodes 12 nodes 16 nodes
Impala 0.68 GB/s 1.33 GB/s 1.74 GB/s 2.30 GB/s
Hive 0.34 GB/s 0.55 GB/s 0.73 GB/s 1.22 GB/s
Spark SQL 1.00 GB/s 1.64 GB/s 2.23 GB/s 2.83 GB/s

Table 3. Measured average throughput when reading 8 days of LHC log numerical data as a function of the storage
engine type and the cluster size.

 The results show that all tested technologies are able to scale out, as the average throughput was
increasing with the increasing number of nodes in the cluster. Spark SQL delivered the best overall
performance just above Cloudera Impala in our tests and significantly above the performance of
Apache Hive. It is important to notice that in all our tests the workload was CPU-bound. We explain
the better results obtained by Spark SQL as consequence of Spark SQL being the less CPU-hungry
solution for the tested query. Additional tests with servers with more CPU power (namely more cores)
are not available at the time of this writing. Notably the results of these tests are promising as they
already show higher throughput for sequential I/O than the current generation of shared storage-based
RDBMS deployed in production.

3.6. Bucketing for an efficient data access
Even though the Hadoop platform offers high scalable throughput for data access and processing there
is a family of queries that will execute relatively slowly compared to RDBMS systems. This applies to
the cases when only one or few variables are being accessed. Having data indexed gives a great
advantage in such a situations and lets RDBMS systems to access data efficiently by limiting IO
requests to the storage. Since SQL on Hadoop solutions like Hive, Impala or Spark SQL do not have
indexing features they always have to read whole data partitions. This approach requires a lot of
unnecessary I/O requests as later most of the data read will be filter out leaving only a small subset of
interest. For example queries on data having 100GB partitions will take long even though the intention
is to retrieve few megabytes out of it. The accelerator log service for example has daily partitions of
40 GB when stored in Parquet or Avro formats and reading it by Impala or SQL spark takes around 10
seconds.
 Introducing fine-grained partitioning by ‘variable id’ in addition to year, month and day would
reduce significantly the size of a single partition and would guarantee efficient data access. However
depending on number of variable ids in the data set this solution would produce hundreds of millions
of very small files yearly, as each partition is stored in a separate directory and file. Having such large
number of objects in a file system would impact negatively the performance. In particular the HDFS
Namenode server would require a great amount of server memory for storing the file system map.
Such a situation is strongly discouraged by the Hadoop developer communities.
 In order to overcome this problem the ‘bucketing solution’ for data organization has been
investigated and developed as part of this research. The idea behind the bucketing solution is to group
data for multiple variable ids into a single partition, based on the value of a grouping/hashing function.
The advantage is to obtain good performance with the finer-grain partitioning, while keeping a low
footprint on the HDFS Namenode. The grouping in our implementation of the bucketing solution is
obtained with a modulo function: mod(variable_id, x). The partitions obtained this way are in practice
sub-partitions of the time-based daily partitons. This method gives a full control over the number of
partitioned created every day by adjusting argument ‘x’ in the mod function.
 When grouping daily data into 10 buckets (by using mod(variable_id,10)) for the LHC logging
service, a significant performance improvement is observed for single-variable data selection: only
4GB instead of 40GB needs to be read from daily partitions, which results in reduction of query
execution time by a factor 10 (1s instead of 10s in our example).

3.7. Benefits from a columnar store

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

6

Parquet data file format is a structured binary standard for efficient storing of big data sets. Notably
Parquet provides columnar organization of data, similarly to RCFiles and ORC formats [16][17]. This
means that data for each column is stored contiguously. Thanks to that, data processing can be more
efficient when column pruning can be used to minimize the amount of data to be read from storage.
 Tests with physics data loaded on Hadoop Error! Reference source not found. have proven the
efficiency of using columnar store for multi-column data sets. The tests discussed in [23] used a table
join resulting in a data set of 1400 columns, but where only 50 columns were of interest in the query.
When the source tables were stored in the Avro format the execution of the joining query had to read
the full data set, 110 GB. For the same test using the Parquet format, the query read only 4 GB out of
92 GB. This had direct impact on the query execution time; in case of using the Parquet format the
measured query execution was 16 seconds, for the case of Avro (row-based storage) the measured
execution time was about three times longer: 52 seconds.

4. Integration of scale out databases with current infrastructure
Most of the data of interest for this paper are currently stored in relational databases and have to be
loaded into am Hadoop system before they can be accessed and processed. Therefore data integration
solutions for Hadoop and RDBMS are very important and have been addressed in our tests. There are
already several popular solutions for data loading into HDFS from heterogeneous sources, including
RDBMS.

4.1. Apache Sqoop
Apache Sqoop [24] is a project for bulk data loading between relational database systems and HDFS.
It is implemented as a MapReduce job and does not only allow storing data into in files on HDFS but
also supports direct data insertions into tables defined by Hive, HBase or Accumulo. Source data input
can be specified in many ways including listing table names or by providing the output of a SQL
query. In order to implement continuous data synchronization between a database and Hadoop, Sqoop
jobs have to run periodically as there is no feature of synchronous data replication.
 One of the main parameters for Sqoop performance is the degree of parallelism. In our tests we have
found that this can significantly impact of the overall extraction throughput. Each Sqoop map task
opens a dedicated connection with a database and queries an even portion of the data. This operation is
CPU bound on the client side. Sqoop mappers processing is mainly on CPU when data from a source
databases are being shipped and stored at the final location on HDFS. In order to speed up the data
retrieval Sqoop can be configured to start multiple mapper tasks at the same time. Increasing the
number of mappers improves the overall throughput proportionally. It is important also to avoid
overloading the source RDBMS systems by running too many concurrent sessions. A compromise
between Sqoop loading performance and corresponding load applied on the source database has to be
established by starting with a low load and increasing the number of concurrent Sqoop mappers while
monitoring the database load. For example with the LHC logging data extraction when using 31
mappers the consolidated throughput was 1.3 Mrows/s (40MB/s) when using just a single mapper was
174 Krows/s (5MB/s).

4.2. Apache Flume
Unlike Sqoop, Apache Flume [25] uses streaming data flows for collecting, aggregating, and moving
large amounts of data to HDFS. Flume includes some out-of-the-box sources such as Avro, Thrift or
logs, channels as in-memory or file and sinks (destinations) such as file, logger and IRC. It is worth
emphasising data loading with Flume is a continuous process. So once it is configured and started it
will intercept all changes done to source files and will stream them to HDFS without need of
scheduling the transfer as a job, as in the case of Sqoop for example. Flume works as a background
process.
 Flume can be used as a data integration solution for all systems that are not loading data directly to
a RDBMS but that are initially producing files in a text format: logs, CSV, etc.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

7

4.3. GoldenGate for real time data replication to HDFS
Sqoop is a good solution for a first stage of the data integration process where initial load of the whole
data set is performed. Then depending on the system requirements periodical incremental loading can
be used in order to keep the Hadoop copy up to date. Alternatively a continuous data synchronization
mechanism can be used instead. This approach is challenging because the information about data
changes stored in transaction logs are not easy to retrieve from a RDBMS in a real time. However
there are tools like Oracle GoldenGate [26] that are able to perform log mining and data change
propagation in near real-time. Given the fact that HDFS is just a file system where data can be stored
using different file formats and data organization, there is no a dedicated replicator solution for
applying data changes and it has to be implemented by a user on his own.
 Unlike Sqoop, this solution apply each transaction in almost real-time to text files and that files are
read as well in almost real-time and copied to HDFS. The fact that it works in real-time comes with a
problem with the creation of Parquet files, since this kind of files must be created from a large set of
rows to get advantage of the features of Parquet files. In addition, Oracle GoldenGate cannot be
adapted or modified to create other kind of files different that text files, so that files must be
transformed. The transformations (casting and partitioning) can be applied by Hive or Impala engines
when the data is being imported from the staging table to the final table. This approach has been tested
at CERN and worked with data flows at the speed of 25 thousands row changes per second.

5. Conclusions
The Hadoop platform and its ecosystem of components are a proven solution for data warehousing and
in particular they provide scalable systems with high throughput that is needed for storing and
processing large amounts of data coming from controls systems at CERN.
 Cloudera Impala is a storage engine on top of HDFS that has demonstrated very good scalability in
our tests. Spark is another engine that can be used on top of Hadoop and that has shown very good
scalability for our use cases. Moreover Impala and Spark SQL allow to query data using the SQL
interface, which is a natural fit for many of the data warehouse use cases
 From our tests we find that the choice of the storage engine is very important for the overall
performance of the system. In particular Parquet and Avro data formats can be recommended for their
data compression capabilities. Partitioning is also a key for query performance. For example time-
based partitioning can provide substantial query speedup for time series data. Vertical partitioning,
implemented for example by Parquet’s columnar storage, can also provide very important
improvements in performance. Finally data movement is an important topic for all data warehouse
projects. Sqoop has proven to be a very good tool for moving data for bulk ingestion from database
sources. Oracle GoldenGate can be used for near real-time ingestion. Flume is also a common solution
for data streaming.

6. Future work
The project will move in Q3 2015 to the deployment into a larger cluster with more modern hardware.
This will allow to load the full data set for the accelerator log and for controls data. Further
development will be done towards a production service, in particular to ensure that the needed quality
of service, performance and availability can be provided. Another important area of work will be to
keep up with the constant and fast pace of evolution of the technology while maintaining the required
service levels. Additional work on tuning the performance of near real-time replication solutions is
also foreseen. The authors believe the technology and solutions showcased by this work open the path
for many further explorations of data warehousing and data analysis on the Hadoop ecosystem that can
be useful for many other areas of data management at CERN and for HEP in general.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

8

Acknowledgements
The authors would like to warmly thank many people that were involved and contributed to the
project, especially the users community:
C. Roderick, P. Sowinski, J. Wozniak from the Beams department of CERN and M. Berges, P.
Golonka, A. Voitier from the Engineering department of CERN;
D. Duellmanm and R. Toebbicke from the CERN IT Storage group (IT-DSS);
all colleagues from the CERN IT Database group (IT-DB) including: E. Grancher, M. Limper , G.
Tenaglia, M. Marquez and A. Marin

References
[1] The Large Hadron Collider: http://home.web.cern.ch/topics/large-hadron-collider
[2] Roderic C, Billen R, Gaspar Aparicio R C, Grancher E, Khodabandeh A, Seguera Chinchilla N,

2009, The LHC Logging Service : Handling terabytes of on-line data (CERN-ATS-2009-
099)

[3] PVSS: http://www.pvss.com/Fachartikel/PI_Control_Engineering_Jan2010.pdf
[4] R. Denz, K. Dahlerup-Petersen, F. Formenti, K. H. Meß, A. Siemko, J. Steckert, L. Walckiers,

J. Strait, 2009, Upgrade of the protection system for superconducting circuits in the LHC
(CERN-A TS-2009-008)

[5] Index-Organized tables in Oracle RDBMS:
http://docs.oracle.com/cd/E25054_01/server.1111/e25789/indexiot.htm

[6] Partitioning concept in Oracle RDBMS:
http://docs.oracle.com/cd/E11882_01/server.112/e25523/partition.htm

[7] Oracle Real Application Clusters (RAC):
http://docs.oracle.com/cd/B28359_01/rac.111/b28254/admcon.htm#i1058057

[8] Hadoop: http://hadoop.apache.org
[9] J. Dean and S. Ghemawat, 2004, MapReduce: Simplified Data Processing on Large Clusters

(OSDI'04: Sixth Symposium on Operating System Design and Implementation)
[10] Apache Spark: https://spark.apache.org
[11] Ashish Thusoo et al, 2009, Hive: a warehousing solution over a map-reduce framework

(VLDB Endowment, Volume 2 Issue 2 Pages 1626-1629)
[12] Cloudera Impala: http://impala.io
[13] Apache Spark SQL: https://spark.apache.org/sql/
[14] Apache Tez: http://tez.apache.org
[15] SequenceFile: http://wiki.apache.org/hadoop/SequenceFile
[16] RCFiles: https://hive.apache.org/javadocs/r0.12.0/api/org/apache/hadoop/hive/ql/io/RCFile.html
[17] ORC files:

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-.0.0.2/ds_Hive/orcfile.html
[18] Avro files: http://avro.apache.org/docs/1.3.0/
[19] Parquet files: http://parquet.apache.org
[20] Baranowski Z, Canali L, Grancher E, 2013, Sequential data access with Oracle and Hadoop: a

performance comparison (Journal of Physics: Conference Series, ���513(4):042001)
[21] bzip2: http://www.bzip.org
[22] Snappy: http://code.google.com/p/snappy
[23] Limper M , 2014, An SQL-based approach to Physics anaysis (Journal of Physics: Conference

Series 513 (2014) 022022)
[24] Apache Sqoop: http://sqoop.apache.org
[25] Apache Flume: https://flume.apache.org
[26] Oracle GoldenGate:

http://www.oracle.com/technetwork/middleware/goldengate/overview/index.html

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042002 doi:10.1088/1742-6596/664/4/042002

9

