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Abstract: We introduce some methods for constructing quaternary Hermitian self-orthogonal (HSO)
codes, and construct quaternary [n,5] HSO for 342 < n < 492. Furthermore, we present methods
of constructing Hermitian linear complementary dual (HLCD) codes from known HSO codes, and
obtain many HLCD codes with good parameters. As an application, 31 classes of entanglement-
assisted quantum error correction codes (EAQECCs) with maximal entanglement can be obtained
from these HLCD codes. These new EAQECCs have better parameters than those in the literature.
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1. Introduction

Let Fy = {0,1,w,w?} be the field with four elements, where w? = 1 + w, and F} be
the n-dimensional row space over Fy. For x€ Fy, its conjugate is ¥ = x2. A quaternary
[n, k] code C is a k-dimensional subspace of F}!, vectors in C are called as codewords of C.
If the minimal Hamming weights of non-zero codewords in C is d, then C is denoted as
C = [n,k,d]. A linear code [n,k, d] is optimal if there is no [n,k,d + 1] code; such a code
is denoted as C = [n,k,dop(n,k)]. For u = (uy,uz---uy), v = (v1,v2---vy) € F}, their
Hermitian inner product is (1,v), = Y1 u; - 0; = Y14 U; - vlz. The Hermitian dual code
Ctn is defined as Ct = {u € FJ | (u,v), = 0,Vo € C}. If C C C*#, then C is called as
an HSO code. In particular, if C = C L1, then C is called a Hermitian self-dual code. If
C N CHi= {0}, then C is called an HLCD code.

In the past 30 years, much work has been conducted concerning quaternary optimal
linear codes for both theoretical and practical reasons (see, e.g., [1-5] and the references
given therein). By 1996, the parameters of all optimal linear codes with k < 4 were
determined [2—4]. Since 1996, people have paid much attention to optimal linear codes
with k = 5; to date, there are yet 104 open cases on the parameters of optimal linear codes
(see [3-6]). If dop(n, k) is not determined for a given 1, k, a code C with the largest known
distance dy(n, k) is denoted as C = [n,k, dy(n,k)]. Quaternary HSO codes and HLCD
codes are special kinds of linear codes, these two kinds of codes have connections with
many branches of mathematics and quantum information [7-19]. In recent years, there has
been an increasing interest in optimal HSO and HLCD codes. A HSO (or HLCD) [#, k, d|
code is called optimal if there is no HSO (or HLCD) [n, k, d'] code for d’ > d. Entanglement-
assisted (EA) stabilizer formalism was devised by Brun et al. in [20]. It has been proven
that each [n, k, d] quaternary HLCD code gave a maximal entanglement-assisted quantum
code with a parameter [[n, k, d; n — k||, by [14,19,21]. Under this EA stabilizer formalism,
any quaternary HLCD code can be transformed into a maximal EAQECC if the shared
entanglement is available between sender and receiver. Hence, it is important to study
optimal quaternary HLCD codes for constructing [[n, k,d; n — k||, EAQECCs.
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Recall that, from 1978 to 1998, people paid much attention to special HSO codes—
self-dual codes with short lengths (see [7-10]). In 1998, Calderbank et al. [11] set up
connections among quantum codes, binary symplectic codes, and HSO codes; this inspired
people to study HSO codes over F; for general length n. Bouyukliev et al. [12] discussed
the classification of optimal HSO codes over F; for length n < 29 and low dimensions.
Ma et al. [13] determined the parameters of optimal HSO codes over F; for all n and k < 3.
Recently, Refs. [17,18] determined the parameters of optimal [1,4] HSO codes for all n > 8
and most [1,5] HSO codes for n < 341. In [14], Lu et al. showed that an [n, k, d] HLCD (also
called zero radical) code can derive an [[n, k, d; n — k]|, EAQECC, they construct many good
EAQECCs. According to [14-16], the parameters of optimal HLCD codes were determined
for all n and k < 3. Refs. [14,19] discussed the construction of [n,4] HLCD codes with
4 < n < 85and [1n,5 HLCD codes with 5 < n < 341, respectively. They have given
some optimal HLCD codes and good low bounds on the distance of optimal HLCD codes.
According to [3], the parameters of optimal [1, 5] linear codes for n > 492 are known and
can be constructed using a unified method of puncturing. Thus, the construction of [n, 5]
optimal HSO codes for n > 492 can be conducted as we conducted in [18] for constructing
[n,4] HSO codes with n > 124. According to [6,14,18,19], when discussing [1, 5] HSO codes
and HLCD codes, we should consider codes with length n such that 342 < n < 492.

This paper is organized as follows. In Section 2, we prepare the definitions, notations,
and basic results used in this paper. In Section 3, the construction of [, 5] HSO codes is
presented. In Section 4, we derive [n,5] HLCD codes from known HSO codes and related
EAQECCs. Finally, in Section 5, we conclude this paper.

2. Preliminaries

In this section, some notations, definitions, and basic results are given (for details, see
Ref. [22]).

Throughout this paper, we use the following notations. We assume all codes are
linear codes over Fj, and use 2 and 3 to represent w and w? in Fj, respectively. Let
1,=(1,1,...,1)1x, and 0,=(0,0,...,0)1x, denote the all-one vector and the all-zero vector
of length n, respectively. Let 0 denote a zero matrix of appropriate size and I denote the
identity matrix of order k. Let AT denote the transpose of a matrix A, and let A' denote the
conjugate transpose of A.

Let C = [n,k]. A k x n matrix G whose rows form a basis of C is called a generator
matrix. The weight enumerator of C is w(z) = Y}, Azt = Ag+ Az + - -+ Anz", where
A; is the number of codewords in C with weight equal to i for 0 <i < n. We say that two
[n,k] codes Cy and C; are equivalent, provided there is a monomial matrix M such that
Cy = C1M. A code C is called an even code if all its codewords have even weights [22].
According to Ref. [11], C is a HSO code if and only if it is an even code. Using the generator
matrix, one can give the following criterion for a code to be HSO or HLCD.

Proposition 1 ([15]). Let G be a generator matrix of C; then,

(1) Cisan HSO code if and only if GGT = 0.
(2) Cisa HLCD code if and only if GG' is nonsingular.

Definition 1. If A = Ay, is a k X m matrix and the vectors formed by row linear combination of
A have the largest weight 5, then A is called as an (m, ) block. If AA™ =0, A is called an (m, )
HSO block. If AAT is nonsingular, A is called an (m, ) HLCD block.

We introduce some methods for constructing new codes from known ones. Lemmas
1 and 2 are directly obtained from [17] for linear codes. Lemma 3 and 4 can be derived
from [18]. These four lemmas give the constructions of HSO codes by juxtaposition, pasting,
puncturing, and shorting, respectively.
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Lemma 1 ([17]). Suppose C1 and C, are [nq,k,d1] and [ny, k,dp] HSO codes, respectively. If
Cy and Cp have generator matrices Gy and Gy, respectively, then (G | Gy) generates an [ny +
na, k,d1 + dy] HSO code.

Lemma 2 ([17]). Suppose C1 and C, are [n1,k,dq] and [ny, k — 1,d,] HSO codes, respectively.
If Cq contains a codeword of weight at least di + dy, then there exists an [ny + np, k,dq + dy)
HSO code.

Lemma 3. Suppose C = [n,k,d] is an HSO code with generator matrix Gy ,, and Gy, ,, has a k x m
sub-matrix A. If A is an (m,5) HSO (HLCD) block, then there is an [n — m,k,d — 6] HSO
(HLCD) code.

Proof. Let generator matrix Gy, = (Agy | Bry—m), then
GinGl, = AemAL s+ Bin-mB}
knSkn km3k m kn—mPkn—m

according to C is a HSO code.

Let Ay, generate an HSO code C4. « is a codeword in C4 with minimum Hamming
weight 4. Since HSO code C = [n, k, d, there is a codeword f in C with minimum Hamming
weightd. By, = (Ggpy \ Agm). According to [22], By ,,—,, generates an [n — m, k,dp] code
withdp =d — 6.

(1) If Ay isan (m,8) HSOblock, rank(Gy,, Gy ) = rank(A A} ) = 0. Then, rank(By

Blt,n—m) = 0 and By ,_,, generates an [n — m, k,d — 6] HSO code.

(2) If Ay, is an (m,6) HLCD block, mnk(Gk,nG;,n) = 0 and mnk(Ak,mA;;m) = k. Then,
rank(By,_mBf ) =k, By, _, generates an [n — m,k,d — 5] HLCD code.

kn—m

O

Lemma 4. Suppose n > 341+ 4 and C = [n,5,d] is an HSO code with d > 6. Then, there are
[n—i,4,d—2[i/2]] HSO codes fori = 1,2,3,4.

3. Constructing HSO Codes

In this section, we discuss the construction of [1,5] HSO codes for 342 < n < 492; our
results are given in two subsections.

3.1. [n,5] HSO Codes for 342 < n < 407

In [3], the authors introduced a dual transform method for constructing new codes
from known codes; they derived the existence of three codes with parameters [364, 5,272],
[386,5,288], and [407,5,304] from three known codes with parameters [27,5,16], [38,5,24],
and [28,5,16], respectively. Using Magma [23], we can check that these three codes
[364,5,272], [386,5,288], [407,5,304] have generator matrices Gs 364, G386, and Gs 497 (see
Appendix A.1) and weight enumerators 1 + 942x%72 + 81x2%, 1 4 213x%8 + 42x3% and
1+ 924x3% 4+ 99x320 respectively.

We try to find HSO blocks in Gs 364. It is not difficult to see that Agy, and Agy, have
submatrices SAgy, and SA{,, and SAgy, and SA(,, as follows, where

0000 0000 0000 0000
1111 1111 1111 1111
SAgia = | 0000 |,SA},=| 1111 |,SAg, = | 2222 |,S4h,=| 3333 [,
0123 3333 0123 0123
1111 0123 3102 1032

Columns (00010)7, (00001)7, (00012)7, and (00011) from Ag are added to matrices
SAo1a, SAl, SAop, and SAé1 ,» respectively. One can obtain four 5 x 5 matrices, X1, X,
X3, and X4, of Gs 364, respectively, and they all satisfy X; - XZT =0fori=1,2,3,4. Itis
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easy to see that these X; are formed by different columns of Gs 364, and each is a (5,4)
HSO block; thus, Gs 364 has (5,4), (10,8), (15,12), and (20, 16) HSO blocks. According to
Lemma 3, by removing these blocks, in turn, from Gs 364, HSO codes [364 — 5i, 5,272 — 4i]
fori =0,1,2,3,4 can be constructed from Gs 364. From previous discussions, using Lemmas
3 and 4, we can achieve the following theorem.

Theorem 1. Based on the [364,5,272] HSO code, HSO codes with the following parameters can
be constructed:

(1) [364—5i,5,272 —4i] fori = 0,1,2,3,4;
(2) [364—5i—j,5272 —4i —2[L]] fori =0,1,2,3and j =1,2,3,4.

Similar to the above discussion, we can show that Gs 334 has four 5 x 5 submatrices,
Y1, Y2, Y3, and Yy, and Gs 497 has four 5 x 5 submatrices, Z1, Z, Z3, and Z4, where

00000 01111 01111 01111
00000 00000 00000 01111

Y, =] 01111 |,Yp, =] 00000 |,Yz=| 02222 |,Yy=| 10123 |[;
10123 1012 3 10123 01111
0333 3 10123 3031 2 00000
0000 0 00000 0000 0 0000 0
0000 0 01111 01111 01111

Zy=1| 01111 |,Z,=1| 00000 |,Zz=| 01111 |[,Zy =] 02222
03333 10123 10123 10123
10123 12301 21320 31203

It is easy to see that these Y; are formed by different columns of Gs 3g4, with each being
a (5,4) HSO block; these Z; are formed by different columns of Gs 497, with each being
a (5,4) HSO block for i = 1,2,3,4. Hence, both of Gs3gs and Gs 497 have (5,4), (10,8),
(15,12), and (20,16) HSO blocks. According to Lemma 3, by removing these blocks, in
turn, from Gs3gs and Gs 497, HSO codes [386 — 5i,5,288 — 4i] and [407 — 5i,5,304 — 4i]
fori =0,1,2,3,4 can be constructed from Gs 385 and Gs 497, respectively. From previous
discussions, by using Lemmas 3 and 4, we can achieve the following theorem.

Theorem 2. Based on the [386,5,288] and [407,5,304] HSO codes, HSO codes with the following
parameters can be constructed:

(1) [386—5i,5,288 —4i] fori = 0,1,2,3,4;
(2) (386 —5i —j,5288 —4i —2[L]] fori =0,1,2,3and j = 1,2,3,4;
(3) [407 — 5i,5,304 — 4i] fori = 0,1,2,3,4;
(4) [407 —5i —j,5,304 —4i —2[L]] fori = 0,1,2,3and j = 1,2,3,4.

3.2. [n,5] HSO Codes for 408 < n < 492

In this subsection, we use the McDonald code [256, 5,192] and four known codes given
in [4] to construct 1, 5] HSO codes for 408 < n < 492.

In [4], four optimal codes [172,5,128], [194,5, 144], [215,5,160], and [236,5,176] and
their generator matrices are given. It is easy to see that these four codes are HSO codes.
Using column permutation (special equivalent transform M), we obtain four equiva-
lent HSO codes with generator matrices Gs172 = (Is | Asj67), Gs10a = (I5 | As189),
Gs215 = (I5 | Asp10), and Gs 36 = (I5 | As231), respectively, all these matrices are given in
Appendix A.2.

Lemma 5. Ifn = 256 + m, m > 170 and there is an [m,5,ds ] HSO code, then there are HSO
codes with the following parameters: [n,5,d] = [256 +m,5,192 4 ds ], [n — 5i,5,192 4 ds ,,, —
4i) fori =1,2,3,4and [n —5i — j,5,192 4 ds , —4i—2[%1]fori =0,1,2,3,4andj = 1,2,3,4.
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Proof. Suppose Gs,, = (Ms | Gs ), where Gs,;, = (I | As—5) is a generator matrix of an
[m,5,ds,] HSO code. Then, Gs , generates an [n,5,d] = [256 4+ m, 5,192 + ds ,,] HSO code.
There are four submatrices in Gs 54:

0111 1111 1111 0000
0000 0123 0000 0000
Gs=| 1231 |,G,=| 0000 |[,G,=| 0123 |,G;= | 0000
0000 0000 1111 0111
1231 1111 1111 1231

Adding column vectors (1,0,0,0,0)7, (0,1,0,0,0)7, (0,0,1,0,0)T, and (0,0,0,1,0)T
from Gs ,,, to submatrices G,, Gy, G¢, and Gy, respectively, we obtain four 5 x 5 submatrices,
Uy, Uy, Uz, and Uy, of Gs . It is obvious that these are formed by different columns of Gs ,,
all U; satisfy UZ-LI;r = 0 and are (5,4) HSO blocks for 1 < i < 4. Hence, Gs, have (5,4),
(10,8), (15,12), and (20, 16) HSO blocks.

By removing U;(1 < i < 4) from Gs, in turn, one can derive that there are [n —
5i,5,192 + ds ,, — 4i] HSO codes for 0 < i < 4. From n — 5i > 345, we can obtain [428 —
5i fj,5,32074i72[%ﬂ HSO codesfor (0 <i<4,1<j<4). O

Since there are four HSO codes [172,5,128], 194, 5, 144], [215, 5, 160], and [236, 5,176],
we have the following corollary.

Corollary 1. There are four groups of HSO codes:

(1) [428—5i,5,320—4i]f0r0§i§4,and[428—5i—j,5,320—4i—2[%]]f0r0§i§3
and1 <j< 4

(2) [450—5i,5,336—4i]f0r0§i§4,and[450—5i—j,5,336—4i—2[%]]f0r0§i§3
and1 <j<4;

(3) [472—5i,5,352—4i]f0r0§i§4,and[472—5i—j,5,352—4i—2[%]]f0r0§i§3
and1 <j <4

(4) [492—5i,5,368—4i]f0r0§i§4,and[492—5i—j,5,368—4i—2[%ﬂf0r0§i§3
and 1 < j < 4.

Summarizing the above two subsections, we construct [1,5] HSO codes for each n
with 342 < n < 492.

4. Construction of HLCD Codes

In this section, we focus on constructing HLCD codes from known HSO codes in the
last section by puncturing some HLCD blocks.

Lemma 6. Let A; be (5,4) HSO blocks for 1 < i < 4and A = (A1, Az, A3, Ag). If n > 341,
Gsy = (A| Gsn—20) is a generator matrix of an [n,5,d] HSO code and Gs 20 has (j, j) HLCD
blocks for 5 < j < 9. Then, there are [n — 5i — j,5,d — 4i — j] HLCD codes for 0 < i < 3 and
5<j<o.

Proof. Let B; be (j,j) HLCD blocks of G5, 2 for 5 < j < 9. Let Ds;1j = (A1, , A; | B))
for1 <i<4and5 <j <9. Then, these D5;; are (5i + j,4i + j) HLCD blocks of Gs
for1 <i<4and5 <j <9. Puncturing these blocks form Gs,; then, one can obtain the
generator matrix of [n —5i — j,5,d — 4i — j] HLCD codes for 0 < i <3and5<;j<9. O

According to Section 3.1, for n = 364,386,407, let d = 272,288,304, respectively;
there are [n,5,d] HSO codes with generator matrices Gs, = (A | Gs—20), where A =
(A1, Ay, A3, Ay), as shown in Section 3, and Gs ,,—20 = (Gs, \ A). Thus, if we can find that
each Gs ;20 has (j, j) HLCD blocks B, ; for 5 < j < 9 and m = n — 20, then we can obtain
[n —5i —j,5,d — 4i — j] HLCD codes. We check these facts in three cases.
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Case 1. Let m = 344 and Gs 344

= (Gs64 \ (X1, X2, X3, X4). It is easy to check that Gs 344 has
five (j, j) HLCD blocks By, j for 5 < j

<9, as follows:

10000 10000 0 100000 0 1000000 0
2100 0 21000 0 210000 0 2100000 0
Byus=| 20111 |,Bye=| 201111 |,B,7=| 2011111 |,B,g= [ 20111111 |,
10103 101103 101310 3 1011310 3
13330 132330 132133 0 1302133 0
10000000 0
21000000 0
Bjo = | 201111111
10101310 3
13022133 0

Case 2. Let m = 366, Gs366 = (Gs386 \ (Y1, Y2, Y3,Ys). It is easy to check that Gs 344 has five
(j,j) HLCD blocks B, ; for 5 < j <9, as follows:

00011 000011 0011011 00011011
00111 100111 0011111 10011111
Bus=| 11313 |,Bye = | 211313 |,B,7 = | 1133313 |,B,g = | 21133313 |,
23223 323223 2333223 32333223
13231 313231 1311231 31311231
001111011
001111111
Buo = | 111313313
232323223
133131231

Case 3. Let m = 387 and Gs 387 = (G5/407 \ (Zl, Zy, 73, Z4). It is easy to check that Gs 3g7 has
five (j, j) HLCD blocks By, ; for 5 < j < 9 as follows:

1000 0 10000 0 100000 0 1000000 0
11100 111100 1111100 11111100
Bus=| 32011 |,Bye=| 322011 |,B,7=[ 3132011 |,B,g= | 33132011 [,
21212 231212 2131212 21131212
2002 2 22002 2 223002 2 2223002 2
10000000 0
11111110 0
By = | 331132011
222131212
23223002 2

According to Section 3, for n = 428,450,471,492, let d = 320, 336, 352, 368, respectively;
there are [1,5,d] HSO codes with generator matrices Gs, = (U | Gspa1 | Asy—261), Where
U = (U, Uy, Uz, Uy) and Gspa1 = ((Gspse | Is) \ U). Thus, if we can find that each
As 261 has (j, j) HLCD blocks D, j for 5 < j < 9 and m = n — 261, then we can obtain
[n —5i —j,5,d — 4i — j] HLCD codes. We check these facts in four cases.

Case 4. Let m = 167, and As 147 is given in Appendix A.2. It is easy to check that As 147 has five
(j.j) HLCD blocks Dy, j for 5 < j < 9, as follows:

02213 012213 022021 3 0122021 3
21322 221322 2113322 22113322

Dys5= | 20000 |,Dy6=| 200000 |,D,7= [ 2000000 |,D,s=| 20000000 [,
13020 133020 1232020 13232020
1100 0 13100 0 101000 0 1301000 0
00322021 3
210113322

D9 = | 200000000
11223202 0

13001000 0



Mathematics 2024, 12, 2117 7 of 12

Case 5. Let m = 189, and As 139 is given in Appendix A.2. It is easy to check that As 189 has five
(j.j) HLCD blocks Dy, j for 5 < j < 9, as follows:

00313 000313 0011313 02011313
32202 321202 3200202 30200202
Dys = 22200 |,Dy=| 221200 |,Dy7 = | 2212200 |,D, 8= | 23212200 [,
03311 030311 0303311 02303311
11111 111111 1111111 11111111
010011313
332100202
Dy 9 = | 232112200
023003311
111111111

Case 6. Let m = 210, and As 19 is given in Appendix A.2. It is easy to check that As y19 has five
(j,j) HLCD blocks Dy, j for 5 < j <9, as follows:

33131 333131 3133131 32133131
01211 101211 1201211 11201211
Dys= | 10210 |,Dy6= | 310210 |,D,7 = | 3110210 |,D,s = | 30110210 [,
00200 000200 0200200 01200200
22031 122031 1322031 12322031
132133131
211201211
D9 = | 030110210
201200200
212322031

Case 7. Let m = 231, and As 3 is given in Appendix A.2. It is easy to check that As y31 has five
(j.j) HLCD blocks Dy, j for 5 < j < 9, as follows:

12210 112210 1112210 11112210
30012 230012 2230012 22230012
Dys = 01021 |,Dy6= | 201021 |,D,7 = | 2201021 |,D;g= | 02201021 [,
20131 120131 1120131 31120131
32332 032332 0032332 20032332
111112210
232230012
Dy, 9 = | 032201021
311120131
200032332

Summarizing previous discussions, from seven HSO codes (which are also optimal
codes), [364,5,272], [386,5,288|, [407,5,304], [428,5,320], [450,5,336], [471,5,352], and
[492,4,368], we can derive seven groups of HLCD codes, as follows.

Theorem 3. Let 0 < i < 4,5 < j < 9. There are seven groups of HLCD codes with lengths
342 <n < 487:

[364 — 5i — j,5,272 — 4i — j], [386 — 5i — j,5,288 — 4i — j], [407 — 5i — j, 5,304 — 4i — j],
[428 — 5i — j,5,320 — 4i — j], [450 — 5i — j, 5,336 — 4i — j|, [471 — 5i — },5,352 — 4i — j], and
(492 —5i — j, 4,368 — 4i — j].

Comparing the parameters of the above new HLCD codes with those in [19], one can
see that 31 of our HLCD codes have larger distances than those [1, 5] of the same lengths
in [19], and most of the others have the same distances as those in [19]. Table 1 shows our
31 HLCD codes and theirs.
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Table 1. Comparison of HLCD codes.

No. HLCD in [19] Our HLCD Codes No. HLCD in [19] Our HLCD Codes

1 359, 5,266] 359,5,267] 17 [466,5,346) (466, 5,347
2 [397,5,294] [397,5,295] 18 [472,5,350] [472,5,351]
3 400, 5,296] [400,5,297] 19 [475,5,352] [475,5,353]
4 [401,5,297] [401,5,298] 20 476,5,353] [476,5,354]
5 [402,5,298] [402,5,299] 21 [477,5,354] [477,5,355]
6 [417,5,309] [417,5,310] 2 [478,5,354] [478,5,355]
7 [418,5,310] 418,5,311] 23 479,5,355] 479,5,356)
8 [420,5,311] [420,5,312] 24 480, 5,356 [480,5,357]
9 [421,5,312] [421,5,313] 25 [481,5,357] [481,5,358]
10 [422,5,313] [422,5,314] 26 [482,5,357] [482,5,359)
11 [423,5,314] [423,5,315] 27 [483,5,358] [483,5,359)
12 [440,5,326] [440,5,327] 28 484, 5,359 [484,5,360]
13 [460,5,341] [460,5,342] 29 [485,5,360] [485,5,361]
14 [461,5,342] [461,5,343] 30 [486,5,361] [486,5,362]
15 464, 5,344] [464,5,345] 31 [487,5,361] [487,5,363]
16 [465,5,345] 465, 5, 346]

For each of our [m, 5,d] HLCD codes given in Table 1, we can derive [341s 4 m, 5, 256s +
d] HLCD codes for s > 0.

Theorem 4. If [m,5,d] is one of our 31 HLCD codes given in Table 1, then there are [[341s +
m,5,256s + d;341s + m — 5]], EAQECCs for s > 0. Thus, we obtain 31 classes of EAQECCs
better than those in [19] of the same lengths.

5. Conclusions

In this paper, we have studied the construction of HSO codes and HLCD codes with
good minimum distances from known codes and further constructed EAQECCs with
good parameters.

The largest minimum distance ds, of HSO codes for 342 < n < 492 has been given
above. If d,;(n,5) is determined for a given 1, for any optimal linear code [, 5, dop(1,5)], an

d ,5
HSO code with dgy(n,5) = 2 L#J could be constructed. If dop (1, 5) is not determined
dpy(n,5)

for given n, for any linear code [n,5, dyx(1,5)], an HSO code with dg, (1,5) = 2 LTJ
could be constructed. The minimum distance has been optimized for all the above HSO
codes.

Based on these HSO codes, we can further construct HLCD codes with lengths
342 < n < 492. The parameters of these HLCD codes are as follows: [n —5i —j,5,dso(n,5) —
4i — j] for n = 364,386,407,428,450,471,492,0 < i < 4and 5 < j < 9. By comparing with
ones in the literature, it is easy to know that our 31 HLCD codes in Table 1 have better
parameters. From these HLCD codes, we have obtained 31 classes of entanglement-assisted
quantum codes with maximal entanglement.
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Appendix A. Generator Matrices of Some Special Optimal HSO Codes
Appendix A.1. Generator matrices Gs 3gs and Gs 497 in Section 3.1
Let G5 364 = (Ao, Aotas Ao1br A10ar A10bs At1as A11bs A12a, A126, A13a, A13p), Where

0000000000000000 0000000000000000000000000000
0000000000000000 1111111111111111111111111111
Ay = 0000111111111111 |, Ag1z = 0000000000001111111111111111 |,
0111001111223333 0001112223330001112222233333
1012230123130122 0131231321230120231122301123
00000000000000000000000000000000 111111111111111111111111111 1
11111111111111111111111111111111 000000000000000000000000000 0
Aoy = 22222222222222223333333333333333 |, A1p, = 0000000000001111111111111111 |,
00011122222333330000111122223333 001111222333000111112222333 3
12312301223012330123012301231233 010123123013012012230123012 3
1111111111111111111111111111111 1 11111111111111111111111111111111111 1
0000000000000000000000000000000 0 11111111111111111111111111111111111 1
Ajp = | 22222222222222223333333333333333 |, A11, = | 00000000000000001111111111111111111 1 |,
0000111122222333000011112222233 3 00011111222233330000011111222233333 3
0123012301122123012301230122123 3 12301123012301230123300123012201223 3
111111111111111111111111111111111111111 1 11111111111111111111111111111111111 1
111111111111111111111111111111111111111 1 20022222222222222222222222222222222 2
Anp = 2222222222222222222233333333333333333333 |, A1p; = 00000000000000001111111111111111111 1 |,
000011111122222333330000011111222233333 3 00001122222333330000011111222222333 3
012300112301223011230112211223012300123 3 12330200123011230122301233011233012 2
111111111111111111111111111111111111111 1 11111111111111111111111111111111111 1
222222222222222222222222222222222222222 2 33333333333333333333333333333333333 3
Ay = | 2222222222222222222233333333333333333333 |, A1z, = | 00000000000000001111111111111111111 1 |,
000001111122223333330001111122222233333 3 00011111222233330001111122222233333 3
0112301223012300112221230123301123300112 2 01201123012301230230112301223300112 3
111111111111111111111111111111111111111 1
333333333333333333333333333333333333333 3
Ay = | 222222222222222222223333333333333333333 3
000111112222223333330000111111222223333 3

012012230011230122330123011223011231223 3

Let Gs3s6 = (Boo, Botas Boiss B1oas Bioss B11a, B11bs B12as B12bs B13a, B1as), where

00000000000000000 0 000000000000000000000000000 0
00000000000000000 0 111111111111111111111111111 1
Boo = 00001111111111111 1 ,Bola = 000000000000001111111111111 1 ,
11110000111122233 3 000111222333330001112222333 3
01130123012311323 3 123013123012331231230123012 3
00000000000000000000000000000000000 0 1111111111111111111111111111111°1
11111111111111111111111111111111111 1 0000000000000000000000000000000 O
Boip = 222222222222222222333333333333333333 |, B1gs = 0000000000000011111111111111111 1 ,
00001111122223333300001112222222333 3 0000111222233300011112222333333 3
02230122301131223312330130012223022 3 0123012012301311201230122001122 3
1111111111111111111111111111111 1 111111111111111111111111111111111111111 1
0000000000000000000000000000000 0 111111111111111111111111111111111111111 1
Bigp = 22222222222222222233333333333333 |, B11, = 000000000000000000111111111111111111111 1 ,
0000111122222233330001112222333 3 000011111222233333000111122222222333333 3
0123012301122301230121230123012 2 012301123011301223123012200122333001123 3
111111111111111111111111111111111111111 1 11111111111111111111111111111111111 1
111111111111111111111111111111111111111 1 22222222222222222222222222222222222 2
By = 2222222222222222223333333333333333333333 |, B1p, = 00000000000000000011111111111111111 1 ,
000111112222222333000011111111222333333 3 00011112222222333300000111122223333 3

013012330011223123001200112233123001112 3 01302330011223012301123122322330112 3
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By =

Bisp =

1111111111111111111111111111111111111111111 1
2222222222222222222222222222222222222222222 2

11111111111111111111111111111111111 1
33333333333333333333333333333333333 3

2222222222222222222222333333333333333333333 3

, B3, = 00000000000000111111111111111111111 1

0001111111222222233333000000011111112222333 3
0230011223001223301223001122301122330123001 2

00001112222333000011111112222222333 3
01121230123123012301122330112233011 3

1111111111111111111111111111111111111111111 1
3333333333333333333333333333333333333333333 3
2222222222222222222222333333333333333333333 3

0000011111112223333333000001111122223333333 3
0122300122331230011223011230122312230011223 3

Let Gs 407 = (Doo, Dotas Dots, D10as D1ovs D11as D11p, D12, D12s, D13a, D1zp), Where

D1y =

Dy =

D13, =

000000000000000000 0 00000000000000000000000000000 0
000000000000000000 0 11111111111111111111111111111 1
0000111111111111111 |, Dg1, = 00000000000000011111111111111 1 |,
011100111112222333 3 00011111222223300111122222333 3
112323012231223012 3 12301223001231213122301223011 2

0000000000000000000000000000000000000 O
1111111111111111111111111111111111111 1
2222222222222222222333333333333333333 3
0001111112222233333000011111222223333 3
1230012330122301223012301223012330123 3

1111111111111111111111111111111111111 1
0000000000000000000000000000000000000 0
2222222222222222222333333333333333333 3
0000011122222333333000001111122223333 3
0223312301233112233012230122301230122 3

,Dios =

,D11g =

11111111111111111111111111111 1
00000000000000000000000000000 0
000000000001111111111111111111 |,
00111223333000011111222223333 3
23023230123123300123012330012 3

1111111111111111111111111111111111111 1
1111111111111111111111111111111111111 1
0000000000000000000111111111111111111 1
0000011122222233333000011112222223333 3
0123302300123301123012301230112230122 3

111111111111111111111111111111111111111111111 1
111111111111111111111111111111111111111111111 1

222222222222222222222223333333333333333333333 3
000000111112222233333330000011112222222333333 3
011223012231122301122330122302330112233001122 3

11111111111111111111111111111111111111111 1
22222222222222222222222222222222222222222 2
00000000000000000001111111111111111111111 1
00000111122222233330000001111122222233333 3
01223012300223301220012330112301123300122 3

11111111111111111111111111111111111111111 1
22222222222222222222222222222222222222222 2
22222222222222222223333333333333333333333 3
00011111222222333330000001111112222223333 3
02302233001223012230112230122330112330012 3

11111111111111111111111111111111111111111 1
33333333333333333333333333333333333333333 3
00000000000000000001111111111111111111111 1
00011111222223333330000011111222222333333 3
12301233012330012230123300133112233001223 3

11111111111111111111111111111111111111111 1
33333333333333333333333333333333333333333 3
22222222222222222222222333333333333333333 3
00000111111222222233333000111122222233333 3
01233001133001123301123023012300112300112 3

Appendix A.2. Generator Matrices Gs 172, Gs 194, Gs 215, and Gs 3¢ in Section 3.2
Let G5,172 = (Elr Ez), where

10000
01000
00100
00010
00001

02220313122330200013330311323322120001332022303103320202333210021033322320123101222331320 0
02222232311012210101320131312031213223110033312013022113310120133330110002223310031302120 3
00011310333333303301030000000000022022022222222222222222122121111011111000100303303333333 3
11102221101100202303131331120202200311311322322223031022010200113213232233211002001211032 1
00000101111111111110111113313133300300300003030003233222233132221232222222322320323233202 3

2000021213322132120031113002233333322010011012323223030113102223310210322021 3
3221021313320001113202331220001032123122301100223320030012232100132021011332 2
3333333333333333013313313113101111111111111112121112221212222222222000000000 0
3013222332221311031031020230232201201132311110130101320202002010111231223202 0
3223303020333000230030030320323233133311132113111112131111110111111333001000 0
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Let G5,194 = (H],Hz), where

10000  22213001230023323032031103312221301012120203203200121121130233112011233331010320322313221 0
01000  22213001103310010310213321133321301103031021021022312212203103112011233331023013011021003 2
H; = 00100  103333221111223300110000332222111232221030011223333221100003333332211110000333011122233322 |,
00010  01222233000033221100111122333311123222103001122333322110000330000112222333300032221110001 1
00001  00000000000000000000000000000011111111111111111111111111111111111111111111111111111111111 1

20213202113302113022211300200221312033303222003331231231021100023303203200313123200130021113001131 3
02031313002213002132211300200221303122212333112113013013212233310033203203020210133312203331210020 2
H, = 21000330000111122222223333301111100000322211111222233001100003333220033221112333000111033322211220 0
12333003333222211110001111123333322222100033333000011223322221111001122330003222111000122233300331 1
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 1

Let G5/215 = (Kl,Kz,K3), Where

10000  00030033303333030030000030001131131312222221210010001010303030333333230322220220211211111 2
01000  03210201321313232232322032200031010001103330311001112322130302023222233220023103031031311 0
Ky = 00100  21011132323001221010232011111133203202201123310213221103130012220110133303331102122230003 2 |,
00010  12211211121311111031010300032202222223230003032232221010303030301101101113311331303302032 0
00001  23321211010132211100233230033310001322312210033020110013121102302233303023311002121232031 1

1222222121112212110101022020033333333033301130110000202211233333322001113123223223303311001101201 2
1100232120112213333323332320101010001100010001000111110132132333322321011101101002302222322232332 2
K, = 3011310113222230030221232133202201103333300002220100331031220100321323102200233211332303202211333 1 |,
3002222121112212333333333331111002202002201123113333030011022222200330003013113113323300220023123 1
0220211003333320302112022332230031122213311100333322013321121100312003003221112030303203122222100 2

222222222122133213313 1
333231330231211120121 1
Kz = 032011103333033011021 0
332221321221200120020 0
033003110121211232203 1

Let Gsps = (L1, Lo, L), Where

10000  00120323121113210203300323222200330320323032233311211311113101033300000112201100223202002 1
01000  11231102012231233322322303111133211031213223211133222132223320322001101010021123012102013 0
Ly = 00100  32310232333302330120201121100010113320123332001032301303220101201023302313212123130313213 2 |,
00010  32211232221130003302132213232232221112023323000132210213221010201300021031031310203121130 2
00001 33010102311131203100333110332223123120102032122200222131001231001233312300023101200102313 2

1313311333332301122222220323300103330210202210213010310200031100301331031201112332110333303322022 1
1233023011103111101232323212332123322303202213101221021203231130012301210130111230111101120311322 3
L, = 0210003310122313202021021302021302202130201110112032200233110013110320312231231103112013320233201 1 |,
1300013200133303203302213130312021020213033301113022200333000011222112031113013320220330022233311 1
1231231133203012330120033323002232311132310002311312021321201132312301022011333010002330012311000 2

022220202222320313132321013231001111111221 0
022331303221202131230211302120223223223001 2
Lz = 123102313100322310130112302232332103220102 1
123003213111323122302330131100010231112013 1
133002203112311023323122012132101320003233 2
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