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Abstract: We introduce some methods for constructing quaternary Hermitian self-orthogonal (HSO)

codes, and construct quaternary [n, 5] HSO for 342 ≤ n ≤ 492. Furthermore, we present methods

of constructing Hermitian linear complementary dual (HLCD) codes from known HSO codes, and

obtain many HLCD codes with good parameters. As an application, 31 classes of entanglement-

assisted quantum error correction codes (EAQECCs) with maximal entanglement can be obtained

from these HLCD codes. These new EAQECCs have better parameters than those in the literature.

Keywords: Hermitian self-orthogonal code; Hermitian linear complementary dual code; quantum

error-correcting code
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1. Introduction

Let F4 =
{

0, 1, ω, ω2
}

be the field with four elements, where ω2 = 1 + ω, and Fn
4 be

the n-dimensional row space over F4. For x∈ F4, its conjugate is x = x2. A quaternary
[n, k] code C is a k-dimensional subspace of Fn

4 , vectors in C are called as codewords of C.
If the minimal Hamming weights of non-zero codewords in C is d, then C is denoted as
C = [n, k, d]. A linear code [n, k, d] is optimal if there is no [n, k, d + 1] code; such a code
is denoted as C = [n, k, dop(n, k)]. For u = (u1, u2 · · · un), v = (v1, v2 · · · vn) ∈ Fn

4 , their
Hermitian inner product is (u, v)h = ∑

n
i=1 ui · vi = ∑

n
i=1 ui · v2

i . The Hermitian dual code

C⊥h is defined as C⊥h = {u ∈ Fn
4 | (u, v)h = 0, ∀v ∈ C}. If C ⊆ C⊥h , then C is called as

an HSO code. In particular, if C = C⊥h , then C is called a Hermitian self-dual code. If
C ∩ C⊥h= {0}, then C is called an HLCD code.

In the past 30 years, much work has been conducted concerning quaternary optimal
linear codes for both theoretical and practical reasons (see, e.g., [1–5] and the references
given therein). By 1996, the parameters of all optimal linear codes with k ≤ 4 were
determined [2–4]. Since 1996, people have paid much attention to optimal linear codes
with k = 5; to date, there are yet 104 open cases on the parameters of optimal linear codes
(see [3–6]). If dop(n, k) is not determined for a given n, k, a code C with the largest known
distance dbk(n, k) is denoted as C = [n, k, dbk(n, k)]. Quaternary HSO codes and HLCD
codes are special kinds of linear codes, these two kinds of codes have connections with
many branches of mathematics and quantum information [7–19]. In recent years, there has
been an increasing interest in optimal HSO and HLCD codes. A HSO (or HLCD) [n, k, d]
code is called optimal if there is no HSO (or HLCD) [n, k, d′] code for d′ > d. Entanglement-
assisted (EA) stabilizer formalism was devised by Brun et al. in [20]. It has been proven
that each [n, k, d] quaternary HLCD code gave a maximal entanglement-assisted quantum
code with a parameter [[n, k, d; n − k]]2 by [14,19,21]. Under this EA stabilizer formalism,
any quaternary HLCD code can be transformed into a maximal EAQECC if the shared
entanglement is available between sender and receiver. Hence, it is important to study
optimal quaternary HLCD codes for constructing [[n, k, d; n − k]]2 EAQECCs.
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Recall that, from 1978 to 1998, people paid much attention to special HSO codes—
self-dual codes with short lengths (see [7–10]). In 1998, Calderbank et al. [11] set up
connections among quantum codes, binary symplectic codes, and HSO codes; this inspired
people to study HSO codes over F4 for general length n. Bouyukliev et al. [12] discussed
the classification of optimal HSO codes over F4 for length n ≤ 29 and low dimensions.
Ma et al. [13] determined the parameters of optimal HSO codes over F4 for all n and k ≤ 3.
Recently, Refs. [17,18] determined the parameters of optimal [n, 4] HSO codes for all n ≥ 8
and most [n, 5] HSO codes for n ≤ 341. In [14], Lu et al. showed that an [n, k, d] HLCD (also
called zero radical) code can derive an [[n, k, d; n − k]]2 EAQECC, they construct many good
EAQECCs. According to [14–16], the parameters of optimal HLCD codes were determined
for all n and k ≤ 3. Refs. [14,19] discussed the construction of [n, 4] HLCD codes with
4 ≤ n ≤ 85 and [n, 5] HLCD codes with 5 ≤ n ≤ 341, respectively. They have given
some optimal HLCD codes and good low bounds on the distance of optimal HLCD codes.
According to [3], the parameters of optimal [n, 5] linear codes for n ≥ 492 are known and
can be constructed using a unified method of puncturing. Thus, the construction of [n, 5]
optimal HSO codes for n ≥ 492 can be conducted as we conducted in [18] for constructing
[n, 4] HSO codes with n ≥ 124. According to [6,14,18,19], when discussing [n, 5] HSO codes
and HLCD codes, we should consider codes with length n such that 342 ≤ n ≤ 492.

This paper is organized as follows. In Section 2, we prepare the definitions, notations,
and basic results used in this paper. In Section 3, the construction of [n, 5] HSO codes is
presented. In Section 4, we derive [n, 5] HLCD codes from known HSO codes and related
EAQECCs. Finally, in Section 5, we conclude this paper.

2. Preliminaries

In this section, some notations, definitions, and basic results are given (for details, see
Ref. [22]).

Throughout this paper, we use the following notations. We assume all codes are
linear codes over F4, and use 2 and 3 to represent ω and ω2 in F4, respectively. Let
1n=(1, 1, . . . , 1)1×n and 0n=(0, 0, . . . , 0)1×n denote the all-one vector and the all-zero vector
of length n, respectively. Let 0 denote a zero matrix of appropriate size and Ik denote the
identity matrix of order k. Let AT denote the transpose of a matrix A, and let A† denote the
conjugate transpose of A.

Let C = [n, k]. A k × n matrix G whose rows form a basis of C is called a generator
matrix. The weight enumerator of C is w(z) = ∑

n
i=0 Aiz

i = A0 + A1z + · · ·+ Anzn, where
Ai is the number of codewords in C with weight equal to i for 0 ≤ i ≤ n. We say that two
[n, k] codes C1 and C2 are equivalent, provided there is a monomial matrix M such that
C2 = C1M. A code C is called an even code if all its codewords have even weights [22].
According to Ref. [11], C is a HSO code if and only if it is an even code. Using the generator
matrix, one can give the following criterion for a code to be HSO or HLCD.

Proposition 1 ([15]). Let G be a generator matrix of C; then,

(1) C is an HSO code if and only if GG† = 0.

(2) C is a HLCD code if and only if GG† is nonsingular.

Definition 1. If A = Ak,m is a k × m matrix and the vectors formed by row linear combination of
A have the largest weight δ, then A is called as an (m, δ) block. If AA† = 0, A is called an (m, δ)
HSO block. If AA† is nonsingular, A is called an (m, δ) HLCD block.

We introduce some methods for constructing new codes from known ones. Lemmas
1 and 2 are directly obtained from [17] for linear codes. Lemma 3 and 4 can be derived
from [18]. These four lemmas give the constructions of HSO codes by juxtaposition, pasting,
puncturing, and shorting, respectively.
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Lemma 1 ([17]). Suppose C1 and C2 are [n1, k, d1] and [n2, k, d2] HSO codes, respectively. If
C1 and C2 have generator matrices G1 and G2, respectively, then (G1 | G2) generates an [n1 +
n2, k, d1 + d2] HSO code.

Lemma 2 ([17]). Suppose C1 and C2 are [n1, k, d1] and [n2, k − 1, d2] HSO codes, respectively.
If C1 contains a codeword of weight at least d1 + d2, then there exists an [n1 + n2, k, d1 + d2]
HSO code.

Lemma 3. Suppose C = [n, k, d] is an HSO code with generator matrix Gk,n and Gk,n has a k × m
sub-matrix A. If A is an (m, δ) HSO (HLCD) block, then there is an [n − m, k, d − δ] HSO
(HLCD) code.

Proof. Let generator matrix Gk,n = (Ak,m | Bk,n−m), then

Gk,nG†
k,n = Ak,m A†

k,m + Bk,n−mB†
k,n−m

according to C is a HSO code.
Let Ak,m generate an HSO code CA. α is a codeword in CA with minimum Hamming

weight δ. Since HSO code C = [n, k, d], there is a codeword β in C with minimum Hamming
weight d. Bk,n−m = (Gk,n \ Ak,m). According to [22], Bk,n−m generates an [n − m, k, dB] code
with dB = d − δ.

(1) If Ak,m is an (m, δ) HSO block, rank(Gk,nG†
k,n) = rank(Ak,m A†

k,m) = 0. Then, rank(Bk,n−m

B†
k,n−m) = 0 and Bk,n−m generates an [n − m, k, d − δ] HSO code.

(2) If Ak,m is an (m, δ) HLCD block, rank(Gk,nG†
k,n) = 0 and rank(Ak,m A†

k,m) = k. Then,

rank(Bk,n−mB†
k,n−m) = k, Bk,n−m generates an [n − m, k, d − δ] HLCD code.

Lemma 4. Suppose n ≥ 341 + 4 and C = [n, 5, d] is an HSO code with d ≥ 6. Then, there are
[n − i, 4, d − 2⌈i/2⌉] HSO codes for i = 1, 2, 3, 4.

3. Constructing HSO Codes

In this section, we discuss the construction of [n, 5] HSO codes for 342 ≤ n ≤ 492; our
results are given in two subsections.

3.1. [n, 5] HSO Codes for 342 ≤ n ≤ 407

In [3], the authors introduced a dual transform method for constructing new codes
from known codes; they derived the existence of three codes with parameters [364, 5, 272],
[386, 5, 288], and [407, 5, 304] from three known codes with parameters [27, 5, 16], [38, 5, 24],
and [28, 5, 16], respectively. Using Magma [23], we can check that these three codes
[364, 5, 272], [386, 5, 288], [407, 5, 304] have generator matrices G5,364, G5,386, and G5,407 (see
Appendix A.1) and weight enumerators 1 + 942x272 + 81x288, 1 + 213x288 + 42x304, and
1 + 924x304 + 99x320, respectively.

We try to find HSO blocks in G5,364. It is not difficult to see that A01a and A01b have
submatrices SA01a and SA′

01a and SA01b and SA′
01b as follows, where

SA01a =













0000
1111
0000
0123
1111













, SA′
01a =













0000
1111
1111
3333
0123













, SA01b =













0000
1111
2222
0123
3102













, SA′
01b =













0000
1111
3333
0123
1032













,

Columns (00010)T , (00001)T , (00012)T , and (00011)T from A00 are added to matrices
SA01a, SA′

01a, SA01b, and SA′
01b, respectively. One can obtain four 5 × 5 matrices, X1, X2,

X3, and X4, of G5,364, respectively, and they all satisfy Xi · X†
i = 0 for i = 1, 2, 3, 4. It is
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easy to see that these Xi are formed by different columns of G5,364, and each is a (5, 4)
HSO block; thus, G5,364 has (5, 4), (10, 8), (15, 12), and (20, 16) HSO blocks. According to
Lemma 3, by removing these blocks, in turn, from G5,364, HSO codes [364 − 5i, 5, 272 − 4i]
for i = 0, 1, 2, 3, 4 can be constructed from G5,364. From previous discussions, using Lemmas
3 and 4, we can achieve the following theorem.

Theorem 1. Based on the [364, 5, 272] HSO code, HSO codes with the following parameters can
be constructed:

(1) [364 − 5i, 5, 272 − 4i] for i = 0, 1, 2, 3, 4;

(2) [364 − 5i − j, 5, 272 − 4i − 2⌈ j
2⌉] for i = 0, 1, 2, 3 and j = 1, 2, 3, 4.

Similar to the above discussion, we can show that G5,386 has four 5 × 5 submatrices,
Y1, Y2, Y3, and Y4, and G5,407 has four 5 × 5 submatrices, Z1, Z2, Z3, and Z4, where

Y1 =













0000 0
0000 0
0111 1
1012 3
0333 3













, Y2 =













0111 1
0000 0
0000 0
1012 3
1012 3













, Y3 =













0111 1
0000 0
0222 2
1012 3
3031 2













, Y4 =













0111 1
0111 1
1012 3
0111 1
0000 0













;

Z1 =













0000 0
0000 0
0111 1
0333 3
1012 3













, Z2 =













0000 0
0111 1
0000 0
1012 3
1230 1













, Z3 =













0000 0
0111 1
0111 1
1012 3
2132 0













, Z4 =













0000 0
0111 1
0222 2
1012 3
3120 3













.

It is easy to see that these Yi are formed by different columns of G5,386, with each being
a (5, 4) HSO block; these Zi are formed by different columns of G5,407, with each being
a (5, 4) HSO block for i = 1, 2, 3, 4. Hence, both of G5,386 and G5,407 have (5, 4), (10, 8),
(15, 12), and (20, 16) HSO blocks. According to Lemma 3, by removing these blocks, in
turn, from G5,386 and G5,407, HSO codes [386 − 5i, 5, 288 − 4i] and [407 − 5i, 5, 304 − 4i]
for i = 0, 1, 2, 3, 4 can be constructed from G5,386 and G5,407, respectively. From previous
discussions, by using Lemmas 3 and 4, we can achieve the following theorem.

Theorem 2. Based on the [386, 5, 288] and [407, 5, 304] HSO codes, HSO codes with the following
parameters can be constructed:

(1) [386 − 5i, 5, 288 − 4i] for i = 0, 1, 2, 3, 4;

(2) [386 − 5i − j, 5, 288 − 4i − 2⌈ j
2⌉] for i = 0, 1, 2, 3 and j = 1, 2, 3, 4;

(3) [407 − 5i, 5, 304 − 4i] for i = 0, 1, 2, 3, 4;

(4) [407 − 5i − j, 5, 304 − 4i − 2⌈ j
2⌉] for i = 0, 1, 2, 3 and j = 1, 2, 3, 4.

3.2. [n, 5] HSO Codes for 408 ≤ n ≤ 492

In this subsection, we use the McDonald code [256, 5, 192] and four known codes given
in [4] to construct [n, 5] HSO codes for 408 ≤ n ≤ 492.

In [4], four optimal codes [172, 5, 128], [194, 5, 144], [215, 5, 160], and [236, 5, 176] and
their generator matrices are given. It is easy to see that these four codes are HSO codes.
Using column permutation (special equivalent transform M), we obtain four equiva-
lent HSO codes with generator matrices G5,172 = (I5 | A5,167), G5,194 = (I5 | A5,189),
G5,215 = (I5 | A5,210), and G5,236 = (I5 | A5,231), respectively, all these matrices are given in
Appendix A.2.

Lemma 5. If n = 256 + m, m ≥ 170 and there is an [m, 5, d5,m] HSO code, then there are HSO
codes with the following parameters: [n, 5, d] = [256 + m, 5, 192 + d5,m], [n − 5i, 5, 192 + d5,m −

4i] for i = 1, 2, 3, 4 and [n − 5i − j, 5, 192+ d5,m − 4i − 2⌈ j
2⌉] for i = 0, 1, 2, 3, 4 and j = 1, 2, 3, 4.
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Proof. Suppose G5,n = (M5 | G5,m), where G5,m = (I | A5,m−5) is a generator matrix of an
[m, 5, d5,m] HSO code. Then, G5,n generates an [n, 5, d] = [256 + m, 5, 192 + d5,m] HSO code.

There are four submatrices in G5,256:

Ga =













0111
0000
1231
0000
1231













, Gb =













1111
0123
0000
0000
1111













, Gc =













1111
0000
0123
1111
1111













, Gd =













0000
0000
0000
0111
1231













.

Adding column vectors (1, 0, 0, 0, 0)T , (0, 1, 0, 0, 0)T , (0, 0, 1, 0, 0)T , and (0, 0, 0, 1, 0)T

from G5,m to submatrices Ga, Gb, Gc, and Gd, respectively, we obtain four 5 × 5 submatrices,
U1, U2, U3, and U4, of G5,n. It is obvious that these are formed by different columns of G5,n,
all Ui satisfy UiU

†
i = 0 and are (5, 4) HSO blocks for 1 ≤ i ≤ 4. Hence, G5,n have (5, 4),

(10, 8), (15, 12), and (20, 16) HSO blocks.
By removing Ui(1 ≤ i ≤ 4) from G5,n, in turn, one can derive that there are [n −

5i, 5, 192 + d5,m − 4i] HSO codes for 0 ≤ i ≤ 4. From n − 5i ≥ 345, we can obtain [428 −

5i − j, 5, 320 − 4i − 2⌈ j
2⌉] HSO codes for (0 ≤ i ≤ 4, 1 ≤ j ≤ 4).

Since there are four HSO codes [172, 5, 128], [194, 5, 144], [215, 5, 160], and [236, 5, 176],
we have the following corollary.

Corollary 1. There are four groups of HSO codes:

(1) [428 − 5i, 5, 320 − 4i] for 0 ≤ i ≤ 4, and [428 − 5i − j, 5, 320 − 4i − 2⌈ j
2⌉] for 0 ≤ i ≤ 3

and 1 ≤ j ≤ 4;

(2) [450 − 5i, 5, 336 − 4i] for 0 ≤ i ≤ 4, and [450 − 5i − j, 5, 336 − 4i − 2⌈ j
2⌉] for 0 ≤ i ≤ 3

and 1 ≤ j ≤ 4;

(3) [472 − 5i, 5, 352 − 4i] for 0 ≤ i ≤ 4, and [472 − 5i − j, 5, 352 − 4i − 2⌈ j
2⌉] for 0 ≤ i ≤ 3

and 1 ≤ j ≤ 4;

(4) [492 − 5i, 5, 368 − 4i] for 0 ≤ i ≤ 4, and [492 − 5i − j, 5, 368 − 4i − 2⌈ j
2⌉] for 0 ≤ i ≤ 3

and 1 ≤ j ≤ 4.

Summarizing the above two subsections, we construct [n, 5] HSO codes for each n
with 342 ≤ n ≤ 492.

4. Construction of HLCD Codes

In this section, we focus on constructing HLCD codes from known HSO codes in the
last section by puncturing some HLCD blocks.

Lemma 6. Let Ai be (5, 4) HSO blocks for 1 ≤ i ≤ 4 and A = (A1, A2, A3, A4). If n ≥ 341,
G5,n = (A | G5,n−20) is a generator matrix of an [n, 5, d] HSO code and G5,n−20 has (j, j) HLCD
blocks for 5 ≤ j ≤ 9. Then, there are [n − 5i − j, 5, d − 4i − j] HLCD codes for 0 ≤ i ≤ 3 and
5 ≤ j ≤ 9.

Proof. Let Bj be (j, j) HLCD blocks of G5,n−20 for 5 ≤ j ≤ 9. Let D5i+j = (A1, · · · , Ai | Bj)
for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 9. Then, these D5i+j are (5i + j, 4i + j) HLCD blocks of G5,n

for 1 ≤ i ≤ 4 and 5 ≤ j ≤ 9. Puncturing these blocks form G5,n; then, one can obtain the
generator matrix of [n − 5i − j, 5, d − 4i − j] HLCD codes for 0 ≤ i ≤ 3 and 5 ≤ j ≤ 9.

According to Section 3.1, for n = 364, 386, 407, let d = 272, 288, 304, respectively;
there are [n, 5, d] HSO codes with generator matrices G5,n = (A | G5,n−20), where A =
(A1, A2, A3, A4), as shown in Section 3 , and G5,n−20 = (G5,n \ A). Thus, if we can find that
each G5,n−20 has (j, j) HLCD blocks Bm,j for 5 ≤ j ≤ 9 and m = n − 20, then we can obtain
[n − 5i − j, 5, d − 4i − j] HLCD codes. We check these facts in three cases.
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Case 1. Let m = 344 and G5,344 = (G5,364 \ (X1, X2, X3, X4). It is easy to check that G5,344 has
five (j, j) HLCD blocks Bm,j for 5 ≤ j ≤ 9, as follows:

Bm,5 =









1000 0
2100 0
2011 1
1010 3
1333 0









, Bm,6 =









10000 0
21000 0
20111 1
10110 3
13233 0









, Bm,7 =









100000 0
210000 0
201111 1
101310 3
132133 0









, Bm,8 =









1000000 0
2100000 0
2011111 1
1011310 3
1302133 0









,

Bm,9 =









10000000 0
21000000 0
20111111 1
10101310 3
13022133 0









.

Case 2. Let m = 366, G5,366 = (G5,386 \ (Y1, Y2, Y3, Y4). It is easy to check that G5,344 has five
(j, j) HLCD blocks Bm,j for 5 ≤ j ≤ 9, as follows:

Bm,5 =









00011
00111
11313
23223
13231









, Bm,6 =









000011
100111
211313
323223
313231









, Bm,7 =









0011011
0011111
1133313
2333223
1311231









, Bm,8 =









00011011
10011111
21133313
32333223
31311231









,

Bm,9 =









001111011
001111111
111313313
232323223
133131231









.

Case 3. Let m = 387 and G5,387 = (G5,407 \ (Z1, Z2, Z3, Z4). It is easy to check that G5,387 has
five (j, j) HLCD blocks Bm,j for 5 ≤ j ≤ 9 as follows:

Bm,5 =









1000 0
1110 0
3201 1
2121 2
2002 2









, Bm,6 =









10000 0
11110 0
32201 1
23121 2
22002 2









, Bm,7 =









100000 0
111110 0
313201 1
213121 2
223002 2









, Bm,8 =









1000000 0
1111110 0
3313201 1
2113121 2
2223002 2









,

Bm,9 =









10000000 0
11111110 0
33113201 1
22213121 2
23223002 2









.

According to Section 3, for n = 428, 450, 471, 492, let d = 320, 336, 352, 368, respectively;
there are [n, 5, d] HSO codes with generator matrices G5,n = (U | G5,241 | A5,n−261), where
U = (U1, U2, U3, U4) and G5,241 = ((G5,256 | I5) \ U). Thus, if we can find that each
A5,n−261 has (j, j) HLCD blocks Dm,j for 5 ≤ j ≤ 9 and m = n − 261, then we can obtain
[n − 5i − j, 5, d − 4i − j] HLCD codes. We check these facts in four cases.

Case 4. Let m = 167, and A5,167 is given in Appendix A.2. It is easy to check that A5,167 has five
(j, j) HLCD blocks Dm,j for 5 ≤ j ≤ 9, as follows:

Dm,5 =









0221 3
2132 2
2000 0
1302 0
1100 0









, Dm,6 =









01221 3
22132 2
20000 0
13302 0
13100 0









, Dm,7 =









022021 3
211332 2
200000 0
123202 0
101000 0









, Dm,8 =









0122021 3
2211332 2
2000000 0
1323202 0
1301000 0









,

Dm,9 =









00322021 3
21011332 2
20000000 0
11223202 0
13001000 0









.
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Case 5. Let m = 189, and A5,189 is given in Appendix A.2. It is easy to check that A5,189 has five
(j, j) HLCD blocks Dm,j for 5 ≤ j ≤ 9, as follows:

Dm,5 =









00313
32202
22200
03311
11111









, Dm,6 =









000313
321202
221200
030311
111111









, Dm,7 =









0011313
3200202
2212200
0303311
1111111









, Dm,8 =









02011313
30200202
23212200
02303311
11111111









,

Dm,9 =









010011313
332100202
232112200
023003311
111111111









.

Case 6. Let m = 210, and A5,210 is given in Appendix A.2. It is easy to check that A5,210 has five
(j, j) HLCD blocks Dm,j for 5 ≤ j ≤ 9, as follows:

Dm,5 =









33131
01211
10210
00200
22031









, Dm,6 =









333131
101211
310210
000200
122031









, Dm,7 =









3133131
1201211
3110210
0200200
1322031









, Dm,8 =









32133131
11201211
30110210
01200200
12322031









,

Dm,9 =









132133131
211201211
030110210
201200200
212322031









.

Case 7. Let m = 231, and A5,231 is given in Appendix A.2. It is easy to check that A5,231 has five
(j, j) HLCD blocks Dm,j for 5 ≤ j ≤ 9, as follows:

Dm,5 =









12210
30012
01021
20131
32332









, Dm,6 =









112210
230012
201021
120131
032332









, Dm,7 =









1112210
2230012
2201021
1120131
0032332









, Dm,8 =









11112210
22230012
02201021
31120131
20032332









,

Dm,9 =









111112210
232230012
032201021
311120131
200032332









.

Summarizing previous discussions, from seven HSO codes (which are also optimal
codes), [364, 5, 272], [386, 5, 288], [407, 5, 304], [428, 5, 320], [450, 5, 336], [471, 5, 352], and
[492, 4, 368], we can derive seven groups of HLCD codes, as follows.

Theorem 3. Let 0 ≤ i ≤ 4, 5 ≤ j ≤ 9. There are seven groups of HLCD codes with lengths
342 ≤ n ≤ 487:

[364 − 5i − j, 5, 272 − 4i − j], [386 − 5i − j, 5, 288 − 4i − j], [407 − 5i − j, 5, 304 − 4i − j],
[428 − 5i − j, 5, 320 − 4i − j], [450 − 5i − j, 5, 336 − 4i − j], [471 − 5i − j, 5, 352 − 4i − j], and
[492 − 5i − j, 4, 368 − 4i − j].

Comparing the parameters of the above new HLCD codes with those in [19], one can
see that 31 of our HLCD codes have larger distances than those [n, 5] of the same lengths
in [19], and most of the others have the same distances as those in [19]. Table 1 shows our
31 HLCD codes and theirs.
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Table 1. Comparison of HLCD codes.

No. HLCD in [19] Our HLCD Codes No. HLCD in [19] Our HLCD Codes

1 [359, 5, 266] [359, 5, 267] 17 [466, 5, 346] [466, 5, 347]
2 [397, 5, 294] [397, 5, 295] 18 [472, 5, 350] [472, 5, 351]
3 [400, 5, 296] [400, 5, 297] 19 [475, 5, 352] [475, 5, 353]
4 [401, 5, 297] [401, 5, 298] 20 [476, 5, 353] [476, 5, 354]
5 [402, 5, 298] [402, 5, 299] 21 [477, 5, 354] [477, 5, 355]
6 [417, 5, 309] [417, 5, 310] 22 [478, 5, 354] [478, 5, 355]
7 [418, 5, 310] [418, 5, 311] 23 [479, 5, 355] [479, 5, 356]
8 [420, 5, 311] [420, 5, 312] 24 [480, 5, 356] [480, 5, 357]
9 [421, 5, 312] [421, 5, 313] 25 [481, 5, 357] [481, 5, 358]
10 [422, 5, 313] [422, 5, 314] 26 [482, 5, 357] [482, 5, 359]
11 [423, 5, 314] [423, 5, 315] 27 [483, 5, 358] [483, 5, 359]
12 [440, 5, 326] [440, 5, 327] 28 [484, 5, 359] [484, 5, 360]
13 [460, 5, 341] [460, 5, 342] 29 [485, 5, 360] [485, 5, 361]
14 [461, 5, 342] [461, 5, 343] 30 [486, 5, 361] [486, 5, 362]
15 [464, 5, 344] [464, 5, 345] 31 [487, 5, 361] [487, 5, 363]
16 [465, 5, 345] [465, 5, 346]

For each of our [m, 5, d] HLCD codes given in Table 1, we can derive [341s+m, 5, 256s+
d] HLCD codes for s ≥ 0.

Theorem 4. If [m, 5, d] is one of our 31 HLCD codes given in Table 1, then there are [[341s +
m, 5, 256s + d; 341s + m − 5]]2 EAQECCs for s ≥ 0. Thus, we obtain 31 classes of EAQECCs
better than those in [19] of the same lengths.

5. Conclusions

In this paper, we have studied the construction of HSO codes and HLCD codes with
good minimum distances from known codes and further constructed EAQECCs with
good parameters.

The largest minimum distance dso of HSO codes for 342 ≤ n ≤ 492 has been given
above. If dop(n, 5) is determined for a given n, for any optimal linear code [n, 5, dop(n, 5)], an

HSO code with dso(n, 5) = 2⌊
dop(n, 5)

2
⌋ could be constructed. If dop(n, 5) is not determined

for given n, for any linear code [n, 5, dbk(n, 5)], an HSO code with dso(n, 5) = 2⌊
dbk(n, 5)

2
⌋

could be constructed. The minimum distance has been optimized for all the above HSO
codes.

Based on these HSO codes, we can further construct HLCD codes with lengths
342 ≤ n ≤ 492. The parameters of these HLCD codes are as follows: [n− 5i− j, 5, dso(n, 5)−
4i − j] for n = 364, 386, 407, 428, 450, 471, 492, 0 ≤ i ≤ 4 and 5 ≤ j ≤ 9. By comparing with
ones in the literature, it is easy to know that our 31 HLCD codes in Table 1 have better
parameters. From these HLCD codes, we have obtained 31 classes of entanglement-assisted
quantum codes with maximal entanglement.
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Abbreviations

The following abbreviations are used in this manuscript:

HSO Hermitian self-orthogonal

HLCD Hermitian linear complementary dual

EAQECC Entanglement-assisted quantum error-correcting code

Appendix A. Generator Matrices of Some Special Optimal HSO Codes

Appendix A.1. Generator matrices G5,386 and G5,407 in Section 3.1

Let G5,364 = (A00, A01a, A01b, A10a, A10b, A11a, A11b, A12a, A12b, A13a, A13b), where

A00 =









0000000000000000
0000000000000000
0000111111111111
0111001111223333
1012230123130122









, A01a =









0000000000000000000000000000
1111111111111111111111111111
0000000000001111111111111111
0001112223330001112222233333
0131231321230120231122301123









,

A01b =









00000000000000000000000000000000
11111111111111111111111111111111
22222222222222223333333333333333
00011122222333330000111122223333
12312301223012330123012301231233









, A10a =









111111111111111111111111111 1
000000000000000000000000000 0
000000000000111111111111111 1
001111222333000111112222333 3
010123123013012012230123012 3









,

A10b =









1111111111111111111111111111111 1
0000000000000000000000000000000 0
2222222222222222333333333333333 3
0000111122222333000011112222233 3
0123012301122123012301230122123 3









, A11a =









11111111111111111111111111111111111 1
11111111111111111111111111111111111 1
00000000000000001111111111111111111 1
00011111222233330000011111222233333 3
12301123012301230123300123012201223 3









,

A11b =









111111111111111111111111111111111111111 1
111111111111111111111111111111111111111 1
222222222222222222223333333333333333333 3
000011111122222333330000011111222233333 3
012300112301223011230112211223012300123 3









, A12a =









11111111111111111111111111111111111 1
22222222222222222222222222222222222 2
00000000000000001111111111111111111 1
00001122222333330000011111222222333 3
12330200123011230122301233011233012 2









,

A12b =









111111111111111111111111111111111111111 1
222222222222222222222222222222222222222 2
222222222222222222223333333333333333333 3
000001111122223333330001111122222233333 3
0112301223012300112221230123301123300112 2









, A13a =









11111111111111111111111111111111111 1
33333333333333333333333333333333333 3
00000000000000001111111111111111111 1
00011111222233330001111122222233333 3
01201123012301230230112301223300112 3









,

A13b =









111111111111111111111111111111111111111 1
333333333333333333333333333333333333333 3
222222222222222222223333333333333333333 3
000111112222223333330000111111222223333 3
012012230011230122330123011223011231223 3









.

Let G5,386 = (B00, B01a, B01b, B10a, B10b, B11a, B11b, B12a, B12b, B13a, B13b), where

B00 =









00000000000000000 0
00000000000000000 0
00001111111111111 1
11110000111122233 3
01130123012311323 3









, B01a =









000000000000000000000000000 0
111111111111111111111111111 1
000000000000001111111111111 1
000111222333330001112222333 3
123013123012331231230123012 3









,

B01b =









00000000000000000000000000000000000 0
11111111111111111111111111111111111 1
22222222222222222233333333333333333 3
00001111122223333300001112222222333 3
02230122301131223312330130012223022 3









, B10a =









1111111111111111111111111111111 1
0000000000000000000000000000000 0
0000000000000011111111111111111 1
0000111222233300011112222333333 3
0123012012301311201230122001122 3









,

B10b =









1111111111111111111111111111111 1
0000000000000000000000000000000 0
2222222222222222223333333333333 3
0000111122222233330001112222333 3
0123012301122301230121230123012 2









, B11a =









111111111111111111111111111111111111111 1
111111111111111111111111111111111111111 1
000000000000000000111111111111111111111 1
000011111222233333000111122222222333333 3
012301123011301223123012200122333001123 3









,

B11b =









111111111111111111111111111111111111111 1
111111111111111111111111111111111111111 1
222222222222222222333333333333333333333 3
000111112222222333000011111111222333333 3
013012330011223123001200112233123001112 3









, B12a =









11111111111111111111111111111111111 1
22222222222222222222222222222222222 2
00000000000000000011111111111111111 1
00011112222222333300000111122223333 3
01302330011223012301123122322330112 3









,
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B12b =









1111111111111111111111111111111111111111111 1
2222222222222222222222222222222222222222222 2
2222222222222222222222333333333333333333333 3
0001111111222222233333000000011111112222333 3
0230011223001223301223001122301122330123001 2









, B13a =









11111111111111111111111111111111111 1
33333333333333333333333333333333333 3
00000000000000111111111111111111111 1
00001112222333000011111112222222333 3
01121230123123012301122330112233011 3









,

B13b =









1111111111111111111111111111111111111111111 1
3333333333333333333333333333333333333333333 3
2222222222222222222222333333333333333333333 3
0000011111112223333333000001111122223333333 3
0122300122331230011223011230122312230011223 3









.

Let G5,407 = (D00, D01a, D01b, D10a, D10b, D11a, D11b, D12a, D12b, D13a, D13b), where

D00 =









000000000000000000 0
000000000000000000 0
000011111111111111 1
011100111112222333 3
112323012231223012 3









, D01a =









00000000000000000000000000000 0
11111111111111111111111111111 1
00000000000000011111111111111 1
00011111222223300111122222333 3
12301223001231213122301223011 2









,

D01b =









0000000000000000000000000000000000000 0
1111111111111111111111111111111111111 1
2222222222222222222333333333333333333 3
0001111112222233333000011111222223333 3
1230012330122301223012301223012330123 3









, D10a =









11111111111111111111111111111 1
00000000000000000000000000000 0
00000000000111111111111111111 1
00111223333000011111222223333 3
23023230123123300123012330012 3









,

D10b =









1111111111111111111111111111111111111 1
0000000000000000000000000000000000000 0
2222222222222222222333333333333333333 3
0000011122222333333000001111122223333 3
0223312301233112233012230122301230122 3









, D11a =









1111111111111111111111111111111111111 1
1111111111111111111111111111111111111 1
0000000000000000000111111111111111111 1
0000011122222233333000011112222223333 3
0123302300123301123012301230112230122 3









,

D11b =









111111111111111111111111111111111111111111111 1
111111111111111111111111111111111111111111111 1
222222222222222222222223333333333333333333333 3
000000111112222233333330000011112222222333333 3
011223012231122301122330122302330112233001122 3









,

D12a =









11111111111111111111111111111111111111111 1
22222222222222222222222222222222222222222 2
00000000000000000001111111111111111111111 1
00000111122222233330000001111122222233333 3
01223012300223301220012330112301123300122 3









,

D12b =









11111111111111111111111111111111111111111 1
22222222222222222222222222222222222222222 2
22222222222222222223333333333333333333333 3
00011111222222333330000001111112222223333 3
02302233001223012230112230122330112330012 3









,

D13a =









11111111111111111111111111111111111111111 1
33333333333333333333333333333333333333333 3
00000000000000000001111111111111111111111 1
00011111222223333330000011111222222333333 3
12301233012330012230123300133112233001223 3









,

D13b =









11111111111111111111111111111111111111111 1
33333333333333333333333333333333333333333 3
22222222222222222222222333333333333333333 3
00000111111222222233333000111122222233333 3
01233001133001123301123023012300112300112 3









.

Appendix A.2. Generator Matrices G5,172, G5,194, G5,215, and G5,236 in Section 3.2

Let G5,172 = (E1, E2), where

E1 =









10000 02220313122330200013330311323322120001332022303103320202333210021033322320123101222331320 0
01000 02222232311012210101320131312031213223110033312013022113310120133330110002223310031302120 3
00100 00011310333333303301030000000000022022022222222222222222122121111011111000100303303333333 3
00010 11102221101100202303131331120202200311311322322223031022010200113213232233211002001211032 1
00001 00000101111111111110111113313133300300300003030003233222233132221232222222322320323233202 3









,

E2 =









2000021213322132120031113002233333322010011012323223030113102223310210322021 3
3221021313320001113202331220001032123122301100223320030012232100132021011332 2
3333333333333333013313313113101111111111111112121112221212222222222000000000 0
3013222332221311031031020230232201201132311110130101320202002010111231223202 0
3223303020333000230030030320323233133311132113111112131111110111111333001000 0









.
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Let G5,194 = (H1, H2), where

H1 =













10000 22213001230023323032031103312221301012120203203200121121130233112011233331010320322313221 0
01000 22213001103310010310213321133321301103031021021022312212203103112011233331023013011021003 2
00100 10333322111122330011000033222211123222103001122333322110000333333221111000033301112223332 2
00010 01222233000033221100111122333311123222103001122333322110000330000112222333300032221110001 1
00001 00000000000000000000000000000011111111111111111111111111111111111111111111111111111111111 1













,

H2 =













20213202113302113022211300200221312033303222003331231231021100023303203200313123200130021113001131 3
02031313002213002132211300200221303122212333112113013013212233310033203203020210133312203331210020 2
21000330000111122222223333301111100000322211111222233001100003333220033221112333000111033322211220 0
12333003333222211110001111123333322222100033333000011223322221111001122330003222111000122233300331 1
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 1













.

Let G5,215 = (K1, K2, K3), where

K1 =













10000 00030033303333030030000030001131131312222221210010001010303030333333230322220220211211111 2
01000 03210201321313232232322032200031010001103330311001112322130302023222233220023103031031311 0
00100 21011132323001221010232011111133203202201123310213221103130012220110133303331102122230003 2
00010 12211211121311111031010300032202222223230003032232221010303030301101101113311331303302032 0
00001 23321211010132211100233230033310001322312210033020110013121102302233303023311002121232031 1













,

K2 =













1222222121112212110101022020033333333033301130110000202211233333322001113123223223303311001101201 2
1100232120112213333323332320101010001100010001000111110132132333322321011101101002302222322232332 2
3011310113222230030221232133202201103333300002220100331031220100321323102200233211332303202211333 1
3002222121112212333333333331111002202002201123113333030011022222200330003013113113323300220023123 1
0220211003333320302112022332230031122213311100333322013321121100312003003221112030303203122222100 2













,

K3 =













222222222122133213313 1
333231330231211120121 1
032011103333033011021 0
332221321221200120020 0
033003110121211232203 1













.

Let G5,236 = (L1, L2, L3), where

L1 =













10000 00120323121113210203300323222200330320323032233311211311113101033300000112201100223202002 1
01000 11231102012231233322322303111133211031213223211133222132223320322001101010021123012102013 0
00100 32310232333302330120201121100010113320123332001032301303220101201023302313212123130313213 2
00010 32211232221130003302132213232232221112023323000132210213221010201300021031031310203121130 2
00001 33010102311131203100333110332223123120102032122200222131001231001233312300023101200102313 2













,

L2 =













1313311333332301122222220323300103330210202210213010310200031100301331031201112332110333303322022 1
1233023011103111101232323212332123322303202213101221021203231130012301210130111230111101120311322 3
0210003310122313202021021302021302202130201110112032200233110013110320312231231103112013320233201 1
1300013200133303203302213130312021020213033301113022200333000011222112031113013320220330022233311 1
1231231133203012330120033323002232311132310002311312021321201132312301022011333010002330012311000 2













,

L3 =













022220202222320313132321013231001111111221 0
022331303221202131230211302120223223223001 2
123102313100322310130112302232332103220102 1
123003213111323122302330131100010231112013 1
133002203112311023323122012132101320003233 2













.
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