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Abstract. We investigate the evolution of free energy and direct photon production from
quark-gluon plasma (QGP) considering finite chemical potential. The evolution of QGP
formation at the chemical potential is done through finite value of quark mass. The evolution
rate is found to be decreasing with chemical potential. We further study the direct photon
emission from the fireball of such QGP and found the result to be increasing function of chemical
potential in all the channels of photon production. It also shows enhancement of photon emission
in comparison to the other theoretical calculation of direct photon productions.

1. Introduction

The research on the ultra-relativistic heavy-ion collisions indicate the evolution of strongly
interacting matter called quark-gluon plasma (QGP) [1]. The matter exists for a short life
in the process of transformation from a confined to a deconfined state. This short period of
existence as a deconfined matter in the early evolution is believed to be in the form of a super-
fluid matter. Due to the complicated nature of the state, the investigation on this matter
has become a core issue in the present scenarios of heavy ion reactions. Many theoretical
and experimental researcher have a keen view on search of evolution of the early universe.
There are many theoretical and experimental published works on QGP and the reports of
these works are obtained through the path from Relativistic Heavy Ion-collider (RHIC) and
Large Hadron Collider(LHC) [2,3]. The lattice QCD calculation is one method for prediction
of such matter and they also inform the presence of occurring such matter (QGP) at very
high temperature [4] and at very high nuclear density. In fact, experiments at SPS/CERN,
RHIC/BNL and LHC/CERN have claimed for the creation of such situation at very high
temperature for the study of QGP [5]. The formation of QGP in these experiments is done
through the central collision of two massive nuclei, resulting the product of many particles
subsequently bringing the entire information about the collision zone. So many theorist have
modeled to create the existence of QGP formation. They also studied the phase structure of
QGP-hadron phase transition. Likewise, we use a simple statistical model to construct the free
energy evolution of QGP adopting the mean field potential between the interacting particles.
After the evolution of the QGP fireball we consider all related processes for the production of
particles from these processes. These produced particles consist of a large number of various
elements varying from the heavy particles to light elements called dileptons and photons [6 — 10].
The light particles produced are considered to be the most probable signals for the formation of
QGP. As they interact electromagnetically they carry the entire information of the reaction zone
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to the detector and give the fundamental information for the formation of QGP. So photons and
dileptons are assumed to be the most promising and exciting signal in the formation of QGP.

Moreover, the present experimental programs at RHIC/BNL and LHC/CERN have proved
the main goal of its experimental pursuit in the research of QGP with the higher beam energies.
These active programs will provide clear ideas in the experimental outcomes and in the analysis
of theoretical modeling too. In addition to this, the transverse momentum distribution function
of direct photon is significant in the photon induced reaction at the same energies /s [11] for
the momentum greater than 1.5 GeV/c in the central collision. It implies the importance of
direct photon production dependence on the space time evolution scenarios of the finite QGP
formation. So, there are many probable outcomes of direct photon and dilepton production from
the finite baryonic density. Among the calculations at finite baryonic density, it is Dumitru et
al.’s photon production at finite baryonic density and subsequently Strickland’s calculation using
the Jiittner distribution function [12 — 14]. Later on there are works on dilepton and photon
production at finite baryonic potential from Hammon and Bass et al. [15,16] etc. Even at the
present experiments the consideration of finite chemical potential is taken into account at FAIR
experiments as an example of CBM (compact baryon matter). On these information, we focus
the photon radiation directly from the thermalized quark-gluon plasma at T' = 0.57 GeV which at
last freeze out to hadronic matter with the production of latent heat, that again reprocess heating
and cooling into process of hadronization as pions at around temperature 7' = 0.15 GeV [17].

In this present work, we investigate our simple statistical model of strongly interacting matter
of quark-gluon plasma at finite baryonic density incorporating the parametrized momentum
factor in the quark mass and study free energy evolution at finite chemical potential. Then we
study the photon production at these finite chemical potential. In most calculations we found
that the photon production is done through the massless quark. Due to this massless quark we
obtain infrared divergence in the production rate. So we use the finite value of quark mass for
removal the infrared (IR) divergence. The finite value of quark mass is taken as the effective
quark mass and its value is obtained through the momentum cut off defined as [18]:

1 T2
. : (1)
3(33 = 2ns)In(1 + £5)

where p = (2—7?1)’72—553)1/ 12 is known as low momentum cut off with quark flavor ny. v is defined
as root mean square, equal to 1/7—22 + 722 with 74 = av,. 74 is equal to 1/6 with the suitable
q g

value of a searched in an ad-hoc fashion to fit the free energy evolution of the QGP with the
stable droplet size [19]. So we calculate the photon radiation at finite baryonic density at the
finite temperature for the quark flavor ny. The calculation of photon production is performed at
the temperature 7' = 0.57 GeV. At last we compare the result with our earlier results without
chemical potential and other theoretical works.

Thus, we organize the paper as: In section 2 we study a brief idea of free energy evolution of
QGP at finite chemical potential. In section 3, we present the photon radiation from QGP at
finite baryonic density. In last section 4, we give the results and conclusions.

2. Free energy evolution of QGP at finite baryon density

The free energies of QGP evolution can be obtained through the density of states of the non-
interacting fermions and bosons at the finite baryonic density. Here fermions are contributed
by quarks and antiquarks and bosons are represented by gluons, which are considered to be
active constituent particles of QGP system. So the free energy of these particles is defined as
follows [20]:

Fi = ZFTgi/dpPi(p) Inf1 + e~ (v m%pL“)/T], (2)
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where ¢; is degeneracy factor and p;(p) is density of states of the constituent particles of
the QGP, which we define below. To calculate the density of state, we first use the thermal
Hamiltonian process of thermal dependent quark mass. The thermal Hamiltonian is composed
of the unperturbed Hamiltonian part and the interaction potential between the constituent
particles. This interaction potential represents the mean field potential in the phase space
presentation. Now the Hamiltonian is obtained as [21]:

H(p,T) = Ho(p,T) + %Vq,gQQ(p)TQ (3)

where first term, H,(p,T) is unperturbed Hamiltonian and second one is the effective mean
field potential between the particles in which g?(p) = 4ma, with QCD coupling constant of a

defined as
47

Qs = 2N (4)
(33 = 2ny)In(1 4 £3)
Now the density of state of quarks and gluons is constructed by the method of Ramanathan and
Bethe et al [22] using the interacting mean field potential obtained earlier. It is obtained after
analytical calculation using their model.

’(}2’}/3T6
4772p3

g4(p)[d9(p) B 92(17)]' (5)

dp 2p

p(p) =

So at last we obtain the free energies of quarks, antiquarks and gluons plugging this density of
states in Eqn.2. Besides these free energy, there is pion free energy and the Weyl [23] surface
energy which confine the system instead of using Bag energy. They are represented as follows

Fy = (3T /2720 / PP In[l — e VR Ty, (6)
0

and T
Fsurface = ’YR2 / F(S(p - T)dp (7>

where R is the size of the droplets. Now, the total free energy of the QGP can be computed
as sum of all the relevant energies in the system.

Fiotat = Z F; <8>
i
where 7 denotes each contribution of the particles stated above.

3. Photon production from QGP at finite baryon density

The photon production from QGP at finite baryon density is very interesting theoretical problem.
There are a lot of studies for the calculation of photon production at finite temperature and
baryon density. In most of the studies, the production rate of photon and dilepton are measured
in three classified regions. In first measurement the photon spectra is obtained at the low
transverse momentum which are mainly produced due to the soft hadronic decay. In second
region, the spectra is studied in the intermediate transverse momentum and subsequently, in
higher transverse momentum, which is mainly contributed by the strongly interacting QGP.
Here we focus on a baryon rich density and thermalized soup of QGP system after the Big
Bang process. In the process the system takes a longer time compared to the time scale
associated with the photon production. Moreover the production rate for the coupling parameter
as << 1 [24], turns out to be slow expansion near the equilibrium temperature. Depending on
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such issues, we estimate our work of photon production at finite baryon density considering the
QCD quark antiquark annihilation process and Compton process. Due to rich baryon density
the number of quark contents in the system is large enough to interact among themselves
and other particles. The quark-antiquark annihilation and QCD Compton are the dominant
processes for the production of photon from thermalized and baryon rich system of quarks and
gluons. The production rate through the annihilation process qg — vg, at thermal equilibrium
temperature T = 0.57 GeV is calculated as:

AN 16£,(p
B = al) / B
d3pd*z (27)64E Z dsdE fg(E,

[1+ fo(Ey)] \/ s(s — 4m2)0qt1*797
9)

where Ny is number of quark flavors with the Jiittner distribution functions. The Jiittner
distributions for quarks, anti-quarks and gluons are defined as:

A @ e:t;L/T /\g

_ M@ _
Jaw =~y o Je = mm -

X

(10)

We substitute the distribution functions in the above relation and obtain photon radiation
rate at the finite baryon density through annihilation and it is same with other theoretical works
of Ref. [13,14,25 — 29] :

dN*®

20065 9 0 _p/T 2
Ed3pd4x 1 ele / ;ef
4ET
X [ln(?) - Ceuler -1- ln(n)]v (11)

c

where Agg) = )\q@ei“/T and k? = 2m2.
In the similar line we perform one loop calculation of Compton process ¢(¢)g — q(q)7y in the
finite baryon density as:

dN¢ 8N fq(p
Ed3pd4x N 2755 Z /deE Jo(E
x 1= fyl g)](s - mQ)quH“rq- (12)

Again we substitute the distribution functions of quark, anti-quark and gluon in Compton
process expression. Finally we obtain photon radiation rate as [13, 14,25 — 29]:

dN°¢ 2000 5 BT 9
Bpdts — at QMTE : zf:ef
AET
[ln(?) — CRuler +1/2 — In(n)], (13)

where Cpgyier = 0.577216. Similarly, the production rates of photons due to two loops order of
AWS and Bremsstrahlung processes are given as [28, 29]:

AN 2N,y 3

c 2 3 2
Fpdiz 3w colFht A
x Y e3TE[Jr — Ji], (14)
f
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where N, is color degree of freedom. Jz, and Jr values are taken as 1.13 and 1.20 for ny =3 .
Further we integrate the total photon rate over the space time history of the collision to
obtain the total photon spectrum for all the channels. It is expressed as [14, 29, 30]:

dN /A
Eprdy —/ z(FE d3 d4 Q/ TdT/dy d3 d4 (16)

where 7 is the initial and final value of time evolution. We take rapidity vynue =
+5.3 corresponding to RHIC scale. The transverse cross-section of the considered nuclei is
taken as Q ~ 180fm?. pr is the photon transverse momentum. Then the quantity on the right
hand side is defined in the centre-of-mass system with the photon energy F = ppcosh(y’ — y).
With the values of rapidity and pr, we get the total photon spectrum shown in figures.
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4. Results and Conclusions

In the results and conclusions we represent the updated and extended calculations of free
energy evolution and photon radiation through the finite chemical potential. The calculation
is performed for quark flavor n; = 3. The formation/ evolution of QGP droplet is shown in
Fig. 1 for quark flavor ny = 3. In Fig. 1, the droplet size of QGP formation is found to vary
from R =2.0 to 1.5 fm for the chemical potential varying from p = 100 — 500 MeV. It means
that increase of chemical potential decreases the droplet size. It is just opposite pattern to the
the case of finite temperature. In case of finite temperature, the size of droplet is increased with
respect to the increase in temperature, which indicates good output in respect of phase structure.
n QCD phase structure the phase transition with the chemical potential is just opposite to the
temperature, which indicates the good output in terms of phase structure.

In Fig. 2 we show the photon emission rate at the initial temperature 7" = 0.57 GeV through
the annihilation process for quark flavor ny = 3. The emission rates are found to be increasing
function with the chemical potential p. The increase in the emission rate is highly effected by
the temperature as well as the chemical potential of the system. It is found to be very large
in the production at very high temperature and chemical potential. In Fig. 3 we again show
the photon emission at temperature 7" = 0.57 GeV through the Compton mechanism. In this
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Figure 2. The photon emission rate

through ann. at thermal tempera-

ture T = 0.57 GeV with the transverse

momentum for ny = 3.

Figure 3. The photon emission rate
through Compton at thermal tempera-
ture T = 0.57 GeV for ny = 3.
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rate through AWS process at thermal
temperature T' = 0.57 GeV for n; = 3.

channel too the production rate is high in accordance with the chemical potential. The large
production is found in the case of Compton process in comparison to the annihilation process
for the same value of chemical potential. So the Compton shows better outcomes in terms of
production rates [14, 26, 27, 28].

Now we study the production rate of AWS channel. The photon productions rate is shown
in Fig. 4. It shows that production rates follow same pattern as before. Yet AWS channels
produce less photons in comparison with the earlier channels. In last process, we do the
Bremsstrahlung process which is shown in Fig. 5. Photon production due to this process is
increased with the increased chemical potential, and again in this process the production rate
is still high compared to the AWS channel and other two channels above. This implies that
in all the processes/channels, our model has large advantage in the photon production rate
particularly Compton and Bremsstralung processes. So the production rate of our model with
the flavor n;y = 3 have improvement from other works in these channels. It means that our result
is dominant over the production rate of Ref.[14,27,28]. Finally, we conclude that the evolution
of the fireball through the parametrization factor decrease the size of droplet formation in this



30th Winter Workshop on Nuclear Dynamics (WWND2014) IOP Publishing
Journal of Physics: Conference Series 535 (2014) 012002 doi:10.1088/1742-6596/535/1/012002

finite chemical potential. It shows that the evolution of fireball is suppressed in comparison
with the evolution of fireball at the finite temperature. The suppression may be due to large
presence of quark, antiquark and specially due to strange quark particles. Even though it is
not encouraged in the evolution of the plasma, the condensed matter of the system enhance the
interaction between the particles and therefore enhance the production rates. Overall the results
show that the calculation of photon production as a function of photon transverse momentum
incorporating chemical potential and the factor in the quark mass give the improved results in
the photon yield products from the earlier results without the chemical potential [31]. Thus, the
consideration of parametrization factor in the quark mass has important role in the evolution
as well as in the photon measurements of the high energy heavy ion collisions in finite chemical
potential.
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