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Abstract

This paper reports the recent progress in the design stud-
ies of polarized beams for the Circular Electron Positron
Collider (CEPC). The overall design concept is outlined, fol-
lowed by a few highlights in the topics of polarized positron
beam generation, spin resonance structure in circular accel-
erators, and spin rotators in the electron collider ring.

INTRODUCTION

The Circular Electron Positron Collider (CEPC) is a next-
generation electron-positron circular collider [1, 2] that is
designed to operate at center-of-mass energies of 91 GeV
(Z-factory), 160 GeV (W-factory), and 240 GeV (Higgs-
factory), with the potential to upgrade to 360 GeV (ttbar
energy). The primary objective of CEPC is to enable ultra-
precise measurements and explore new physics beyond the
Standard Model. The resonant depolarization technique
(RD) [3] is critical for obtaining highly accurate measure-
ments of the masses of Z and W bosons, which necessitates
transversely polarized e+ and e- beams with at least 5% to
10% beam polarization. On the other hand, longitudinally
polarized colliding beams, which probe the spin dimension,
can be highly advantageous for boosting certain channels,
reducing background noise, and facilitating searches for new
physics beyond the Standard Model. This requires longitu-
dinal polarization of 50% or more at the Interaction Points
(IPs), as well as a high luminosity. These applications require
a thorough investigation of the generation and maintenance
of polarized beams as well as the spin manipulation in the
collider rings.

We propose to generate highly polarized electron and
positron beams from the source, transport them throughout
the injector chain and inject them into the collider rings. The
CEPC injector chain, as outlined in the CEPC Conceptual
Design Report, includes unpolarized electron and positron
sources, a 10 GeV main linac, a full energy booster and asso-
ciated transfer lines. Fig. 1 shows the envisaged modification
of the CEPC accelerator complex to implement polarized
beams. A polarized electron gun can be added to produce
electron bunches with 80% or more polarization [4]. How-
ever, the development of polarized positron sources is still
technically challenging [5] to meet the requirements of top-
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up injection for colliding bunches. Therefore, we tentatively
assume electron beams are polarized while positron beams
are unpolarized in the colliding beam experiments. Never-
theless, it is still possible to generate 20% or more beam
polarization via the Sokolov-Ternov effect [6] for beam en-
ergy calibration in the positron damping ring, with the help
of asymmetric wigglers [7]. Then, the polarized beams are
transported through the injector chain whereby maintaining
the beam polarization is essential. Previous studies for the
SLC [8] and ILC [9] have shown small polarization loss
in the linac and transfer lines. Spin-resonance crossings in
the acceleration process in the booster could cause depolar-
ization [10], but our studies [11, 12] have shown that the
polarization loss can be small in the acceleration to 45.6
GeV and 80 GeV, due to the cancellation of strengths of spin
resonances in the booster lattice with a high “effective” peri-
odicity. These studies suggest it is possible to prepare beams
with a high-level polarization and inject into the collider
rings, which is essential for longitudinal polarized colliding
beams, and could also benefit beam energy calibration.

For the collider ring, the radiative depolarization effects
have been studied in depth [13], and solenoid-based spin
rotators have been successfully included in the lattice at the
Z-energies [14]. Simulations support that a high-level longi-
tudinal polarization can be maintained for the colliding elec-
tron bunches in the top-up injection, without significantly
sacrificing the luminosity. In addition, first attempts of reso-
nant depolarization experiments are under way at BEPCII. A
Compton polarimeter that measures the spatial distribution
of scattered electrons is under design for the CEPC [15].
In the following sections, we’ll present a few highlights in
our studies, with more details reported elsewhere [16] and
included in the CEPC Technical Design Report [17] to be
released later this year.
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Figure 1: The envisaged modification of the CEPC accelera-
tor complex to implement polarized beams.
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POSITRON DAMPING/POLARIZING RING

In the design outlined in the CEPC CDR [1], 3 nC unpo-
larized positron bunches are converted from the interaction
of a4 GeV, 10 nC unpolarized primary electron bunch with
a target. After pre-acceleration, they are cooled in a positron
damping ring to achieve the desired beam quality for later
transportation. By default, 4 positron bunches will stay in the
positron damping ring for 20 ms, to satisfy the needs to fill
the colliding bunches. In this case, the extracted bunches are
unpolarized. The possibility to polarize the positron bunches
using the Sokolov-Ternov effect in the positron damping
ring [18] or another dedicated ring of similar size [19] have
been considered before. Very strong asymmetric wigglers
are required to achieve a high-level polarization within 1
min or so for hundreds of bunches in the top-up mode, which
is very challenging. However, it is more feasible to gener-
ate polarized positron bunches to satisfy the needs of RD
measurements, which requires only a few bunches with a
moderate-level of polarization. Assuming one or two addi-
tional positron bunches are stored in the positron damping
ring for a longer time, say 10 min, to generate over 20%
beam polarization, the self-polarization build-up time tpg
shall be reduced to about 30 min. This scheme supplies two
types of positron bunches with distinct polarization and is
compatible with the injection timing needs for the injector.
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Figure 2: A schematic plot of a candidate lattice of the
positron damping ring.

Fig. 2 shows the layout of a candidate lattice of the positron
damping ring. In this design, the blue region represents the
lattice sections that can accommodate asymmetric wigglers
with a total length of up to 24 m. Beam parameters are
summarized in Table 1. Simulations have shown promising
results in both the dynamic aperture and equilibrium beam
polarization. In addition, using stronger wigglers can help
further increase the polarization of the extracted positron
bunches and decrease the required preparation time. These
aspects will be presented in more detail elsewhere.

SPIN RESONANCE STRUCTURE

In the examination of the depolarization effects in the
acceleration process of the CEPC booster, we studied the
structure of the imperfection and intrinsic resonances for a
simplified lattice model of future 100 km-scale circular elec-
tron (positron) accelerators [11]. Such a lattice has a large
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Table 1: Beam Parameters of the Positron Damping Ring

Parameter Value
Beam energy, ay 1.542 GeV, 3.5
Circumference 145 m
Wiggler magnetic field B, /B_ 1.8 T/0.36 T
Wiggler total length 24 m

P, w/ wigglers 90%
Tgks W/o wigglers 52 min
Tgks W/ wigglers 34 min
Store time 10 min
Polarization of extracted beam 22%

“effective” periodicity in terms of the lattice contributions

to the strengths of imperfection (v, = k) and intrinsic reso-
nances (vg = k + vy), similar to that of the EIC booster [20].
Among imperfection and intrinsic resonances, super-strong
resonances, where the contributions of all standard arc cells
add up coherently, occur near (mnPM + vg)/fye.m € Z,
where P and M are the lattice periodicity and number of
standard arc cells in each superperiod, 257 v 5 is the total ver-
tical betatron phase advance in all standard arc cells, 7, is
the proportion of the total bending angles of all standard arc
cells over 2, excluding the contribution from dispersion
suppressors. The spacings between adjacent super-strong
resonances are very large, while the first super-strong res-
onances near vpg/1,. also correspond to very high beam
energies. Meanwhile, the contributions from a large number
of unit cells mostly cancel out for the resonances at much
lower beam energies, away from the super-strong resonances.

Table 2: Parameters Relevant for Spin Resonance Structure

Parameter Boosterl [11] Booster2 [1] Collider [1]
vy 353.28 261.2 365.22
P 8 8 8

M 140 97 145
Narc 140/142 97/99 145/147
Vg 280 194 290
PM 1120 776 1160

Ve / Nare 284 198 294

In fact, this spin resonance structure is a general feature
of future 100 km-scale electron rings. In Table 2 we list
some key parameters for several lattices for the booster and
collider rings of the CEPC. For instance, Fig. 3 shows the
spectra of intrinsic and imperfection spin resonances for an
imperfection lattice of Collider in Table 2, the spectra of
the two booster lattices were shown elsewhere [11, 16] with
similar features. Note that the radiative depolarization in
the collider rings is quantified by the spin-orbit coupling
function d7n/d8, whose amplitude becomes large near spin
resonances, and shares the same feature of enhancement and
cancellation for different beam energies (ay ). It is important
to design the optics to avoid enhancement near key operation
energies including 45 GeV, 80 GeV and 120 GeV.
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Figure 3: Spectra of spin resonance for an imperfect lattice of Collider in Table 2.

SPIN ROTATORS IN THE COLLIDER

The detailed design of the spin rotators for the beam en-
ergy of 45.6 GeV is reported elsewhere [14]. Here, we’ll sum-
marize the main results, and focus on the case that the spin
rotators are only included in the electron collider ring [16].
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Figure 4: Geometry near one interaction region [14, 16],
with solenoid rotators (RotatorU and RotatorD) for the e~
beam, and compensating straight sections (SS) for the e*
beam.

Each spin rotator consists of a bending magnet section that
rotates the spins from the longitudinal to the radial direction,
requiring the total orbital bending angle to be an odd multiple
k of 15.18 mrad, and a solenoid magnet section that rotate
the spins from the radial to the vertical direction, requiring
an integral strength of about 240 T-m (20 units of 1.5 m-
long, 8 T superconducting solenoid magnets). The solenoid
magnets are interleaved by quadrupoles to compensate for
the transverse coupling [21]. The layout of a pair of spin
rotators around one IP is illustrated in Fig. 4. The spin
rotators are placed just out of the interaction region to make
use of its S-shape geometry [22, 23]. The half crossing
angle at the IP is 16.5 mrad, additional bending magnet
sections (A6 and A6,) are required in both spin rotators,
next to the solenoid sections. In the counterpart region of the
positron collider ring, the solenoid sections are replaced by
straight sections (SS) with quadrupoles to match the optics.
The circumference increases by about 2 km, the betatron
tunes increase by 10 units, while other beam parameters
almost remain unchanged. Simulations also indicate there
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is only a moderate shrink of dynamic aperture, which can
be recovered via dedicated optimizations.
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Figure 5: Simulated equilibrium polarization for the lattice
in the presence of magnet errors in the solenoid rotators.

We also numerically evaluated the performance of the spin
motion using the BMAD/PTC code [24, 25]. We introduced
in the solenoid sections relative field errors for solenoids
and quadrupoles with a root-mean-squared value of 0.05%,
and relative roll errors for quadrupoles with a root-mean-
squared value of 0.01%. Fig. 5 shows the simulated equi-
librium beam polarization using the SLIM algorithm [26]
in BMAD [24], and Monte-Carlo simulations implemented
in PTC [27]. These simulations shows the robustness of
the “anti-symmetric” spin rotator design against machine
imperfections.

CONCLUSION

This paper summarizes the recent progress in the de-
sign studies of beam polarization at the CEPC. Genera-
tion of polarized beams from the source, acceleration in
the booster and injection into the collider rings have been
studied, promising a high-level of beam polarization. More
technical aspects and potential extension to higher beam
energies are being studied.

The authors are grateful to D. P. Barber and S. Nikitin for
helpful discussions, and D. Sagan and E. Forest for the kind
help with simulation codes Bmad/PTC.
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