Correlations of W boson mass fits from m_T , p_T^l and p_T^{ν} fits

Yu Zeng and Ashutosh Kotwal

Duke University

Abstract

We study the statistical correlations between m_T , p_T^l and p_T^ν mass fits for 2 fb⁻¹ W mass analysis using 100 million PYTHIA events. The m_T - p_T^l , m_T - p_T^ν and p_T^l - p_T^ν correlation coefficients for $W \to \mu\nu$ channel are found to be 0.672 ± 0.028 , 0.658 ± 0.028 and 0.255 ± 0.047 . The corresponding correlation coefficients for $W \to e\nu$ channel are found to be 0.709 ± 0.025 , 0.694 ± 0.026 and 0.307 ± 0.045 . The reliability of the errors on correlation coefficients is established by using Monte Carlo simulations.

1 Introduction

We extract the W boson mass m_W from three kinematic distributions: transverse mass m_T , transverse momentum of charged lepton p_T^l and transverse momentum of neutrino p_T^{ν} . Since the three distributions are constructed with the same W candidate events, the fitted mass values are thus statistically correlated. We present in this study a way to estimate the correlation coefficients ρ and the associated errors σ_{ρ} between m_T , p_T^l and p_T^{ν} .

2 Correlations between mass fits in $W \to \mu\nu$

We obtain the correlations between m_T , p_T^{μ} and p_T^{ν} fits by using large Monte Carlo samples. We use PYTHIA[1] Version 6.208 to generate $W \to \mu\nu$ events for this study. A vector file containing 100 M $W \to \mu\nu$ events are generated at each of the three W mass input values at 80 GeV, 80.45 GeV and 81 GeV. The two vector files generated at $m_W = 80$ GeV and $m_W = 81$ GeV are used to construct fitting templates, while the vector file generated at $m_W = 80.45$ GeV is splitted into 400 sub-samples with equal statistics to form pseudo-data files.

Each of the 400 psedo-data files are then fitted against the templates. The 400 groups of m_T , p_T^{μ} and p_T^{ν} fitting results are used to estimate the population coefficient ρ by constructing the sample correlation coefficient r:

$$r_{XY} = \frac{E(XY) - E(X)E(Y)}{s_X s_Y} \tag{1}$$

$$= \frac{\frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x}\bar{y}}{\sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2\right)} \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} y_i^2 - n\bar{y}^2\right)}} , \qquad (2)$$

where x_i (y_i) is the i^{th} value of fit type X (Y), S_X (S_Y) is the sample variance of fit type X (Y), $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$; n is the number of (x_i, y_i) pairs. The 1σ error on ρ_{XY} can be estimated using Fisher's z transformation on the sample correlation coefficient r_{XY} . The Fisher's z transformation is given by [2]:

$$z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) \tag{3}$$

where z is approximately normally distributed with mean $\frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right)$ and standard error $\frac{1}{\sqrt{n-3}}$. Thus we have

$$z^{+\sigma_z} \approx \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) + \frac{1}{\sqrt{n-3}} \tag{4}$$

$$z^{-\sigma_z} \approx \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right) - \frac{1}{\sqrt{n-3}} , \qquad (5)$$

which lead to

$$r^{+\sigma_r} = r + \sigma_r \approx \frac{e^{2(z^{+\sigma_z})} - 1}{e^{2(z^{+\sigma_z})} + 1} \tag{6}$$

$$r^{-\sigma_r} = r - \sigma_r \approx \frac{e^{2(z^{-\sigma_z})} - 1}{e^{2(z^{-\sigma_z})} + 1} . \tag{7}$$

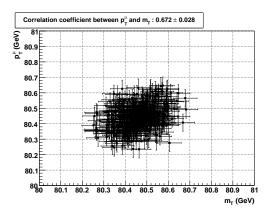
We symmetrize the $+1\sigma$ and -1σ to get

$$\sigma_{\rho} \approx \sigma_{r} \approx \frac{r^{+\sigma_{r}} - r^{-\sigma_{r}}}{2}$$
 (8)

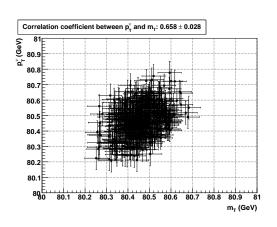
Figure 1 shows the correlations among m_T , p_T^{μ} and p_T^{ν} fits. The correlation coefficients are summarized in Table 1.

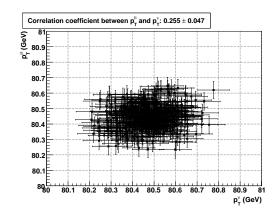
2.1 Monte Carlo study of σ_r

We use Monte Carlo simulation to cross-check the errors on the correlation coefficients calculated from Fisher's z transformation. For ease of explanation, we use random



(a) Correlation between m_T and p_T^{μ} fits.





- (b) Correlation between m_T and p_T^{ν} fits.
- (c) Correlation between p_T^{μ} and p_T^{ν} fits.

Figure 1: Correlations between m_T , p_T^{μ} and p_T^{ν} fits in $W \to \mu\nu$ channel.

Table 1: Statistical correlations between m_T , p_T^{μ} and p_T^{ν} fits in $W \to \mu\nu$ channel.

$W \to \mu\nu$ fit variable	Correlation Coefficient
m_T vs. p_T^{μ}	0.672 ± 0.028
m_T vs. $p_T^{ u}$	0.658 ± 0.028
p_T^μ vs. $p_T^ u$	0.255 ± 0.047

variables x_1 , x_2 , x_3 to represent m_T , p_T^{μ} and p_T^{ν} fits which we want to generate from simulation. The 1σ statistical errors on x_1 , x_2 and x_3 are set to be the same as those obtained from data fits, i.e., $\sigma_1 = 0.015$ GeV, $\sigma_2 = 0.017$ GeV, and $\sigma_3 = 0.021$ GeV. The correlation coefficients among x_1 , x_2 and x_3 are set to be the numbers shown in

Table 2:	Comparison	of two	methods	to	estimate	${\rm errors}$	on	correlation	coefficients
between i	$m_T, p_T^{\mu} \text{ and } p_T^{\mu}$	$_{T}^{\nu}$ fits in	$W \to \mu\nu$	ch	annel.				

$W \to \mu \nu$ fit variable	Error on r (Fisher)	Error on r (MC)
m_T vs. p_T^{μ}	0.028	0.027
m_T vs. p_T^{ν}	0.028	0.027
p_T^{μ} vs. p_T^{ν}	0.047	0.043

Table 1 with $r_{1,2} = r_{2,1} = 0.672$, $r_{1,3} = r_{3,1} = 0.658$ and $r_{2,3} = r_{3,2} = 0.255$. From the above information, the covariance matrix Σ can be constructed as

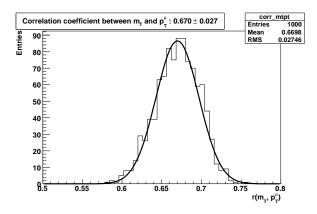
$$\Sigma = \begin{pmatrix} \sigma_1^2 & r_{1,2}\sigma_1\sigma_2 & r_{1,3}\sigma_1\sigma_3 \\ r_{2,1}\sigma_1\sigma_2 & \sigma_2^2 & r_{2,3}\sigma_2\sigma_3 \\ r_{3,1}\sigma_1\sigma_3 & r_{3,2}\sigma_2\sigma_3 & \sigma_3^2 \end{pmatrix}.$$

Correlated random variables x_i (i = 1, 2, 3) can be generated from independent random variables z_i (i = 1, 2, 3) using a matrix decomposition method called Singular Value Decomposition[3] (SVD) according to the formula:

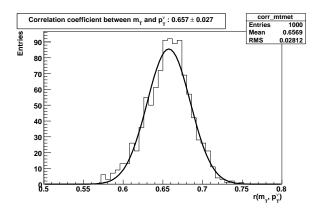
$$\mathbf{X} = \mathbf{M} + (\mathbf{U}\mathbf{D}^{1/2})\mathbf{Z} \quad , \tag{9}$$

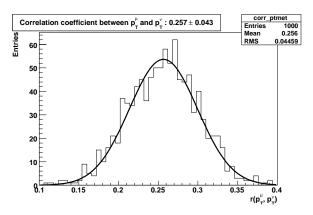
where **X** is a vector of random variables x_i $(i = 1, \dots, n)$, **M** is a vector of m_i $(i = 1, \dots, n)$ with m_i equal to $E(x_i)$, the mean value of x_i . **Z** is a vector of n independent N(0,1) random variables; **U** is the matrix of n eigenvectors obtained from covariance matrix Σ , with the i-th column of **U** be the eigenvector corresponding to the i-th eigenvalue λ_i from Σ ; **D** is a $n \times n$ diagonal matrix with diagonal elements to be the eigenvalues $(\lambda_1, \lambda_2, \dots, \lambda_n)$ of covariance matrix Σ . $\mathbf{D}^{1/2}$ is a diagonal matrix with diagonal elements $\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n}$.

In our study with n = 3, we assume the expected value from all three fits are the same by requiring $m_i = E(x_i) = 80.45 \text{ GeV}$ (i = 1, 2, 3). Once 400 groups of x_1, x_2, x_3 values are simulated using the SVD method, we then use Eqn. (1) to calculate r_{XY} . Take $m_T(x_1)$ and $p_T^{\mu}(x_2)$ as an example, 400 (x_1, x_2) pairs are used to obtain one value of $r_{1,2}$. We then repeat this process 1000 times to get a distribution of r_{12} , as illustrated in Figure 2 (a). The standard deviation of the Gaussian fit gives an estimate of the error on the correlation coefficient between x_1 and x_2 . The same procedure is adopted to estimate the errors on other correlation coefficients (see Figure 2 (b) and (c)). Table 2 summarizes simulated errors on correlation coefficients and compares them with the errors calculated using Fisher's z transformation. We conclude the obtained errors on correlation coefficients using Fisher's z transformation are reliable.



(a) Error on m_T -and- p_T^μ correlation coefficient.





- (b) Error on m_T -and- p_T^{ν} correlation coefficient.
- (c) Error on p_T^{μ} -and- p_T^{ν} correlation coefficient.

Figure 2: Monte Carlo study of the errors on correlation coefficients between m_T , p_T^{μ} and p_T^{ν} fits in $W \to \mu \nu$ channel.

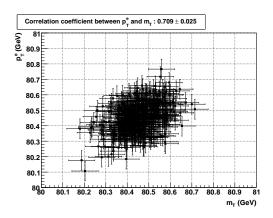
3 Correlations between mass fits in $W \rightarrow e\nu$

The same procedure is adopted in studying the correlations between m_W mass fits in $W \to e\nu$ channel. The scatter plots are shown in Figure 3 and results are summarized in 3.

4 Summary

The correlation coefficients on W mass fits from m_T , p_T^l and p_T^ν for 2 fb⁻¹ W mass analysis are obtained using large Monte Carlo samples. We find the correlation coefficients in m_T - p_T^l , m_T - p_T^ν and p_T^l - p_T^ν to be 0.672 ± 0.028 , 0.658 ± 0.028 and 0.255 ± 0.047

6 4 SUMMARY



(a) Correlation between m_T and p_T^e fits.

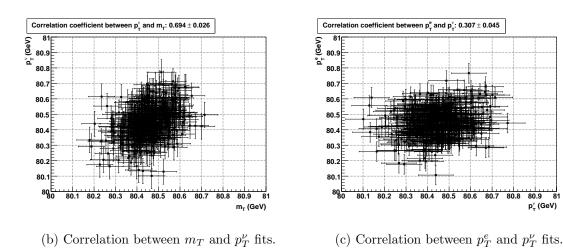


Figure 3: Correlations between m_T , p_T^e and p_T^{ν} fits in $W \to e\nu$ channel.

Table 3: Statistical correlations between $m_T,\,p_T^e$ and p_T^ν fits in $W\to e\nu$ channel.

$W \to e\nu$ fit variable	Correlation Coefficient
m_T vs. p_T^e	0.709 ± 0.025
m_T vs. p_T^{ν}	0.694 ± 0.026
p_T^e vs. p_T^{ν}	0.307 ± 0.045

for $W\to \mu\nu$ channel, while 0.709 \pm 0.025, 0.694 \pm 0.026 and 0.307 \pm 0.045 for $W\to e\nu$ channel.

REFERENCES 7

References

[1] T. Sjostrand, S. Mrenna and P. Skands, PYTHIA 6.4 Physics and Manual, JHEP **05** (2006).

- [2] R. Fisher, Biometrika 10:507-521 (1915); R. Fisher, Metron 1:3-32 (1921).
- [3] G. Strang, Introduction to Linear Algebra, 3rd edition, Wellesley-Cambridge Press (2003).

1 2 4