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Abstract We renormalize models with scalar chiral super-
fields with an odd superpotential to several orders in pertur-
bation theory. These extensions of the cubic Wess—Zumino
model are renormalizable in spacetime dimensions which
are rational. When endowed with an O(N) symmetry it
is shown that they share the same property as their non-
supersymmetric counterparts in that at a particular fixed point
there is an emergent O Sp(1|n — 1) symmetry, where 7 is the
power of the superpotential. This is shown at a loop order
beyond that for which it was established in the parallel non-
supersymmetric theory.

1 Introduction

One of the more interesting developments in quantum field
theory in recent years has been that of emergent symme-
tries particularly in the case when a model of bosons and
fermions develops a configuration that possesses supersym-
metry, [1-3]. Emergent properties derive from the critical
point analysis of the renormalization group functions of a
multicoupling theory when treated in d-dimensions. Ordinar-
ily in a single coupling theory the S-function has a Wilson-
Fisher fixed point given by the first non-trivial zero of the
d-dimensional B-function. By contrast in the multicoupling
case even with two coupling constants one can have a rich
spectrum of fixed points in d-dimensions, [2,3]. These can
be stable in the ultraviolet limit or alternatively in the infrared
if the running is in that direction, in addition to the presence
of saddle points. At each critical point the values of criti-
cal exponents can be determined in the € expansion where
€ is a measure of the difference between d and the criti-
cal dimension of the theory. The concept of emergence then
arises when a fixed point possesses an enlarged or extended
symmetry over and above that of the fields in the original
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underlying Lagrangian. To illustrate the background to this,
for instance, one well-studied case is that of the Gross-Neveu-
Yukawa (GNY) system, [4,5], which is important for phase
transitions in condensed matter systems. A comprehensive
review can be found for instance in [3].

In these GNY models one has several scalar fields cou-
pled to a multiplet of fermions in a flavour symmetry group.
It transpires that at one particular fixed point and a specific
number of flavours the condition is met for the presence
of supersymmetry, [1,2,6,7]. By this we mean the critical
point values of the two originally distinct coupling constants
become equal. This is not sufficient for there to be supersym-
metry alone. Instead it is also the observation that the field
anomalous dimensions at this specific fixed point become
equal. This occurs in the GNY related models of the chiral
Ising and chiral XY models when the parameter N takes the
respective values of N = é—lt and N = %, [1,2,7] and has
subsequently been verified up to four loops, [7—10]. In addi-
tion to the criteria for supersymmetry being satisfied at four
loops at one particular fixed point, the critical properties there
have been connected, [11,12], for example, to those of the
Wess—Zumino model, [13]. This has been demonstrated to
three loops, [12], and more recently at four loops, [14], using
the explicit results of the renormalization group functions
in the Wess—Zumino model available in [13,15-18]. More
recently the Wess—Zumino model has been renormalized to
five loops in various schemes, [14], in preparation for veri-
fying the emergence in the GNY system to the next order. In
other words one can interpret the emergent supersymmetric
theory of the GNY system as that of the Wess—Zumino model.
This is important as it is believed that supersymmetry may be
present in some condensed matter systems, like those on the
boundaries of three dimensional topological insulators, [6],
and so may be described by Wess—Zumino models. Interest-
ingly the GNY model has a structure that is similar to the
Standard Model of particle physics where the scalar field is
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analogous to the Higgs field. Therefore it has already been
noted in, for instance, [19], that such emergence properties
of the relatively simple GN'Y model could equally hold in the
Standard Model. If so there is the possibility that an emer-
gent supersymmetry could be a route to an extension of the
Standard Model.

It is worth stressing that emergent symmetries do not
always lead to supersymmetry. For instance, in a particular
scalar cubic theory, [20-23], which is renormalizable in six
dimensions, it was shown in [23], that an emergent flavour
symmetry is present. In particular the O (3) symmetry of the
original Lagrangian enhanced to an SU (3) one at a particular
critical point. A more recent example of such a flavour sym-
metry emergence was discussed in [24]. In that work scalar
field theories with an O (N) symmetry and potentials with an
odd power were studied. Although they are renormalizable in
rational spacetime dimensions, for specific values of N there
is a fixed point with an emergent O Sp(1|2M) symmetry,
[24]. The case of the quintic theory or Blume—Capel theory,
[25,26], was of particular interest, [27-30], given that it is
the next theory in the sequence after ¢3 theory that underlies
the Ising and Lee-Yang universality classes and has a ratio-
nal critical dimension close to three dimensions. However,
the underlying mechanism of the emergence in this instance
was that the anomalous dimensions of the fields in the O (N)
multiplet became equal to that of another scalar field in the
theory. This field was analogous to the ¢ field that arises in
the O(N) nonlinear sigma model. Indeed the sigma model
is the first in the sequence of such odd power potentials for
this OSp(1|2M) emergence to arise. The next model in the
sequence after the sigma model is the cubic theory akin to
the one mentioned earlier. Indeed it is structurally similar to
the Wess—Zumino model in its superfield formulation with
chiral superfields. Therefore given the parallel nature of the
scalar cubic theory with the Wess—Zumino model a natural
question to ask is whether there is an analogous sequence of
supersymmetric models that is parallel to those considered
in [24] which have an emergent O Sp(1|2M) symmetry.

This is the main aim of this article. It is possible to for-
mulate these generalized Wess—Zumino theories given the
superspace techniques that allowed the original component
field formulation of the Wess—Zumino model, [13], to be
rewritten in terms of chiral superfields, [31]. One conse-
quence was that the Wess—Zumino model was renormalized
in an efficient way to very high loop order, [ 14,16, 18]. There-
fore we will construct the relevant superspace actions for
such a sequence of chirally supersymmetric theories and then
renormalize them to second order which will be at an order
beyond that considered in the scalar case of [24]. This is
primarily due to the chiral property which rules out a sub-
stantial number of higher order graphs that would ordinarily
have to be determined for the wave function renormaliza-
tion. Moreover the underlying supersymmetry Ward identity,
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[1,2], means that the S-functions will follow trivially from
the field anomalous dimensions. One concern with follow-
ing such a superspace approach here might be its relation
with the associated component theory especially in light of
the potential unequal boson and fermion degrees of free-
dom in a non-integer dimension. A similar issue arises when
one regularizes a supersymmetric component Lagrangian.
It is known that while canonical dimensional regularization
does not preserve supersymmetry there is a way to circum-
vent the degrees of freedom imbalance that is the underly-
ing reason for this. Instead a modified regularization is used
known as dimensional reduction and involves the presence
of additional fields termed € scalars. They inhabitat the sub-
space of the regularizing spacetime that excludes the critical
dimension spacetime. Such additional fields are absent in
the critical dimension of the theory but their presence pre-
serves the supersymmetry property of that physical space.
In the rational spacetime such fields will naturally also be
necessary to preserve the degrees of freedom in the associ-
ated component theory. What would also be the case is that
such a component theory will have a non-supersymmetric
associate which has the same Lagrangian but each interac-
tion has a different coupling constant. Indeed it will be of
a similar nature to the three dimensional GNY systems that
have an emergent supersymmetry where not only will there
be a fixed point where all the critical couplings are equal but
the field anomalous dimensions will all be the same. In the
three dimensional GNY case the underlying supersymmetric
theory is the four dimensional Wess—Zumino model. Indeed
it can be formulated in superspace and the € expansion of
its critical exponents agree precisely with the € expansion of
the exponents of the emergent supersymmetric fixed point of
the related GNY system. In regard to the generalized Wess—
Zumino theories we take a similar point of view that they
in fact represent the emergent supersymmetric fixed point of
the associated non-supersymmetric partner theory. In study-
ing the fixed point structures in the supersymmetric theories
an OSp(1|12M) emergent symmetry will be present but it
arises in a subtle way compared to the scalar case of [24].
Aside from this main goal we will examine a more mundane
aspect of the € expansion in this class of theories with an odd
power potential. For instance, the scalar quintic or Blume—
Capel theory has a critical dimension of 13—0 which is close
to the integer dimension of three. Therefore in d = % — 2¢
dimensions the value of € needed to reach that integer dimen-
sion is relatively small compared to a theory with a critical
dimension of four for example. In other words the conver-
gence of the € expansion in a quintic scalar theory should
be quick. Unfortunately with the inability to compute cor-
rections beyond the leading order in that case due to difficult
Feynman integrals, which will be illustrated later, this conver-
gence issue cannot be readily studied. In the supersymmetric
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extension however we will be able to proceed to the next
order as the corresponding difficult graphs are excluded by
the chiral property. Thus we will examine convergence issues
albeit in a simialar although different class of theories.

The paper is organized as follows. We devote Sect. 2 to
renormalizing the basic chirally supersymmetric scalar the-
ories with an odd potential to the first few orders. While
we will concentrate on three specific theories some proper-
ties of critical exponents are provided for all models with
odd potentials. To examine the emergent symmetry property
we construct the O(N) versions of the specific theories in
Sect. 3 before renormalizing them to allow us to analyse their
fixed point properties in Sect. 4. In Sect. 5 we concentrate
on establishing the O Sp(1|2M) enhancement at one partic-
ular critical point before summarizing our study in Sect. 6.
An appendix provides explicit expressions for the renormal-
ization group functions of several of the O (N) theories we
focus on.

2 Background

First we consider the action of the most general superpoten-
tial with a chiral superfield which is given by

Sey = / dx [ f d20d%0 o (x, 0)e P Dy (x, 0)

+ g—‘j/dze " (x,0) + g—‘:fdzé CIDg(x,O_):|
n! n'
@2.1)

where 6 and 6 are anti-commuting superspace coordinates
and we use type I superfields with the subscript , denot-
ing bare quantities and g is the coupling constant. The
kinetic term follows that used in the Wess—Zumino model,
[16,18,31], where the 2 x 2 covariant Pauli matrices o* play
the role of the usual Dirac y-matrices and satisfy the same
Clifford algebra. We use a variation on the canonical notation
by defining § = 0/0,,. At this stage we have not specified
the canonical dimension of the action as n is an arbitrary
integer here. However it is a simple exercise to deduce that
the critical dimension D, of (2.1) is

2(n — 1)

= ———— . (2.2)
(n—=2)

Clearly there are only two cases where D, is an integer which
are D3 = 4 and D4 = 3 with the former corresponding to the
Wess—Zumino model. Subsequent potentials give D5 = %,
D¢=3,D7="2,Dg=1and Dy =2 withlim, .o D, =2.
It is worth contrasting (2.2) with the critical dimension of the
corresponding non-supersymmetric theories which is, [27,
32,33],

2n
(n—2)"

scalar __
Dn -

(2.3)

In other words for each integer n > 3 this is the dimension
where the coupling constant is dimensionless. The origin of
the difference with D,, is the integration measure over the
dimensionful anticommuting spacetime coordinates in (2.1).
The n = 5 potential shares a similar property to its non-
supersymmetric counterpart in that its critical dimension is
close to three dimensions.

The bare quantities in (2.1) are related to their renormal-
ized partners via
D, = \/E(D, &)0 = \/Z&)v 8o = Mezgg 24
where we will dimensionally regularize the superspace action
ind = D,, — 2¢ dimensions. The arbitrary mass scale u being
introduced to ensure the coupling constant remains dimen-
sionless in the regularized theory. Like the Wess—Zumino
model the suite of n dependent actions each satisfy a super-
symmetry Ward identity which follows simply by generaliz-
ing the argument given in [13,15,31]. This means that there
is only one independent renormalization constant since the
Ward identity implies

2.5)

This provides a simple strategy to determine the S-function
of (2.1) since Z; can be deduced from Zo which means
we only need to renormalize the 2-point function. In other
words vertex functions are finite and so do not need to be
evaluated. A further simplification comes from the use of
superspace techniques. From the action (2.1) the propagator
in momentum superspace is, [18],

exp (20)9)

(@(p, O)P(—p,0)) = 2 (2.6)

which means that prior to carrying out the integration over
the loop momenta the 6 coordinate integration has to be per-
formed. As these variables are anti-commuting the expo-
nential associated with each propagator will truncate after
a finite number of terms. Once this has been implemented
the O-integration is carried out. As this effectively equates
to differentiating with respect to the internal anticommut-
ing variables, and is equivalent to the so-called D-algebra,
it results in simple traces over the covariant Pauli matrices.
This procedure is based on the approach used in the four loop
renormalization of the Wess—Zumino model, [18], and more
recently at five loops, [14]. In the latter case the 6 coordi-
nate integration for each graph was carried out automatically
through a routine written in the symbolic manipulation lan-
guage FORM, [34,35]. We have used that same procedure for
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Fig. 1 Basic one and two loop
topologies for a 2-point function
in a scalar cubic theory

Fig. 2 Leading order (n — 2) loop graph for ®" 2-point function

each of the three cases we focus on here. These will be the
n =5, 7 and 9 potentials. Once the 6 integration has been
carried out the integration over the loop momenta remains.
For (2.1) this is possible for both the first two orders of graphs
that contribute.

To appreciate this for theories with higher order poten-
tials it is instructive to focus for the moment on the basic
one and two loop topologies that can arise in a scalar ¢3
theory. These are illustrated in Fig. 1. For the Wess—Zumino
model, which has a cubic interaction, these are in princi-
ple the only topologies that would determine the S-function.
However the Wess—Zumino model is the n = 3 version of
(2.1) and has a chiral symmetry. This implies that the propa-
gators are directed and in a Feynman diagram have an arrow
on each line. Moreover the chirality means that at a ver-
tex the arrows all point towards the interaction location or
away from it. Simple reasoning indicates that this ordering
excludes any topology where there is a subgraph with an odd
number of propagators. So in Fig. 1 the second two loop
graph is excluded. The relevance of this to (2.1) for odd val-
ues of n > 3 is that for these higher order potentials the
2-point function graphs will have the same underlying topo-
logical structure. This can be observed at leading order for
(2.1) where the only contributing graph is given in Fig. 2.
The number beside ellipses between propagators will always
indicate the number of propagators between and including
the bounding propagators. In this and subsequent figures lines
will be directed with arrows reflecting the underlying chiral-
ity. The relation of the graph of Fig. 2 to the first topology
of Fig. 1 can be seen by notionally deleting the number of
internal lines connecting each vertex to leave vertices with
only three lines. By way of example this observation with
the core topologies of Fig. 1 at next order can be viewed in
the n = 5 case where the graphs are shown in Fig. 3. These
and the graphs for all the other theories have been generated
with the QGRAF package, [36]. It is evident that each of the
three graphs of Fig. 3 are extensions of the middle topology
of Fig. 1 where propagators are added to each vertex in such
a way that five propagators intersect there.

@ Springer

As the structure of the leading two orders of 2-point func-
tion graphs is relatively simple the implementation of the D-
algebra resulting from the 6 integration is straightforward.
This is in part due to the simple bubble graphs that comprise
each 2-point function for (2.1) when 7 is odd. For each of
the topologies beyond leading order the only minor compli-
cation is that the loop integrals of each central bubble in the
three bubble sequence has a contraction of two internal loop
momenta. This is not a hindrance to evaluating a graph as one
simply makes use of the momentum conservation to rewrite
the scalar product in terms of the squares of the momenta
of related propagators. In other words the effect of the D-
algebra at this order is the removal of a propagator from the
original topology similar to what was observed in the Wess—
Zumino model, [18]. The consequence of the D-algebra is
that all the Feynman integrals at the leading two orders are
quickly reduced to simple scalar bubble integrals which are
elementary to evaluate.

If we focus for the moment on the case of n = 5 applying
the algorithm to the ®> theory we find that the anomalous
dimension is

q:,S _ 37‘[3(1
ERRETE
2 47642
— 140373 811“3(—)}— 0@ @7
[fn+ 3 729r9(§)+ (@) .7

where here and elsewhere the factor arising from the sur-
face area of the d-dimensional unit sphere is absorbed in the
combination

2
PR S (238)
(4m) >
In (2.7) we have applied the identity
1) 2
rf=) = —/—/— (2.9
(3 V3r(3)

to simplify the expression. While there are three higher order
graphs there are only two terms at O (a?). The second of these
two terms arises from the final graph of Fig. 3 and this graph is
the insertion of Fig. 2 on one of the internal lines of the graph
itself when n = 5. The remaining two graphs correspond to
vertex corrections arising from the graph of Fig. 4. As it is
clearly finite this means that the first two graphs of Fig. 3 are
primitives.
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Fig. 3 Six loop graphs for ®?
theory 2-point function

Fig. 4 Leading order vertex
correction for ®° theory

Fig. 5 Ten loop graphs for &’
theory 2-point function
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Having discussed the n = 5 case in detail the procedure to
renormalize the other two cases we consider here,n =7 and 9,
is completely parallel. The main differences, however, rest in
the increase in the number of graphs for each theory which are
illustrated respectively in Figs. 5 and 6. Again the final graph
of each figure corresponds to the self-energy correction on a
propagator of the leading order 2-point function. This means
the remaining graphs are all primitives as they contain vertex
subgraph corrections and the leading order vertex graph is
finite. The resulting anomalous dimensions for both theories

0
’
v
o
g
v

o
o
4
S
9
(

)

@ Springer



1051 Page 6 of 20

Eur. Phys. J. C (2022) 82:1051

are
o - D)
o] _ 5
U@ =y
63r2<f)r3<1> 150r<f)r<%)
_[ 5 5)F 5)°\5
2(2\2f L
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—|3er?( = )r(=)r(=)r( =
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caar(5)r(3)r(5)(5)
7 7) \7 7
2 5 2 2 2 1
+ 196I° (§>r (7)1* (7 }
Fl4<% (12
X +O(a3).
580608001"(2)1"(%)1“(%)1“(%)
(2.11)

The appearance of factors of the form I'(p/(n — 2)) where
1 < p < (n—3) may seem at odds with expectations but arises
from the basic loop bubble integrals. For instance, denoting
the value of the leading order graph of Fig. 1 by Fg)l then

re-t ((n+2) - e) T((n —2)e)
I (&= -0 - De)

in d-dimensions. The divergence clearly arises from the sec-
ond numerator factor while the other numerator one and that
in the denominator lead to a final factor of "2 ( ﬁ in
each anomalous dimension at leading order. Clearly for the
Wess—Zumino model, which is cubic, no I"-functions appear
in the wave function renormalization at low loop orders for
this reason.

With the graphs for both the n = 7 and 9 cases available
as well as the explicit anomalous dimensions for the leading
two orders we note that there is one more graph than there
are terms at O (a?) as was the case for n = 5. This is because
two graphs for each theory evaluate to the same I'-function
structure. These are the first two graphs in Fig. 3, the first

(2.12)
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and fourth in Fig. 5 and the first and sixth graph of Fig. 6.
The reason why these graphs have the same structure derives
from the underlying D-algebra. The consequence of rewrit-
ing the resulting scalar products between loop momenta of
the fully internal bubble after enacting the 6 integration is
to remove or delete a propagator from one of the bubbles
immediately adjoining it. Applying this observation to these
specific graphs in the figure produces a pair of graphs with
bubbles which have the same number of propagators in each
or asingle propagator. Since all the bubble integrals are scalar
integrals they will each evaluate to the same d-dimensional
expression and hence have the same € expansion. As a final
part of the renormalization it is worth providing the numeri-
cal values for the anomalous dimensions. We have

v (a) = 2.403246a — 809.5828364> + 0(a’)

y® (@) = 14.161200a — 416179.1069794> + O (a®)

v® (@) = 89.612261a — 225108066.084> + O(a®).
(2.13)

The large coefficients are not to be regarded as indicating
a lack of convergence. For instance, absorbing the factor of
F7(%) into a for the n = 9 case the respective one and two
loop coefficients become 0.000173611 and 0.000844912.
These are of the same order in much the same way as for
four dimensional theories. Of course in that case the corre-
sponding factor would involve powers of I"(1) which have
no consequence.

Equipped with the anomalous dimensions and the B-
functions through the supersymmetry Ward identities we can
determine the critical exponents of each theory at the Wilson—
Fisher fixed point. That associated with the field anomalous
dimension, n®" = y®" (a*), where a* is the critical coupling,
can be determined exactly to all orders in perturbation as

o = =2, 2.14)

n
for each value of n odd with n > 1. This follows trivially from
(2.2) and (2.5). In the case of n = 3 the four dimensional

result of [9,11] emerges. For the other integer dimensions of
interest we find

l’ nd)n - _ (n—4)
n d=3

ol
n

(2.15)

d=2

if one assumes a negative value of ¢ is valid when D,, < 3.
As n — oo the former vanishes while the latter tends to
(—1). The situation with the other exponent, which is the -
function slope at criticality, is different in that there is no exact
expression for any value of n. Defining 0®" = 28 (Dn/(a*) we
have
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Fig. 6 Fourteen loop graphs for
®? theory 2-point function

20 W S

/e

5 2 8c2
0 = 6e — [40J§n3 + 81r3<§>] %
2
15r3<§>
=10e — |630%( = |3( = 150 = |r( =
“ ‘ [ (5) <5>+ (5) (5

R a0)

x + 0@  (2.16)

5 _ 2 3
0¥ =6 — 504.623267€% + O(ed)
w® =10 — 14823.547215¢% + O(e%)
0? = 14e — 305238.813694¢% + O(%) (2.17)

numerically. Clearly there are large corrections for each the-
ory which would suggest that it is not possible to extract any-
thing meaningful by naively substituting even a small value
of €. However, if we use a [1, 1] Padé approximant we find

3

) = 0.0688833

d=2

= 0.00672335
d=2

7
C()CD
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®° 3 /- -\3
o¥| _ =0000642017 (2.18) + % / 4205, (GDSQ,E
for instance in two dimensions which appear credible. These n 8% / 220 63 (cpi o )2
are significantly smaller than the canonical term which is 144 oNTeTe
2 for all odd n. Under the same assumptions as before we 82 2= 3 (=i =i\2
i + 820 [ 4245 (cbgqag)
educe 144
@’ 8 20 Sl bl 8 25 =5& Hi
o¥| _, = 00768208 + 248 /d 0ol D + 248 /d 052D DL
@7 : 3 7]
1) = 0.00676123 840 24 7 840 25 =17
_ +— | dOo;, + — | d°O 3.2
= 5040 / % T 5040 / U"} o2
o? = 0.000642258 (2.19)
d=3 and

for the extension to three dimensions.

3 O(N) symmetric theories

Having considered the renormalization of the core higher
order potentials we consider their O (N) symmetric counter-
parts in this section. This requires two distinct superfields
@i (x,0) and o (x, 0) together with their chiral partners. The
former field takes values in O(N) where 1 <i < N. The
presence of two sets of superfields means that the action for
each core potential is more involved and moreover the num-
ber of interactions increases with the order of the potential.
For instance, when n = 5 we have

seN = /d4x [/ d20d%6 [@g@,é)e—w&@@g(x,e)

¥ Go(x, B)e 205 (x, 9)]

5 LN 2
n %f / 420 o, (cbgcbg)

3 _ .- \2
+ %‘) 4% 5, ()
+ 80 [doajeiel + & [ Pasiala
+ %/ﬁe@‘ n %fdzéag] 3.1)

for the action in terms of bare quantities where g; = (47) & gi
here and throughout. Setting both &' (x, #) and & (x, #) for-
mally to zero recovers the n = 5 case of (2.1). An equivalent
way of producing this is to put g1 = go = 0 whence the
O (N) multiplet decouples. For the next two theories in the
sequence of odd potentials the respective actions are

s = /d4x [/ d*0d%9 [&»g@,é)e—w&%g(x,e)
¥ Go(x, B)e 205 (x, 9)]

+ %/d 60, (q>gq>g)
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sQM = /d4x [/ d20d%0 [ég(x,é)e*”&%ﬁ)(x,e)

+ Go(x, D)e g (x,6)

i 48;;30 / d*6 oy (@3@3)4

+ e / 35, (3081’

+ %/cﬂe o3 (@3@3)3

+ B [ 2453 (a,})°

+ 25;?0 / d*0 o3 (q>gq>f))2

550 | €555 (@4a0)
e

+ 153%0 / 4*0 5],

T 358080 / d*00g + 36i58080 / a*0 6y }

(3.3)

which illustrate the increase in number of interactions with n.
Consequently a larger number of Feynman graphs have to be
computed to extract the renormalization group functions. The
precise numbers are given in Table 1 for both sets of 2-point
functions. Like previously the B-functions of the respective
coupling constants are determined by a generalization of the
supersymmetry Ward identities. For n = 5 these are

1 3 3
22322 = ZgZoZ2 = ZgZd = 1 (3.4)

with

1 3 3 A
223723 = 27527 = ZgZoZs = ZgZd = 1
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Table 1 Number of grz.lphs at n L (®d) (65) Total
each loop order L required to
renormalize the &' and o 5 3 2 3 5
2-point functions in the O (N) 24 40 74
theories
7 5 3 4 7
10 155 174 329
9 7 4 5 9
14 480 521 1001
for n = 7. Finally
4,3 3.3 2,3
ZoZoZs = ZgZ4Zs = ZgZoZs
7 9
= Zg4Zq>Z§ = ZgSZ(? =1 3.6)

for (3.3) by extending (2.5) in the same way.

For the remainder of this section we focus on the n = 5 case
as an example. The procedure to renormalize (3.1) follows
the same as that used for (2.1) with respect to applying the
D-algebra and the evaluation of the 79 2-point graphs. The
resulting anomalous dimensions are

5 373
va (i) = [ANgT + 8¢} + 12¢3] ———~
27F3( )

—[[128N?g} + 1536N?g] + 6144Ng] + 7168g]

+2304N%g7 g3 4+ 16128 N g? g3 4 23040g7 g3 + 2304Ng1g5¢3

+ 4608g1g2g3 + 5760Ng2 + 20736g2 + 2304g2g3] V37°
+ [324N3g! + 5184N?g] + 16848 Ng] + 15552¢]

+ 8748N%gl g3 + 33048Ngigs + 31104g7 g3 + 972Ngi g3
+ 1944g7 2 4 52488N g5 + 1166445

2 1
+ 8748g3 3] F3<§)n6j| —— + 0(@g) (3.7)
6561r9(§>

and

@’ 2,2 2 2 2y V31

o (gi) = [N?gi +2Ngi + 18Ngy +3g5| ———
Ve (8) = [N°gi +2Ngj 5 g3]27r3(%)

— [[32N%g} + 384N7g} + 1536N?g} + 1792N g

+1536N gig5 + 10752N2g1 g3 + 15360N g2¢3
+3456N2g1g2¢3 + 6912N g g2g3 + 8640N g
+31104N g3 + 9216N g3 ¢ + 1440g3] v/3r°

+ [1296N g} +5184Ng} + 5184Ngf +2916N g7 g3
+21384N%g2g% + 31104Ng2g% + 972N2g2 g2

+ 1944N g} g3 + 52488N2g3 + 34992N g3

1

6561r9(§)

(3.8)

2 3
+26244N g3 g3 + 29164 ] r(§> n6:|

+ 0(g]).

As a trivial check setting g1 = go =0 in yf ’ (gi) reproduces
(2.7). Consequently using the supersymmetry Ward identities
we can deduce the S-functions which are

BY (2) = [Ng} + 18N g} +32¢} + 18N g1 + 48183 + 32163]

X fﬂ*
2713(3)

- [[32N4g15 + 896N} + 7680N2 g} + 26368Ng? + 28672¢]

+ 1536N3g3 g3 + 19968 N2 g} g3 + 19872 N g} g3
+92160g7 g% + 3456N2g? g2 g3 + 16128N gl g2 g3

+ 18432g% g3 g3 + 8640N2g| g5 + 54144N g1 g5 + 829444, g5
+9216Ng1g383 + 92168183 g3 + 1440g,83] V/37°

+ [25921v* +25920N2 g} + 72576N g} + 62208¢3
+2916N3g] g3 + 56376N%g} g3 + 163296 N g3 g3

+ 12441683 g3 + 972N2g3 g3 + 5832Ngi g3 + 7776g3 83

+ 52488N7%g g3 + 244944N g g5 + 46656g1 g5

2
+26244Ng 833 + 34992g1 g3 g3 + 2916g1 g3 | F3(§)n6:|

- 4 0]

esorroZ) T O
V33

ﬂ (gr 27F3(%)

x [3N?glgs + 14Ngiga + 16g7 2 + 54N g3 + 2483 + 9g2¢3]
— [[96N*gt g + 1408N3glgn

+ 7680N2g‘1‘g2 + 17664N g\ g2 + 1433681 ¢

+ 4608N3g2g3 + 36864N2g1 o

+ 78336Ng2 g3 + 46080g7 ¢3

+ 10368N%g 8383 + 25344Ng 1 83 83

+9216g1¢3 g3 + 25920N% g3

+ 104832Ng3 + 41472¢3 + 27648N g3 g3 + 46083 g3
+4320g,8%] V/37°

+ [4536N3 gt gr + 25920N2 gt gr + 49248N gt g
+31104g7 g, + 8748N3g2¢3 + 81648N2g2 g3

+ 159408Ng? g3 + 6220873 + 2916N> gl 283

+ 7776Nglgrg3 + 3888g7 g2g5 + 157464N2 g3 + 209952N g3

+ 233283 + 78732Ng5 % + 17496343 + 8748g2gﬂ

F%%)nﬁ] + 0(g)

6561°(3)
N33

— [[160N*g} g3 + 1920N3 gt g3 + 7680N? g} g3 + 8960Ng] g3

+ 7680N> g2 g3 g3 + 53760N% g7 g2 g3 + T6800N gl g5 g3

+ 17280N%g1 8363 + 34560N g1 83 23

4320082} g3 + 155520N gl g3 + 46080N g2 + 7200g§] V30

5
BY (g1) = [N?glgs + 10Ng g3 + 90Ng3gs + 15g3]

+ [6480N3gt g3 +25920N2 g1 g3 +25920N g} g3 + 14580N gl g3 g3
+ 106920N2 g% g3 g3 + 155520N g> g2 g5 + 4860N>g? g3 + 9720N g> g3
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262440N g4 174 3 131220N g3 g3 1 44/30
N s TR0 s s + [5r3 <§> + 9] e+ 0@ 4.2)
+ 14580g§} F3<§>n6] -+ 0. (3.9)
2
656102 <7> with associated anomalous dimensions
o5 o5 3 12¢ 108N (N — 4)e? L o
. . 1 — — - = — €

'Cleargs By (g) and.,B2 (ggsvamsh when g1 = g2 = O.Ie.av No (1) (N + 16) (N + 16)3
mg /3§ (gi) ?s five tl'mes Ve (&) 'unde'r the same condition. o INe A32N (N — 4)e> ;
This is consistent with the Ward identity of (2.1) at n = 5. Ne (1) = - 3 + O(€);

. . (N +16) (N +16)
Renormalization group functions forn =7 and 9 are recorded 5
in the Appendices. Expressions for the renormalization group n 21;5( 2 = 6¢ _ 486N (3N —2)e + 0@
functions for each of the three theories are provided in elec- ON +4) (ON +4)3
tronic format in the associated data file. @ 9Ne 324N (3N — 2)e? 3

Ne ) = - 3 + 0(e”);
ON +4) ON +4)
@’ 3 3 3 3
n = 0(€), n = —€ + 0(e). 4.3)

4 Fixed point analysis *6 73 s

Having established the renormalization group functions we
now examine the fixed point properties of the theories. In the
first instance we focus on the n = 5 case for arbitrary N and
consider the Wilson—Fisher fixed point. Setting

xiﬁ

(r (o))"

in general we find that there is a large set of solutions. A sig-
nificant number are merely various coupling constant reflec-
tions g; — — g; of a core subset. Therefore we only record
the independent ones for n = 5 and other cases in the region
of coupling constant space where g; > 0. The location of
those where there is one nonzero critical coupling are

g = @.1)

(1 2 3]
xiV =6+ | 12(N + 16)(N? + 10N 4 28)T 3

+864(N + 2)(N + 6)]

(N 4+ 2)(N + 16)?
n 0(62)]

2
2 g
(N +2)(N + 16)

X =0
©) 3( 1
X5” = |2+ |6(0ON +4)(5N + 18)I 3

4 54(27N? + 36N + 4)]
€
3(ON + 4)2

2] [ 3 @ _ .
+O(E ):I m, .X3 = 01

2
xf) =0, x§3) = 0, x§3) = g«/%

@ Springer

One interesting feature is that for both solutions 1 and 2
is that ngs and 17?5 are equal for a specific but different
value of N. For solution 1 this is N = 4 while itis N = %
for solution 2. The latter case is formal in the sense that N
is non-integer. However in both instances the value of the
exponent is %e. The final solution labelled 3 corresponds to
(2.14). The next scenario is when only one of the couplings
vanishes at criticality. Again there are three cases with the
critical couplings given by

6 1
' = [g + [(N +6)(N2+ 16N + 4)F3(§>

490N (N + 2)]
6¢

“ 15NN +2)

»1 | BN —2)
+o@) vy

1 1
1P = [g + |:(7N2 + 54N + 32)F3<§> + 180N]

¢ 1 [6G—N)
5oy T Ot )]v N

xélz) =0;
3 1
X = [g + [(NZ + 10N + 28)F3(§> +36(N + 2)]

3¢
50(N +2)

9 — g

[ Tsov o (D) _se] €+ o
Y= [5 |:5(N Hr (3) 36] g O )]
V304 — N);

10
(N+2)

+ 0(62)}

0
P = E - |:(7N — 26)1“3(%) —36} ;—0+0(62)} V30
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2 1
(23) 3 2
=== |[5(N=2I"=-)—-18| — 0]
& L [( ) Q) }%*'(64
V152 —3N). “4.4)

In each case the anomalous dimensions are all the same since
o> @’ 3 3

Toa2) = Mo (2) = 3¢ + 0(€)

@ @ 3 3
Mo 3 = No13) = 35€ + 0(€)

5 5 3 3
e @3 = N3 = 56+ 0@). (4.5)
As a check on these fixed point solutions we note that
lim x(lz) = hm x(l) hm x(lz) = hm x(z)
N—4 N—) 3 N—) 3
lim x("? = Jim ) dim g = lim P 4.6)
—4 —4 N~> N~>

and for these cases the anomalous dimensions all equate to
%e. These particular values of N point to a deeper aspect of
the latter set of fixed point solutions. For instance for solu-
tions 12 and 13 one critical coupling of the pair becomes
complex for N > 4 with a similar observation for solutions
12 and 23 when N > % In this case there is then no real solu-
tion for any positive integer N. So it appears that the N = 4
case represents a watershed in terms of the set of possible
real fixed point solutions. This is especially the case since
for that value the solution 1 ngs and nf * are equal but there
is only one pair of interaction terms at criticality with ¢ and
o appearing linearly in (3.1). The remaining single coupling
solutions equally identify one pair of interactions but with o
and its partner occuring nonlinearly. The final case is when
none of the critical couplings vanish at the Wilson—Fisher
fixed point. This will be considered in the next section as a
special case.

For the other two theories we focus on, the properties of
the critical points is completely parallel. By this we mean
that there are fixed points both for only one non-zero critical
coupling as well as a set for pairs. To illustrate this we record
the explicit forms of the field critical anomalous dimensions.
For n =7 we have

o7 30e 750N (N — 6)e2 3
o) = (Ni36) | wi3ep T 0
o7 5Ne 4500N (N — 6)€? 5
To ) = (N ¥ 36) N 1363 T OE):
o7 20e 4500N (3N — 4)€? 3
o = on 16 oON+167 T 2
7 15Ne 6000N (3N — 4)e2
oo = ON + 16) ON + 167 0
o7 10e 6250N (5N — 2)e? ;
o) = s +a) @Ntar T2

o7 25Ne 2500N (5N — 2)€? L 0@
€);
T3 = 25N + 4) (25N + 4)3
@7 5 3
77q>(4) 0(e), Mo = 7€ + O(€);
7 7 5
ng(ij) n(?(z]) = ?E + 0(63) (47)
for1 >i > j > 5. While for n = 9 we find
o 56¢ 2744N (N — 8)e? L o
Tom = (Nt 64) (N +64)
o9 TNe 21952N (N — 8)¢2 FPYEN
= 6* ;
o (1) = (N 1 64) (N + 64)3
o9 14¢ 686N (N — 2)e? 5
= - 0
e = 3N yay owrap T
o° TNe 1372N (N — 2)€? N
T = N oN 4 T 9@
o9 28¢ 34300N (5N — 4)¢? 3
= - 0
123 = 25N + 16) asN 163 T 0
o0 35Ne 27440N (SN — 4)e? 3
O(e”);
T3 = 25N + 16) S SEREA
o9 l4¢ 33614N (71N — 2)€? + 0@
To@ = 4oN + 4 (ON 1 4)
o9 49Ne 9604N (TN — 2)e> 3
0(e”);
To @ = 4oN 1 4) @onN 14y "o
9 9 7
g = 0, 13 = o T 0(e%);
7 3
77<1>(zj) % @ = 9€ + 0(e) (4.8)

for 1 >i > j > 5.From these it is equally clear that for special
values of N the ®' and o exponents equate. Moreover they
follow a general pattern which is

(4.9)

[olg o
Mo = o)

when

—2r+1
= (n—2r+ 1) (4.10)
@2r—1)
for each fixed point labelled by r intherange 1 <r < % (n—1).
The final single coupling fixed point denoted by solution 5
corresponds to the single field case of the previous section.

5 OSp(1|2M) enhancement

We now turn to a special case of when all critical couplings
are non-zero and either real or complex. This is motivated by
the observation in the non-supersymmetric case, [24], that
there is a symmetry enhancement for a specific value of N
for each n. Briefly for each group O (N) the enhancement is
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to the group O Sp(1|2M), where n = (2M + 1). In particular
the value for N when this occurs is N = — 2M, [24]. While
this was for the case of the non-supersymmetric model the
property should also hold for (3.1), (3.2) and (3.3). To make
this manifest in the Lagrangian formulation will involve the
superfields o and ©' and their chiral partners. Unlike &' of
previous sections ®' is a Grassmann field in order to realize
the symplectic aspect of the group. Similar to [24] this allows
one to express the superpotential as a function of both sets
of fields. In particular the O Sp(1|2M) action is

SOSPI12M) _ /d4x U d204%0 [@gu,é)e—m@@g(x,e)
+ 6o, B)e W0 (x,0)]
+a [@6 (o2 + 6l6))
+ & / @ (52 + @f,@é)wm”} 5.1)

where the subscript again indicates bare objects. If we define
the superpotential by

1@eM+1)

N 3 CM+1)
’) 2 (5.2)

Vi (o, ©) = (02 + 006

motivated by the construction of [24] then the first few cases
are

_15 i i2 5 3ai 5
Vz(o,@))_?a(@@) + 0% + o
_ 3 iai) 35 3(cimi)’
V3(G,®)—160(®®> + o (@@)
7 o
+§os®’®‘+o7

315 AN
V4(a,®)=ﬁa(®’®’) +

+ %05 (@"@")2

9 o
+ 507(9‘@’ + o

(5.3)

due to the Grassmann property of ®. When M = 1 the
OSp(1|1) version of the Wess—Zumino model results. The
relative coefficients of the terms in each of the superpo-
tentials of (5.3) are instrumental in deducing the emergent
OSp(1]2M) symmetry for various values of N. These will
be in the same ratio as discovered in the non-supersymmetric
case of [24]. In particular the vector of critical couplings to
the first two orders are

n=>5

* * *
(e1.83.83)|

[ [ () o)

@ Springer

. 3¢
| —F—G3,2,8)

‘ < )
n=7

(s1 83 83, 83)|

=1+ +
AONE G
Se ’ 35¢
i + O(e )} W(IS,& 8, 48)
5
* * * * * n=9
(gl,gz,g3,g4,g5) Ne_g

~e GG ) )
(5 (o))
o ()]

5.4

That this emergent symmetry holds for the supersymmetric
case is not too surprising given that it occurs in the non-
supersymmetric equivalent theories. However the observa-
tion is subtle here in that the specific value of N = (1 — n)
for the emergence has connections with the non-Grassmann
O (N) partner theory if one sets » = 1 in (4.10). It is known
that properties of the Sp(N) group can be related to those
of an orthogonal group O (N) if one maps N — — N. What
is the case for N not equal to the emergent value value of
(1 —n) is that the field anomalous dimensions are not equal.
It is only for each value of N = (1 — n) that

o

ne = nd (5.5)

for the critical couplings (5.4) whence the emergent
O Sp(1]2M) symmetry is realized in the supersymmetric the-
ory.

As we are able to go to a higher order in the € expansion
compared to the non-supersymmetric cases it is instructive
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to determine the critical S-function slope for the emergent
O Sp(1|2M) theories. In particular we have

(DS
N=—4
[1or°(5) - 216] 5 + 01
=6¢ + [180I°| = ) —216| — + O(€’)
3 5
w“’7 = 10e
.t 2(“) 2(5) - soor (5)r(5) - msor*(5)(5)
35007 = 15000 — ) = 175007 = |~ =
5 5 5 5 5
+0(e
()FG)
a)d) = l4¢
N=-8

PG () G
o (PORCRC)
RGO

+ 0(e%) (5.6)
analytically which equates to
® =6+ 648.934900€2 + O(e3)
o’ oo = 10e — 7713.844209¢% + O(e?)
®? _ 2 3
N 79461.413957¢* + O(e’)  (5.7)

numerically. Clearly the coefficient of the O (¢?) term is sig-
nificantly large and that increases with n. However this needs
to be tempered by the fact that the limit of D, is 2 as n
increases. Indeed with d = D,, — 2¢ then setting € = ﬁ
produces d = 2. However even with this choice of € the
value of w for the respective theories carries no meaning.
One option would be to improve the convergence by using
a Padé approximant to estimate w in d = 2. For n = 5 and
9, however, the Padé approximant is singular in the range
2 < d < D, since the correction term is positive. This is
not the case for n = 7 when a [1, 1] Padé approximant gives

w®’ = 0.012880 which is significantly lower than the

canonl\i]c_al value. What remains to be clarified is the effect of
the as yet uncalculated subsequent € term would be to this
estimate. Indeed a value of the O (¢2) term could produce a
non-singular Padé approximant for the other two theories.

6 Discussion
The main interest in exploring the supersymmetric extension

of theories with a potential with an odd number of fields
was to ascertain whether the O Sp(1|2M) emergence of the

Fig. 7 Primitive graph contributing to second order S-function in non-
supersymmetric ¢> theory

non-supersymmetric case, [24], was maintained. It was not
surprising that this is indeed the case, which we expect to
be manifest beyond the three cases studies in depth here, but
there are subtle aspects to the analysis. For instance the low-
est order potential with n = 3 has been extensively studied as
it corresponds to the Wess—Zumino model, [13]. In that the-
ory it was known that as a consequence of the supersymmetry
Ward identities the critical exponents of the basic fields of
the theory can be deduced exactly in the € expansion near the
model’s critical dimension. For the extension to n > 3 with
n odd none of these theories have an integer critical dimen-
sion. While this may indicate limited physical interest D,,
is relatively close to an integer dimension which is either
two or three. Therefore the convergence of critical expo-
nent estimates for the variety of fixed points we examined
in the O(N) theory should be relatively quick. This was an
important exercise for this class of theories with non-integer
dimensions. Aside from [24] there have been other studies of
the non-supersymmetric non-integer critical dimension the-
ories, [27,32,33], with that of the Blume—Capel model being
just above three dimensions. In that case only the leading
order renormalization group functions are known since the
underlying Feynman graphs are straightforward to evaluate.
However the corrections to the coupling constant renormal-
ization involve a significantly large number of graphs. One
of these is illustrated in Fig. 7. It is clearly non-planar as
well as being a primitive and has yet to be evaluated. It is
likely to have to be treated in the same way as the analogous
graphs of ¢ theory in the third order determination of its
B-function, [37]. Clearly the graph is absent in the supersym-
metric extension due to the chiral property of the interaction
which simplified the analysis of this article. Consequently it
has not been possible to ascertain whether the ¢ expansion
of critical exponents in the Blume—Capel case improves let
alone obtain more accurate estimates. It is in this context
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that our supersymmetric analysis has provided some insight.
Even in this case, however, we expect there to be a calcula-
tional hurdle to overcome at the next order to determine the
B-function of the supersymmetric theories which will have
an intricacy akin to that of Fig. 7.
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Appendix A: Results for the O (N) ®7 theory

This appendix records the renormalization group functions
for the O (N) symmetric theory based on an n = 7 potential.
These results and those for the other two O (N) theories are
available in electronic form in the associated data file. First
the anomalous dimensions for the fields are

v& (g1) = 3N}

()
1080

+ 32400N2g} + 74304N g7 + 62208g} + 1875N4gf e

+ 33000N>g? g3 + 199500N2 g3 g3 + 4980001vgl e

+ 43200087 g3 + 540N3g2¢2 4+ 16200Ng? g3

+ 82080Ng7g2 + 103680g7 g3 + 18000N3g g2 g3

+ 144000N2g; g2 g3 + 360000N g g3 g3 + 288000g) 583

+ 4050N2g1g2g3g4 + 24300N g1 828384 + 3240081828384

+ 16250N3 g5 + 265000N% g3 + 925000N g5 + 920000g2

+ 175500N2 g3 g% + 904500N g3 g3 + 1107000g3 ¢

+ 6750N g3 g3 4 1350083 g2 4 27000N g2 g3 g4

+ 18Ng} + 24g7 + 50Ng3 + 100g3 + 45¢3]

- [[27N5g‘1‘ + 648N gt + 6588\ g}
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+ 540008282 g4 + 204525N g5 + 20250043

4 1
+ 22275g3¢7] F2<g)r13<§)

+ [75N5 + 3150N*gt +30900N3 g} + 1242002 ¢}

+ 220800Ng} 4 1440008} 4+ 9375N*g2 g3

+ 135000N3g? g3 + 667500N2 g7 g5 + 1350000N g3 g3
+960000g2 g5 + 22500N> g2 g2 + 175500N g3 g3

+ 423000N g7 g3 + 32400057 g3 + 1125N% gl g?

+ 6750N g2 g2 4 9000g7 g2 4 281250N3 g5 + 1500000N% g3
+ 2625000N g3 + 1500000g3 + 1265625N2g§g§

+ 2981250N g2 g2 + 9000003 g3 + 56250N g3 g2

+ 11250083 g3 + 1265625N g5 + 101250g3

4\ (2 1
84375g3g2]T( - |T( = |10 <
+ [27N g + 972N g} + 1220487 g} + 69408 N2

+ 177984Ng} + 161280g} + 2625N*g? g5 + 60000N g7 g2

+ 466500N% g7 g2 + 1434000N g7 g3 + 1440000g7¢2

+ 2700N3 g2 g2 4 27000N2g? g3 + 86400N g2 g3 + 8640057 g3

+ 18000N> g1 g5 g3 + 288000N2 g1 g5 g3 + 1224000N g1 g3 g3

+ 1440000g1 g3 g3 + 6750N> g 228384 + 40500N g 828324

+ 5400081 228384 + 46250N° g3 4 565000N2 g5 + 2245000N g5

+ 2600000g5 + 337500N2g3 g3 + 2362500N g3 g3

+ 3375000¢3 3 + 3750N g3 g3 + 75003 ¢

+ 135000N g22 g4 + 2700008282 g4 + 253125N g5 + 810000g3
1 1

2
+50625¢3 47 r2<g)r12<§)] + 0(g%
11664000 <§>r (%)

(A1)

and

+ 6N2g?

20
2160
+ 732N%g} + 3600N3 g} + 8256N g} + 6912Ng1
+ 500N g2 g2 + 8800N*g2 g3 + 53200N> g2 g3
+ 132800N2 g2 g3 + 115200N g3 g5 + 270N* g3 g3
+ 8100N3g1g3 4 41040N%g7 g3 + 51840N g7 g3
+ 9000N*g1g5¢3 + 72000N g1 g3 g3
+ 180000N2 g1 g2 g3 + 144000N g g3 3
+ 3600Ng1 828384 + 21600N g1 828384
+ 28800N g 228384 + 8125N*g3 + 132500N3 g5
+ 462500N2 g5 + 460000N g5 + 156000N° g3 g2
+ 804000N2g§g§ + 984000Ng§g§ + 11250N2g3g?
+22500N g2 g2 + 45000N2gr82 g4 + 90000Ng2g3 g4
+ 340875N2g4 + 337500N g3 + 89100N g3 g7 + 4725g4]

+8Ng? +75N2g3

v (g =[N3} + 150N g3

+225Ng3 + 15g3]

— [[3V0st + 728t

4
xr2<5>r13< )[300N5 +3600N*g4 + 15600N3 g
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+ 28800N2g} + 19200Ng1 + 1250N5g1 o+ 30000N4g%g§
+ 1850001\/1131 g+ 420000N2g1 g+ 320000Ng1 o

+ 7500N*g? g2 4 72000N3 g7 2 + 2220001\/2;;l e

+ 216000N g7 g3 + 750N3g? g2 + 4500N2 g% g2

+ 6000N g7 g7 + 93750N* g5 + 625000N> g}

+ 1375000N% g3 + 1000000N g5 + 8437501\73 9

+ 2287500N2g§g§ 4 1200000N g3 g5 + 75000N>g3 g7

+ 150000N g3 g3 + 1687500N> g3 + 337500N g3

4 4 AT
+281250Ng3g4+11250g4]F N Ll

+ [3N%1 + 108N} + 1356N*g} + 77128}

+ 19776N%g} + 17920N g} + 700N g2 ¢3

+ 16000N* g7 g2 + 124400N3g? g3 + 382400N%g2 g3

+ 384000N gl g3 + 1350N4g1g3 + 13500N3g1g3

+ 43200N% g7 g2 + 43200N g2 g2 + 9000N* g g3 ¢3

+ 144000N>g; g2 g3 4+ 612000N>g; g3 g3 + 720000N g1 g3 g3
+ 6000N>g1 22384 + 36000N>g1 28384 -+ 48000N g1 222384
+ 23125N* g3 + 282500N3 g5 + 1122500N2 g3

+ 1300000N g5 + 300000N° g3 g3 + 2100000N?> g2 s¢3

+ 3000000N g3 g3 + 6250N>g3 g7 + 12500N g3 g2

+ 225000N%g2g3 g4 + 450000Ng2g3 g4+ 421875N? g}

+ 1350000N g$ + 202500N g3 g7 + 1312584 ]

XF2<§)F12<%>i| 1 +0(@». (A2
77760001“(%)1“(%)

Consequently the supersymmetry Ward identities determine
the four S-functions as

B (o) = [Ng] +42N2g] +224Ng} +288¢} + 75N 8163

5(1 >
+750Ng; g5 + 12001 g3 + 225N g1 g3 + 540g, 8% + 15g,g§] Fzg;))
- [[3N6gf + 180NSgS +3324N4g5 +29952N3 ¢}

+ 137856N2g] + 304128Ng} + 248832¢;

+ 500N g} g3 + 16300N* g3 ¢3 + 185200N3 ¢} g3

+ 930800N2 g} g3 + 2107200N g3 g3 + 1728000g3 g3

+ 270N*g; g2 + 10260N>g3 g2 + 105840N2 g7 g2

+ 380160N g} g7 + 414720g3 83 + 9000N* g g3 3

+ 144000N° g} g3 g3 + 756000N% g7 g3 g3 + 1584000N g7 3 ¢3
+ 115200087 8383 + 3600N"g7 828384 + 37800N g7 2834
+ 126000N g% g2g384 + 1296008228384 + 8125N* g1 g3

+ 197500N3 g g5 + 1522500N% g1 g5 + 4160000N g; g5

+ 3680000g; g3 + 156000N> g1 g3 g5 + 1506000N2g; g3¢2
+ 4602000N g1 g2 g3 + 442800081 g3 g3 + 11250N g1 8243
+49500N g1 8323 + 540001 g3 23 + 45000N> g1 2283 24

+ 198000N g1 g2g584 + 216000g1 8282 g4 + 340875N%g1 g4
+ 1155600Ng; g5 + 810000g1 g3 + 89100N g g3¢7

5
+ [6001\/5 + 16200N* g3 + 13920083 g} + 525600N% g}

4 1
+89100g, g2¢2 + 4725g1gj{] 1*2(5)1*‘3 (7)

+ 902400N g + 576000g; + 1250N° g3 g3 + 67500N*g3 g3
+ 725000N° g3 g3 + 3090000N2¢3 g2 + 5720000N g3 g3

+ 3840000g3 g3 + 7500N" g3 g2 + 162000N > g3 g3

+ 924000N2 g3 g3 + 1908000N g3 g2 + 1296000g; g2

+ 750N3 g} g3 + 9000N2 g3 g2 + 33000N g} g2
+36000g7 g2 + 93750N*g1 g3 + 1750000N3 g, g3

+ 7375000N2 g1 g5 + 11500000N g1 g5 4 6000000g g4

+ 843750N° g g3¢% + 7350000N 2 g1 g2 g2

+ 13125000Ng; g3 g5 + 3600000g1 g3 &3 + 75000N>g1 g3 ¢3
+ 375000N g g3¢2 + 450000g) g3 g7 + 1687500N% g, g4

+ 5400000N g g1 + 4050002, g3 + 281250N g, ¢33

4\ (2 1
+ 3375008, 8242 + 11250g1gﬂ r<§)r<g>r'0<g>

+ [3N6g§ +216N7g7 + 5244N*g7 + 56528N3 g}

+ 297408N2 g} + 729856 N g} + 645120g] + 700N g7 ¢2

+ 26500N" g3 g3 + 364400N3g3 g3 + 2248400N2 g3 ¢

+ 6120000N g3 g3 + 576000083 g5 + 1350N* g3 ¢

+ 24300N3g3 g2 4 151200N2 g3 g2 4 388800N g3 g3
+345600¢7 g3 + 9000N* g7 g3 ¢3 + 216000N" g7 g3 ¢3

+ 1764000N2 g7 g2 g5 + 5616000N g7 g3 g3 + 576000057 g3 83
+ 6000N° g7 ¢2g324 + 63000N g7 22384 + 210000N g7 g29324
+ 21600087 g2g384 + 23125N g1 g4 + 467500N3 g1 g

+ 3382500N2 g1 g5 + 10280000N g/ g5

+ 10400000g1 g3 4 300000N> g1 g3 g3

+ 3450000N2¢g; g3 ¢% + 12450000N g1 ¢3 g3

+ 13500000g1 g3 43 + 6250N2g1g3¢7 + 27500N g, g3 87
+30000g1 8385 + 225000Ng1828384

+ 990000N g1 g2g584 + 1080000g1 8282 g4 + 421875N% g1 g%
+ 2362500Ng; g5 + 3240000g g5 + 202500N g g3 g2

2 1
+ 2025008, 8242 + 13125g1gﬂ 1“2(5)1“12(5)}
1

4 2
7776000F(§)F<§>

;
BY (gi) = [3N3g%gz +42N%g2g) + 168N g2gs + 192g7 )

5(1
= (4)
2160
- [[27N6gi‘gz +864N5g4gs + 11772N% g4y + 85104N3gt gy

+ 0@ (A3)

+225N%g3 + 850Ng3 + 800g3

+ 675N 263 + 3608283 + 458247 |

+333504N2g% g2 + 656640N g gy + 497664 g5

+ 4500N° g% g3 + 94200N* g2 g3 + 742800N> g% g3
+2791200N2 g} g3 + 5020800N g7 g3 + 345600047 g3

+ 2430N* g2 g28% 4+ 77220N3 g2 g2 g3 + 498960N> g2 g2 g3

+ 1123200N g3 g227 + 82944087 g2 g3 + 81000N* g, g3 g3

+ 792000N° g g3 g3 + 2772000N2g1 g3 g3 + 4176000Ng| g3 3
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+ 23040001 83 83 + 32400N g1 38384 + 226800N g1 3 384
+ 453600Ng) 838324 + 2592008, 858384 + 73125N" g3

+ 1322500N° g3 + 6282500N2 g3 + 11540000N g5

+ 7360000g5 + 1404000N°> g3 g3 + 8640000N2 g3 ¢

+ 16092000N g3 g2 + 8856000g3 g2 + 101250N> g3 g2

+ 256500N g3 g2 4 108000g3 g2 + 405000N2g3 g3 ¢4

+ 1026000V g2 g2 g4 + 4320003 g2 g4 + 3067875N2g2g

+ 4673700N g2¢% 4+ 162000082 g5 + 801900N g2 3 g2

4 1
+ 178200824387 + 4252582gﬂ F2<§)r13 <§>

+ [3300N5g§‘gz + 57600N" g} g + 387600N g} ¢

+ 1252800N2 gt g2 + 1939200N g g2 + 1152000g g2

+ 11250N° g% g3 + 345000N* g2 g3 + 2745000N> g2 ¢3

+ 9120000N2g? g3 + 13680000N g2 g5 4 7680000g7 ¢3
+ 67500N* g2 g2¢3 + 828000N° g7 g2 g3 + 3402000N> g7 g2 83
+ 5328000N g7 g283 + 25920007 2243 + 6750N> g g247
+ 49500N2 g3 g22 4 108000N g7 g23 4 72000g7 g2 g2
+ 843750N* g3 + 7875000N° g3 + 24375000N g3

+ 30000000N g3 + 12000000g5 + 7593750N> g3 ¢3

+ 30712500N2¢3 g2 4 34650000N g3 g% + 7200000¢3 ¢
+ 675000N2 g3 g% + 1800000N g3 g7 + 900000g3 g7

+ 15187500N%g2¢% + 13162500N g2 ¢+ + 810000g2 g5
+ 2531250Ng283 2 + 675000822587 + 10125022 gj{]

4\ (2 1
r(=|r(z)r°f=
5)° 5 5

+ [27N6g‘,‘gz + 188N g} s + 19980N* g g

+ 167040N3g4 g, + 733248N%g4 g, + 1585152N gt g

+ 1290240g% g + 6300N°g? g3 + 165000N* g2 g3

+ 1599600N° g7 g3 + 7173600N2 g7 g3 + 14928000N g7 g3
+ 115200002 g3 + 12150N* g2 g263 + 143100N> g2 g263
+ 604800N2 g2 g263 + 1080000N g2 g2 g3 + 691200g7 g203
+ 81000N*g1 g3 g3 + 1440000N3g1 g3 g3 + 7812000N g1 g3 ¢3
+ 16272000Ng; g3 g3 + 11520000¢ g3 &3

+ 54000N"g183 8384 + 378000N> g1 g3 8324

+ 756000N g1 83 8384 + 43200081 83 8384

+ 208125N%g3 +2912500N3 g3 4 14622500N2¢3

+ 29660000N g3 -+ 208000005 + 2700000N > g3 62

+ 21600000N2 g3 g3 + 45900000N g3 g3

+ 27000000g3 g3 + 56250N2g3 g7 + 142500N g3 g2

+ 60000g3 g3 + 2025000N%g3 g3 g4 + 5130000N g3 g3 24
+ 216000083 g2g4 + 3796875N2g5g% + 14175000N g g

+ 6480000g2¢% + 1822500N g2 g3 g7 + 405000282 g3
1

2 1
+ 118125g2gj{] r2(5>r‘2(5>]
23328000r<§)r(§>

+0(g)
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7
BY(8) = [sNghes +42M%gles + 112N gl s

5(1
“(4)
2160

- [[45N6g‘1‘g3 + 188N gt g3 + 13572N gl g3

+96g%¢3 +375N%g3 g3 + 950N g3 g3

+400g2g5 + 1125N g3 + 180g3 + 75g3gﬂ

+ 80352Ng g3 + 253440N2g4 g5 + 400896 N g g3
+248832g7 g3 + 7500N g2 g3 g3 + 139500N* g2 g2 g3
+930000N3g2g2 g3 + 2790000N2g? g2 g3 + 3720000N g g2 g3
+ 172800047 g3 g3 + 4050N* g% g3 + 123660N° g7 ¢3

+ 680400N2 gl g3 4+ 1105920N g? &3

+ 414720g3 g3 + 135000N* g1 g3 ¢2

+ 1152000N° g1 g3 3 + 3276000N2g1 g3 g3

+ 3600000Ng; 2323 + 1152000g) g3 g3 + 54000N>g) g282 ¢4
+ 340200N2 g g2g3 84 + 529200N g g285 84 + 1296008 8287 ¢4
+ 121875N*g% g3 + 2052500N g% g3 + 7997500N gl g3

+ 10600000N g2 g3 + 368000082 g3 + 2340000N 3 g2 g3

+ 12762000N% g2 g3 4 18378000N g3 3 + 4428000¢3 ¢3

+ 168750N2 g3 g387 + 364500N g3 387 + 54000838387

+ 675000N2 g2¢3 g4 + 1458000N g2g3 g4 + 2160008283 g4

+ 5113125N2 g3 + 5880600N g3 + 8100003

4 1
+ 1336500N g3 g7 + 891003 g7 -+ 70875g384 ] FZ(g)Fm (g)

+ [4800N5g?g3 + 66600N* gt g3 + 357600N gt g5

+ 928800N2g% g3 + 1171200N g% g3 + 5760008 g3

+ 18750N° g2 g2 g5 + 487500N* g% g3 g3

+ 3315000V g2 g3 g3 + 8970000N 23 g3 g3

+ 10200000V g2 g3 g3 + 3840000g7 g3 g3 -+ 112500N*g?¢3
+ 1170000N3g? g3 + 4032000N2 g7 g3 + 4932000N g7 ¢3
+ 1296000g% g3 + 11250N° g2 g3¢7 + 72000N2 g2 g3 3
+ 117000N g3 g387 4 3600087 g387 + 1406250N* g3 g3
+ 10500000V g3 g3 + 26625000N> g5 g3

+ 25500000N g5 g3 + 60000005 g3

+ 12656250N3g2 g3 + 39375000N g3 g3
+29925000N g2 g3 + 3600000g3 g3

+ 1125000N2 g3 387 + 2475000N g3 g3 83

+ 45000043 2342 4 25312500N2g3 + 10125000N g3

+ 405000g3 + 4218750N g3 g2 4 337500g3 g7

4\ (2 1

168750g3g4]1T( = )r( = )r'o( =

+ 1687508344] (5) (5) 5
+ [45N6g‘,‘g3 + 1728N5g4 g3 + 24228N* g4 g3

+ 164496 N3 g4 g3 + 574272N2g4 g3 + 980736 N g g3

+ 64512081 g3 + 10500N° g7 g3 g3 + 250500N* g7 g2 ¢3
+ 2106000V g2 g2 g3 4+ 7602000N> g7 g3 ¢3

+ 11496000N g2 g3 g3 + 5760000g7 g3 g3 + 20250N* g3 ¢3
+ 213300N° g2 g3 4 756000N2 g7 g3 + 993600N g7 g3

+ 345600g% g3 + 135000N* g g3¢2
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+ 2232000Ng; g2 2 4 10332000N2 ¢ g5 63

+ 15696000N g g2¢2 + 5760000g; g2 g3 + 90000N> g1 243 g4
+ 567000N2 g1 282 g4 + 882000N g1 828384 + 21600081 228384
+ 346875N g4 g3 + 4422500N g4 g3 + 19097500N 2% g3

+ 28480000N g g3 -+ 104000003 g3 + 4500000N3 g2 g3

+ 32850000N2g2 g3 + 54450000N g3 g3 + 135000003 &3
+93750N2g2 ¢33 +202500N g2 g3 g2

+30000g2 ¢33 + 3375000N%g283 g4 + 7290000N g283 g4

+ 1080000g2¢3 g4 + 6328125N2%¢3 4 21262500N g3

+ 3240000g3 + 3037500Ng3 g2

2 1
+ 20250083 g3 + 196875g3¢1] 1“2(5)1“12(5)]
1

23328000r(§)r<§)

and

+ 0 (A.5)

7
BY (g1) = [IN3g2ga + 42Nl g4 + 56N gi ga + 525N g3 4

5(1
~(4)
2160
- [[21N6g‘.‘g4 + 504N gl gy + 5124N" gt g4 + 25200N gl g4

+ 1050Ng3g4 + 1575Ng3 g4 + 105¢3

+57792N%g} g4 + 48384Ng} g4 + 3500N3 g2 g3 g4

+ 61600N*g? g2 g4 + 372400N° g2 g2 g4 + 929600N g% g2 g4

+ 806400N g7 g3 g4 + 1890N* g% g2 g4 + 56700N> g g2 g4
+287280N% g g2 g4 + 362880N g2 g3 ¢4 + 63000N* g1 g5 384

+ 504000N 3 g1 g3 384 + 1260000N> g g3 g3 g4 + 1008000N g g3 ¢34
+25200N3g1 828387 + 151200N2 g 828382 + 201600N g1 828387

+ 56875N* g5 g4 + 927500N> g3 g4 + 3237500N g3 g4

+ 3220000N g3 g4 + 1092000N> g3 g3 g4 + 5628000N2 g3 g3 g4

+ 6888000N g5 3 g4 + 78750N2g3 g3 4 157500N g3 g3

+ 315000N2g2g3 7 + 630000N g2 387 + 2386125N% g3 g4

4 1
+ 2362500N g3 g4 + 623700N g3 3 + 33075gﬂ r2 (5) rt (g)

+ [2100N5g‘1‘g4 +25200N g% g4 + 109200N g gy

+201600N2g4g4 + 134400N g g4 + 8750N° 234

+ 210000N* g2 g2 g4 + 1295000N3 g2 g3 ¢4 + 2940000N2g? g3 g4
+ 2240000N g7 g3 4 + 52500N* g% g3 g4 + 504000N>g7 g2 g4

+ 1554000N2g?¢2 g4 + 1512000N g3 g2 g4 + 5250N3 g2 g3

+ 31500N2g2 g3 + 42000N g7 g3 + 656250N* g3 g4

+ 4375000N° g3 g4 + 9625000N2 g4 g4 -+ 7000000N g4 g4

+ 5906250N° g2 g2 g4 + 16012500N2g2 g2 ¢4 + 8400000N g2 g4
+ 525000N2g3 g3 + 1050000N g3 g3 + 11812500N2 g4 g4

+2362500N g} g4 + 1968750N ¢33 + 78750g2]
4\ (2 1
r(=)r(Z)r'°f =
5)°\s 5
+ [21N6g‘.‘g4 + 756N gl gu + 9492N* gt g4 + 53984 N3 gt g4

+ 138432N2g4 g4 + 125440N g% g4 + 4900N7 g2 g2,
+ 112000N* g7 g3 4 + 870800N> g2 g3 g4 + 2676800N g% g3 g4

+ 2688000N g2 g3 g4 + 9450N* g2 g2 g4 + 94500N3 g2 g2 g4
+ 302400N2 g% g2 g4 + 302400N g% g2 g4 + 63000N* g1 g% ¢324
+ 1008000N g, g3 g3.24 + 4284000N g, g2 ¢34
+ 5040000N g1 g3 ¢34
+ 42000N° g1 828387 + 252000N>g1 828387 + 336000N g1 828387
+ 161875N* g3 g4 + 1977500N° g3 g4 + 7857500N> g3 24
+ 9100000N g3 g4 + 2100000N>g3 g3 ¢4
+ 14700000N2g2¢2 g4 + 21000000N g3 g2 g4
+43750N2g3 g3 + 87500N g3 g3
+ 1575000N2 g2 g3 82 + 3150000N g2 g% 3
+2953125N% g3 g4 + 9450000N g3 g4

2 1

+ 1417500N g2g3 +91875g2] r2<g>r12<g>]
1

4 2
77760001“<§>F<§>

Appendix B: Renormalization group functions for the ®°
theory with O (—8) symmetry

+ 0. (A.6)

For completeness we present renormalization group func-
tions for the ®° structure. In particular we focus on the
enhanced case of the O(N) theory when N = — 8. The

field anomalous dimensions are
o (1)
= [—16g] +392¢3 — 490¢3 + 35¢7 ] 500
+ [[122880g} — 790272057 ¢3 + 873600g7 g7
+ 31610880g1g§g3 — 1975680081 828384 + 37632081828485
— 110638080g5 — 69148800g3 g3 + 57953280¢3 g3
— 493920g3 g2 + 276595200283 g4
— 4939200g2g3 8485 + 610814400g5
— 513676800g3 3 4 2058000¢3 g2
+ 24696003 2 g5 -+ 49098000g

6 5 3 1
— 3234002221 T%( = (= )r( = )r3( =
g4g5] 7 7 7 7
+ [36879360g7 g3 — 18063365} -+ 46099200¢7 g3
— 17781120g7 % + 8232047 2 + 1264962048¢5

— 9487215360g3 g3 + 1710280320g3 g7 — 6050520¢3 g2
+ 1327080720085 — 4154690400g3 g7 + 12605250g3 g2

6 5 3 2
+280917000g — 1260525g3 g3 ] r(7>r<7>r(7>r(7>

+ [86016g] + 2107392¢7¢3 — 7902720g7 g3
+ 632217601 g3 g3 + 13171200g1 828384 + 3292800g1 g3 g5
— 66382848¢5 + 92198400¢2 g3

9
va (g

+ 165957120g2 g7 — 184396800g2 93 ¢4
— 691488008283 8485 + 875884800¢5 — 126196560043 &7
+ 4321800g2 g2 + 86436000g3 53 g5
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6 3 2 1
+ 123891600g; — 2881200g3 g3 ] r<?>r2 (5)r <7)r2(7)

+ [14676480g7 g3 — 172032¢] — 2809856¢7 g3

— 47040082 g2 — 94832640g1 g3 g3 + 6585600g] 228384

+ 878080g1 228485 + 14997606485 + 1767136005 ¢

— 49172480g5 g7 — 384160g3 g2

+ 1014182400g2¢2 g4 — 345744008283 8485 — 3111696005
— 1071806400g3 g7 + 48020003 g2 + 28812000g3 87 g5

2( 5\ 2( 2\ 2]
+ 1238916007 — 1440600¢3¢2] T S5 )5

()
+ 0(gd)

AR

~

(g,)) = [128g7 — 12544¢7 + 39200¢3 — 784047 + 35¢?]

F?(é)
201600
+[[63221760g7 g3 — 24576057 — 11182080g7 ¢7

— 252887O4Og1g%g3 + 25288704081 828384 — 752640081 828485

+ 885104640g3
+ 88510464082 g3 — 1159065600g3 g7 + 15805440g3 g2

— 55319040008 g3 g4 + 158054400g2838485 — 122162880004

+ 16437657600g3 g7 — 115248000g3 g2 — 138297600g3¢3 g5
— 2749488000} + 4139520087 g2 — 132300g2]

2 (6N (5N (3N a( ]
r2(2)r(2)r(2 )3 =
7)\7) \7 7

+ [4816896g7 — 3540418567 g7 + 14751744087 g2

+ 136980480577 — 131712087 g2 — 28913418243

+79511900160g5 g3 — 26331863040g3 g7 4 161347200¢3 ¢2
— 203297472000g5 + 109070707200g3 g7 — 605052000¢3 g2

— 13391817600g] + 141178800g3 ¢ — 360150g]

6\ (5 3 2
r{=)r(z)r(2)r(=

7 7 7 7

2.2 4 2.2

+ [63221760g7 83 — 172032¢] — 9633792¢7 ¢3
— 5057740808 g3 g3 — 168591360 222384 — 658560008, g7 g5
+ 531062784g5 — 1180139520g3 g3 — 3319142400¢3 g7
+ 3687936000g2 83 g4 + 2212761600223 8485
— 175176960003 + 403828992003 g7
— 24202080043 g2 — 4840416000g3 g3 g5 — 69379296007

2,2 4 § 2 E % 2 1
+368793600g3¢5 — 1620675¢3] T ( = )2 5 (= )r2( 5

+ [344064¢] + 128450567 g3 — 117411840g7 g3

+ 60211207 g2 4 758661120g1 g3 83 — 84295680g1 228384
— 17561600g1 g28485 — 1199808512¢5 — 226193408043 ¢
+ 98344960023 7 + 12293120g% g2 — 20283648000g282 ¢4
+ 11063808002 g3 8485 + 622339200025
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