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Abstract We renormalize models with scalar chiral super-
fields with an odd superpotential to several orders in pertur-
bation theory. These extensions of the cubic Wess–Zumino
model are renormalizable in spacetime dimensions which
are rational. When endowed with an O(N ) symmetry it
is shown that they share the same property as their non-
supersymmetric counterparts in that at a particular fixed point
there is an emergent OSp(1|n−1) symmetry, where n is the
power of the superpotential. This is shown at a loop order
beyond that for which it was established in the parallel non-
supersymmetric theory.

1 Introduction

One of the more interesting developments in quantum field
theory in recent years has been that of emergent symme-
tries particularly in the case when a model of bosons and
fermions develops a configuration that possesses supersym-
metry, [1–3]. Emergent properties derive from the critical
point analysis of the renormalization group functions of a
multicoupling theory when treated in d-dimensions. Ordinar-
ily in a single coupling theory the β-function has a Wilson-
Fisher fixed point given by the first non-trivial zero of the
d-dimensional β-function. By contrast in the multicoupling
case even with two coupling constants one can have a rich
spectrum of fixed points in d-dimensions, [2,3]. These can
be stable in the ultraviolet limit or alternatively in the infrared
if the running is in that direction, in addition to the presence
of saddle points. At each critical point the values of criti-
cal exponents can be determined in the ε expansion where
ε is a measure of the difference between d and the criti-
cal dimension of the theory. The concept of emergence then
arises when a fixed point possesses an enlarged or extended
symmetry over and above that of the fields in the original
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underlying Lagrangian. To illustrate the background to this,
for instance, one well-studied case is that of the Gross-Neveu-
Yukawa (GNY) system, [4,5], which is important for phase
transitions in condensed matter systems. A comprehensive
review can be found for instance in [3].

In these GNY models one has several scalar fields cou-
pled to a multiplet of fermions in a flavour symmetry group.
It transpires that at one particular fixed point and a specific
number of flavours the condition is met for the presence
of supersymmetry, [1,2,6,7]. By this we mean the critical
point values of the two originally distinct coupling constants
become equal. This is not sufficient for there to be supersym-
metry alone. Instead it is also the observation that the field
anomalous dimensions at this specific fixed point become
equal. This occurs in the GNY related models of the chiral
Ising and chiral XY models when the parameter N takes the
respective values of N = 1

4 and N = 1
2 , [1,2,7] and has

subsequently been verified up to four loops, [7–10]. In addi-
tion to the criteria for supersymmetry being satisfied at four
loops at one particular fixed point, the critical properties there
have been connected, [11,12], for example, to those of the
Wess–Zumino model, [13]. This has been demonstrated to
three loops, [12], and more recently at four loops, [14], using
the explicit results of the renormalization group functions
in the Wess–Zumino model available in [13,15–18]. More
recently the Wess–Zumino model has been renormalized to
five loops in various schemes, [14], in preparation for veri-
fying the emergence in the GNY system to the next order. In
other words one can interpret the emergent supersymmetric
theory of the GNY system as that of the Wess–Zumino model.
This is important as it is believed that supersymmetry may be
present in some condensed matter systems, like those on the
boundaries of three dimensional topological insulators, [6],
and so may be described by Wess–Zumino models. Interest-
ingly the GNY model has a structure that is similar to the
Standard Model of particle physics where the scalar field is
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analogous to the Higgs field. Therefore it has already been
noted in, for instance, [19], that such emergence properties
of the relatively simple GNY model could equally hold in the
Standard Model. If so there is the possibility that an emer-
gent supersymmetry could be a route to an extension of the
Standard Model.

It is worth stressing that emergent symmetries do not
always lead to supersymmetry. For instance, in a particular
scalar cubic theory, [20–23], which is renormalizable in six
dimensions, it was shown in [23], that an emergent flavour
symmetry is present. In particular the O(3) symmetry of the
original Lagrangian enhanced to an SU (3) one at a particular
critical point. A more recent example of such a flavour sym-
metry emergence was discussed in [24]. In that work scalar
field theories with an O(N ) symmetry and potentials with an
odd power were studied. Although they are renormalizable in
rational spacetime dimensions, for specific values of N there
is a fixed point with an emergent OSp(1|2M) symmetry,
[24]. The case of the quintic theory or Blume–Capel theory,
[25,26], was of particular interest, [27–30], given that it is
the next theory in the sequence after φ3 theory that underlies
the Ising and Lee-Yang universality classes and has a ratio-
nal critical dimension close to three dimensions. However,
the underlying mechanism of the emergence in this instance
was that the anomalous dimensions of the fields in the O(N )

multiplet became equal to that of another scalar field in the
theory. This field was analogous to the σ field that arises in
the O(N ) nonlinear sigma model. Indeed the sigma model
is the first in the sequence of such odd power potentials for
this OSp(1|2M) emergence to arise. The next model in the
sequence after the sigma model is the cubic theory akin to
the one mentioned earlier. Indeed it is structurally similar to
the Wess–Zumino model in its superfield formulation with
chiral superfields. Therefore given the parallel nature of the
scalar cubic theory with the Wess–Zumino model a natural
question to ask is whether there is an analogous sequence of
supersymmetric models that is parallel to those considered
in [24] which have an emergent OSp(1|2M) symmetry.

This is the main aim of this article. It is possible to for-
mulate these generalized Wess–Zumino theories given the
superspace techniques that allowed the original component
field formulation of the Wess–Zumino model, [13], to be
rewritten in terms of chiral superfields, [31]. One conse-
quence was that the Wess–Zumino model was renormalized
in an efficient way to very high loop order, [14,16,18]. There-
fore we will construct the relevant superspace actions for
such a sequence of chirally supersymmetric theories and then
renormalize them to second order which will be at an order
beyond that considered in the scalar case of [24]. This is
primarily due to the chiral property which rules out a sub-
stantial number of higher order graphs that would ordinarily
have to be determined for the wave function renormaliza-
tion. Moreover the underlying supersymmetry Ward identity,

[1,2], means that the β-functions will follow trivially from
the field anomalous dimensions. One concern with follow-
ing such a superspace approach here might be its relation
with the associated component theory especially in light of
the potential unequal boson and fermion degrees of free-
dom in a non-integer dimension. A similar issue arises when
one regularizes a supersymmetric component Lagrangian.
It is known that while canonical dimensional regularization
does not preserve supersymmetry there is a way to circum-
vent the degrees of freedom imbalance that is the underly-
ing reason for this. Instead a modified regularization is used
known as dimensional reduction and involves the presence
of additional fields termed ε scalars. They inhabitat the sub-
space of the regularizing spacetime that excludes the critical
dimension spacetime. Such additional fields are absent in
the critical dimension of the theory but their presence pre-
serves the supersymmetry property of that physical space.
In the rational spacetime such fields will naturally also be
necessary to preserve the degrees of freedom in the associ-
ated component theory. What would also be the case is that
such a component theory will have a non-supersymmetric
associate which has the same Lagrangian but each interac-
tion has a different coupling constant. Indeed it will be of
a similar nature to the three dimensional GNY systems that
have an emergent supersymmetry where not only will there
be a fixed point where all the critical couplings are equal but
the field anomalous dimensions will all be the same. In the
three dimensional GNY case the underlying supersymmetric
theory is the four dimensional Wess–Zumino model. Indeed
it can be formulated in superspace and the ε expansion of
its critical exponents agree precisely with the ε expansion of
the exponents of the emergent supersymmetric fixed point of
the related GNY system. In regard to the generalized Wess–
Zumino theories we take a similar point of view that they
in fact represent the emergent supersymmetric fixed point of
the associated non-supersymmetric partner theory. In study-
ing the fixed point structures in the supersymmetric theories
an OSp(1|2M) emergent symmetry will be present but it
arises in a subtle way compared to the scalar case of [24].
Aside from this main goal we will examine a more mundane
aspect of the ε expansion in this class of theories with an odd
power potential. For instance, the scalar quintic or Blume–
Capel theory has a critical dimension of 10

3 which is close
to the integer dimension of three. Therefore in d = 10

3 − 2ε

dimensions the value of ε needed to reach that integer dimen-
sion is relatively small compared to a theory with a critical
dimension of four for example. In other words the conver-
gence of the ε expansion in a quintic scalar theory should
be quick. Unfortunately with the inability to compute cor-
rections beyond the leading order in that case due to difficult
Feynman integrals, which will be illustrated later, this conver-
gence issue cannot be readily studied. In the supersymmetric
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extension however we will be able to proceed to the next
order as the corresponding difficult graphs are excluded by
the chiral property. Thus we will examine convergence issues
albeit in a simialar although different class of theories.

The paper is organized as follows. We devote Sect. 2 to
renormalizing the basic chirally supersymmetric scalar the-
ories with an odd potential to the first few orders. While
we will concentrate on three specific theories some proper-
ties of critical exponents are provided for all models with
odd potentials. To examine the emergent symmetry property
we construct the O(N ) versions of the specific theories in
Sect. 3 before renormalizing them to allow us to analyse their
fixed point properties in Sect. 4. In Sect. 5 we concentrate
on establishing the OSp(1|2M) enhancement at one partic-
ular critical point before summarizing our study in Sect. 6.
An appendix provides explicit expressions for the renormal-
ization group functions of several of the O(N ) theories we
focus on.

2 Background

First we consider the action of the most general superpoten-
tial with a chiral superfield which is given by

S(n) =
∫

dd x

[∫
d2θd2θ̄ �̄o(x, θ̄ )e−2θ∂\θ̄�o(x, θ)

+ go

n!
∫

d2θ �n
o(x, θ) + go

n!
∫

d2θ̄ �̄n
o(x, θ̄ )

]

(2.1)

where θ and θ̄ are anti-commuting superspace coordinates
and we use type I superfields with the subscript o denot-
ing bare quantities and g is the coupling constant. The
kinetic term follows that used in the Wess–Zumino model,
[16,18,31], where the 2 × 2 covariant Pauli matrices σμ play
the role of the usual Dirac γ -matrices and satisfy the same
Clifford algebra. We use a variation on the canonical notation
by defining ∂\ = σμ∂μ. At this stage we have not specified
the canonical dimension of the action as n is an arbitrary
integer here. However it is a simple exercise to deduce that
the critical dimension Dn of (2.1) is

Dn = 2(n − 1)

(n − 2)
. (2.2)

Clearly there are only two cases where Dn is an integer which
are D3 = 4 and D4 = 3 with the former corresponding to the
Wess–Zumino model. Subsequent potentials give D5 = 8

3 ,
D6 = 5

2 , D7 = 12
5 , D8 = 7

3 and D9 = 16
7 with limn→∞ Dn = 2.

It is worth contrasting (2.2) with the critical dimension of the
corresponding non-supersymmetric theories which is, [27,
32,33],

Dscalar
n = 2n

(n − 2)
. (2.3)

In other words for each integer n ≥ 3 this is the dimension
where the coupling constant is dimensionless. The origin of
the difference with Dn is the integration measure over the
dimensionful anticommuting spacetime coordinates in (2.1).
The n = 5 potential shares a similar property to its non-
supersymmetric counterpart in that its critical dimension is
close to three dimensions.

The bare quantities in (2.1) are related to their renormal-
ized partners via

�o = √
Z��, �̄o = √

Z��̄, go = μεZgg (2.4)

where we will dimensionally regularize the superspace action
in d = Dn − 2ε dimensions. The arbitrary mass scale μ being
introduced to ensure the coupling constant remains dimen-
sionless in the regularized theory. Like the Wess–Zumino
model the suite of n dependent actions each satisfy a super-
symmetry Ward identity which follows simply by generaliz-
ing the argument given in [13,15,31]. This means that there
is only one independent renormalization constant since the
Ward identity implies

ZgZ
n
2
� = 1. (2.5)

This provides a simple strategy to determine the β-function
of (2.1) since Zg can be deduced from Z� which means
we only need to renormalize the 2-point function. In other
words vertex functions are finite and so do not need to be
evaluated. A further simplification comes from the use of
superspace techniques. From the action (2.1) the propagator
in momentum superspace is, [18],

〈�(p, θ)�̄(−p, θ̄ )〉 = exp (2θp\θ̄ )

p2 (2.6)

which means that prior to carrying out the integration over
the loop momenta the θ coordinate integration has to be per-
formed. As these variables are anti-commuting the expo-
nential associated with each propagator will truncate after
a finite number of terms. Once this has been implemented
the θ -integration is carried out. As this effectively equates
to differentiating with respect to the internal anticommut-
ing variables, and is equivalent to the so-called D-algebra,
it results in simple traces over the covariant Pauli matrices.
This procedure is based on the approach used in the four loop
renormalization of the Wess–Zumino model, [18], and more
recently at five loops, [14]. In the latter case the θ coordi-
nate integration for each graph was carried out automatically
through a routine written in the symbolic manipulation lan-
guage Form, [34,35]. We have used that same procedure for
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Fig. 1 Basic one and two loop
topologies for a 2-point function
in a scalar cubic theory

Fig. 2 Leading order (n − 2) loop graph for �n 2-point function

each of the three cases we focus on here. These will be the
n = 5, 7 and 9 potentials. Once the θ integration has been
carried out the integration over the loop momenta remains.
For (2.1) this is possible for both the first two orders of graphs
that contribute.

To appreciate this for theories with higher order poten-
tials it is instructive to focus for the moment on the basic
one and two loop topologies that can arise in a scalar φ3

theory. These are illustrated in Fig. 1. For the Wess–Zumino
model, which has a cubic interaction, these are in princi-
ple the only topologies that would determine the β-function.
However the Wess–Zumino model is the n = 3 version of
(2.1) and has a chiral symmetry. This implies that the propa-
gators are directed and in a Feynman diagram have an arrow
on each line. Moreover the chirality means that at a ver-
tex the arrows all point towards the interaction location or
away from it. Simple reasoning indicates that this ordering
excludes any topology where there is a subgraph with an odd
number of propagators. So in Fig. 1 the second two loop
graph is excluded. The relevance of this to (2.1) for odd val-
ues of n > 3 is that for these higher order potentials the
2-point function graphs will have the same underlying topo-
logical structure. This can be observed at leading order for
(2.1) where the only contributing graph is given in Fig. 2.
The number beside ellipses between propagators will always
indicate the number of propagators between and including
the bounding propagators. In this and subsequent figures lines
will be directed with arrows reflecting the underlying chiral-
ity. The relation of the graph of Fig. 2 to the first topology
of Fig. 1 can be seen by notionally deleting the number of
internal lines connecting each vertex to leave vertices with
only three lines. By way of example this observation with
the core topologies of Fig. 1 at next order can be viewed in
the n = 5 case where the graphs are shown in Fig. 3. These
and the graphs for all the other theories have been generated
with the Qgraf package, [36]. It is evident that each of the
three graphs of Fig. 3 are extensions of the middle topology
of Fig. 1 where propagators are added to each vertex in such
a way that five propagators intersect there.

As the structure of the leading two orders of 2-point func-
tion graphs is relatively simple the implementation of the D-
algebra resulting from the θ integration is straightforward.
This is in part due to the simple bubble graphs that comprise
each 2-point function for (2.1) when n is odd. For each of
the topologies beyond leading order the only minor compli-
cation is that the loop integrals of each central bubble in the
three bubble sequence has a contraction of two internal loop
momenta. This is not a hindrance to evaluating a graph as one
simply makes use of the momentum conservation to rewrite
the scalar product in terms of the squares of the momenta
of related propagators. In other words the effect of the D-
algebra at this order is the removal of a propagator from the
original topology similar to what was observed in the Wess–
Zumino model, [18]. The consequence of the D-algebra is
that all the Feynman integrals at the leading two orders are
quickly reduced to simple scalar bubble integrals which are
elementary to evaluate.

If we focus for the moment on the case of n = 5 applying
the algorithm to the �5 theory we find that the anomalous
dimension is

γ �5
(a) =

√
3π3a

9�3
( 2

3

)

−
[

40
√

3π3 + 81�3
(

2

3

)]
4π6a2

729�9
( 2

3

) + O(a3) (2.7)

where here and elsewhere the factor arising from the sur-
face area of the d-dimensional unit sphere is absorbed in the
combination

a = g2

(4π)
Dn
2

. (2.8)

In (2.7) we have applied the identity

�

(
1

3

)
= 2π√

3�
( 2

3

) (2.9)

to simplify the expression. While there are three higher order
graphs there are only two terms at O(a2). The second of these
two terms arises from the final graph of Fig. 3 and this graph is
the insertion of Fig. 2 on one of the internal lines of the graph
itself when n = 5. The remaining two graphs correspond to
vertex corrections arising from the graph of Fig. 4. As it is
clearly finite this means that the first two graphs of Fig. 3 are
primitives.
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Fig. 3 Six loop graphs for �5

theory 2-point function

Fig. 4 Leading order vertex
correction for �5 theory

Having discussed the n = 5 case in detail the procedure to
renormalize the other two cases we consider here,n=7 and 9,
is completely parallel. The main differences, however, rest in
the increase in the number of graphs for each theory which are
illustrated respectively in Figs. 5 and 6. Again the final graph
of each figure corresponds to the self-energy correction on a
propagator of the leading order 2-point function. This means
the remaining graphs are all primitives as they contain vertex
subgraph corrections and the leading order vertex graph is
finite. The resulting anomalous dimensions for both theories

Fig. 5 Ten loop graphs for �7

theory 2-point function
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are

γ �7
(a) = �5

( 1
5

)
a

144

−
[

63�2
(

4

5

)
�3

(
1

5

)
+ 150�

(
4

5

)
�

(
2

5

)

+ 175�2
(

2

5

)
�2

(
1

5

)]

× �10
( 1

5

)
a2

103680�
( 4

5

)
�

( 2
5

) + O(a3) (2.10)

and

γ �9
(a) = �7

( 1
7

)
a

5760

−
[

36�2
(

6

7

)
�

(
5

7

)
�

(
3

7

)
�3

(
1

7

)

+ 98�

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�

(
2

7

)

+ 441�

(
6

7

)
�2

(
3

7

)
�

(
2

7

)
�2

(
1

7

)

+ 196�2
(

5

7

)
�2

(
2

7

)
�2

(
1

7

)]

×
�14

(
1
7

)
a2

58060800�

(
6
7

)
�

(
5
7

)
�

(
3
7

)
�

(
2
7

) + O(a3).

(2.11)

The appearance of factors of the form �(p/(n − 2)) where
1 ≤ p≤ (n−3) may seem at odds with expectations but arises
from the basic loop bubble integrals. For instance, denoting
the value of the leading order graph of Fig. 1 by ��n

(2) then

�n−1
(

1
(n−2)

− ε
)

�((n − 2)ε)

�
(

(n−1)
(n−2)

− (n − 1)ε
) (2.12)

in d-dimensions. The divergence clearly arises from the sec-
ond numerator factor while the other numerator one and that
in the denominator lead to a final factor of �n−2

(
1

(n−2)

)
in

each anomalous dimension at leading order. Clearly for the
Wess–Zumino model, which is cubic, no �-functions appear
in the wave function renormalization at low loop orders for
this reason.

With the graphs for both the n = 7 and 9 cases available
as well as the explicit anomalous dimensions for the leading
two orders we note that there is one more graph than there
are terms at O(a2) as was the case for n = 5. This is because
two graphs for each theory evaluate to the same �-function
structure. These are the first two graphs in Fig. 3, the first

and fourth in Fig. 5 and the first and sixth graph of Fig. 6.
The reason why these graphs have the same structure derives
from the underlying D-algebra. The consequence of rewrit-
ing the resulting scalar products between loop momenta of
the fully internal bubble after enacting the θ integration is
to remove or delete a propagator from one of the bubbles
immediately adjoining it. Applying this observation to these
specific graphs in the figure produces a pair of graphs with
bubbles which have the same number of propagators in each
or a single propagator. Since all the bubble integrals are scalar
integrals they will each evaluate to the same d-dimensional
expression and hence have the same ε expansion. As a final
part of the renormalization it is worth providing the numeri-
cal values for the anomalous dimensions. We have

γ �5
(a) = 2.403246a − 809.582836a2 + O(a3)

γ �7
(a) = 14.161200a − 416179.106979a2 + O(a3)

γ �9
(a) = 89.612261a − 225108066.08a2 + O(a3).

(2.13)

The large coefficients are not to be regarded as indicating
a lack of convergence. For instance, absorbing the factor of
�7( 1

7 ) into a for the n = 9 case the respective one and two
loop coefficients become 0.000173611 and 0.000844912.
These are of the same order in much the same way as for
four dimensional theories. Of course in that case the corre-
sponding factor would involve powers of �(1) which have
no consequence.

Equipped with the anomalous dimensions and the β-
functions through the supersymmetry Ward identities we can
determine the critical exponents of each theory at the Wilson–
Fisher fixed point. That associated with the field anomalous
dimension, η�n = γ �n

(a∗), where a∗ is the critical coupling,
can be determined exactly to all orders in perturbation as

η�n = (n − 2)

n
ε (2.14)

for each value of n odd with n > 1. This follows trivially from
(2.2) and (2.5). In the case of n = 3 the four dimensional
result of [9,11] emerges. For the other integer dimensions of
interest we find

η�n
∣∣∣
d=2

= 1

n
, η�n

∣∣∣
d=3

= − (n − 4)

n
(2.15)

if one assumes a negative value of ε is valid when Dn < 3.
As n → ∞ the former vanishes while the latter tends to
(−1). The situation with the other exponent, which is the β-
function slope at criticality, is different in that there is no exact
expression for any value of n. Defining ω�n = 2β�n ′

(a∗) we
have
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Fig. 6 Fourteen loop graphs for
�9 theory 2-point function

ω�5 = 6ε −
[

40
√

3π3 + 81�3
(

2

3

)]
8ε2

15�3

(
2
3

) + O(ε3)

ω�7 = 10ε −
[

63�2
(

4

5

)
�3

(
1

5

)
+ 150�

(
4

5

)
�

(
2

5

)

+ 175�2
(

2

5

)
�2

(
1

5

)]

× 10ε2

7�

(
4
5

)
�

(
2
5

) + O(ε3)

ω�9 = 14ε

−
[

36�2
(

6

7

)
�

(
5

7

)
�

(
3

7

)
�3

(
1

7

)

+ 98�

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�

(
2

7

)

+ 441�

(
6

7

)
�2

(
3

7

)
�

(
2

7

)
�2

(
1

7

)

+ 196�2
(

5

7

)
�2

(
2

7

)
�2

(
1

7

)]

× 56ε2

9�

(
6
7

)
�

(
5
7

)
�

(
3
7

)
�

(
2
7

) + O(ε3) (2.16)

or

ω�5 = 6ε − 504.623267ε2 + O(ε3)

ω�7 = 10ε − 14823.547215ε2 + O(ε3)

ω�9 = 14ε − 305238.813694ε2 + O(ε3) (2.17)

numerically. Clearly there are large corrections for each the-
ory which would suggest that it is not possible to extract any-
thing meaningful by naively substituting even a small value
of ε. However, if we use a [1, 1] Padé approximant we find

ω�5
∣∣∣
d=2

= 0.0688833

ω�7
∣∣∣
d=2

= 0.00672335
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ω�9
∣∣∣
d=2

= 0.000642017 (2.18)

for instance in two dimensions which appear credible. These
are significantly smaller than the canonical term which is
2 for all odd n. Under the same assumptions as before we
deduce

ω�5
∣∣∣
d=3

= 0.0768208

ω�7
∣∣∣
d=3

= 0.00676123

ω�9
∣∣∣
d=3

= 0.000642258 (2.19)

for the extension to three dimensions.

3 O(N) symmetric theories

Having considered the renormalization of the core higher
order potentials we consider their O(N ) symmetric counter-
parts in this section. This requires two distinct superfields
�i (x, θ) and σ(x, θ) together with their chiral partners. The
former field takes values in O(N ) where 1 ≤ i ≤ N . The
presence of two sets of superfields means that the action for
each core potential is more involved and moreover the num-
ber of interactions increases with the order of the potential.
For instance, when n = 5 we have

SO(N )
(5) =

∫
d4x

[∫
d2θd2θ̄

[
�̄i

o(x, θ̄ )e−2θ∂\θ̄�i
o(x, θ)

+ σ̄o(x, θ̄ )e−2θ∂\θ̄ σo(x, θ)
]

+ g̃1o

24

∫
d2θ σo

(
�i

o�
i
o

)2

+ g̃1o

24

∫
d2θ̄ σ̄o

(
�̄i

o�̄
i
o

)2

+ g̃2o

12

∫
d2θ σ 3

o �i
o�

i
o + g̃2o

12

∫
d2θ̄ σ̄ 3

o �̄i
o�̄

i
o

+ g̃3o

120

∫
d2θ σ 5

o + g̃3o

120

∫
d2θ̄ σ̄ 5

o

]
(3.1)

for the action in terms of bare quantities where g̃i = (4π)
Dn
4 gi

here and throughout. Setting both �i (x, θ) and �̄i (x, θ̄ ) for-
mally to zero recovers the n = 5 case of (2.1). An equivalent
way of producing this is to put g1 = g2 = 0 whence the
O(N ) multiplet decouples. For the next two theories in the
sequence of odd potentials the respective actions are

SO(N )
(7) =

∫
d4x

[∫
d2θd2θ̄

[
�̄i

o(x, θ̄ )e−2θ∂\θ̄�i
o(x, θ)

+ σ̄o(x, θ̄ )e−2θ∂\θ̄ σo(x, θ)
]

+ g̃1o

720

∫
d2θ σo

(
�i

o�
i
o

)3

+ g̃1o

720

∫
d2θ̄ σ̄o

(
�̄i

o�̄
i
o

)3

+ g̃2o

144

∫
d2θ σ 3

o

(
�i

o�
i
o

)2

+ g̃2o

144

∫
d2θ̄ σ̄ 3

o

(
�̄i

o�̄
i
o

)2

+ g̃3o

240

∫
d2θ σ 5

o �i
o�

i
o + g̃3o

240

∫
d2θ̄ σ̄ 5

o �̄i
o�̄

i
o

+ g̃4o

5040

∫
d2θ σ 7

o + g̃4o

5040

∫
d2θ̄ σ̄ 7

o

]
(3.2)

and

SO(N )
(9) =

∫
d4x

[∫
d2θd2θ̄

[
�̄i

o(x, θ̄ )e−2θ∂\θ̄�i
o(x, θ)

+ σ̄o(x, θ̄ )e−2θ∂\θ̄ σo(x, θ)
]

+ g̃1o

40320

∫
d2θ σo

(
�i

o�
i
o

)4

+ g̃1o

40320

∫
d2θ̄ σ̄o

(
�̄i

o�̄
i
o

)4

+ g̃2o

4320

∫
d2θ σ 3

o

(
�i

o�
i
o

)3

+ g̃2o

4320

∫
d2θ̄ σ̄ 3

o

(
�̄i

o�̄
i
o

)3

+ g̃3o

2880

∫
d2θ σ 5

o

(
�i

o�
i
o

)2

+ g̃3o

2880

∫
d2θ̄ σ̄ 5

o

(
�̄i

o�̄
i
o

)2

+ g̃4o

10080

∫
d2θ σ 7

o �i
o�

i
o

+ g̃4o

10080

∫
d2θ̄ σ̄ 7

o �̄i
o�̄

i
o

+ g̃5o

362880

∫
d2θ σ 9

o + g̃5o

362880

∫
d2θ̄ σ̄ 9

o

]

(3.3)

which illustrate the increase in number of interactions with n.
Consequently a larger number of Feynman graphs have to be
computed to extract the renormalization group functions. The
precise numbers are given in Table 1 for both sets of 2-point
functions. Like previously the β-functions of the respective
coupling constants are determined by a generalization of the
supersymmetry Ward identities. For n = 5 these are

Zg1 Z
2
�Z

1
2
σ = Zg2 Z�Z

3
2
σ = Zg3 Z

5
2
σ = 1 (3.4)

with

Zg1 Z
3
�Z

1
2
σ = Zg2 Z

2
�Z

3
2
σ = Zg3 Z�Z

5
2
σ = Zg4 Z

7
2
σ = 1

(3.5)

123
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Table 1 Number of graphs at
each loop order L required to
renormalize the �i and σ

2-point functions in the O(N )

theories

n L 〈�i �̄ j 〉 〈σ σ̄ 〉 Total

5 3 2 3 5

6 34 40 74

7 5 3 4 7

10 155 174 329

9 7 4 5 9

14 480 521 1001

for n = 7. Finally

Zg1 Z
4
�Z

1
2
σ = Zg2 Z

3
�Z

3
2
σ = Zg3 Z

2
�Z

5
2
σ

= Zg4 Z�Z
7
2
σ = Zg5 Z

9
2
σ = 1 (3.6)

for (3.3) by extending (2.5) in the same way.
For the remainder of this section we focus on then= 5 case

as an example. The procedure to renormalize (3.1) follows
the same as that used for (2.1) with respect to applying the
D-algebra and the evaluation of the 79 2-point graphs. The
resulting anomalous dimensions are

γ �5

� (gi ) = [
4Ng2

1 + 8g2
1 + 12g2

2

] √
3π3

27�3

(
2
3

)

− [[
128N 3g4

1 + 1536N 2g4
1 + 6144Ng4

1 + 7168g4
1

+ 2304N 2g2
1g

2
2 + 16128Ng2

1g
2
2 + 23040g2

1g
2
2 + 2304Ng1g

2
2g3

+ 4608g1g
2
2g3 + 5760Ng4

2 + 20736g4
2 + 2304g2

2g
2
3

]√
3π9

+ [
324N 3g4

1 + 5184N 2g4
1 + 16848Ng4

1 + 15552g4
1

+ 8748N 2g2
1g

2
2 + 33048Ng2

1g
2
2 + 31104g2

1g
2
2 + 972Ng2

1g
2
3

+ 1944g2
1g

2
3 + 52488Ng4

2 + 11664g4
2

+ 8748g2
2g

2
3

]
�3

(
2

3

)
π6

]
1

6561�9

(
2
3

) + O(g7
i ) (3.7)

and

γ �5

σ (gi ) = [
N 2g2

1 + 2Ng2
1 + 18Ng2

2 + 3g2
3

] √
3π3

27�3( 2
3 )

− [[
32N 4g4

1 + 384N 3g4
1 + 1536N 2g4

1 + 1792Ng4
1

+ 1536N 3g2
1g

2
2 + 10752N 2g2

1g
2
2 + 15360Ng2

1g
2
2

+ 3456N 2g1g
2
2g3 + 6912Ng1g

2
2g3 + 8640N 2g4

2

+ 31104Ng4
2 + 9216Ng2

2g
2
3 + 1440g4

3

] √
3π9

+ [
1296N 3g4

1 + 5184N 2g4
1 + 5184Ng4

1 + 2916N 3g2
1g

2
2

+ 21384N 2g2
1g

2
2 + 31104Ng2

1g
2
2 + 972N 2g2

1g
2
3

+ 1944Ng2
1g

2
3 + 52488N 2g4

2 + 34992Ng4
2

+ 26244Ng2
2g

2
3 + 2916g4

3

]
�

(
2

3

)3

π6

]
1

6561�9

(
2
3

)

+ O(g7
i ) . (3.8)

As a trivial check setting g1 = g2 = 0 in γ �5

σ (gi ) reproduces
(2.7). Consequently using the supersymmetry Ward identities
we can deduce the β-functions which are

β�5

1 (gi ) = [
N 2g3

1 + 18Ng3
1 + 32g3

1 + 18Ng1g
2
2 + 48g1g

2
2 + 3g1g

2
3

]

×
√

3π3

27�3( 2
3 )

−
[[

32N 4g5
1 + 896N 3g5

1 + 7680N 2g5
1 + 26368Ng5

1 + 28672g5
1

+ 1536N 3g3
1g

2
2 + 19968N 2g3

1g
2
2 + 79872Ng3

1g
2
2

+ 92160g3
1g

2
2 + 3456N 2g2

1g
2
2g3 + 16128Ng2

1g
2
2g3

+ 18432g2
1g

2
2g3 + 8640N 2g1g

4
2 + 54144Ng1g

4
2 + 82944g1g

4
2

+ 9216Ng1g
2
2g

2
3 + 9216g1g

2
2g

2
3 + 1440g1g

4
3

] √
3π9

+
[
2592N 3g5

1 + 25920N 2g5
1 + 72576Ng5

1 + 62208g5
1

+ 2916N 3g3
1g

2
2 + 56376N 2g3

1g
2
2 + 163296Ng3

1g
2
2

+ 124416g3
1g

2
2 + 972N 2g3

1g
2
3 + 5832Ng3

1g
2
3 + 7776g3

1g
2
3

+ 52488N 2g1g
4
2 + 244944Ng1g

4
2 + 46656g1g

4
2

+ 26244Ng1g
2
2g

2
3 + 34992g1g

2
2g

2
3 + 2916g1g

4
3

]
�3(

2

3
)π6

]

1

6561�9( 2
3 )

+ O(g7
i )

β�5

2 (gi ) =
√

3π3

27�3( 2
3 )

× [
3N 2g2

1g2 + 14Ng2
1g2 + 16g2

1g2 + 54Ng3
2 + 24g3

2 + 9g2g
2
3

]
− [[

96N 4g4
1g2 + 1408N 3g4

1g2

+ 7680N 2g4
1g2 + 17664Ng4

1g2 + 14336g4
1g2

+ 4608N 3g2
1g

3
2 + 36864N 2g2

1g
3
2

+ 78336Ng2
1g

3
2 + 46080g2

1g
3
2

+ 10368N 2g1g
3
2g3 + 25344Ng1g

3
2g3

+ 9216g1g
3
2g3 + 25920N 2g5

2

+ 104832Ng5
2 + 41472g5

2 + 27648Ng3
2g

2
3 + 4608g3

2g
2
3

+ 4320g2g
4
3

]√
3π9

+ [
4536N 3g4

1g2 + 25920N 2g4
1g2 + 49248Ng4

1g2

+ 31104g4
1g2 + 8748N 3g2

1g
3
2 + 81648N 2g2

1g
3
2

+ 159408Ng2
1g

3
2 + 62208g2

1g
3
2 + 2916N 2g2

1g2g
2
3

+ 7776Ng2
1g2g

2
3 + 3888g2

1g2g
2
3 + 157464N 2g5

2 + 209952Ng5
2

+ 23328g5
2 + 78732Ng3

2g
2
3 + 17496g3

2g
2
3 + 8748g2g

4
3

]

�3(
2

3
)π6

]
1

6561�9( 2
3 )

+ O(g7
i )

β�5

3 (gi ) = [
N 2g2

1g3 + 10Ng2
1g3 + 90Ng2

2g3 + 15g3
3

] √
3π3

27�3( 2
3 )

− [[
160N 4g4

1g3 + 1920N 3g4
1g3 + 7680N 2g4

1g3 + 8960Ng4
1g3

+ 7680N 3g2
1g

2
2g3 + 53760N 2g2

1g
2
2g3 + 76800Ng2

1g
2
2g3

+ 17280N 2g1g
2
2g

2
3 + 34560Ng1g

2
2g

2
3

+ 43200N 2g4
2g3 + 155520Ng4

2g3 + 46080Ng2
2g

3
3 + 7200g5

3

] √
3π9

+ [
6480N 3g4

1g3 + 25920N 2g4
1g3 + 25920Ng4

1g3 + 14580N 3g2
1g

2
2g3

+ 106920N 2g2
1g

2
2g3 + 155520Ng2

1g
2
2g3 + 4860N 2g2

1g
3
3 + 9720Ng2

1g
3
3
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+ 262440N 2g4
2g3 + 174960Ng4

2g3 + 131220Ng2
2g

3
3

+ 14580g5
3

]
�3

(
2

3

)
π6

]
1

6561�9

(
2
3

) + O(g7
i ) . (3.9)

Clearly β�5

1 (gi ) and β�5

2 (gi ) vanish when g1 = g2 = 0 leav-

ing β�5

3 (gi ) as five times γ �5

σ (gi ) under the same condition.
This is consistent with the Ward identity of (2.1) at n = 5.
Renormalization group functions for n= 7 and 9 are recorded
in the Appendices. Expressions for the renormalization group
functions for each of the three theories are provided in elec-
tronic format in the associated data file.

4 Fixed point analysis

Having established the renormalization group functions we
now examine the fixed point properties of the theories. In the
first instance we focus on the n = 5 case for arbitrary N and
consider the Wilson–Fisher fixed point. Setting

gi = xi
√

ε(
�

(
1

(n−2)

))n−2 (4.1)

in general we find that there is a large set of solutions. A sig-
nificant number are merely various coupling constant reflec-
tions gi → − gi of a core subset. Therefore we only record
the independent ones for n = 5 and other cases in the region
of coupling constant space where gi ≥ 0. The location of
those where there is one nonzero critical coupling are

x (1)
1 =

[
6 +

[
12(N + 16)(N 2 + 10N + 28)�3

(
1

3

)

+864(N + 2)(N + 6)]
ε

(N + 2)(N + 16)2

+ O(ε2)
]

√
2

(N + 2)(N + 16)
, x (1)

2 = 0, x (1)
3 = 0;

x (2)
1 = 0

x (2)
2 =

[
2 +

[
6(9N + 4)(5N + 18)�3

(
1

3

)

+ 54(27N 2 + 36N + 4)
]

ε

3(9N + 4)2

+ O(ε2)
] √

3

(9N + 4)
, x (2)

3 = 0;

x (3)
1 = 0, x (3)

2 = 0, x (3)
3 = 2

5

√
30

+
[

5�3
(

1

3

)
+ 9

]
4
√

30

25
ε + O(ε2) (4.2)

with associated anomalous dimensions

η�5

�(1) = 12ε

(N + 16)
− 108N (N − 4)ε2

(N + 16)3 + O(ε3)

η�5

σ (1) = 3Nε

(N + 16)
− 432N (N − 4)ε2

(N + 16)3 + O(ε3);

η�5

�(2) = 6ε

(9N + 4)
− 486N (3N − 2)ε2

(9N + 4)3 + O(ε3)

η�5

σ (2) = 9Nε

(9N + 4)
− 324N (3N − 2)ε2

(9N + 4)3 + O(ε3);

η�5

�(3) = O(ε3), η�5

σ (3) = 3

5
ε + O(ε3). (4.3)

One interesting feature is that for both solutions 1 and 2
is that η�5

� and η�5

σ are equal for a specific but different
value of N . For solution 1 this is N = 4 while it is N = 3

2
for solution 2. The latter case is formal in the sense that N
is non-integer. However in both instances the value of the
exponent is 3

5ε. The final solution labelled 3 corresponds to
(2.14). The next scenario is when only one of the couplings
vanishes at criticality. Again there are three cases with the
critical couplings given by

x (12)
1 =

[
6

5
+

[
(N + 6)(N 2 + 16N + 4)�3

(
1

3

)

+90N (N + 2)]

× 6ε

125N (N + 2)

+ O(ε2)
]√

(3N − 2)

N (N + 2)

x (12)
2 =

[
1

5
+

[
(7N 2 + 54N + 32)�3

(
1

3

)
+ 180N

]

ε

250N
+ O(ε2)

] √
6(4 − N )

N

x (12)
3 = 0 ;
x (13)

1 =
[

3

5
+

[
(N 2 + 10N + 28)�3

(
1

3

)
+ 36(N + 2)

]

3ε

50(N + 2)
+ O(ε2)

]√
10

(N + 2)

x (13)
2 = 0

x (13)
3 =

[
1

5
−

[
5(N − 4)�3

(
1

3

)
− 36

]
ε

50
+ O(ε2)

]

√
30(4 − N );

x (23)
1 = 0

x (23)
2 =

[
1

5
−

[
(7N − 26)�3

(
1

3

)
−36

]
ε

50
+O(ε2)

]√
30

123
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x (23)
3 =

[
2

5
−

[
5(N − 2)�3

(
1

3

)
− 18

]
2ε

25
+ O(ε2)

]

√
15(2 − 3N ). (4.4)

In each case the anomalous dimensions are all the same since

η�5

�(12) = η�5

σ (12) = 3

5
ε + O(ε3)

η�5

�(13) = η�5

σ (13) = 3

5
ε + O(ε3)

η�5

�(23) = η�5

σ (23) = 3

5
ε + O(ε3). (4.5)

As a check on these fixed point solutions we note that

lim
N→4

x (12)
1 = lim

N→4
x (1)

1 , lim
N→ 2

3

x (12)
2 = lim

N→ 2
3

x (2)
2

lim
N→4

x (13)
1 = lim

N→4
x (1)

1 , lim
N→ 2

3

x (23)
2 = lim

N→ 2
3

x (2)
2 (4.6)

and for these cases the anomalous dimensions all equate to
3
5ε. These particular values of N point to a deeper aspect of
the latter set of fixed point solutions. For instance for solu-
tions 12 and 13 one critical coupling of the pair becomes
complex for N > 4 with a similar observation for solutions
12 and 23 when N > 2

3 . In this case there is then no real solu-
tion for any positive integer N . So it appears that the N = 4
case represents a watershed in terms of the set of possible
real fixed point solutions. This is especially the case since
for that value the solution 1 η�5

� and η�5

σ are equal but there
is only one pair of interaction terms at criticality with σ and
σ̄ appearing linearly in (3.1). The remaining single coupling
solutions equally identify one pair of interactions but with σ

and its partner occuring nonlinearly. The final case is when
none of the critical couplings vanish at the Wilson–Fisher
fixed point. This will be considered in the next section as a
special case.

For the other two theories we focus on, the properties of
the critical points is completely parallel. By this we mean
that there are fixed points both for only one non-zero critical
coupling as well as a set for pairs. To illustrate this we record
the explicit forms of the field critical anomalous dimensions.
For n = 7 we have

η�7

�(1) = 30ε

(N + 36)
− 750N (N − 6)ε2

(N + 36)3 + O(ε3)

η�7

σ (1) = 5Nε

(N + 36)
+ 4500N (N − 6)ε2

(N + 36)3 + O(ε3) ;

η�7

�(2) = 20ε

(9N + 16)
− 4500N (3N − 4)ε2

(9N + 16)3 + O(ε3)

η�7

σ (2) = 15Nε

(9N + 16)
+ 6000N (3N − 4)ε2

(9N + 16)3 + O(ε3) ;

η�7

�(3) = 10ε

(25N + 4)
− 6250N (5N − 2)ε2

(25N + 4)3 + O(ε3)

η�7

σ (3) = 25Nε

(25N + 4)
+ 2500N (5N − 2)ε2

(25N + 4)3 + O(ε3) ;

η�7

�(4) = O(ε3), η�7

σ (4) = 5

7
ε + O(ε3);

η�7

�(i j) = η�7

σ (i j) = 5

7
ε + O(ε3) (4.7)

for 1 ≥ i > j ≥ 5. While for n = 9 we find

η�9

�(1) = 56ε

(N + 64)
− 2744N (N − 8)ε2

(N + 64)3 + O(ε3)

η�9

σ (1) = 7Nε

(N + 64)
+ 21952N (N − 8)ε2

(N + 64)3 + O(ε3);

η�9

�(2) = 14ε

3(N + 4)
− 686N (N − 2)ε2

9(N + 4)3 + O(ε3)

η�9

σ (2) = 7Nε

(N + 4)
+ 1372N (N − 2)ε2

9(N + 4)3 + O(ε3);

η�9

�(3) = 28ε

(25N + 16)
− 34300N (5N − 4)ε2

(25N + 16)3 + O(ε3)

η�9

σ (3) = 35Nε

(25N + 16)
+ 27440N (5N − 4)ε2

(25N + 16)3 + O(ε3);

η�9

�(4) = 14ε

(49N + 4)
− 33614N (7N − 2)ε2

(49N + 4)3 + O(ε3)

η�9

σ (4) = 49Nε

(49N + 4)
+ 9604N (7N − 2)ε2

(49N + 4)3 + O(ε3);

η�9

�(5) = O(ε3), η�9

σ (5) = 7

9
ε + O(ε3);

η�9

�(i j) = η�9

σ (i j) = 7

9
ε + O(ε3) (4.8)

for 1 ≥ i > j ≥ 5. From these it is equally clear that for special
values of N the �i and σ exponents equate. Moreover they
follow a general pattern which is

η�n

�(r) = η�n

σ (r) (4.9)

when

N = (n − 2r + 1)

(2r − 1)
(4.10)

for each fixed point labelled by r in the range 1 ≤ r ≤ 1
2 (n−1).

The final single coupling fixed point denoted by solution 5
corresponds to the single field case of the previous section.

5 OSp(1|2M) enhancement

We now turn to a special case of when all critical couplings
are non-zero and either real or complex. This is motivated by
the observation in the non-supersymmetric case, [24], that
there is a symmetry enhancement for a specific value of N
for each n. Briefly for each group O(N ) the enhancement is

123
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to the group OSp(1|2M), where n = (2M +1). In particular
the value for N when this occurs is N = − 2M , [24]. While
this was for the case of the non-supersymmetric model the
property should also hold for (3.1), (3.2) and (3.3). To make
this manifest in the Lagrangian formulation will involve the
superfields σ and �i and their chiral partners. Unlike �i of
previous sections �i is a Grassmann field in order to realize
the symplectic aspect of the group. Similar to [24] this allows
one to express the superpotential as a function of both sets
of fields. In particular the OSp(1|2M) action is

SOSp(1|2M) =
∫

d4x

[∫
d2θd2θ̄

[
�̄i

o(x, θ̄ )e−2θ∂\θ̄�i
o(x, θ)

+ σ̄o(x, θ̄ )e−2θ∂\θ̄ σo(x, θ)
]

+ g̃o

∫
d2θ

(
σ 2

o + �i
o�

i
o

) 1
2 (2M+1)

+ g̃o

∫
d2θ̄

(
σ̄ 2

o + �̄i
o�̄

i
o

) 1
2 (2M+1)

]
(5.1)

where the subscript again indicates bare objects. If we define
the superpotential by

VM (σ,�) =
(
σ 2 + �i�i

) 1
2 (2M+1)

(5.2)

motivated by the construction of [24] then the first few cases
are

V2(σ,�) = 15

8
σ

(
�i�i

)2 + 5

2
σ 3�i�i + σ 5

V3(σ,�) = 35

16
σ

(
�i�i

)3 + 35

8
σ 3

(
�i�i

)2

+ 7

2
σ 5�i�i + σ 7

V4(σ,�) = 315

128
σ

(
�i�i

)4 + 105

16
σ 3

(
�i�i

)3

+ 63

8
σ 5

(
�i�i

)2

+ 9

2
σ 7�i�i + σ 9 (5.3)

due to the Grassmann property of �i . When M = 1 the
OSp(1|1) version of the Wess–Zumino model results. The
relative coefficients of the terms in each of the superpo-
tentials of (5.3) are instrumental in deducing the emergent
OSp(1|2M) symmetry for various values of N . These will
be in the same ratio as discovered in the non-supersymmetric
case of [24]. In particular the vector of critical couplings to
the first two orders are

(
g∗

1 , g∗
2 , g∗

3

)∣∣∣n=5
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5
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i

√√√√√
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35ε
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i
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7ε
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(
1
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That this emergent symmetry holds for the supersymmetric
case is not too surprising given that it occurs in the non-
supersymmetric equivalent theories. However the observa-
tion is subtle here in that the specific value of N = (1 − n)

for the emergence has connections with the non-Grassmann
O(N ) partner theory if one sets r = 1 in (4.10). It is known
that properties of the Sp(N ) group can be related to those
of an orthogonal group O(N ) if one maps N → − N . What
is the case for N not equal to the emergent value value of
(1 − n) is that the field anomalous dimensions are not equal.
It is only for each value of N = (1 − n) that

η�n

� = η�n

σ (5.5)

for the critical couplings (5.4) whence the emergent
OSp(1|2M) symmetry is realized in the supersymmetric the-
ory.

As we are able to go to a higher order in the ε expansion
compared to the non-supersymmetric cases it is instructive
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to determine the critical β-function slope for the emergent
OSp(1|2M) theories. In particular we have
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∣∣∣
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(
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)
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(
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(
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196ε2
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(
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)
�

(
5
7

)
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(
3
7

)
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(
2
7
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analytically which equates to

ω�5
∣∣∣
N=−4

= 6ε + 648.934900ε2 + O(ε3)

ω�7
∣∣∣
N=−6

= 10ε − 7713.844209ε2 + O(ε3)

ω�9
∣∣∣
N=−8

= 14ε + 79461.413957ε2 + O(ε3) (5.7)

numerically. Clearly the coefficient of the O(ε2) term is sig-
nificantly large and that increases with n. However this needs
to be tempered by the fact that the limit of Dn is 2 as n
increases. Indeed with d = Dn − 2ε then setting ε = 1

(n−2)

produces d = 2. However even with this choice of ε the
value of ω for the respective theories carries no meaning.
One option would be to improve the convergence by using
a Padé approximant to estimate ω in d = 2. For n = 5 and
9, however, the Padé approximant is singular in the range
2 < d < Dn since the correction term is positive. This is
not the case for n = 7 when a [1, 1] Padé approximant gives

ω�7
∣∣∣
N=−6

= 0.012880 which is significantly lower than the

canonical value. What remains to be clarified is the effect of
the as yet uncalculated subsequent ε term would be to this
estimate. Indeed a value of the O(ε2) term could produce a
non-singular Padé approximant for the other two theories.

6 Discussion

The main interest in exploring the supersymmetric extension
of theories with a potential with an odd number of fields
was to ascertain whether the OSp(1|2M) emergence of the

Fig. 7 Primitive graph contributing to second order β-function in non-
supersymmetric φ5 theory

non-supersymmetric case, [24], was maintained. It was not
surprising that this is indeed the case, which we expect to
be manifest beyond the three cases studies in depth here, but
there are subtle aspects to the analysis. For instance the low-
est order potential with n = 3 has been extensively studied as
it corresponds to the Wess–Zumino model, [13]. In that the-
ory it was known that as a consequence of the supersymmetry
Ward identities the critical exponents of the basic fields of
the theory can be deduced exactly in the ε expansion near the
model’s critical dimension. For the extension to n > 3 with
n odd none of these theories have an integer critical dimen-
sion. While this may indicate limited physical interest Dn

is relatively close to an integer dimension which is either
two or three. Therefore the convergence of critical expo-
nent estimates for the variety of fixed points we examined
in the O(N ) theory should be relatively quick. This was an
important exercise for this class of theories with non-integer
dimensions. Aside from [24] there have been other studies of
the non-supersymmetric non-integer critical dimension the-
ories, [27,32,33], with that of the Blume–Capel model being
just above three dimensions. In that case only the leading
order renormalization group functions are known since the
underlying Feynman graphs are straightforward to evaluate.
However the corrections to the coupling constant renormal-
ization involve a significantly large number of graphs. One
of these is illustrated in Fig. 7. It is clearly non-planar as
well as being a primitive and has yet to be evaluated. It is
likely to have to be treated in the same way as the analogous
graphs of φ6 theory in the third order determination of its
β-function, [37]. Clearly the graph is absent in the supersym-
metric extension due to the chiral property of the interaction
which simplified the analysis of this article. Consequently it
has not been possible to ascertain whether the ε expansion
of critical exponents in the Blume–Capel case improves let
alone obtain more accurate estimates. It is in this context
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that our supersymmetric analysis has provided some insight.
Even in this case, however, we expect there to be a calcula-
tional hurdle to overcome at the next order to determine the
β-function of the supersymmetric theories which will have
an intricacy akin to that of Fig. 7.
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Appendix A: Results for the O(N) �7 theory

This appendix records the renormalization group functions
for the O(N ) symmetric theory based on an n = 7 potential.
These results and those for the other two O(N ) theories are
available in electronic form in the associated data file. First
the anomalous dimensions for the fields are
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Consequently the supersymmetry Ward identities determine
the four β-functions as
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Appendix B: Renormalization group functions for the�9

theory with O(−8) symmetry

For completeness we present renormalization group func-
tions for the �9 structure. In particular we focus on the
enhanced case of the O(N ) theory when N = − 8. The
field anomalous dimensions are
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The corresponding β-functions are

β�9

1 (gi )
∣∣∣
N=−8

= [
1792g2

2 − 128g2
1 + 1120g2

3 − 800g2
4 + 5g2

5

]

�7
(

1
7

)
g1

28800

+ [[
245760g4

1 − 9031680g2
1g

2
3 + 399360g2

1g
2
4

+ 36126720g1g
2
2g3 − 9031680g1g2g3g4 − 215040g1g2g4g5

− 126443520g4
2 − 31610880g2

2g
2
3 − 33116160g2

2g
2
4

+ 1128960g2
2g

2
5 − 158054400g2g

2
3g4 + 11289600g2g3g4g5

− 349036800g4
3 + 1174118400g2

3g
2
4 − 11760000g2

3g
2
5

− 14112000g3g
2
4g5 − 280560000g4

4 + 5174400g2
4g

2
5

− 18900g4
5

]
�2

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�3

(
1

7

)

+ [
33718272g2

1g
2
2 − 3440640g4

1 + 126443520g2
1g

2
3

− 21073920g2
1g

2
4 + 2478292992g4

2 − 10326220800g2
2g

2
3

+ 147517440g2
2g

2
4 + 9219840g2

2g
2
5 + 1290777600g4

3

+ 6085094400g2
3g

2
4 − 57624000g2

3g
2
5 − 1271020800g4

4

+ 17287200g2
4g

2
5 − 51450g4

5

]
�

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�

(
2

7

)

+ [
172032g4

1 + 3440640g2
1g

2
2 − 9031680g2

1g
2
3

+ 72253440g1g
2
2g3 + 6021120g1g2g3g4 − 1881600g1g

2
3g5

− 75866112g4
2 + 42147840g2

2g
2
3 − 94832640g2

2g
2
4

+ 105369600g2g
2
3g4 + 158054400g2g3g4g5 − 500505600g4

3

+ 2884492800g2
3g

2
4 − 24696000g2

3g
2
5 − 493920000g3g

2
4g5

− 707952000g4
4 + 46099200g2

4g
2
5 − 231525g4

5

]

�

(
6

7

)
�2

(
3

7

)
�

(
2

7

)
�2

(
1

7

)

+ [
16773120g2

1g
2
3 − 344064g4

1 − 4587520g2
1g

2
2

− 215040g2
1g

2
4 − 108380160g1g

2
2g3 + 3010560g1g2g3g4

− 501760g1g2g4g5 + 171401216g4
2 + 80783360g2

2g
2
3

+ 28098560g2
2g

2
4 + 878080g2

2g
2
5 − 579532800g2g

2
3g4

+ 79027200g2g3g4g5 + 177811200g4
3 + 2449843200g2

3g
2
4

− 27440000g2
3g

2
5 − 164640000g3g

2
4g5 − 707952000g4

4

+ 23049600g2
4g

2
5 − 102900g4

5

]
�2

(
5

7

)
�2

(
2

7

)
�2

(
1

7

)]

�14
(

1
7

)
g1

30481920000�

(
6
7

)
�

(
5
7

)
�

(
3
7

)
�

(
2
7

) + O(g7
i )

β�9

2 (gi )
∣∣∣
N=−8

= [
31360g2

3 − 128g2
1 − 6272g2

2 − 7280g2
4 + 35g2

5

]

×
�7

(
1
7

)
g2

67200

+ [[
245760g4

1 + 31610880g2
1g

2
3 − 7687680g2

1g
2
4

123



Eur. Phys. J. C          (2022) 82:1051 Page 19 of 20  1051 

− 126443520g1g
2
2g3 + 173859840g1g2g3g4 − 6021120g1g2g4g5

+ 442552320g4
2 + 608509440g2

2g
2
3 − 927252480g2

2g
2
4

+ 13829760g2
2g

2
5 − 4425523200g2g

2
3g4 + 138297600g2g3g4g5

− 9773030400g4
3 + 14382950400g2

3g
2
4 − 107016000g2

3g
2
5

− 128419200g3g
2
4g5 − 2553096000g4

4 + 40101600g2
4g

2
5

− 132300g4
5

]
�2

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�3

(
1

7

)

+ [
331914240g2

1g
2
3 − 2408448g4

1 − 206524416g2
1g

2
2

+ 65856000g2
1g

2
4 − 987840g2

1g
2
5 + 2168506368g4

2

+ 41563038720g2
2g

2
3 − 19490741760g2

2g
2
4 + 137145120g2

2g
2
5

− 150214243200g4
3 + 92451945600g2

3g
2
4 − 554631000g2

3g
2
5

− 12268149600g4
4 + 136136700g2

4g
2
5 − 360150g4

5

]

�

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�

(
2

7

)

+ [
172032g4

1 − 1204224g2
1g

2
2 + 31610880g2

1g
2
3

− 252887040g1g
2
2g3 − 115906560g1g2g3g4 − 52684800g1g

2
3g5

+ 265531392g4
2 − 811345920g2

2g
2
3 − 2655313920g2

2g
2
4

+ 2950348800g2g
2
3g4 + 1936166400g2g3g4g5 − 14014156800g4

3

+ 35335036800g2
3g

2
4 − 224733600g2

3g
2
5 − 4494672000g3g

2
4g5

− 6442363200g4
4 + 357268800g2

4g
2
5 − 1620675g4

5

]

�

(
6

7

)
�2

(
3

7

)
�

(
2

7

)
�2

(
1

7

)

+ [
1605632g2

1g
2
2 − 344064g4

1 − 58705920g2
1g

2
3

+ 4139520g2
1g

2
4 + 379330560g1g

2
2g3 − 57953280g1g2g3g4

− 14049280g1g2g4g5 − 599904256g4
2 − 1555079680g2

2g
2
3

+ 786759680g2
2g

2
4 + 10756480g2

2g
2
5 − 16226918400g2g

2
3g4

+ 968083200g2g3g4g5 + 4978713600g4
3 + 30010579200g2

3g
2
4

− 249704000g2
3g

2
5 − 1498224000g3g

2
4g5 − 6442363200g4

4

+ 178634400g2
4g

2
5 − 720300g4

5

]
�2

(
5

7

)
�2

(
2

7

)
�2

(
1

7

)]

�14
(

1
7

)
g2

71124480000�

(
6
7

)
�

(
5
7

)
�

(
3
7

)
�

(
2
7

) + O(g7
i )

β�9

3 (gi )
∣∣∣
N=−8

= [
128g2

1 − 50176g2
2 + 180320g2

3 − 38080g2
4 + 175g2

5

] �7
(

1
7

)
g3

201600

+ [[
252887040g2

1g
2
3 − 245760g4

1 − 48921600g2
1g

2
4

− 1011548160g1g
2
2g3 + 1106380800g1g2g3g4 − 34621440g1g2g4g5

+ 3540418560g4
2 + 3872332800g2

2g
2
3 − 5331701760g2

2g
2
4

+ 75075840g2
2g

2
5 − 25446758400g2g

2
3g4 + 750758400g2g3g4g5

− 56194924800g4
3 + 78078873600g2

3g
2
4 − 559776000g2

3g
2
5

− 671731200g3g
2
4g5 − 13354656000g4

4 + 204388800g2
4g

2
5

− 661500g4
5

]
�2

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�3

(
1

7

)

+ [
9633792g4

1 − 1475174400g2
1g

2
2 + 1106380800g2

1g
2
3

+ 542653440g2
1g

2
4 − 5927040g2

1g
2
5 − 4337012736g4

2

+ 321661777920g2
2g

2
3 − 117977072640g2

2g
2
4 + 758331840g2

2g
2
5

− 910320902400g4
3 + 512116012800g2

3g
2
4 − 2924418000g2

3g
2
5

− 64711752000g4
4 + 695809800g2

4g
2
5 − 1800750g4

5

]

�

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�

(
2

7

)

+ [
252887040g2

1g
2
3 − 172032g4

1 − 31309824g2
1g

2
2

− 2023096320g1g
2
2g3 − 737587200g1g2g3g4 − 302937600g1g

2
3g5

+ 2124251136g4
2 − 5163110400g2

2g
2
3 − 15268055040g2

2g
2
4

+ 16964505600g2g
2
3g4 + 10510617600g2g3g4g5 − 80581401600g4

3

+ 191818771200g2
3g

2
4 − 1175529600g2

3g
2
5 − 23510592000g3g

2
4g5

− 33698515200g4
4 + 1820918400g2

4g
2
5 − 8103375g4

5

]

�2
(

6

7

)
�

(
3

7

)
�

(
2

7

)
�2

(
1

7

)

+ [
344064g4

1 + 41746432g2
1g

2
2 − 469647360g2

1g
2
3

+ 26342400g2
1g

2
4 + 3034644480g1g

2
2g3 − 368793600g1g2g3g4

− 80783360g1g2g4g5 − 4799234048g4
2 − 9895961600g2

2g
2
3

+ 4523868160g2
2g

2
4 + 58392320g2

2g
2
5 − 93304780800g2g

2
3g4

+ 5255308800g2g3g4g5 + 28627603200g4
3 + 162914572800g2

3g
2
4

− 1306144000g2
3g

2
5 − 7836864000g3g

2
4g5 − 33698515200g4

4

+ 910459200g2
4g

2
5 − 3601500g4

5

]
�2

(
5

7

)
�2

(
2

7

)
�2

(
1

7

)]

×
�14

(
1
7

)
g3

213373440000�

(
6
7

)
�

(
5
7

)
�

(
3
7

)
�

(
2
7

) + O(g7
i )

β�9

4 (gi )
∣∣∣
N=−8

= [
640g2

1 − 81536g2
2 + 266560g2

3 − 54320g2
4 + 245g2

5

]

×
�7

(
1
7

)
g4

201600

+ [[
410941440g2

1g
2
3 − 1228800g4

1 − 74780160g2
1g

2
4

− 1643765760g1g
2
2g3 + 1691182080g1g2g3g4 − 51179520g1g2g4g5

+ 5753180160g4
2 + 5919137280g2

2g
2
3 − 7881646080g2

2g
2
4

+ 108662400g2
2g

2
5 − 37616947200g2g

2
3g4 + 1086624000g2g3g4g5

− 83070758400g4
3 + 113008896000g2

3g
2
4 − 798504000g2

3g
2
5

− 958204800g3g
2
4g5 − 19050024000g4

4 + 288472800g2
4g

2
5

− 926100g4
5

]
�2

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�3

(
1

7

)

+ [
26492928g4

1 − 2330775552g2
1g

2
2 + 1217018880g2

1g
2
3

+ 887738880g2
1g

2
4 − 8890560g2

1g
2
5 − 15179544576g4

2

+ 518634439680g2
2g

2
3 − 177481920000g2

2g
2
4 + 1105228320g2

2g
2
5

− 1369999075200g4
3 + 746876188800g2

3g
2
4 − 4184943000g2

3g
2
5

− 92619055200g4
4 + 983209500g2

4g
2
5 − 2521050g4

5

]

�

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�

(
2

7

)

+ [
410941440g2

1g
2
3 − 860160g4

1 − 59006976g2
1g

2
2

− 3287531520g1g
2
2g3 − 1127454720g1g2g3g4 − 447820800g1g

2
3g5

+ 3451908096g4
2 − 7892183040g2

2g
2
3 − 22570168320g2

2g
2
4

+ 25077964800g2g
2
3g4 + 15212736000g2g3g4g5 − 119120332800g4

3

+ 277632432000g2
3g

2
4 − 1676858400g2

3g
2
5 − 33537168000g3g

2
4g5

−48069940800g4
4 + 2570030400g2

4g
2
5 − 11344725g4

5

]

123



 1051 Page 20 of 20 Eur. Phys. J. C          (2022) 82:1051 

�2
(

6

7

)
�

(
3

7

)
�

(
2

7

)
�2

(
1

7

)

+ [
1720320g4

1 + 78675968g2
1g

2
2 − 763176960g2

1g
2
3

+ 40266240g2
1g

2
4 + 4931297280g1g

2
2g3 − 563727360g1g2g3g4

− 119418880g1g2g4g5 − 7798755328g4
2 − 15126684160g2

2g
2
3

+ 6687457280g2
2g

2
4 + 84515200g2

2g
2
5 − 137928806400g2g

2
3g4

+ 7606368000g2g3g4g5 + 42319065600g4
3 + 235797408000g2

3g
2
4

− 1863176000g2
3g

2
5 − 11179056000g3g

2
4g5 − 48069940800g4

4

+ 1285015200g2
4g

2
5 − 5042100g4

5))
]
�2

(
5

7

)
�2

(
2

7

)
�2

(
1

7

)]

�14
(

1
7

)
g4

213373440000�

(
6
7

)
�

(
5
7

)
�

(
3
7

)
�

(
2
7

) + O(g7
i )

β�9

5 (gi )
∣∣∣
N=−8

= [
128g2

1 − 12544g2
2 + 39200g2

3

− 7840g2
4 + 35g2

5

] �7
(

1
7

)
g5

22400

+ [[
63221760g2

1g
2
3 − 245760g4

1 − 11182080g2
1g

2
4

− 252887040g1g
2
2g3 + 252887040g1g2g3g4

− 7526400g1g2g4g5 + 885104640g4
2

+ 885104640g2
2g

2
3 − 1159065600g2

2g
2
4

+ 15805440g2
2g

2
5 − 5531904000g2g

2
3g4

+ 158054400g2g3g4g5 − 12216288000g4
3

+ 16437657600g2
3g

2
4 − 115248000g2

3g
2
5

− 138297600g3g
2
4g5 − 2749488000g4

4 + 41395200g2
4g

2
5

− 132300g4
5

]
�2

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�3

(
1

7

)

+ [
4816896g4

1 − 354041856g2
1g

2
2

+ 147517440g2
1g

2
3 + 136980480g2

1g
2
4

− 1317120g2
1g

2
5 − 2891341824g4

2 + 79511900160g2
2g

2
3

− 26331863040g2
2g

2
4 + 161347200g2

2g
2
5

− 203297472000g4
3 + 109070707200g2

3g
2
4

− 605052000g2
3g

2
5 − 13391817600g4

4

+ 141178800g2
4g

2
5 − 360150g4

5

]
�

(
6

7

)
�

(
5

7

)
�

(
3

7

)
�

(
2

7

)

+ [
63221760g2

1g
2
3 − 172032g4

1 − 9633792g2
1g

2
2

− 505774080g1g
2
2g3 − 168591360g1g2g3g4 − 65856000g1g

2
3g5

+ 531062784g4
2 − 1180139520g2

2g
2
3 − 3319142400g2

2g
2
4

+ 3687936000g2g
2
3g4 + 2212761600g2g3g4g5 − 17517696000g4

3

+ 40382899200g2
3g

2
4 − 242020800g2

3g
2
5 − 4840416000g3g

2
4g5

− 6937929600g4
4 + 368793600g2

4g
2
5 − 1620675g4

5

]

�

(
6

7

)
�2

(
3

7

)
�

(
2

7

)
�2

(
1

7

)

+ [+344064g4
1 + 12845056g2

1g
2
2 − 117411840g2

1g
2
3

+ 6021120g2
1g

2
4 + 758661120g1g

2
2g3 − 84295680g1g2g3g4

− 17561600g1g2g4g5 − 1199808512g4
2 − 2261934080g2

2g
2
3

+ 983449600g2
2g

2
4 + 12293120g2

2g
2
5 − 20283648000g2g

2
3g4

+ 1106380800g2g3g4g5 + 6223392000g4
3 + 34297804800g2

3g
2
4

− 268912000g2
3g

2
5 − 1613472000g3g

2
4g5 − 6937929600g4

4

+ 184396800g2
4g

2
5 − 720300g4

5))
]
�2

(
5

7

)
�2

(
2

7

)
�2

(
1

7

)]

×
�14

(
1
7

)
g5

23708160000�

(
6
7

)
�

(
5
7

)
�

(
3
7

)
�

(
2
7

) + O(g7
i ). (B.2)

References

1. S.-S. Lee, Phys. Rev. B 76, 075103 (2007)
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