
Flavour Physics of Up, Down and Strange Quarks from
Dynamical QCD × QED

Gerrit Schierholz a

Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
E-mail: gerrit.schierholz@desy.de

Lattice simulations of QCD are now reaching a precision, where isospin breaking effects can be
investigated. These effects are caused by (i) mass differences between the up, down and strange
quarks and (ii) electromagnetic effects due to the different charges of the quarks. So far most
lattice QCD simulations are performed neglecting electromagnetic effects. In order to compute
physical observables to high precision, it is important to include and control contributions from
QED. In previous work we have outlined a program to systematically investigate the pattern of
flavour symmetry breaking. The program has been successfully applied to meson and baryon
masses involving up, down and strange quarks. In this project we extend the investigations to
include matrix elements, charmed quarks and electromagnetic effects.

1 Introduction

One of the most profound open questions in particle physics is to understand the pattern of
isospin and flavour symmetry breaking and mixing. Lattice simulations are now reaching
a precision, where these effects can be investigated. They are due to two causes:

• The mass differences between the up, down and strange quarks

• Electromagnetic effects due to the different charges of the up, down and strange
quarks

Bietenholz et al.1, 2 have outlined a program to systematically investigate the pattern of
flavour symmetry breaking. The program has been successfully applied to meson and
baryon masses involving up, down and strange quarks. In this project we extend the inves-
tigations to include matrix elements, charm quarks, the u, d mass difference and electro-
magnetic effects.

A distinctive feature of our simulations is the way we tune the light and strange quark
masses. We have our best theoretical understanding when all three quark flavours have the
same mass, because we can use the full power of SU(3) flavour symmetry. Starting from
the SU(3) symmetric point, our strategy is to keep the singlet quark mass

m̄ = (mu +md +ms)/3 (1)

fixed at its physical value, while

δmq ≡ mq − m̄ (2)

a In collaboration with R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, A. Schiller, H. Stüben,
J. Zanotti.
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is varied, with δmu + δmd + δms = 0. As we move from the symmetric point
mu = md = ms (where the pion mass is ≈ 411 MeV) to the physical point along the
path m̄ = const, the s quark becomes heavier, while the u and d quarks become lighter.
These two effects tend to cancel in any flavour singlet quantity. The cancellation is perfect
at the symmetric point, and we have found that it remains good down to the lightest points
we have simulated so far2. (In contrast, the procedure followed by most other collabora-
tions is to first tune the strange quark mass ms to its physical value and then vary the up
and down quark masses.) This procedure leads to highly constrained extrapolations and
reduces the number of free parameters drastically.

The dependence of hadronic matrix elements on up, down and strange quark masses has
been worked out group-theoretically to LO, see for example Cooke et al.3, similarly to the
case of hadron masses2. That leads again to highly constrained extrapolations for nonsin-
glet quantities. When confronted with numerical calculations, this provides us with invalu-
able information on the pattern of flavour symmetry breaking. Flavour symmetry breaking
effects in electroweak matrix elements are a key issue in precision tests of the Standard
Model. A strong feature of our approach is that along the entire trajectory m̄ = const both
kaon and hyperon V −A transition form factors are expected to vary at most quadratically
in δmq

4, 5. While the kaon semileptonic decay is a standard approach to the determina-
tion of the CKM matrix element |Vus|, we now also investigating the alternative hyperon
semileptonic decay approach.

So far most lattice QCD simulations are performed neglecting electromagnetic (EM)
effects. In order to compute physical observables to high precision, it is important to
include and control contributions from QED. We have initiated a similar program, as the
symmetry of the electromagnetic current is similar to that of the mass matrix,

mu +md +ms = 3 m̄ ⇐⇒ eu + ed + es = 0 . (3)

In this project we use this expansion and complement our previous simulations by a fully
dynamical simulation of QCD × QED.

We employ clover fermions with Nf = 2 + 1 flavours of dynamical quarks6. Clover
fermions have exact flavour symmetry, and are nonperturbatively O(a) improved (we have
determined the improvement coefficient csw using the Schrödinger functional formalism).
In our combined QCD × QED simulations the action is supplemented by a noncompact
U(1) gauge field7, and the lattice Dirac operator becomes

/Dq(x) =
1

2a

[
γµe
−ieqAµ(x)Uµ(x) q(x+ µ̂)− γµeieqAµ(x)U†µ(x− µ̂) q(x− µ̂)

]
. (4)

We choose the electromagnetic coupling large enough so as to achieve a significant effect
on hadron masses and matrix elements. The result will then be interpolated to the physical
fine structure constant.

2 QCD

Let us first consider the case of pure QCD and highlight some of the salient features of
our approach, along with a selection of results. We have space for hadron masses and the
pattern of flavour symmetry breaking only.
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With clover fermions the quark masses are defined by the distance from κc, the critical
value of the hopping parameter κ. The bare quark masses then read

amq =
1

2κq
− 1

2κc
, (5)

where vanishing of the quark mass along the SU(3) flavour symmetric line determines κc.
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The initial value on this line, κ0, is found by looking, for example, where 2m2
K + m2

π is
equal to its physical value.

Using symmetry arguments2, we get the mass formula for the outer pseudoscalar
mesons
M2(ab̄) = M2

0 + α (δma + δmb)

+ β0 (δm2
u + δm2

d + δm2
s) + β1 (δm2

a + δm2
b) + β2 (δma − δmb)

2 .
(6)

For the outer octet baryons we obtain

M(aab) = M0 +A (2δma + δmb)

+B0 (δm2
u + δm2

d + δm2
s) +B1 (2δm2

a + δm2
b) +B2 (δma − δmb)

2

+B3 (δm2
a − δm2

b) ,

(7)

and for the decuplet baryons we find

M(abc) = M0 +A (δma + δmb + δmc)

+B0 (δm2
u + δm2

d + δm2
s) +B1 (δm2

a + δm2
b + δm2

c)

+B2 (δm2
a + δm2

b + δm2
c − δmaδmb − δmaδmc − δmbδmc) .

(8)

In Fig. 1 we show the pseudoscalar octet and nucleon octet masses together with a com-
bined fit, where the up and down quarks have been assumed mass degenerate,

mu = md ≡ m` . (9)

In this case only one variable is needed to parameterise the symmetry breaking, as
δms = −2δm`. Typical ‘fan’ plots are seen with results radiating from the common SU(3)
symmetric point. We also see an absence of any curvature in the data and the fits, predict-
ing β0, β1, β2 ≈ 0 as well as B0, B1, B2, B3 ≈ 0. This shows that the Gell-Mann–Okubo
relations work all the way from the SU(3) symmetric to the physical point2. In Fig. 2
we show these results together with other recent results in a plot taken from Kronfeld8, to
which we refer to for more details.
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Figure 2. Results for the hadron masses at the physical point by various collaborations. Our points are the orange
squares. The figure is taken from Kronfeld8.
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3 QCD× QED

In investigating the effects of SU(3) breaking due to quark mass differences, the group-

theoretical analysis of the mass dependence2 greatly helped us to organise our results. We

now do the same with charge effects. We find in fact that the group theory for the two cases

is very similar, and we can often simply read off the form of the electromagnetic effects

from our quark mass results.

The symmetry of the electromagnetic current is similar to the symmetry of the quark

mass matrix. The simplifications that we get in the mass case by imposing the constraint

mu + md + ms = const are similar to the simplifications that come from the identity

eu + ed + es = 0, which reduces the number of allowed terms in the three-flavour case,

when compared with two or four flavours. One difference between quark mass expansions

and electromagnetic expansions is that in the mass expansion we can have both odd and

even powers of δmq , but in the expansion of hadron masses we are only allowed even

powers of the quark charges. We can therefore read off the leading QED polynomials from

Tab. 3 of Bietenholz et al.2. This should be all we need for simulations at the symmetric

point. Away from the symmetric point we might want to consider mixed polynomials of

the order e2qδmq , so that we can describe (for example) differences in the electromagnetic

mass between the proton (uud) and the Σ+ (uus), or between neutron (udd) and Ξ0 (uss).

We can use symmetry arguments, just like those of Sec. 4 of Bietenholz et al.2, to write

down the leading order electromagnetic contributions MEM to the masses of the outer

octet mesons and nucleons and the decuplet baryons. We just drop the linear terms, and

keep the quadratic terms, and change masses to charges. For the outer mesons we have

M2
EM (ab̄) = βEM

0 (e2u + e2d + e2s) + βEM
1 (e2a + e2b) + βEM

2 (ea − eb)
2

= βEM
0 (e2u + e2d + e2s) + (βEM

1 + βEM
2 )(e2a + e2b)− 2βEM

2 eaeb .
(10)

The bottom form of the mass equation can be directly matched up with different classes

of Feynman diagrams shown in Fig. 3. The first set of diagrams, with both ends of the

photon line attached to the same valence quark (Fig. 3a), contributes to (βEM
1 + βEM

2 ).
The second set of diagrams, with the photon crossing between the valence lines (Fig. 3b),

only contributes to βEM
2 . The final set of diagrams, with the photon attached to a sea quark

bubble (Fig. 3c), only contributes to βEM
0 . This last set of diagrams would be missed out

if the electromagnetic field was quenched instead of dynamical.

(a) (b) (c)

Figure 3. Examples of Feynman diagrams contributing to the meson electromagnetic mass.
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Figure 4. Example of a Feynman diagram contributing to the vacuum.

Our first dynamical QCD × QED run was made with κu = κd = κs, the same κ values

we used for the symmetric point in pure QCD, and e2 = 1.25. Our strategy is to simulate

at an artificially large coupling, αEM ≈ 1/10, and then interpolate between this point and

pure QCD to the physical value. The first point to mention is that diagrams like the one

shown in Fig. 4 have a big effect on the QCD × QED vacuum. In Fig. 5 we show the effect

on the average plaquette.

When QED is added the meson masses become much heavier, especially the uū. We

attribute this to a shift in κc for the quarks due to their electromagnetic self-interaction.

(κc works rather like an additive renormalisation of the quark masses.) The up quark turns

out to be considerably heavier than the two other, which is to be expected, because it has a

larger charge. So, to keep the quark masses the same, we will need to simulate at a different

set of κ values than those used in pure QCD.

β κ

β κ

Figure 5. The average plaquette for pure QCD (top) and QCD × QED (bottom).
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However, even with the present large quark masses we can already see some physical
effects of QED, beyond this shift in κc. Extrapolated to the physical value of the fine
structure constant, αEM = 1/137, our present data give

βEM0 = 0.034 ,

βEM1 = 0.076 ,

βEM2 = 0.031 .

(11)

βEM0 receives contributions from quark-line disconnected diagrams, like that shown in
Fig. 3c. It turns out that this contribution alone accounts for ≈ 2% of the mass of the
pseudoscalar mesons. From PCAC and/or the leading flavour expansion we expect that
M2
ab̄

= (M2
aā + M2

bb̄
)/2. Violations of this relation are 27-plet and cannot be present

at leading order in the quark mass. Using Eq. 10, we see that the βEM0 and βEM1 terms
cancel and the only term which contributes is βEM2 , M2

ud̄
− (M2

uū + M2
dd̄

)/2 = βEM2 .
The sign of βEM2 is sensible. Opposite charges attract, like charges repel. So we would
expect electromagnetic effects to raise the energy of the ud̄ (π+) meson (with a repulsive
electromagnetic force between the valence quarks) relative to the uū and dd̄ mesons (with
attractive electromagnetic force between the valence quarks), and that is exactly what we
find.

There is another difference between the up quark and the other two. TheZm renormali-
sation factor will now depend on both the QCD coupling and the QED coupling, and the up
quark will have a different Zm, and a different anomalous dimension γm, from the other
two quarks. This means that the ratio mu/md now depends on renormalisation scheme
and scale (even in the continuum). Likewise, isospin violating mass splittings, for example
Mn −Mp, are scheme independent, but the question of how much of the splitting is due
to the quark mass difference md −mu, and how much is due to electromagnetic effects,
becomes dependent on scheme and scale. This effect might be minor with αEM ≈ 1/137,
but might be more relevant with αEM ≈ 1/10.

In pure QCD we can impose perfect SU(3) symmetry simply by making all three κ
values equal. With QED present, there is no way to have perfect SU(3) symmetry, and
so no completely unique way to define a line, where all three quark masses are equal.
In particular, we cannot tune the κ values to make all members of an SU(3) multiplet
degenerate. However, a physically reasonable definition is to look for the line, where the
following neutral pseudoscalar meson masses are equal: sd̄, ds̄ (real particles) and dd̄, ss̄,
uū (partially quenched mesons, with annihilation diagrams switched off, so that they do
not mix with each other). This line will have κs = κd 6= κu.

This symmetric line will end at a point, where all the neutral pseudoscalar mesons are
massless. We define this to be the chiral point, the point where all our quark masses are
zero. In the case of the down and strange quark masses it is clear that this is the correct
definition. Even with QED present, there is a chiral SU(2) symmetry connecting strange
and down quarks. So, if both quarks are massless, there will be a massless Goldstone boson
from the spontaneous symmetry breaking. Although the neutral mesons will be massless
at the chiral point, the charged mesons can have a mass from electromagnetic effects, even
when all the quark masses are zero. The charged axial currents are no longer conserved
after QED is added to the action, so there is not a Goldstone theorem for the charged
pseudoscalars.
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Among the quantities we are currently looking at are the splittings of nucleon and
kaon masses, as well as the kaon decay constant and the form factors of the semileptonic
K`3 decay. Typically, the strong isospin violation and electromagnetic corrections are
of the same order of magnitude. Of particular interest is the muon anomalous magnetic
moment. It is one of the most precisely measured quantities in particle physics. Recent
high precision measurements at Brookhaven Lab reveal a deviation of ≈ 3σ from the
Standard Model, which could be a hint for new physics.

4 Outlook

Flavour symmetry and isospin breaking effects in hadron masses and matrix elements are
among the most fundamental phenomena in particle physics. Within the Standard Model,
they are described by essentially five parameters, the masses of up, down and strange
quarks and the strength of the strong and electromagnetic interactions. It appears that
these parameters need to be finely tuned to allow life. For example, a slight increase of
the ratio md/mu, and/or decrease of αEM , would make the deuteron unstable and render
nuclear fusion impossible. It is conceivable that some of the low-energy parameters of the
Standard Model are uniquely determined by an underlying dynamical principle, similar to
the prediction of the top quark mass9. Ultimately, that might be driven by an infrared fixed
point of QCD × QED. (Indeed, a very recent calculation of the SU(3) beta function10

suggests that QCD with two flavours of massless quarks has an infrared fixed point at
αQCD ≈ 0.5.) To shed light on this problem, and perhaps resolve the difference in mass
between the up and down quark eventually, a first principles lattice calculation of QCD
× QED is needed. Because hadrons are formed from bound states of quarks, there is no
systematic way to treat electromagnetic effects in weak coupling perturbation theory.

Unfortunately, space limitations did not allow me to go into greater detail of this project
and give full account of the present status of the calculations. But I am sure we will hear
more about it at this Symposium.
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