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Abstract: The core of this manuscript is to conduct a broad investigation into the features of static
matter configurations with hyperbolical symmetry, which might possibly serve as formation of
corresponding spacetime within the limits of £ (R, T,Q) gravity, where (Q = Ry¢T*?). We recognize that
such matter distributions can be anisotropic in pressure, with just two primary stresses unequal and
a negative energy density. Usually, negative matter densities are suggested in extreme cosmological
and astrophysical situations, particularly with regard to quantum occurrences that might occur within
the horizon. Eventually, we construct a generic formalism that allows every static hyperbolically
symmetric (HS) fluid solution to be expressed with respect to two generating functions (GFs).

Keywords: mathematical cosmology; gravitation; anisotropy; mathematical techniques

1. Introduction

Nature has been experimenting with hyperbolic forms for hundreds of millions of
years, though mathematicians have spent hundreds of years attempting to prove that such
structures are basically impossible. However, as a result of these efforts, it was discovered
that hyperbolic geometry is logically valid. This, in turn, sparked a revolution that resulted
in the type of mathematics that now governs general relativity and, hence, the structure of
our cosmos. Different geometries can also be understood in the context of their curvature.
For instance, flat and spherical surfaces have zero and positive curvature, respectively,
while the hyperbolic plane has a negative curvature [1]. Harrison was the first to propose a
solution to Einstein equations of the sort specified by hyperbolic symmetry. Following that,
several researchers embraced the concept, as one can see [2-4].

As a unique paradigm for topological states, Chen et al. [5] introduced and empirically
demonstrated hyperbolic matter, which is composed of particles traveling in the hyper-
bolic plane with negative curvature. Richter [6] developed hyperbolic complex algebraic
structures based on appropriately specified vector products and powers that enabled a
number of formulations of the hyperbolic vector exponential function in a standard manner.
By doing this, he altered arrow multiplication, which Feynman claimed to be essential
for understanding quantum electrodynamics, and provided a geometrical justification for
when it makes sense to create random vector products. Herrera [7] outlined the general
characteristics of matter content that are dynamic, dissipative, and spherically symmetric.
Prospective applications to astrophysical and cosmological settings are described along
with a number of exact answers that are evaluated. Malik et al. [8] provided a few quantita-
tive solutions that exhibit the distribution of hyperbolically symmetric (HS) matter along
the cylindrical metric after solving the related differential equations.

Yousaf et al. [9] investigated the hyperbolically distributed anisotropic static and nonstatic
fluids within the context of modified theories. They assessed a number of analytical solutions
in terms of structure scalars. Assuming the nonstatic domain, Herrera et al. [10] performed a
thorough analysis on the HS matter structure. For both dissipative and nondissipative systems,
they examined a number of solutions utilizing quasi-homologous condition, the diminishing
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of complexity factor criterion, and additional restrictions. Miguel [11] looked into several
characteristics of hyperbolically symmetrical spacetime, and for the conformal families of
solutions, he discovered the nonconvex Cauchy temporal function.

Despite the fact that locally isotropic models are a relatively prevalent assumption in the
study of compact objects, there is compelling evidence that a wide range of physical events
that we would anticipate to occur in compact objects can actually generate local anisotropy
for specific density ranges. These processes span from incredibly dense matter configurations,
such as exotic phase transitions in the process of gravitational collapse, to very low ones,
such as the processes that take place during stellar formation. According to Jeans’” work [12],
spherical galaxies with anisotropic velocity distributions can produce local anisotropies. In
1933, Lemaitre [13] published an article in the general relativistic literature demonstrating how
anisotropy might loosen the upper bound on the highest magnitude of the surface gravitational
potential. In light of these pioneering publications, there has been extensive theoretical research
on the impact of unequal stresses on Newtonian and relativistic systems [14-17].

For the anisotropic and homogeneous Kantowski-Sachs geometry, Leon and Paliathana-
sis [18] investigated the development of the cosmological field equations in the modified
teleparallel £(T,B) theory of gravity. They introduced a scalar field into the aforementioned
fourth-order theory of gravity using a Lagrange multiplier so that we may formulate the
field equations as second-order equations by enhancing the enumerates of dependent vari-
ables. Andrade [19] developed an entirely new static, spherical solution comprising an
anisotropic matter content. He achieved this by taking into account a specific instance of the
extended minimum geometric deformation within the context of gravitational decoupling.
In order to solve the field equations consisting of anisotropic cosmic background geometries,
Paliathanasis [20] used the Noether symmetry analysis on the f(T,B) theory.

There are compelling theoretical arguments for carefully considering the idea that
Einstein’s general theory of relativity (GR) may not be the most accurate description of
gravity. Initial efforts to renormalize GR in the 1960s and 1970s made it abundantly evident
that counter terms must be included that fundamentally modify the theory and convert its
second-order field equations to fourth order. Following this, £ (R) theories were developed.
In these theories, the generic function of the Ricci scalar in the action function was used
to include the higher-order invariants. Moreover, £ (R) theories show how nonminimal
coupling connects geometry and matter. Some intriguing subjects have also been addressed
in the limits of aforementioned gravity [21-24].

Yousaf et al. [25] studied the hyperbolic spacetime in the limit of f (R) gravity. Bani et al.
[26] analyzed the Lemaitre-Tolman-Bondi (LTB) metric constituting dissipative matter
content in the framework of Palatini gravity. Odintsov et al. [27] investigated the issue of
the primordial gravitational wave systematically. They selected f (R) gravity model in such
a manner that permits the descriptions for the unification of inflation as well as dark energy.
After that, the generalization in the f (R) theories was constructed to account for the exotic
imperfect fluids or quantum effects as well as matter-geometry coupling that is not minimal.
Therefore, the f (R, T) theory, in which T stands for the energy-momentum tensor’s trace,
was named by Harko et al. [28]. The assumption of T = 0in £(R,T) theory yields £ (R),
and hence the effects of strong minimal coupling vanishes. Gongalves et al. [29] looked
at the probability of abrupt singularities developing in Friedmann-Lemaitre-Robertson—
Walker (FLRW) comprisingisotropic fluid in the geometrical as well as the scalar-tensor
representations within the limits of £ (R, T) gravity. Bhatti et al. [30] addressed dynamical
instability constituting axially symmetric fluid content and discovered some significant
effects of the astrophysical £ (R, T) model.

This encouraged Haghani et al. [31] in further generalization. Subsequently, the £(R,T,Q)
theory (Q = Ry T*”), which connects the contraction of the stress energy-momentum tensor
with Ricci tensor, came into being. Henceforth, it could be necessary to modify the gravity
theory itself for explaining the extra gravity that is typically assigned to dark matter.
Baffou et al. [32] conducted the stability analysis in this gravitational theory and derived the
perturbation function for it. Moreover, by numerically calculating the resulting perturbation
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functions, they looked for applications that make the stability of two specific examples
of the theoretical model possible. In £ (R, T,Q) theory, Elizalde and Vacaru [33] examined
the circumstances in which a large group can be effectively converted into off-diagonal
Einstein spaces in the light of nonholonomic deformations and restrictions for the nonlinear
dynamics of matter and gravity. Yousaf et al. [34] conducted an extensive study into the
distinguishing characteristics of compact objects that are alternatives to black holes using
cylindrical symmetry in the context of £ (R, T, Q) gravity. They performed this work both
for charged and noncharged compact objects.

The subject of this paper is to apply the methodology first described by Herrera et al. [3]
to investigate the impact of £ (R, T,Q) gravity on HS sources. After discussing the general
formalism of the respective modified gravity in Section 2, the modified field equations
are evaluated in Section 3. Sections 4 and 5 deal with the conformal scalar and Tolman
mass, respectively. The computation of structural scalars from the Curvature tensor’s
decomposition is the focus of Section 6. Different HS solutions characterized with various
models and constraints are investigated in Section 7. Our findings and discussions are
summed up in the last section.

2. Basic Formalism of the £ (R,T,Q) Gravity

In order to handle the major issues in cosmology that anticipate the fate of our cosmos,
modified gravity has emerged as an effective candidate. Among the modified theories that
are based on nonminimal connection between matter and geometry, the £ (R,T,Q) gravity
is an intriguing contender. This theory is motivated by the idea that it can be perceived as
a useful mathematical exercise for the investigation of the present state of our enigmatic
cosmos due to the involvement of comprehensive version of £ (R,T) gravity. In this theory,
the contribution from the contraction of the Ricci and the energy-momentum tensors is
included in addition to the dependence of Lagrangian on R and T. Next, we provide the
general formalism to derive field equations in the background of £ (R, T, Q) gravity utilizing
different line elements. The first step is to consider the modified Einstein—Hilbert action as

S = 21K</d4xf(R,T,RmT‘T“)\/—g+/d4me\/—g), 1)

where Ry and T7* depict the Ricci tensor and the energy-momentum tensor, while the
symbols R and T illustrate their respective traces. The terms «, L, and \/—g are used
to indicate coupling constant, matter Lagrangian, and the magnitude of metric tensor,
respectively. By varying Equation (1) with respect to gs4, one can achieve

~ Goulfolm— fr) = goa{ £ — Ofx = §fx = 19V, (foT?) = Lufr
0Ly
+ zfQRﬁ(va) +30(foTo) — Vﬁv(a(Tf)fQ) —2(frgP* + fQRFP) 5570 )
— T (fr+ Bfg+1) = VoVafr =0,
where fg, fr, and fg represent the partial derivative of f(R,T,Q) with respect to R, T,
and Q, respectively. The covariant derivative is illustrated with the symbol Vg, and

O = gfF VgV, is the d’Alembert operator. In addition, T(&Z’) is the usual matter and is
defined in terms of energy density y, anisotropic pressure P, and anisotropic tensor Il as

Tcgfxn) = (I/l + P)Vthx — Pgon +1lga, 3)

where V;; is the four velocity. The anisotropic pressure and anisotropic tensor in terms of
its radial Py, tangential P, components, and the projection tensor %, is delineated as
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P, +2P,
P = ——,
3
N hoo
II,, = T1II|Ks;K,+ 3 )
how = 8oa — Va Ve,
P = TII+P,.

The orthonormal basis is indicated by K. These are locally defined sets of vector fields
that are orthonormal to each other and are linearly independent. If orthonormal bases do
exist, it makes it easier to define a locally inertial frame and describe the tensor components
as seen by an observer at rest in that frame. Contrary to the coordinate basis, these bases are
significantly more advantageous and are used frequently in the literature [3]. The compact
form of Equation (2) is

Goa = KT(%VI)/ 4)

where Ty M) shows the matter in the presence of modified terms and is delineated as
M R
TU('IX) = fRime|:(fT+%RfQ+1>T§ZZ)+{£fl;meT

- %vaﬁ(fQTpﬁ)}gm - %D(fQTM) - (8mxgpﬁvpv/3 = VeVa)fr ®)

9L
= 2fQR( Ty + VoV (o[Ty fol + 2(foRP + frg?) 5 s |-

3. Modified Field Equations

We analyze HS anisotropic distributions of static fluid, which may or may not be
constrained from the outside by a surface ¢ and is represented with the help of the
constraint ¥ = constant = rye. The matter content, however, may be unable to fill the center
of fluid. In this situation, we consider that the central portion is equivalent to an empty
space, which implies that the fluid content is identically confined from the inside by a
surface ¥ which is penned as r = constant = ry;. The metric is, therefore, defined as

ds” = —Mdr? — 12d6% — rPsinh?0dg? + v\ d?. (6)

The Greek letters A and v rely on radius only. The £ (R, T,Q) field equations achieved
by scrutinizing Equation (4) and metric (6) assume the following form:

8rruM) Med 14t

frtufo 7 rz 7
SHPY(M) B vie A N T+4+e A ®)
frtufo v r2

87TPJ(_M) A N ¥ 9
o T (TR ©)

where ¢(M), PV(M), and PJ(_M) illustrate the energy density, radial pressure, and tangential

pressure, respectively, under the effects of correction terms. The previously stated terms
are defined in the Appendix A. The prime shows the derivative with respect to the radial
coordinate. The law of conservation of the energy-momentum tensor can be obtained from
the equation V,T?* = 0. The strong minimal coupling between matter and geometry, how-
ever, violates this conservation law in £ (R, T,Q) gravity. Therefore, the nonconservation
equation in the context of £ (R,T,Q) is evaluated as
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2 [ pi™ ] v {V(M) +p™ ] a 10)

orlfr+ufol 21 frtufo r(fr +1fo)
where TTM) PiM) = Pr(M), and Z depicts the terms which appeared due to the noncon-
servation of the theory; it is described in the Appendix A. Equation (10) is referred to as
the Tolman—Opphenheimer—Volkoff (TOV) formalism for anisotropic materials in the static
HS system. The mass function m = m(r) for the anisotropic matter configuration endorsed
with hyperbolic symmetry is determined as

m(r) = e*’\% + % (11)

The substitution of Equation (11) into Equation (7) yields

ro M)
— H 2
m(r) = 471/0 fR Ver dr. (12)

Equation (12) states that the energy density should undoubtedly be negative as mass
cannot be taken as a negative quantity. This leads to the breakdown of weak energy
constraint as well as the inclusion of quantum occurrences, which further demonstrates
worthwhile results, which will be discussed in this article. In order to keep mass positive,
we replace 4™ with —|u(M)| in Equation (12) as

M
— 7. 13
Vinin fR + aqu ( )

m(r) = 4mn

The v/ can be determined from Equation (8) as

AP m(frt ufo) | 1)
r(fr + pfo)(2m —r)
Substituting back value of v in Equation (10), we achieve
2 [ P ] 4™ — m(fr + pfo) {wa — [ ] 21 _ sy s
or [ fr +ufo r(fr +ufg)(2m —r) fr+Hfo r(fr +1fQ)

Equation (15) is termed as a hydrostatic equilibrium equation for our HS anisotropic

(M)
matter configuration in £(R,T,Q) theory. The term % |:fRPLHfQ

] shows the pressure gradi-

47TPr<M>73_m(fR+VfQ)
r(frR+ufo)(2m—r)

} tells us about the strength of the gravitational force. The first half, ie.,

ent in the presence of modified terms and behaves as antigravity. The term
[PW Sl

frRtufq

47TPr(M)r3_m(fR+VfQ)

r(fr+ufq)(2m—r)

presence of modified terms. The second half, i.e., [

, is generally described as the passive gravitational mass density in the

B ]|
frtufa
gravitational mass under the influence of modified terms.

} , is interpreted as the active

4. Conformal Scalar

The conformal scalar is assessed using a conformal tensor in this section. The con-
formally invariant portion of the curvature tensor is known as the conformal tensor [35].
A body experiences a tidal force when traveling along a geodesic, which may be described
with the support of a conformal tensor. The conformal tensor is designated in our case as
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h
W) = s(xaxa — f)

In our scenario, the magnetic component of the conformal tensor disappears and

just the electric component (Wé',’?) remains. The conformal scalar is represented by the
symbol € and is calculated using our static spacetime as

1/”6_)‘ 1 /\’v'e_/\ N V/e—/\ /\/e—/\ 1//28—/\ e—/\

C=y Tt s 4r a8 27 (16)
(M) (M)

LU ES. L -

r fr+ufo

The use of Equation (12) along with the r derivative of Equation (17) produces
7M) } A (7 0 [ ™M) ] 3

C=dn|— |+ [ = || 18
il P o

Equation (18) represents the conformal scalar in terms of density inhomogeneity and the
anisotropic tensor under the influence of correction terms. Inputting Equation (18) into (17),

we obtain 3 (M) (M)
= {P’l] _Amm 9 {IMI} P, (19)
3 | fr + 1o 3 Jo or|fr+pfo

Equation (19) claimed mass function as the sum of matter density and the changes
caused in its distribution. These changes occur due to the involvement of the partial
derivative of energy density in the presence of modified correction terms, as one can also
witness from Equation (19).

5. Tolman Mass

In this section, to determine the amount of matter content in static relativistic compact
bodies, we will use a different method. Two different types of boundary surfaces are
likely to be found in HS sources. Devitt and Florides [36] achieved the modified Tolman
mass-energy formula for spherically symmetric and time-independent systems. They came
to the conclusion that surface discontinuity has no effect on the computed formula. We will
thus discuss here a general formalism provided by Tolman many years ago. The formula
for calculating the active gravitational mass is

27T T T v
mT:/O /0 /0fze#sinhe(Tg(W_T11<M>_2T22<M))d7d9d¢, 20)

where Tg (M) , T11 M) and T22 M) illustrate the stress-energy tensor in the presence of correc-
tion terms. Substituting its values into Equation (20), we achieve

— ™) 4 pM zpim)d~
T.

fr+ufg

Taking into account modified field Equations (7)—(9) along with integrating Equation (20),
we attain

v+A
2

r
my = 2m(coshm —1) /o 6?2(

(21)

o vsrcoshr—1

mr = v're 1 (22)
Utilizing Equations (14) and (22), we obtain
I 47IP,(M)r3—m(fR+}lfQ) e%coshrf—l. 23)
(fr +1fq) 2
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Equation (23) reveals the physical significance that mr is an effective inertial mass.
Moreover, in the locally anisotropic static metric, it supplies the repulsive nature (if
47'(P,(M)r3 < m(fr + pfq)) caused by the gravitational force. The gravitational acceler-
ation of a test particle for the static metric is determined as

A —y
v'e 2mre2

A= = .
2 r2(cosh 7t —1)

(24)

Thus, from Equation (23), if agp™M)p3 < m(fr + pfq), then mr will be treated as a

negative entity. Moreover, according to Equation (24), negative my results in negative
A. Therefore, the gravitational acceleration A points in the inward direction, radially.
Eventually, the r derivative of Equation (20) with the combination of Equation (23) gives

hr—1\ 5 v AII™) \  3m

m! :_<COS)7262 (@+ ) —+ T‘ 25

' 2 Foriia) t )
Integration of Equation (25) produces
v+A

cosh7t—1 3/@’ e T ( 47TIM) ) s ( r )
= —— ¢ d - | 26
mr ( > )7 . +fR+ny P+ (mr)x, <y (26)

Inserting Equation (18) into Equation (26), we obtain

mn  — [ =ltcoshm rsfrze e ar (v o | (™M Bd7
T = 2 r 7 7 JO or | fr+ufo

grIM) I
+fR+PfQ dr + (mT)Ze <7’323) .

(27)

Equation (26) shows the effect of conformal scalar on the total energy budget in the pres-
ence of £ (R,T,Q) correction terms, while Equation (27) relates the density inhomogeneity
and anisotropic tensor with the Tolman mass in the presence of modified terms. Subse-
quently, one can deduce from Equations (24), (26) and (27) that Tolman mass contributes,
as the active gravitational mass, inhomogeneities in energy density and local anisotropies.

The term (m7)xe (::) indicates the dependence of Tolman mass on the gravitational mass
e

of homogeneous, static system of radius r restricted to X.

6. Complexity Factor

The Riemann tensor may be split into distinct portions using its dual and the four velocity
vectors, leading to a small number of tensor quantities and scalar functions termed as structure
scalars. Such scalars are essential for comprehending the motion of celestial objects and seem
to be linked with fluid variables. Here, our focus is to evaluate the structure scalar Yrg, which
is termed as the complexity factor. In order to achieve this, we introduce the following
tensors in accordance with the orthogonal splitting method of curvature tensors [37].

You = Royas VI'V?, (28)
1

Zow =" Royas V'V = SlloueaRGVIVY, (29)
1

Xoa =* R;}ta5u7V§ = EU(%R:PMVH V(S' (30)

where * represents the dual tensor and is formulated as R:;W 5= %iyewng‘;j. The Riemann
and Ricci tensor, along with the Ricci scalar, are used to illustrate the conformal tensor,
which is given as follows:
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Rijpr = Clioo + 5Rp8ye + Rvpfs + 5 Ryaby = 5Rogyp — £R (558170 - 8np5g>- (31)
Utilizing modified field equations in Equation (31), we obtain
1w % (M) & [a ] (M) w g0 slaso]
Ry5 = Cuo + 16TV 6 N 8T < 00 (5[1457} (32)

Substituting the value of TM) in Equation (32) and following the procedure of splitting
of Riemann tensor, we reach

oao oo
Ry, =R

(D T RiTnyy T R0

(ID)py’
where

Das = Tt 1 1 _ prlosn L plog] 5
R(I)M_fRJr;er<fT+2RfQ+1> {W["VM 7 Prle o7 1)) | - g

KfT + 3foR+ 1) (3P + |u|) +4{ (f; —fRR> + fru — 3V Vy (fQTW> }+ (33)

;D{fQ(3P+ |y|)} —30fk — 2fgRyue " + V, Vs (fQTW) (1%5}] (s[{x(sgﬂ)

R{ihas = Tobida [2{15 ( —fr+ £> + fri— 1Y,V (fQTW) <5g5§ _ 5;;5;{)
—55{ fo <Tg(5g —T6) — T4 67 + T}ég{) } —20fx (5g5} — 6964 ) + ((SXV”V,X

—64VIN 5 =8V IV, + (sgvvv(;) fr = fo (R;;Tf(sg — ROTY 6] — RYTH 6§+

(34)
R,ZTf(Sg) —fo (RWTW&} — RysTH 6 — Ryua THY6 + Ry s TH 57 ) + 3V, Vo
{ fo (Tﬁf&} — TEs) ) } + ;vyva{ fa (ng — Twag) } +3VuV7 { fo (Tg‘(sg
Tﬁjé;,?) } - ;vyvé{fg (:rwzsg - Tffﬂ(sz) }
R¥ = AVIVET) — efer, EOT. (35)

Equations (28)—(30) provide support to write three tensors (Yoa, Xoa, Zoa) in terms of
significant parameters as

R ! R
YUD( = Eg’a + fRi‘ZfQHUIX (fT+ % +1> + % |:(|]’l| +3P) (fT+ # +1>
+(Rfi = 611 = f = Va V4 faT?") = Dfalln] + 3P) + foRpy TP 29,74 (faTP")

+yiE {vavng —VeVIVaVo fr — VpVa Vo VP fr + 8ou Vo VIVPV fr — 52 (Tou

~TVp Ve = TyaVo Vo + T580a Vo V7)) — fo(Roo T — Roy TeVe VY — Rsg TPV, Vi
+Rs, TPV V80w) + VaVis(Tofq) — VaVi( 7fQ)VUV“r — VPV (TS fo) VoV
+80a VIV VsV (T3 f0) + VeV (T fo) — VsV (Te fo) VT Ve = VsVa (T fo) Vo Va

+80av5V7<Tng)VPVW}'

(36)
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Xow = —Ega — (fR'*‘lTQ) <S:§[|y|h0a B 47THWX> (fT * %RfQ * 1) N (fRi#Q) |:{

_%D<fQT£> +VPVofr+ 3V VP (wi) +3ViVy (fQT”P) }eg%péa + foRyx

(37)
6 T
(P_ g)eg €pdn +fQRm(P_ g>€g§€ga:| + ?ﬁ(/‘zﬂiﬂfg) [{§<£ _fR> T ufr=
IVuVe (fQ:rﬂﬁ> } + ;D{fQ(3P+ yl)} +2fQR( -9+ P) + ViV, (fQTVP)]hM,
Zow = Tifa) [%V‘SD (fQT(?) = VOVIVsfr + fouRIV® — foPRIV® + 3 folIR]V? 8)

=3 VOV (fQT(é‘) = 3V°V Vs (fQT”)}Gw-

The structural scalar Yrr, which has been assigned as the complexity factor of
matter configuration, is the subject of our discussion from now onwards [38—40]. It will
eventually be possible to express the complexity factor in terms of metric coefficients
and their derivatives, which will make it easier to accomplish various static solutions. Thus,
the tensor Y, in Equation (36) is decomposed into its trace and trace free parts as follows:

R
o = g el +30) (SR 1 ) |+ i | RAe = £ - o)+
7V Vo fr — 87 Ve VIV Vo fr — §7V,Vu VPV o fr + 4V, VIVPV , fr — 3V, Vo (fTPY)
~Ofg(|u| +3P) +fQRmT”—2vpvv<fQTm] + A28 [— Yo (1, — TOV,V,

frtufq (39)
—TyaVo Vo + Th80aVoV7) — fo(Rso TS — Rsy ToVe VY — Rsg TP VpVi + Ry, TV, V804
+VaVs(Tof) = VaVs(TyfQ) Ve VT = VPV (TS fQ) VoV + Vs Ve (TS fo) +
8ea VIVpV V(T fo) = VsV (TS fQ) VT Ve — VsV (T fo) Vo Vi + 80 Vs Vo (T fQ) VoV |,
R
Yrr :es+fRf]§fQH<fT+§Q+1)+¢l. (40)
Using Equation (18) in Equation (40), we obtain
g (Y ro [ |uM) 47 Rfg
Yrp = 47| — +/{}r3d1’+1—[< ++1)+ . 41
T L’RJerQ} r3 Jo or | fr+pfg fr+ufg i+ ¥ )

Equation (40) depicts that complexity factor can be determined by measuring the
change in the direction of pressure as well as the inhomogeneity in the matter distribution
produced as an effect of these changes in the presence of correction terms. Utilizing
Equations (20), (27), and (40), we achieve

3 vEA RfQ
— hrt—1 \,3 (Tze e 2 M) 4AnTI(14fr+—5%)
e = G () () 2 (v gl - e ) o
—1.

Equation (41) illustrates the relationship among the Tolman mass and the complexity
factor in the presence of modified terms. Many researchers adopted the topic of complexity
in various disciplines [41-43].

7. Static Solutions in Modified Gravity

This section is devoted to provide a general framework of support to obtain any anisotropic
HS static solutions that rely on twogenerating functions. For this, using Equations (8) and (9),
we achieve
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14e? oA VI VA VA U 87 (M) M)
72 2

VoAV VAN O pM) _pM)y g
In order to proceed further, the auxiliary functions, i.e., % =zr—landy = e%, are

involved, which transform Equation (43) into

2%y 4y {4 42222 4 22'1% — 6zr} =2 [1 - fst_T;:cQH(M)} : (44)
Equation (44) upon integration gives
M) = e (1) (45)
pole(es ) O s ]

where A; indicates the integration constant. Equation (45) accomplishes our requirement
of representing any anisotropic static HS solutions that rely on two generating functions,
which are z and IT(M), Utilizing Equations (7)—(9) and (12) and the auxiliary variables,
we obtain

+ pfo)m'
47T|;4(M)\ — %, (46)
z2m—r)+1 m
amP™ = fr+ pfo <(r2) - r3) @)
1,2 2,2

Equations (46)—(48) represent the physical parameters in terms of modified terms and
generating functions (GF’s), i.e., z and TIM), Next, we will find the explicit solutions and
their corresponding GFs.

7.1. Solution with Vanishing Weyl Scalar and Radial Pressure

In this subsection, we use the condition where the Weyl scalar vanishes and we obtain a
solution. The vanishing of the Weyl scalar means that spacetime is conformally flat. In other
words, we can say that a neighborhood conformal to an open subset of the Minkowski
spacetime exists around every point. In this context, in order to obtain a solution, we
assume that = 0. Therefore, Equation (16) becomes

o [V v —A v+/\a 1"_67/\ _
ar{Zr( +e ):l —e al"|: 2 :| =0. (49)

Equation (49), by utilizing new variables, i.e., ye! = 1 and % = %, transforms into

/
, al yoa a 2a
[a r}er [a r+r2}y+r2 (50)
where the formal solution is accomplished upon integration of Equation (50) as

y= (/ e/ rl(r)drlz(r)dr + %) e L (r)dr -

where
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(1+e)?

@2(7)

+4(1+€)

and ‘B is an integration constant. The original values are obtained by substituting the new
variables, and Equation (51) will take the form as

V/ 1 A2 _ 1
where 1 is an integration constant. The matching conditions are determined using the
Darmois regime [44,45] in £ (R,T,Q) theory and Schwarzschild spacetime as

-1
2 2
e (M - 1) ;M) =0, (53)

s s,
The integration constant ¢ that appeared in Equation (52) is then calculated using the

matching conditions as
—4Mrse + IM?
Y= 1 :
Tse
The integration of Equation (52) produces

vo_ 22 eM2
e’ =rPsin /Tdr+‘3 ,

where the integration constant 8 is determined using matching conditions as follows:

- 1— % 1/2 A/Zd
p=sin [rzg(4r2€M—9M2> ] - [/ r r} o

In order to accomplish our solution, we will apply another restriction, i.e., P, = 0,
which takes into account the diminishing radial pressure in the HS gravitational source.
Equation (8) finally gives following solution against this context:

8rr2et 1 1+4e?

U,: fR+VfQ r . (54)
¢2

where ¢ and ¢, are defined in the Appendix A. The following equation may be easily
found by substituting Equation (54) into (16) and using & = 0.

@5 ) 1 Mgy _
qo() zqoz]”[ o) " z<ny+fR>}+D0‘°’ &)

where D indicates the correction terms of £(R,T,Q) theory and is defined in the Appendix A.
Alternatively, Equation (55), 1 = ¢(r), can be written as

2¢(g—1
g2 o] e a0 (56)

where @3, ¢4, and @5 show the influence of correction terms in this modified gravity and
are defined in the Appendix A. Upon integration, Equation (56) transforms into

r(28 —1)(8¢5 + ¢3)
d ¢, 57
8= / —29(g—1)+r(2g—1)¢ps et (57)

where €, is the integration constant. The utilization of Equations (52) and (54) produces
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2 _ 2

- 2
8 2
[— St e, — 9228 1)} +¢3(28 1)

The physical attributes for this particular model are accomplished as

(M) — _ & _ 8 B ¢3
172 fR"’.”fQ[ 4712 87rq04(g(g—1)+r(2g—1)){¢5 28¢5+ @3 + ¢ }} (59)
2 95 — 2895 — 293 + %}
PiM) _fR—i-ny[ & . 8 {4’5 8P5 —<P3 T ¢ ] )
8rur2(2g —1)  167¢s(2g —1)[g(g —1) +r(2g —1)]
The GF for this specific model is calculated as
M) _ g 28(fr+1tfQ) pa+87r0 91 -28
am  — fR + .qu [ = 8m2(2g-1) + 2 (frt1fQ) 92 @)
2
R ey {9"5 —2895 293+ ¢ H
_ _ st ea(2s-1) (62)

rg2(28—1)
Equations (61) and (62) illustrate that the GFs depend on the physical characteristics
of the fluid and the correction terms of £ (R, T,Q) theory.

7.2. Solution with Y7r = 0

A model different from the conformally flat solution that satisfies the condition of
diminishing complexity factor (Yrr = 0) would be interesting to find, as the scalar Y7
is specified to be an appropriate evaluation of the complexity of the matter content. This
is due to its property to define the density inhomogeneity and pressure anisotropy [46].
Since there are infinitely many possible solutions, we must apply a further limitation in
order to produce a particular model. In this case, we will assume that P, = 0 along with
the limitation of Yrr = 0. Utilizing the relation e~ + 1 = g in Equation (52), we achieve

;Zg+ 87r72q)1
! r fR+]'{fQ ) (63)
¢2(28 — 1)

Placing v/ from Equation (63) into Equation (40), we acquire

4 _
g {ﬂpz(3g 287 1)+ HERBEE 4 glg(10g — 1 - 8pa +4rgh(g 1) o
+¢6] + @7 = 0.

Upon integration, Equation (64) turns out to be

/g g(10g —1+4r¢5(g —1) —8¢2) + 96l — @7,

4 -
rga(3g —2¢2 —1) + AL 912 (1-2) f(ilf;% 22)

The physical attributes for this peculiar model are calculated as

] = fr+1fo {—g[g(wg —1-8¢> +4rg3(g— 1)) + 6] — 97
drer 92(3g —2g7 — 1) + 02
) _ 8(fr+pfo) [g[g(log —1-8px +4rgh(g— 1)) + 96| — @7

= + g] .
€ _ 2 3 —_
Br(2g —r p2(3g —2¢7 1) + L2

+ 8} , (65)

(66)
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The GFs for this model are achieved as

™) — _ 8Urtnfo) | ~glg(10g—1-8¢r+4rgs(g—1))+¢s]
- 8m(2g—1)r? 4113 1-2
m(2g—1)r (Pz(?)g,2gZ,1>Jr rfﬁ[”{lfi}Q 2)
28(fr+1fQ) po+8mrd g —2¢ (67)

r2(frR+1fQ) 92 !

oy 891 _
Z _ gJFfRﬂlfQJFq’Z(ZS 1)
rg2(2g—1)

7+ g+

Equation (67) depicts that the GFs can be expressed in terms of the state determinants
and the higher curvature terms.

7.3. Solution Using Stiff EoS

This subsection is specified to find the results of HS spacetime obeying a stiff equation
of state (EoS). Therefore, to obey this state, the difference between modified radial pressure
and modified matter density must be nil, i.e.,

M) = piM), (68)

According to condition (68), Equation (15) takes the form

=7z (69)

or [fR + VfQ] r(fr +ufq)

Besides upholding the restriction of the stiff state equation, this aforementioned
nonconserved equation can be applied to the ultradense matter spread throughout the
region. To continue our study, we will consider two different conditions. The first one is to
assume the modified tangential pressure is equal to zero, i.e.,

M
« PM—yp

Implementing the previously mentioned condition (68) on Equation (69), we acquire

(M) (M)
a[ P } + 20 =M Z. (70)
or [fr+ufol  r(fr+nfo)
The solution of Equation (70) reads
Pr(M) _ r% + fR‘:zi‘fQ [ r2e*zdr,

- 71
M| = r% + Ltff@ [ r?erZdr, 7

where £ is the integration constant. The mass function and metric potentials are
evaluated for this condition as

m=4m [; ﬁ + 47 [y [[r*e*Z]drdr,

e h =81 [ fRfny + 82 (7 [[r2er Z)drdr — 1,

—87 |:f0r ﬁJrfoy f[rze)‘Z]drdr:|

v =

+
r (2 [47'[ Jo ﬁ-ﬁn Jo f[rQe/\Z]drdr:| —r) (72)

i | frRYifg
£ 2,1 3
87T|:72+ ;) [ ree Zdr:|r

r(frR+1fQ) (2 {47;[0' ﬁ—i—éln I f[rze/\Z]drdr] —r)
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The GFs for this specific model are determined as
M — ﬁ + fR'H‘fQ f )\Z dr,

4 |:2+fR+;fQ [ 12 Zdr] r
1 T T
zZ = 7 -+

r(fr+1fq) (z [471 I ﬁﬂn fo f[rZe/\Z]drdr] r) (73)
—4n { Iy ﬁﬁ- I f[ﬂe)\z}drdr:|

+ .
r (2 |:47'L' I ﬁ-ﬁ-ém I f[rze/\Z]drdr:| —r)

Next, to witness the fluid configuration following the stiff EoS linked with the non-
complex HS system, we assume the second condition as

* Yrr=0
The application of previously stated condition (68) on Equation (41) yields

2| " +20 p™ _ eIl L@H L1 d(ZeMr*)
or? | fr+1fq ror| frR+ufq 2| frtufg r dr
H(fr+ 8o

(2%)
|: fr+1fo :| + 2mrd

The formal solution of Equation (74) is

(74)

Yo

+

=N

RfQ
I\ fr+—=+1
B con[fre R4 6 ( .
orre = V5 TR | T e | S | (75)
()

3(r3yy)
ISP ] S b | 2o

The mass function for this specific model is evaluated as

IT <fT+R£Q+1>

Rfo
+-2+1
m = 4r [ { I {foHith } J & [f Fr¥ifo dr} ~JElE

(76)

<fT+ +1> ET 3
[}Mdr} +frlz{f L dr+Ze)‘r4} dr} r2dr + 4mbr — 47

Equation (76) illustrates the mass function under the influence of extra curvature terms.
One may be able to determine the values of the metric coefficients using this equation.

8. Conclusions

The more extended version of the matter Lagrangian L,, has been adopted in these
types of theories to describe the strong nonminimal connection between matter and geome-
try with the help of the inclusion of the term Q. Such coupling can be seen in Einstein-Born—
Infeld theories. According to Odintsov and Sdez-Gémez [47], under some circumstances,
£(R,T,Q) theory would be able to illustrate some of the insights offered by Hofava-like
gravity. Therefore, these theories could be seen as a theoretical link between modified
theories of gravity and Hofava-Lifshitz gravity. The £ (R,T,Q) theory is reduced to the
gravity £ (R, T) theory in the situation Q = 0. The £ (R) theory, however, results from the
vacuum case of £ (R,T,Q) theory. Even if we examine the traceless energy-momentum
tensor, i.e,, T = 0, this theory will be able to explain the nonminimal coupling to the
electromagnetic field owing to the inclusion of term Q.
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These theories may illustrate late-time acceleration without relying on the cosmological
constant or dark energy. If we consider L, = —, these theories include the consequences
of the additional force exerted on the massive particle. The peculiarities of galaxy rotation
curves might be described in the existence of this additional force. Based on various modi-
fied theories [48-50], the related effective matter geometry coupling favors the nongeodesic
motion of test particles, which produces additional force. Moreover, this theory achieves
complicated modified equations. Eventually, different forms of function of £ (R, T,Q) can
be used to produce distinct qualitative cosmological solutions.

The fundamental characteristics of the fluid are significantly correlated with the
structure scalars. These scalars make it simple to manage complex systems and can be used
as a tool to address various essential facets of the system, such as density inhomogeneity,
shear and expansion evolution, complexity, etc. These scalars provide plenty of information
about how the system evolves. The structure scalar Y7r is termed as complexity factor
as it contains the maximum information about the evolution of the system. Subsequently,
we evaluated complexity factor Yrr and gathered the following results about it.

¢ Under the effect of modified terms, the factor Yrr incorporates inhomogeneous energy
density and locally anisotropic pressure, in the context of the £ (R, T,Q) theory.

e Taking into account additional higher-degree factors of modified theory, the quan-
tity Yrr assesses the Tolman mass in terms of inhomogeneous energy density and
anisotropic pressure.

* Inanonstatic dissipative matter distribution, this scalar might hold dissipative fluxes with
irregularities in pressure anisotropy and density with the involvement of modified terms.

The phenomena of core development can also be observed in the absence of expansion.
The matter content develops without being compressed in this case. For example, during the
growth of a spherical stellar gradient, changes in its volume cause a comparable expansion
in the exterior hypersurface, which counteracts a similar expansion in the interior surface.
As a result, the zero expansion scalar starts a special type of system evolution in which the
innermost shell drags away from the central region, ending in the vacuum core. Based on
this idea, expansion-free matter populations might be useful for explaining voids.

It is worthwhile to stress that in our modeling, the weak energy requirement is violated.
This indicates that modified energy density is inevitably negative in the context of £ (R, T, Q)
gravity. One can also witness this from Equation (12). Usually, negative matter densities are
suggested in extreme cosmological and astrophysical situations, particularly with regard to
quantum occurrences that might occur within the horizon. The Tolman mass, also known
as the active gravitational mass, is the mass function that describes the source’s entire
mass and energy content. The expression for Tolman mass is evaluated in Equation (23);
it reveals the physical significance that m is an effective inertial mass. Moreover, in the

locally anisotropic static metric, it supplies the repulsive nature (if 47TP7(M)73 <m(fr+ufo)
caused by the gravitational force.
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Appendix A

The terms ‘u(M),Pr(M) , and PiM) appearing in Equations (7)—(9) are described as

follows:
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The term Z appearing in Equation (10) due to nonconservation of energy-momentum
tensor is evaluated as follows:

2 Voot 1 v VA Y
7 = |:fé€_/\Pr<—2+2> +fQ€_/\Pr(_2——2
roor2r rooor r r
(2+RfQ +2fT>
Ze foe™ T U VL N O , e Mo
£ 2 o A T L _
+ r3) T ( R Y LA

_ 3fr eMN 1 Vet fr

2

X(—)\/U/+V/ +21///+41//7” 1>+2}_fQPi{r<2_r_2r —E
1 e v

- (rz i 1’6/\> <le* +le4) +PVfT}

The value of Dy appearing in Equation (55) is defined as follows:

2rt gt [1—4’2 e)‘<1 1 )+(fR+#fQ)/§Di+§0§]
p2(frR+ufo)l re2 T2 fr+ufo fRtufo o1 ¢

Dy = —
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The terms ¢ and ¢; occurring in Equation (64) are calculated as follows:

_ ~fo foMe* | Plfe f frR_2fpet
P1= yfT+reA( 7 +fQ+ 2 + ret E+T r

_ 87ret fQ fQ fQ/\/ B fol B P, fg _ Re e’
2T Rt fo e/\ r 4 8 4 2ret 2

The terms @3, ¢4, and @5 appearing in Equation (56) are calculated as follows:

g3 = el 2nrtgr  27r(@2 — 1@l @a +r919))
(28— 1)% (fr+ufo)?  #2(fr+ufg)? 93(fr + 1fo)
I (G ) Bl U e VO 27r%gy
2r(2g —1)¢2 (fr + 1fQ) 92
R drirgr (1 - 28 +4nr’py) 4 on(foi' — ufo + fr)
2293 (2¢—1)93(fr + Hfo) P2 (fr + 1fo)?
drtrgi(2g —1) (1 l+(p’2)
@22 (fr + pfo) P2 2r93)

The values of ¢ and ¢7 occurring in Equation (64) are

8mrd
9 = 16t Q1h(g — 1) + ot q)fl [1 —2¢% 4+ 2¢2(g — 1) +rgh(—4g +3)
. At gy +2rfo@ap! (§ — 1) + 21 fopap(g — 1) + 2 frepa(g — 1)]
fr+1fQ
o7 — 4rrdgq {(PZ gl - 4rrdgp — roap’ fq — quz,ufé —rX2fR n 7#1}
fr+ufa ’ fr+1fa

The term 1y occurring in Equation (40) is calculated as follows:

1= _fR(ngiZT+ ) ( e iﬂ;fQ {hg’lfm(fQTpn) —O(foTon) — VaVaVyV”D(fQTJ)]

47
b [ i = T Vafi = VeVaVy V' VTV, i+ FQU R P — WiRsgP
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(fQTR) + WoHIV gV r(fQT)) = VVo(foTE) = VeValfoTh) = VeVaVa V' V¥V (foTV)
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