arXiv:1904.07840v1 [hep-ph] 16 Apr 2019

LMU-ASC 15/19
FERMILAB-PUB-19-003-T
April 2019

Master formula for one-loop renormalization
of bosonic SMEFT operators

Gerhard Buchalla®, Alejandro Celis?, Claudius Krause® and Jan-Niklas Toelstede®*

*Ludwig-Maximilians-Universitat Miinchen, Fakultét fiir Physik,
Arnold Sommerfeld Center for Theoretical Physics, D-80333 Miinchen, Germany

*Theoretical Physics Department, Fermi National Accelerator Laboratory,
Batavia, IL, 60510, USA

“Physik Department T31, James-Franck-Strafle 1,
Technische Universitat Miinchen,
D-85748 Garching, Germany

Abstract

Using background-field method and super-heat-kernel expansion, we derive a
master formula for the one-loop UV divergences of the bosonic dimension-6 oper-
ators in Standard Model Effective Field Theory (SMEFT). This approach reduces
the calculation of all the UV divergences to algebraic manipulations. Using this for-
mula we corroborate results in the literature for the one-loop anomalous dimension
matrix of SMEFT obtained via diagrammatic methods, considering contributions
from the operators X3, 9%, ¢*D?, X?¢? of the Warsaw basis. The formula is derived
in a general way and can be applied to other quantum field theories as well.
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1 Introduction

In the background field method, the one-loop effective action for a general quantum field
theory involving fermions and bosons can be written elegantly in terms of the super-
determinant of a fluctuation operator [1-3]. This formulation is particularly suitable for
the calculation of the ultraviolet (UV) one-loop divergences of the theory, as the problem
is reduced to algebraic manipulations in which gauge invariance for the background fields
is manifest during all stages of the computation [4]. These methods have been used in
the one-loop renormalization of effective theories for QCD at low energies [5, 6] and, more
recently, for effective theories of the Higgs sector [7].

When the fluctuation operator can be cast in the minimal form D, D#+Y", the one-loop
divergences are expressed with a compact formula (in terms of the standard expression
for the second Seeley—DeWitt coefficient [1-3]). Renormalizable gauge theories fall in this
category if an appropriate choice is made for the gauge fixing of the fluctuating fields [g].
When the fluctuation operator is non-minimal, obtaining a closed expression for the one-
loop divergences is a much more challenging task. It is not hard to find these situations.
For instance, gauge theories with a general R¢-gauge fixing for the fluctuating fields will
give non-minimal operators. A calculation of this type has been done within the context
of chiral perturbation theory in [9].

In this work we are interested in the one-loop renormalization of the Standard Model
Effective Field Theory (SMEFT) at the level of dimension-6 operators [10, [11]. The
complete derivation of the one-loop anomalous dimension matrix in this case was ac-
complished via diagrammatic methods in [12-15]. We present here a first step in the
program of performing this calculation relying on functional methods. Using background
field method and super-heat-kernel expansion, we derive a master formula for the one-
loop UV divergences of all the operators of the type X3, 9% ¢*D? X?¢? from the Warsaw
basis [11]. Some of these operators have multiple derivatives and introduce non-minimal
structures in the bosonic part of the fluctuation operator. We will present the master
formula in general terms as it can be useful within other quantum field theories. The
results presented in this article have also been discussed in the thesis [16].

Using the master formula we provide a non-trivial cross-check of the results in [12-14],
finding agreement with the renormalization group equations (RGEs) when taking into
account contributions from the operators X3, ¢, ¢*D?, X2¢%. Such cross-checks are rele-
vant given the phenomenological impact of renormalization group effects when analyzing
scenarios of physics beyond the Standard Model (SM) [14, [17, [18].

The article is organized as follows. In Sec. 2] we review the super-heat-kernel approach
to the one-loop effective action and derive a master formula for the UV divergences. In
Sec. [3] we provide the context for the application of the master formula to SMEFT. The
derivation of the RGEs from the one-loop divergences is discussed in Sec. [4 In Sec.
we give details on our calculation of divergences and RGEs for the bosonic dimension-6
operators of SMEFT. We summarize the results in Sec. [ and conclude in Sec. [[l App. [Al
contains details on the real representation of the Higgs field. App. [Bl summarizes the
building blocks of the master formula and the beta functions of the SM at dimension 4.



2 Master formula

2.1 One-loop effective action

We consider a quantum field theory with real boson fields (¢) and spin-1/2 fermion fields
(¢). In the background field method, fields are expanded in terms of a background
field that satisfies the classical equations of motion and a fluctuating field: ¢ — ¢ + &,
Y — 4+, — »+n [4]. We assume that the action of the theory expanded to second
order in the fluctuations can be written as

S — /dd:c [—%gTAg + 7By +nlé + &7 . (1)

We work in d-dimensional Minkowski space with d = 4 — 2¢, following the usual pre-
scription in dimensional regularization. The differential operators A, B and the fermionic
functions I',T" depend on the background fields. One-loop corrections to the effective
action are given by [1-3]

- l
Fi#[¢a¢>w] :§Str an> (2)
with
A T -17
K=|-IT o BT |. (3)
I =B 0

Here Str stands for supertrace. For a review of supermatrix algebra see |[19]. We will
distinguish supertraces with and without integration over Minkowski space StrO =
[ d?x str (z|O|x). 1t is useful to write the one-loop effective action in the form [3]

A \/iiF%B%> )

L6, ), ) ziSt ] A:fSt ]

which applies in the present case, where operators are at most bilinear in fermion fields.
When the differential operator takes the form A = (9*+N*)(d,+N,)+M and B = id—F,
it is possible to cast the fluctuation operator A into the minimal form

A=D'D,+Y, (5)
with D, = 0, + X,

¥ - N, %f‘%
I i )
0 §(F7u_7uF5)

%
v S U @
V2il L(Fy Fy" + 5 Fsy" Fs — v, Fs Fy*) — 10, (Fy* + " F5)
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Here we have defined Fy = v5F ;. Furthermore, we will assume that F' can be decomposed
as

F:’I’PR—FZPL—FRM’)/MPR‘FLM’)/MPL, (7)

with Pr, r the chiral projectors.

2.2 Minimal operator
For the operator (B, the one-loop divergences at the level of the Lagrangian (I} =

[ d?x L") are given by the usual formula [1-3]

1 1 1
LY (A)= ——str [ — X, X* + =Y? 8
le( ) 167T2(4 o d)s r (12 e + 2 ) ) ( )

with X, = [D,,D,] = 0,X, — 0,X,, + [X,, X,]. Eq. ) can be developed further by
evaluating the supertrace and by performing the trace over Dirac indices. This leads to
the well known 't Hooft formula [§]

1 1 1 _
LAY = —— o[ =N, N® + M2 4 iTPT
Lanl®) = 50—y l"<12 N M 40D

1 1
+2(D,0)(D*r) — 2(17“)2 — gRWR“” — gLWL“”) . (9
Here we use the definitions

DL =0,I'+ N,I — %F%F ., N, =08,N,—0,N,+[N,,N,]
D,r =8, +iL,r —irR,, R =0,R, — 8,R, +i[R,, R , (10)

Dyl = 9l + iRl —ilL Ly = 0,L, — 8,L, +i[L,, L) .

[T

2.3 Extension for non-minimal operator

We will consider a fluctuation operator that receives the following corrections in the
bosonic block of the supermatrix

2D, + a'¥ DD,
A’:A+<CB+ 5 “0+“B g 8)' (11)

The operator A is assumed to be written in the minimal form (Bl). Here D, = 0, + N,
is the covariant derivative in the bosonic sector, cp and afy’ = a3" are symmetric in the
field indices while b% is antisymmetric. The terms cg and b5 can be absorbed into M
and N* of A, however it will be useful to keep these corrections separate. The correction
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ay D, D, introduces a non-minimal structure in A’, similar to what occurs in a gauge
theory with a generic R gauge fixing term. We treat the corrections (cg, by, a’y’) as first-
order perturbations of A, which is sufficient for the one-loop renormalization of SMEFT
at the level of dimension-6 operators. This feature simplifies considerably the calculation.

In order to derive the one-loop UV divergences using the super-heat-kernel method,
it is convenient to write A’ in the form

AN =A+c+20D, +a"D,D,, (12)

where now the covariant derivates are acting in superspace D,, = 0, + X, with X, defined
in ([@). The new terms (c,b*, a*”) are given by

cg V2Ihg — %(@f)a%”% + %fNua’é”% + %Fa%”%Xm,,)

Cc = s
0 0
by —J=Lalf
by — . \[0 ) , (13)
a" = @ 0 .
0 0

Here a, b and ¢ are supermatrices and X, is the lower right entry of X,,.

The one-loop UV divergences associated with ¢ and b* can be obtained from Eq. (R))
after a redefinition of ¥ and X, keeping terms linear in ¢ and b*. We focus in the
following on the corrections due to a*”. To evaluate the divergences from a*” we use the
integral representation (dropping an irrelevant constant)

*d ,
StrIn A" = —/dd:E str / —7—(93|e_7A |z) | (14)
o T
and implement the heat-kernel expansion [20, 21]

TA' |Zl§'

(x|e” (x,z)T (15)

The one-loop UV divergences are contained in the hermitean part of the second Seeley—
DeWitt coefficient [21]

Lh (A = str (as(z, ) + ag(x, 2)7). (16)

2(4m)%(4 — d)
The latter can be obtained from (I4]) by going to momentum space and extracting the
coefficient of 72:

d
as(z, ) = —i d—fepze‘(Tﬁ+ﬁ2ip“Du+m“”DuDu+ﬁa“”%mDu—a"”mpv) (17)
) .
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Rearranging terms in the final result, and including the contributions from b and ¢, we
get the following one-loop UV divergences from A’

L&) = L5l8) + 5 szt
1

1 1
B ﬂa)\)\X;wXW/ + BGMVX/U\XV)\ + EX/M [DV’ [DA, a/“/]] (18>

1
cY + gXW[D“, v’ -YI[D,, v

— }aA/\YQ + lY[DH, [D,,a"]] — iY[DH, [D*, a’\]] + h.c.) .
4 3 12
The term L}, (A) represents the divergences associated with the minimal operator A in
(I2), these are given by (R). The remaining terms contain the corrections introduced by
(¢, b%> agy)'
We can simplify the result by evaluating the supertrace and arrive at a master formula
for 0Lg;, = Loz (A') = Lg;y (A):

1 _ 1.
5£<liiv = tr (CBM + gNuu [D“a bg] + inBF - EFiDGBF

(4m)%(4 — d)

1 B 1 v
= 51NN + 2@y NN + 2N [Dy, [D e (19)

1
- Za%,\Mz -

1

1 v
MDD ] + MDDy )

Here we use N, = 9,N, — 9,N, + [N,, N,] and
_ _ _ L+
LD, T = (iFa%”vA(ﬁp + NPT — iy (0P — Nf’)ajg”r) (9ur9r0 — 9urGup)
(20)
]- T v
+ §FCL% ’}/AF’pr(guugkp + 29/1)\91//)) :
To derive (I9) we assumed that afy” and N* have a block diagonal structure with respect

to the bosonic variables from spin-0 and spin-1 fields.
In the particular case a’y = apg"”, the master formula (I9) simplifies considerably

1 _
6Ly = ——5———tr( cgM + SN, [D*, V5] +ilppT
div (471')2(4—61) I'(CB +3 Iz [ B]_l_z %B

(21)

5 1o 1.5

—agpM~* — §Fa32$F + ifzﬁagf ,
with the covariant derivatives on fermions I', T

1 <o 1

i) =i +ilN + 5y by and D =id =il = 5.y (22)
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3 Application to SMEFT

Assuming that the SM degrees of freedom are the only ones present at energies below
a certain high-energy scale A > My, where new dynamics enters, we can parametrize
physics at low energies (F < A) by the effective Lagrangian

1 ) A6) , L (6) ~(6) 1
c:£SM+KZk:Ck Q +ﬁzk:0k QA +0( ) (23)

Here Lg) is the renormalizable SM Lagrangian, QS’G) are higher-dimensional operators
of dimensions 5 and 6, C,f’ﬁ) are their Wilson coefficients. At dimension 5 there is only
the so-called Weinberg operator. A non-redundant basis of dimension-6 operators was
defined in |11].

We denote the SU(3) and SU(2) generators by T4 = A% and 7* = 1o, where A* and
o are the Gell-Mann and Pauli matrices, respectively. The Higgs field is parametrized in
terms of 4 real components ¢;:

1
V2

Here ¢ is the Higgs doublet and gg = i09¢* its conjugate, i € {0, 1,2, 3} and we defined 7° =
—51. Using the real representation for the Higgs field we can write the SM Lagrangian
as (our sign conventions for covariant derivatives and field strengths coincide with [11])

H = (5, gb) =itlp; . (24)

1 A Apv 1 a auv 1 v
Low == 7GAG™ — Wi, W™ — 2By, B"
1 m? A
+ §(Du90)i(D“90)i + 5 e - g(%%)z (25)

+ ilpp — (&ﬁHyPRw + h.c.) .

Fermions have been collected into 1 = (u,d,v,e)’, where every component is a Dirac
spinor. The Yukawa matrices are grouped into Y = diag(Vy, Vi, Vo, Ve). We will take
Y, = 0 in the following. More details about the real representation of the Higgs field used
here are provided in App. [Al We expand the fields around their background component
as

G — G ot ©i = ©i+& ,
W — W o™ | =Y+, (26)
B* — B* 4+ BH | VP47,

The operator A in (I2) will contain the fluctuations of the SM Lagrangian while the cor-
rections generated by the dimension-6 SMEFT operators will be encoded in (cg, b, a’y).
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Table 1: Dimension-6 bosonic operators of the SMEFT from the Warsaw basis [11]. Here
X = 1/2 €0 X7, €0123 = +1.

X3 X2 ¢2
Qc | FPOGIGIGT | Qo | 010GAGH
& | fABCGGEGS || Qe | ¢TOB, B
Qw | T WeWrWe | Quw | oloWg,Wer
Qi | e WeWyrwst || Quws | olo"oWs, B

¢ Qua | ¢1oGRGM™
Qo (¢T¢)3 Qu5 ¢ ¢ B, B
o' D? Quv | o'W Wwer

Qo | ('0)0(6'0) || Quivp | ¢lo o We, B
Qsp | (¢1D"0)" (¢ Dyuo)

We group the bosonic fluctuations into (a4%, w®, 37, &). To write the bosonic kinetic
term as in () we redefine the gauge field fluctuations (a*,w™, B#) — i(a*, w™, BM).
The SM fluctuation operator written in minimal form is given in App.

The master formula (I9) can be applied to all the SMEFT operators of the type [11]

X%, ¢% ¢'D?, X?¢7. (27)

See Table [I] for a detailed list. These give rise to a fluctuation operator that can be
cast in the form (II). Using (I9) we calculate the one-loop UV divergences generated
by these operators, and evaluate the corresponding contributions to the renormalization
group equations.

Under renormalization the operators in Table [I] not only mix among each other, but
also into dimension-6 operators of the classes 1%2¢3, ¥?X ¢ and ¢?¢?D, in the notation of
[11]. Using the representation ¢ for the SM fermions, introduced above, these operators
can be expressed in a compact form. The operators in the class ¢?¢® can be combined
into a single term:

(¢T¢)@EL\/§HC¢}¢’¢R + h.C. s (28)

where, as in the case of the Yukawa matrices, the Wilson coefficients have been collected
into a matrix in flavour space as Cyy = diag(Cle, Cap, 0, Cep). The same scheme can be
applied to the 12X ¢ operators. The resulting structures and flavour matrices are given



o Git, TAV2HCyer) Cyp = diag (Cua, Cag, 0,0)
Yo Wi,o"V2HCywt) | Cyw = diag (Cuw, Caw, 0, Cew) (29)
ot By, N2HCyp) Cyp = diag (Cup, Cy4p,0,C.B) .

Finally, using the real representation of the covariant derivatives in appendix [Al we can
reduce the operators of the remaining class 12¢2D to the form

=20y Copap(T' R + TR Duptr Cgy2 = diag(Cyud, Cgau, 0,0) ,
2i( ot} D) bpY" Coptor Cyp = diag(Cypu, Cpd, 0, Ce)
(30)
. i 1 1 . 1 1
2i(pth D)Ly CS ), ) = diag(CL), C))
. a T a 3 3 . 3 3
2i(pty D)o v”C’;w)wL , C’;w) = dlag(Céq), C’él)) .

The coefficient matrices are chosen such that the corresponding operators are hermitian.
For this, we had to generalize the first operator that contains ¢ud.

In the following sections we discuss the renormalization group equations for SMEFT
and present the calculation of the one-loop UV divergences for the bosonic dimension-6

opeiators. We find agreement with the renormalization group equations presented in [12—
14]

4 Renormalization group equations

We next present a concise derivation of the one-loop renormalization group equations of
dimension-6 operators in SMEFT. The results will allow us to convert the UV divergences
of the one-loop corrections into the beta functions for the operator coefficients.

The coefficients and operators of the dimension-6 Lagrangian in (23)) are renormalized
as

CQY = 2,02 Qi = CiQi + Qi 2 Zij — 6,5)C; (31)

The factor Z}f) collects the field-renormalization constants coming from the fields of the
operator ;. A summation over ¢ and j is understood. It will be convenient to define

K;;

3272¢’

i K
Zij = 6i + 70 14 W (32)

'We take into account the errata in [22].



for the one-loop Z factors in minimal subtraction. Eq. (BI]) then implies for the coun-
terterm Lagrangian

1
321’ Lot = Q; (Kiydy; + Kij) C; == —32m€ LY, , (33)
which is identical, up to a sign, to the divergent part of the one-loop effective Lagrangian
§LL,, to be computed with the methods discussed in section 2
In order to relate the coefficients K;; in (33) to the renormalization-group evolution

of the C}, we note that
CZ.(O) = /J,n(l)EZZJCj . (34)

Here the scale y makes explicit the mass dimension n;)e of the unrenormalized coefficient
c Z;; and C; are dimensionless. Differentiating (34) with respect to ¢ = In u, using

B2) and working to one-loop accuracy, we find for the beta functions of the operator
coefficients ic 1 dK . i
ﬁi = 167‘(‘2 dtl = _Z dt” j + %KUCJ (35)

This expression can be simpliﬁe using the concept of chiral dimensions, which keeps
track of the loop order of terms in a quantum field theory [24]E Consider an operator con-
taining a number of field-strength factors X, , scalar fields ¢, fermions ¢) and derivatives

D, schematically

Q= Xr o™ DVPyir (36)

In 4 — 2¢ space-time dimensions this operator has canonical dimension

d(Q) = Nx(2 =€) + Ny(1— €) + Np + Ni (g —e)

3
:2Nx+N¢+ND+§NF—(NX—l—N¢+NF)€ (37)
In 4 space-time dimensions the canonical dimension is dy(Q) = 2Nx + Ny + Np +3/2Np,

constrained to be do(Q) = 6 for the case at hand. Since the Lagrangian term C©Q© /A2
has canonical dimension 4 — 2¢, it follows that

d(C0) = (Nx 4+ Ny + Np — 2)e (38)
for the coefficient C'©) of this operator. Using the chiral dimension of Q in (36,
xX(Q) = Nx + Np + %NF, (39)
we have d(C©) = (dy(Q) — x(Q) — 2)e = (4 — x(Q))e and therefore
nay =4 = Xi (40)

2An equivalent discussion in terms of NDA weights has been given in [23].
3The chiral dimension is 0 for a boson field, and 1 for a weak coupling, a derivative, or a fermion
bilinear. The loop order L of a term is related to its total chiral dimension y through x = 2L + 2 [24].
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for the parameter n(; defined in (34). The canonical dimension of the coefficient C'©
can thus be expressed through the chiral dimension x; of the corresponding dimension-6
operator.

Inspecting (B3]), we note that the one-loop corrections of an operator ); yield the
divergent terms
Cj

- (41)

1
ALy [Q5] = T 3972 22: Qi (K(i) 0ij + Kij)
The chiral dimension of this expression equals the chiral dimension of (); increased by 2,
since it results from the insertion of (); into one-loop diagrams. Therefore

Xi + X(K(i) 52‘]' + Kij) =x;+2. (42)

It follows that
X(Kij) = X5 = Xi +2. (43)
For i = j we also have x(K(;)) = x(&j;) = 2.

Since, by definition, fields and derivatives belong to the operators @;, the chiral di-
mension of K;; can only arise from weak couplings. Eq. (43) implies that the coefficient
K;; is proportional to x; — x; + 2 weak couplings «, which may be gauge or Yukawa
couplings, or V. Each of those fulfills dx/dInt = —ex + O(1/1672). We then conclude

that p
5= (i =X = 2)e K. (44)

Inserting (40) and (44]) into (B5]), we finally obtain
B; = Ki;C; . (45)

This means that the contributions to the beta function for coefficient C; from the insertions
of operator ; can be simply read off from the term K; in the counterterm Lagrangian.
For the mixing among coefficients of dimension-6 operators with ¢ # j, (@3] can be applied
immediately. In the case of i = j, (B3)) shows that K(; has to be subtracted from the
coefficient of the divergence (K(; + Kj;) to obtain the beta function entry Kj;. The K
are determined by the renormalization constants of the fields composing the operator @);.
The renormalization factors needed for the bosonic operators are

2 44 9 1 2 19
Zpw =14 =2 (———(Nc+1)f—§):1+ J

322 \ 3 3 3272 3
Zp =1~ 329:26 ((22]7\[0 +2) U %) =1- 35:262_1
Zsg =1+ 3297%26 22NC3_ — =1 3297:2'2614
Zy =149 +322i’; 26_ 2% (46)
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where N, = 3, Ny = 6 and f = 3 denotes the number of colours, quark flavours and

fermion families, respectively, and
Yo = Netr(Viu + ViVa) + 2(VIVe) = (V).
Using (4G)), we find the coefficients K;) for the bosonic operators in Table [It

79

Ky =6B¢*+9% =), Koy = Kep) = 43¢° + 9% — )

K = K@ =21¢2, Kw) = Kyiny =

Ka) = Ky = 1492 4 6g° + 29" — 27,

37
Kw) = K gy = = g% +29% — 2,

3
35
Kon) = K = 69" = 59" = 27
5 5 29 ,

Kws) = K(d)WB) = Eg - gg — 27

(47)

(48)

Due to the presence of the mass parameter m in the leading-order Lagrangian, a
dimension-6 operator @); = Q§6) can also mix into dimension-4 operators QZ@). Such

terms are generated from the one-loop corrections to @); in the form m2Q§4), which may
formally be viewed as a dimension-6 operator. The master formula for the beta functions
in (45) also applies in this case, once the normalization of the coupling associated with

Q§4) has been properly taken into account. In particular, from the divergent one-loop

corrections to (); proportional to dimension-4 terms,
32 ALRIQ) = - 3 mhQl Ky
we find the contribution to the beta function
Y2 %Kijcj
for i = m?, \, .5, where
(6'0)%, QY = —V2ULHj.

1
Qu=0'0,  QV=—

From the gauge-kinetic terms

Qg = xp,x

11
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the beta function of the corresponding gauge coupling gx receives the contribution

m2

ng 2 29X F

Alternatively, we can apply the equations of motion of the scalar to set Z;4 = 1.

For consistency, these have to be applied at the dimension-6 level, generating additional
contributions:

KyyiCj . (53)

1 )
~D,p;iD, o' (—6g* — 29" + 2 —

yielding the same beta functions as the previously discussed procedure in all cases.

, 1)
(39 + ¢ — %)@(&1 +Le),  (54)

5 Bosonic operators

5.1 Renormalization of the operator class X?

We begin our computationH by calculating the one-loop renormalization of the X3-ope-
rators. The four operators of this class contain the field strengths of the gauge groups
SU(3)¢ and SU(2) . To apply our algorithm, it is useful to distinguish operators with and
without dual field strength. The group structure is the same in both cases, and we only
have to work out the fluctuation matrices once. The divergences and the renormalization
are then obtained for the two cases in an analogous way.

5.1.1 G- and W-operators

We start with the operatOIﬁ

QG = fABCGﬁyGE)\Ggu : (55)

The symmetrized fluctuation matrices from (II]) are given by

CAa)(BE) = 6gszBCfCDEG5AG§ﬁ 4 6gszDCfBECG£)\G§ﬁ

+ SgszDCfBECGZ/GEygaB )

3 o c
Daarss) = 5f 7 (DaGar + DgGax + ¢ DyGrp + 67 DyGa) (56)

o BfABC(DuGuA)CgaB 7

v 6 rvo v 174 c

4For cross-checks of our calculations, the programs FeynCalc [25, 26] and Mathematica [27] proved
useful, as well as the compilation of formulas in [2§].

5Throughout this chapter, we will sometimes drop the distinction of upper and lower Lorentz indices
for notational convenience.
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Here and in the following, the matrices ag, bg, c¢g from ([III) will simply be denoted as a,
b, c¢. Since we are concerned with purely bosonic operators, no confusion can arise in the
present context. Only the non-zero entries of these matrices are quoted explicitly.

Divergences and RGEs from G

We evaluate the constituents of the master formula (I9) for the G-operator:
tr cM = —189§C§deBCGﬁVGf/\Gfu ;

1
——tr [D*, N, 0" = —2¢,C54(D,G")*(D"G,»)"

3 o
1
—tr aAM? = 6gICE fPCGLL GG,
1
— 5t @ADw [P, M| = 20,C5°GLL (DD G) (57)

1
+3tr a*[D,,, Dy, M]] = 4g2C5* fAP° G, GLGS,,
tr iUpI" = 69,029 (D,G*" )4 (D"G,\)* |
1 =52 A mA
—gtr Dl = —9¢2q,0" G, T*V2HYqr + h.c.

To obtain the first equality we used the identity fAPEfBEF fOFD — Cad /9 fABC for the
structure constants, where C4 = N. Building blocks that vanish during the calculation
are not explicitly listed. Summing the terms and using the equations of motion, we find
the divergent Lagrangian

iv CG
32712 LAV = Vi ( — 3692 f4PCG, GDLGS,
(58)
— 9¢2q,0" Gt T*V2H Yqr + h.c.) .
Using the results of Sec. Ml the contributions to the beta functions induced by these
divergences are given by

Ba 2 15¢2C¢ , Bya 2 992CcY, - (59)

Divergences and RGEs from W
The W-operator is

Qw = eabcwgVWjAWAcu . (60)

13



This operator is analogous to (B3]), and we simply adapt the fluctuations (B6]) to the case
of SU(2). For this operator, the terms in the master formula then become

tr eM = — 18¢°C5le™ Wi, W W5, + 3¢°C5 (o o) Wi, e,
1
—3tr [D*, N, b = — 2gC34(D,WH*(D"W,)*,

1
_itr aA)\M2 — 6g2cad abcwa WbAW)\H 4 6g3cad(¢T¢)Wgywauu

- 62920;dW5V(D“S0)t%(DVS0) ’
] (61)
12tr a’\[D,, [D*, M]] = 2gC§dW§V(DAD*WW)“

1
Str @Dy, [Dy, M]] = dg> e ™ Wi W, WS,

tr iCpT = 6gC54(D,WH)* (D" W)
— 6igCsY (D, W) (pt3Dyp) .
In total, we find the divergent Lagrangian
iv C abc a a apv
32m%e LY = A—VQV < — 24g% W W WS, + 156° (¢ o)W, Wt

(62)
_ 3g2g'<¢*o—“¢>W5yB“”) |

This gives rise to the contributions

29
Pw 2 59 *Cyy Bew 2 —15¢°Cy | Bewr 2 39%g'Cyw . (63)

5.1.2 G- and W—operators
The operators with dual field strength read
Qs = fAB CG G5 G (64)

To work out the fluctuation Lagrangian, it is useful to relate the different kinds of tensors
by

G, = gakéﬁﬁ - gﬁAéﬁa — "Gl (65)
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We find fluctuation matrices similar to (B6]), namely

Claase) = 3950 FOPE(GE G, + GB GE) + 3. fAPC FOPEGD GF gy
+ 347D Glag)
b?Aa)(BB = _fABC(D Gﬁ)\ + DﬁGa)\) ,

s = 3£ Cp + 9" Gup — 9"°Gua — 97 Ga — 2Gasg™)®

Note that several terms vanish due to the Bianchi identity, which implies (DMCVY“”)A

The computation simplifies in comparison with the G- and W-operators.

Divergences and RGEs from G

For (66]), the non-zero parts of the master formula are

tr eM = —18¢g2C5 fAPC G GBGS,, |
1
—tr a\M? = 6¢2C5 fAPCGA GB G,
1
—tra N[D,, [DM, M]] = —4g2C5e fA5CGA GB G,

1
5t @ [Dy, (D, M]) = 4925 FAPCGA GBGS,

1
—gtr FzD I' = —9ig?q La‘“’GA TAV2HYqr + h.c.
We sum the terms and obtain

O
32meLEY = A—C; ( — 369> fABCG GDGS,

— 9ig2qr0" G, T*V2HYqr + h.c. ) .
In this case, the divergences result in

Divergences and RGEs from w

The last operator of this class is

QW _ abcwa %% )\W)\M

15
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Again, we translate the fluctuations from (66) to SU(2) and find the divergent pieces
tr eM = — 18g°Cle™ W, WhHW, + 3g°C3% (6T 0) W, W |
1 9 —
_Ztr CI,A)\M2 — 6g2cad abcwa 1% )\W)\u + ggcad(¢T¢)W5VWaMV ’

3 ! a a \i7a v
- 5929 CZd(¢TU ¢)WMVBM ) (71)

1
—tra N [D,., [D*, M) = — 462 Cadeteye Wh WS,

1
St @Dy, [Dy, M]] = 4g°C3e b, WhWS, .

The terms combine to the divergent Lagrangian

iv CN abc a 117a apy
32mle L = F( 249%™ W, W WS, + 15¢° (¢l )W e, Wk

(72)
-3 (oo B ).
The divergences lead to the renormalization group contributions
> 2o D —15¢°C D 3¢°g'Cyy 7
5’{/{7_?9 W o 5¢’Wv__5g W o 5¢>WB 3979 O (3)

5.2 Renormalization of the operator class X?¢?

We next consider the operators of the class X2¢%. We again divide the computation into
several steps, in a similar way as in the discussion of the class X?3.

5.2.1 ¢X-operators

We first consider the operator

Qoc = (¢19)G, G (74)

16



We work out the fluctuation matrices and find (p? = p;p;)
1
C(Aa)(BB) —3gszBCGC 90 + 5ABgaBD( ) - §5AB{aa786}(902) )

Claa)i = 2ipi(D"G o)™ + 2i(D" ), G2

po

—GA GA/M/éZ] 7
(75)

1 1
Daayps) = §5A39ua56(%02> = 5077 9130a(¢%) .

b, = QZGA W Pi s

(Aa)i

uv _ SAB qofuv 2
Uaoyps) = —07 ST

In the last entry, we defined the tensor S = 2g*8ghv — gghv — g gBr which is
symmetric under the exchange of o <> § and pu < v.

Divergences and RGEs from ¢G

For the fluctuations above, the various terms of the master formula become

3,
tr eM = — <6A+12930ad+ 29 + g )(qsqu)G;‘VGAW

+ 4m2GﬁVGA“” :
_itr a /\Mz = 1292Cad(¢T¢)GﬁVGA“” 7
—2—14tr a AN N = QQSCad(CbTCb)GﬁVGA“V ’ (76)
%tr " N N" = 292Cad(¢T¢)Gf}VGA“” 7

iTPT = 4g,qro™ G, T*V2HYqr + hec.

1 _ <
—gtr TiD.I' =~ 246°CY (61 $)qrV2HYqr + h.c.

17



We observe that terms proportional to C cancel in the sum. From the remaining terms
we obtain the divergent Lagrangian

. C 3 1
3277'26‘62152/1 — ~oG < — (6)\ + 5g2 + 5g/2) (¢T¢)GﬁVGA;w + 4m2GﬁVGA‘“’

A2
(77)
— 3292(¢'¢)qLV2HYqr + 4gs€7L0'WGﬁyTA\/§HyQR + h-C->
The coefficient of operator ¢G then contributes to the beta functions
2 99 3 2
Boc 2 | 6A — g, — 59" = 597 + 27 | Csc Bas 2 329;V4Coc
(78)
m2
593 2 _898FC¢G ) ﬁqG 2 _4gsqu¢G .

Divergences and RGEs from oW
In a similar way we treat the ¢ -operator
Quw = (¢'o) Wy, W (79)
The fluctuation matrices can be adapted from (75). In the case of SU(2) they yield
7 1
tr M = — (6>\ + 5g2 + 1262034 + 5g’2) (plo) W, Wen
2 a apv a a v
+AmP W, W — 294 (T o ¢) W, B*
+99%(6'¢)0(0'9) |
1
-3t a\M? = 12g°C3(¢T )W, W + 18m*g* (¢7¢)?
— (18Xg” — 9" — 3¢%9") (6'¢)° — 9¢°(¢'9)D("9)
1
_ﬂtr a)\)\NNVNMV = 29202ad(¢T¢)W5VWauV )

1
S NN = 26°C3 (610 W, W

_1_12tr a\[Dyis [D*, M]] = 6¢%(6'¢)D(610) ,

1
3t a[Dy, [Dy, M]] = — 6g°(6'9)0(¢7¢) ,
tr iLPT = gp o™ W,0vV2HY R + h.c.
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The divergent Lagrangian then reads

. C 7, 1
B2m ey =~y ( - (6>\ +59° 45 g’2) (67 0) W, W + AW, W

— 299 (¢'0¢)Ws, B* — (18X\g® — 99" — 3¢%¢") (¢9)’

(81)
+18m*g*(¢19)” — 9g%(¢' )L V2HY YR
+ g Wi ,o"V2HY YR + h.c.) .
Finally, we find the RGE contributions
93 5 3 p 2
Bow 2 | 6A — 9 9 Tt 27 ) Cow Byg 2 99"V Cosw
Bows 2 299 Cow Byw 2 —gYCsw
(82)
2 4 2 12 m’
Bs 2 (18\g* — 99" — 3¢%¢") Cyw , By 2 =895 Cow
2
m
B 2 3692FC¢>W :
Divergences and RGEs from ¢B
The last operator of the class ¢.X is
Qon = (¢'0) B, B . (83)
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The fluctuations in (75]), converted to U(1), lead to

3 5
tr eM = — (6)\ + 592 + 59,2) (QNQS)B/WBMV + 4mQB/WBMV

— 294 (¢'a" o)W, B* + 3¢ (¢T9)0(0'9) |
—tr M = (6097 — 30%” — 3¢") (616)° — 3¢(6'6)0(010)
+ 6m2g*(¢'¢)* — 39" (' P)YV2HY YR + hoc.

(84)

— St D, 1D M) = 20%(610)0(619)

1
gtr [Dy, D, M) = = 26%(6¢)0(¢79) ,
iTPT = 2¢'4ro™ B, V2HY (YL, + Yr)¥r + hee.

1 _ & _
— gt TiD. =~ 249" (T @)L V2HYY Yripr + h.c.
Summing all the terms, we obtain
2 _ pdiv C¢B 3 T Nz 2 jnz
— 299/ (¢'0"¢)Ws, B — (6Ag”? — 3g%¢"* — 3¢") (¢79)’
(85)
+6m*g?(670)? — 129" (6'0)Y V2HY(YE + Yi)r
+ QQ’QZLJ“”BW\@HJ)(YL + Yr)r + h.c.) .

The resulting contributions to the RGEs are

9 85
Bep 2 <6>\ —39°F gg/z + 2%) Cos B 2 12¢%(Y] + Y)YV Cy

Bewn 2 299'Cyp By 2 —2¢' (Yo +Yr)VCyp ,
2 (56)
m
By 2 (6Mg” — 39%¢” — 3¢") Cyp , By 2 —SQ/FCM ;

2
m
Br 2 129'2FC¢B :

20



5.2.2 (b)?-operators

The operators of the class gb)? mix into CP-violating operators that we have not considered
yet. We therefore introduce a Lagrangian
/12

_ 9598 A A,uu a,uu eg
o= g3 C 32 iVt o

B, B" (87)

Although these operators correspond to total derivatives and play no role in perturba-
tion theory, they are related to non-perturbative effects. For the beta functions, we will
use (87) as reference.

The prototype for operator class gb)? is

Q5 =o'o G, GM . (88)

In this case, the fluctuations are given by the four non-trivial entries

= —GAGMS; s = @O
(89)
Claay = 21(D"p); Gﬁa , b( = QZGM@Z )
Divergences and RGE for qbé
From the fluctuations (89) we obtain
3 - ~
tr eM = (6>\ + 2g + g ) ((bT(b)GﬁVGA“” + 4m2GﬁVGA“” ,
(90)
tr 0PI = —32ig2(¢'¢)qLV2H Y qr + 4igsqro™ G, T*V2HYqr + h.c.
The divergent Lagrangian is then
392 2 Ediv _ C¢é 6.\ 3 2 1 2 t éA GA,uz/ 4 2@A GA;LI/
mebye = a2 \ T +§9 +§9 (9'0)G, +4m G,
(91)

— 32ig2(¢'9)qrLV2HYqr + digsqro™ Gi, T*V2HYqr + h.c.)

The first term in trcM gives a self-renormalization of @ sc» While the second term
renormalizes the QCD 6 term Ly, = 6,9°/(327> )GA G4 The two contributions in
tr iT'pI" already correspond to operators of the Warsaw basis. The term (¢'¢)g.v2HYqr

corresponds to the operators Q.o = ((;STqb)(qLuR(Z) and Qup = (¢70)(qrdr¢). The last
piece qLa‘“’GA TA\2HYqp corresponds to the operators Qug = (‘LUWTAUR)(ﬁGﬁV and
Qac = (QLU“"TAdR)CbG
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We deduce the renormalization group contributions

9 3 .

5(1)@ 2 (6)\ — 1497 — 592 - 59,2 + 2%5) O¢é ) Bag 2 32@9337110(;56‘ ’
12872 m? .

P, 2 — g2 A2 od Boc 2 —419:Y,Cy -

Divergences and RGEs from ¢W
The next operator we consider is

Quiv = (Sle) W, W
The SU(2)-analogy of (89) leads to

7, 1 — —
tr cM = — (6)\ +59°+3 ) (O o)W e, W 4 4m2 W e W

— 299’(¢T0“¢)W,‘LB‘” ,

tr i[PI = — 9ig*(¢' p) UL V2H VYR + ighro™ W,o"V2H YR + h.c.

Adding these results, we obtain

. C 7, — N
3om LI = X;V( <6>\+ 0"+ g >(¢T¢)W§VW““"+4m2W§,,W““”

— 299/ (¢l p) W5, B

— 9ig*(¢' @)L V2HY Y + ig?ZLU””Wﬁyaa\/iHwa + h.c.) .

The contributions to the beta functions are

53 3
By 2 (6)\ - ng - 59,2 + 2%) Coiv » Bys 2 9ig* VO,
Byivn 2 299 Cyip Byw 2 —igYCyp
12872 m?
ﬁ@ 2 —7FC¢W

Divergences and RGEs from qﬁg

The last operator of this class is
Q5 = (¢'¢) B, B" .
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We translate the fluctuations (89) to the case of U(1) and find

tr eM = — (6)\ + 292 + gg'2) (¢'¢) B, B* + 4m?B,,, B"
— 299/ (¢10" )W, B |
tr ilPT = — 12ig” (6'0) 0L V2HY (Y] + Yi)ir
+ 2ig' 0" B, V2HY (YL, + Yr)¢r + h.c.
These results add up to the divergent Lagrangian
392 2 Ediv _ C¢§ 6.\ 3 2 ) 2 t E B 4 2§ BHv
T T Az \ T +§9+§9 (¢'¢) B, B" +4m”B,,
— 299/ (810" 9) Wi, B — 12ig”(6' )b VZHY(Y, + Yi)tr
+ 2ig’1ﬁLa“”BW\/§Hy(YL + Yr)Ur + h.c.) .

We infer the following contributions to the RGEs

9, 85 .
By5 2 (6)\ - 5g2 +—g*+ 2%) Cops Bup 212ig°(YE+YR)VC,5

6
ﬁ¢’V[73 2 299/C¢§ ) Byp 2 —2ig' (Y1 + YR)J)C¢§ ,
12872 m?
Ber 2 T FC@ -

5.2.3 ¢W B-operator

This operator is given by

Qows = (#'0" Q)W B" = 2pt the) Wy, B
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The quadratic fluctuations are described by the matrices

Claa)(®8) = — 4g€abc(¢tit?}’3¢)3aﬁ ) G,'El:a)ﬁ = - 2(@t%t%g@)5aﬁuu ,
Cla)B = 2(DM90t%t§’%DV90)SaBMV bi\aa)ﬁ = 2ga)\(()0ttll,t?})%D5S0)
+ 2(pt3tR DD, ) SO — 29" (@t Datp)
+ ge Was(ptithe) | (102)

Clayi = 41 1RP)i0" Buo + 4i(t Ltz D" 0) Buo , ey = 4i(t5150)i B,

Cai = 4i(t] t50): D'WL, + i3 5D o)W,

boi = 4L tRe) W™,
Cij = — 4(t%t%)ijW5VBMV .
The symmetric tensor S“’** has been defined below eq. (75). We obtain the terms

5 3
tr eM = — (QA + §g2 + 4¢2C39 + 59’2) (o')W, B

— 99 (' o)W, W — 3g¢'(¢'¢) B, B™ — 6)gg'(6¢)?
+ 2494 (Dt it Do) (ot the) + 6m>gg' (¢1)?
— 399 (¢'p)UrV2HY YR + hoc.
1
— i @\ M? = (3g°0' + 399") (6'0)" — 2490/ (Dyptitr D" 0) (ot 3ee)
1 a a a
— 15t Dy, [D", M]] = 1699/ (pt1tr D, D"p + Duptitr D') (ot tRe)
1 v a a a
st @Dy, [Dy, M| = = 1699/ (ot 13D, D"o + Dyuptitp Do) (9t )
tr il = — QQI@LUWWSVUG\@H:V(YL + Yr)Tr
— 390" B, V2HY ¢ + hec.

1 _ < _
— 5t [iD,I = 1294 (¢' ) V2HY YT 1h + h.c.
(103)
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Adding these terms leads to

32m’e Ly = %( (2A + 2—219 + 59 ) (¢'o"d) Wy, B 4 6m>gg (67 ¢)”
— (6Agg’ —39°9" — 399") (¢'0)* — gd' (¢' D)Wy, W
— 399/ (¢'9) B B™ + 1299/ (¢'0) 0 V2HYY LT R (104)
— 29" Wi, o V2HY (YL, + Yr)T R

— 3900 B, N2HY TR + h.c.) .

We find eight contributions to the beta functions:

4 19
Bews 2 <2>\ + 592 + 39/2 + 2%) Cown , Buo 2 —129¢'Y17°YCohwp ,
Bow 2 99'Cown Bow 224 (Y + Yr)T*YCyhwp ,
(105)
Bep 2 399'Cown , Byp 2 397°YCohwp
3 3 ,m2
By 2 (6Xgg’ —39°9' — 399"”) Cowp , Bx 2 12gg FCW/B -
5.2.4 qSWB—operator
We are left with the last operator of class X2¢?,
Quivp = (010" Q)W B = 2(ptitho) Wy, B . (106)
The non-trivial elements of the fluctuation matrices are
Clao)vp) = —49€™ (P15 50) Bag | Dlacys = —4e* M (@t 7 tRDyp)
Claa)B = 429(th%t§2t%gp)wgﬁ ) b(aa Yi — 4Z(t%t§%gp)23)\a )
Claayi = 4i(t55D"0);i Byo | by, = di(tgthe) W (107)

Cai = 4i(t5t5, D" ), Wga ,

cij = —A(t3 %)W, B™ .
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From these, we calculate the divergences
b 2 2 vad 3 2 t _a \Ti7a v
treM = — [ 2X\ + 29 +4g°C3° + 9 (p'o"0)W,, B"
it /WVQWMV_B 10t EVBMV’
99’ (' @)W, 99'(¢'¢) B, (108)
tr iDPL = 12igq (¢ Q)P V2HYY 7305 — 3ig@ZLU‘“’BW\/§HyT3wR
— 29" Wi,o"V2HY(YL, + Yr)T 0k + hec.

Adding these results, the divergent Lagrangian becomes

i C WB 21 3 a \TI7G v
327T2€£(;%B = 12 < - (2)\ + ?92 + 59/2) (QSTO_ ¢)W/J,VBM

— 99 (8T Q)W W™ 11294 (61 )b VZHYY T g
(109)
— 399" (¢10) Bu B" — 3igibro" B V2HY Y

- QQ/QZLUuVWSVUGﬁHy(YL + YR)TsiﬂR + hC) .
The contributions to the RGEs are then

4 19 .
Baws 2 (” tao t gt 2%) Cyvn  Buo 2 —12i9g V'Vl

By 2 99Coiip Byw 2 2ig' (Y + YR) TV, (110)
ﬁ(bé 2 ng/CquB ) ﬁwB 2 3i973y0¢WB .

5.3 Renormalization of the operator class ¢ and ¢*D?

This class collects the operators that consist only of scalar fields and derivatives, namely
Qs, Qen and Qup. Using the relations in appendix [Al these operators can be expressed
in terms of the four real scalar fields ;. The basic building blocks in this representation

are ()3, (¢D,p)? and (¢t},D,p)>.

5.3.1 ¢S-operator

We begin with the simplest case

Qo= (6'6)° = 5 (oiw)® (1)
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There is only one non-trivial matrix entry:

From the master formula we find
9
tr cM = (54)\ + g + g ) (p10)> + 24m?(pT¢)? .

The divergent Lagrangian is then given by

3or2erdv — O <— (54>\ - gg +59 ) (¢'0)° + 24m2(¢T¢)2) :

A2

We obtain the two beta-function contributions

27 9
By 2 <54>\ - ?92 - 59/2 + 6%) Cs , By 2 48FC¢

5.3.2 ¢ll-operator

For the next operator, we have

Qoo = (0'9)0(d'9) = —(¢D,p)*,

dropping a total derivative. The fluctuation matrices are
cij = 2(Dup)i(DMp); — D(S02)5z'j ;
by = (D"@)ip; — pi(D"p); .

ag;, = —20i0;9" = azg" .
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From these, we find the terms of the master formula to be

tr eM = — (m + §g2 + %g@) (¢'0)D(¢"9) + 2¢*(¢' D )" (¢" D" ¢)

+ (4N +220°) (¢70)* + 4m®(¢7T9) — (8N + 2¢°) m*(¢19)?
—2m2 Y V2HY R + (2) + ¢) (0T d) U V2HY YR + hoc.

g DN = (a7 4 507) (@0(6'0) - 3061 D,0) (61 D")

— AP + g (619)? — 506 ) I VRV

1 _
— 59'2(¢Tiﬁu¢)¢7“(YLPL + YrPr)Y

LDt ) o s + e, (118)

(=)

—tr aM?® = — (64 + 2¢”) (¢'9)D(¢'9) — 8¢9”(¢' D,o)* (¢ D*0)
+ (3607 — 8Ag?) (67¢)° — (24\ — 8¢%) m2(¢10)?
+4m*(¢'¢) — 4g*(¢' )L V2HYipr + hoc.
tr ilpT = %(cb* iDEG) DL 0 (YY) ibr + 211D b VY
(D8 (VY — 29V1) 70,
+ 4ippy " Vio(rity + TR) DypYr |

—%tr 0D, = 6(¢T )b V2HYY Vb + h.c.
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The results sum up to the divergent Lagrangian

20 ,
A 3 9%(¢' D) (¢! D)

32m e Ly = Coo ( — (12>\ + 8¢% + §g’2) (o' ®)T(oe) —
# (102 - Fag?) (@07 - (322 2—?? ) mie'oy
+8m*(¢'¢) + (¢'0)rV2H (w - —ng + ny*y) U
—%ﬁ¢m@Hywr%&ii@ww“C@ﬁ%—2wyﬁ)¢R(n%
- (cb*iDHuaS)?Zw“ (%9,2YL + (2091 = (YY) 73) )
—%&5%Ww%ﬂ@f—%owm)m
+ dippy" Yip(THth + T2%) DR + h.c.) .
In total, the ¢pJ-operator contributes to the beta-functions with

, 10

3
20 2 1 2 3T
@wggg Co Bgy =2 39 Yr —27°Y'Y ) Cor
20 /
z%z@mﬂ+—mﬁ%m z%2<3%waﬁ YYh) )%m
40 2 m2 (3) 1 2
B 2 (—64)\ + gg ) Fc‘fﬂ ) 5@!} ) 69 2<ny>I Con
m
Bmz 2 8FC¢D , Boud 2 2V, VaCor
m2
By _2ch“ﬂ
(120)
5.3.3 ¢D-operator
The ¢D operator can be decomposed as
1
Q¢p = _ZQ¢D + QR - (121)
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where

Qor = —(ptpDup)* . (122)
Q40 has already been treated above. For 4z we find the fluctuations

alf = =2(th)i(the) ;9" = aig™

by = 2(pth D o) th + (the)i(thD )y — (t5,D 0)i(the);

b?aa)i = Q(SOtCLLt?I)zSO) (t;sfgo)lgAa )

q o
by = Zﬁ(t%sa)if ,

cij = 6(t5D,0)i(thD ) ; + 2(t50)i(thD*0); + 2(thD*0)i(the); |

Clac)vs) = 297 (11 E30) (0t 150) ap |

2

Cap = §(902)29a6 ;
99 a
Claa)p = 7902((ptLt§2(p)gaﬁ )

Claayi = —49(PtH Do) (13 th¢0)i — 39(ptthe) (thDaw)i — 29(0t 55 D) ()i |

3 g
Cai = =9 (PtRDaip)pi = 19'0* (t3Dap)i = T 0a(9*) (E1p): -

(123)
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The divergences derived from these matrices are
29
tr cM = — (6)\ + ?g2 + 4g'2) (¢'D,0)*(¢" D*)

WL '2) (' )O(616) — m ($16)

)\2_ )\g2+2)\gl2_g4_2g2gl2_gl4) (¢T¢)3

9+ 9’2) (¢T)0LV2HY YR + hec.

gt DA Nt == 200,07 (6 D0) — (5 + g ) (6190160

+ g (G0) — AP (G) — g (610) I VIV
E ’2<¢TzDu¢>wm“YRwR 2 (D) I Vi

12

- ﬂ92(¢TiDZ¢)@EL7”U“¢L +h.c.,

—tr aM? = — 2¢*(¢' D) * (91 D"¢p) — (—%g + 59 ) (6'9)0(o'9)

_ <)\2 AG% + A2+ leg + 3929’2 + ig"‘) (¢'0)?
+ (2N — " + ¢?) m*(¢79)* —m* (¢'9)
(8 ¢) 0 V2HY YR + hoc.
tr [P = (as*zD AP o (YY) rr, + = (¢>T2Du¢>>wmﬂy*yr‘°’w
- Z(&'Dm)m“ VYT — (YYh)) Py
— iWhry* Yo (Tt + %) Dupdir

(;9 + 59 )(CZST Q) V2HY YR + hec.

—%tr fi%af = (¢T YL V2HYY ViR + h.c.
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We reduce contractions with the Levi-Civita tensor using

1 1
€ijrt(Du)i(tr D" 0); (tre)upr = (ptrDyp)? — Z(SODMSO)Q + 1902(1)#80)2 : (125)
Combining the results in (I19) and (124) according to (I21]), we obtain
32meLy)y = %( (6A + 2y D ’2) (6" D) (6" D) +m* ) V2ZHY g
~ 24%(610)0(819) + (12— 3¢7 + 3”) m(910)
_ (12)\2 _ 3)\92 +3)\912 _ §g4 _ 5929/2 _ §gl4) (¢T¢)3
4 2 4
— (¢'¢)drV2H (Ay - ggzy + gg%f + yyfy) U (126)
o 1
— (¢"iD, ) 7" (§QI2YR - QTgyTy) Vg — Am* (¢'¢)
1
— (61D, 0)d1r" ( 9*Y + (20" = (YY) 73) VL
— 21y Y ('t + TR) DYk + h.c.) :

We find the following set of beta-function entries:

9 5 5
Bep 2 (6>\ + 9 - 69/2 + 4’Y¢>) Cop , Bgo 2 gg/zcw ;
3
Bs 2 (120 =3\g" = g") — 76" + 9'2)2) Cop Bz 2 4A Cop
m? m?
B2 (24X —6(g° — ¢)) qu : By 2 ch(w ;
(127)
By ()\y - —(g —g?)Y+ nyy) Cop , Boua 2 ~VIVaCyp
1 2 31t

By 2 39 Yr—=2°Y'Y | Cyp

1
B84 2 (gg'QYL + 20V — (Yyh) 73) Cop -

This completes our calculation for the bosonic operators.
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6 Summary of results

We summarize our results by listing all the contributions to the renormalization-group
beta functions that arise from the pure bosonic operators of dimension 6 in SMEFT. All
results are in agreement with [12-14] (see also the compilation in [18§]).

Adding the individual contributions derived in section Bl we obtain:

2 2
B2 15620, Ba2150Cs, w2 wdOw. By 2 pdCy (129
9, 3
5(15(; (6)\ — 14g5 — ig 59,2 + 2’}/(75) C¢G (129)
9 3
Bai 2 <6>\ — 1442 - 5g2 — §g/2 + 2%) Coa (130)
9 85 1 /
5(;53 6\ — 59 —+ 6 —qg° + 2”)/¢ C¢B + 3gg C¢>WB (131)
9 5,85 /
Bop 2 (6A = 59° + 59" +2% | Cyp + 399 Cip (132)
53 3
6¢W ) _159 Cw + <6)‘ - Fg - 29/2 + 2’7¢) C¢W + 99 C¢WB (133)
B, D —156°C= + (6)\ — 5—392 - §g'2 + 27, ) Cw+99C = (134)
oW = w 6 2 ¢ oW $¢WB

4 19
5¢WB 2 392g/C’W + QQg/C¢W + 2gg’C’¢B + (2)\ + §g2 + 39’2 —+ 2”Y¢) C¢WB (135)

4 19
Bywp 2 39°9'Ci + 299’ Cuw +299'Cyp + <2>\ + 3g + gg 2+ 2%) Cywp  (136)

By 2 (180g" = 9¢" = 39°") Cow + (609" = 39°¢" = 3¢") Co
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27 9

+ (6Agg’ — 399" — 399") Cowp + <54A - 50 50"+ 6%) o

20 3
+ <—4O>\2 + gkgz) Cyn + (12>\2 —3\Mg* —¢"?) - 1(92 + 9’2)2) Cop

4 5
o = (m 4 ge 4%) Con+ 39" Con
20 9, 5
Bsp 2 Eg’zC(z,D + (6)\ + _g2 . _9,2 I 4%) Con

2 6

5qG 2 9930@3}(1 + 92930@3},1 - 4gsqu¢G - 4ngyq0¢§

Byw 2 —9YCow — 19VC 5 + 29 (Y, + YR)T*YCyswp + 2ig (Y1, + YR)TgyC¢‘VVB

Byp 2 —2¢' (Y, + Yr)VCyp — 2ig' (Y, + Yr)YC,5 + 3g7°YCywp + 3i973yC¢WB

Bap 2 3292V, Coc + 32ig2V,Cy

Buo 2 992V Cow + 1267 (Y] + Y)YV Cyp + 9ig*VC 5

+12ig” (Y2 + YR)VCy 5 — 1299'Y17°VCowi — 12igg' Y17’ VC 5

10 3
+ (—2/\32 + 3923) - 6nyy) Con + ()\y — 5(92 - 9/2)37 + nyy) Cop

1,
Bgy 2 <§9 *Yr — 2733;Ty) (Csn+ Cyp) Boua 2 ViVa (2040 — Cyp)

1

34

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)



ﬁw = (1 - %<ny>I) Cyn (147)

Here (...); denotes a trace over isospin indices.
Finally, we collect the contributions from the bosonic dimension-6 operators to the
beta functions of couplings in the SM at dimension 4:

2

m? m m?
595 ) —SQSFCW ) 59 2 —SQF@M/ ) 59’ 2 _SQ/FCM (148)

6>\ D) 369 FCd)W + 12g FC(bB + 12gg A2 C¢WB + 48/\ C¢
40 m?
< 64\ + =9 ) A2 —Con+ (24X = 6(9° — ¢)) FCW (149)
m?* m?
Pz 2 455 (=2Ca +Cyp) , By 2 oL (—2C4n + Cyp) (150)
1287T m? 12872 m? 12872 m?
Bo, 2 — gs Az G Bo 2 —TPC({VV ) Bor 2 —7F0¢§ (151)

7 Conclusions

We have shown how functional methods provide an efficient way to compute UV diver-
gences to one loop in SMEFT. Using the background-field method and a super-heat-kernel
expansion, we derived a master formula for the one-loop divergences of EFTs that gen-
eralizes a known formula, originally due to 't Hooft [8]. The generalization allows for
the addition of a non-standard term of the form "D, D, to the fluctuation operator
A = D!D, +Y, treated to first order in the field-dependent quantity a*”.

As an application of this master formula we computed the complete one-loop diver-
gences from insertions of the purely bosonic dimension-6 operators in the Warsaw basis [11]
of SMEFT. We derived the corresponding RGEs, describing the RG mixing of the bosonic
dimension-6 operators into any SMEFT operator of dimension 4 or 6. Our analysis serves
as an independent confirmation of results previously obtained in the literature [12-114].

We have also discussed how the RG beta-functions (anomalous dimensions) for oper-
ator coefficients in SMEFT are related to the one-loop divergences, demonstrating that
this relation is governed by chiral dimensions. In future work, we plan to return to
the renormalization of the remaining dimension-6 operators in SMEFT using functional
methods.

35



Acknowledgements

The work of G.B. and A.C. has been supported by the DFG grant BU 1391/2-1. The
work of C.K. is supported by the Alexander von Humboldt-Foundation and by the Fermi
Research Alliance, LLC under Contract No. DE- AC02-07CH11359 with the U.S. De-
partment of Energy, Office of Science, Office of High Energy Physics.

A Details on the Higgs field representation

We express the Higgs field degrees of freedom as (j € {0, 1,2, 3})

= (¢ 0) =irlp; (152)
with 7% (a € {1, 2,3}) the generators of SU(2) and 7° = —£1. Under an electroweak gauge
transformation H — gLHgiz, with g, € SU(2);, and g belonging to the U(1),. subgroup
of SU(2)g. Since SU(2) ® SU(2) is the universal covering group of SO(4), we can express

the transformation properties of ¢; in terms of SO(4) generators. The covariant derivative
acting on the fields ¢; is given by

(Dug)i = Oupi + igWits 05 +ig' Butpijp (153)
with the SO(4) generators
thyy = +2tr (T)lrir) = =2 (e 4 676" — §%6)
. (154)
thay = =2t (7)1 797 = =2 (e — 56" 4 6767 .

Here a,b € {1,2,3} and 4,5, k,1 € {0,1,2,3}. The antisymmetric tensor €%/ is defined
such that €#/ = 0 if i = 0 or j = 0. In matrix form we can write

0-100 00—1 0 00 0-1
. il10 00 ) i oo 0 —1 5 iloo 10
tL:__ ’ tL:__ ) tL:__ >
2100 01 100 0 210-10 0
00 —10 010 0 1000
0100 0010 0 001
t}%:_g —-10 0 0 2 0 00—1 = il 0 010
2l o000 1]’ —-100 0 210 —-100
00-10 0100 -1 000
(155)
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These matrices fulfill the SU(2) algebra

[t9,15] = ie®™ 15, [t5,, 5] = ie®™ 1, ,
{tg,} = %5‘“’ : {t4. 1%} = %5‘“’ : (156)
tr 2th = 59 tr t4tl = 0% |

with [¢9,t5] = 0 and tr ¢§t% = 0. Some useful identities are

1 7 1
t‘iikt%kj = Zdabéij + §e“bctiij ; (it = 1 (030 — 001 + €ijrt)
) _ ) (157)
i
ot = Zdabéij + §e“bct§gij ; Rt REL = 1 (03051 — 01 — €ijkt) -

Here €;;; denotes the totally anti-symmetric 4-dimensional tensor. Using the real repre-
sentation for the Higgs field, the SM equations of motion read

(DG = g.qv"'Tq,
(D W) =gt} oi(DV ) + gy TP,
0uB" = ig'th;pi(D"¢); + gy (YLPL + YrPr)Y, (158)

A _ . .
(D D¥ )i = m*p; — 5(%’%’)% — V2 (7Y Pr — V() PL) 0,

ipy = V2AHYPr+ Y H'PL) .

B SM fluctuation operator

The SM fluctuation operator can be cast in the form of () by choosing the Feynman
gauge. In the electroweak sector we use a gauge fixing term that cancels the mixing
between the gauge fields and the would-be Goldstone bosons in the SM [29]. For QCD

we take the usual Yang-Mills gauge fixing [4]. The gauge-fixing Lagrangian read
o 1 A rA 1 a ra 1 2
Lot = =5/ A= S =51 (159)
with

fA = DuozA” ) f*=Dw™" — igt%ijfi%’ ) f=0.p"— ig’t%ﬁjfz“ﬂj . (160)

6A general discussion of gauge fixing in SMEFT can be found in [30]
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The covariant derivatives act on ¢, and w, in the adjoint representation. The Faddeev—
Popov Lagrangian is quadratic in the ghost fields, which do not mix with the other degrees
of freedom, so its divergences can be calculated separately:

a v 1 al a apv A 394 + 2929/2 + 9/4
g§C3dGﬁuGAu + 69202dW,uuW — §(¢T¢)2 ( :

1
32m%eL); =
e div, ghost 6 2\

(161)

Here C3d = N is the Dynkin index of SU(N) in the adjoint representation. The bosonic
building blocks N* and M in (@) are given by

gszBCGCugaﬁ
abe c
N.;LJ = g W ugAp )
0
igW ], + ig' Bith,;
ABC nC
aoc C g a a a
Y 0 2ge W, + < (0npr) 005 99/ (P1130)90n =298 Drp);
IJ — 12 ;
g
0 99 (0t} t50)gps T (Peon)gon =20/ (th Do)
0 —2g(t},D,p); —2¢'(th D) M;;

(162)

with the field indices I = (Aa, a\,0,i) and J = (Bf,bp, K, j). Here we have defined

A g g° )
M;; = ((5 + Z) (orpr) — m2> bij + <A - ) eii - 9 (the)i(the); . (163)

The fermion-boson mixing terms in () are given by

gsTBV% gSfETAfYa
FT _ (—Z) gbeprLw : 1:\ _ (—Z) - 9¢7'a7)‘PL :
gV (YLPL + YrPRr)Y gy (YL PL + YRPR)
ﬂ(ijPR—yT(Tj)TPL)@b ﬂ@(Tipr_yT(Ti)TpL)
(164)

Note that in our conventions I'; = S; FTI% with S = diag(—1,—1,—1,1) and I, J labels
for the bosonic variables. Finally, the pure fermionic terms in (7)) read

r=v2HY, R,=g.G,+¢B.Yxr,
I=V2Y'HY | L,=4.G,+gW,+gB,Yy. (165)
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Y. r are the hypercharge matrices

11 1 1

2 1
Y; = diag (6’6’_5’_5) and Y = diag (—,——,0,—1) . (166)

37 3

With these building blocks, and using the master formula in (9]), we may verify the one-
loop renormalization group equations of the SM. First, including the ghost contributions,
we find for the one-loop divergences

32m2e LN =

1 22N, — 4N . _
—5(G"C) (—ff) 6% +2Crg2qiPg — 8Crg? (GV2HY Prg + hic.)
1 44 2 1 1 22N, 1
(W W) (——= + Z(N.+ 1)f + = | 6> — ~B"B,, 42 ~) g

+D*¢'D, ¢ (—69° — 29" 4+ 2(VTV)) + m*¢' o (—g 2 - %g& — 6)\)

A
2

(¢7¢)? (—392 — g% — 12\ — %(394 +2¢°¢% + ") + §<(37T37)2>)

_ /3 , , _ / _ -
+p, (592 + 2g 2YL2) DY, + YR 2g 2Y1%Z@¢R — 8¢ 2 (wL\/iHYLyYRwR + h.c.)

O VY i P, + 205V i P — 2 (S V2H(YY')y = YY) Vr +he.)  (167)

Here (...); represents a trace over isospin indices only. N, = 3, f = 3, and Ny = 6
denote the number of colours, fermion generations, and quark flavours, respectively, and
Cr = (N? —1)/2N.. The quark fields are written as ¢ = (u, d,0,0)~.

From the divergences in (I67]) we obtain the beta functions of the SM:

11N, — 2N
By = ———5 gl = -1} (168)
22 N,+1, 1\ 4 19 ,
_ (%2 _ Yo 169
By ( 3 3 f 6) g &Y (169)
11N, 1 41
) = | 2 gB=2gB 1
By (( 5 +)f+6)g &Y (170)
3
By = =339 + g*)A + 122 + 1(394 +20%9% + g") + AAQTY) — H(VTY)?) (171)
2 9,5 3 p +
Bmz = m —59 59 +6A+2()"Y) (172)

By = = VYT — QI Y

N W
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- <§g2 + G + 6YLYR) g% = (V'Y + 6CFg§Pq) Yy (173)

with 3/4 + 6Y.Yr = diag(17/12,5/12,3/4,15/4), P, = diag(1,1,0,0), in agreement with
the results compiled in [18] (see also [7] for further details).
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