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1 Introduction

In the background field method, the one-loop effective action for a general quantum field
theory involving fermions and bosons can be written elegantly in terms of the super-
determinant of a fluctuation operator [1–3]. This formulation is particularly suitable for
the calculation of the ultraviolet (UV) one-loop divergences of the theory, as the problem
is reduced to algebraic manipulations in which gauge invariance for the background fields
is manifest during all stages of the computation [4]. These methods have been used in
the one-loop renormalization of effective theories for QCD at low energies [5, 6] and, more
recently, for effective theories of the Higgs sector [7].

When the fluctuation operator can be cast in the minimal formDµD
µ+Y , the one-loop

divergences are expressed with a compact formula (in terms of the standard expression
for the second Seeley–DeWitt coefficient [1–3]). Renormalizable gauge theories fall in this
category if an appropriate choice is made for the gauge fixing of the fluctuating fields [8].
When the fluctuation operator is non-minimal, obtaining a closed expression for the one-
loop divergences is a much more challenging task. It is not hard to find these situations.
For instance, gauge theories with a general Rξ-gauge fixing for the fluctuating fields will
give non-minimal operators. A calculation of this type has been done within the context
of chiral perturbation theory in [9].

In this work we are interested in the one-loop renormalization of the Standard Model
Effective Field Theory (SMEFT) at the level of dimension-6 operators [10, 11]. The
complete derivation of the one-loop anomalous dimension matrix in this case was ac-
complished via diagrammatic methods in [12–15]. We present here a first step in the
program of performing this calculation relying on functional methods. Using background
field method and super-heat-kernel expansion, we derive a master formula for the one-
loop UV divergences of all the operators of the type X3, φ6, φ4D2, X2φ2 from the Warsaw
basis [11]. Some of these operators have multiple derivatives and introduce non-minimal
structures in the bosonic part of the fluctuation operator. We will present the master
formula in general terms as it can be useful within other quantum field theories. The
results presented in this article have also been discussed in the thesis [16].

Using the master formula we provide a non-trivial cross-check of the results in [12–14],
finding agreement with the renormalization group equations (RGEs) when taking into
account contributions from the operators X3, φ6, φ4D2, X2φ2. Such cross-checks are rele-
vant given the phenomenological impact of renormalization group effects when analyzing
scenarios of physics beyond the Standard Model (SM) [14, 17, 18].

The article is organized as follows. In Sec. 2 we review the super-heat-kernel approach
to the one-loop effective action and derive a master formula for the UV divergences. In
Sec. 3 we provide the context for the application of the master formula to SMEFT. The
derivation of the RGEs from the one-loop divergences is discussed in Sec. 4. In Sec. 5
we give details on our calculation of divergences and RGEs for the bosonic dimension-6
operators of SMEFT. We summarize the results in Sec. 6 and conclude in Sec. 7. App. A
contains details on the real representation of the Higgs field. App. B summarizes the
building blocks of the master formula and the beta functions of the SM at dimension 4.

1



2 Master formula

2.1 One-loop effective action

We consider a quantum field theory with real boson fields (φ) and spin-1/2 fermion fields
(ψ). In the background field method, fields are expanded in terms of a background
field that satisfies the classical equations of motion and a fluctuating field: φ → φ + ξ,
ψ → ψ + η, ψ̄ → ψ̄ + η̄ [4]. We assume that the action of the theory expanded to second
order in the fluctuations can be written as

S(2) =

∫
ddx

[
−1
2
ξTAξ + η̄Bη + η̄Γξ + ξT Γ̄η

]
. (1)

We work in d-dimensional Minkowski space with d = 4 − 2ǫ, following the usual pre-
scription in dimensional regularization. The differential operators A,B and the fermionic
functions Γ, Γ̄ depend on the background fields. One-loop corrections to the effective
action are given by [1–3]

Γ1L
eff [φ, ψ, ψ̄] =

i

2
Str ln K , (2)

with

K =




A Γ̄ −ΓT
−Γ̄T 0 BT

Γ −B 0


 . (3)

Here Str stands for supertrace. For a review of supermatrix algebra see [19]. We will
distinguish supertraces with and without integration over Minkowski space StrO =∫
ddx str 〈x|O|x〉. It is useful to write the one-loop effective action in the form [3]

Γ1L
eff [φ, ψ, ψ̄] ≡

i

2
Str ln ∆ =

i

2
Str ln

(
A
√
2iΓ̄γ5Bγ5√

2iΓ Bγ5Bγ5

)
, (4)

which applies in the present case, where operators are at most bilinear in fermion fields.
When the differential operator takes the form A = (∂µ+Nµ)(∂µ+Nµ)+M and B = i/∂−F ,
it is possible to cast the fluctuation operator ∆ into the minimal form

∆ = DµDµ + Y , (5)

with Dµ = ∂µ +Xµ

Xµ =

(
Nµ

1√
2
Γ̄γµ

0 i
2
(Fγµ − γµF5)

)
,

Y =


 M − 1√

2
Γ̄(
←
/∂ − /N + i

2
γµFγ

µ)√
2iΓ 1

4
(FγµFγ

µ + γµF5γ
µF5 − γµF5Fγ

µ)− i
2
∂µ(Fγ

µ + γµF5)


 . (6)
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Here we have defined F5 = γ5Fγ5. Furthermore, we will assume that F can be decomposed
as

F = rPR + lPL +Rµγ
µPR + Lµγ

µPL , (7)

with PL,R the chiral projectors.

2.2 Minimal operator

For the operator (5), the one-loop divergences at the level of the Lagrangian (Γ1L
eff =∫

ddx L1) are given by the usual formula [1–3]

L1
div(∆) =

1

16π2(4− d)str
(

1

12
XµνX

µν +
1

2
Y 2

)
, (8)

with Xµν = [Dµ, Dν ] = ∂µXν − ∂νXµ + [Xµ, Xν ]. Eq. (8) can be developed further by
evaluating the supertrace and by performing the trace over Dirac indices. This leads to
the well known ’t Hooft formula [8]

L1
div(∆) =

1

16π2(4− d)tr
(

1

12
NµνN

µν +
1

2
M2 + iΓ̄ /DΓ

+ 2(Dµl)(D
µr)− 2(lr)2 − 1

3
RµνR

µν − 1

3
LµνL

µν

)
. (9)

Here we use the definitions

DµΓ ≡ ∂µΓ +NµΓ−
i

2
FγµΓ , Nµν ≡ ∂µNν − ∂νNµ + [Nµ, Nν ] ,

Dµr ≡ ∂µr + iLµr − irRµ , Rµν ≡ ∂µRν − ∂νRµ + i[Rµ, Rν ] ,

Dµl ≡ ∂µl + iRµl − ilLµ , Lµν ≡ ∂µLν − ∂νLµ + i[Lµ, Lν ] .

(10)

2.3 Extension for non-minimal operator

We will consider a fluctuation operator that receives the following corrections in the
bosonic block of the supermatrix

∆′ = ∆+

(
cB + 2bµBDµ + aµνB DµDν 0

0 0

)
. (11)

The operator ∆ is assumed to be written in the minimal form (5). Here Dµ = ∂µ + Nµ

is the covariant derivative in the bosonic sector, cB and aµνB = aνµB are symmetric in the
field indices while bµB is antisymmetric. The terms cB and bµB can be absorbed into M
and Nµ of ∆, however it will be useful to keep these corrections separate. The correction

3



aµνB DµDν introduces a non-minimal structure in ∆′, similar to what occurs in a gauge
theory with a generic Rξ gauge fixing term. We treat the corrections (cB, b

µ
B, a

µν
B ) as first-

order perturbations of ∆, which is sufficient for the one-loop renormalization of SMEFT
at the level of dimension-6 operators. This feature simplifies considerably the calculation.

In order to derive the one-loop UV divergences using the super-heat-kernel method,
it is convenient to write ∆′ in the form

∆′ = ∆+ c+ 2bµDµ + aµνDµDν , (12)

where now the covariant derivates are acting in superspace Dµ = ∂µ+Xµ, with Xµ defined
in (6). The new terms (c, bµ, aµν) are given by

c =

(
cB
√
2Γ̄/bB − 1√

2
(∂µΓ̄)a

µν
B γν +

1√
2
Γ̄Nµa

µν
B γν +

1√
2
Γ̄aµνB γµX22ν

0 0

)
,

bµ =

(
bµB − 1√

2
Γ̄aµνB γν

0 0

)
,

aµν =

(
aµνB 0

0 0

)
.

(13)

Here a, b and c are supermatrices and X22ν is the lower right entry of Xν .
The one-loop UV divergences associated with c and bµ can be obtained from Eq. (8)

after a redefinition of Y and Xµ, keeping terms linear in c and bµ. We focus in the
following on the corrections due to aµν . To evaluate the divergences from aµν we use the
integral representation (dropping an irrelevant constant)

Str ln ∆′ = −
∫
ddx str

∫ ∞

0

dτ

τ
〈x|e−τ∆′|x〉 , (14)

and implement the heat-kernel expansion [20, 21]

〈x|e−τ∆′ |x〉 ≡ i

(4πτ)
d
2

∞∑

n=0

an(x, x)τ
n . (15)

The one-loop UV divergences are contained in the hermitean part of the second Seeley–
DeWitt coefficient [21]

L1
div(∆

′) =
1

2(4π)2(4− d)str (a2(x, x) + a2(x, x)
†) . (16)

The latter can be obtained from (14) by going to momentum space and extracting the
coefficient of τ 2:

a2(x, x) = −i
∫
ddp

π
d
2

ep
2

e−(τ∆+
√
τ2ipµDµ+τaµνDµDν+

√
τaµν2ipµDν−aµνpµpν)

∣∣∣∣
τ2

. (17)
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Rearranging terms in the final result, and including the contributions from b and c, we
get the following one-loop UV divergences from ∆′

L1
div(∆

′) = L1
div(∆) +

1

2

1

(4π)2(4− d)str
(
cY +

1

3
Xµν [D

µ, bν ]− Y [Dµ, b
µ]

− 1

24
aλλXµνX

µν +
1

6
aµνXµλX

λ
ν +

1

6
Xµλ[Dν , [D

λ, aµν ]]

− 1

4
aλλY

2 +
1

3
Y [Dµ, [Dν , a

µν ]]− 1

12
Y [Dµ, [D

µ, aλλ]] + h.c.

)
.

(18)

The term L1
div(∆) represents the divergences associated with the minimal operator ∆ in

(12), these are given by (8). The remaining terms contain the corrections introduced by
(cB, b

µ
B, a

µν
B ).

We can simplify the result by evaluating the supertrace and arrive at a master formula
for δL1

div ≡ L1
div(∆

′)− L1
div(∆):

δL1
div =

1

(4π)2(4− d)tr
(
cBM +

1

3
Nµν [D

µ, bνB] + iΓ̄/bBΓ−
1

6
Γ̄i
↔
DaBΓ

− 1

24
aλBλNµνN

µν +
1

6
aµνB NµλN

λ
ν +

1

6
Nµλ[Dν , [D

λ, aµνB ]]

− 1

4
aλBλM

2 − 1

12
M [Dµ, [D

µ, aλBλ]] +
1

3
M [Dµ, [Dν , a

µν
B ]]

)
.

(19)

Here we use Nµν = ∂µNν − ∂νNµ + [Nµ, Nν ] and

Γ̄i
↔
DaBΓ ≡

(
iΓ̄aµνB γ

λ(∂ρ +Nρ)Γ− iΓ̄γλ(
←
∂ρ −Nρ)aµνB Γ

)
(gµνgλρ − gµλgνρ)

+
1

2
Γ̄aµνB γ

λFγρΓ(gµνgλρ + 2gµλgνρ) .

(20)

To derive (19) we assumed that aµνB and Nµ have a block diagonal structure with respect
to the bosonic variables from spin-0 and spin-1 fields.

In the particular case aµνB = aBg
µν , the master formula (19) simplifies considerably

δL1
div =

1

(4π)2(4− d)tr
(
cBM +

1

3
Nµν [D

µ, bνB] + iΓ̄/bBΓ

− aBM2 − 1

2
Γ̄aBi /DΓ +

1

2
Γ̄i
←
/DaBΓ

)
,

(21)

with the covariant derivatives on fermions Γ, Γ̄

i /D = i/∂ + i /N +
1

2
γµFγ

µ and i
←
/D = i

←
/∂ − i /N − 1

2
γµFγ

µ . (22)
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3 Application to SMEFT

Assuming that the SM degrees of freedom are the only ones present at energies below
a certain high-energy scale Λ ≫ MW where new dynamics enters, we can parametrize
physics at low energies (E ≪ Λ) by the effective Lagrangian

L = LSM +
1

Λ

∑

k

C
(5)
k Q

(5)
k +

1

Λ2

∑

k

C
(6)
k Q

(6)
k +O

(
1

Λ3

)
. (23)

Here LSM is the renormalizable SM Lagrangian, Q
(5,6)
k are higher-dimensional operators

of dimensions 5 and 6, C
(5,6)
k are their Wilson coefficients. At dimension 5 there is only

the so-called Weinberg operator. A non-redundant basis of dimension-6 operators was
defined in [11].

We denote the SU(3) and SU(2) generators by TA = 1
2
λA and τa = 1

2
σa, where λA and

σa are the Gell-Mann and Pauli matrices, respectively. The Higgs field is parametrized in
terms of 4 real components ϕi:

H ≡ 1√
2

(
φ̃, φ

)
= iτ iϕi . (24)

Here φ is the Higgs doublet and φ̃ = iσ2φ
∗ its conjugate, i ∈ {0, 1, 2, 3} and we defined τ 0 =

− i
2
1. Using the real representation for the Higgs field we can write the SM Lagrangian

as (our sign conventions for covariant derivatives and field strengths coincide with [11])

LSM =− 1

4
GA
µνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν

+
1

2
(Dµϕ)i(D

µϕ)i +
m2

2
ϕiϕi −

λ

8
(ϕiϕi)

2

+ ψ̄i /Dψ −
(
ψ̄
√
2HYPRψ + h.c.

)
.

(25)

Fermions have been collected into ψ = (u, d, ν, e)T , where every component is a Dirac
spinor. The Yukawa matrices are grouped into Y = diag(Yu,Yd,Yν,Ye). We will take
Yν = 0 in the following. More details about the real representation of the Higgs field used
here are provided in App. A. We expand the fields around their background component
as

GAµ → GAµ + αAµ , ϕi → ϕi + ξi ,

W aµ →W aµ + ωaµ , ψ → ψ + η ,

Bµ → Bµ + βµ , ψ̄ → ψ̄ + η̄ .

(26)

The operator ∆ in (12) will contain the fluctuations of the SM Lagrangian while the cor-
rections generated by the dimension-6 SMEFT operators will be encoded in (cB, b

µ
B, a

µν
B ).
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Table 1: Dimension-6 bosonic operators of the SMEFT from the Warsaw basis [11]. Here
X̃µν ≡ 1/2 ǫµνρσX

ρσ, ǫ0123 = +1.

X3 X2φ2

QG fABCGAν
µ GBρ

ν GCµ
ρ QφG φ†φGA

µνG
Aµν

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ QφB φ†φBµνB

µν

QW ǫabcW aν
µ W bρ

ν W
cµ
ρ QφW φ†φW a

µνW
aµν

Q
W̃

ǫabcW̃ aν
µ W bρ

ν W
cµ
ρ QφWB φ†σaφW a

µνB
µν

φ6 QφG̃ φ†φG̃A
µνG

Aµν

Qφ

(
φ†φ
)3

QφB̃ φ†φB̃µνB
µν

φ4D2 Q
φW̃

φ†φW̃ a
µνW

aµν

Qφ�

(
φ†φ
)
�
(
φ†φ
)

Q
φW̃B

φ†σaφW̃ a
µνB

µν

QφD

(
φ†Dµφ

)∗ (
φ†Dµφ

)

We group the bosonic fluctuations into (αAα, ωaλ, βσ, ξi). To write the bosonic kinetic
term as in (1) we redefine the gauge field fluctuations (αAµ, ωaµ, βµ) → i(αAµ, ωaµ, βµ).
The SM fluctuation operator written in minimal form is given in App. B.

The master formula (19) can be applied to all the SMEFT operators of the type [11]

X3, φ6, φ4D2, X2φ2 . (27)

See Table 1 for a detailed list. These give rise to a fluctuation operator that can be
cast in the form (11). Using (19) we calculate the one-loop UV divergences generated
by these operators, and evaluate the corresponding contributions to the renormalization
group equations.

Under renormalization the operators in Table 1 not only mix among each other, but
also into dimension-6 operators of the classes ψ2φ3, ψ2Xφ and ψ2φ2D, in the notation of
[11]. Using the representation ψ for the SM fermions, introduced above, these operators
can be expressed in a compact form. The operators in the class ψ2φ3 can be combined
into a single term:

(φ†φ)ψ̄L
√
2HCψφψR + h.c. , (28)

where, as in the case of the Yukawa matrices, the Wilson coefficients have been collected
into a matrix in flavour space as Cψφ = diag(Cuφ, Cdφ, 0, Ceφ). The same scheme can be
applied to the ψ2Xφ operators. The resulting structures and flavour matrices are given

7



by

ψ̄σµνGA
µνT

A
√
2HCψGψ , CψG = diag (CuG, CdG, 0, 0) ,

ψ̄σµνW a
µνσ

a
√
2HCψWψ , CψW = diag (CuW , CdW , 0, CeW ) ,

ψ̄σµνBµν

√
2HCψBψ , CψB = diag (CuB, CdB, 0, CeB) .

(29)

Finally, using the real representation of the covariant derivatives in appendix A, we can
reduce the operators of the remaining class ψ2φ2D to the form

−2iψ̄RγµCφψ2ϕ(τ 1t1R + τ 2t2R)DµϕψR , Cφψ2 = diag(Cφud, Cφdu, 0, 0) ,

2i(ϕt3RDµϕ)ψ̄Rγ
µCφψψR , Cφψ = diag(Cφu, Cφd, 0, Cφe) ,

2i(ϕt3RDµϕ)ψ̄Lγ
µC

(1)
φψψL , C

(1)
φψ = diag(C

(1)
φq , C

(1)
φl ) ,

2i(ϕtaLDµϕ)ψ̄Lσ
aγµC

(3)
φψψL , C

(3)
φψ = diag(C

(3)
φq , C

(3)
φl ) .

(30)

The coefficient matrices are chosen such that the corresponding operators are hermitian.
For this, we had to generalize the first operator that contains φud.

In the following sections we discuss the renormalization group equations for SMEFT
and present the calculation of the one-loop UV divergences for the bosonic dimension-6
operators. We find agreement with the renormalization group equations presented in [12–
14].1

4 Renormalization group equations

We next present a concise derivation of the one-loop renormalization group equations of
dimension-6 operators in SMEFT. The results will allow us to convert the UV divergences
of the one-loop corrections into the beta functions for the operator coefficients.

The coefficients and operators of the dimension-6 Lagrangian in (23) are renormalized
as

C
(0)
i Q

(0)
i = ZijCjZ

(i)
F Qi = CiQi +Qi(Z

(i)
F Zij − δij)Cj . (31)

The factor Z
(i)
F collects the field-renormalization constants coming from the fields of the

operator Qi. A summation over i and j is understood. It will be convenient to define

Zij = δij +
Kij

32π2ǫ
, Z

(i)
F = 1 +

K(i)

32π2ǫ
(32)

1We take into account the errata in [22].
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for the one-loop Z factors in minimal subtraction. Eq. (31) then implies for the coun-
terterm Lagrangian

32π2ǫ LCT = Qi

(
K(i)δij +Kij

)
Cj

1

Λ2
≡ −32π2ǫ δL1

div , (33)

which is identical, up to a sign, to the divergent part of the one-loop effective Lagrangian
δL1

div, to be computed with the methods discussed in section 2.
In order to relate the coefficients Kij in (33) to the renormalization-group evolution

of the Cj, we note that

C
(0)
i = µn(i)ǫZijCj . (34)

Here the scale µ makes explicit the mass dimension n(i)ǫ of the unrenormalized coefficient

C
(0)
i . Zij and Cj are dimensionless. Differentiating (34) with respect to t ≡ lnµ, using

(32) and working to one-loop accuracy, we find for the beta functions of the operator
coefficients

βi ≡ 16π2dCi
dt

= − 1

2ǫ

dKij

dt
Cj +

n(j) − n(i)

2
KijCj . (35)

This expression can be simplified2 using the concept of chiral dimensions, which keeps
track of the loop order of terms in a quantum field theory [24].3 Consider an operator con-
taining a number of field-strength factors Xµν , scalar fields φ, fermions ψ and derivatives
D, schematically

Q = XNX
µν φ

NφDNDψNF . (36)

In 4− 2ǫ space-time dimensions this operator has canonical dimension

d(Q) = NX(2− ǫ) +Nφ(1− ǫ) +ND +NF

(
3

2
− ǫ
)

= 2NX +Nφ +ND +
3

2
NF − (NX +Nφ +NF )ǫ . (37)

In 4 space-time dimensions the canonical dimension is d0(Q) = 2NX +Nφ+ND+3/2NF ,
constrained to be d0(Q) = 6 for the case at hand. Since the Lagrangian term C(0)Q(0)/Λ2

has canonical dimension 4− 2ǫ, it follows that

d(C(0)) = (NX +Nφ +NF − 2)ǫ (38)

for the coefficient C(0) of this operator. Using the chiral dimension of Q in (36),

χ(Q) = NX +ND +
1

2
NF , (39)

we have d(C(0)) = (d0(Q)− χ(Q)− 2)ǫ = (4− χ(Q))ǫ and therefore

n(i) = 4− χi (40)

2An equivalent discussion in terms of NDA weights has been given in [23].
3The chiral dimension is 0 for a boson field, and 1 for a weak coupling, a derivative, or a fermion

bilinear. The loop order L of a term is related to its total chiral dimension χ through χ = 2L+ 2 [24].
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for the parameter n(i) defined in (34). The canonical dimension of the coefficient C(0)

can thus be expressed through the chiral dimension χi of the corresponding dimension-6
operator.

Inspecting (33), we note that the one-loop corrections of an operator Qj yield the
divergent terms

∆Ldiv[Qj ] = −
1

32π2ǫ

∑

i

Qi

(
K(i) δij +Kij

) Cj
Λ2

. (41)

The chiral dimension of this expression equals the chiral dimension of Qj increased by 2,
since it results from the insertion of Qj into one-loop diagrams. Therefore

χi + χ(K(i) δij +Kij) = χj + 2 . (42)

It follows that
χ(Kij) = χj − χi + 2 . (43)

For i = j we also have χ(K(j)) = χ(Kjj) = 2.
Since, by definition, fields and derivatives belong to the operators Qi, the chiral di-

mension of Kij can only arise from weak couplings. Eq. (43) implies that the coefficient
Kij is proportional to χj − χi + 2 weak couplings κ, which may be gauge or Yukawa

couplings, or
√
λ. Each of those fulfills dκ/d ln t = −ǫκ +O(1/16π2). We then conclude

that
d

dt
Kij = (χi − χj − 2)ǫKij . (44)

Inserting (40) and (44) into (35), we finally obtain

βi = KijCj . (45)

This means that the contributions to the beta function for coefficient Ci from the insertions
of operator Qj can be simply read off from the term Kij in the counterterm Lagrangian.
For the mixing among coefficients of dimension-6 operators with i 6= j, (45) can be applied
immediately. In the case of i = j, (33) shows that K(i) has to be subtracted from the
coefficient of the divergence (K(i) +Kii) to obtain the beta function entry Kii. The K(i)

are determined by the renormalization constants of the fields composing the operator Qi.
The renormalization factors needed for the bosonic operators are

ZfW = 1 +
g2

32π2ǫ

(
44

3
− 2

3
(Nc + 1)f − 1

3

)
= 1 +

g2

32π2ǫ

19

3

ZfB = 1− g′2

32π2ǫ

((
22Nc

27
+ 2

)
f +

1

3

)
= 1− g′2

32π2ǫ

41

3

ZfG = 1 +
g2s

32π2ǫ

22Nc − 4Nf

3
= 1 +

g2s
32π2ǫ

14

Zfφ = 1 +
6g2 + 2g′2 − 2γφ

32π2ǫ
(46)
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where Nc = 3, Nf = 6 and f = 3 denotes the number of colours, quark flavours and
fermion families, respectively, and

γφ = Nc tr(Y†
uYu + Y†

dYd) + tr(Y†
eYe) ≡ 〈Y†Y〉 . (47)

Using (46), we find the coefficients K(i) for the bosonic operators in Table 1:

K(G) = K(G̃) = 21g2s , K(W ) = K(W̃ ) =
19

2
g2

K(φ) = 6(3g2 + g′2 − γφ) , K(φ�) = K(φD) = 4(3g2 + g′2 − γφ)

K(φG) = K(φG̃) = 14g2s + 6g2 + 2g′2 − 2γφ

K(φW ) = K(φW̃ ) =
37

3
g2 + 2g′2 − 2γφ

K(φB) = K(φB̃) = 6g2 − 35

3
g′2 − 2γφ

K(φWB) = K(φW̃B) =
55

6
g2 − 29

6
g′2 − 2γφ . (48)

Due to the presence of the mass parameter m in the leading-order Lagrangian, a
dimension-6 operator Qj ≡ Q

(6)
j can also mix into dimension-4 operators Q

(4)
i . Such

terms are generated from the one-loop corrections to Qj in the form m2Q
(4)
i , which may

formally be viewed as a dimension-6 operator. The master formula for the beta functions
in (45) also applies in this case, once the normalization of the coupling associated with

Q
(4)
i has been properly taken into account. In particular, from the divergent one-loop

corrections to Qj proportional to dimension-4 terms,

32π2ǫ∆L(4)
div[Qj ] = −

∑

i

m2Q
(4)
i Kij

Cj
Λ2

, (49)

we find the contribution to the beta function

β
(4)
i ⊇

m2

Λ2
KijCj (50)

for i = m2, λ, Yrs, where

Q
(4)

m2 = φ†φ, Q
(4)
λ = −1

2
(φ†φ)2, Q

(4)
Yrs

= −
√
2ψ̄rLHψ

s
R . (51)

From the gauge-kinetic terms

Q(4)
gX

= Xa
µνX

aµν (52)
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the beta function of the corresponding gauge coupling gX receives the contribution

βgX ⊇ 2gX
m2

Λ2
KgXjCj . (53)

Alternatively, we can apply the equations of motion of the scalar to set Zfφ = 1.
For consistency, these have to be applied at the dimension-6 level, generating additional
contributions:

1

2
DµϕiDµϕ

i(−6g2 − 2g′2 + 2γφ)
1

16π2ǫ
→ 1

16π2ǫ
(3g2 + g′2 − γφ)

δ

δϕ
(L4 + L6), (54)

yielding the same beta functions as the previously discussed procedure in all cases.

5 Bosonic operators

5.1 Renormalization of the operator class X3

We begin our computation4 by calculating the one-loop renormalization of the X3-ope-
rators. The four operators of this class contain the field strengths of the gauge groups
SU(3)C and SU(2)L. To apply our algorithm, it is useful to distinguish operators with and
without dual field strength. The group structure is the same in both cases, and we only
have to work out the fluctuation matrices once. The divergences and the renormalization
are then obtained for the two cases in an analogous way.

5.1.1 G- and W -operators

We start with the operator5

QG = fABCGA
µνG

B
νλG

C
λµ . (55)

The symmetrized fluctuation matrices from (11) are given by

c(Aα)(Bβ) = 6gsf
ABCfCDEGD

αλG
E
λβ + 6gsf

ADCfBECGD
αλG

E
λβ

+ 3gsf
ADCfBECGD

µνG
E
µνgαβ ,

bλ(Aα)(Bβ) =
3

2
fABC

(
DαGβλ +DβGαλ + gαλDµGµβ + gβλDµGµα

)C

− 3fABC(DµG
µλ)Cgαβ ,

aµν(Aα)(Bβ) = 3fABC
(
gµαGνβ + gναGµβ − gµβGνα − gνβGµα − 2Gαβg

µν
)C

.

(56)

4For cross-checks of our calculations, the programs FeynCalc [25, 26] and Mathematica [27] proved
useful, as well as the compilation of formulas in [28].

5Throughout this chapter, we will sometimes drop the distinction of upper and lower Lorentz indices
for notational convenience.
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Here and in the following, the matrices aB, bB, cB from (11) will simply be denoted as a,
b, c. Since we are concerned with purely bosonic operators, no confusion can arise in the
present context. Only the non-zero entries of these matrices are quoted explicitly.

Divergences and RGEs from G

We evaluate the constituents of the master formula (19) for the G-operator:

tr cM = −18g2sCad
3 f

ABCGA
µνG

B
νλG

C
λµ ,

−1
3
tr [Dµ, Nµν ]b

ν = −2gsCad
3 (DµG

µλ)A(DνGνλ)
A ,

−1
4
tr aλλM

2 = 6g2sC
ad
3 f

ABCGA
µνG

B
νλG

C
λµ ,

− 1

12
tr aλλ[Dµ, [D

µ,M ]] = 2gsC
ad
3 G

A
µν(DλD

λGµν)A ,

+
1

3
tr aµν [Dµ, [Dν ,M ]] = 4g2sC

ad
3 f

ABCGA
µνG

B
νλG

C
λµ ,

tr iΓ̄/bΓ = 6gsC
ad
3 (DµG

µλ)A(DνGνλ)
A ,

−1
6
tr Γ̄i

↔
DaΓ = −9g2s q̄LσµνGA

µνT
A
√
2HYqR + h.c.

(57)

To obtain the first equality we used the identity fADEfBEFfCFD = Cad
3 /2f

ABC for the
structure constants, where Cad

N = N . Building blocks that vanish during the calculation
are not explicitly listed. Summing the terms and using the equations of motion, we find
the divergent Lagrangian

32π2ǫLdiv
G =

CG
Λ2

(
− 36g2sf

ABCGA
µνG

B
νλG

C
λµ

− 9g2s q̄Lσ
µνGA

µνT
A
√
2HYqR + h.c.

)
.

(58)

Using the results of Sec. 4, the contributions to the beta functions induced by these
divergences are given by

βG ⊇ 15g2sCG , βqG ⊇ 9g2sCGYq . (59)

Divergences and RGEs from W

The W -operator is

QW = ǫabcW a
µνW

b
νλW

c
λµ . (60)
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This operator is analogous to (55), and we simply adapt the fluctuations (56) to the case
of SU(2). For this operator, the terms in the master formula then become

tr cM =− 18g2Cad
2 ǫ

abcW a
µνW

b
νλW

c
λµ + 3g3Cad

2 (φ†φ)W a
µνW

aµν ,

−1
3
tr [Dµ, Nµν ]b

λ =− 2gCad
2 (DµW

µλ)a(DνWνλ)
a ,

−1
4
tr aλλM

2 = 6g2Cad
2 ǫ

abcW a
µνW

b
νλW

c
λµ + 6g3Cad

2 (φ†φ)W a
µνW

aµν

− 6ig2Cad
2 W

a
µν(D

µϕ)taL(D
νϕ) ,

− 1

12
tr aλλ[Dµ, [D

µ,M ]] = 2gCad
2 W

a
µν(DλD

λW µν)a ,

1

3
tr aµν [Dµ, [Dν ,M ]] = 4g2Cad

2 ǫ
abcW a

µνW
b
νλW

c
λµ ,

tr iΓ̄/bΓ = 6gCad
2 (DµW

µλ)a(DνWνλ)
a

− 6igCad
2 (DµW

µν)a(ϕtaLDνϕ) .

(61)

In total, we find the divergent Lagrangian

32π2ǫLdiv
W =

CW
Λ2

(
− 24g2ǫabcW a

µνW
b
νλW

c
λµ + 15g3(φ†φ)W a

µνW
aµν

− 3g2g′(φ†σaφ)W a
µνB

µν

)
.

(62)

This gives rise to the contributions

βW ⊇
29

2
g2CW , βφW ⊇ −15g3CW , βφWB ⊇ 3g2g′CW . (63)

5.1.2 G̃- and W̃ -operators

The operators with dual field strength read

QG̃ = fABCG̃A
µνG

B
νλG

C
λµ . (64)

To work out the fluctuation Lagrangian, it is useful to relate the different kinds of tensors
by

ǫαβµνGA
νλ = gαλG̃A

µβ − gβλG̃A
µα − gµλG̃A

αβ . (65)
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We find fluctuation matrices similar to (56), namely

c(Aα)(Bβ) = 3gsf
ADCfCBE(G̃D

αµG
E
µβ +GD

αµG̃
E
µβ) + 3gsf

ADCfCBEG̃D
µνG

Eµνgαβ

+ 3fABC(DµD
µG̃αβ)

C ,

bλ(Aα)(Bβ) =
3

2
fABC(DαG̃βλ +DβG̃αλ)

C ,

aµν(Aα)(Bβ) = 3fABC(gµαG̃νβ + gναG̃µβ − gµβG̃να − gνβG̃µα − 2G̃αβg
µν)C .

(66)

Note that several terms vanish due to the Bianchi identity, which implies (DµG̃
µν)A = 0.

The computation simplifies in comparison with the G- and W -operators.

Divergences and RGEs from G̃

For (66), the non-zero parts of the master formula are

tr cM = −18g2sCad
3 f

ABCG̃A
µνG

B
νλG

C
λµ ,

−1
4
tr aλλM

2 = 6g2sC
ad
3 f

ABCG̃A
µνG

B
νλG

C
λµ ,

− 1

12
tr aλλ[Dµ, [D

µ,M ]] = −4g2sCad
3 f

ABCG̃A
µνG

B
νλG

C
λµ ,

1

3
tr aµν [Dµ, [Dν ,M ]] = 4g2sC

ad
3 f

ABCG̃A
µνG

B
νλG

C
λµ ,

−1
6
tr Γ̄i

↔
DaΓ = −9ig2s q̄LσµνGA

µνT
A
√
2HYqR + h.c.

(67)

We sum the terms and obtain

32π2ǫLdiv
G̃

=
CG̃
Λ2

(
− 36g2sf

ABCG̃A
µνG

B
νλG

C
λµ

− 9ig2s q̄Lσ
µνGA

µνT
A
√
2HYqR + h.c.

)
.

(68)

In this case, the divergences result in

β
G̃
⊇ 15g2sCG̃ , βqG ⊇ 9ig2sCG̃Yq . (69)

Divergences and RGEs from W̃

The last operator of this class is

Q
W̃

= ǫabcW̃ a
µνW

b
νλW

c
λµ . (70)
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Again, we translate the fluctuations from (66) to SU(2) and find the divergent pieces

tr cM =− 18g2Cad
2 ǫ

abcW̃ a
µνW

b
νλW

c
λµ + 3g3Cad

2 (φ†φ)W̃ a
µνW

µν ,

−1
4
tr aλλM

2 = 6g2Cad
2 ǫ

abcW̃ a
µνW

b
νλW

c
λµ +

9

2
g3Cad

2 (φ†φ)W̃ a
µνW

aµν ,

− 3

2
g2g′Cad

2 (φ†σaφ)W̃ a
µνB

µν ,

− 1

12
tr aλλ[Dµ, [D

µ,M ]] =− 4g2Cad
2 ǫ

abcW̃ a
µνW

b
νλW

c
λµ ,

1

3
tr aµν [Dµ, [Dν ,M ]] = 4g2Cad

2 ǫ
abcW̃ a

µνW
b
νλW

c
λµ .

(71)

The terms combine to the divergent Lagrangian

32π2ǫLdiv
W̃

=
C
W̃

Λ2

(
− 24g2ǫabcW̃ a

µνW
b
νλW

c
λµ + 15g3(φ†φ)W̃ a

µνW
aµν

− 3g2g′(φ†σaφ)W̃ a
µνB

µν

)
.

(72)

The divergences lead to the renormalization group contributions

β
W̃
⊇ 29

2
g2C

W̃
, β

φW̃
⊇ −15g3C

W̃
, β

φW̃B
⊇ 3g2g′C

W̃
. (73)

5.2 Renormalization of the operator class X2φ2

We next consider the operators of the class X2φ2. We again divide the computation into
several steps, in a similar way as in the discussion of the class X3.

5.2.1 φX-operators

We first consider the operator

QφG = (φ†φ)GA
µνG

Aµν . (74)
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We work out the fluctuation matrices and find (ϕ2 ≡ ϕiϕi)

c(Aα)(Bβ) = −3gsfABCGC
αβϕ

2 + δABgαβ�(ϕ2)− 1

2
δAB{∂α, ∂β}(ϕ2) ,

c(Aα)i = 2iϕi(D
µGµα)

A + 2i(Dµϕ)iG
A
µα ,

cij = −GA
µνG

Aµνδij ,

bµ(Aα)(Bβ) =
1

2
δABgµα∂β(ϕ

2)− 1

2
δABgµβ∂α(ϕ

2) ,

bµ(Aα)i = 2iGA
µαϕi ,

aµν(Aα)(Bβ) = −δABSαβµνϕ2 .

(75)

In the last entry, we defined the tensor Sαβµν ≡ 2gαβgµν − gαµgβν − gανgβµ, which is
symmetric under the exchange of α↔ β and µ↔ ν.

Divergences and RGEs from φG

For the fluctuations above, the various terms of the master formula become

tr cM =−
(
6λ+ 12g2sC

ad
3 +

3

2
g2 +

1

2
g′2
)
(φ†φ)GA

µνG
Aµν

+ 4m2GA
µνG

Aµν ,

−1
4
tr aλλM

2 = 12g2sC
ad
3 (φ†φ)GA

µνG
Aµν ,

− 1

24
tr aλλNµνN

µν =− 2g2sC
ad
3 (φ†φ)GA

µνG
Aµν ,

1

6
tr aµνNµλN

νλ = 2g2sC
ad
3 (φ†φ)GA

µνG
Aµν ,

iΓ̄/bΓ = 4gsq̄Lσ
µνGA

µνT
A
√
2HYqR + h.c. ,

−1
6
tr Γ̄i

↔
DaΓ =− 24g2sC

F
3 (φ

†φ)q̄L
√
2HYqR + h.c.

(76)
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We observe that terms proportional to Cad
3 cancel in the sum. From the remaining terms

we obtain the divergent Lagrangian

32π2ǫLdiv
φG =

CφG
Λ2

(
−
(
6λ+

3

2
g2 +

1

2
g′2
)
(φ†φ)GA

µνG
Aµν + 4m2GA

µνG
Aµν

− 32g2s(φ
†φ)q̄L

√
2HYqR + 4gsq̄Lσ

µνGA
µνT

A
√
2HYqR + h.c.

)
.

(77)

The coefficient of operator φG then contributes to the beta functions

βφG ⊇
(
6λ− 14g2s −

9

2
g2 − 3

2
g′2 + 2γφ

)
CφG , βqφ ⊇ 32g2sYqCφG

βgs ⊇ −8gs
m2

Λ2
CφG , βqG ⊇ −4gsYqCφG .

(78)

Divergences and RGEs from φW

In a similar way we treat the φW -operator

QφW = (φ†φ)W a
µνW

aµν . (79)

The fluctuation matrices can be adapted from (75). In the case of SU(2) they yield

tr cM =−
(
6λ+

7

2
g2 + 12g2Cad

2 +
1

2
g′2
)
(φ†φ)W a

µνW
aµν

+ 4m2W a
µνW

aµν − 2gg′(φ†σaφ)W a
µνB

µν

+ 9g2(φ†φ)�(φ†φ) ,

−1
4
tr aλλM

2 = 12g2Cad
2 (φ†φ)W a

µνW
aµν + 18m2g2(φ†φ)2

−
(
18λg2 − 9g4 − 3g2g′2

)
(φ†φ)3 − 9g2(φ†φ)�(φ†φ)

− 9g2(φ†φ)ψ̄L
√
2HYψR + h.c. ,

− 1

24
tr aλλNµνN

µν =− 2g2Cad
2 (φ†φ)W a

µνW
aµν ,

1

6
tr aµνNµλN

νλ = 2g2Cad
2 (φ†φ)W a

µνW
aµν ,

− 1

12
tr aλλ[Dµ, [D

µ,M ]] = 6g2(φ†φ)�(φ†φ) ,

1

3
tr aµν [Dµ, [Dν ,M ]] =− 6g2(φ†φ)�(φ†φ) ,

tr iΓ̄/bΓ = gψ̄Lσ
µνW a

µνσ
a
√
2HYψR + h.c.

(80)
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The divergent Lagrangian then reads

32π2ǫLdiv
φW =

CφW
Λ2

(
−
(
6λ+

7

2
g2 +

1

2
g′2
)
(φ†φ)W a

µνW
aµν + 4m2W a

µνW
aµν

− 2gg′(φ†σaφ)W a
µνB

µν −
(
18λg2 − 9g4 − 3g2g′2

)
(φ†φ)3

+ 18m2g2(φ†φ)2 − 9g2(φ†φ)ψ̄L
√
2HYψR

+ gψ̄Lσ
µνW a

µνσ
a
√
2HYψR + h.c.

)
.

(81)

Finally, we find the RGE contributions

βφW ⊇
(
6λ− 53

6
g2 − 3

2
g′2 + 2γφ

)
CφW , βψφ ⊇ 9g2YCφW ,

βφWB ⊇ 2gg′CφW , βψW ⊇ −gYCφW ,

βφ ⊇
(
18λg2 − 9g4 − 3g2g′2

)
CφW , βg ⊇ −8g

m2

Λ2
CφW ,

βλ ⊇ 36g2
m2

Λ2
CφW .

(82)

Divergences and RGEs from φB

The last operator of the class φX is

QφB = (φ†φ)BµνB
µν . (83)
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The fluctuations in (75), converted to U(1), lead to

tr cM =−
(
6λ+

3

2
g2 +

5

2
g′2
)
(φ†φ)BµνB

µν + 4m2BµνB
µν

− 2gg′(φ†σaφ)W a
µνB

µν + 3g′2(φ†φ)�(φ†φ) ,

−1
4
tr aλλM

2 =−
(
6λg′2 − 3g2g′2 − 3g′4

)
(φ†φ)3 − 3g′2(φ†φ)�(φ†φ)

+ 6m2g′2(φ†φ)2 − 3g′2(φ†φ)ψ̄L
√
2HYψR + h.c. ,

− 1

12
tr aλλ[Dµ, [D

µ,M ] = 2g′2(φ†φ)�(φ†φ) ,

1

3
tr aµν [Dµ, [Dν ,M ]] =− 2g′2(φ†φ)�(φ†φ) ,

iΓ̄/bΓ = 2g′ψ̄Lσ
µνBµν

√
2HY(YL + YR)ψR + h.c. ,

−1
6
tr Γ̄i

↔
DaΓ =− 24g′2(φ†φ)ψ̄L

√
2HYYLYRψR + h.c.

(84)

Summing all the terms, we obtain

32π2ǫLdiv
φB =

CφB
Λ2

(
−
(
6λ+

3

2
g2 +

5

2
g′2
)
(φ†φ)BµνB

µν + 4m2BµνB
µν

− 2gg′(φ†σaφ)W a
µνB

µν −
(
6λg′2 − 3g2g′2 − 3g′4

)
(φ†φ)3

+ 6m2g′2(φ†φ)2 − 12g′2(φ†φ)ψ̄L
√
2HY(Y 2

L + Y 2
R)ψR

+ 2g′ψ̄Lσ
µνBµν

√
2HY(YL + YR)ψR + h.c.

)
.

(85)

The resulting contributions to the RGEs are

βφB ⊇
(
6λ− 9

2
g2 +

85

6
g′2 + 2γφ

)
CφB , βψφ ⊇ 12g′2(Y 2

L + Y 2
R)YCφB ,

βφWB ⊇ 2gg′CφB , βψB ⊇ −2g′(YL + YR)YCφB ,

βφ ⊇
(
6λg′2 − 3g2g′2 − 3g′4

)
CφB , βg′ ⊇ −8g′

m2

Λ2
CφB ,

βλ ⊇ 12g′2
m2

Λ2
CφB .

(86)
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5.2.2 φX̃-operators

The operators of the class φX̃ mix into CP-violating operators that we have not considered
yet. We therefore introduce a Lagrangian

Lθ =
θsg

2
s

32π2
G̃A
µνG

Aµν +
θg2

32π2
W̃ a
µνW

aµν +
θ′g′2

32π2
B̃µνB

µν (87)

Although these operators correspond to total derivatives and play no role in perturba-
tion theory, they are related to non-perturbative effects. For the beta functions, we will
use (87) as reference.

The prototype for operator class φX̃ is

Q
φG̃

= φ†φ G̃A
µνG

Aµν . (88)

In this case, the fluctuations are given by the four non-trivial entries

cij = −G̃A
µνG

Aµνδij , bλ(Aα)(Bβ) = ǫλαβµ∂µ(ϕ
2)δAB ,

c(Aα)i = 2i(Dµϕ)iG̃
A
µα , bλ(Aα)i = 2iG̃A

λαϕi .

(89)

Divergences and RGE for φG̃

From the fluctuations (89) we obtain

tr cM = −
(
6λ+

3

2
g2 +

1

2
g′2
)
(φ†φ)G̃A

µνG
Aµν + 4m2G̃A

µνG
Aµν ,

tr iΓ̄/bΓ = −32ig2s(φ†φ)q̄L
√
2HYqR + 4igsq̄Lσ

µνGA
µνT

A
√
2HYqR + h.c.

(90)

The divergent Lagrangian is then

32π2ǫLdiv
φG̃

=
CφG̃
Λ2

(
−
(
6λ+

3

2
g2 +

1

2
g′2
)
(φ†φ)G̃A

µνG
Aµν + 4m2G̃A

µνG
Aµν

− 32ig2s(φ
†φ)q̄L

√
2HYqR + 4igsq̄Lσ

µνGA
µνT

A
√
2HYqR + h.c.

)
.

(91)

The first term in tr cM gives a self-renormalization of QφG̃, while the second term

renormalizes the QCD θ term Lθs = θsg
2
s/(32π

2)G̃A
µνG

Aµν . The two contributions in

tr iΓ̄/bΓ already correspond to operators of the Warsaw basis. The term (φ†φ)q̄L
√
2HYqR

corresponds to the operators Quφ = (φ†φ)(q̄LuRφ̃) and Qdφ = (φ†φ)(q̄LdRφ). The last

piece q̄Lσ
µνGA

µνT
A
√
2HYqR corresponds to the operators QuG = (q̄Lσ

µνTAuR)φ̃G
A
µν and

QdG = (q̄Lσ
µνTAdR)φG

A
µν .
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We deduce the renormalization group contributions

βφG̃ ⊇
(
6λ− 14g2s −

9

2
g2 − 3

2
g′2 + 2γφ

)
CφG̃ , βqφ ⊇ 32ig2sYqCφG̃ ,

βθs ⊇ −
128π2

g2s

m2

Λ2
CφG̃ βqG ⊇ −4igsYqCφG̃ .

(92)

Divergences and RGEs from φW̃

The next operator we consider is

Q
φW̃

= (φ†φ)W̃ a
µνW

aµν . (93)

The SU(2)-analogy of (89) leads to

tr cM =−
(
6λ+

7

2
g2 +

1

2
g′2
)
(φ†φ)W̃ a

µνW
aµν + 4m2W̃ a

µνW
aµν

− 2gg′(φ†σaφ)W̃ a
µνB

µν ,

tr iΓ̄/bΓ =− 9ig2(φ†φ)ψ̄L
√
2HYψR + igψ̄Lσ

µνW a
µνσ

a
√
2HYψR + h.c.

(94)

Adding these results, we obtain

32π2ǫLdiv
φW̃

=
C
φW̃

Λ2

(
−
(
6λ+

7

2
g2 +

1

2
g′2
)
(φ†φ)W̃ a

µνW
aµν + 4m2W̃ a

µνW
aµν

− 2gg′(φ†σaφ)W̃ a
µνB

µν

− 9ig2(φ†φ)ψ̄L
√
2HYψR + igψ̄Lσ

µνW a
µνσ

a
√
2HYψR + h.c.

)
.

(95)

The contributions to the beta functions are

β
φW̃
⊇
(
6λ− 53

6
g2 − 3

2
g′2 + 2γφ

)
C
φW̃

, βψφ ⊇ 9ig2YC
φW̃

,

β
φW̃B

⊇ 2gg′C
φW̃

, βψW ⊇ −igYCφW̃ ,

βθ ⊇ −
128π2

g2
m2

Λ2
C
φW̃

.

(96)

Divergences and RGEs from φB̃

The last operator of this class is

QφB̃ = (φ†φ)B̃µνB
µν . (97)
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We translate the fluctuations (89) to the case of U(1) and find

tr cM =−
(
6λ+

3

2
g2 +

5

2
g′2
)
(φ†φ)B̃µνB

µν + 4m2B̃µνB
µν

− 2gg′(φ†σaφ)W̃ a
µνB

µν ,

tr iΓ̄/bΓ =− 12ig′2(φ†φ)ψ̄L
√
2HY(Y 2

L + Y 2
R)ψR

+ 2ig′ψ̄Lσ
µνBµν

√
2HY(YL + YR)ψR + h.c.

(98)

These results add up to the divergent Lagrangian

32π2ǫLdiv
φB̃

=
C
φB̃

Λ2

(
−
(
6λ+

3

2
g2 +

5

2
g′2
)
(φ†φ)B̃µνB

µν + 4m2B̃µνB
µν

− 2gg′(φ†σaφ)W̃ a
µνB

µν − 12ig′2(φ†φ)ψ̄L
√
2HY(Y 2

L + Y 2
R)ψR

+ 2ig′ψ̄Lσ
µνBµν

√
2HY(YL + YR)ψR + h.c.

)
.

(99)

We infer the following contributions to the RGEs

β
φB̃
⊇
(
6λ− 9

2
g2 +

85

6
g′2 + 2γφ

)
C
φB̃

, βψφ ⊇ 12ig′2(Y 2
L + Y 2

R)YCφB̃ ,

β
φW̃B

⊇ 2gg′C
φB̃

, βψB ⊇ −2ig′(YL + YR)YCφB̃ ,

βθ′ ⊇ −
128π2

g′2
m2

Λ2
CφB̃ .

(100)

5.2.3 φWB-operator

This operator is given by

QφWB = (φ†σaφ)W a
µνB

µν = 2(ϕtaLt
3
Rϕ)W

a
µνB

µν (101)

23



The quadratic fluctuations are described by the matrices

c(aα)(bβ) =− 4gǫabc(ϕtcLt
3
Rϕ)Bαβ , aµν(aα)β =− 2(ϕtaLt

3
Rϕ)S

αβµν ,

c(aα)β = 2(Dµϕt
a
Lt

3
RDνϕ)S

αβµν bλ(aα)β = 2gαλ(ϕtaLt
3
RDβϕ)

+ 2(ϕtaLt
3
RDµDνϕ)S

αβµν − 2gβλ(ϕtaLt
3
RDαϕ) ,

+ gǫabcW b
αβ(ϕt

c
Lt

3
Rϕ) ,

c(aα)i = 4i(taLt
3
Rϕ)i∂

µBµα + 4i(tLt
3
RD

µϕ)Bµα , bλ(aα)i = 4i(taLt
3
Rϕ)iB

λα ,

cαi = 4i(taLt
3
Rϕ)iD

µW a
µα + 4i(taLt

3
RD

µϕ)W a
µα , bλαi = 4i(taLt

3
Rϕ)W

aλα ,

cij =− 4(taLt
3
R)ijW

a
µνB

µν .

(102)

The symmetric tensor Sαβµν has been defined below eq. (75). We obtain the terms

tr cM =−
(
2λ+

5

2
g2 + 4g2Cad

2 +
3

2
g′2
)
(φ†σaφ)W a

µνB
µν

− gg′(φ†φ)W a
µνW

aµν − 3gg′(φ†φ)BµνB
µν − 6λgg′(φ†φ)3

+ 24gg′(Dµϕt
a
Lt

3
RD

µϕ)(ϕtaLt
3
Rϕ) + 6m2gg′(φ†φ)2

− 3gg′(φ†φ)ψ̄L
√
2HYψR + h.c. ,

−1
4
tr aλλM

2 =
(
3g3g′ + 3gg′3

)
(φ†φ)3 − 24gg′(Dµϕt

a
Lt

3
RD

µϕ)(ϕtaLt
3
Rϕ) ,

− 1

12
tr aλλ[Dµ, [D

µ,M ]] = 16gg′(ϕtaLt
3
RDµD

µϕ+Dµϕt
a
Lt

3
RD

µϕ)(ϕtaLt
3
Rϕ) ,

1

3
tr aµν [Dµ, [Dν ,M ]] =− 16gg′(ϕtaLt

3
RDµD

µϕ+Dµϕt
a
Lt

3
RD

µϕ)(ϕtaLt
3
Rϕ) ,

tr iΓ̄/bΓ =− 2g′ψ̄Lσ
µνW a

µνσ
a
√
2HY(YL + YR)τ

3ψR

− 3gψ̄Lσ
µνBµν

√
2HYτ 3ψR + h.c. ,

−1
6
tr Γ̄i

↔
DaΓ = 12gg′(φ†φ)ψ̄L

√
2HYYRτ 3ψR + h.c.

(103)
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Adding these terms leads to

32π2ǫLdiv
φWB =

CφWB

Λ2

(
−
(
2λ+

21

2
g2 +

3

2
g′2
)
(φ†σaφ)W a

µνB
µν + 6m2gg′(φ†φ)2

−
(
6λgg′ − 3g3g′ − 3gg′3

)
(φ†φ)3 − gg′(φ†φ)W a

µνW
aµν

− 3gg′(φ†φ)BµνB
µν + 12gg′(φ†φ)ψ̄L

√
2HYYLτ 3ψR

− 2g′ψ̄Lσ
µνW a

µνσ
a
√
2HY(YL + YR)τ

3ψR

− 3gψ̄Lσ
µνBµν

√
2HYτ 3ψR + h.c.

)
.

(104)

We find eight contributions to the beta functions:

βφWB ⊇
(
2λ+

4

3
g2 +

19

3
g′2 + 2γφ

)
CφWB , βψφ ⊇ −12gg′YLτ 3YCφWB ,

βφW ⊇ gg′CφWB , βψW ⊇ 2g′(YL + YR)τ
3YCφWB ,

βφB ⊇ 3gg′CφWB , βψB ⊇ 3gτ 3YCφWB ,

βφ ⊇
(
6λgg′ − 3g3g′ − 3gg′3

)
CφWB , βλ ⊇ 12gg′

m2

Λ2
CφWB .

(105)

5.2.4 φW̃B-operator

We are left with the last operator of class X2φ2,

Q
φW̃B

= (φ†σaφ)W̃ a
µνB

µν = 2(ϕtaLt
3
Rϕ)W̃

a
µνB

µν . (106)

The non-trivial elements of the fluctuation matrices are

c(aα)(bβ) = −4gǫabc(ϕtcLt3Rϕ)B̃αβ , bλ(aα)β = −4ǫαβλµ(ϕtaLt3RDµϕ) ,

c(aα)β = 4ig(ϕtaLt
3
Rt

b
Lϕ)W̃

b
αβ , bλ(aα)i = 4i(taLt

3
Rϕ)iB̃

λα ,

c(aα)i = 4i(taLt
3
RD

µϕ)iB̃µα , bλαi = 4i(taLt
3
Rϕ)iW̃

aλα ,

cαi = 4i(taLt
3
RD

µϕ)iW̃
a
µα ,

cij = −4(taLt3R)ijW̃ a
µνB

µν .

(107)
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From these, we calculate the divergences

tr cM = −
(
2λ+

5

2
g2 + 4g2Cad

2 +
3

2
g′2
)
(φ†σaφ)W̃ a

µνB
µν

− gg′(φ†φ)W̃ a
µνW

µν − 3gg′(φ†φ)B̃µνB
µν ,

tr iΓ̄/bΓ = 12igg′(φ†φ)ψ̄L
√
2HYYLτ 3ψR − 3igψ̄Lσ

µνBµν

√
2HYτ 3ψR

− 2g′ψ̄Lσ
µνW a

µνσ
a
√
2HY(YL + YR)τ

3ψR + h.c.

(108)

Adding these results, the divergent Lagrangian becomes

32π2ǫLdiv
φW̃B

=
C
φW̃B

Λ2

(
−
(
2λ+

21

2
g2 +

3

2
g′2
)
(φ†σaφ)W̃ a

µνB
µν

− gg′(φ†φ)W̃ a
µνW

aµν + 12igg′(φ†φ)ψ̄L
√
2HYYLτ 3ψR

− 3gg′(φ†φ)B̃µνB
µν − 3igψ̄Lσ

µνBµν

√
2HYτ 3ψR

− 2g′ψ̄Lσ
µνW a

µνσ
a
√
2HY(YL + YR)τ

3ψR + h.c.

)
.

(109)

The contributions to the RGEs are then

β
φW̃B

⊇
(
2λ+

4

3
g2 +

19

3
g′2 + 2γφ

)
C
φW̃B

, βψφ ⊇ −12igg′YLτ 3YCφW̃B
,

β
φW̃
⊇ gg′C

φW̃B
, βψW ⊇ 2ig′(YL + YR)τ

3YC
φW̃B

,

β
φB̃
⊇ 3gg′C

φW̃B
, βψB ⊇ 3igτ 3YC

φW̃B
.

(110)

5.3 Renormalization of the operator class φ6 and φ4D2

This class collects the operators that consist only of scalar fields and derivatives, namely
Qφ, Qφ� and QφD. Using the relations in appendix A, these operators can be expressed
in terms of the four real scalar fields ϕi. The basic building blocks in this representation
are (ϕ2)3, (ϕDµϕ)

2 and (ϕt3RDµϕ)
2.

5.3.1 φ6-operator

We begin with the simplest case

Qφ = (φ†φ)3 =
1

8
(ϕiϕi)

3 . (111)
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There is only one non-trivial matrix entry:

cij = −
3

4
(ϕ2)2δij − 3(ϕ2)ϕiϕj . (112)

From the master formula we find

tr cM = −
(
54λ+

9

2
g2 +

3

2
g′2
)
(φ†φ)3 + 24m2(φ†φ)2 . (113)

The divergent Lagrangian is then given by

32π2ǫLdiv
φ =

Cφ
Λ2

(
−
(
54λ+

9

2
g2 +

3

2
g′2
)
(φ†φ)3 + 24m2(φ†φ)2

)
. (114)

We obtain the two beta-function contributions

βφ ⊇
(
54λ− 27

2
g2 − 9

2
g′2 + 6γφ

)
Cφ , βλ ⊇ 48

m2

Λ2
Cφ . (115)

5.3.2 φ�-operator

For the next operator, we have

Qφ� = (φ†φ)�(φ†φ) = −(ϕDµϕ)
2 , (116)

dropping a total derivative. The fluctuation matrices are

cij = 2(Dµϕ)i(D
µϕ)j −�(ϕ2)δij ,

bµij = (Dµϕ)iϕj − ϕi(Dµϕ)j ,

aµνij = −2ϕiϕjgµν ≡ aijg
µν .

(117)
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From these, we find the terms of the master formula to be

tr cM =−
(
12λ+

3

2
g2 +

1

2
g′2
)
(φ†φ)�(φ†φ) + 2g′2(φ†Dµφ)

∗(φ†Dµφ)

+
(
4λ2 + 2λg2

)
(φ†φ)3 + 4m2(φ†φ)−

(
8λ+ 2g2

)
m2(φ†φ)2

− 2m2ψ̄L
√
2HYψR + (2λ+ g2)(φ†φ)ψ̄L

√
2HYψR + h.c. ,

−1
3
tr [Dµ, Nµν ]b

ν =−
(
1

2
g2 +

1

6
g′2
)
(φ†φ)�(φ†φ)− 2

3
g′2(φ†Dµφ)

∗(φ†Dµφ)

− 2

3
λg2(φ†φ)3 +

2

3
g2m2(φ†φ)2 − 1

3
g2(φ†φ)ψ̄L

√
2HYψR

− 1

3
g′2(φ†i

↔
Dµφ)ψ̄γ

µ(YLPL + YRPR)ψ

− 1

6
g2(φ†i

↔
Da
µφ)ψ̄Lγ

µσaψL + h.c. ,

−tr aM2 =−
(
6g2 + 2g′2

)
(φ†φ)�(φ†φ)− 8g′2(φ†Dµφ)

∗(φ†Dµφ)

+
(
36λ2 − 8λg2

)
(φ†φ)3 −

(
24λ− 8g2

)
m2(φ†φ)2

+ 4m4(φ†φ)− 4g2(φ†φ)ψ̄L
√
2HYψR + h.c. ,

tr iΓ̄/bΓ =
1

2
(φ†i

↔
Da
µφ)ψ̄Lγ

µσa〈YY†〉IψL + 2(φ†i
↔
Dµφ)ψ̄Rγ

µY†Yτ 3ψR

+ (φ†i
↔
Dµφ)ψ̄Lγ

µ
(
〈YY†〉I − 2YY†) τ 3ψL

+ 4iψ̄Rγ
µY†ϕ(τ 1t1R + τ 2t2R)DµϕYψR ,

−1
6
tr Γ̄i

↔
DaΓ = 6(φ†φ)ψ̄L

√
2HYY†YψR + h.c.

(118)
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The results sum up to the divergent Lagrangian

32π2ǫLdiv
φ� =

Cφ�
Λ2

(
−
(
12λ+ 8g2 +

8

3
g′2
)
(φ†φ)�(φ†φ)− 20

3
g′2(φ†Dµφ)

∗(φ†Dµφ)

+

(
40λ2 − 20

3
λg2
)
(φ†φ)3 −

(
32λ− 20

3
g2
)
m2(φ†φ)2

+ 8m4(φ†φ) + (φ†φ)ψ̄L
√
2H

(
2λY − 10

3
g2Y + 6YY†Y

)
ψR

− 2m2ψ̄L
√
2HYψR − (φ†i

↔
Dµφ)ψ̄Rγ

µ

(
1

3
g′2YR − 2Y†Yτ 3

)
ψR

− (φ†i
↔
Dµφ)ψ̄Lγ

µ

(
1

3
g′2YL +

(
2YY† − 〈YY†〉I

)
τ 3
)
ψL

− (φ†i
↔
Da
µφ)ψ̄Lγ

µσa
(
1

6
g2 − 1

2
〈YY†〉I

)
ψL

+ 4iψ̄Rγ
µY†ϕ(τ 1t1R + τ 2t2R)DµϕYψR + h.c.

)
.

(119)

In total, the φ�-operator contributes to the beta-functions with

βφ� ⊇
(
12λ− 4g2 − 4

3
g′2 + 4γφ

)
Cφ� , βψφ ⊇

(
−2λY +

10

3
g2Y − 6YY†Y

)
Cφ� ,

βφD ⊇
20

3
g′2Cφ� , βφψ ⊇

(
1

3
g′2YR − 2τ 3Y†Y

)
Cφ� ,

βφ ⊇
(
−40λ2 + 20

3
λg2
)
Cφ� , β

(1)
φψ ⊇

(
1

3
g′2YL +

(
2YY† − 〈YY†〉I

)
τ 3
)
Cφ� ,

βλ ⊇
(
−64λ+

40

3
g2
)
m2

Λ2
Cφ� , β

(3)
φψ ⊇

(
1

6
g2 − 1

2
〈YY†〉I

)
Cφ� ,

βm2 ⊇ −8m
4

Λ2
Cφ� , βφud ⊇ 2Y†

uYdCφ� ,

βY ⊇ −2
m2

Λ2
YCφ� .

(120)

5.3.3 φD-operator

The φD operator can be decomposed as

QφD = −1
4
Qφ� +QφR . (121)
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where

QφR = −(ϕt3RDµϕ)
2 . (122)

Qφ� has already been treated above. For QφR we find the fluctuations

aµνij = −2(t3Rϕ)i(t3Rϕ)jgµν ≡ aijg
µν ,

bλij = 2(ϕt3RD
λϕ)t3Rij + (t3Rϕ)i(t

3
RD

λϕ)j − (t3RD
λϕ)i(t

3
Rϕ)j ,

bλ(aα)i = g(ϕtaLt
3
Rϕ)(t

3
Rϕ)ig

λα ,

bλαi =
g′

4
ϕ2(t3Rϕ)ig

λα ,

cij = 6(t3RDµϕ)i(t
3
RD

µϕ)j + 2(t3Rϕ)i(t
3
RD

2ϕ)j + 2(t3RD
2ϕ)i(t

3
Rϕ)j ,

c(aα)(bβ) = 2g2(ϕtaLt
3
Rϕ)(ϕt

b
Lt

3
Rϕ)gαβ ,

cαβ =
g′2

8
(ϕ2)2gαβ ,

c(aα)β =
gg′

2
ϕ2(ϕtaLt

3
Rϕ)gαβ ,

c(aα)i = −4g(ϕt3RDαϕ)(t
a
Lt

3
Rϕ)i − 3g(ϕtaLt

3
Rϕ)(t

3
RDαϕ)i − 2g(ϕtaLt

3
RDαϕ)(t

3
Rϕ)i ,

cαi = −g′(ϕt3RDαϕ)ϕi −
3

4
g′ϕ2(t3RDαϕ)i −

g′

4
∂α(ϕ

2)(t3Rϕ)i .

(123)
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The divergences derived from these matrices are

tr cM =−
(
6λ+

29

2
g2 + 4g′2

)
(φ†Dµφ)

∗(φ†Dµφ)

−
(
3λ+

19

8
g2 +

13

8
g′2
)
(φ†φ)�(φ†φ)−m4(φ†φ)

−
(
λ2 − 1

2
λg2 + 2λg′2 − g4 − 2g2g′2 − g′4

)
(φ†φ)3

+

(
2λ− 1

2
g2 + 2g′2

)
m2(φ†φ)2 +

1

2
m2ψ̄L

√
2HYψR

−
(
1

2
λ− 1

4
g2 + g′2

)
(φ†φ)ψ̄L

√
2HYψR + h.c. ,

−1
3
tr [Dµ, Nµν ]b

ν =− 5

6
g′2(φ†Dµφ)

∗(φ†Dµφ)−
(
1

8
g2 +

5

24
g′2
)
(φ†φ)�(φ†φ)

+
1

6
g2m2(φ†φ)2 − 1

6
λg2(φ†φ)3 − 1

12
g2(φ†φ)ψ̄L

√
2HYψR

− 5

12
g′2(φ†i

↔
Dµφ)ψ̄Rγ

µYRψR −
5

12
g′2(φ†i

↔
Dµφ)ψ̄Lγ

µYLψL

− 1

24
g2(φ†i

↔
Da
µφ)ψ̄Lγ

µσaψL + h.c. ,

−tr aM2 =− 2g2(φ†Dµφ)
∗(φ†Dµφ)−

(
−1
2
g2 +

1

2
g′2
)
(φ†φ)�(φ†φ)

−
(
λ2 − λg2 + λg′2 +

1

4
g4 +

1

2
g2g′2 +

1

4
g′4
)
(φ†φ)3

+
(
2λ− g2 + g′2

)
m2(φ†φ)2 −m4(φ†φ)

+ g2(φ†φ)ψ̄L
√
2HYψR + h.c. ,

tr iΓ̄/bΓ =
1

8
(φ†i

↔
Da
µφ)ψ̄Lγ

µσa〈YY†〉IψL +
5

2
(φ†i

↔
Dµφ)ψ̄Rγ

µY†Yτ 3ψR

− 5

4
(φ†i

↔
Dµφ)ψ̄Lγ

µ
(
2YY† − 〈YY†〉I

)
τ 3ψL

− iψ̄RγµY†ϕ
(
τ 1t1R + τ 2t2R

)
DµϕYψR

−
(
1

2
g2 +

1

2
g′2
)
(φ†φ)ψ̄L

√
2HYψR + h.c. ,

−1
6
tr Γ̄i

↔
DaΓ =

1

2
(φ†φ)ψ̄L

√
2HYY†YψR + h.c.

(124)
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We reduce contractions with the Levi-Civita tensor using

ǫijkl(Dµϕ)i(t
3
RD

µϕ)j(t
3
Rϕ)kϕl = (ϕt3RDµϕ)

2 − 1

4
(ϕDµϕ)

2 +
1

4
ϕ2(Dµϕ)

2 . (125)

Combining the results in (119) and (124) according to (121), we obtain

32π2ǫLdiv
φD =

CφD
Λ2

(
−
(
6λ+

33

2
g2 +

19

6
g′2
)
(φ†Dµφ)

∗(φ†Dµφ) +m2ψ̄L
√
2HYψR

− 5

3
g′2(φ†φ)�(φ†φ) +

(
12λ− 3g2 + 3g′2

)
m2(φ†φ)2

−
(
12λ2 − 3λg2 + 3λg′2 − 3

4
g4 − 3

2
g2g′2 − 3

4
g′4
)
(φ†φ)3

− (φ†φ)ψ̄L
√
2H

(
λY − 3

2
g2Y +

3

2
g′2Y + YY†Y

)
ψR

− (φ†i
↔
Dµφ)ψ̄Rγ

µ

(
1

3
g′2YR − 2τ 3Y†Y

)
ψR − 4m4(φ†φ)

− (φ†i
↔
Dµφ)ψ̄Lγ

µ

(
1

3
g′2YL +

(
2YY† − 〈YY†〉I

)
τ 3
)
ψL

− 2iψ̄Rγ
µY†ϕ(τ 1t1R + τ 2t2R)DµϕYψR + h.c.

)
.

(126)

We find the following set of beta-function entries:

βφD ⊇
(
6λ+

9

2
g2 − 5

6
g′2 + 4γφ

)
CφD , βφ� ⊇

5

3
g′2CφD ,

βφ ⊇
(
12λ2 − 3λ(g2 − g′2)− 3

4
(g2 + g′2)2

)
CφD , βm2 ⊇ 4

m4

Λ2
CφD ,

βλ ⊇
(
24λ− 6(g2 − g′2)

) m2

Λ2
CφD , βY ⊇

m2

Λ2
YCφD ,

βψφ ⊇
(
λY − 3

2
(g2 − g′2)Y + YY†Y

)
CφD , βφud ⊇ −Y†

uYdCφD ,

βφψ ⊇
(
1

3
g′2YR − 2τ 3Y†Y

)
CφD ,

β
(1)
φψ ⊇

(
1

3
g′2YL +

(
2YY† − 〈YY†〉I

)
τ 3
)
CφD .

(127)

This completes our calculation for the bosonic operators.
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6 Summary of results

We summarize our results by listing all the contributions to the renormalization-group
beta functions that arise from the pure bosonic operators of dimension 6 in SMEFT. All
results are in agreement with [12–14] (see also the compilation in [18]).

Adding the individual contributions derived in section 5 we obtain:

βG ⊇ 15g2sCG , βG̃ ⊇ 15g2sCG̃ , βW ⊇
29

2
g2CW , β

W̃
⊇ 29

2
g2C

W̃
(128)

βφG ⊇
(
6λ− 14g2s −

9

2
g2 − 3

2
g′2 + 2γφ

)
CφG (129)

βφG̃ ⊇
(
6λ− 14g2s −

9

2
g2 − 3

2
g′2 + 2γφ

)
CφG̃ (130)

βφB ⊇
(
6λ− 9

2
g2 +

85

6
g′2 + 2γφ

)
CφB + 3gg′CφWB (131)

β
φB̃
⊇
(
6λ− 9

2
g2 +

85

6
g′2 + 2γφ

)
C
φB̃

+ 3gg′C
φW̃B

, (132)

βφW ⊇ −15g3CW +

(
6λ− 53

6
g2 − 3

2
g′2 + 2γφ

)
CφW + gg′CφWB (133)

β
φW̃
⊇ −15g3C

W̃
+

(
6λ− 53

6
g2 − 3

2
g′2 + 2γφ

)
C
φW̃

+ gg′C
φW̃B

(134)

βφWB ⊇ 3g2g′CW + 2gg′CφW + 2gg′CφB +

(
2λ+

4

3
g2 +

19

3
g′2 + 2γφ

)
CφWB (135)

β
φW̃B

⊇ 3g2g′C
W̃

+ 2gg′C
φW̃

+ 2gg′C
φB̃

+

(
2λ+

4

3
g2 +

19

3
g′2 + 2γφ

)
C
φW̃B

(136)

βφ ⊇
(
18λg2 − 9g4 − 3g2g′2

)
CφW +

(
6λg′2 − 3g2g′2 − 3g′4

)
CφB
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+
(
6λgg′ − 3g3g′ − 3gg′3

)
CφWB +

(
54λ− 27

2
g2 − 9

2
g′2 + 6γφ

)
Cφ

+

(
−40λ2 + 20

3
λg2
)
Cφ� +

(
12λ2 − 3λ(g2 − g′2)− 3

4
(g2 + g′2)2

)
CφD (137)

βφ� ⊇
(
12λ− 4g2 − 4

3
g′2 + 4γφ

)
Cφ� +

5

3
g′2CφD (138)

βφD ⊇
20

3
g′2Cφ� +

(
6λ+

9

2
g2 − 5

6
g′2 + 4γφ

)
CφD (139)

βqG ⊇ 9g2sCGYq + 9ig2sCG̃Yq − 4gsYqCφG − 4igsYqCφG̃ (140)

βψW ⊇ −gYCφW − igYCφW̃ + 2g′(YL + YR)τ
3YCφWB + 2ig′(YL + YR)τ

3YC
φW̃B

(141)

βψB ⊇ −2g′(YL + YR)YCφB − 2ig′(YL + YR)YCφB̃ + 3gτ 3YCφWB + 3igτ 3YC
φW̃B

(142)

βqφ ⊇ 32g2sYqCφG + 32ig2sYqCφG̃ (143)

βψφ ⊇ 9g2YCφW + 12g′2(Y 2
L + Y 2

R)YCφB + 9ig2YC
φW̃

+ 12ig′2(Y 2
L + Y 2

R)YCφB̃ − 12gg′YLτ
3YCφWB − 12igg′YLτ

3YC
φW̃B

+

(
−2λY +

10

3
g2Y − 6YY†Y

)
Cφ� +

(
λY − 3

2
(g2 − g′2)Y + YY†Y

)
CφD (144)

βφψ ⊇
(
1

3
g′2YR − 2τ 3Y†Y

)
(Cφ� + CφD) , βφud ⊇ Y†

uYd (2Cφ� − CφD) (145)

β
(1)
φψ ⊇

(
1

3
g′2YL +

(
2YY† − 〈YY†〉I

)
τ 3
)
(Cφ� + CφD) (146)
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β
(3)
φψ ⊇

(
1

6
g2 − 1

2
〈YY†〉I

)
Cφ� (147)

Here 〈. . .〉I denotes a trace over isospin indices.
Finally, we collect the contributions from the bosonic dimension-6 operators to the

beta functions of couplings in the SM at dimension 4:

βgs ⊇ −8gs
m2

Λ2
CφG , βg ⊇ −8g

m2

Λ2
CφW , βg′ ⊇ −8g′

m2

Λ2
CφB (148)

βλ ⊇ 36g2
m2

Λ2
CφW + 12g′2

m2

Λ2
CφB + 12gg′

m2

Λ2
CφWB + 48

m2

Λ2
Cφ

+

(
−64λ +

40

3
g2
)
m2

Λ2
Cφ� +

(
24λ− 6(g2 − g′2)

) m2

Λ2
CφD (149)

βm2 ⊇ 4
m4

Λ2
(−2Cφ� + CφD) , βY ⊇

m2

Λ2
Y (−2Cφ� + CφD) (150)

βθs ⊇ −
128π2

g2s

m2

Λ2
C
φG̃

, βθ ⊇ −
128π2

g2
m2

Λ2
C
φW̃

, βθ′ ⊇ −
128π2

g′2
m2

Λ2
C
φB̃

(151)

7 Conclusions

We have shown how functional methods provide an efficient way to compute UV diver-
gences to one loop in SMEFT. Using the background-field method and a super-heat-kernel
expansion, we derived a master formula for the one-loop divergences of EFTs that gen-
eralizes a known formula, originally due to ’t Hooft [8]. The generalization allows for
the addition of a non-standard term of the form aµνDµDν to the fluctuation operator
∆ = DµDµ + Y , treated to first order in the field-dependent quantity aµν .

As an application of this master formula we computed the complete one-loop diver-
gences from insertions of the purely bosonic dimension-6 operators in theWarsaw basis [11]
of SMEFT. We derived the corresponding RGEs, describing the RG mixing of the bosonic
dimension-6 operators into any SMEFT operator of dimension 4 or 6. Our analysis serves
as an independent confirmation of results previously obtained in the literature [12–14].

We have also discussed how the RG beta-functions (anomalous dimensions) for oper-
ator coefficients in SMEFT are related to the one-loop divergences, demonstrating that
this relation is governed by chiral dimensions. In future work, we plan to return to
the renormalization of the remaining dimension-6 operators in SMEFT using functional
methods.
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A Details on the Higgs field representation

We express the Higgs field degrees of freedom as (j ∈ {0, 1, 2, 3})

H ≡ 1√
2

(
φ̃, φ

)
= iτ jϕj , (152)

with τa (a ∈ {1, 2, 3}) the generators of SU(2) and τ 0 = − i
2
1. Under an electroweak gauge

transformation H → gLHg
†
R, with gL ∈ SU(2)L and gR belonging to the U(1)Y subgroup

of SU(2)R. Since SU(2)⊗ SU(2) is the universal covering group of SO(4), we can express
the transformation properties of ϕi in terms of SO(4) generators. The covariant derivative
acting on the fields ϕi is given by

(Dµϕ)i = ∂µϕi + igW a
µ t
a
Lijϕj + ig′Bµt

3
Rijϕj , (153)

with the SO(4) generators

taLij ≡ +2 tr (τ i)†τaτ j = − i
2

(
ǫaij + δaiδ0j − δ0iδaj

)
,

taRij ≡ −2 tr (τ i)†τ jτa = −
i

2

(
ǫaij − δaiδ0j + δ0iδaj

)
.

(154)

Here a, b ∈ {1, 2, 3} and i, j, k, l ∈ {0, 1, 2, 3}. The antisymmetric tensor ǫaij is defined
such that ǫaij = 0 if i = 0 or j = 0. In matrix form we can write

t1L = − i
2




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


 , t2L = − i

2




0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0


 , t3L = − i

2




0 0 0 −1
0 0 1 0

0 −1 0 0

1 0 0 0


 ,

t1R = − i
2




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 , t2R = − i

2




0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0


 , t3R = − i

2




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 .

(155)
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These matrices fulfill the SU(2) algebra

[
taL, t

b
L

]
= iǫabctcL ,

{
taL, t

b
L

}
=

1

2
δab ,

tr taLt
b
L = δab ,

[
taR, t

b
R

]
= iǫabctcR ,

{
taR, t

b
R

}
=

1

2
δab ,

tr taRt
b
R = δab ,

(156)

with
[
taL, t

b
R

]
= 0 and tr taLt

b
R = 0. Some useful identities are

taLikt
b
Lkj =

1

4
δabδij +

i

2
ǫabctcLij , taLijt

a
Lkl =

1

4
(δilδjk − δikδjl + ǫijkl) ,

taRikt
b
Rkj =

1

4
δabδij +

i

2
ǫabctcRij , taRijt

a
Rkl =

1

4
(δilδjk − δikδjl − ǫijkl) .

(157)

Here ǫijkl denotes the totally anti-symmetric 4-dimensional tensor. Using the real repre-
sentation for the Higgs field, the SM equations of motion read

(DµG
µν)A = gsq̄γ

νTAq ,

(DµW
µν)a = igtaLijϕi(D

νϕ)j + gψ̄γντaPLψ ,

∂µB
µν = ig′t3Rijϕi(D

νϕ)j + g′ψ̄γν(YLPL + YRPR)ψ ,

(DµD
µϕ)i = m2ϕi −

λ

2
(ϕjϕj)ϕi − iψ̄

√
2
(
τ iYPR − Y†(τ i)†PL

)
ψ ,

i /Dψ =
√
2(HYPR + Y†H†PL)ψ .

(158)

B SM fluctuation operator

The SM fluctuation operator can be cast in the form of (5) by choosing the Feynman
gauge. In the electroweak sector we use a gauge fixing term that cancels the mixing
between the gauge fields and the would-be Goldstone bosons in the SM [29]. For QCD
we take the usual Yang-Mills gauge fixing [4]. The gauge-fixing Lagrangian reads6

Lg.f. = −
1

2
fAfA − 1

2
fafa − 1

2
f 2 . (159)

with

fA = Dµα
Aµ , fa = Dµω

aµ − igtaLijξiϕj , f = ∂µβ
µ − ig′t3Rijξiϕj . (160)

6A general discussion of gauge fixing in SMEFT can be found in [30]
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The covariant derivatives act on αµ and ωµ in the adjoint representation. The Faddeev–
Popov Lagrangian is quadratic in the ghost fields, which do not mix with the other degrees
of freedom, so its divergences can be calculated separately:

32π2ǫL1
div, ghost =

1

6
g2sC

ad
3 G

A
µνG

Aµν +
1

6
g2Cad

2 W
a
µνW

aµν − λ

2
(φ†φ)2

(
3g4 + 2g2g′2 + g′4

2λ

)
.

(161)

Here Cad
N = N is the Dynkin index of SU(N) in the adjoint representation. The bosonic

building blocks Nµ and M in (6) are given by

Nµ
IJ =




gsf
ABCGCµgαβ

gǫabcW cµgλρ

0

igW dµtdLij + ig′Bµt3Rij


 ,

MIJ =




2gsf
ABCGC

αβ 0 0 0

0 2gǫabcW c
λρ +

g2

4
(ϕkϕk)δ

abgλρ gg
′(ϕtaLt

3
Rϕ)gλκ −2g(taLDλϕ)j

0 gg′(ϕtbLt
3
Rϕ)gρσ

g′2

4
(ϕkϕk)gσκ −2g′(t3RDσϕ)j

0 −2g(tbLDρϕ)i −2g′(t3RDκϕ)i Mij



,

(162)

with the field indices I = (Aα, aλ, σ, i) and J = (Bβ, bρ, κ, j). Here we have defined

Mij ≡
((

λ

2
+
g2

4

)
(ϕkϕk)−m2

)
δij +

(
λ− g2

4

)
ϕiϕj − g′2(t3Rϕ)i(t3Rϕ)j . (163)

The fermion-boson mixing terms in (4) are given by

ΓT = (−i)




gsT
Bγβψ

gτ bγρPLψ

g′γκ(YLPL + YRPR)ψ√
2(τ jYPR −Y†(τ j)†PL)ψ


 , Γ̄ = (−i)




gsψ̄T
Aγα

gψ̄τaγλPL

g′ψ̄γσ(YLPL + YRPR)√
2ψ̄(τ iYPR − Y†(τ i)†PL)


 ,

(164)

Note that in our conventions Γ̄I = SIJ Γ
†
Jγ0 with S = diag(−1,−1,−1, 1) and I, J labels

for the bosonic variables. Finally, the pure fermionic terms in (7) read

r =
√
2HY , Rµ = gsGµ + g′BµYR ,

l =
√
2Y†H† , Lµ = gsGµ + gWµ + g′BµYL . (165)
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YL,R are the hypercharge matrices

YL = diag

(
1

6
,
1

6
,−1

2
,−1

2

)
and YR = diag

(
2

3
,−1

3
, 0,−1

)
. (166)

With these building blocks, and using the master formula in (9), we may verify the one-
loop renormalization group equations of the SM. First, including the ghost contributions,
we find for the one-loop divergences

32π2ǫLSM
div =

−1
2
〈GµνGµν〉

(
−22Nc − 4Nf

3

)
g2s + 2CFg

2
s q̄i 6Dq − 8CFg

2
s

(
q̄
√
2HYPRq + h.c.

)

−1
2
〈W µνWµν〉

(
−44

3
+

2

3
(Nc + 1)f +

1

3

)
g2 − 1

4
BµνBµν

((
22Nc

27
+ 2

)
f +

1

3

)
g′2

+Dµφ†Dµφ
(
−6g2 − 2g′2 + 2〈Y†Y〉

)
+m2φ†φ

(
−3
2
g2 − 1

2
g′2 − 6λ

)

−λ
2
(φ†φ)2

(
−3g2 − g′2 − 12λ− 3

4λ
(3g4 + 2g2g′2 + g′4) +

4

λ
〈(Y†Y)2〉

)

+ψ̄L

(
3

2
g2 + 2g′2Y 2

L

)
i 6DψL + ψ̄R 2g′2Y 2

Ri 6DψR − 8g′2
(
ψ̄L
√
2HYLYYRψR + h.c.

)

+ψ̄L〈YY†〉I i 6DψL + 2ψ̄RY†Y i 6DψR − 2
(
ψ̄L
√
2H(〈YY†〉I − YY†)YψR + h.c.

)
(167)

Here 〈. . .〉I represents a trace over isospin indices only. Nc = 3, f = 3, and Nf = 6
denote the number of colours, fermion generations, and quark flavours, respectively, and
CF = (N2

c − 1)/2Nc. The quark fields are written as q = (u, d, 0, 0)T .
From the divergences in (167) we obtain the beta functions of the SM:

βgs = −11Nc − 2Nf

3
g3s = −7g3s (168)

βg = −
(
22

3
− Nc + 1

3
f − 1

6

)
g3 = −19

6
g3 (169)

βg′ =

((
11Nc

27
+ 1

)
f +

1

6

)
g′3 =

41

6
g′3 (170)

βλ = −3(3g2 + g′2)λ+ 12λ2 +
3

4
(3g4 + 2g2g′2 + g′4) + 4λ〈Y†Y〉 − 4〈(Y†Y)2〉 (171)

βm2 = m2

(
−9
2
g2 − 3

2
g′2 + 6λ+ 2〈Y†Y〉

)
(172)

βY =
3

2

(
2YY† − 〈YY†〉I

)
Y
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−
(
9

4
g2 +

(
3

4
+ 6YLYR

)
g′2 − 〈Y†Y〉+ 6CFg

2
sPq

)
Y (173)

with 3/4 + 6YLYR = diag(17/12, 5/12, 3/4, 15/4), Pq = diag(1, 1, 0, 0), in agreement with
the results compiled in [18] (see also [7] for further details).
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