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Abstract

In 2010,
√
sNN =2.76 TeV Pb–Pb collision experiment was conducted at the Large

Hadron Collider (LHC) at European Organization for Nuclear Research (CERN). In this
thesis, a series of the mixed harmonic azimuthal correlations at mid-rapidity in Pb–Pb
collisions measured with the ALICE detectors at LHC is reported.

Primary motivation of this analysis is an investigation of the Local Charge Conserva-
tion (LCC) induced effects on the charge dependent parts of the azimuthal correlations.
Since any charge production mechanisms follow the law of the LCC, any charged par-
ticle has a balancing (opposite) charged particle nearby. What we want to know is a
distribution of relative azimuthal angle between charge and its balancing charge denoted
as ∆ϕ, which is expected to have a peak around ∆ϕ ∼ 0 due to the LCC correlation.
The charge dependent part of the correlation 〈cos(ϕα − ϕβ)〉 is proposed to quantify an
azimuthal width of this distribution, i.e. the strength of the LCC correlation. Further-
more, it is expected that this azimuthal width is possibly modulated as a function of
azimuthal angle of the charge balancing pair with respect to the reaction plane because
of the azimuthal anisotropic flow. A series of charge dependent parts of mixed harmonic
azimuthal correlations 〈cos[nϕα +mϕβ − (n+m)Ψk]〉 is proposed to quantify these mod-
ulations. These systematic observations, in comparison with predictions from a simple
hydrodynamics-inspired model, seem to indicate that the LCC is effectively realized on
the kinetic freeze-out surface, which is much later than a time of the hadron production
via the hadronization of the QGP matter. The physics origin of the “effective” LCC on
the kinetic freeze-out surface is not yet clear, but this phenomenological knowledge may
provide some insights for the hadronization and/or hadronic dynamics in the heavy-ion
collisions.

Among the various charge dependent azimuthal correlations observed in this thesis,
the correlation 〈cos(ϕα+ϕβ−2ΨRP )〉 has a special interest since it was originally proposed
to search the Chiral Magnetic Effect (CME). The CME is expected to be a direct evidence
of the local parity P and charge-parity CP violation in QCD under the hot and dense
matter. Observed result is roughly consistent with the CME. However, on the other hand,
it is found that the LCC induced correlations may significantly contribute on it at the
same time. Therefore, the LCC effect must be subtracted precisely for the further CME
search.

Charge independent parts of the observed results are also discussed in this thesis in
terms of the CME, the directed flow v1 effect, the transverse momentum conservation
effect and the jet effects. It is found that the interplay between the hydrodynamic matter
and jets is a key ingredient for the comprehensive understanding of their physics origins.
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Chapter 1

Introduction

The main goal of the physics of the relativistic heavy ion collisions is a discovery of the
deconfined Quark Gluon Plasma (QGP) and understanding its properties such as the
equation of state (EoS), temperature, order of the phase transition, transport coefficients,
the chemical evolution and so on. These phenomenological knowledge about the QGP is
important for the deep understanding of the fundamental theory - Quantum chromody-
namics (QCD). Another physics interest which can be tested in the heavy ion collisions
related to the QCD theory is the search for the possible local parity violation in QCD. In
this chapter, we introduce the basic of the QGP and the measurement of the azimuthal
correlations.

1.1 Quantum ChromoDynamics (QCD)

Quantum chromodynamics (QCD) is a fundamental theory of strong interactions between
the quarks and gluons. QCD was developed as an extension of quantum electrodynamics
(QED) via the imposition of a local SU(3) symmetry in “color” space. The most important
difference between QCD and QED is that QCD is a non-Abelian gauge theory and has
gluon self-interaction as a consequence. The QCD interactions among quarks and gluons
become weaker at the higher energy, which is called “asymptotic freedom” while the quarks
and gluons are confined inside the hadrons at the low energy, i.e. “confinement” [1]. The
strong coupling constant αs can be expressed as a function of the momentum transfer Q2

as follows:

αs(Q
2) ∼ 12π

(33− 2Nf )ln(Q2/λ2
QCD)

, (1.1)

where Nf is the number of quark flavors and λQCD ∼ 0.2 GeV is a typical QCD scale.
When the momentum transfer Q2 is much larger than λ2

QCD, αs becomes small enough
to allow us to use the perturbative method for QCD calculation (pQCD) as is the case
in QED. On the other hand, when the momentum transfer Q2 is not large, QCD is in
non-perturbative regime.

1



CHAPTER 1. INTRODUCTION

1.2 Quark Gluon Plasma (QGP)

It has been pointed out that the color confinement can be broken at the high temperature
and/or density of many body system of hadrons. This results in a phase transition from
the confined nuclear matter (ordered phase) to the deconfined state (disordered phase).
The deconfined state is called “Quark Gluon Plasma (QGP)” [2].

The lattice QCD calculations predict that the phase transition to the QGP state occurs
at a critical temperature, Tc, of 150-200 MeV. Figure 1.1 shows the calculated results of
the entropy density s/T 3 as a function of temperature T [3]. The entropy density increases
stepwise at Tc ∼ 200 MeV due to the increase of the degree of freedom associated with
the liberation of quarks and gluons from hadrons.

Figure 1.1: The entropy density (s = ε + p) in units of T 3 as a function of T calculated
by the lattice QCD [3].

A schematic phase diagram of hadronic matter including QGP is shown in Fig. 1.2.
The horizontal axis is the baryon density normalized to the density of the normal nuclear
matter (∼ 0.15 GeV/fm3) and the vertical axis is the temperature. QGP is considered to
have existed in the early universe, a few micro second after the Big Bang.

1.3 Relativistic Heavy Ion Collision Experiment

In the relativistic heavy ion collisions at the top RHIC and LHC energies, the initial en-
ergy density participating in the collisions is expected to be well above the threshold for
the QGP formation [5]. In a canonical picture of the collisions [6], the system undergoes
six stages: (1) initial state, (2) rapid thermalization, (3) thermalized QGP phase, (4)
hadronic gas phase, (5) hadronic gas phase with the chemical freeze-out and (6) hadronic

2



1.3. RELATIVISTIC HEAVY ION COLLISION EXPERIMENT

Figure 1.2: A schematic phase diagram of QCD matter [4].

gas phase with the kinetic freeze-out (free-streaming) as shown in Fig. 1.3. The nucle-
ons taking part in the primary collisions are called as participants, and the others are
spectators. A large number of the collisions between participants in target and projectile
nuclei occurs. It is expected that the produced partons are strongly coupled each other
and thermalized into the QGP phase rapidly within a short time of less than a few fm/c
although dynamical mechanisms of this rapid thermalization is one of the most hard issues
in the study of the QGP. A space-time evolution of the thermalized QGP matter can be
described using the relativistic hydrodymanics with proper transport coefficients and an
equation of state (EoS). The QGP matter collectively expands both in the longitudinal
and the transverse directions. The latter expansion is called the radial flow. The pro-
duced particles gain the momentum and energy from the radial flow of the QGP matter
and a final distribution of the transverse momentum is modified from the superposition of
the independent nucleon-nucleon collisions [7]. The temperature of the matter decreases
during a collective expansion of the QGP and the hadronization occurs through the phase
transition from the deconfined to the hadronic matter at a time of 5-10 fm/c - this picture
is called a delayed hadronization. After the phase transition, hadrons are rescattering
each other and a relative number of species of the emitted particles is eventually fixed
at the chemical freeze-out temperature. Finally, the kinetic freeze-out occurs and the
particle momentum distribution is fixed.

3



CHAPTER 1. INTRODUCTION

Figure 1.3: A schematic view of the dynamical evolution of a system generated after
the heavy ion collision [6]. The transverse axis represents the space in the longitudinal
direction.

1.4 Azimuthal Anisotropic Flow

Each collision is characterized by the collision impact parameter. Collisions with the
small impact parameter are called central collisions and collisions with the large impact
parameter are called peripheral collisions. A geometry of the participant region in non-
central collisions has ellipticity in transverse plane as shown in Fig. 1.4 while the pseudo-
rapidity invariance is expected to be hold at around mid-rapidity regions. The initial
spatial anisotropy in the azimuthal direction is transformed to the anisotropy of the final
particle momentum distributions due to the collective expansion of the produced system.

The reaction plane (RP) is defined as a plane between the vector between the centers
of the two colliding nuclei and that of the beam direction as shown in Fig. 1.4. ΨRP

represents its azimuthal angle in the laboratory frame [8, 9]. In addition, due to the
event-by-event fluctuations of the nucleon positions in nuclei, the energy density profile
of the system is very complex and has n-th harmonic azimuthal symmetry planes. Ψn

represents its azimuthal angle in the laboratory frame. The 2nd harmonic symmetry plane
roughly corresponds to the reaction plane, so Ψ2 ∼ ΨRP , but their azimuthal angles are
slightly inclined event-by-event each other as shown in Fig. 1.5 (a). Figure 1.5 (b) shows
the illustration of the triangle symmetry of the energy density profile [10].

4



1.4. AZIMUTHAL ANISOTROPIC FLOW

The n-th harmonic spatial anisotropies εn of the hydrodynamic matter are defined as

εne
iΨn ≡ −{r

keinϕ}
{rk} , (1.2)

where the bracket denotes an average over the transverse plane in a single event, weighted
by the energy density. An integer k is arbitrary, and it is customary set to 2 for n 6= 1
and 3 for n = 1. The origin of the coordinate (r, ϕ) is defined so that the center of gravity
{reiϕ} = 0 at each event. This equation also defines the n-th harmonic symmetry plane
angle Ψn. The momentum anisotropies are defined by using the energy-momentum tensor
of the hydrodynamic matter [13]. Figure 1.6 shows the time evolutions of the spatial
and momentum anisotropies of the hydrodynamic matter calculated numerically by the
Glauber-type initial spatial anisotropy and 2+1 dimensional boost invariant ideal hydro-
dynamic simulation [13]. A longitudinal axis is normalized with the spatial anisotropies
at the initial time τ0. Note that the momentum anisotropies are assumed to be zero at the
initial time τ0. Dot lines in Fig. 1.6 (a) indicate that the momentum anisotropies develop
in the time scale τ ∼

√
〈r2〉/cs ∼ 5.4 fm where

√
〈r2〉 is the typical transverse size of the

matter and cs denotes the sound velocity. The sound velocity cs can be derived from the
Equation of State (EoS) of the matter. On the other hand, the spatial anisotropies shown
in Fig. 1.6 (b) decrease with the similar time scale. These momentum anisotropies of
the hydrodynamic matter lead to the anisotropic azimuthal distribution of the produced
particles.

The particle azimuthal distribution with respect to the k-th harmonic azimuthal sym-
metry plane is customary expressed in a Fourier series:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

(
1 + 2

∞∑
n=1

vn,k · cos[n(ϕ−Ψk)]
)
, (1.3)

where ϕ is an azimuthal angle in the laboratory frame and vn,k = 〈cos[n(ϕi − Ψk)]〉
(the bracket 〈 〉 denotes an average over all particles in all events) coefficients are used
to quantify the event anisotropy in the azimuthal direction. In the case of n = k, we
sometime use the notation vn ≡ vn,n. The anisotropy v2, v3 are so-called elliptic and
triangle flow respectively.

Figure A.4 shows the charged hardron pT differential flow vn,k for each collision cen-
trality class measured by the ALICE collaboration [15]. Since the symmetry plane angle
is not known, one need to experimentally estimate it from the particle azimuthal distri-
bution itself. vn{EP, |∆η| > 2.0} in this figure denotes anisotropic flow vn measured by
using the event plane method while v2{4} in this figure denotes the elliptic flow measured
by using the four-particle correlation method. Detailed descriptions about the measure-
ment methods are found in appendix A. The elliptic flow v2 increases with increasing the
collision centrality class, but we can roughly found v2 > v3 > v4 > v4,2 > 0 in non-central
collisions.

It was found that the measured azimuthal anisotropies are consistent to the collective
flow signatures calculated using the hydrodynamic model with a small shear viscosity.

5



CHAPTER 1. INTRODUCTION

However, a large theoretical uncertainty exists in the initial anisotropy estimation in the
hydrodynamic models even if we systematically analyze higher harmonic flow vn,k [10,
16, 17, 15, 18, 19, 20, 21]. Detailed descriptions about discussion with the hydrodynamic
models are found in appendix A. In this thesis, the directed flow v1 and joint correlations
between the directed flow and higher harmonic flow [13, 22, 23, 24, 25, 26] are investigated
as an extension of the flow analysis, which are introduced in detail at Sec.2.3. It is expected
to help reducing these theoretical uncertainties.

6



1.4. AZIMUTHAL ANISOTROPIC FLOW

Figure 1.4: A sketch of the non-central nucleus-nucleus collision [11]. The matter created
in the collision (red) is called participant region and has the azimuthal anisotropies. It
collectively expands as shown by grey arrows. The nucleons in the blue region are called
spectators and do not participate in the collisions. The x-axis corresponds to the vector
between the centers of the two colliding nuclei. The grey plane is called the reaction
plane.

(a) (b)

Figure 1.5: The transverse profile in a single event simulated using the Monte Carlo
Glauber model [12, 8]. (a) Green circles are the positions of the nucleon-nucleon collisions.
The 2nd harmonic symmetry plane is slightly inclined around the reaction plane. (b) It
also has a non-zero triangle anisotropy. The azimuthal angle of the triangle anisotropy
i.e. the 3rd harmonic symmetry plane angle Ψ3 is not correlated with the reaction plane.

7



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.6: (a) The momentum anisotropy of the entropy distribution ε1p, ε2p and ε3p as a
function of time for the impact parameter b = 7.6 fm. (b) The spatial anisotropy ε1x, ε2x

and ε3x as a function of time [13]. εnx denotes εn in this thesis notation.

Figure 1.7: Charged hardron pT differential flow vn for each collision centrality class mea-
sured by the ALICE collaboration [14]. v4/Ψ4 and v4/Ψ2 in this figure notation correspond
to v4,4 and v4,2 in this thesis notation, respectively.
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1.5. MEASUREMENTS OF CHARGE DEPENDENT AZIMUTHAL
CORRELATIONS

1.5 Measurements of Charge dependent azimuthal

correlations

Primary motivation of this thesis is to study the physics origin of the charge dependent
azimuthal correlations in Pb–Pb collisions. These observables are measured by using same
methods as the measurement of the azimuthal anisotropic flow.

In relativistic heavy-ion collisions a large number of charged particles is produced
throughout the dynamical evolution of the system. While this is readily evident from
measurements of the hadronic spectra in the final state of the evolution, the spectra
provide only little insight into how and when the production of charged particles occurs.
In contrast measurements of charged particle correlations contain additional information
about the evolution of the system and several observables have been proposed to study
in particular the chemical evolution of the system [27, 28, 29, 30, 31, 32, 33]. In this
context it is important to realize, that any type of the charged particle productions at
any stage are subject to microscopic conservation laws, which require local production of
charge anti-charge pairs in coordinate space, i.e. the local charge conservation (LCC). The
strong collective expansion of the system transforms their correlations from coordinate
space to momentum space, while at the same time diffusive interactions with the medium
reduce the correlations. Measuring a series of the charge dependent azimuthal correlations,
we will study here to what extent experimental observations at the LHC are consistent
with highly localized charge conservation on the kinetic freeze-out surface [34, 35]. This
phenomenological knowledge is expected to have an information about the hadronization
dynamics in heavy-ion collisions. Detail descriptions about the investigation of the LCC
induced correlations are found in Sec.2.1.

Among the various mixed harmonic azimuthal correlations measured in this thesis, the
correlation 〈cos(ϕα +ϕβ−2ΨRP )〉 has a special interest because it was originally proposed
to search for the Chiral Magnetic Effect (CME) [36, 37, 38, 39, 40]. In the presence of
the large magnetic field generated in heavy-ion collisions, the existence of the parity-odd
(and topologically non-trivial) gluonic field is expected to result in the charge separation
along the direction of the magnetic field. This is called Chiral Magnetic Effect. In this
correlation, both the possible CME and LCC induced correlations are competing physics
contributions. Therefore, if it is found that the LCC induced correlations actually con-
tribute on the mixed harmonic azimuthal correlations, this background in the correlation
〈cos(ϕα + ϕβ − 2ΨRP )〉 should be evaluated more precisely and the CME signals should
be searched in the background subtracted correlation [34, 35]. Detail descriptions about
the search for the CME are found in Sec.2.2.

1.6 Organization of this thesis

In Chapter 2, the physics motivations about the measurement of the mixed harmonic
azimuthal correlations in the relativistic heavy ion collisions are explained. In Chapter 3,
the LHC-ALICE experiment setup and the experimental conditions for

√
sNN=2.76 TeV

9



CHAPTER 1. INTRODUCTION

Pb–Pb collisions in 2010 are described. In Chapter 4, the analysis method is explained in
detail. In Chapter 5, the results of mixed harmonic azimuthal correlations are shown and
the physical implication for these measurements are discussed. In Chapter 6, this thesis
is concluded.

1.7 Major Contribution

The major contributions of the author as a ALICE collaborator are as follows:

� E ×B calibrations of the Time Projection Chamber (TPC)

� The measurement of the charged kaon elliptic flow v2 via kink topological identifica-
tions in

√
sNN=2.76 TeV Pb–Pb collisions and participation in the Paper Committee

(PC) for the paper ”Elliptic flow of charged pions, kaons, (anti-)protons and (multi-
)strange hadrons in Pb–Pb collisions at

√
sNN=2.76 TeV” (under preparation)

� The measurement of the charge dependent azimuthal correlations in
√
sNN=2.76 TeV

Pb–Pb collisions and participation in the Paper Committee (PC) as a represen-
tative of the paper ”Mixed harmonic charge dependent azimuthal correlations in√
sNN=2.76 TeV Pb–Pb collisions measured by the ALICE at the LHC” (under

preparation)

� The measurement of the charge independent azimuthal correlations in
√
sNN=2.76 TeV

Pb–Pb collisions and participation in the Paper Committee (PC) of the paper ”Non-
flow and fluctuations” (under preparation)

Other works are listed below:

� Proposal of a series of mixed harmonic charge dependent azimuthal correlation
measurements in order to disentangle the possible chiral magnetic effect and the local
charge conservation induced correlations with the Blast Wave model calculations.
(arXiv:1208.0603)

� Investigation of the directed flow v1 and mixed harmonic correlations by using the
event-by-event ideal hydrodynamics model. (a paper is under discussion)

10



Chapter 2

Physics Motivation

2.1 The Local Charge Conservation (LCC) induced

correlations

Although the charge and balancing opposite-charge can not be identified pair by pair,
the LCC can be traced statistically: If one observes a charged particle, one can find a
opposite-charged particle more closely than a same-charged particle. Note that the concept
of the LCC is different from the charge neutrality of the matter. The charge neutrality of
the matter is realized statistically since the number of the particles produced in the heavy
ion collisions is large enough. This just means that If one observes a charged particle, one
can find both same and opposite charged particles nearby. In Ref. [27, 28], the observable
employed in experimental studies of balancing charge correlations is the charge balance
function

Bcc(pβ|pα) =
〈Ncc(pβ|pα)−Ncc(pβ|pα)〉

〈dM/dpα〉
+

〈Ncc(pβ|pα)−Ncc(pβ|pα)〉
〈dM/dpα〉 , (2.1)

which aims to identify balancing partner charges on a statistical basis. Here dM/dpα

denotes the differential charged particle multiplicity and Ncc(pβ|pα) is the number of par-
ticle pairs where the first particle has charge c and momentum pα and the second one has
charge c and momentum pβ and we denote the bracket 〈· · · 〉 as the event average. The
definition of the balance function Bcc(pα|pβ) is very clear. It describes the conditional
probability to observe a particle with charge c and momentum pβ, given the observa-
tion of a particle with opposite charge c and momentum pα. Instead of considering the
six-dimensional correlation function in Eq. (2.1), previous studies have focused on the
integrated correlation functions B(∆ϕ) and B(∆η), which quantify the separation of bal-
ancing charges in relative azimuthal angle ∆ϕ ≡ ϕα − ϕβ and relative pseudo-rapidity
∆η ≡ ηα − ηβ [27, 28, 29, 30, 31, 32, 33].

In this thesis, to quantify the distribution of the balancing charge in the azimuthal
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CHAPTER 2. PHYSICS MOTIVATION

direction [35], we use a set of charge dependent parts of the two-particle azimuthal corre-
lations

Cn ≡ ∆〈cos[n(ϕα − ϕβ)]〉
= 〈cos[n(ϕα − ϕβ)]〉opp. − 〈cos[n(ϕα − ϕβ)]〉same, (2.2)

where n is a natural number. In this thesis, ∆〈· · · 〉 denotes the difference between the
opposite and same charge correlations. We assume that this subtraction plays a role of
the combinatorial pair subtraction. The charge balance moments Cn simply correspond
to the Fourier moments of the balance function B(∆ϕ),

Cn ∼
∫
d∆ϕB(∆ϕ)cos(n∆ϕ). (2.3)

The moment C1 can be regarded as the inverse width between charge and balancing
anti-charge in the azimuthal direction. A width between charge and balancing anti-
charge (charge balance width) becomes smaller when the pairs are emitted from the fluid
element with the larger collective velocity, which is, in other words, the focusing of the
charge balance width. Hence, the charge balance width (∝ 1/C1) is expected to be
smaller when the larger radial flow is created as illustrated in Fig. 2.1. Note, however,
HBT correlations between identical particles induce the extra (and positive) same charge
correlations, which may make ∆C1 negative. In this case, the interpretation as the inverse
width completely fails. We must firstly check that this is not our case in reality.

Figure 2.1: A width of balancing pairs emitted from the hydrodynamic surface with the
larger radial flow (black arrows) is smaller.

A distribution of balancing charge is possibly modulated in the azimuthal direction by
the azimuthal anisotropic flow at a time of the charge creation and subsequent diffusion.
These azimuthal modulations can be quantified by the charge dependent parts of the
mixed harmonic azimuthal correlations

∆〈cos[nϕα +mϕβ − (n+m)Ψk]〉, (2.4)
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where n,m, k are integers and (n + m) ∝ k since these correlations can be decomposed
into the three contributions:

∆〈cos[nϕα +mϕβ − (n+m)Ψk]〉 = v|n+m|,kCn +mc
(n)
n+m,k −ms

(n)
n+m,k. (2.5)

The contribution v|n+m|,kCn is the product of the n-th charge balance moments Cn defined
as Eq. (2.2) and the azimuthal anisotropic flow v|n+m|,k. The other two contributions take
the form

mc
(n)
n+m,k = ∆〈cos(n∆ϕ)cos[(n+m)ϕ̃k,β]〉 − v|n+m|,kCn , (2.6)

ms
(n)
n+m,k = ∆〈sin(n∆ϕ)sin[(n+m)ϕ̃k,β]〉 , (2.7)

where (ϕ̃k,β ≡ ϕβ − Ψk) and ∆ϕ = ϕα − ϕβ. The contribution mc
(n)
n+m,k is interpreted as

the |n+m|-th azimuthal modulation of Cn with respect to the k-th harmonic symmetry

plane. The contribution ms
(n)
n+m,k is interpreted as the |n+m|-th azimuthal modulation of

the n-th charge balance asymmetry with respect to the k-th harmonic symmetry plane.
For example, the charge balance width of the pairs in the in-plane region is expected

to be smaller than that in the out-of-plane region because of the elliptic flow v2,2. This

2nd azimuthal modulation of C1 can be quantified by mc
(1)
2,2. Similarly, although the

correlation ∆〈sin(ϕα − ϕβ)〉, which is called charge balance asymmetry, is zero due to
the symmetry of the matter, its 2nd azimuthal modulation can be nonzero. The 2nd
azimuthal modulation of the charge balance asymmetry can be quantified as ms

(1)
2,2. These

2nd azimuthal modulations of the charge balance width and asymmetry are illustrated
in the left and right pictures of Fig. 2.2 respectively and can contribute the correlations
∆〈cos(ϕα + ϕβ − 2Ψ2)〉 and ∆〈cos(ϕα − 3ϕβ + 2Ψ2)〉.

Figure 2.2: The illustrations of (left) the 2nd azimuthal modulation of C1 and (right) the
2nd azimuthal modulation of the charge balance asymmetry due to the elliptic flow.

In the conventional Blast Wave model, the spatial geometry of the kinetic freeze-out
surface is simply parametrised so as to mimic the shape of the kinetic freeze-out surface

13
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calculated using the full hydrodynamic simulations. Then the hadrons are emitted from
the parametrized kinetic freeze-out surface according to the Boltzmann distribution with
the freeze-out temperature Tkin. In the model developed in Ref. [34, 41], when one hadron
is emitted from a space-point on the freeze-out surface, it is imposed that balancing anti-
hadron is also emitted from nearby. The model parameter σϕ describes how near the
balancing anti-hadron are emitted and in the case of σϕ = 0 the perfect LCC is effectively
realized on the freeze-out surface. Here we use the word “effective” since the particle
production occurs not on the kinetic freeze-out surface but at an earlier time. Detailed
description of this model is found in Sec.5.1.1.

As shown in Fig. 2.3, this Blast Wave model incorporating with the LCC roughly
reproduce the observed ∆〈cos(ϕα + ϕβ − 2ΨRP )〉 by the STAR collaboration, which is
written as γOS − γSS in this plot’s notation. In this plot, M denotes the non-corrected
number of track used in the experimental measurement of ∆〈cos(ϕα + ϕβ − 2ΨRP )〉 and
the longitudinal axis is scaled by M for the sake of visibility. Blue symbols are results cal-
culated by the model with the perfect local charge conservation on the kinetic freeze-out
surface. Red symbols are the model calculation tuned the model parameter σϕ to repro-
duce the experimental results (black symbols). Furthermore, in this plot, the centrality

dependencies of each three contributions mc
(1)
2,2, ms

(1)
2,2 and v2,2C1 are also shown (in this

plot’s notation, v2c, v2s and v2CB).

Although the Blast Wave model incorporating with the LCC can reproduce the corre-
lation ∆〈cos(ϕα + ϕβ − 2ΨRP )〉 measured by the STAR collaboration, the physics origin
of the “effective” LCC on the kinetic freeze-out surface is not trivial. Rather, the “ef-
fective” LCC on the kinetic freeze-out surface should be tested experimentally. If the
“effective” LCC is realized on the freeze-out surface and the freeze-out surface has a
large radial and anisotropic flow v|n+m|,k, one expects the naive scaling that the corre-
lations ∆〈cos[nϕα + mϕβ − (n + m)Ψk]〉 are roughly proportional to the corresponding
flow v|n+m|,k. The significant anisotropic flow created in the heavy ion collisions are the
elliptic flow quantified by v2,2 and the fourth harmonic flow with respect to the 2nd har-
monic symmetry plane quantified by v4,2. Therefore, the corresponding correlations with
n = 1 are ∆〈cos(ϕα +ϕβ − 2Ψ2)〉, ∆〈cos(ϕα − 3ϕβ + 2Ψ2)〉, ∆〈cos(ϕα + 3ϕβ − 4Ψ2)〉 and
∆〈cos(ϕα− 5ϕβ + 4Ψ2)〉. The triangle flow v3,3 and the fourth harmonic flow v4,4 are also
generated in the heavy ion collisions. They will lead the modulation of C1, which can be
quantified using ∆〈cos(ϕα + 2ϕβ − 3Ψ3)〉 and ∆〈cos(ϕα + 3ϕβ − 4Ψ4)〉 and so on.

Theoretical calculations of these correlations will be conducted using the Blast Wave
model incorporating with the LCC described in Sec.5.1.1. They are compared with the
experimental observations at the LHC energy which are described in Sec.5.1.2 to test
whether or not the “effective” LCC is realized on the anisotropically radial expanding
kinetic freeze-out surface [35].

The correlation ∆〈cos[nϕα +mϕβ − (n+m)Ψk]〉 corresponds to different moments of
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Figure 2.3: The centrality dependence of the correlation M/2(γOS − γSS) measured by
the STAR collaboration in comparison with the results calculated using the Blast Wave
model incorporating with the LCC [34, 41]. Here γOS and γSS denote the opposite and
same charge correlation 〈cos(ϕα +ϕβ − 2ΨRP )〉 respectively, so (γOS− γSS) = ∆〈cos(ϕα +
ϕβ − 2ΨRP )〉. M denotes the non-corrected number of track used in the experimental

measurement of γOS/SS. v2c, v2s and v2CB in this thesis notation are mc
(1)
2,2, ms

(1)
2,2 and

v2,2C1 respectively in this thesis notation. Blue symbols are results calculated by the model
with the perfect local charge conservation on the kinetic freeze-out surface. Red symbols
are the model calculation tuned the model parameter σφ (σϕ in this thesis notation) to
reproduce the experimental results (black symbols). The model parameter σφ represents
how locally the charge conservation is realized.

the balance function with respect to the k-th harmonic symmetry plane Ψk - B(ϕ̃k,∆ϕ)

∆〈M2cos[nϕα +mϕβ − (n+m)Ψk]〉
〈M〉 =

4

〈M〉
∫

dϕ̃k d∆ϕ 〈dM
dϕ̃k

〉B(ϕ̃k,∆ϕ)

×cos[n∆ϕ+ (n+m)ϕ̃k], (2.8)

where M is the total number of the charged particles used for the correlation measurement
and

B(ϕ̃k,∆ϕ) ≡ 1

〈dM/dϕ̃k〉
∫
dpβ

〈
dM

dpα

〉
dpα B(pβ|pα)

× δ(∆ϕ− (ϕα − ϕβ)) δ(ϕ̃k − ϕ̃β,k). (2.9)

Figure 2.4 shows the results of B(ϕ̃2,∆ϕ) measured by the STAR collaboration [42].
Indeed, these balance functions have a single peak at ∆ϕ ∼ 0 and can be regarded as
a distribution of the balancing charge. Furthermore, the 2nd azimuthal modulation of
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C1 with respect to the 2nd harmonic symmetry plane (the reaction plane) are observed.
However, the detailed shape of the balance function is sensitive to the detector effect
but irrelevant to the physics while the most detector effects cancel out in the azimuthal
correlations. What is worse about the balance function is that there is no clear way
to correct for the detector effect on the experimental estimation of B(ϕ̃k,∆ϕ). So the
balance function itself is not measured in this thesis. Instead, a series of charge dependent
azimuthal correlations is used to investigate the distribution of the balancing charge.

(a) (b)

Figure 2.4: (a) Charge balance function B(ϕ̃2,∆ϕ) measured by the STAR collaboration.
(b) The azimuthal modulation of the charge balance moments. Here φ→ ϕ̃2, ∆φ→ ∆ϕ,
cb(φ) → mc12,2 + v2,2C1 and sb(φ) → ms1

2,2 in this thesis notations [42].
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2.2 Chiral Magnetic Effect (CME) search

The possibility to observe local parity violation in the strong interaction using relativistic
heavy-ion collisions has been discussed for many years. In high temperature QCD, this
symmetry violation originates in the interaction between quarks and gluonic fields, in-
stantons, and sphalerons which carry non-zero topological charge. A typical size of such
gluonic fields is expected to be ∼ 0.3 fm while typical transverse size of the participant
regions in the heavy ion collisions is a few tens fm. Hence, a few hundreds of such fields
are created like bubbles in a single heavy ion collision. The experimental search of this
effect has intensified recently, following the realisation that, in the presence of the mag-
netic field generated perpendicularly to the reaction plane in non-central collisions, the
existence of such parity-odd bubbles results in a charge separation along this magnetic
field direction as shown in Fig. 2.5. This phenomenon is called the Chiral Magnetic Effect
(CME). Theoretical details of the CME are found in appendix B. The charge dependent
azimuthal correlations 〈cos(ϕα + ϕβ − 2ΨRP )〉 measured by the STAR Collaboration was
originally proposed for the CME search and is consistent with the qualitative expectations
for the CME, and has triggered an intense discussion.

Figure 2.5: The charge dependent coefficient a1,α in Fourier expansion Eq. (2.10) of the
particle azimuthal distribution with respect to the reaction plane.

Phenomenologically, the charge separation with respect to the reaction plane due to
the CME can be described by adding P -odd sine terms to the Fourier decomposition of
the charge dependent particle azimuthal distribution in a single event [43]:

dNα

dϕ̃2,α

∝ 1 + 2
∑

n

(
vn,2,αcos(nϕ̃2,α) + an,αsin(nϕ̃2,α)

)
, (2.10)

where the index α refers to the charge of the particles. The an,α parameters represent the
P-violating effect and in particular a1,α represents the charge separation with respect to
the reaction plane as shown in Fig. 2.5. The event averaged vn,k,α parameters, 〈vn,k,α〉 do
not vanish in general but they are P-even observables (As similar to vn,k,α, the coefficient
of the sine term should be written as an,k,α. However it is obvious that we only think
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about k = 2 case, so we omit k and define as an,α). We know that the reaction plane differs
from the 2nd harmonic symmetry plane due to the fluctuations of the initial conditions,
but here we roughly regard them as identical ones ΨRP ∼ Ψ2. The effects of local parity
violation can not be significantly observed in a single event because of the statistical
fluctuations in the large number of particles, which are irrelevant to the P-violating fields.
However, the average of an,α over many evens, 〈an,α〉 is zero. Even in a single event, 〈a1,α〉
is expected to be small because the large number of the parity-odd bubbles with both
positive and negative topological charge is created in a single event. The observation of
the effect is possible only via measuring charge distribution fluctuations, e.g. 〈a1,αa1,β〉
with the average taken over all events in a given event sample. The correlation 〈a1,αa1,β〉
is, however, a P-even quantity, and an experimental measurement of this quantity may
contain contributions from effects unrelated to parity violations.

Based on the current theoretical understanding of the CME, one might expect the
following features for the correlation 〈a1,αa1,β〉 [39] :

Magnitude
A signal of the order of |a1| ∼ Qw/Nπ ∼ 10−2 is predicted for mid-central collisions.

Charge combinations
If the particles experience no medium effects (re-interaction with other particles in
the system) after leaving the domain, one would expect a1,+ = −a1,− as shown in Fig.
2.5. Thus, in the absence of medium effects, one expects 〈a1,+a1,+〉 = 〈a1,−a1,−〉 =
−〈a1,+a1,−〉 > 0. If the process occurs in a dense medium one needs to account for
correlation modifications due to the interactions with the medium and the parity-
odd bubbles. The effect of these modifications is similar to the modification of the
jet-like two-particle correlations which experience strong suppression of the back-
to-back correlations: 〈a1,+a1,+〉 = 〈a1,−a1,−〉 À −〈a1,+a1,−〉. In the CME view, this
is a suppression of the back-to-back opposite charge correlations [37]. The effect
of strong radial flow can further modify this relation such that the opposite charge
correlations can even become positive.

Centrality dependence
Under the assumption that the average size of the P -violating domain does not
change with centrality, the correlation should follow a 1/M dependence multiplied
by a factor accounting for the variation of the magnetic field. Here M is a total
multiplicity. The latter is difficult to predict reliably at present. In the most central
collisions, where the magnetic field is zero, the CME signal should vanish.

Beam species dependence
The effect may be roughly proportional to the square of the nuclear charge Z2

because the magnetic field does, but the atomic number A dependence is not well
understood. One qualitative prediction is that the suppression of the back-to-back
opposite charge correlations should be smaller in collisions of lighter nuclei because
the collisions between the lighter nuclei generate the smaller medium.
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A event averaged 〈a1,αa1,β〉 is simply estimated using the charge dependent azimuthal
correlation 〈sin(ϕ̃2,α)sin(ϕ̃2,β)〉. However, this correlation may has other contributions
from the background correlations in the out-of-plane region (ϕ̃2,α ∼ π/2 and ϕ̃2,β ∼ π/2)
denoted by Bout:

〈sin(ϕ̃2,α)sin(ϕ̃2,β)〉 = 〈a1,αa1,β〉+Bout. (2.11)

Only when the both particles are in the out-of-plane region, correlations between them can
contribute on the background Bout since the cosine term results in non-zero. Therefore, the
background Bout is considered to be produced mainly by clusters, like jets and resonances,
in the out-of-plane region.

In Ref. [40], it was proposed that the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 is a best
observable to search for the CME since the background is expected to be suppressed with
the following decomposition

〈cos(ϕα + ϕβ − 2ΨRP )〉 = 〈cos(ϕ̃2,α)cos(ϕ̃2,β)〉 − 〈sin(ϕ̃2,α)sin(ϕ̃2,β)〉
= (〈v1,2,αv1,2,β〉+Bin)− (〈a1,αa1,β〉+Bout)

= 〈v1,2,αv1,2,β〉 − 〈a1,αa1,β〉+Bin −Bout, (2.12)

where Bin describes the background contributions of the particles for the in-plane region
(ϕ̃2,α ∼ 0 and ϕ̃2,β ∼ 0) in the correlation 〈cos(ϕ̃2,α)cos(ϕ̃2,β)〉 and v1,2,α/β denotes the
dipole component with respect to the reaction plane, which comes from the first P-even
Fourier coefficient of the single particle azimuthal distribution in a single event Eq. (2.10).
Although both the charge dependent and independent parts ofBin andBout are not known,
it is naively expected that the backgrounds Bin and Bout may cancel out in the correlation
〈cos(ϕα +ϕβ−2ΨRP )〉 and the reaction plane dependent background [Bin−Bout] remains.
The background of the term 〈v1,2,αv1,2,β〉 is ignored in this thesis since the correlation
〈v1,2,α〉 is less than O(10−3). Note that this term is expected to be non-zero and have an
interesting physics in the asymmetric heavy-ion collisions like Au–Cu collisions [44].

If the dipole components 〈v1,2,αv1,2,β〉 and the reaction plane dependent background
[Bin−Bout] can be negligible, the correlation 〈cos(ϕα +ϕβ−2ΨRP )〉 is expected to be pos-
itive for the opposite charge combination and negative for the same charge combinations.
The correlation 〈cos(ϕα +ϕβ − 2ΨRP )〉 can be measured both by using the three-particle
cumulant method and the event plane method, which are described in detail in Sec.4.4
and Sec.4.5.

Figure 2.6 (a) shows the results of the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 for same
and opposite charge combinations in

√
sNN =200 GeV Au–Au and Cu–Cu collisions at

RHIC measured by the STAR collaboration [39]. A transverse axis represents the colli-
sion centraliy percentile. Same charge correlation is negative while the opposite charge
correlation is positive. Their magnitudes are roughly same as the expectation from the
CME if the dipole component 〈v1,2,αv1,2,β〉 and the reaction plane dependent background
[Bin − Bout] can be negligible. Magnitudes of both the same and opposite charge cor-
relations decrease with decreasing event centrality percentage and are very small in the
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(a)
(b)

Figure 2.6: (a) The centrality dependence of the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 in√
sNN =200 GeV Au–Au and Cu–Cu collisions at RHIC measured by the STAR collabo-

ration. The thick solid (Au–Au) and dashed (Cu–Cu) lines represent the HIJING model
expectations for the reaction plane independent background estimated by the correlation
〈cos(ϕα +ϕβ − 2ϕγ)〉/vmeasured

2 . (b) 〈cos(ϕα +ϕβ − 2ΨRP )〉 calculated by event generator
HIJING (with and without an elliptic flow afterburner), UrQMD and MEVSIM. Blue
symbols mark opposite charge correlation, and red are same charge correlation. For the
event generator, the true reaction plane from the generated event was used for ΨRP in
order to estimate the reaction plane dependent backgrounds [39].

most central collisions. These centrality dependencies also roughly agree with the CME
expectation.

However, both same and opposite charge correlations in Cu–Cu collisions are larger in
magnitude than those in Au–Au collisions. This beam species dependence conflicts with
the naive CME expectations, where it is roughly proportional to the square of the nuclear
charge Z2 because the generated magnetic field does.

The magnitude of the opposite charge correlation is smaller than that of the same
charge correlation, which agree with the expectation that the back-to-back opposite charge
correlation is suppressed in comparison with the same charge correlation due to the in-
teractions between the medium and parity-odd bubbles, i.e. 〈a1,+a1,+〉 = 〈a1,−a1,−〉 À
−〈a1,+a1,−〉 [37]. Furthermore, the opposite charge correlation in Cu–Cu collision is less
suppressed than in Au–Au collision, which can be explained in the CME context by the
smaller medium in the Cu–Cu collision than in the Au–Au collision.

The CME might be stronger at lower energies since the time integral of the magnetic
field is larger. At the same time, the charge separation effect is expected to depend
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strongly on deconfinement and chiral symmetry restoration. The signal might be greatly
suppressed in the lower energy collisions where the QGP is not formed. Measurements in
the lower energy collisions were conducted by the STAR collaboration and are described
in appendix B. In this thesis, we will discuss at the LHC energy. Some theories predict
the signals in the LHC energy is smaller than that in the RHIC top energy. Others
predict little collision energy dependence between LHC and RHIC top energies. Detailed
discussion is found in Sec.5.1.2.

One ignores the reaction plane dependent background [Bin − Bout] in the correlation
〈cos(ϕα + ϕβ − 2ΨRP )〉 so far. As already discussed, both the backgrounds Bin and Bout

originate from the correlations between two particles, which are products of a cluster
decay such as jets and resonances. If such cluster properties are different between in the
in-plane and out-of-plane regions due to the interaction with the anisotropic medium,
nonzero reaction plane dependent background [Bin − Bout] remains. This is called the
flowing cluster effect. If flowing cluster is the only contribution to these correlations, we
can write:

〈cos(ϕα + ϕβ − 2ΨRP )〉 = Aclust〈cos[(ϕα + ϕβ − 2ϕclust) + 2(ϕclust −ΨRP )]〉clust

∼ Aclust〈cos(ϕα + ϕβ − 2ϕclust)〉clust × v2,clust{RP}, (2.13)

where 〈· · · 〉clust indicates that the average is performed only over pairs consisting of
two daughters from the same cluster and the resulting normalization factor is Aclust =
N clust

event
N pairs

clust
/N pairs

event
. This equation assumes the small reaction plane dependence of 〈cos(ϕα+

ϕβ − 2ϕclust)〉clust. The term 〈cos(ϕα + ϕβ − 2ϕclust)〉clust is a measure of the azimuthal
correlations of decay products with respect to the cluster azimuth, while v2,clust{RP} is
the elliptic flow of the cluster. In case of jets as a flowing cluster, their properties may vary
with respect to the reaction plane due to the interaction between the medium and jets.
Figure 2.6 (b) shows the comparison with the event generator HIJING (with and without
an elliptic flow afterburner) [45], UrQMD [46] and MEVSIM [47]. For the moment, any
realistic models can not reproduce observed large charge dependence.

In Ref. [34], it was pointed out that the observed charge dependence of the corre-
lation 〈cos(ϕα + ϕβ − 2ΨRP )〉 used for the CME search by the STAR collaboration can
be explained almost solely by the charge dependent parts of the reaction plane depen-
dent background [Bin − Bout], which are originated from the effects combined with the
“effective” LCC and the elliptic flow v2,2 on the kinetic freeze-out surface as already dis-
cussed at the previous section. If the LCC is imposed on the switching procedure from
the hydrodynamic to the hadronic particle picture in the hydro model, the hadron and
anti-hadron are spatially correlated and virtually form the cluster. In the conventional
hydrodynamic model, the switching procedure from the hydrodynamic to the hadronic
particle picture implements on the kinetic freeze-out surface. Since the kinetic freeze-out
surface is expected to already have large ellipticity, the virtual clusters formed by the
hadron and anti-hadron are affected by the elliptic flow and hence can be regarded as
the flowing cluster backgrounds for the CME signals. Note however that the LCC in-
duced correlations affect only on the difference between the same and opposite charge
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correlations while the CME predicts both the same and opposite charge correlations. So
the other mechanism for the charge independent parts of the mixed harmonic azimuthal
correlations introduced in the next section (Sec. 2.3), is necessary for a complete under-
standing of the observed signals. This argument has triggered intensive discussion on the
interpretation of experimental results of the CME search [34, 35, 42, 48, 49, 50].

Finally, for the completeness, we need to discuss that the correlation 〈cos(ϕα − ϕβ)〉
can be decomposed as

〈cos(ϕα − ϕβ)〉 = 〈cos(ϕ̃2,α)cos(ϕ̃2,β)〉+ 〈sin(ϕ̃2,α)sin(ϕ̃2,β)〉
= (〈v1,2,αv1,2,β〉+Bin) + (〈a1,αa1,β〉+Bout)

= 〈v1,2,αv1,2,β〉+ 〈a1,αa1,β〉+ 2B, (2.14)

where B denotes the reaction plane independent background B = [Bin + Bout]/2. So the
charge balance moment C1 also has the possible contribution from the CME denoted as
〈a1,αa1,β〉, but the magnitude of the correlation ∆〈a1,αa1,β〉 is a few order smaller than
the expected charge balance width from the LCC induced correlations.
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2.3 Directed flow and Mixed harmonic azimuthal cor-

relation

(a)

(b)

Figure 2.7: (a) v1(pT) in Pb–Pb collisions at 2.76 TeV extracted from correlation data
measured by the ALICE collaboration in comparison with the viscous hydrodynamic
simulations with 0 < η/s < 0.24 and the value of ε1 adjusted so as to match the data.
(b) The centrality dependence of ε1 with various models. The shaded bands indicate
the allowed regions using ALICE data in combination with the viscous hydrodynamics,
assuming either 0 < η/s < 0.24 (lighter shade) or 0.08 < η/s < 0.16 (darker shade)[26].

It has been pointed out that the correlation 〈cos(ϕα +ϕβ − 2ΨRP )〉 used for the CME
search has a charge independent part which may be originated from the effect of the
transverse momentum conservation [51] and the joint correlation between the directed
flow v1 and the elliptic flow v2 [13]. Here we introduce the possible signature of the
directed flow v1 and the joint correlations between the different harmonic azimuthal flow.

In Ref. [13], it was pointed out that the fluctuations of the initial density profile
can create dipole components. This dipole asymmetry possibly develops through the
hydrodynamical evolution of the system with high pT particles flowing in the direction
of the steepest gradient and low pT particles flowing in the opposite direction because of
the global momentum conservation rule, which results in the directed flow v1 as shown
by red lines in Fig. 1.6. When the sign of v1 at the low pT region is assigned to be
negative, then the sign of v1 at the high pT region is expected to be positive. Assuming
the boost invariance of the initial density at the mid-rapidity, this directed flow should
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be rapidity even. With the consideration of the pT conservation effect on the two-particle
correlation [22, 23, 24, 25], the two-particle correlation V1∆ ≡ 〈cos(ϕα − ϕβ)〉 is expected
to be factorized as

V1∆ = v1,αv1,β − pT,αpT,β

〈∑ p2
T〉
, (2.15)

where rapidity range of particle α and β must be even and the
∑

goes over all particles
in the events. Recent experimental results on V1∆ from the ALICE collaboration rea-
sonably agree with the event-by-event ideal hydrodynamic calculations and the viscous
hydrodynamic calculations as shown by green dot lines in Fig. 2.7 (a) [26] at the low pT

region where the pT conservation effect is rather small. Figure 2.7 (b) shows the centrality
dependence of the dipole eccentricities calculated by using various models. The shaded
bands indicate the allowed regions using ALICE data in combination with the viscous
hydrodynamics, assuming either 0 < η/s < 0.24 (lighter shade) or 0.08 < η/s < 0.16
(darker shade)

Furthermore, the mixed harmonic azimuthal correlations 〈cos(ϕα + ϕβ − 2Ψ2)〉 and
〈cos(ϕα−3ϕβ +2Ψ2)〉 were proposed to measure the directed flow v1 and joint correlations
between v1 and higher harmonic flow in Ref. [13]. Following their works, the mixed
harmonic correlations in Monte Carlo initial models were investigated in detail in Ref. [52]
as shown in Fig. 2.8. Generally, a k-particle mixed harmonic azimuthal correlation is
defined as:

vn1,n2,··· ,nk
≡ 〈cos(n1ϕ1 + · · ·+ nkϕk)〉
= 〈vn1 ...vnk

cos(n1Ψn1 + · · ·+ nkΨnk
)〉, (2.16)

where n1, .., nk are integers and n1 + · · ·+nk = 0. The eccentricity εn represents the mag-
nitude of the n-th harmonic anisotropy and Φn is an azimuthal angle of the n-th harmonic
symmetry plane in the initial density profile. Anisotropic flow during the hydrodynamic
evolution scales like εn and develops along Φn, so we approximately have vn ∼ Knεn and
Ψn ∼ Φn where Kn is a constant which contains the information of the hydrodynamic
response to the initial deformations. The constant Kn depends on the measured pT and
η ranges. In case of the integrated measurement, the constant K1 is expected to be nega-
tive and others are positive constant. With the assumption of the boost invariance of the
system, we can speculate the following generalization:

vn1,n2,··· ,nk
∼ Kn1 · · ·Knk

εn1,n2,··· ,nk
, (2.17)

where

εn1,n2,··· ,nk
≡ 〈εn1 ...εnk

cos(n1Φn1 + · · ·+ nkΦnk
)〉. (2.18)

This factorization conjectures are attractive simplifications since we can investigate the
detailed geometry of the initial condition, in particular, by the following version of the
formula:

vn1,n2,··· ,nk

vn1{2}...vnk
{2} ∼

εn1,n2,··· ,nk

εn1{2}...εnk
{2} , (2.19)
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where we remove the uncertainty of the factor Kn and εn{2} ≡ 〈ε2n〉1/2 corresponds to
the n-th harmonic flow vn{2} measured by the two-particle cumulant method. The left-
hand side of this equation can be observed experimentally and the right-hand side can be
calculated by theoretical models such as MC-CGC and MC-Glauber model. Figure 2.8
shows the calculation of the left-hand side of this equation for various mixed harmonics.

If we believe the above factorization, the mixed harmonic correlation 〈cos(ϕα− 3ϕβ +
2Ψ2)〉 has a special interest related to the directed flow v1. This correlation is expected
to be factorized as:

〈cos(ϕα − 3ϕβ + 2Ψ2)〉 ∼ v1,α · v3,β · 〈cos(Ψ1 − 3Ψ3 + 2Ψ2)〉
∼ v1,α · v3,β · ε123

ε1{2}ε2{2}ε3{2} . (2.20)

Therefore, the pT,α dependence of this correlation is expected to reflect the pT dependence
of the directed flow v1(pT) and its magnitude is expected to be proportional to the initial
correlations ε123 as shown in Fig. 2.9 (a). In this model, the factorization is assumed
and ε123 calculated with the Glauber model, v1 and v3 calculated with the ideal hydrody-
namic simulations are used. Experimental measurement of the pT differential correlation
〈cos(ϕα−3ϕβ +2Ψ2)〉 can be used to test the factorization conjecture, measure the initial
correlation ε123, and provide another measurement of the directed flow v1.

Figure 2.9 (b) shows the centrality dependence of the integrated correlation 〈cos(ϕα +
ϕβ − 2Ψ2)〉, whose sign is negative and originated from a sign of ε12 shown in Fig. 2.8.
Note that this prediction is compatible to the observed charge independent part of the
correlation 〈cos(ϕα + ϕβ − 2Ψ2)〉 as shown in Fig. 2.6.

In this thesis, the extension of the flow analysis described above is conducted, especially
in terms of the directed flow v1 and the mixed harmonic correlations. These observables
are expected to be useful for the better understanding of the initial state of the heavy-ion
collisions and the hydrodynamic properties as well as for the understanding of the CME
backgrounds.

25



CHAPTER 2. PHYSICS MOTIVATION

Figure 2.8: Mixed harmonic azimuthal correlations in (left) the CGC-type and (right) the
Glauber-type initial density profile versus the event centrality. From top to the bottom:
ε13/(ε1{2}3ε3{2}) (labeled 13), ε1223/(ε1{2}ε2{2}2ε3{2}) (labeled 1223), ε23/(ε2{2}3ε3{2}2)
(labeled 23), ε123/(ε1{2}ε2{2}ε3{2}) (labeled 123), ε12/(ε1{2}2ε2{2}) (labeled 12). Sym-
bols are Monte Carlo results. Full and dashed lines are analytic results [52].

(a) (b)

Figure 2.9: Theoretical expectations of (a) the pT,α differential correlation 〈cos(ϕα−3ϕβ +
2ΨRP )〉 and (b) the integrated correlation 〈cos(ϕα +ϕβ − 2ΨRP )〉 with various freeze-out
temperatures [13].
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Chapter 3

Experimental Setup

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) was constructed between 2002 and 2009 at the CERN
laboratory. It is the largest and most powerful particle accelerator ever built. It was
installed in the 27 km long circular underground tunnel across the border between France
and Switzerland that hosted its predecessor the Large Electron-Positron (LEP collider).
The LHC has 16 radio-frequency (RF) accelerating cavities and over 1600 superconducting
magnets and can accelerate, store and collide protons with a centre-of mass energy up to
14 TeV and Pb ions with a centre-of mass energy per nucleon up to 5.5 TeV [53].

The protons are firstly accelerated in linear accelerator LINAC 2 and injected into the
BOOSTER at an energy of 50 MeV. The BOOSTER accelerates them to 1.4 GeV before
they are sent to the Proton Synchrotron (PS), which further accelerates the protons to
25 GeV. From the PS they are sent to the Super Proton Synchrotron (SPS), where they
yet again are accelerated, this time to 450 GeV. And finally they are transferred to the
LHC ring. At maximum the 2808 bunches of the protons travel the ring either clockwise
or counter-clockwise.

For running the LHC with lead ions the procedure is similar, but with some differences.
The lead ions are produced by heating a highly purified lead sample up to around 550◦.
This creates a number of charge states, with Pb27+ being the dominant one. The ions
are accelerated in LINAC 3 to 4.2 MeV per nucleon. Afterwards they are sent through
a carbon foil, which strips them to Pb54+ . The Pb54+ beam is lead to the Low Energy
Ion Ring (LEIR), where it is accelerated to 72 MeV per nucleon, before being transferred
to the PS. At the PS, the ions are accelerated up to 5.9 GeV per nucleon. The ions once
again are sent through the foil, stripping them to Pb82+, which is the final ionisation used
for collisions. After the PS the now fully stripped ions arrive at the SPS, where they are
accelerated to 177 GeV per nucleon, before being sent into the LHC ring for acceleration
to their collision energy. Like in the proton case, the ion bunches are sent either clockwise
or counter-clockwise around the ring. The collision of lead ions only occur at 3 of the
experiment sites, namely ALICE, ATLAS and CMS.
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Figure 3.1: The LHC layout [53].

3.2 The ALICE Experiment

A Large Ion Collider Experiment (ALICE) is a large experiment placed at one of the
four collision points of LHC. The collaboration involves over a thousand scientists and
engineers from 116 institutes in 33 countries. It was designed to study the properties of
QCD and to characterize the Quark-Gluon Plasma (QGP). It is the only experiment at
LHC which was optimized for the heavy ions collisions.

The detector is placed in the solenoid magnet from the L3 experiment. This provides
a relatively low magnetic field of 0.5 T, which allows to measure low momentum par-
ticles corresponding to the so-called soft QCD, as well as more energetic particles form
hard processes. Because of the extremely high multiplicity expected in central nucleus-
nucleus collisions at LHC energies, the design of ALICE was optimized for a multiplicity
dNch/dy = 8000. ALICE has an efficient and robust tracking system over a large mo-
mentum range, from tens of MeV/c (soft physics) to over 100 GeV/c (jet physics). As
some of the tracking detectors are based on drift technologies, they are slower then the
detectors operated by the other LHC experiments but can work at the nominal LHC ion
beam rate of 10 kHz. A specificity of the ALICE detector over the other LHC experi-
ments is its emphasis on hadron and lepton identification (PID). It is achieved over much
of the momentum range using most known PID techniques: specific ionization energy loss
dE/dx, time-of-flight, transition and Cherenkov radiation, electromagnetic calorimetry,
muon filters, and topological decay reconstruction.

The detectors in the ALICE experiment are arranged in a classical layered structure
around the interaction point as shown on Fig. 3.2. Here is a short description of the main
detectors [54, 55, 56]:
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Figure 3.2: The ALICE detector setup [55].

Inner Tracking System (ITS)
It consists in 6 cylindrical layers of silicon detectors at radii from 3.9 to 43 cm, and
covering the pseudo-rapidity region |y| < 0.9. It allows tracking and identification of
low momentum particles, detection of secondary vertexes, and provides a reference
to improve the tracking resolution of the TPC. Combined with the TPC, it can
identify vertexes with a 14 µm resolution in the transverse plane. It is described in
detail in the subsection 3.3.1.

Time Projection Chamber (TPC)
It is a large cylindrical gas detector, and has an inner and outer radius of about
85 cm and 250 cm, respectively, and covers |η| < 0.9. It is described in detail in the
subsection 3.3.2.

Transition Radiation Detector (TRD)
It is placed from 2.9 to 3.8 m from the interaction point, |η| < 0.84. It discrimi-
nates electrons from pions with high efficiency for momenta about 1 GeV/c by the
identification of the transition radiation photons from electrons. Thanks to its fast
response time, it can provide a trigger for electrons.

Time Of Flight (TOF)
It is placed from 3.99 to 7.41 m from the interaction point, |η| < 0.9. The detector
is made of Multigap Resistive Plate Chamber strips (MRPC), which is made by a
ten layer double-stack detector with a time resolution of about 40 ps. By measuring
the time particles take to reach it, and combined with the tracking information of
the TPC, it allows to identify pions, kaons and protons at low and intermediate
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momentum (pT < 2.5 GeV/c).

High Momentum Particle Identification Detector (HMPID)
The HMPID consists of an array of proximity-focusing Ring Imaging CHerenkov
counters (RICH) and covers a pseudo-rapidity range of |η| < 0.6 and 58◦ of azimuthal
angle. The HMPID discriminates pions and kaons in the range 1 < p < 3 GeV/c
and protons and kaons in the range 2 < p < 5 GeV/c by means of their Cherenkov
rings.

PHOton Spectrometer (PHOS)
The PHOS is placed partially opposite to the EMCAL and covering a rapidity range
|η| < 0.14 and an azimuthal angle of 110◦, made of highly segmented electromagnetic
calorimeter of lead-tungstenate (PbWO4 , PbWO) crystals with a radiation length
of 20X0. It is used for neutral mesons and direct photon measurements.

ElectroMagnetic Calorimeter (EMCAL)
The EMCAL is a lead scintillator sampling calorimeter that covers an azimuthal
angle range of 107◦ in the rapidity interval |η| < 0.7 at a radial distance of about
4.5 m from the vacuum tube. The EMCAL is designed for the study of jet-physics
and can provide trigger signals for hard jets, photons and electrons.

Muon Spectrometer
It is situated in the forward region (−4 < η < −2.5), on one side of the experiment.
It offers tracking of muons with high momentum (p > 4 GeV/c, having passed
the large concrete absorber). It provides measurement of the different quarkonia
(J/ψ, ψ′,Υ,Υ′,Υ′′) decaying into the µµ channel.

T0 Detector
The T0 detector is designed to determine the collision time with 50 ps resolution
and to determine the collision vertex with 1.5 cm resolution. T0 consists of two
units, one on each side of the interaction point. Each T0 unit is comprised of quartz
Cherenkov radiators glued to photo multiplier tubes. A coincidence between signals
in both sides is used for both vertex and time determination. T0 furthermore acts
as a early wake-up signal to other detectors. Due to the low acceptance of T0, it is
only reliable for Pb–Pb collisions.

Zero Degree Calorimeter (ZDC)
The Zero Degree Calorimeters (ZDC) are positioned at very forward angles. Their
role is to measure the spectator nucleons from heavy ion collisions, in order to
estimate the number of participants, and hence the centrality. Furthermore it is
also used to determine the event plane.

The two ZDC themselves are positioned on each side of the interaction point, 116
meters away from it. Counted as part of the ZDC system are also two electromag-
netic calorimeters (ZEM). These are placed on either side of the beam pipe, but only
7 meters away from the interaction point on the opposite side of the muon absorber.
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The ZEM measures the photons from particles emitted at forward rapidity, which
is used for determining the centrality of very central collisions where few specta-
tors escape to the ZDCs. Similarly they are also used for very peripheral collisions.
For very peripheral collisions, the spectators resemble the incoming nuclei (both
in amount and direction), and thus might continue inside the beam pipe, avoiding
detection in the ZDCs.

VZERO Detector
VZERO detector consists of two units of scintillator counters (V0A and V0C) located
on each side of the interaction point. It is described in detail in the subsection 3.4.1.

Forward Multiplicity Detector (FMD)
It consists of silicon strip detectors and covers the forward regions (−3.4 < η < −1.7
and 1.7 < η < 5) in order to measure the charged particle multiplicity in the forward
region. It is described in detail in the subsection 3.4.2.

The pseudo-rapidity acceptances of the subdetectors in the ALICE are shown in
Fig. 3.3. A z-axis of global coordinate is defined as an axis parallel to the mean beam
direction, pointing towards the “A-Side” or “Shaft-Side”, away from the muon arm. The
opposite side (negative z values) is called “C-Side” or “Muon-Side”. The x-axis is lying
in the local horizontal accelerator plane, pointing towards the centre of the LHC ring. the
side with positive x values is called “I-Side” (inner), the opposite side correspondingly
“O-Side” (outer). The y-axis is chosen to define a right handed system, thus pointing
upwards.

The azimuthal angle φ is increasing counterclockwise, starting from the x-axis (φ-0)
and looking from the “A-Side” towards the “C-Side”. The polor angle θ is increasing from
the z-axis towards the xy-plane.

3.3 Tracking System in ALICE Detectors

3.3.1 The Inner Tracking System (ITS)

The ITS consists of six layers of silicon detectors with radii from 3.9 cm to 43 cm as shown
in Fig. 3.4 [57]. The tasks of the ITS are the reconstruction of the primary vertex of the
collision as well as the reconstruction of secondary vertexes with a resolution better than
100 µm in transverse direction. The ITS stand-alone tracking can provide the tracking
information for low-momentum particles that do not reach the TPC. The pT cut-off at
nominal field for the two innermost layers is about 35 MeV/c.

The two innermost layers, Silicon Pixel Detector (SPD), are based on hybrid silicon
pixels which consist of silicon detector diodes with a thickness of 200 µm. The first layer
and the second layer are placed at 3.9 cm and 7.6 cm with an acceptance of |η| < 2.0 and
|η| < 1.4, respectively. The SPD has approximately 9.8 million channels. The average
material traversed by a straight track perpendicular to the beam line crossing the SPD
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Figure 3.3: The pseudo-rapidity acceptance of the subdetectors in the ALICE [55].

barrel corresponds to about 2% X0. The pixel readout chip (ALICE1LHCb) is a mixed-
signal ASIC for the readout of 8192 pixels. Each pixel cell contains a preamplifier-shaper
with leakage current compensation, followed by a discriminator. A signal above threshold
results in a logical 1 which is propagated through a delay line during the 6 µs latency
time until the arrival of the L1 trigger signal. A four-hit-deep front-end buffer on each
cell allows derandomization of the event arrival times. Upon arrival of the L1 trigger,
the logical level present at the end of the delay line is stored in the first available buffer
location. The outputs of the discriminators in the pixel cells of the ALICE1LHCb chip
provide a fast-OR digital pulse when one or more pixels are hit on the chip. The fast-OR
is an invaluable tool in testing and allows implementing a unique triggering capability in
the SPD. Upon arrival of the second level trigger (L2), the data contained in the front-end
buffer locations corresponding to the first (oldest) L1 trigger are loaded onto the output
shift registers. One pixel chip is read out in 25.6 µs. The 10 chips of two ladders (one
half-stave) are read out sequentially in a total time of about 256 µs.

The third and forth layer, Silicon Drift Detector (SDD), consist of a 300 µm thick
layer of homogeneous high-resistivity silicon. The readout of the SDD is analog, therefore
particle identification can be conducted using the information of energy-loss. The SDD
has 133,000 channels.

The two outermost layers, Silicon Strip Detector (SSD), consist of sensors equipped
on both sides with silicon micro-strips. These are arranged under a stereo angle of 35
mrad allowing for a two-dimensional measurement of the track position together with
an energy-loss measurement for particle identification. The SSD has approximately 2.6
million channels.

The information for ITS is summarized in Table 3.1.
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Figure 3.4: Schematic view of the ITS [57].

3.3.2 The Time Projection Chamber (TPC)

The main tracking device of the ALICE experiment is a large volume (∼88 m3), cylindrical
Time Projection Chamber (TPC) operated in 0.5 T solenoidal B field parallel to the E
field axis as shown in Fig. 3.5 [58, 59]. The main performance goals considered in the
design are a dE/dx resolution better than 5%, a relative pT resolution better than 1% for
momenta of ∼ 1 GeV/c and better than 2.5% for momenta of 4 GeV/c, and two track
resolution capable fo separating tracks with a relative momentum difference of < 5 MeV.

The TPC is separated into two volumes with the Central Electrode (CE) made of
single stretched Mylar foil, and secondary electrons drift toward the end-caps. The drift
gas Ne-CO2-N2 is optimized for drift speed, large ion mobility, low diffusion of electrons,
low radiation length and hence low multiple scattering, small space-charge effect, and
ageing properties. The drawback of Ne-CO2-N2 is that this mixture is a cold gas, with a
steep dependence of drift velocity on temperature. For this reason, the TPC is aiming for
a thermal stability with ∆T < 0.1 K in the drift volume over the running period. Because
of the Ne-CO2-N2 (90%-10%-5%) gas mixture used in the TPC, the field cage will have
to be operated at very high-voltage gradients, of about 400 V/cm , with a high voltage
of 100 kV at the central electrode which results in a maximum drift time of about 90 µs.

The readout chambers are at the two end-caps of the TPC cylinder. The chambers are
multi-wire proportional chambers (gain ∼ 104) with cathode pad readout as shown in Fig.
3.6. The readout chambers are made of standard wire planes, i.e. they consist of a grid of
anode wires above the pad plane, a cathode wire plane, and a gating grid. The readout
pad size is 4 × 7.5 mm2 in the inner region and the pad occupancy for Pb–Pb collisions
is 15 ∼ 40 %. Space-point resolution depends on the drift length, the track inclination
angle, the charge deposit on the anode wire, and so on. Its typical value is ∼ 1 mm in rφ
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Layer Technology Radius (cm) ±z (cm) Special resolution (µm)
rφ z

1 Pixel 4.0 14.1 12 100
2 Pixel 7.2 14.1 12 100
3 Drift 15.0 22.2 38 28
4 Drift 23.9 29.7 38 28
5 Strip 38.5 43.2 20 830
6 Strip 43.6 48.9 20 830

Table 3.1: Geometrical information of the ITS and the design values for the resolu-
tions [57].

and z direction. The readout chambers are normally closed by a gating grid for electrons
coming from the drift volume and they are opened only by the L1 trigger (6.5 µs after
the collision) for the duration of one drift-time interval, i.e. of about 90 µs. This helps
to prevent space charge due to positive ions from drifting back from the multiplication
region for non-triggered interactions and background.

The charge collected on the TPC pads is amplified and integrated by a low-input
impedance amplifier. It is based on a Charge Sensitive Amplifier (CSA) followed by a
semi-Gaussian pulse shaper of the fourth order. These analogue functions are realized by
a custom integrated circuit (PASA), implemented in a CMOS technology 0.35 µm, which
will contain 16 channels with a power consumption/channel of 12 mW. The circuit has
a conversion gain of 12 mV/fC and an output dynamic range of 2 V with a linearity of
1%. It produces a pulse with a rise time of 120 ns and a shaping time (FWHM) of 190
ns. The single channel has a noise value (r.m.s.) below 1000e and a channel-to-channel
cross-talk below 60 dB. Immediately after the PASA, a 10-bit pipelined ADC (one per
channel) samples the signal at a rate of 5-6 MHz. The digitized signal is then processed by
a set of circuits that perform the baseline subtraction, tail cancellation, zero-suppression,
formatting and buffering. The ADC and the digital circuits are contained in a single
chip named ALTRO (ALice Tpc ReadOut). The ALTRO chip integrates 16 channels,
each of them consisting of a 10-bit, 30-MSPS ADC, a pipelined Digital Processor and a
multi-acquisition Data Memory. When a L1 trigger is received, a predefined number of
samples (acquisition) are temporarily stored in a data memory. Upon L2 trigger arrival
the latest acquisition is frozen, otherwise it will be overwritten by the next acquisition.
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Figure 3.5: Schematic view of the TPC [58].

Figure 3.6: Schematic view of a multiwire proportional chamber used in the ALICE-TPC
[58].
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3.4 Forward detectors

3.4.1 VZERO detectors

The VZERO detectors are designed with a much larger acceptance, in order to perform
as a minimum bias trigger in both proton-proton and Pb–Pb collisions. Furthermore,
it is also used, together with the timing information of the collision, for the rejection
of beam-gas interactions. The VZERO is also used to determine the event centrality as
discussed in Sec.4.1.2 and the event plane as discussed in Sec.4.5.

The V0A/V0C are segmented into 32 elementary counters distributed in four rings as
shown in Fig. 3.7 (a). Each ring covers 0.4-0.6 unit of pseudo-rapidity. The rings are
divided into eight sectors of 45◦. The elementary counter consists of scintillator material
with embedded WaveLength Shifting (WLS) fibres. The light from the WLS is collected
by clear fibres and transported to PhotoMultiplier (PM) installed at 3-5 m from the
detectors, inside the L3 magnet. The time resolution of each individual counter will be
better than 1 ns.

Signals from each PMT are sent to an electronics circuit, which delivers two signals.
The first one is sent to a threshold discriminator for the generation of the V0 event triggers.
It is amplified by a factor of about 10. If at least one duscriminator is fired during the
time window around the timing of the beam crossing (after 3 ns for V0A, 11 ns for V0C),
the V0 event trigger is issued. Figure 3.7 (b) shows correlation between the arrival time of
particles on the V0A and V0C disks in proton-proton collisions measured in November 23,
2009. A peak around [80,80] corresponds to the beam-beam collisions while the other two
peaks are due to the beam-gas collisions. The second one, not amplified, is used for the
measurement of the charge given by the counter. The multiplicity of Minimum Ionizing
Particles (MIPs) can be measured using this second signals in two different ways. In a one
way, the charges from PMT anode are integrated and digitized by ADCs. Figure 3.7 (c)
shows the distribution of PMT charges. In the other way, the pulse legnth are measured.
Figure 3.7 (d) shows the distribution of PMT signal width, which shows a three bump
structure revealing the presence of one, two and three MIPs more clearly than Figure 3.7
(c).

Note that the significant fraction of secondray particles are produced from inner ma-
terials such as the beam pipe, but their azimuthal distribution is proportional to that of
the primary particles. Therefore, in order to calculate the event plane from the VZERO
hits, non-corrected ADC values for each PMT channels are used.
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(a) (b)

(c)
(d)

Figure 3.7: (a) Schematic view of the VZERO detectors [55]. (b) Correlation between the
arrival time of particles in the V0A and V0C disks. (c) Distributions of the photomultiplier
signal widths and (d) charges from V0A channels. [61].
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3.4.2 Forward Multiplicity Detector (FMD)

The FMD consists of 51200 silicon strip channels distributed over five ring counters of
two types with each 20 or 40 sectors in azimuthal angle, respectively as shown in Fig.
3.8. Each sector will be read out independently and contains 512 or 256 detector strips at
constant radius. The choice of segmentation of the FMD is driven by the requirement to
keep the average number of hits per strip well below 2-3 particles for most strips in order
to enable an accurate multiplicity reconstruction based on total energy deposition.

The individual Si sensors are manufactured out of 300 µm thick 15 cm diameter n-type
Si wafers with p+ type implants (strips). Each p+ implant is connected through a bias
resistor to a bias ring. During operation, high voltage (greater than 70V) is applied to
an aluminum surface on the back of the silicon bulk (where no p+ implants exist) and
the bias ring is left grounded. This depletes the silicon bulk of thermal electron-hole
pairs that would dominate the readout noise in an unbiased sensor. Readout lines are
capacitively coupled to the p+ implants. The front-end electronics are highly integrated
circuits mounted on a hybrid board onto which the Si sensor itself is firmly attached. Strips
are bonded to the hybrid. In addition to the electrical functions, the hybrid substrate
serves as mechanical support for the Si sensor and the corresponding front-end amplifier
chips. The preamplifier-shaper integrated circuit that was chosen is the VA1 chip which
is a low-noise amplifier (r.m.s. noise of 1.5% MIP for 25 pF input capacitance) with a 1-2
µs speaking time and a dynamic range of 0-20 MIPS. The chip incorporates a sample-
and-hold circuit for each of the 128 channels and a multiplexed readout at a speed of 10
MHz, resulting in a full readout time of 12.8 µs.

Figure 3.9 (a) shows a sample of the data taken in that test beam for a single strip
using high energy (680 MeV) electron beam at the ASTRID facility at the University of
Arhus in Denmark [62]. A minimum ionizing signal peak can be seen in the raw signal.
However, a large number of signals are observed with energies between the noise level and
the 1 MIP peak. Figure 3.9 (b) shows the correlation between the energy deposited in
two adjacent silicon strips. The sharing of energy from a single particle among the two
strips can be clearly seen. If the signal in both pads is required to be above the noise level
(0.4 fC in this case), the resultant distribution of summed energy from the adjacent pads
fits a Landau distribution well. If signals which could have been shared with neighboring
channels are excluded by requiring that only small amounts of energy (on the order of the
noise level) are recorded in adjacent strips, the number of signals between the noise peak
and the 1 MIP peak is drastically reduced. After this cut, a clear signal peak is evident
and the signal to noise of the detector can be calculated. A resultant signal to noise ratio
of 60:1 is measured. This signal peak also displays properties of a Landau distribution,
but retains some features of residual sharing.
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Figure 3.8: Schematic view of the FMD [60]. The FMD consists of 5 rings (FMD1, FMD2
inner, FMD2 outer, FMD3 inner and FMD outer).

(a)
(b)

Figure 3.9: (a) Distribution of the silicon strip signals using 680 MeV electron beam. (b)
Correlation between energies deposited in 2 adjacent silicon strips. A clear band of shared
energy representing E1 + E2 = 1 MIP can be seen. [62].
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3.5 DAQ and Trigger System

The trigger input signals from the detectors are collected and managed by the ALICE
Central Trigger Processor (CTP), designed to select events having a variety of different
features and rates and to manage these rates with bandwidth requirements of the Data
AcQuisition system (DAQ).

The ALICE trigger system is subdivided in three levels:

The Level-Zero Trigger (L0)

is issued according to the L0 input signals from the fastest detectors, such as the SPD,
VZERO, T0 and the muon trigger. The trigger is distributed with a fast fan-out to all the
front-end cards. The trigger latency with respect to the time of the interaction is fixed
at 1.2 µs. The detectors respond to the L0 with Detector BUSY signals. The front-end
is held on L0 and the logic waits for a first-level trigger L1 or for a timeout in the case of
a missing L1. In 2010 runs, L0 rate for Pb–Pb (p + p) minimum bias collisions is ∼ 500
Hz (1 kHz).

The Level-One Trigger (L1)

is issued at a fixed latency of around 6 µs (still to be precisely specified) with respect to
the interaction time. A positive L1 trigger causes the event number to be distributed to
the detectors and starts the transfer of the data from the front-end event registers to the
multievent buffers.

The Level-Two Trigger (L2)

causes, after data reduction and packing, the data transfer to the ALICE data acquisition.
The L2 reject signal (L2r) can be issued at any time before the fixed latency corresponding
to a level-2 accept (L2a) trigger at around 90 µs (that still needs to be precisely specified).

Once the CTP has decided to acquire a particular event, the trigger signal is dispatched
to the front-end read-out electronics (FERO) of the involved detectors. The data are then
injected in the Detector Data Link (DDL, an ALICE-standard, in ALICE there are more
than 450 optical DDLs) and sent to a farm of computers, called Local Data Concentrators
(LDC), that do sub-event building from the event fragments they receive from the front-
end electronics. The sub-events are than shipped through an event building network to
the Global Data Collectors (GDC) that take all the sub-events from the various LDCs
and build the full event and, depending on the High Level Trigger decision, send it to the
storage facilities. The rate of data collected by the different ALICE detectors can reach
the impressive amount of 25 GB/s, where the data size of the single Pb–Pb (p+ p) event
is 50 (2) MB. The bandwidth of the DAQ system is limited to 4 GB/s. The High Level
Trigger (HLT) is responsible of the acceptance or rejection of an event on the basis of an
online analysis and, in case of positive decision, compress the amount of collected data
(without any loss of physical information) using specific algorithms in order to reduce the
data rate to a value acceptable by the DAQ and by the storage elements.
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3.6 The ALICE Offline Analysis Framework

3.6.1 Dataflow

Figure 3.10: Schematic view of ALICE’s data flow [63].

The raw data taken by the subdetectors has to be processed before it is available
in the form of reconstructed events for further analysis. This happens in several stages
and is illustrated in Fig. 3.10. Data originating from the subdetectors (denoted by 1 in
Fig. 3.10) is processed by LDCs, global events are built by GDCs (2). The publish agent
registers the assembled events into the AliEn system (3) and ships them to the CERN
computing center where they are stored first on disks (4) and then permanently on tapes
(5) by the CASTOR system.

During data-taking the subdetectors also produce “conditions data” which are rele-
vant for the calibration of individual detector signals. Conditions data provide informa-
tion about the detector status and environmental variables during data-taking. Examples
are inactive and noisy channel maps, distributions that describe the response of a chan-
nel, temperatures and pressure in a detector, and detector configuration. Many of the
conditions data could in principle be calculated from the raw data and extracted offline
after data-taking. However, such an approach would require an additional pass over the
raw data before the reconstruction which is not feasible due to the limited computing
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resources. Therefore, conditions data are already extracted during data-taking.
Conditions data are produced by special programs that process the raw data stream

and extract the needed values. These programs work in the realm of DAQ, DCS (De-
tector Control System), and HLT and store their output on so-called “File eXchange
Servers”(FXS) (6-8 in Fig. 3.10). A dedicated program called “Shuttle collects” collects
these outputs and makes them available to the reconstruction. Furthermore, it retrieves
information about the run from the ECS logbook (9) and collects continuously monitored
values that are written by DCS into the “DCS Archive” (10). After processing the data,
the Shuttle registers the produced condition files in AliEn (11) and stores the data in
CASTOR (12).

With the registration of the raw and conditions data the transition from the online
to the offline would has taken place. Online denotes all actions and programs that have
to run in real time. Offline processing is the subsequent step, like for example event
reconstruction, which is executed on worker nodes (WN) of Grid sites located around the
Grid.

3.6.2 AliRoot

AliRoot is the offline framework for simulation, alignment, calibration, reconstruction,
visualization, quality assurance, and analysis of experimental and simulated data. It is
based on the ROOT framework. Most of the code is written in C++ with some parts in
Fortran that are wrapped inside C++ code [64, 65].

3.6.3 GRID

The GRID paradigm implies the unification of resources of distributed computing centers,
in particular computing power and storage, to provide them to users all over the world.
It allows computing centers to oer their resources to a wider community. This allows
resources in large collaborations to be shared. The huge amount of data produce by the
ALICE detector (∼2 PB per year) makes almost unavoidable the necessity of automatized
procedures for the (software) reconstruction of the events and for the first steps of the
analysis, with the consequent employ of a large mass of computing resources. The world-
wide distributed GRID facilities were designed to provide both the computing power and
the disk space needed to face the LHC software challenge. Hence the need of a GRID-
oriented analysis code. One of the main advantages in using the GRID is the possibility to
analyze a large set of data by splitting a job analysis into many “clone” subjobs running
in parallel on different computing nodes. The ALICE VO (Virtual Organization) is made
of more than 80 sites distributed worldwide.

Each site is composed of many WN, which are the physical machines where the soft-
ware programs can be run. The Storage Element (SE) is responsible for managing physical
data in the site and for providing an interface to mass storage. The Computing Element
(CE) service is an interface to the local (WN) batch system and manages the computing
resources in the site. The ALICE Collaboration has developed AliEn [66] as an imple-
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mentation of distributed computing infrastructure needed to simulate, reconstruct and
analyze data from the experiment. AliEn provides the two key elements needed for large-
scale distributed data processing: catalogue for data storage and the possibility to execute
the jobs in a distributed environment. The analysis software, the user code and the Ali-
Root libraries needed by each subjob to run must be specified in a JDL (Job Description
Language), together with the data sample and the way to split it. The data sample is
specified through a XML (eXecutable Machine Language) collection which contains a list
of the Logical File Names (LFN, the entries in the catalogue).

3.6.4 Reconstruction

The data reconstruction is divided into two steps: local and global. The local recon-
struction is done individually for each sub-detector using only data collected by this
sub-detector.

The first step of the global reconstruction is finding the primary vertex using the SPD
clusters. This is done by connecting reconstructed clusters from two layers of SPD to
build tracklets. Many of the tracklets are constructed from two clusters produced by
different particles. Each tracklet is propagated to the beam line. The crossing points
of the tracklets originating from real particles coming from the primary vertex with the
beam line are very close. Those crossing points are used to estimate the position of the
SPD primary vertex.

Before reconstructing the tracks, two-dimensional clusters in the TPC pad row-time
planes are found. The reconstructed positions of the clusters are interpreted as the cross-
ing points of the tracks and the centres of the pad rows. We investigate the region of
5× 5 bins in z (drift) and y (pad) directions around the central bin with maximum am-
plitude. This is bigger than the typical size of a cluster, which is σ ∼0.75 bins in both
directions. The position of a cluster is reconstructed as its centre of gravity (COG). The
track reconstruction is performed with these clusters using the Kalman filter approach.
This approach was developed to measure dynamic system parameters or predict the sys-
tem behaviour. It was adopted for reconstruction of tracks in high-energy experiments
by changing the time steps to space points. Detailed description of the Kalman filter is
in appendix.

In the end, each reconstructed track has a list of parameters (e.g. number of clusters
in the TPC or the ITS, χ2 per cluster), which describes its quality. The reconstructed
tracks are used to improve the reconstruction of the primary vertex. The improved vertex
is called a global vertex. The resolution of the z-coordinate is ∼ 10 µm in Pb–Pb events.

The output of the reconstruction is stored in the Event Summary Data (ESD), a file
containing all the physical information needed for the analysis both at track and event
level plus information relevant for checking the quality of the reconstruction for each
detector. Since the ESD contains more information than what is needed for the analysis,
further event and track cuts are applied in the analysis procedure.
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3.7 Run Conditions

The data of
√
sNN=2.76 TeV Pb–Pb collisions used in this analysis were taken by the AL-

ICE experiment in December 2010. Table 3.2 shows typical parameters for
√
sNN=2.76 TeV

Pb–Pb collisions at ALICE in 2010. The recorded integrated luminosity for ALICE rose
up to 10 µb−1 which corresponds to about 13 M events with the minimum bias (MB)
trigger. A peak luminosity at ALICE reached ∼ 30× 1024 cm2s−1. Figure 3.11 shows the
integrated and peak luminosities as a function of day of year 2010.

Parameters Values√
sNN [TeV] 2.76

Initial ion-ion Luminosity [cm−2s−1] 0.7 ×1025

Number of bunches 62
Minimum bunch spacing [ns] 1350
β∗ [m] 3.5
Pb ions per bunch 7×107

Transv. norm. RMS emittance [µm] 1.5
Longitudinal emittance [eV·s/charge] 2.5
Luminosity half-life (when 1,2,3 experiments are conducted) [h] 14, 7.5, 5.5

Table 3.2: Typical parameters for
√
sNN=2.76 TeV Pb–Pb collisions at ALICE in 2010.

Figure 3.11: The delivered integrated luminosities (left) and the peak luminosities (right)
of
√
sNN=2.76 TeV Pb–Pb collisions at the LHC in 2010 [67].
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Data Analysis

4.1 Event selections

4.1.1 Minimum-bias event selection

The first step of the event selection is the online trigger selection. The Minimum-Bias
(MB) samples are the hadronic collision candidates with the least strict selection criteria
in order to get a sample with the least possible bias [68]. The VZERO detector and
the SPD are used for the minimum-bias online trigger. The minimum-bias online trigger
requires at least two out of three (2-out-of-3) conditions listed below to be satisfied:

� two pixel chips hit in the outer layer of the SPD

� signal in the VZERO-A detector

� signal in the VZERO-C detector

The trigger efficiency as a function of the VZERO amplitudes with three kinds of the
trigger configurations are studied by Monte Carlo full simulations using the GEANT3
detector simulation program for events generated with the HIJING and AMPT model
events and proton-proton high multiplicity events shown in Fig. 4.1 (a) [69, 45, 70, 71, 72].
Further selections are carried out in the offline analysis. In order to remove the beam
background events caused by beam-gas and beam-halo collisions, the VZERO and ZDC
timing information are used and the cut for the position of the primary vertex in the
beam direction estimated by the SPD tracks |V z| < 7 cm is required as shown in Fig. 4.1
(b). Electromagnetic interactions are removed by requiring an energy deposition above
500 GeV in each of the ZDCs. The combined trigger and selection efficiency estimated
from a variety of Monte Carlo simulations is 97 ∼ 99 % with a purity of 100 % for the
centrality range 0-80 %.
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4.1.2 Centrality determination

For the heavy ion collisions, we need to divide the events into the centrality classes to
make a correspondence to the collision impact parameter b to characterize the collision
geometry. Several methods of centrality determination are used in the ALICE setup.
The centrality is determined using the both VZERO-A and VZERO-C detectors in this
analysis as shown in Fig. 4.2 (a) [68]. The VZERO amplitude distribution is fitted using
a phenomenological approach based on the Glauber Monte Carlo plus a convolution of
a model for the particle production and a negative binomial distribution (NBD). It is
assumed that the number of independently decaying precursor particles ( “ancestors”)
is given by a 2 component model Nancestors = f · Npart + (1 − f) · Ncoll, where Npart is
the number of participating nucleons and Ncoll is the number of binary nucleon-nucleon
collisions. With the former term, the soft particle production mechanism is taken into
consideration. With the latter term, the hard particle production mechanism is taken
into consideration. The parameter f controls their relative contributions and f ∼ 80
%. Other ancestor dependences have been tested, using power-law functions of Npart or
Ncoll. The number of particles produced per precursor source was assumed to follow a
NBD distribution. The fit is performed in a region corresponding to 88% of the total
cross section to avoid the peak of contamination and inefficiency. Extracting the number
of participants from the Glauber fit gives accesses directly to the Npart, nearly identical
to the geometrical one. However it is important to remember that we use the Glauber
model and the ancestor assumptions only to determine the fraction of total cross section
that we see, confirming the results obtained with the data-based analysis.

Figure 4.2 (b) shows the resolutions of the centrality determination with various meth-
ods [69]. A longitudinal axis is the RMS of the distribution of σi = centi−〈cent〉i, where
subscript i denotes the centrality estimation method, e.g. VZERO-A and -C, and centi
is the estimated centrality percentile with the method i. The estimation of the centrality
percentile by averaging the results with the other detectors ( 6= i), 〈cent〉i, is calculated
iteratively as

〈cent〉i =

∑
j 6=i centj/σ

2
j∑

j 6=i 1/σ
2
j

. (4.1)

This iteration converges rapidity. The resolutions with the various methods are roughly
scaled by the square root of the number of particles detected in each detectors. The
resolution of the centrality determination by using the VZERO-A and -C detectors is
best as shown by blue symbols. The resolution is good enough to divide the events with
the width of 10 % centrality bins for all events and 5 % centrality bins for the most central
events.
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Figure 4.1: (a) Trigger efficiency as a function of VZERO amplitude investigated by Monte
Carlo full simulations of the HIJING and AMPT model events using a GEANT3 detector
simulation and event reconstruction with the trigger configuration (left) 2-out-of-3, (cen-
ter) VZERO-A and VZERO-C signals, (right) the requirement of all three conditions [69].
(b) The distribution of the vertex position in the beam direction.
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Figure 4.2: (a) The selection of the event centrality classes by the VZERO amplitude
with Glauber model fitting (red line) [68]. (b) The resolutions of the centrality percentile
determinations with various methods. The resolution of the centrality determination by
the VZERO detectors is best as shown by blue symbols [69].
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4.2 Track selections
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Figure 4.3: Distribution of the global and TPC standalone tracks in the (left) azimuthal
and (right) pseudo-rapidity direction.
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Figure 4.4: Distribution of (left) the number of TPC cluster and (right) χ2 divided by the
number of TPC clusters for the TPC standalone tracks with Monte Carlo full simulations.

Detailed descriptions of the track reconstruction and calibrations for the tracking are
found in App.B and App.C.

To select charged particles with high efficiency and to minimize the contribution from
secondary charged particles produced in the detector material and the weak decays, fur-
ther track requirements in the analysis are applied for tracks reconstructed with the TPC
(TPC standalone tracks) [73, 68]. Both azimuthal and pseudo-rapidity distributions of
the TPC standalone track are quite flat as shown by red lines in Fig. 4.3 since the TPC
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uniformly covers the full azimuth and the pseudo-rapidity range |η| < 0.9. Note that the
azimuthal angle ϕ of tracks is estimated by an azimuthal angle of the track vector at the
collisions vertex, which can be calculated with the extrapolation of the TPC trajectories
to the measured (global) primary vertex. Resolutions of various track parameters e.g.
the transverse momentum are significantly improved by associating with the ITS hits. A
track with additional requirement of at least two hits of the six ITS layers is called a
global track. However, since the the ITS does not have uniform acceptance both in az-
imuthal and pseudo-rapidity directions because of the relatively large dead area as shown
by black lines in Fig. 4.3, the TPC standalone track is used in this analysis. The tracks
are required to have at least 70 reconstructed space points out of the maximum 159 in the
TPC and a χ2 per TPC cluster 4 (with 2 degrees of freedom per cluster). The definition
of the χ2 is given as Eq. (B.6). Figure 4.4 shows the distributions of the number of TPC
clusters and χ2 per TPC cluster in comparison with the Monte Carlo full simulations.
Some parts of the detector simulations, e.g. the motion of the drift electrons in the TPC,
are not conducted in the GEANT3 simulation but the simple parametrization are used,
e.g. the space-point resolutions, the drift distortions in x− y plane, and so on. There are
clear difference between the measured and simulated results in the distributions of the
number of TPC clusters and χ2 per TPC cluster, but the criteria of the cuts are chosen so
that the integrated efficiency is similar between measured and simulated results. Tracks
are rejected if their distances of closest approach to the primary vertex in the transverse
plane and longitudinal direction (dcaxy and dcaz) are larger than 3 cm. For the selected
tracks the reconstruction efficiency and remaining contamination are estimated by the
full simulations as shown in Fig. 4.5. The reconstruction efficiency for tracks with 0.2
< pT < 1.0 GeV/c increases from 70% to 90% after which it stays constant at 90 ± 5%.
The contamination from secondary interactions and photon conversions is less than 17%
at pT = 0.2 GeV/c and less than 13% at pT > 1 GeV/c. Both the efficiency and contam-
ination as a function of transverse momentum do not change significantly as a function
of multiplicity and are therefore the same for all centrality classes.

To reduce the contamination, TPC standalone tracks with dcaxy,z < 0.3 cm are also
used in this analysis. The reconstruction efficiency does not change significantly while the
contamination is less than 7% at pT =0.2 GeV/c and drops below 5% at pT > 1GeV/c as
shown in Fig. 4.5.

The contamination from the weak decays and detector materials are also estimated by
fitting the measured dcaxy distributions with the Monte Carlo dcaxy distributions for each
components as shown in Fig. 4.6. The shapes of the dcaxy distributions for the primary
particles (brown), the secondary particles from the weak decays (green) and from the
detector material (blue) are extracted from the full simulations. Then, the magnitude
of each components are obtained by the fitting the measured dcaxy distributions (black
points). Fitting works very well and estimated fractions of the contamination from the
weak decays and the material are 13% and 6%, respectively for the TPC standalone track
with dcaxy,z < 3 cm and 5.6% and 2.9% respectively for the TPC standalone track with
dcaxy,z < 0.3 cm at 0.2 < pT < 0.4 GeV/c. These results are roughly consistent to the
simulated results in Fig. 4.5 (b).
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Figure 4.5: (a) Efficiency and (b) contamination as a function of pT for the TPC stan-
dalone tracks with dcaxy,z < 3, 0.3 and 0.1 cm estimated with Monte Carlo full simulations
for the AMPT model events.

In the analysis of the pT-integrated correlations, it is impossible to correct the effects
of the efficiency and contamination as a function of pT. It is confirmed by using the
model dependent simulations that the pT-integrated elliptic flow is insensitive to these
effects [74]. However, in general, we need to be careful for these effects on the correlation
measurements when the measured results are compared with the theoretical calculations
and the results from other experiments. It is confirmed that the variations of the efficiency
and contamination by changing the track cuts do not change the observables measured in
this thesis as described in the Sec.4.6.

Note that the transverse momentum resolution at pT = 0.2 and 5 GeV/c are estimated
to be below 1% and ∼ 5% respectively. The performance of the estimation for the various
track parameters as well as pT is described in detail in Ref. [55, 56, 54, 59]. We assume
that the transverse momentum resolution is good enough to ignore them even in the pT

differential correlation measurements. In any case, the pT resolution effect can not be
corrected in the correlation measurements.
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Figure 4.6: dcaxy distributions for the TPC standalone tracks with (a) dcaz < 3 cm and
(b) dcaz < 0.3 cm fitting with the Monte Carlo full simulations in order to estimate
fractions of the contamination into the selected tracks.
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4.3 Definition of observables

The main observables in this thesis are listed below for the remainder:

Two-particle correlations

〈cos[n(ϕα − ϕβ)]〉 with n = 1, 2, 3, 4 measured by using the two-particle cumulant
method. A method of the measurement is explained in the next section.

Two-particle correlations with respect to the symmetry plane

〈cos[nϕα +mϕβ − (n+m)Ψk]〉 with (n+m) ∝ k measured by using the two inde-
pendent methods: the multi-particle cumulant method and the event plane method.
Methods of the measurement are explained in the next section and Sec.4.5. Correla-
tions with (n,m, k) = (1, 1, 2), (1,−3, 2), (1, 3, 2), (1,−5, 2), (1,−4, 3) and (1,−5, 4)
are presented in this thesis.

Kinematical regions of particles are 0.2 < pT < 5 GeV/c and |η| < 0.8.

4.4 Multi-particle cumulant method

In the multi- and two-particle cumulant methods [75], we are interested in the connected
parts of the multi- and two-particle correlations. Two particle correlation of the two
random variables X1 and X2 can be decomposed as follows:

〈X1X2〉r = 〈X1〉r〈X2〉r + 〈X1X2〉c, (4.2)

where the bracket 〈· · · 〉r denotes the average over all particles or all pairs of the particles.
The bracket 〈X1X2〉c is the genuine two particle correlation which can not be decomposed
further. By definition this term is the two particle cumulant [76]. If two random variables
are statistically independent,

〈X1X2〉r = 〈X1〉r〈X2〉r, when X1 and X2 are independent. (4.3)

The correlations 〈cos[n(ϕα − ϕβ)]〉 with n = 1, 2, 3, 4 are measured as the two-particle
cumulant

〈cos[n(ϕα − ϕβ)]〉c = 〈cos[n(ϕα − ϕβ)]〉r − 〈cos(nϕα)〉r〈cos(nϕβ)〉r. (4.4)

The ALICE TPC has quite uniform azimuthal acceptance. Nevertheless, TPC sector
boundaries may cause biases on the azimuthal correlations, in particular, the moments
〈cos(nϕ)〉r and 〈sin(nϕ)〉r. We can eliminate such detector effects by using cumulants.

In the multi-particle cumulant method [75], the azimuthal angle of the k-th harmonic
symmetry plane Ψk is not explicitly determined. Instead, the role of the symmetry plane
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is played by another particles entering the correlation, which are called Reference Par-
ticles (RPs) while the particles α and β are called Particles Of Interest (POIs). Under
the assumption that RPs are correlated with POIs only via common correlation to the
symmetry plane, we have

〈cos[nϕα +mϕβ − (n+m)Ψk]〉 ∼
〈cos[nϕα +mϕβ · · · − kϕγ(n+m)/k

]〉c
vk,γ1 × · · · × vk,γ(n+m)/k

, (4.5)

where the bracket 〈 〉c in the numerator of the right side of the equation denotes the multi-
particle cumulant.In the denominator, the average of vk{2} and vk{4} is used to estimate
vk without nonflow and flow fluctuation effects as shown in Fig. 4.7 and Fig. 4.8 [73, 15],
where vk{2} and vk{4} denotes the k−th harmonic flow vk measured with the two- and
four-particle method respectively. The discussion about the flow measurement method
and flow flucutation effects are found in appendix A. While both vk{2} and vk{4} with
k = 2, 3 are available with small statistical errors, stable results for v3 at centrality 50-
60% and v4 are obtained only by the Scalar Product method (SP) with eta gap |∆η| > 1
between the POIs and RPs because of the lack of statistics. The SP method is described
in detail in App.D.

Here comes the three particle correlations,

〈X1X2X3〉r = 〈X1〉r〈X2〉r〈X3〉r
+ 〈X1X2〉c〈X3〉r + 〈X1X3〉c〈X2〉r + 〈X2X3〉c〈X1〉r
+ 〈X1X2X3〉c (4.6)

⇔ 〈X1X2X3〉c = 〈X1X2X3〉r
− 〈X1X2〉r〈X3〉r − 〈X1X3〉r〈X2〉r − 〈X2X3〉r〈X1〉r
+ 2〈X1〉r〈X2〉r〈X3〉r. (4.7)
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In case of the four particle correlations,

〈X1X2X3X4〉r = 〈X1〉r〈X2〉r〈X3〉r〈X4〉r
+ 〈X1X2X3〉c〈X4〉r + 〈X1X2X4〉c〈X3〉r
+ 〈X1X3X4〉c〈X2〉r + 〈X2X3X4〉c〈X1〉r
+ 〈X1X2〉c〈X3X4〉c + 〈X1X3〉c〈X2X4〉c + 〈X1X4〉c〈X2X3〉c
+ 〈X1X2〉c〈X3〉r〈X4〉r + 〈X1X3〉c〈X2〉r〈X4〉r + 〈X1X4〉c〈X2〉r〈X3〉r
+ 〈X1〉r〈X2〉r〈X3X4〉c + 〈X1〉r〈X3〉r〈X2X4〉c + 〈X1〉r〈X4〉r〈X2X3〉c
+ 〈X1X2X3X4〉c (4.8)

⇔ 〈X1X2X3X4〉c = 〈X1X2X3X4〉r
− 〈X1X2X3〉r〈X4〉r − 〈X1X2X4〉r〈X3〉r
− 〈X1X3X4〉r〈X2〉r − 〈X2X3X4〉r〈X1〉r
− 〈X1X2〉r〈X3X4〉r − 〈X1X3〉r〈X2X4〉r − 〈X1X4〉r〈X2X3〉r
+ 2〈X1X2〉r〈X3〉r〈X4〉r + 2〈X1X3〉r〈X2〉r〈X4〉r + 2〈X1X4〉r〈X2〉r〈X3〉r
+ 2〈X1〉r〈X2〉r〈X3X4〉r + 2〈X1〉r〈X3〉r〈X2X4〉r + 2〈X1〉r〈X4〉r〈X2X3〉r
− 6〈X1〉r〈X2〉r〈X3〉r〈X4〉r. (4.9)
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Figure 4.7: (a) The centrality dependence of the integrated v2 for the RPs by the two-
particle and four-particle cumulant methods [73]. (b) The centrality dependence of the
integrated v3 for the RPs by the SP with |∆η| > 1, the two-particle and four-particle
cumulant methods [15].
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Figure 4.8: The centrality dependence of the integrated v4 for the RPs by the SP with
|∆η| > 1 and the two-particle cumulant methods [15].
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Therefore, to estimate the correlation 〈cos[nϕα +mϕβ · · · − kϕγ(n+m)/k
]〉c in Eq. (4.5),

one need to calculate all its descendants. For example, the correlation 〈cos(ϕα+ϕβ−2ϕγ)〉c
can be calculated by

〈cos(ϕα + ϕβ − 2ϕγ)〉c = 〈cos(ϕα + ϕβ − 2ϕγ)〉r
− 〈cos(ϕα)〉r〈cos(ϕβ − 2ϕγ)〉r
− 〈cos(ϕβ)〉r〈cos(ϕα − 2ϕγ)〉r
− 〈cos(ϕα + ϕβ)〉r〈cos(−2ϕγ)〉r
+ 2〈cos(ϕα)〉r〈cos(ϕβ)〉r〈cos(−2ϕγ)〉r. (4.10)

In the first step for the calculation of the correlation 〈cos(n1ϕ1 + · · · + nkϕk)〉r, we
define the single event k-particle correlation {cos(n1ϕ1 + · · · + nkϕk)} in the following
way:

{cos(n1ϕ1 + · · ·+ nkϕk)} ≡ 1

M(M − 1) · · · (M − k + 1)
Re

M∑
i1,···ik=1

i1 6=···6=ik

ei(n1ϕi1
+···+nkϕik

).(4.11)

The sum goes over all combinations of M -particles in a single event. In order to avoid
a trivial and strong contribution coming from auto-correlations, we have enforced the
constraints i1 6= · · · 6= ik. In the second step we define the all event average correlation
〈cos(n1ϕ1 + · · ·+ nkϕk)〉r ;

〈cos(n1ϕ1 + · · ·+ nkϕk)〉r ≡
∑N

i=1Mi(Mi − 1) · · · (Mi − k + 1){cos(n1ϕ1 + · · ·+ nkϕk)}∑N
i=1Mi(Mi − 1) · · · (Mi − k + 1)

.

(4.12)

One of the problems in using multi-particle cumulant method is the computing power
needed to go over all possible particle multiplets

∑M
i1,···ik=1

i1 6=···6=ik

, which practically prohibits

calculations of correlations of order larger than three. To avoid this problem, Q-cumulant
method is proposed in Ref. [77]. In this approach, one can express analytically all multi-
particle azimuthal correlations in terms of Q-vectors, Qn ≡

∑
i e

inϕi .

{cos(ϕα + ϕβ − 2ϕγ)} =
Q2

1Q
∗
2 − |Q2|2 − 2|Q1|2 + 2M

M(M − 1)(M − 2)
, (4.13)

{cos(ϕα − 3ϕβ + 2ϕγ)} =
Q1Q2Q

∗
3 − |Q3|2 − |Q2|2 − |Q1|2 + 2M

M(M − 1)(M − 2)
, (4.14)

{cos(ϕα + 3ϕβ − 2ϕγ1 − 2ϕγ2)} =
(
Q1Q3(Q

∗
2)

2 −Q1Q3Q
∗
4 −Q4(Q

∗
2)

2

− 2Q∗1Q3Q
∗
2 − 2(Q1)

2Q∗2
+ |Q4|2 + 2|Q3|2 + 4|Q2|2 + 4|Q1|2

− 6M
)
/(M(M − 1)(M − 2)(M − 3)), (4.15)
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{cos(ϕα − 5ϕβ + 2ϕγ1 + 2ϕγ2)} =
(
Q1Q

∗
5(Q2)

2 −Q1Q
∗
5Q4 −Q∗4(Q2)

2

− 2Q∗5Q3Q2 − 2Q1Q
∗
3Q2 + 2|Q5|2

+ |Q4|2 + 2|Q3|2 + 4|Q2|2 + 2|Q1|2

− 6M
)
/(M(M − 1)(M − 2)(M − 3)), (4.16)

and so on. Since the Qn-vectors can be calculated by scanning the tracks at only one time,
the computing speed becomes faster than that with the calculation of the multi-particle
sum by its definition.

Statistical Errors

Strictly speaking, there may exist non-zero covariance between a numerator and a de-
nominators of Eq. (4.5). But we ignore this covariance because correlations between the
mixed harmonic azimuthal correlations and the n-th harmonic flow are in general small.
The total statistical error is defined as the quadratic sum of the statistical error of de-
nominator and numerator. Here we will discuss about the calculation of the statistical
error of the numerator.

Consider the random observable x sampled from some probability density function
(p.d.f) f(x) [78]. The mean of x is denoted by µx and the variance of x is denoted by σx

(or equivalently by V [x]). Mean and variance of x are given by the following expressions:

µx = E[x] =

∫ ∞

−∞
xf(x)dx, (4.17)

σ2
x = V [x] = E[(x− E(x))2] =

∫ ∞

−∞
(x− µx)

2f(x)dx, (4.18)

where E[x] stands for the expectation value of a random variable x. We denote by xi

the measured random observable x in the i-th event and by (wx)i the observable weight
in that event. Even if the p.d.f f(x) is completely unknown, we can still use measured
values xi to estimate mean µx and variance σx of the random variable x. In particular,
the unbiased estimator for the variance σ2

x, which is denoted by s2
x, is given by

s2
x ≡

[∑N
i=1(wx)i(xi − 〈x〉)2

∑N
i=1(wx)i

]
×

[ 1

1−
PN

i=1(wx)2i
[
PN

i=1(wx)i]2

]
, (4.19)

where we have introduced also 〈x〉 as the unbiased estimator for the mean µx,

〈x〉 ≡
∑N

i=1(wx)ixi∑N
i=1(wx)i

. (4.20)

In above two equations N is the number of the independent measurements, which in our
context corresponds to the number of events. Since the sample mean 〈x〉 is an unbiased
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estimator for the mean of x, µx, we will report the final results and the statistical errors
as

〈x〉 ± V [〈x〉]1/2. (4.21)

One can easily show that the variance of the sample mean, V [〈x〉], can be written as

V [〈x〉] =

∑N
i=1(wx)

2
i

[
∑N

i=1(wx)i]2
V [x], (4.22)

i.e.

V [〈x〉] =

∑N
i=1(wx)

2
i

[
∑N

i=1(wx)i]2
σ2

x. (4.23)

Taking into account the unbiased estimator s2
x for the variance σ2

x, we can now write down
the expression which we will use to report the final results and statistical errors of the
random variable x:

〈x〉 ±

√∑N
i=1(wx)2

i∑N
i=1(wx)i

sx. (4.24)

In our case, xi corresponds to the single event average correlation {cos(n1ϕ1+· · ·+nkϕk)}
and the weight wi corresponds to Mi(Mi − 1) · · · (Mi − k + 1). We can calculate the
event averages of multi-particle correlations (i.e. the unbiased estimator for their true
mean values) 〈cos(n1ϕ1 + · · · + nkϕk)〉r and also the unbiased estimators for their vari-
ances s2

{cos(n1ϕ1+···+nkϕk)} straightforwardly from the data by making use of the definitions

Eq. (4.20) and Eq. (4.19), respectively. Since the unbiased estimator for the variance is
used for the statistical error calculation, the statistical error becomes large if the intrinsic
spread of the event-by-event observables is large because of any reasons including the
physical reasons (e.g. the flow fluctuations), detector effects, and imperfect event cuts.

4.5 Event Plane method

In the event plane method [9], one first estimates the symmetry plane with the so-called
event plane determined from particle azimuthal distributions for the each event. In this
analysis, the FMD and VZERO detector are used for the event plane determination. The
azimuthal angle of the k-th harmonic event plane Ψk,EP is defined as

Ψk,EP ≡ tan−1

(
Qk,y

Qk,x

)
/k, with

(Qk,x, Qk,y) = (
∑

i

wicoskϕi,
∑

i

wisinkϕi), (4.25)
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where ϕi is the azimuthal angle of each cell of the FMD or VZERO detector and wi is
the weight, which is non-corrected multiplicity measured at each cell in this analysis. The
event plane angle is defined by the azimuthal angle of Q-vector.

The correlation 〈cos[nϕα +mϕβ− (n+m)Ψk,EP ]〉 can be decomposed as the following:

〈cos[nϕα +mϕβ − (n+m)Ψk,EP ]〉
= 〈cos[nϕα +mϕβ − (n+m)Ψk + (n+m)(Ψk,EP −Ψk)]〉
= 〈cos[nϕα +mϕβ − (n+m)Ψk]cos[(n+m)(Ψk,EP −Ψk)]〉

−〈sin[nϕα +mϕβ − (n+m)Ψk]sin[(n+m)(Ψk,EP −Ψk)]〉
∼ 〈cos[nϕα +mϕβ − (n+m)Ψk]〉〈cos[(n+m)(Ψk,EP −Ψk)]〉, (4.26)

where 〈cos[(n+m)(Ψk,EP −Ψk)]〉(≡ Rn+m,k) is the event plane resolution factor which is
determined from the correlation between the event plane vectors of two or three indepen-
dent subevents. 〈sin[(n+m)(Ψk,EP −Ψk)]〉 can be ignored when the effect of non-uniform
acceptance on the event plane angle determination is corrected properly. The estimate
of the correlation 〈cos[nϕα + mϕβ − (n + m)Ψk]〉 with the event plane method is then
defined as

〈cos[nϕα +mϕβ − (n+m)Ψk]〉 ∼ 〈cos[nϕα +mϕβ − (n+m)Ψk,EP ]〉
Rn+m,k

. (4.27)

In this analysis, tracks at |η| < 0.8 and 0.2 < pT < 5GeV/c are used for the POIs and
tracks at forward rapidity are used for the RPs so that auto-correlation between the POIs
and the RPs is removed.

4.5.1 Event Plane calibration

In order to take account of the imperfect acceptance effects on the event plane determi-
nation [79], we introduce the single particle production probability density with respect
to the k-th harmonic symmetry plane ρ(ϕ−Ψk) and the acceptance function A(ϕ) which
are normalized to unity:

ρ(ϕ−Ψk) =
1

2π

(
1 + 2

∞∑
n=1

vncos [n (ϕ−Ψk)]

)
, (4.28)

∫
dϕ

2π
A(ϕ) = 1. (4.29)

where vn is the n-th harmonic flow with respect to k-th harmonic symmetry plane. Then
the average of some function f(ϕ), which depends on particle azimuthal angle ϕ, over
events with the fixed symmetry plane orientation is given by the integral:

〈f〉Ψk
=

∫
dϕA(ϕ)f(ϕ)ρ(ϕ−Ψk)

= f̄ + 2
∞∑

m=1

vm[fcosmϕ× cosmΨk + fsinmϕ× sinmΨk], (4.30)
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where f̄ means the average over the detector acceptance:

f̄ =

∫
dϕ

2π
A(ϕ)f(ϕ). (4.31)

An important observation is that the acceptance average of f , f̄ , coincides with the event
average, 〈f〉:

〈f〉 =

∫
dΨkdϕA(ϕ)f(ϕ)ρ(ϕ−Ψk)∫
dΨkdϕA(ϕ)ρ(ϕ−Ψk)

= f̄ . (4.32)

We assume here that the distribution of the symmetry plane angle is uniform within a
given centrality event sample. Now we consider the imperfect acceptance effects on the
Qx and Qy.

〈Qk,x〉Ψk
= Qk,x +Mvk × (1 + cos2kϕ)× coskΨk

+ Mvk × sin2kϕ× sinkΨk

+
∞∑

m6=2

vm[Qk,xcosmϕ× cosmΨk +Qk,xsinmϕ× sinmΨk]

∼ Qk,x +Mvk(1 + cos2kϕ)coskΨk, (4.33)

where M is the number of track used for Q-vector calculation. Term at the second line
can be ignored as long as sin2kϕ ¿ 1. Terms at the third line can be ignored since vm

(m 6= k) is small enough. 〈Qk,x〉Ψk
can be regarded as the estimate of Qk,x in a single

event with the symmetry plane Ψk because ρ(ϕ−Ψk) can be also regarded as the particle
azimuthal distribution in a single event. Then Qk,x(6= 0) and Mvk(1 + cos2kϕ)(6= 1) in
front of coskΨk come from detector effects. The latter can be measured by the width of
Qk,x distribution:

〈Q2
k,x〉 − 〈Qk,x〉2 ∼ 1

2π

∫
dΨk〈Q2

k,x〉Ψk
−Qk,x

2

∼ 1

2π

∫
dΨk

(
Qk,x

2
+ 2Qk,xMvk

(
1 + cos2kϕ

)
coskΨk

+
(
Mvk

(
1 + cos2kϕ

)
coskΨk

)2
)
−Qk,x

2

=
(
Mvk

(
1 + cos2kϕ

))2
. (4.34)

So-called re-centering calibration is defined as

Qre
k,x ≡

Qk,x − 〈Qk,x〉√
〈Q2

k,x〉 − 〈Qk,x〉2
∼ 〈Qk,x〉Ψk

− 〈Qk,x〉√
〈Q2

k,x〉 − 〈Qk,x〉2
∼ coskΨk,

Qre
k,y ≡

Qk,y − 〈Qk,y〉√
〈Q2

k,y〉 − 〈Qk,y〉2
,

Ψre
k,EP ≡ tan−1

(
Qre

k,y

Qre
k,x

)
/k. (4.35)
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In case of the VZERO detector, a gain for each VZERO cell must be corrected before
re-centering calibration. Figure 4.9 shows that the corrected multiplicity in each cell is
same among each VZERO rings. The corrected multiplicity for each VZERO cell is used
for the weight wi in Eq. (4.25). Figure 4.10 shows the FMD hit map on (η, ϕ). The
azimuthal acceptance of FMD is roughly flat although the FMD cell at η ∼ 4.75 and
ϕ ∼ 4.25 is a dead area.

Figure 4.11 shows the event plane distribution measured with the FMD and VZERO
detectors. In the central collisions, the event plane distributions are flat enough after
the re-centereing calibration. The event plane distributions are not flat enough in the
peripheral collisions, so we perform the flattening calibration which is defined as

k∆Ψk ≡
mmax∑
m=1

[Amcos(mkΨre
k,EP ) +Bmsin(mkΨre

k,EP )], (4.36)

Ψflat
k,EP ≡ Ψre

k,EP + ∆Ψk. (4.37)

The coefficients Am and Bm can be obtained by requiring that m-th Fourier moment of the
Ψflat

k,EP distribution is vanished, i.e., requiring isotropic distribution of Ψflat
k,EP . Assuming

that the correction ∆Ψk is small,

〈cos(mkΨflat
k,EP )〉 = 〈cos(mkΨre

k,EP +mk∆Ψk)〉
= 〈cos(mkΨre

k,EP )× cos(mk∆Ψk)〉 − 〈sin(mkΨre
k,EP )× sin(mk∆Ψk)〉

∼ 〈cos(mkΨre
k,EP )〉 − 〈sin(mkΨre

k,EP )× (mk∆Ψk)〉
= 〈cos(mkΨre

k,EP )〉 −mBm〈sin2(mkΨre
k,EP )〉

= 〈cos(mkΨre
k,EP )〉 − mBm

2
= 0 (4.38)

⇔ Bm =
2

m
〈cos(mkΨre

k,EP )〉, (4.39)

and similarly,

〈sin(mkΨk,EP )〉 = 〈sin(mkΨre
k,EP +mk∆Ψk)〉

= 〈sin(mkΨre
k,EP )× cos(mk∆Ψk)〉+ 〈cos(mkΨre

k,EP )× sin(mk∆Ψk)〉
∼ 〈sin(mkΨre

k,EP )〉+ 〈cos(mkΨre
k,EP )× (mk∆Ψk)〉

= 〈sin(mkΨre
k,EP )〉+mAm〈cos2(mkΨre

k,EP )〉
= 〈sin(mkΨre

k,EP )〉+
mAm

2
= 0 (4.40)

⇔ Am = − 2

m
〈sin(mkΨre

k,EP )〉, (4.41)

in our case, mmax = 5 is enough.
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The flattering calibration is a necessary condition but not the sufficient conditions.
In case of the event plane calculated with the VZERO and FMD, the distributions of
Ψre

k,EP are roughly flat as shown in Fig. 4.11 so that the correction ∆Ψk is small and the
approximation used above is satisfied.

4.5.2 Event Plane resolution

The event plane resolution with subevent i can be calculated in the three subevent method
by the following formula [80]:

Rn+m,k ≡ 〈cos[(n+m)(Ψk,EP,i −Ψk)]〉

=

√
〈cos[(n+m)(Ψk,EP,i −Ψk,EP,j)]〉〈cos[(n+m)(Ψk,EP,i −Ψk,EP,l)]〉

〈cos[(n+m)(Ψk,EP,j −Ψk,EP,l)]〉 , (4.42)

where subscripts j and l represent other two subevents. In this analysis, in order to
calculate the VZERO and the FMD event plane resolutions, TPC standalone tracks at
0.2 < η < 0.8 and at −0.8 < η < −0.2 are used as other two subevents. Figure 4.12
shows the centrality dependence of the correction factor for the event plane resolution.
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Figure 4.9: VZERO multiplicities for each VZERO cell (left) before and (right) after the
gain calibration. The VZERO consists of eight rings, which correspond to cell id 0-8,
8-16, 16-24, 24-36, 36-48, 48-56 and 56-64.
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Figure 4.10: (a) The FMD detector hit map on (ϕ, η). (b) Particle azimuthal distribution
measured by the FMD.
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Figure 4.11: Event plane distribution; (a) with the VZERO at centrality 0-5%, (b) with
the VZERO at centrality 80-90%, (c) with the FMD at centrality 0-5%, (d) with the FMD
at centrality 80-90%.
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Figure 4.12: The centrality dependence of the event plane resolution with (a) the FMD
and (b) the VZERO detector.
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4.6 Systematic uncertainty study

Figure 4.13 shows the results of the integrated correlation 〈cos[n(ϕα − ϕβ)]〉 measured
by the two-particle cumulant method. Figure 4.14 shows the results of the integrated
correlation with respect to the symmetry planes measured by the multi-particle cumulant
method. Since the relations 〈cos[nϕ++mϕ+−(n+m)Ψk]〉 ∼ 〈cos[nϕ−+mϕ−−(n+m)Ψk]〉,
〈cos[nϕ+ +mϕ−− (n+m)Ψk]〉 ∼ 〈cos[nϕ−+mϕ+− (n+m)Ψk]〉 and 〈cos[n(ϕ+−ϕ+)]〉 ∼
〈cos[n(ϕ− − ϕ−)]〉 hold for all correlations within statistical uncertainties, we can safely
combine them into two sets of points, labelled same and opposite charge combinations.
A difference between same and opposite charge correlations is found to be non-zero.
Systematic uncertainties are studied as shown in Fig. 4.15 and Fig. 4.16. Evaluated items
are summarized below:

� Magnetic field polarities
The event sample analyzed, was recorded with two setting of the magnetic field
polarities, namely the (++) and the (−−) ones.

� Centrality estimation
The centrality of the given collision can be evaluated by various detectors. By the
default setting, the multiplicity of the VZERO detector is used. Another method
uses the multiplicity of tracks evaluated by the standalone TPC tracking.

� Variation of the cut on the position of the z-coordinate of the primary vertex
The variation of the cut on the position of the primary vertex allows one to accept
or reject events that in general are considered in the analysis. The default cut is set
to |Vz| < 7 cm.

� Variation of the cut on the number of TPC clusters
By varying the accepted values for this parameters, we accept tracks with worst or
better quality. The default cut is set to 70 clusters.

� Variation of the cut on the dca of track
By varying this cuts, one can change the fraction of non-primary tracks. The default
cut is set to 3 cm for both xy plane and z coordinate.

Dominant systematic errors of the correlation 〈cos[n(ϕα − ϕβ)]〉 come from the variation
of dca cuts. Other systematic errors are negligible. There is a rather large discrepancy
between the results with the small dca cuts and the default results in the correlation
〈cos[n(ϕα − ϕβ)]〉 for n = 2, 3, 4 as shown in Fig. 4.15. One possible reason is that the
higher charge balance moments are sensitive to the short range correlation induced by the
resonance decays. However, these correlations may be affected also by the variations of
the efficiency and contamination by changing this cut as shown in Fig. 4.5. We can not
distinguish these two possible reasons, so the systematic error is assigned to be 5.6 · 10−5,
7.5 · 10−5, 9.2 · 10−5 and 1.1 · 10−4 for n = 1, 2, 3 and 4 respectively at centrality 30-40%
according to the difference between the results with dcaxy,z < 0.1, 0.3 and 3 cm cuts.
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(1) [106] (2) [106] (3) [106] (4) [106]

∆〈cos(ϕα + ϕβ − 2Ψ2)〉 25.1 1.4 15 4.0
∆〈cos(ϕα − 3ϕβ + 2Ψ2)〉 15.5 1.8 5.2 3.4
∆〈cos(ϕα + 3ϕβ − 4Ψ2)〉 7.22 1.4 4.2 0.61
∆〈cos(ϕα − 5ϕβ + 4Ψ2)〉 7.89 2.4 2.6 1.3
∆〈cos(ϕα − 4ϕβ + 3Ψ3)〉 14.3 2.0 4.4 1.2
∆〈cos(ϕα − 5ϕβ + 4Ψ4)〉 15.0 2.0 8.0 0.40

(5) [106] (6) [106] (7) [106]

∆〈cos(ϕα + ϕβ − 2Ψ2)〉 0.76 1.6 1.3
∆〈cos(ϕα − 3ϕβ + 2Ψ2)〉 0.54 0.99 3.2
∆〈cos(ϕα + 3ϕβ − 4Ψ2)〉 1.8 3.1 4.6
∆〈cos(ϕα − 5ϕβ + 4Ψ2)〉 1.3 2.2 3.4
∆〈cos(ϕα − 4ϕβ + 3Ψ3)〉 1.7 2.2 5.1
∆〈cos(ϕα − 5ϕβ + 4Ψ4)〉 1.3 5.7 7.0

Table 4.1: Table of the systematic errors on the correlation ∆〈cos[ϕα−(m+1)ϕβ +mΨk]〉
at centrality 30-40% events: (1) Comparison between different methods, (2) Centrality
estimation cuts, (3) dca cuts, (4) Number of TPC cluster cuts, (5) Vz cuts, (6) Magnetic
polarities, (7) statistical errors

Figure. 4.17 shows the comparison between the results of the correlations with respect
to the symmetry planes with four different methods; multi-particle cumulant method
(TPC), multi-particle cumulant method with vk{2} denominators (TPC vk{2}), VZERO
event plane method (VZERO EP) and FMD event plane method (FMD EP). There are
three possible reasons for the small discrepancy between the different methods. The first
possible reason is that the vk estimation by the average of vk{2} and vk{4} may not be
proper or the multi-particle factorization Eq. (4.5) is not precise enough in the multi-
particle cumulant method. The second possible reason is that event plane determination
is not correct due to the mis-calibration in the event plane method. The third possible
reason is that there are charge sensitive correlations between the POIs and the RPs, which
differently contribute on the observables for different methods. We can not distinguish
these possible reasons, so the systematic errors are assigned according to the comparison
of the different methods shown as grey bands in these figures. In fact, these are domi-
nant systematic errors. Table 5.1 shows the typical systematic errors on the correlation
∆〈cos[ϕα − (m+ 1)ϕβ +mΨk]〉 at centrality 30-40% events.

4.7 Pair differential azimuthal correlations

Dependencies of the correlations 〈cos(ϕα − ϕβ)〉, 〈cos(ϕα + ϕβ − 2ΨRP )〉 and 〈cos(ϕα −
3ϕβ +2ΨRP )〉 on the transverse momentum difference |pT,α−pT,β|, the average transverse
momentum (pT,α + pT,β)/2 and the rapidity separation ∆η = |ηα − ηβ| of two charged
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particles are measured as a same way to the results by the STAR collaboration shown in
Fig. B.6. The Q-cumulant method can be used also for the measurements of these pair
differential correlations as described in detail in App.D.4. The systematic uncertainty
study was also conducted as a same way as that for the integrated correlations shown in
Fig. C.1∼C.10.
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Figure 4.13: The centrality dependence of the integrated 2-particle correlation by the two-
particle cumulant method. The legend indicates the charge combinations for particle α
and β: (a) 〈cos(ϕα−ϕβ)〉, (b) 〈cos[2(ϕα−ϕβ)]〉, (c) 〈cos[3(ϕα−ϕβ)]〉, (d) 〈cos[4(ϕα−ϕβ)]〉.
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Figure 4.14: The centrality dependence of the integrated two-particle correlation with
respect to the symmetry planes measured by the multi-particle cumulant method. The
legend indicates the charge combinations for particle α and β. (a) 〈cos(ϕα− 3ϕβ +2Ψ2)〉,
(b) 〈cos(ϕα + ϕβ − 2Ψ2)〉, (c) 〈cos(ϕα − 5ϕβ + 4Ψ2)〉, (d) 〈cos(ϕα + 3ϕβ − 4Ψ2)〉, (e)
〈cos(ϕα − 4ϕβ + 3Ψ3)〉, (f) 〈cos(ϕα − 5ϕβ + 4Ψ4)〉.
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Figure 4.15: The centrality dependence of the charge dependent parts of the two-particle
correlations measured by using the two-particle cumulant method with the various event
and track cuts.
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Figure 4.16: The centrality dependence of the charge dependent parts of the two-particle
correlations with respect to the symmetry plane measured by using the multi-particle
cumulant method with the various event and track cuts.
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Figure 4.17: The centrality dependence of the charge dependent parts of the two-particle
correlations with respect to the symmetry plane measured by using the multi-particle
cumulant and the event plane methods.
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Chapter 5

Results and Discussions

5.1 Charge dependent azimuthal correlations

In this section, we firstly describe the model in detail used to investigate the LCC induced
correlations [34, 35], which may be the reaction plane dependent backgrounds for the CME
search. Then the measured results are compared with the model results [81, 82].

5.1.1 Blast Wave model incorporating effects of the LCC

The model used in this thesis is based on Monte Carlo Blast Wave model. The Blast
Wave model parametrizes the coordinate and momentum configuration at the kinetic
freeze-out generated by hydrodynamic evolution [83]. In the Blast Wave model, it is
assumed that a geometry of freeze-out configuration in the transverse direction is set to a
filled ellipse with a major axis aligned with the reaction plane as shown in Fig. 5.1 while
the boost invariant is assumed in the beam direction. Each fluid element of the system is
boosted outward by a collective velocity field uµ(x) superimposed on a randomly directed
component quantified by a kinetic freeze-out temperature Tkin. Here outward indicates
the direction normal to the surface of the elliptical shell on which the element sits. The
boost azimuthal direction (ϕb) is assumed to be perpendicular to the freeze-out surface,
which leads to a relationship between the space and boost azimuthal angles of the emitted
particles as follows:

tan(ϕs) =
R2

y

R2
x

tan(ϕb), (5.1)

where the x direction is in the reaction plane and ϕs denotes the space azimuthal angles
of the source fluid element. Rx and Ry denote the in-plane and out-of-plane radii, respec-
tively. Ry sets to unit here since R =

√
R2

x +R2
y is an arbitrary radius for the azimuthal

flow analysis. The ellipticity is defined by:

ε ≡ R2
y −R2

x

R2
y +R2

x

. (5.2)
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The system is bounded within a ellipse such as Ω(r, ϕs) = θ[r̃(ϕs)] with θ the step function
and

r̃(ϕs) =
√

[rcos(ϕs)/Rx]2 + [rsin(ϕs)/Ry]2. (5.3)

The magnitude of flow velocity vanishes at the center of the system and grows monoton-
ically with the distance from the center, reaching the maximum at the transverse edge of
the system. A collective flow velocity is parametrized as

uµ(x) = (coshρ, sinhρ cosϕb, sinhρ sinϕb, 0), (5.4)

ρ(r, ϕs) = tanh−1β(r, ϕs), (5.5)

β(r, ϕs) = r̃n(ϕb)(β0 + β2cos(2ϕb) + β4cos(4ϕb)). (5.6)

The conventional way to apply such the Blast Wave model is then to choose a point
on the freeze-out surface, create a particle with momentum according to Tkin and uµ(x)
assuming the local thermal equilibrium, calculate the observable of interest and then
repeat for several particles until sufficient statistics is achieved. With regard to charge-
balance correlations one needs to additionally incorporate the local charge conservation.
This can be achieved in the following way: Instead of generating a single particle at a
time, we generate a canonical ensemble of particles at a chemical freeze-out temperature
of Tchem = 148 MeV [84] and fixed volume 100 fm3 with exactly conserved charges by
using a dilute description of the hadron resonance gas. The details of the implementation
of the canonical ensemble can be found in Ref. [28]. For a given ensemble every particle
is then assigned a collective velocity vi such that all the vi follow the single particle Blast
Wave parametrization with the additional constraint of being emitted within a certain
angle distance σϕ in the direction ϕ̄ = atan[(Rx/Ry)(y/x)] of each others. The illustration
of the definition of ϕ̄ is shown by green lines in Fig. 5.1. In the limit where the charge
conservation at the kinetic freeze-out is perfectly local, this distance is zero σϕ = 0 and all
particles within a given ensemble are emitted as if their sources had the same collective
velocity. The details of the implementation of the local charge conservation can be found
in Ref. [34]. Charge dependent correlations can be calculated separately for each array as
particles from different arrays are assumed to be uncorrelated in our model. We note that
in reality, charge dependent correlations are sensitive also to the correlations induced by
the final-state interactions and the identical particle interference [85]. When incorporated
in the model, these have been shown to explain distortions of the balance function [34, 85].
However, for our purpose of estimating the magnitude of the local charge conservation
signal, we expect these effects to be less relevant and we will neglect them in the following.

Analytic expressions of the transverse momentum spectrum and n-th harmonic az-
imuthal flow are given as

dN

pTdpT

=
2mTτe

µ/T

(2π)3

∫ 1

0

rdr

∫ 2π

0

dϕsI0(α(r, ϕs))K1(β(r, ϕs))Σ(r, ϕs), (5.7)

vn(pT) =

∫ 1

0
rdr

∫ 2π

0
dϕsK1(β(r, ϕs))In(α(r, ϕs))cos(nϕs)Σ(r, ϕs)∫ 1

0
rdr

∫ 2π

0
dϕsK1(β(r, ϕs))I0(α(r, ϕs))Σ(r, ϕs)

, (5.8)
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where In and K1 are the modified Bessel functions. α(r, ϕs) and β(r, ϕs) are defined as

α(r, ϕs) =
pT

T
sinhρ(r, ϕs),

β(r, ϕs) =
mT

T
coshρ(r, ϕs). (5.9)

The six free parameters Tkin, n, β0, β2, β4 and ε were extracted by fitting the measured
dN/dpT, pT differential v2{EP2} ∼ v2 and v4{EP2} ∼ v4,2 as shown in table 5.1 below,
Fig. 5.2 [73, 84, 86].

In order to compare the model results to ALICE data, we account for the detector
efficiency and acceptance by using the same kinematic cuts as the ALICE experiment
(|η| < 0.8, 0.2 < pT < 5 GeV/c) and rescaling the model results to reproduce the
experimental uncorrected multiplicities [87] and the overall normalization Z = 〈N−− −
N++〉/〈M+〉+ 〈N−+−N+−〉/〈M−〉 [88], which corresponds to the probability of observing
the balancing charge in the detector. The correction factor would be Z = 1 for a perfect
detector with full acceptance and equal number of positive and negative charged particles
in each event. Note that the calculated magnitudes of the azimuthal correlations may
change at most 20% due to the systematic uncertainty of Z and M , but the ratios of the
azimuthal correlations are insensitive to them.

Figure 5.3 shows the balance function with respect to the reaction plane B(ϕ̃2,∆ϕ)
calculated by this model. One observes that the balance function in the in-plane region
(ϕ̃2 ∼ 0◦) is significantly narrower compared to the balance function in the out-of-plane
region (ϕ̃2 ∼ 90◦). This is a consequence of the larger collective velocities in the in-plane
region, which lead to a focusing in azimuthal angle as illustrated in the left picture in
Fig. 2.2. At intermediate angles (ϕ̃2 ∼ 45◦) the balance function shows an asymmetry
towards the in-plane direction. This can be attributed to the fact that the balancing
partner charge is statistically more likely to be found in the in-plane region than to in the
out-of-plane region as illustrated in the right picture in Fig. 2.2.

This model uses the simple parametrization of the freeze-out surface. In reality, the
geometry of the freeze-out surface is considered to be more complicated as shown in Fig.
5.4 (a) [89]. The freeze-out hypersurfaces have the volume emission parts (with time-like
normal vectors, i.e. running approximately flat in Fig. 5.4 (a)), which are similar to
the Blast Wave parametrization. However, they also contain the surface emission parts
(with space-like normal vectors, i.e. running more-or-less vertical in Fig. 5.4 (a). In
order to avoid confusion with the freeze-out surface or hypersurfaces, italic letters are
used for this surface emission parts), absent in the usual Blast Wave parametrization.
The surface emission parts have the higher transverse flow than the volume emission
parts. Both the spatial and momentum ellipticities of the surface emission parts change
its sign at t ∼ 9 fm. The high pT particles are likely to come from the fluid with higher
transverse flow and it was found that about half of the produced particles comes from
the volume emission parts and about half from the surface emission parts. Therefore,
the model used in this thesis may overestimate the ellipticity of high pT particles. In
addition, it would be interesting to study the effects of the LCC in event-by-event fully
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centrality Tkin [GeV] n β0 β2 β4 ε

5-10% 0.086 1.10 0.930 0.00831 0.00021 0.0962
10-20% 0.085 1.17 0.935 0.0129 0.000237 0.135
20-30% 0.083 1.24 0.938 0.0154 0.000255 0.172
30-40% 0.080 1.35 0.940 0.0160 0.00029 0.204
40-50% 0.080 1.46 0.943 0.0151 0.00033 0.224
50-60% 0.079 1.50 0.944 0.0136 0.00033 0.226

Table 5.1: Table of the Blast Wave parameters for each centrality bins for Pb–Pb
√
sNN =

2.76 TeV collisions.

hydrodynamic simulations in order to obtain complete pictures of the charge dependent
azimuthal correlations.

Moreover, the separation between hadrons and anti-hadrons on the freeze-out surface
is parametrized not in the spatial but in the ϕ̄ angle space because it is easy to implement.
The separation width with σϕ = 0.5 roughly corresponds to the spatial separation width
of 6× sin(0.5) ∼ 3 fm on the freeze-out surface since the measured Hanbury-Brown-Twiss
(HBT) radius Rside [89, 90] at the LHC energy is ∼ 6 fm as shown in Fig. 5.4 (b). This
is compatible to a few fm/c of the hadron formation time [91].
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5.1. CHARGE DEPENDENT AZIMUTHAL CORRELATIONS

Figure 5.1: Visualization of the Blast Wave parametrization in the transverse plane. At
a point (x, y) in the transverse plane the associated collective velocity is perpendicular
to the surface of the ellipse. The magnitude of the transverse collective rapidity increases
linearly with the reduced radius and has a second order harmonic component w.r.t the
boost angle ϕb. The relative distribution of the balance charges in the transverse plane is
a Gaussian in ∆ϕ̄ with the width σϕ.
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Figure 5.2: (a) Charged pion d2N/dpTdy||y|<0.5 as a function of pT, (b) pT differential ellip-
tic flow v2, (c) pT differential elliptic flow v4{EP2} measured by the ALICE collaboration
for each centrality events in comparison with the Blast Wave model fitting [73, 84].
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Figure 5.3: The balance function with respect to the reaction plane B(ϕ̃2,∆ϕ) calculated
from the Blast Wave model incorporating effects of the LCC. One observes that the
balance function is narrower for in-plane pairs than out-of plane pairs. The balance
function at intermediate angles shows an asymmetry in ∆ϕ towards the reaction plane.

(a) (b)

Figure 5.4: (a) Sections of the freeze-out hypersurfaces for the gaussian-type initial con-
dition for centrality 20-30% at the LHC. The dots with numbers indicate the values of
the transverse velocity at the freeze-out. The hydrodynamic evolution proceeds until the
freeze-out occurs, where the assumed condition for the universal freeze-out temperature is
Tf = 145 TeV [89]. (b) Pion HBT radii Rside as a function of 〈kT〉 ≡ 〈|pT,1+pT,2|〉/2. Red
closed circles are experimental results at the 5% most central Pb–Pb collisions measured
by the ALICE collaboration. Blue open circles are experimental results at the 5% most
central Au–Au collisions measured by the STAR collaboration [90].
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5.1.2 Experimental Results

(i) Charge balance moments
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Figure 5.5: Centrality dependence of the correlation (a) C1 = ∆〈cos(ϕα−ϕβ)〉 in compar-
ison with the HIJING model and the Blast Wave model incorporating effects of the LCC
σϕ = 0.0, 0.5, 1.0 and (b) the higher charge balance moments Cn = ∆cos[n(ϕα − ϕβ)]〉 in
comparison with the Blast Wave model incorporating effects of the LCC σϕ = 0.0 [35, 81].

As discussed in Sec.4.6, since relation 〈cos[n(ϕ+ − ϕ+)]〉 ∼ 〈cos[n(ϕ− − ϕ−)]〉 is
found to hold with n = 1 − 4, they are safely combined into one set labelled same
charge combinations. Then, we can define the charge balance moments Cn as the
difference between the opposite and same charge correlations.

Figure 5.5 (a) shows the centrality dependence of the 1st charge balance moment
C1 = ∆〈cos(ϕα − ϕβ)〉 compared with the results of the HIJING model and the
Blast Wave model incorporating effects of the LCC. The statistical and systematic
uncertainties are smaller than the symbol size. The measured results are positive
for all the centrality class, which is consisient with the interpretation as the inverse
width of the charge balancing pairs and opposite to the CME expectation discussed
as Eq. (2.14). Furthermore, |C1| is much larger than the possible CME contributions
|∆〈a1,αa1,β〉|, so we can safely ignore the possible CME on this correlation.

The HIJING model underestimates this strong charge dependence as shown by a
green dot line. On the other hand, the Blast Wave model reproduces the ALICE
result well. The model parameter σϕ is the separation width between hadrons and
anti-hadrons on the kinetic freeze-out surface. The parameter σϕ is found to be
small by the comparison of the correlation C1. observed large positive C1 can be
regarded as an evidence of the combined effect of the LCC and the large radial flow
on the kinetic freeze-out surface while the HIJING model fails to describe it because
it does not have a large radial flow in the final state.
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Figure 5.5 (b) shows the centrality dependence of the charge balance moments Cn =
∆〈cos[n(ϕα − ϕβ)]〉 with n = 1 − 4 compared with the results of the Blast Wave
model incorporating effects of the LCC. Higher charge balance moments (Cn, n > 1)
have smaller magnitudes and 4th charge balance moments are negative for peripheral
collisions, which however can not be described by the Blast Wave model with σϕ = 0.
For the higher charge balance moments, charge dependent near side correlations (e.g.
HBT) may be relevant and is not taken into consideration in this simple Blast Wave
model. In this thesis, the most of the correlations investigated are the 1st charge
balance moment C1 and its azimuthal modulations discussed below.

(ii) Azimuthal Modulation w.r.t. the 2nd harmonic symmetry plane
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Figure 5.6: Centrality dependence of the charge dependent two particle azimuthal corre-
lations with respect to the 2nd harmonic symmetry plane: (a) 〈cos(ϕα +ϕβ − 2Ψ2)〉 [92],
(b) 〈cos(ϕα− 3ϕβ +2Ψ2)〉 [81], (c) 〈cos(ϕα +3ϕβ− 4Ψ2)〉 [81], (d) 〈cos(ϕα− 5ϕβ +4Ψ2)〉.

As discussed in Sec.5.6, since relations 〈cos[nϕ+ +mϕ+− (n+m)Ψk]〉 ∼ 〈cos[nϕ−+
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mϕ− − (n+m)Ψk]〉 and 〈cos[nϕ+ +mϕ− − (n+m)Ψk]〉 ∼ 〈cos[nϕ− +mϕ+ − (n+
m)Ψk]〉 are found to hold with (n,m, k) = (1, 1, 2), (1,−3, 2), (1, 3, 2) and (1,−5, 2),
they are safely combined into two sets of points, labelled same and opposite charge
combinations. Figure 5.6 shows the centrality dependence of the charge dependent
two particle azimuthal correlations with respect to the 2nd harmonic symmetry
plane: 〈cos(ϕα + ϕβ − 2Ψ2)〉, 〈cos(ϕα − 3ϕβ + 2Ψ2)〉, 〈cos(ϕα + 3ϕβ − 4Ψ2)〉 and
〈cos(ϕα − 5ϕβ + 4Ψ2)〉 for the same and opposite charge combinations. Similar to
the correlation 〈cos(ϕα + ϕβ − 2Ψ2)〉 used for the CME search, all the additional
three correlations of the opposite charge pairs are significantly larger than that of
the same charge pairs. Here we discuss these nonzero charge dependent parts (The
charge independent parts of these correlations are discussed in Sec.6.2.3). Figure
5.7 shows the centrality dependent parts of the correlation ∆〈cos[ϕα− (m+ 1)ϕβ +
mΨk]〉 for m = 2,−2, 4,−4 which corresponds to the |m|-th azimuthal modulation
of C1 with respect to the 2nd harmonic symmetry plane (the reaction plane). The
correlations ∆〈cos(ϕα +ϕβ− 2ΨRP )〉 and ∆〈cos(ϕα− 3ϕβ +2ΨRP )〉 are categorized
into the 2nd azimuthal modulation by the elliptic flow v2 while the correlations
∆〈cos(ϕα + 3ϕβ − 4Ψ2)〉 and ∆〈cos(ϕα − 5ϕβ + 4Ψ2)〉 are categorized into the 4th
azimuthal modulation by the 4th harmonic flow v4,2. The formers (red symbols) are
larger than the latter (blue symbols) as same ordering of v2 > v4,2. Open symbols
are larger than closed ones for both red and blue symbols and the difference between
open and closed symbols comes from a sign in front of the term msn

n+m,k in Eq. (2.5),
which represents the modulation of the charge balance asymmetry.

Since the HIJING model do not have the collective flow, the three-particle correla-
tion 〈cos[nϕα + mϕβ − kϕγ1 · · · − kϕ(n+m)/k]〉 calculated by using the HIJING are
divided by the experimentally measured values of elliptic flow v2{2}(n+m)/k for the
estimation of contributions from jets, resonances, and other trivial processes by the
HIJING model. The HIJING model gives negligible charge dependent parts of all
the correlations as shown in Fig. 5.7 (a), while the Blast Wave model can reproduce
the main features of the charge dependent parts of all the correlations very well as
shown in Fig. 5.7 (b). The observed charge dependent parts of a series of the mixed
harmonic azimuthal correlations including the correlation 〈cos(ϕα+ϕβ−2ΨRP )〉 can
be systematically explained due to mostly the correlations induced by the “effective”
LCC on the kinetic freezeout surface.

Although it is found that the LCC seems to be realized on the kinetic freezeout
surface and induces the significant contribution on the charge dependent azimuthal
correlations as discussed above, we discuss the CME search via the charge dependent
azimuthal correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 ignoring the LCC effects. Observed
charge dependence shown in Fig. 5.6 (a) (Fig. 5.7 (c)) is roughly consistent with
the CME expectation that the opposite charge correlation is larger than the same
charge correlation. Its centrality dependence is also consistent with the CME ex-
pectation that the charge dependent part is smaller in central collisions than in
peripheral collision because of the dilution of correlations with the increasing num-
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ber of participants in the collisions and the decrease of the magnetic field. It is also
found that there is a difference in magnitude between the same and opposite charge
combinations of the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉. In the view of the CME,
this can be explained by the quenching effect of the back-to-back opposite charge
correlation by the interactions with the parity-odd bubbles and medium [37]. Al-
ternative explanations will be discussed in detail at Sec.6.2. The shaded blue band
in Fig. 5.7 (c) is the result for the charge independent correlation.

A large source of uncertainty in the theoretical model of the CME can be reduced
by studying the colliding energy dependence [38, 93, 94, 95, 96]. Some authors
argued that the magnitude of the effect should decrease with increasing collision
energy [38, 96] while others predicts little collision energy dependence [95]. A red
line in Fig. 5.7 (c) is a model prediction for the same charge correlation by the
authors in Ref. [38]. The opposite charge correlation in this model has a positive
sign and the same magnitude as the same charge correlation (not shown in plot). In
this model, it is expected that the quantity 〈aαaβ〉 depends on the collision energy√
sNN and the lifetime of the strong magnetic field and the deconfined matter τB

as ∝ (
√
sNN)−1/8 · τB. The normalization of the signals are tuned at the reference

data obtained by the STAR collaboration at the RHIC top energy
√
sNN = 200

GeV. Observed correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 is much larger than this model
prediction and compatible to the results at the RHIC top energy, which may provide
further insights for the CME.
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Figure 5.7: Centrality dependence of the correlation ∆〈cos[ϕα − (m + 1)ϕβ + mΨ2]〉 in
comparison with (a) the HIJING model and (b) the Blast Wave model incorporating
effects of the LCC σϕ = 0.0 [45, 35, 81]. (c) Centrality dependence of the correlation
〈cos(ϕα +ϕβ − 2ΨRP )〉 measured by the ALICE in comparison with the results by STAR
collaboration and theoretical calculations [92].
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(iii) Azimuthal Modulation w.r.t. the higher harmonic symmetry planes
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Figure 5.8: Centrality dependence of the charge dependent two particle azimuthal corre-
lations with respect to the 3rd and 4th harmonic symmetry planes: (a) 〈cos(ϕα − 4ϕβ +
3Ψ3)〉 [81], (b) 〈cos(ϕα − 5ϕβ + 4Ψ4)〉 [81], (c) 〈cos(2ϕα + 2ϕβ − 4Ψ4)〉 [82].

Furthermore, the azimuthal modulations of C1 (and C2) with respect to the higher
harmonic symmetry planes are investigated. Figure 5.8 shows the centrality depen-
dence of the charge dependent two particle azimuthal correlations with respect to
the 3rd and 4th harmonic symmetry plane angles: 〈cos(ϕα−4ϕβ +3Ψ3)〉, 〈cos(ϕα−
5ϕβ +4Ψ3)〉 and 〈cos(2ϕα +2ϕβ−4Ψ4)〉 for the same and opposite charge combina-
tions. The first two correlations 〈cos(ϕα − 4ϕβ + 3Ψ3)〉 and 〈cos(ϕα − 5ϕβ + 4Ψ3)〉
show a similar centrality and charge dependence as the correlations in Fig. 5.6 (a).
The correlation 〈cos(2ϕα + 2ϕβ − 4Ψ4)〉 is often used to measure the 4th harmonic
flow v4,2 [97] and was also proposed in Ref. [98] to study the physics backgrounds
for the CME search. Indeed, magnitudes of the both same and opposite charge
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correlations are rather large as expected by ∼ v2,αv2,βv4,2. On the other hand, its
charge dependent part is zero consistent within the statistical error even when the
Pb–Pb data collected by the ALICE detectors both at 2010 and 2011 are used in
the analysis of this correlation.

Figure 5.9 shows the differences between the same and opposite charge combinations
for these correlations. The correlation ∆〈cos(ϕα − 4ϕβ + 3Ψ3)〉 corresponds to the
3rd azimuthal modulation of C1 with respect to the 3rd harmonic symmetry plane
and is expected to be proportional to the triangle flow v3 in the LCC scenario.
Similarly, the correlation ∆〈cos(ϕα− 5ϕβ +4Ψ4)〉 corresponds to the 4th azimuthal
modulation of C1 with respect to the 4th harmonic symmetry plane and is expected
to be proportional to the 4th harmonic flow v4 in the LCC scenario. Combined with
the results in Fig. 5.7, the charge dependent parts of the correlations with respect
to the higher harmonic symmetry plane is smaller than that of the correlations with
respect to the 2nd harmonic symmetry plane as expected by the the ordering of
v2 > v3 > v4 ∼ v4,2.

Figure 5.9 (b) shows the centrality dependence of the correlation ∆〈cos(2ϕα +2ϕβ−
4Ψ4)〉, which corresponds to the 4th azimuthal modulation of C2 with respect to
the 4th harmonic symmetry plane. It is natural to expect the small correlation
∆〈cos(2ϕα +2ϕβ − 4Ψ4)〉 in the LCC scenario because both the 2nd charge balance
moments C2 = ∆〈cos[2(ϕα − ϕβ)]〉 in Fig. 5.5 (b) and the 4th harmonic flow v4 are
small.

A event-by-event hydrodynamic models with the LCC are mandatory for quan-
titative discussions, especially about the physics origin of the charge dependent
azimuthal correlations with respect to the higher harmonic symmetry plane.
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Figure 5.9: Centrality dependence of the correlation (a) ∆〈cos(ϕα − 4ϕβ + 3Ψ3)〉,
∆〈cos(ϕα − 5ϕβ + 4Ψ4)〉 and (b) ∆〈cos(2ϕα + 2ϕβ − 4Ψ4)〉 [82].
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(iv) Pair differential correlations

Figure 5.10 shows the differential dependencies of the correlations 〈cos(ϕα − ϕβ)〉,
〈cos(ϕα + ϕβ − 2ΨRP )〉 and 〈cos(ϕα − 3ϕβ + 2ΨRP )〉 on the transverse momentum
difference |pT,α − pT,β|, the average transverse momentum (pT,α + pT,β)/2 and the
rapidity separation ∆η = |ηα−ηβ| of two charged particles for the centrality 30−40
% events. These dependencies of the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 are similar
to the results observed by the STAR collaboration as shown in Fig. B.6. The
difference between same and opposite charge correlations for these three azimuthal
correlations are similarly localized within about one unit of rapidity, which is the
typical hadronic width, (or may even change sign as a function of ∆η) and extend
up to the higher |pT,α−pT,β| and (pT,α +pT,β)/2. They increase with the increase of
(pT,α+pT,β)/2, which is inconsistent to the CME expectations but roughly consistent
to the LCC induced correlations because the charge balance width of larger pT pairs
is expected to be smaller due to the focusing effect of the boosted charge balance
pairs [34]. However, as already discussed, the simple Blast Wave model do not
consider the surface emission parts, which emits the higher pT particles, the Blast
Wave model can not properly used for the predictions of the differential correlations.
At the moment, there are no quantitative model calculations based on the CME of
the charge dependent differential correlations either.
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Figure 5.10: The pair differential correlation (a) 〈cos(ϕα − ϕβ)〉, (b) 〈cos(ϕα + ϕβ −
2ΨRP )〉 [92] and (c) 〈cos(ϕα − 3ϕβ + 2ΨRP )〉 [81] as a function of (left) the transverse
momentum difference |pT,α − pT,β|, (center) the average transverse momentum (pT,α +
pT,β)/2, (right) the rapidity separation ∆η = |ηα − ηβ| of the charged particle pair in
comparison with the HIJING model.
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As a summary of the charge dependent parts, it is found that the simple Blast Wave
model incorporating with the LCC on the kinetic freeze-out surface reproduces their main
features. This seems to be a strong evidence of the LCC on the kinetic freezeout surface.
However, at the same time, the charge dependent correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 is
consistent with the CME expectation when the LCC effects are ignored. Therefore, both
in order to estimate the actual contributions on the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉
used for the CME search and study the LCC effects themselves, more precise theoretical
works for the predictions of the correlations measured in this thesis are necessary. First
results in this direction have been presented in [99, 100] and we expect more studies in
the future.

Very importantly, we admit that the phrase “the LCC on the kinetic freeze-out surface”
is somehow misleading because the hadrons and anti-hadrons are expected to be created
at the hadronization time through the deconfinement phase transition from the partonic
to the hadronic phase, which is later than the hadron production at p + p collisions (in
this sense it is called delayed hadronization), but earlier than the kinetic freeze-out. The
switching from the hydrodynamic to the particle picture on the kinetic freeze-out surface
is an artificial procedure but this is a simplest way to describe the collision dynamics in the
hydrodynamic model. Therefore, strictly speaking, what we try to test is just the strong
spatial and momentum correlations between the hadron and anti-hadrons at the kinetic
freeze-out. This correlations may be generated by the elastic and inelastic scattering
between hadrons during the hadronic phase. To understand what kind of microscopic
mechanisms generate these correlations, the microscopic model beyond the conventional
hydrodynamics is mandatory.

In this direction, the models which incorporate the hydrodynamics and the subsequent
hadronic rescattering model exists [101]. In these models, the switching from the hydro-
dynamic to the particle picture implements at some artificial temperature Tsw, which
is typically chosen to just below the deconfinement phase transition temperature ∼ 160
MeV. In practice, Tsw is tuned so as to reproduce the particle ratio. After switching the
hadronic particle picture, the hadronic rescatterings which include both the elastic and in-
elastic scatterings between hadrons are taken into considerations. There are mainly three
problems in these hydro models with the hadronic rescattering. Firstly, there are no such
models incorporating with the LCC at the switching temperature for the moment. But
these developments will be rather easily conducted sooner or later. Secondly, in the proce-
dure of the switching, an ideal hadron gas approximation is used to decide the momentum
and chemical compositions, which are modified through the hadronic rescattering after-
burners. This approximation is still questionable. Lastly, it is still questionable whether
or not the particle picture is valid just after the hadronization. It is a very principal
problem.

Various models which are no based on the hydrodynamic picture also exist to describe
the dynamics of the relativistic heavy-ion collisions and they employ very different charge
production mechanisms. In event generators like HIJING [45] and partonic/hadronic
cascades such as UrQMD [46] and AMPT [70, 99], the charges are created early by the
fragmentation of gluonic strings, which was originally tuned for the hadron production in
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p+p, e+e- collisions. In the partonic/hadronic cascades such as UrQMD and AMPT, the
charge production occurs early like HIJING, but the subsequent interactions contribute
on the correlations between the finally produced hardons and anti-hadrons. Therefore,
it is also interesting to investigate which microscopic mechanisms, charge creations or
the subsequent partonic/hadronic rescatterings, contribute on the finally observed LCC
induced correlations using these cascading models.

Figure 5.11: The two waves of quark production during system evolution [102]

If correlations generated during the hadronic rescattering are not enough to explain
the physics origin of the LCC on the kinetic freeze-out surface, the observed charge parts
may have some insight for the microscopic mechanism of the phase transition. It is usually
assumed that charge production happens at two different stages of the evolution. The
first wave of production is expected to occur during the first fm/c of the collision by initial
hard scatterings and during thermalization process to form the quark-gluon plasma phase.
After a collective expansion of the system, a second stage of charge production is expected
to occur during the transition from the deconfined QGP phase to hadronic matter around
5 − 10 fm/c - possible late quark productions as shown in Fig. 5.11. The hadronization
with the late quark(and anti-quark) production naturally generates the strong correlation
between hadrons and anti-hadrons.
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5.2 Charge independent azimuthal correlations asso-

ciated with the directed flow v1

In this section, the physics origins of the charge independent multi-particle azimuthal
correlations are discussed. As already discussed at the previous section, there is a non-
zero charge independent part of the correlation 〈cos(ϕα+ϕβ−2Ψ2)〉, which can be regarded
as a signature of the quenching effect on the back-to-back opposite charge correlation by
the interactions with the QGP medium and parity-odd bubbles from the CME view point.
However, it was pointed out that a non-zero charge independent part of this correlation
can be explained by the pT conservation effect or the joint correlation between the directed
flow v1 and the elliptic flow v2 as shown in Fig. 2.9 (b) [51, 13]. Indeed, nonzero charge
independent correlations were generally observed as shown in Fig. 5.6, Fig. 5.8 and
Fig. 5.10. It was suggested in [13, 52] that these charge independent correlations can
be useful tools to study the directed flow v1 and the joint correlations between v1 and
the higher harmonic flow, which may originate from the initial density fluctuations and
the subsequent hydrodynamic evolution of the system. Naive expectations are provided
through the following factorizations as already introduced in Sec.2.3.

〈cos(ϕα − ϕβ)〉 ∼ v1,α × v1,β, (5.10)

〈cos[ϕα − (m+ 1)ϕβ +mΨ2]〉 ∼ v1,α × v|m+1|,β
× 〈cos[Ψ1 − (m+ 1)Ψ|m+1| +mΨ2]〉, (5.11)

where Ψ1 and Ψ|m+1| denote azimuthal angles of the first and |m+1|-th harmonic collision
symmetry planes, respectively.

We first estimate the pT conservation effects on the multi-particle correlations associ-
ated with the directed flow v1 by the semi-analytic way in Sec.5.2.1. It is found that this
effect is expected to be suppressed on the three and four-particle correlations compared
with on the two-particle correlations. The estimations in this thesis are more accurate
than that in Ref. [51]. Then, the possible signatures of the directed flow v1 in the two-
particle correlations and the mixed harmonic correlations, e.g. 〈cos(ϕα− 3ϕβ + 2Ψ2)〉 are
studied by comparing with the HIJING model, the AMPT model and the fully (3+1)
dimensional ideal hydrodynamic simulations, which was developed in Ref. [101] using the
state-of-the-art equation of state from lattice QCD and subsequent hadronic cascadings
in the late stage.

As usual in the hydrodynamic simulations, the hydro model used here employs the
Cooper-Frye formula to switch the fluid picture to the particle picture. This results
in the violation of the global and local momentum conservation and the multi-particle
correlations calculated by this model may not reflect the pT conservation effects correctly.
Another problem by the violation of the momentum conservation in this hydro model
appears in the non-zero net pT of the whole system. The simple remedy developed in
Ref. [25] is used here and it is confirmed that the results do not change significantly.
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A MultiPhase Transport (AMPT) model is a hybrid model with the initial distribution
of particles (soft strings and mini-jet partons) generated by the HIJING model of the
version 1.383, the partonic cascadings by the Zhangs Parton Cascade (ZPC) model and the
final hadronic rescattering including the resonance decays by the ART model [70]. In the
default version of the AMPT, the mini-jet partons are recombined with their parent strings
when they stop cascade interactions, and the resulting strings are converted to hadrons
using the Lund string fragmentation model. In the string melting configuration, soft
strings produced by the HIJING are melting into partons since we assume the hot QGP
matter. After the parton cascadings, the partons combine nearest partons into hadrons,
i.e. a quark coalescence model. Here we use the AMPT model with the string melting
configuration with various parameters tuned according to the measured charged particle
distribution and elliptic flow at the LHC energy. The authors of Ref. [70] argued that
a parton scattering cross section is one of the important model parameter to reproduce
the elliptic flow. At the LHC energy, the AMPT model describes the behavior of both
the hard components such as the jet-quenching and the soft components such as the
collective flow. Note that this model can not use for the charge dependent correlations
since it violates the LCC at the hadronic stage.

Results reported in Sec.5.2.2 can be well explained by the directed flow v1 and the
hydro model works very well. However, the other correlations reported in Sec.5.2.3 are
difficult to understand only in terms of the flow effects for the moment. Instead, the re-
markable agreements with the AMPT model are found, which indicates that the interplay
between the flowing matter and jets is generally important for the understanding of the
mixed harmonic multi-particle azimuthal correlations.

5.2.1 Transverse momentum conservation effect

In Ref. [51], the pT conservation effect on the pT weighted azimuthal correlation 〈pT,αpT,βcos(ϕα+
ϕβ − 2Ψ2)〉 was discussed. Here we will discuss more sophisticated way.

According to the discussion in Ref. [22, 23, 103, 104], the two particle distribution can
be factorized into the one particle distributions with the correction factor for the global
pT conservation induced correlations.

dNpairs,αβ

d2pT,αd2pT,β

=
dN

d2pT,α

dN

d2pT,β

(
1− 2

pT,α · pT,β

K

)
, (5.12)

where K =
∑
p2

T and is O(104) ∼ O(105) and this sum is over all particles in the events.
From this equation, Eq. (2.15) can be derived. In principal, the pT conservation effect can
be derived not only the correlation 〈cos(ϕα − ϕβ)〉 but also all the other mixed harmonic
azimuthal correlations.

Following D. Teaney and L. Yan in Ref. [13] we will approximate the two particle
correlation with the disconnected component. The yield of particle type α (this label
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denotes pT,α bins) for a fixed Glauber configuration in a single event is

dNα

dϕα

=
Nα

2π

[
1 + 2

v1,α

ε1
ε1cos(ϕα −Ψ1)

+ 2
v2,α

ε2
ε2cos(2ϕα − 2Ψ2)

+ 2
v3,α

ε3
ε3cos(3ϕα − 3Ψ3)

]
, (5.13)

where we have assumed that the response is linearly proportional to the deformation.
Then the two particle correlation function with respect to the 2nd harmonic symmetry
plane with the consideration of the global pT conservation effects is approximated as

〈〈dNpairs,αβ

dϕαdϕβ

〉〉
Ψ2

∼
〈〈 dN

dϕα

dN

dϕβ

(
1− 2

pT,αpT,βcos(ϕα − ϕβ)

K

)〉〉
Ψ2

∼ NαNβ

(2π)2

[
1 +

∑
n

2
(vnαvnβ

ε2n

)
〈〈ε2n〉〉cos(nϕα − nϕβ)

+ 2
v2α

ε2
〈〈ε2〉〉cos(2ϕα − 2Ψ2)

+ 2
v2αv2β

ε22
〈〈ε22〉〉cos(2ϕα + 2ϕβ − 4Ψ2)

+ 2
v1αv1β

ε21
〈〈ε21cos(2Ψ1 − 2Ψ2)〉〉cos(ϕα + ϕβ − 2Ψ2)

+ 2
v1αv3β

ε1ε3
〈〈ε1ε3cos(Ψ1 − 3Ψ3 + 2Ψ2)〉〉cos(ϕα − 3ϕβ + 2Ψ2)

+ α↔ β
]
×

[
1− 2

pT,αpT,β

K
cos(ϕα − ϕβ)

]
, (5.14)

where double brackets 〈〈 〉〉Ψ2 denotes the average over glauber configurations at fixedNpart

and fixed Ψ2 and double brackets 〈〈 〉〉 denotes the average over glauber configurations at
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fixed Npart. The observables 〈cos(ϕα + ϕβ − 2Ψ2)〉 can be calculated by

〈cos(ϕα + ϕβ − 2Ψ2)〉 =
1

2π

∫
dΨ2dϕαdϕβdpT,αdpT,β

cos(ϕα + ϕβ − 2Ψ2)

NαNβ

〈〈dNpairs,αβ

dϕαdϕβ

〉〉
Ψ2

=

∫
dpT,αdpT,β

v1αv1β

ε21
〈〈ε21cos(2Ψ1 − 2Ψ2)〉〉

− 2

K(2π)3

∫
dpT,αdpT,βpT,αpT,β2

v2,β

ε2
〈〈ε2〉〉 ×

∫
dΨ2dϕαdϕβcos(ϕα + ϕβ − 2Ψ2)× cos(2ϕβ − 2Ψ2)× cos(ϕα − ϕβ)

− 2

K(2π)3

∫
dpT,αdpT,βpT,αpT,β2

v2,α

ε2
〈〈ε2〉〉 ×

∫
dΨ2dϕαdϕβcos(ϕα + ϕβ − 2Ψ2)× cos(2ϕα − 2Ψ2)× cos(ϕα − ϕβ)

=

∫
dpT,αdpT,β

v1αv1β

ε21
〈〈ε21cos(2Ψ1 − 2Ψ2)〉〉

− 1

K

∫
dpT,αdpT,βpT,αpT,β(v2,α + v2,β). (5.15)

A first term in the last line represents the contribution originated from the spatial correla-
tion of the initial density profile, which may survive (or be altered) through the evolution
of the system. A second term in the last line shows the pT conservation effect on the az-
imuthal correlations, which corresponds to the correction term derived in Ref. [51]. The
pT conservation also affects on the correlation 〈cos(ϕα−3ϕβ+2Ψ2)〉 as a same way. By this
estimation, it was found that the pT conservation effect can be significant in magnitude
O(10−4 ∼ 10−3) compared with the magnitude of the observed signals.

However, since we do not know the reaction plane angle, the correlations 〈cos(ϕα +
ϕβ − 2Ψ2)〉 and 〈cos(ϕα − 3ϕβ + 2Ψ2)〉 are experimentally estimated by three particle
correlations through the following factorization,

〈cos(ϕα + ϕβ − 2Ψ2)〉 ∼ 〈cos(ϕα + ϕβ − 2ϕγ)〉
v2,γ

, (5.16)

〈cos(ϕα − 3ϕβ + 2Ψ2)〉 ∼ 〈cos(ϕα − 3ϕβ + 2ϕγ)〉
v2,γ

. (5.17)

Therefore, we need to estimate the pT conservation effects not on two particle correlations
with respect to the reaction plane but on the three particle correlations.

Again according to the discussion in Ref. [22, 23, 103, 104], the three particle distri-
bution can be factorized into the one particle distributions with the correction factor for
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the global pT conservation induced correlations.

dNαβγ

d2pT,αd2pT,βd2pT,γ

=
dN

d2pT,α

dN

d2pT,β

dN

d2pT,γ

×
[
1− 2

M ·K (pT,α · pT,β + pT,α · pT,γ + pT,β · pT,γ)

+
4

K2

(
(pT,α · pT,β)(pT,α · pT,γ)

+ (pT,α · pT,β)(pT,β · pT,γ)

+ (pT,α · pT,γ)(pT,β · pT,γ)
)]
, (5.18)

where M denotes the total number of generated particles in the collisions. Then, inserting
Eq. (5,13) in Eq. (5.18), we can obtain three particle azimuthal distributions written as

〈〈 dNαβγ

dϕαdϕβdϕγ

〉〉
∼ NαNβNγ

(2π)3

[
1 +

∑
n

2
(vnαvnβ

ε2n

)
〈〈ε2n〉〉cos(nϕα − nϕβ)

+ . . .

+ 2
v1αv1βv2γ

ε21ε2
〈〈ε21ε2cos(2Ψ1 − 2Ψ2)〉〉cos(ϕα + ϕβ − 2ϕγ)

+ 2
v1αv3βv2γ

ε1ε3ε2
〈〈ε1ε3ε2cos(Ψ1 − 3Ψ3 + 2Ψ2)〉〉cos(ϕα − 3ϕβ + 2ϕγ)

+ · · ·+ α↔ β ↔ γ
]

×
[
1− 2pT,αpT,β

M ·K cos(ϕα − ϕβ)− 2pT,αpT,γ

M ·K cos(ϕα − ϕγ)

− 2pT,βpT,γ

M ·K cos(ϕβ − ϕγ)

+
4p2

T,αpT,βpT,γ

K2
cos(ϕα − ϕβ)cos(ϕα − ϕγ)

+
4pT,αp

2
T,βpT,γ

K2
cos(ϕα − ϕβ)cos(ϕβ − ϕγ)

+
4pT,αpT,βp

2
T,γ

K2
cos(ϕα − ϕγ)cos(ϕβ − ϕγ)

]
. (5.19)

Now we can calculate the correlations 〈cos(ϕα + ϕβ − 2Ψ2)〉 and 〈cos(ϕα − 3ϕβ + 2Ψ2)〉
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by using Eq. (5.16) and Eq. (5.19).

〈cos(ϕα + ϕβ − 2Ψ2)〉 =

∫
dϕαdϕβdϕγdpT,αdpT,βdpT,γ

cos(ϕα + ϕβ − 2ϕγ)

v2,γNαNβNγ

〈〈 dNαβγ

dϕαdϕβdϕγ

〉〉

=

∫
dpT,αdpT,βdpT,γ

v1αv1β

ε21ε2
〈〈ε21ε2cos(2Ψ1 − 2Ψ2)〉〉

− 1

M ·K
∫
dpT,αdpT,βdpT,γpT,αpT,β(v2,α + v2,β)

− 1

M ·K
∫
dpT,αdpT,βdpT,γ

pT,αpT,γv1,βv1,γ + pT,βpT,γv1,αv1,γ

v2,γ

+
1

K2

∫
dpT,αdpT,βdpT,γ

pT,αpT,βp
2
T,γ

v2,γ

+
1

K2

∫
dpT,αdpT,βdpT,γpT,αpT,βpT,γ(pT,αv2,β + pT,βv2,α)

+
1

K2

∫
dpT,αdpT,βdpT,γ

pT,αpT,βpT,γ

v2,γ(
pT,αv1,αv1,γ + pT,αv3,αv3,γ + pT,βv1,βv1,γ + pT,βv3,βv3,γ

)
. (5.20)

As a same way, we can calculate the pT conservation effects on the correlation 〈cos(ϕα −
3ϕβ + 2Ψ2)〉 by using Eq. (5.17) and Eq. (5.19).

〈cos(ϕα − 3ϕβ + 2Ψ2)〉 =

∫
dϕαdϕβdϕγdpT,αdpT,βdpT,γ

cos(ϕα − 3ϕβ + 2ϕγ)

v2,γNαNβNγ

〈〈 dNαβγ

dϕαdϕβdϕγ

〉〉

=

∫
dpT,αdpT,βdpT,γ

v1αv3β

ε1ε3ε2
〈〈ε1ε3ε2cos(Ψ1 − 3Ψ3 + 2Ψ2)〉〉

− 1

M ·K
∫
dpT,αdpT,βdpT,γpT,α(pT,βv2,β + pT,γ

v3,βv3,γ

v2,γ

)

+
1

K2

∫
dpT,αdpT,βdpT,γpT,αpT,βp

2
T,γ(v2,β +

v2,αv2,β

v2,γ

)

+
1

K2

∫
dpT,αdpT,βdpT,γ

pT,αp
2
T,βpT,γ

v2,γ(
v1,αv1,β + v3,αv3,β + v1,βv1,γ + v3,βv3,γ

)

+
1

K2

∫
dpT,αdpT,βdpT,γpT,αpT,βp

2
T,γ

v4,βv4,γ

v2,γ

. (5.21)

With these estimation, the pT conservation effect on the correlation 〈cos(ϕα−3ϕβ +2Ψ2)〉
differs from that on 〈cos(ϕα +ϕβ−2Ψ2)〉. Terms with factor 1/(M ·K) are suppressed by
factor M ∼ O(104) in comparison with pT conservation effect on the two-particle correla-
tions. Terms with factor 1/K2 are suppressed by factor p2

T/(Kv
2
2) ∼ O(10−3). Therefore,

the pT conservation effects on the multi-particle correlations are in general suppressed
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than that on the two-particle correlations and it is found that the global pT conserva-
tion effect can not explain the non-zero charge independent parts of the experimentally
measured correlation 〈cos(ϕα + ϕβ − 2Ψ2)〉 and 〈cos(ϕα − 3ϕβ + 2Ψ2)〉.

In reality, we can expect that pT conserves somehow locally since the QGP is not any
longer dilute system but dense matter. If we use particles only at mid-rapidity regions
and sum of the pT in this subsystem is considered to be conserved, a factor K can become
smaller and the pT conservation effect can be more significant. Above discussion can be
still hold if the number of particles in this subsystem is large enough.

5.2.2 Directed flow v1 signatures
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Figure 5.12: (a) The centrality dependence of the correlation 〈cos(ϕα−ϕβ)〉 measured by
the ALICE in comparison with AMPT and HIJING calculations [45, 70, 106]. (b) The
centrality dependence of the integrated correlation v1{2} ≡

√〈cos(ϕα − ϕβ)〉 compared
with the experimental results of v1{2}, v1{4} and v1{6} by the ALICE collaboration [101,
107].

Figure 5.12 (a) shows the integrated correlation 〈cos(ϕα − ϕβ)〉 with the AMPT and
HIJING model calculations. Here no eta-gap between two particles is required. The
HIJING model reproduces most of the observed correlation, which indicates that the
dominant physics origin of the integrated correlation 〈cos(ϕα−ϕβ)〉 without the eta-gaps
is a two-particle non-flow effect. On the other hand, v1{2} ≡

√〈cos(ϕα − ϕβ)〉 calculated
by the hydro model is smaller than measured v1{2} by factor two or more and roughly
agrees with v1{4} and v1{6} measured by the ALICE collaboration [101, 107]. Since the
statistics of the hydro model data is not enough to calculate the four-particle cumulant,
here we compared v1{2} of the hydro model. However, v1{2} of the hydro model can be
regarded as the directed flow because the hydro model does not include non-flow effect
from jets and ∆η dependence of the correlation 〈cos(ϕα − ϕβ)〉 of the hydro model is
found to be very small as shown in Fig. 5.17 (a). Note that the measured v1{2, 4, 6} is
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by definition a positive real number or an imaginary number. If the result is imaginary
number, the flow interpretation is completely invalid. Then the agreements between
the hydro v1{2}, the experimental v1{4} and v1{6} may indicate the directed flow v1

signatures exists in reality.
Now we notice that a large eta-gap between two particles is important to remove

the non-flow effect on the experimental measurement of the directed flow when the two-
particle cumulant method is used. We employ the same method used in Ref. [105, 26]
so called the Global Fit method (GF) to measure the pT differential directed flow in the
hydro model. In the first step of this method, N ×N symmetric matrix consisted of the
two-particle correlation V1∆ as a function of trigger particle pT and associated particle pT

bin is calculated,where N denotes the number of pT bins. The requirement |ηt − ηa| >
0.8 between trigger and associated particle is used. Indeed, the ALICE collaboration
observed the strong dependence on the eta-gap of the V1∆ and this dependence converges
at |∆η| ∼ 0.8. Then the N values of v1(pT) are extracted by simultaneously fitting
this matrix with the right-hand side of Eq. (2.15). Here, we ignore the correction term
from pT conservation effect. Figure 5.13 shows the V1∆ results and the fitting results in
comparison with the experimental results by the ALICE collaboration [105]. The fitting
works rather well in the low pT region, but the simple factorization seems to be broken in
the high pT region both with measured data and the hydro model. The directed flow v1

as a function of pT is somehow extracted by this method and the measured data by the
ALICE collaboration agrees well with the hydro model as shown in Fig. 5.14. A sign of
v1 at the low pT region is opposite to that in the high pT region and a crossing-point with
v1 ∼ 0 at around pT =1.5 GeV/c exists. This pT dependence of the signal is consistent
with the expectations of the directed flow picture.

Figure 5.15 (a) shows the pT differential correlation 〈cos(ϕα − 3ϕβ + 2Ψ2)〉 without
any eta-gaps measured by the ALICE collaboration for each centrality events [107]. The
three-particle cumlant method is used. Contrary to the naive prediction shown in Fig. 2.9
(a), a sign of the correlation does not change at any pT region. Interestingly, Figure 5.15
(b) and (c) show the hydro model calculation and remarkable similarities to the measured
correlation are found although the physics origin of this pT dependence is not yet clear.
Observed signals in the low pT region might be interpreted as a signature of the directed
flow.

In Ref. [26], it was pointed out that the directed flow is rather insensitive to the shear
viscosity. But, these results may be sensitive to the initial state model, the EoS of the
matter and so on.
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Figure 5.13: V1∆ as a function of associated particle pT for each pT bins of trigger particle
pT in minimum bias events. A transverse axis indicates associated particle pT [GeV/c]
and a longitudinal axis indicates V1∆. Eta gaps between trigger and associated particle
|∆η| > 0.8 are required. Blue points are from event-by-event hydro calculations. Red
lines are fitting results [101, 105].
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Figure 5.14: pT differential directed flow v1 measured by the Global Fit method in mini-
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100



5.2. CHARGE INDEPENDENT AZIMUTHAL CORRELATIONS ASSOCIATED
WITH THE DIRECTED FLOW V1

)c (GeV/(a)

T
p

0 1 2 3 4 5

〉) 2
Ψ

+
2

bϕ
-3 aϕ

co
s(

〈
- 

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
-310×

0-5%

5-10%

10-20%

20-30%

30-40%

40-50%

 = 2.76 TeVNNsPb-Pb c < 5 GeV/
(b)

T
 p≤| < 0.8      0.2 η|

ALI−PREL−29340

(a)

 [GeV/c]
T

p

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

〉) 2
Ψ

+
2

βφ
-3

αφ
co

s(
〈

 -
 

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

Centrality percentile

0-20%

20-40%

40-60%

(b)

 [GeV/c]
T

p

0 0.5 1 1.5 2 2.5

〉) 2
Ψ

+
2

βφ
-3

αφ
co

s(
〈

 -
 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
-310×

Centrality percentile

0-20%

20-40%

40-60%

(c)

Figure 5.15: The pT differential correlation 〈cos(ϕα−3ϕβ +2Ψ2)〉 for each centrality class
(a) measured by the ALICE collaboration by the three-particle cumulant method [107],
(b)calculated by the hydro model by the event plane method and (c) Zoomed plot.
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5.2.3 Further analysis

Figure 5.16 shows the centrality dependence of the charge independent multi-particle
correlations in comparison with (a) the HIJING model, (b) the hydro model and (c) the
AMPT model calculations. Results from the HIJING model are almost negligible while the
hydro model reasonably reproduces them except for the correlation 〈cos(ϕα +ϕβ−2Ψ2)〉.
Because the measured correlation 〈cos(ϕα− 3ϕβ + 2Ψ2)〉 at the low pT region agrees with
the hydro model as already studied in Fig. 5.15, the pT integrated results are also in
good agreement. The correlation 〈cos(ϕα + ϕβ − 2Ψ2)〉 calculated with the hydro model
disagrees with both the naive expectations shown in Fig. 2.9 (b) and the experimental
results, whose reason is difficult to answer for the moment.

What is worse about the hydro model, there is little ∆η dependence of the correlations
〈cos(ϕα−ϕβ)〉, 〈cos(ϕα−3ϕβ +2Ψ2)〉 and 〈cos(ϕα +ϕβ−2Ψ2)〉 in the hydro model while
the measured results have a strong dependence as shown in Fig. 5.17. Note that since
the boost invariance of the initial density profile is roughly assumed and jets are not
considered in the hydro model, the little ∆η dependence in this model is reasonable.

Interestingly, the AMPT model reproduces well both all the integrated correlations and
their ∆η dependencies as shown in Fig. 5.16 (c) and Fig. 5.17. These results may indicate
that the physics origin of the mixed harmonic azimuthal correlations associated with the
directed flow is the combined effect of the directed flow and jets. Further theoretical
efforts like the development of the hydro+jet model, the detailed study of the dependence
on the various parameters in the AMPT model, are necessary.
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Figure 5.16: The centrality dependence of the correlation 〈cos[ϕα − (m + 1)ϕβ + mΨ2]〉
measured by the ALICE in comparison with (a) the HIJING model, (b) the hydro model
and (c) the AMPT model calculations [106].
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Figure 5.17: The ∆η = |ηα− ηβ| differential correlation (a) 〈cos(ϕα−ϕβ)〉, (b) 〈cos(ϕα−
3ϕβ +2Ψ2)〉 and (c) 〈cos(ϕα +ϕβ−2Ψ2)〉 for centrality 30-40% events in comparison with
the HIJING, AMPT and hydro models.
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Chapter 6

Summary and Conclusions

In this thesis, the mixed harmonic azimuthal correlations at mid-rapidity in
√
sNN =2.76

TeV Pb–Pb collisions measured with the ALICE detectors at LHC were reported.

Their charge dependent parts have two competing physics implications: the Local
Charge Conservation (LCC) induced correlations and the Chiral Magnetic Effect (CME).
In general, charge dependent parts of azimuthal correlations are expected to be induced
by the LCC and the azimuthal anisotropic flow. In order to test the “effective” LCC on
the kinetic freeze-out surface, charge dependent parts of a series of the mixed harmonic
azimuthal correlations ∆〈cos[n(ϕα − ϕβ)]〉 and ∆〈cos[nϕα +mϕβ − (n+m)Ψk]〉 are pro-
posed. The correlations ∆〈cos[n(ϕα−ϕβ)]〉 can be regarded as the n-th Fourier moments of
the relative azimuthal distribution between charge and balancing anti-charge. Especially,
∆〈cos(ϕα − ϕβ)〉 can be interpreted as the inverse width between charge and anti-charge
and may be sensitive to the radial flow. The correlations ∆〈cos[nϕα +mϕβ− (n+m)Ψk]〉
can be regarded as the |n + m|-th azimuthal modulations of the n-th Fourier moments
with respect to the k-th harmonic symmetry plane. They are expected to be roughly
proportional to the |n+m|-th harmonic azimuthal flow with respect to the k-th harmonic
symmetry plane, i.e. v|n+m|,k.

It has been discussed that the local parity P and charge-parity CP violation in QCD
occur via the topologically non-trivial gluon field configurations although its direct evi-
dence is not yet experimentally found. In the presence of a large magnetic field generated
perpendicularly to the reaction plane in non-central relativistic heavy ion collisions, this
local P and CP violation in QCD is expected to result in a charge separation along the
direction of the magnetic field. This phenomenon is called the CME. A measurement of
a charge dependent azimuthal correlation 〈cos(ϕα +ϕβ − 2ΨRP )〉 was originally proposed
to search the charge separation due to the CME. However, the LCC induced correlations
can be a possible background of the CME search in the presence of the elliptic flow.

Firstly, observed ∆〈cos(ϕα−ϕβ)〉 is consistent with the inverse width between charge
and anti-charge induced by the “effective” LCC on the large radially expanding kinetic
freeze-out surface. On the other hand, since the near-side correlations such as HBT seem
to be relevant for the higher moment ∆〈cos[n(ϕα − ϕβ)]〉, the simple Blast Wave model
incorporating with the LCC on the kinetic freeze-out fails to describe them.
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The Blast Wave model incorporating with the LCC on the kinetic freeze-out can also
systematically reproduce ∆〈cos[ϕα−(m+1)ϕβ +mΨ2]〉 with n = 2,−2, 4 ans 4 (including
∆〈cos(ϕα + ϕβ − 2Ψ2)〉). Note that this model has the large radial flow, the elliptic flow
v2 and the fourth harmonic flow with respect to the 2nd harmonic symmetry plane v4,2.
Again, these agreements strongly indicate that the “effective” LCC seems to be realized
on the kinetic freeze-out surface. The “effective” LCC on the kinetic freeze-out surface
may be originated from the LCC at the hadronization and/or the correlations induced
at the highly interacting hadronic matter. Its physics origins must be understood, which
may provide insights about the chemical evolution of the QGP such as the information
about the charge production mechanism. To this end, theoretical developments of the
hydrodynamic + hadron cascade models with the LCC constraint are necessary.

It is found that the charge dependent azimuthal correlation 〈cos(ϕα + ϕβ − 2Ψ2)〉 is
positive or ∼ 0 for the opposite charge combinations and negative for the same charge,
which is qualitatively consistent with the CME if the background effects are ignored.
However, now we know that the LCC induced correlations seem to be realistic and signif-
icant, contributions from the LCC effects should be precisely subtracted for the further
CME search.

Charge dependent parts of azimuthal correlations with respect to the 3rd and 4th
harmonic symmetry planes are also observed. Their magnitudes are again consistent
with the naive expectation of the LCC scenario. Furthermore, the dependencies of the
charge dependent azimuthal correlations 〈cos(ϕα − ϕβ)〉, 〈cos(ϕα + ϕβ − 2ΨRP )〉 and
〈cos(ϕα− 3ϕβ +2ΨRP )〉 on the transverse momentum difference |pT,α− pT,β|, the average
transverse momentum (pT,α + pT,β)/2 and the rapidity separation ∆η = |ηα − ηβ| of two
charged particles were investigated. Their charge dependent parts are similarly localized
within about one unit of rapidity, which is the typical hadronic width, (or may even
change sign as a function of ∆η) and extend up to the higher |pT,α − pT,β| and (pT,α +
pT,β)/2. They increase with the increase of (pT,α + pT,β)/2, which is inconsistent with the
CME expectations but qualitatively consistent with the LCC induced correlations. To
quantify these new correlations, the theoretical developments of the event-by-event full
hydrodynamic models with the LCC constraint are necessary.

A non-zero charge independent part of the correlation 〈cos(ϕα+ϕβ−2Ψ2)〉 is observed.
In the context of the CME, it can be understood as a suppression of the opposite charge
correlation because the opposite charge correlation is considered to be a back-to-back
correlation and modified by the interactions between the parity-odd bubbles and the
medium created in the collisions. However, it was pointed out that the global transverse
momentum conservation of the system also affects on it. In this thesis, it is found by
the semi-analytic way that this effect is not large enough to explain the observed charge
independent part.

Charge independent parts of the mixed harmonic azimuthal correlations are origi-
nally considered to be useful tools to study the collision dynamics and the collective
properties of the QGP. In particular, the directed flow v1 and joint correlations between
v1 and higher harmonic flow vn have been recently recognized as a consequence of the
initial density fluctuations and subsequent hydrodynamical evolutions. This can be an
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alternative explanation of the observed non-zero charge independent part of the correla-
tion 〈cos(ϕα + ϕβ − 2Ψ2)〉. By comparing the various azimuthal correlations measured
by the ALICE collaboration with the results of the ideal event-by-event hydrodynamic
simulations, the directed flow v1 signals are observed with multi-particle azimuthal cor-
relation measurements. However, it is found that the ideal hydrodynamic model used
in this thesis can not explain the observed charge independent part of the correlation
〈cos(ϕα + ϕβ − 2Ψ2)〉. Remarkably, the AMPT model, which is based on the par-
tonic/hadronic cascade, can reproduce all mixed harmonic azimuthal correlations mea-
sured in this thesis. This indicates that the interplay between the hydrodynamic matter
and jets is a key ingredient for the comprehensive understanding of their physics origins.
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Appendix A

Azimuthal Anisotropic Flow

A.1 Measurement Methods

In the standard event plane method, one experimentally estimates the n-th harmonic
symmetry plane angle Ψn from the n-th harmonics of the anisotropic particle distribution
itself. This experimental estimation is called event plane angle. The event flow vector Qn

in each events is defined as a 2 dimensional vector in the transverse plane:

(Qn,x, Qn,y) = (
∑

i

wicosnϕi,
∑

i

wisinnϕi), (A.1)

where the sum goes over all particles i. The quantities ϕi and wi are the azimuthal angle
measured in the laboratory frame and weight for particle i. The weight wi is usually set
to unit, pT of the particle, and so on. The event plane is defined as

ΨEPn ≡ tan−1

(
Qn,y

Qn,x

)
/n. (A.2)

Then, with the event plane method, the anisotropic flow is calculated as

vn{EPk} ≡ 〈cos[n(ϕ−ΨEPk
)]〉

R
, (A.3)

where R is the correction factor for the finite resolution of the event plane angle determi-
nation. In order to remove the auto-correlation between ϕ and ΨEPk

, the bracket denotes
the average over particles which are not used for the event plane angle estimation in
all events. For example, the event plane angle is calculated using the forward-rapidity
detectors and the the estimation of anisotropic flow uses the central-rapidity detectors.
Detailed description for the event plane method is found in Sec.4.5.

In the two-particle cumulant method,vn{2} is obtained from the two-particle azimuthal
correlation defined as

vn{2} ≡
√
〈cos[n(ϕα − ϕβ)]〉, (A.4)
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where the bracket denotes the average over all pairs in all events. This relation is deduced
as follows.

〈cos[n(ϕα − ϕβ)]〉 = 〈cos[n(ϕα −Ψn)− 2(ϕβ −Ψn)]〉
= 〈cos[n(ϕα −Ψn)]× cos[n(ϕβ −Ψn)]〉

−〈sin[n(ϕα −Ψn)]× sin[n(ϕβ −Ψn)]〉
∼ 〈cos[n(ϕα −Ψn)]× cos[n(ϕβ −Ψn)]〉
∼ 〈cos[n(ϕα −Ψn)]〉〈cos[n(ϕβ −Ψn)]〉
∼ v2

n. (A.5)

The sine terms are negligible in case of the perfect azimuthal acceptance. An approxima-
tion from the fourth to the fifth line is valid if the particle α and β are correlated with
each other only via common correlation to the reaction plane.

In the four-particle cumulant method, vn{4} is defined as

vn{4} ≡ (n〈cos[n(ϕα − ϕβ)]〉2 − 〈cos[n(ϕα + ϕβ − ϕγ − ϕδ)]〉) 1
4

∼ [2(v2
n)2 − v4

n]
1
4 ∼ vn. (A.6)

The elliptic flow estimations using the six and eight-particle cumulant method, vn{6} and
vn{8}, are defined similarly. But their definitions are extremely complicated and we omit
them here.

The event plane method and the two-particle cumulant method are categorized into the
two-particle azimuthal correlations while the four, six and eight-particle cumulant meth-
ods are categorized into the multi-particle correlations. Since the azimuthal anisotropic
flow is a collective motion of the participant region, it can contribute not only the two-
particle correlations but also the multi-particle correlations. It is known that the two-
particle correlation method suffers from the intrinsic two-particle correlations induced by
the jets and resonances, which are called non-flow correlation, while the non-flow con-
tributions on the multi-particle correlations are negligible. Therefore, the multi-particle
correlation method is better than the two-particle correlation method for the flow mea-
surements. On the other hand, the statistical errors of the multi-particle correlations are
in general larger than the two-particle correlations. A general definition of the cumulant
method is explained in Sec.4.4.

A.2 Physics origin of the elliptic flow

Elliptic flow quantifies how the system responds to the initial spatial ellipsoidal anisotropy.
Suppose the two extreme situations. In the case where the mean free path among the
produced particles is much larger than the typical size of the system, the azimuthal
distribution of the finally emitted particles is flat. In the opposite extreme case, where the
mean free path is very small enough to achieve thermalization, then the hydrodynamics
can be applied to describe the space-time evolution of the matter. The hydrodymanic
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flow is generated due to the pressure gradient of the matter. The magnitude of the
hydrodynamic flow depends on the azimuthal direction as shown by the arrows in the
right picture of Fig. A.1 [74], which results in the azimuthal anisotropy of the collective
flow.

The basic equations for the relativistic hydrodynamics are energy-momentum conser-
vation;

∂µT
µν = 0, (A.7)

where T µν is the energy-momentum tensor, and the current conservation;

∂µN
µ = 0, (A.8)

where Nµ is the conserved current. T µν and Nµ can be represented by the flow vector uµ

as a function of the space-time coordinate x. The two equations above therefore compose
a simultaneous differential equation for uµ, which can be numerically solved with the
equation of the state (EoS) of the produced matter.

Figure A.1: The illustration of the elliptic flow development in the two extreme case: a
large and small mean free path among the produced particles in the left and right pictures
respectively. The aizmuthal angle φ in these pictures is measured from the reaction plane
angle [74].

Figure A.2 (a) shows Npart dependence of the integrated elliptic flow v2 in
√
sNN = 200

GeV Au–Au collisions measured by the PHOBOS collaboration at RHIC. Npart denotes
the number of the participants in the collisions and is correlated to the event centrality.
In the hydrodynamic models, the Cooper-Frye formula is used in order to convert the
macroscopic variables calculated by the hydrodynamic simulations into the particle dis-
tributions. A solid line is a result from a full 3D ideal hydrodynamic simulation both at
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the QGP and hadronic gas stage while a dashed line is a result from a ideal hydrodynamic
simulation and subsequent hadronic rescattering model. The elliptic flow v2 is small in
most central collsions, where Npart is large, because the initial anisotropy is small in most
central collisions. The magnitudes of v2 in non-central collisions are O(10−2 ∼ 10−1),
which roughly agree with the results using ideal hydrodynamic models. On the other
hand, the prediction by the hadronic cascade model (dash-dotted line) is smaller than
the observed result. This is a strong evidence that the matter contains non-hadronic
components and its density is high enough to regard it as the hydrodynamic matter.

Figure A.2 (b) shows the pT differential elliptic flow v2 measurement using the event
plane method in

√
sNN = 200 GeV Au–Au collisions by the STAR collaboration [108].

Observed v2 increases from ∼ 0 up to ∼ 0.2 at the low pT region and goes constant or
down at pT ∼ 3GeV/c. At the low pT region, the elliptic flow v2 agrees well with the ideal
hydrodynamic model shown by a red line. At the high pT region, the hard components
like jets become relevant and the agreement to the simple hydrodynamic model becomes
worse.

There are two parameters which have to be provided from the comparison with the
flow signatures in the hydrodynamic theories: the initial condition for the hydrodynamic
simulations and the viscosity of the hydrodynamic matter. There are two-type of the
initial conditions - the Glauber models [109] and the models based on the Color Glass
Condensate (CGC) picture [110]. Hadronic processes in the heavy ion collisions are de-
scribed in a simple geometrical picture by the Glauber Model, which assumes straightline
nucleon trajectories and N −N cross section independent of the number of collisions the
nucleons have undergone before. The nuclear density profile is given by a Woods-Saxon
distribution. In the ALICE experiment, a nucleon-nucleon cross section of 64 mb is used
and was confirmed by the measurement of the Van der Meer scans [69, 111]. The collision
geometry determines the number of nucleons that participate in the reaction, so-called
number of participants Npart, and the number of independent hard collisions Ncoll. In
the CGC models, the energy density at the center of the participant profile is saturated
compared to the Glauber models, which generally results in the large spatial anisotropy.
Recently, the relativistic hydrodynamic simulations with the shear viscosity have been
available and it was demonstrated that the shear viscosity decreases the anisotropic flow
as expected. However, before the estimation of the viscosity and the determination of the
initial condition by comparing the models and experimental results, the flow fluctuation
effect on the each flow measurement method should be carefully considered as described
in the next section.
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Figure A.2: (a) Npart dependence of the integrated elliptic flow v2 in
√
sNN = 200 GeV

Au–Au collisions measured by the PHOBOS collaboration [112] in comparison with the
various models. A solid line is a result from a full 3D ideal hydrodynamic simulation both
at the QGP and hadronic gas stage (Tth = 100 MeV). A dashed line is a result from a full
3D ideal hydrodynamic simulation at the QGP stage (Tth = 160 MeV) and subsequent
hadronic cascade model [113]. A dash-dotted line is a result from a hadronic cascade
model [114]. (b) The pT differential elliptic flow v2 in

√
sNN = 200 GeV Au–Au collisions

measured by the STAR collaboration [108] using the event plane method in comparison
with the hydrodynamic models. The predicted magnitude of v2 at higher pT based on
energy loss expectations for different values of the gluon density in a static medium [115].
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A.3 Flow fluctuation and Higher harmonic flow

The anisotropy fluctuates event-by-event even if the impact parameter is fixed. The
magnitude of flow fluctuations is characterized by σv2 , defined as

σv2 ≡ 〈v2
2〉 − 〈v2〉2. (A.9)

Flow methods involve various functions of v2, which are also affected by fluctuations. The
average value of f(v2) is obtained by expanding around 〈v2〉 to leading order in σ2

v2
:

〈f(v2)〉 = f(〈v2〉) +
σ2

v2

2
f
′′
(〈v2〉). (A.10)

Using the definition of v2{2} and v2{4}, we have

v2{2}2 = 〈v2
2〉 = 〈v2〉2 + σ2

v2
+ δ2, (A.11)

and

v2{4}2 = (2〈v2
2〉2 − 〈v4

2〉)1/2 = 〈v2〉2 − σ2
v2
, (A.12)

where δ2 denotes the nonflow contributions on the two-particle correlations. Fluctuations
represented by σv2 increase v2{2} and decrease v2{4} compared to v2. Fluctuations also
affect the six and eight-particle cumulant v2{6} and v2{8} as a same way as the v2{4} to
leading order in σ2

v2
[116]. Fluctuations are considered to affect the elliptic flow measure-

ment in the event plane method by the rather complicated way and detailed descriptions
are found in Ref. [116].

Figure A.3 (a) shows the centrality dependence of the integrated elliptic flow for the
charged particles in

√
sNN = 2.76 TeV Pb–Pb collisions measured by the ALICE collab-

oration using the various methods [73]. Magnitudes and centrality dependence of inte-
grated v2 observed at the LHC energy are roughly consistent to the hydrodynamic model
predictions as shown in Fig. A.3 (b) [117]. For two-particle cumulant method, non-flow
contributions are suppressed by the larger eta-gaps |∆η| > 1 between two particles for
semi-peripheral and peripheral collisions, which is consistent with the expectations. The
elliptic flow v2{4, 6, 8} measured with the multi-particle cumulant method agree well each
other and the difference between v2{2} and v2{4} can be considered to originate from
the flow fluctuations, i.e. σv2 ∼

√
v2{2}2 − v2{4}2. Experimentally, there are several

sources of flow fluctuations: fluctuations of the impact parameter within the sample of
the events and, more importantly, the event-by-event fluctuations of the initial density
profile. Figure A.3 (c) shows the centrality dependence of the elliptic flow fluctuations
σv2/v̄2 (v̄2 ≡

√
v2{2}2 + v2{4}2/2) in comparison with that of the initial eccentricity

flucutations calculated using the CGC-type(MC-KLN) and Glauber-type Monte Carlo
models. It was found according to this plot that the observed elliptic flow fluctuations
can be roughly explained by the fluctuations of the initial geometry.
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Figure A.3: (a) The centrality dependence of the integrated elliptic flow v2 for charged
hardrons with various methods measured by the ALICE collaboration [73]. (b) The
integrated elliptic flow v2 and triangle flow v3 measured by the ALICE collaboration
in comparison with the viscous hydrodynamic simulations. Solid lines are the results
with the Monte Carlo KLN-CGC initial condition with η/s = 0.2. Dotted lines are
the results with the Monte Carlo Glauber initial condition with η/s = 0.08. For the
simultaneous description for v2 and v3, the dotted lines are better [117]. (c) The centrality
dependence of the elliptic flow fluctuations by ALICE collaboration in comparison with
the RHIC results (STAR and PHOBOS) and the Glauber-type and CGC-type (MC-KLN)
theoretical calculations
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Due to the event-by-event fluctuations of the nucleon positions in nuclei, the ini-
tial profile of the energy density is very complex and may also possess higher harmonic
anisotropies. Figure A.4 (a) shows the centrality dependence of the integrated higher
harmonic anisotropy measured by the ALICE collaboration [15]. The triangle flow v3{2}
and v3{4} have finite values and their centrality dependences are smaller than that of the
elliptic flow. Note that the difference between v3{2} and v3{4} is larger than that of the
elliptic flow. The magnitudes of the fourth harmonic flow v4{2} are compatible to that
of the triangle flow v3{4} and again its centrality dependence is small. These magnitudes
and centrality dependencies are roughly consistent to the predictions by hydrodynamic
models with the event-by-event initial conditions. Therefore, they can be considered to
originate from the eccentricities formed by the initial density fluctuations.

The pT differential higher harmonic flow vn with n = 3, 4, 5 measured by the two-
particle cumulant method are shown in Fig. A.4 (b) [15]. Their magnitude becomes
weaker than the elliptic flow but the pT dependence is similar for all harmonic flow. Ob-
served v3 clearly prefer to the viscous hydrodynamics with η/s= 0.08 (this value is still
small, c.f. superfluid 4He at χ-point ∼ 0.8) while the elliptic flow is less sensitive to the
viscosity than the triangle flow. Note that these theoretical calculations are based on the
Glauber initial conditions because it was pointed out by the PHENIX collaboration a
few years ago that the simultaneous comparison of v2 and v3 with the model calculations
prefer to the Glauber-type initial conditions than the simple CGC models [17]. However,
the latest CGC based models such as Ref. [118] can reproduce the ellptic flow as well
as the higher harmonic flow. The interpretations of the measured flow signatures will be
easily changed by the further theoretical developments, e.g. the inclusion of the quantum
fluctuations in the initial stage [119], the thermodynamical fluctuations during the hydro-
dynamic evolution [120], the temperature dependence of η/s [121] and so on. Therefore,
the systematic measurements of the all harmonic flow are expected to play an enssential
role to understand the collision dynamics and the matter properties more presicely.
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(a)

(b)

Figure A.4: (a) The centrality dependence of the integrated flow vn measured by the
ALICE collaboration. vn{2,∆η > 1} for n = 2, 3, 4 is the n-th harmonic flow measured
by the two-particle cumulant method with eta-gap between two particles for suppression
of the non-flow effects. v3/ΨRP

is the triangle flow with respect to the 2nd harmonic
event plane (or the reaction plane) measured by the event plane method. v3/Ψ2 is similar,
but measured by the five-particle cumulant method 〈cos(3ϕα + 3ϕβ − 2ϕγ1 − 2ϕγ2 −
2ϕγ3)〉 [15]. (b) Charged hardron pT differential flow vn with the two-particle cumulant
method measured by the ALICE collaboration in comparison with the Glauber-type initial
condition and the viscous hydrodynamic simulations [15].

118



Appendix B

Chiral Magnetic Effect

B.1 Theoretical Aspects

All gauge field configurations which have finite action can be characterized by a topological
invariant, the winding number (Cherm Simons topological charge) Qw [122]. The winding
number is an integer and given as

Qw ≡ g2

32π2

∫
d4xF a

µνF̃
µν
a ∈ Z, (B.1)

where F a
µν denotes the strength tensor of the gluonic field and F̃ µν

a is its dual tensor.
g denotes the QCD coupling constant with generators normalized as trtatb = δab/2. In
the classical vacuum of QCD the gauge field has to be a pure gauge so that the energy
density is minimal. In the temporal gauge (A0 = 0) this implies Ai(x) = i/gU(x)∂iU

†(x),
where U(x) is an element of the gauge group SU(3). The different classical vacua can be
characterized by a topological invariant, the winding number ν which is an integer and
given by

ν =
1

24π2

∫
d3xεijktr[(U †∂iU)(U †∂jU)(U †∂kU)]. (B.2)

Now one can show that if a gauge field configuration goes to a pure gauge at infinity
and has nonzero Qw it induces a transition from one classical vacuum to another, more
precisely

Qw = ν(t = ∞)− ν(t = −∞). (B.3)

At zero temperature such transition requires tunneling through a potential barrier. A
height of the barrier is order the QCD scale ΛQCD over the strong coupling constant αS,
so the transition rate will be suppressed exponentially. In this case the main contribution
to the transition rate comes from fluctuations around instantons (which are minima of
the classical Euclidean action). The transition rate due to instantons will go down if the
temperature is raised.
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It was also realized that the QCD contains static solutions which have finite energy
and half integer winding number, which is called a sphaleron as shown in Fig. B.1 [123].
Figure B.1 shows a potential of the gluon field, which has a structure like a Bloch crystal.
Sphalerons exist on the unstable point of the potential as shown by the red symbol. If the
temperature is higher than the energy of the sphaleron it is likely that one can go over the
barrier instead of tunneling. It will happen at the high temperature environment in the
QGP. The existence of topological gluonic field configurations with non-zero Qw is one of
the intriguing predictions of QCD, but it was not yet directly found experimentally. The
relativistic heavy ion collisions are the best place to search the experimental evidence for
their existence.

Figure B.1: A classical potential of the gluon field as a Bloch crystal. The minimums
of its potential exist at the integer ν. The QCD vacuum is a superposition of states
with different topology. The gauge field configurations with Qw = 1 invoke the transition
shown by blue arrow [125].

An interesting feature of these transitions is that they involve the parity P and charge-
parity CP odd field configurations [125]. Figure B.2 (a) shows the visualization of topo-
logical charge density associated with such configurations calculated by QCD lattice sim-
ulations. The topological charge density fluctuates like metastable bubbles [124]. We
call them the parity-odd bubbles or the bubbles with non-zero topological charge density.
Several dynamical scenarios for the production and the decay of the parity-odd bubbles
have been considered. It was proposed that in the vicinity of the deconfinement phase
transition QCD vacuum can possess metastable parity-odd domains [126]. It was also
suggested that they are generated in the initial state of the quark-gluon plasma produced
in heavy-ion collisions, i.e. the so-called glasma [127]. In the content of the parity vi-
olating phenomena, it was pointed out processes which are normally forbidden, such as
η → π0π0, will be allowed in parity odd bubbles. As another promising phenomena, the
experimental studied of P- and CP- odd correlations of pion momenta were also proposed
and seem to be in principle feasible [126, 128].

In QCD, the probability to generate either a parity-odd bubble with positive or neg-
ative winding number is equal. This is because there is no direct P and CP violation in
QCD. Importantly, the parity-odd bubbles can transform left- into right-handed quarks
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(a)
(b)

Figure B.2: (a) The visualization of the quantum fluctuation of the topological charge
density in QCD vacuum calculated by QCD lattice simulation [124]. (b) A magnetic
field generated in the Au–Au collisions as a function of time. A large magnetic field at
t ∼ 0.05 generates by the two spectators. One order or more smaller magnetic field than
the magnetic field at t ∼ 0.05 fm/c remains rather long time, which is created by the
angular momentum and the charge in the participant region. The metastable bubbles
with topological charge can be created at both the beginning of the collisions described
by e.g. glasma and the later stage of the hydrodynamic hot matter [129].

or vice versa via the axial anomaly.

d(NR −NL)

dt
=
g2Nf

16π2

∫
d3xF a

µνF̃
µν
a , (B.4)

where NR,L denotes the net number of quarks (minus antiquarks) with right/left-handed
chirality. This equation is derived from the space integral of the axial Ward-identity.
As a result of the axial anomaly the interactions between the topological configurations
and the quarks locally violate the net chirality conservation and also break P and CP
symmetries. Then, the variance of the chirality will be nonzero. Every time events of
quark gluon plasma is produced, it will posses a non-zero net chirality.

A large magnetic field (∼ 1015 T) is expected to be generated perpendicularly to the
reaction plane during the non-central heavy ion collisions as shown in Fig. B.2 (b) [129].
A large magnetic field at t ∼ 0.05 generates by the two spectators. One order or more
smaller magnetic field than the magnetic field at t ∼ 0.05 fm/c remains rather long time,
which is created by the angular momentum and the charge in the participant region. In
the presence of this large external magnetic field, the net chirality originated from the
existence of the parity-odd bubbles is expected to result in the asymmetric charge emission
along the magnetic field, i.e. the charge separation with respect to the reaction plane. This
is called Chiral Magnetic Effect (CME) [36, 37, 38]. Figure B.3 illustrates the classical
picture of the CME with the time evolution from left panel to the right one. The red and

121



APPENDIX B. CHIRAL MAGNETIC EFFECT

blue arrows denote the direction of momentum and the spin of the quarks respectively.
Firstly, due to the large magnetic field up and down quarks are all in the lowest Landau
level and can only move along the direction of the magnetic field. Initially there are as
many left-handed quarks as right-handed quarks. Then, the quarks interact with the
parity-odd bubbles. Assuming Qw = −1, this will convert a left-handed up/down quark
into a right-handed up/down quark by reversing the direction of momentum. Finally
the right-handed up quarks will move upwards, the right-handed down quarks will move
downwards in this picture. A charge difference of Q = 2e will be created between two
sides of a plane perpendicular to the magnetic field. Figure B.4 shows that such charge
separation is indeed related to the parity violation in QCD.

However, a few hundreds of the parity-odd bubbles can be created in a single heavy
ion collision because the typical size of the parity-odd bubble is expected to be ∼ 0.3 fm
and the typical transverse size of the participant regions in the heavy ion collisions is a
few tens fm. Since the probability to generate either a parity-odd bubble with positive
or negative winding number is equal, the net charge separation in a single event is not
significant.

The CME could be used to determine whether a chirally symmetric phase of matter
is created in heavy ion collisions [36, 37]. Deconfinement may not be a necessary require-
ment for the charge separation to work. This is because the confinement state itself does
not conduct electric current but in the presence of strong magnetic field it turns into an
anisotropic conductor [130]. On the other hand, chiral symmetry restoration is essential
to produce the nonzero net chirality because a chiral condensate will tend to erase any
asymmetry between the number of right- and left-handed fermions. Therefore, it is im-
portant to consider the time scale of the magnetic field, the production of the parity-odd
bubbles and the chiral symmetry restoration to calculate the magnitude of the resulted
charge separation.

Recently, the theoretical evidence of the charge separation due to the CME has been
found in lattice QCD calculations [131]. Further theoretical studies reveal rich structures
related to the local parity violation and the magnetic field in the QGP such as the chiral
veortical effect [132], the chiral magnetic spiral [133], the chiral magnetic wave [134] and
so on.

B.2 Further experimental results from the STAR col-

laboration

Figure B.5 shows the charge dependent part of the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉
decreases as collision energy decreases from

√
sNN = 7.7 GeV to 200 GeV [136]. This

collision energy dependence may be explained by the probability to produce the parity-
odd bubbles, the magnitude of the magnetic field and the lifetime of the chiral restoration
phase in the collisions in the context of the CME.

Figure B.6 shows the pair differential correlations for centrality 30-50% events mea-
sured by the STAR collaboration [39]. The correlation depends on |pT,α − pT,β| weakly,
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Figure B.3: The classical picture of the Chiral Magnetic effect (CME). A time evolves from
left to right (1 → 2 → 3). The red and blue arrows denote the direction of momentum
and the spin of the quarks respectively. A grey region represents the parity-odd bubbles
with winding number Qw 6= 0. [36]

Figure B.4: Parity-violation of the charge separation with respect to the reaction
plane [135].

which excludes the short range correlations due to the quantum interference (HBT) and
Coulomb effect. The charge dependent part of the correlation increases with (pT,α +
pT,β)/2, which contradicts the signal concentration in the low pT region as naively ex-
pected with the CME. Finally, the dependence on ∆η has a typical hadronic width of
about one unit of pseudo-rapidity as expected with the CME.

In this thesis, the integrated and differential correlations 〈cos(ϕα+ϕβ−2ΨRP )〉 for the
same and opposite charge combinations are measured at the LHC energy by the ALICE
collaboration.

The correlated particles are produced in a domain of the order of 1 fm, and it is expected
that the correlations should have a width of the order of unity in ∆η = |ηα − ηβ| , as is
typical for hadronic production from clusters.
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Figure B.5: The centrality dependence of the correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 in√
sNN =7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au–Au collisions at RHIC measured by

the STAR collaboration [136].

The main contribution to the signal should come from particles with low transverse mo-
mentum although the actual dependence might be affected by the radial flow.
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(a) (b)

(c)

Figure B.6: The pair differential correlation 〈cos(ϕα + ϕβ − 2ΨRP )〉 as a function of (a)
the transverse momentum difference |pT,α − pT,β|, (b) the average transverse momentum
(pT,α + pT,β)/2, (c) the rapidity separation ∆η = |ηα− ηβ| of the charged particle pair for
centrality 30-50% events measured by the STAR collaboration [39].
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Appendix C

Figures for the systematic
uncertainty study of the differential
correlations
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Figure C.1: The pair differential 3-particle correlator 〈cos(ϕα + ϕβ − 2ΨRP )〉 with the
different methods. Top: centrality 0-5%, Center: centrality 5-10%, Bottom: centrality
10-20%.
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Figure C.2: The pair differential 3-particle correlator 〈cos(ϕα + ϕβ − 2ΨRP )〉 with the
different methods. Top: centrality 20-30%, Center: centrality 30-40%, Bottom: centrality
40-50%.
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Figure C.3: The pair differential 3-particle correlator 〈cos(ϕα − 3ϕβ + 2ΨRP )〉 with the
different methods. Top: centrality 0-5%, Center: centrality 5-10%, Bottom: centrality
10-20%.
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Figure C.4: The pair differential 3-particle correlator 〈cos(ϕα − 3ϕβ + 2ΨRP )〉 with the
different methods. Top: centrality 20-30%, Center: centrality 30-40%, Bottom: centrality
40-50%.
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Figure C.5: The pair differential 3-particle correlator 〈cos(ϕα − ϕβ)〉 with the various
event and track cuts. Top: centrality 0-5%, Center: centrality 5-10%, Bottom: centrality
10-20%.
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Figure C.6: The pair differential 3-particle correlator 〈cos(ϕα−ϕβ)〉 with the various event
and track cuts. Top: centrality 20-30%, Center: centrality 30-40%, Bottom: centrality
40-50%.
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Figure C.7: The pair differential 3-particle correlator 〈cos(ϕα + ϕβ − 2ΨRP )〉 with the
various event and track cuts. Top: centrality 0-5%, Center: centrality 5-10%, Bottom:
centrality 10-20%.
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Figure C.8: The pair differential 3-particle correlator 〈cos(ϕα + ϕβ − 2ΨRP )〉 with the
various event and track cuts. Top: centrality 20-30%, Center: centrality 30-40%, Bottom:
centrality 40-50%.
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Figure C.9: The pair differential 3-particle correlator 〈cos(ϕα − 3ϕβ + 2ΨRP )〉 with the
various event and track cuts. Top: centrality 0-5%, Center: centrality 5-10%, Bottom:
centrality 10-20%.
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Figure C.10: The pair differential 3-particle correlator 〈cos(ϕα − 3ϕβ + 2ΨRP )〉 with the
various event and track cuts. Top: centrality 20-30%, Center: centrality 30-40%, Bottom:
centrality 40-50%.
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Appendix D

Tracking algorithm and Calibration
of the TPC

Kalman filter has advantages in tracking:

� It takes into account multiple scattering, magnetic field inhomogeneity.

� It has possibility to take into account mean energy losses

� It is the efficient way to match tracks between several detectors

The reconstruction begins with cluster finding in all of the ALICE detectors. After the de-
termination of the position of each clusters is determined, tracking procedure are executed
with Kalman Filter [137].

Kalman filter is quite a general and powerful method for statistical estimations and
predictions. The conditions for its applicability are the following. A certain system
is determined at any moment in time tk by a state vector xk In the tracking of ALICE
detectors, k corresponds to the ID number of the cluster, and a state vector xk corresponds
to the track parameter. The state vector varies with time according to an evolution
equation:

xk = fk(xk−1) + εk. (D.1)

It is supposed that fk is a know deterministic function and εk is a random vector of
intrinsic process noise which has a zero mean value (εk = 0) and known covariance matrix
(cov(δk=Vk)). In many cases, the measurement function hk can be represented by a
certain matrix Hk:

mk = Hkxk + δk. (D.2)

If, at certain time tk−1, we are given some estimates of the state vector x̃k−1 and of its
covariance matrix C̃k−1 = cov(x̃k−1 − xk−1), these estimates can be extrapolated to the
next time slot tk by means of formulas (this is called prediction):

x̃k−1
k = fk(x̃k−1), C̃

k−1
k = FkC̃k−1F

T
k +Qk, Fk =

∂fk

∂xk−1

. (D.3)
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The value of the prediction χ2 increment can be also calculated:

(χ2)k−1
k = (rk−1

k )T (Rk−1
k )−1rk−1

k , rk−1
k = mk −Hkx̃

k−1
k ,

Rk−1
k = Vk +HkC̃

k−1
k HT

k . (D.4)

The number of degrees of freedom is equal to the dimension of the vector mk.
If at the time tk, together with the results of predictions, we also have the results

of the state vector measurement, this additional information can be combined with the
prediction results (this is called filtering). As a consequence, the estimation of the state
vector improves:

x̃k = x̃k−1
k +Kk(mk −Hkx̃

k−1
k ), C̃k = C̃k−1

k −KkHkC̃
k−1
k , (D.5)

where Kk is the Kalman gain matrix Kk = C̃k−1
k HT

k (Vk +HkC̃
k−1
k HT

k )−1.
Finally, the next formula gives us the value of the filtered χ2 increment:

χ2 = (rk)
T (Rk)

−1rk, rk = mk −Hkx̃k, Rk = Vk −HkC̃kH
T
k . (D.6)

It can be shown that the predicted χ2 value is equal to the filtered one:

(χ2)k−1
k = χ2

k. (D.7)

The prediction and filtering steps are repeated as many times as we have measurements
of the state vector. In the case of tracking in ALICE, the number of steps corresponds to
the number of clusters for the track.

Figure D.1: Track finding coordinate system, track parameters and the schematic view of
seeding with the vertex constraint.

The reconstructed TPC tracks and clusters are expressed in the local coordinate sys-
tem. y and z coordinates for the intersection point of a track at a pad row of a given x
coordinate are then given by the equations:

y(x) = y0 − 1

C
−

√
1− (Cx− η)2,

z(x) = z0 − tanλ

C
arcsin(Cx− η), η ≡ Cx0, (D.8)
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where C is the curvature of the track projection on the pad plane, λ is the dip angle
between the track and the pad plane, (x0,y0) are the coordinates of the center of the
curvature of the track projection on the pad plane, and z0 ≡ z(x0) as shown in Fig. D.1.

The track state vector xT used in the Kalman filter calculation is then chose as

xT = (y, z, sinφ, tanλ,C). (D.9)

With this track parametrization, only three of the five components of the state vector
(the local track position y,z and sinφ) change as the track is propagated from one pad
row to another as followings:

yk+1 = yk + dx · (c1 + c2)/(r1 + r2),

zk+1 = zk + dx · (c1 + c2)/(c1r1 + c2r2) · tanλ,

sinφk+1 = sinφk − c1 + c2, (D.10)

where dx = xk+1 − xk, c1 = Cxk − Cx0, c2 = Cxk+1 − Cx0, r1 = 1− c21, and r2 = 1− c22.
Detail descriptions for FkC̃k−1F

T , Qk due to the multiple scattering and the update of the
parameter C due to the energy loss are found in Ref. [137]. These calculations are done
159 times (number of TPC pad rows) per a track. When a track is leaving one sector and
is entering another, the coordinate system is rotated, then three components (y, z and
sinφ) have to be changed.

A first estimation of the primary vertex position is performed using pairs of hits in the
SPD (tracklets) and it is used as a starting point for the track finding. The track finding
algorithm is ran starting from the hits at the outer radius of the TPC where the track
density is low and prolonging the trajectories towards the inside. The outermost TPC
pad rows and the primary vertex position are used as seeds. When tracks are prolonged to
the inner radius of the TPC, the algorithm is called for the ITS. TPC tracks are matched
to points in the outermost SSD layer and then prolonged to inner ITS layers until the
first SPD layer. Next step is back propagation and refit of the tracks outward in the ITS
and then in the TPC. Once the outer radius of TPC is reached, tracks are prolonged and
matched to the TRD at first and then to the other detectors of the central barrel (TOF,
HMPID, PHOS, EMCAL) for particle identification. At this point the tracks are again
propagated inward down to the ITS and to the primary vertex as computed in the first
step. Finally the final position of the primary vertex is computed from the reconstructed
tracks to obtain the optimal resolution. Each tracks dca to this final primary vertex are
calculated [55, 56].

The basic calibration program for the TPC can be separated into three types as
followings [138, 139].

� Correction for the readout circuit
The pedestal and noise for each pads are taken during the pedestal runs and their
values are transfer ed to the ALTRO chip for zero suppression and baseline correc-
tion.
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The length of the lines on the readout board for each channel is different and there
are timing differences of the charge signals between readout pads typically 200µm
(7 ns). This correction is applied before the installation of the TPC in the ALICE
site. The timing for each channel is measured with induction charge made by input
of pulse signals into the cathode wires of the readout chambers. This pulser system
can be also used for the electronics gain calibration and the detection of the dead
electronics.

� Correction of the Drift velocity
Since the E field of the TPC is not high enough for the gas drift velocity to be
saturated with E/P , the drift velocity in the ALICE TPC is sensitive to the E
field, temperature, pressure and gas composition variations. Dedicated temperature
and pressure sensors are situated within and around the TPC. The gas composition
is monitored by the GOOFIE system. All measured environmental properties are
handled by DCA system and transported via the Suttle system into the OCDB,
where all important reconstruction parameters are stored. After the reconstruction,
the drift velocity can be checked using the matching between the ITS hits and the
TPC tracks and the laser system.

� Correction of the Gas gain amplification
For the absolute gas gain calibration, a radioactive Krypton-gas is used during the
special calibration run. Another approach uses electrons from the central electrode
illumination by the laser light.
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Appendix E

Calibration of the TPC E ×B space
point distortions

Time Projection Chamber (TPC) is a main central tracking device in ALICE detector at
LHC. TPC is cylindrical shape and operated in 0.5 T solenoidal B field parallel to the E
field axis. A central HV electrode divides TPC into two volumes, which are called A side
and C side. The direction of E field at A side is opposite to that of C side. For each side,
a maximum drift length is L ∼ 2.5 m.

The direction of electron drift is same as that of E field if E × B is perfectly zero.
However, many imperfect structures lead to E and B field distortions listed below, which
in turn lead to space point distortions in the pad plane [140].

� B field non-uniformity
B field can be precisely measured, so the correction for them is done rather well.

� E ×B twist
It occurs when global axis of E and B field are not precisely parallel each other.

� E field non-uniformity
E field distortions are caused by the imperfect structures of the TPC and often
difficult to identify. In particular, E field non-uniformity due to the space charge
will be important for the future high luminosity experiment.

E.1 Equation to correct TPC E ×B space point dis-

tortions

The solution of the steady-state Langevin equation to describe the motion of the drift
electron under E and B fields is

−→u =
µ|−→E |

(1 + ω2τ 2)

[
Ê + ωτ(Ê × B̂) + ω2τ 2(Ê · B̂)B̂

]
, (E.1)
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where −→u is the drift velocity and µ is the scalar mobility of the electron [141]. τ denotes
the mean time between collisions of the drift electron with atom in the gas and ω is the
cyclotron frequency:

ωτ = qµB =
−10Bν0

||E||
[kGauss][cm/µsec]

[V/cm]
, (E.2)

where ν0(= µ|E|) strongly depends on the temperature and in the case of ALICE TPC its
fluctuation is expected to be ∼ 2%. Lets‘s assume that E and B fields are nearly parallel

|−→E | ∼ Ez ∼ E0 and |−→B | ∼ Bz ∼ B0. Furthermore, we assume the small perturbations
Ex ∼ Ey ¿ Ez and Bx ∼ By ¿ Bz. Then we have the following simplifications with 2nd
order approximations:

Êx =
Ex

Ez

and Êy =
Ey

Ez

,

B̂x =
Bx

Bz

and B̂y =
By

Bz

,

Êz = (1− 1

2
Êx

2 − 1

2
Êy

2
) and B̂z = (1− 1

2
B̂x

2 − 1

2
B̂y

2
). (E.3)

This means that

Ê · B̂ = (1 + ÊxB̂x + ÊyB̂y − 1

2
Êx

2 − 1

2
Êy

2 − 1

2
B̂x

2 − 1

2
B̂y

2
). (E.4)

Continuing the algebra and neglecting all 3rd order terms, we find that

(Ê · B̂)B̂x = B̂x,

(Ê · B̂)B̂y = B̂y,

(Ê · B̂)B̂z = (1 + ÊxB̂x + ÊyB̂y − 1

2
Êx

2 − 1

2
Êy

2 − B̂x
2 − B̂y

2
). (E.5)

Returning to the Langevin equation, we find

ux

uz

=
Êx + ωτ(ÊyB̂z − ÊzB̂y) + ω2τ 2B̂x

Êz + ωτ(ÊxB̂y − ÊyB̂x) + ω2τ 2(ÊB̂)B̂z

=

Ex

Ez
+ ωτ

(
Ey

Ez
− By

Bz

)
+ ω2τ 2 Bx

Bz

(1−O(2)) + ωτO(2) + ω2τ 2(1 +O(2))
. (E.6)

Therefore, the complete 2nd order distortion equations in the transverse plane in cartesian
coordinates is

(
δx
δy

)
=

(
c0 c1
−c1 c0

)(∫
Ex

Ez
dz∫ Ey

Ez
dz

)
+

(
c2 −c1
c1 c2

)(∫
Bx

Bz
dz∫ By

Bz
dz

)
, (E.7)
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in cylindrical coordinates

(
δr
rδφ

)
=

(
c0 c1
−c1 c0

) (∫
Er

Ez
dz∫ Eφ

Ez
dz

)
+

(
c2 −c1
c1 c2

) (∫
Br

Bz
dz∫ Bφ

Bz
dz

)
, (E.8)

with c0 =
1

1 + T2
2ω

2τ 2
, c1 =

T1ωτ

1 + T2
1ω

2τ 2
and c2 =

T22ω2τ 2

1 + T2
2ω

2τ 2
, (E.9)

where T1 and T2 parameters depend on B and E field configuration. In full microscopic
theory, the drift velocity is a tensor and the drift velocity in the transverse plane are
slightly different from that along the z axis. T1 and T2 parameters are introduced in
order to take into account this effect. Measured T1 and T2 for P9 (P10) gas by the STAR
Collaboration are T1 = 1.34 and T2 = 1.11 (T1 = 1.36 and T2 = 1.11) since they are one
of the hot gases [142]. MagBolz simulation indicates that both T1 and T2 are equal to 1 in
case of the cold gases such as Ar-CO2 or Ne-CO2. Er and Eφ are calculated by a poisson
relaxation method with the TPC geometry [143] or an analytic method. Br and Bφ are
obtained from the B field map parametrized with Chebyshev polynomials, which is based
on precise B field measurement.

B field variations is as large as 2% (0.5 T±0.01 T). The largest radial components of
the field are ±0.01 T at the outer radius of the TPC and the φ components of the field
are ±0.005 T. Thus, 2nd order approximation described above are 0.04%. For example,
the non-uniformity of the B field give rise to 1 cm scale distortions at maximum and the
2nd order calculations should be good to 4 µm.

E.2 Laser track distortions with the gating grid volt-

age mismatch

Distortions can arise from incorrect matching of the end cap potential with the field
cage cylinder. The effective position of the ground plane depends on the amount of field
leakage from the anode wires and its compensation with the gating grid plane bias in
the ReadOut Chamber (ROC) of TPC. The ground end of the field cage cylinder can
be biased to achieve the correct matching. The following calculation shows the E field
distortion when this matching bias is incorrect [144].

The first step is to write down the solution to Laplace equation for the error potential
in cylindrical coordinate (ρ, φ, z). Laplace equation with the separation of variables (there
is no φ dependence in this problem)

Φ(ρ, z) ≡ R(ρ) · Z(z), (E.10)

is

d2

dρ2
R +

1

ρ

d

dρ
R− k2R = 0, (E.11)
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and

d2

dz2
Z + k2Z = 0. (E.12)

This gives the Z solution sin(kz) or cos(kz). This can be used in an expansion of the
potential along the inner and outer cylinders. Since the potential must go to 0 at the
ends, z = 0 and z = L, then the sine function is the appropriate solution and the coupling
constant, k, must be limited to k = nπ/L where n is an integer. The linearly independent
solutions to the radial equation are the zeroth order modified Bessel functions of the first
kind I0(nπρ/L) and second kind K0(nπρ/L), where the restricted value of k has been
included. The combine solution is:

Φ(ρ, z) =

infty∑
n=1

(
An · I0(nπρ

L
) + Bn ·K0(

nπρ

L
)
)
· sin(

nπρ

L
). (E.13)

The coefficients An and Bn are evaluated using the potentials given on the inner and outer
cylinders in the following manner using

∫ L

0
sin(nπz/L)sin(mπz/L)dz = L/2δn,m:

∫ L

0

Φ(ρin, z) · sin(
nπz

L
)dz =

L

2

(
An · I0(nπρin

L
+Bn ·K0(

nπρin

L
)
)
,

∫ L

0

Φ(ρout, z) · sin(
nπz

L
)dz =

L

2

(
An · I0(nπρout

L
+Bn ·K0(

nπρout

L
)
)
, (E.14)

where ρin/out is the inner/outer cylinder radius. These equations are a pair of linear
equations which can be solved for An and Bn giving

An =
Sinn ·K0(

nπρout

L
)− Soutn ·K0(

nπρin

L
)

I0(
nπρin

L
)K0(

nπρout

L
)− I0(

nπρout

L
)K0(

nπρin

L
)
,

Bn =
Soutn ·K0(

nπρout

L
)− Sinn ·K0(

nπρin

L
)

I0(
nπρin

L
)K0(

nπρout

L
)− I0(

nπρout

L
)K0(

nπρin

L
)
, (E.15)

where

Sinn ≡ 2

L

∫ L

0

Φ(ρin, z) · sin(
nπz

L
)dz

Soutn ≡ 2

L

∫ L

0

Φ(ρout, z) · sin(
nπz

L
)dz (E.16)

Now we have an expression for the potential Φ(ρ, z) and a way to determine the coeffi-
cients. It is slightly simpler to switch to a normalized error potential φ(ρ, z) ≡ Φ(ρ, z)/V
where V is the full voltage on the field cage generating the drift field. This voltage appears
in the radial distortion expression in terms of the drift field Ez = V/L. Changing to the
normalized potential,

Φ(ρ, z) = V ·
infty∑
n=1

(
an · I0(nπρ

L
) + bn ·K0(

nπρ

L
)
)
· sin(

nπρ

L
), (E.17)
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an =
Ŝinn ·K0(

nπρout

L
)− Ŝoutn ·K0(

nπρin

L
)

I0(
nπρin

L
)K0(

nπρout

L
)− I0(

nπρout

L
)K0(

nπρin

L
)
,

bn =
Ŝoutn ·K0(

nπρout

L
)− Ŝinn ·K0(

nπρin

L
)

I0(
nπρin

L
)K0(

nπρout

L
)− I0(

nπρout

L
)K0(

nπρin

L
)
, (E.18)

Ŝinn ≡ 2

L

∫ L

0

φ(ρin, z) · sin(
nπz

L
)dz,

Ŝoutn ≡ 2

L

∫ L

0

φ(ρout, z) · sin(
nπz

L
)dz. (E.19)

In the radial distortion expression, using d/dxI0(x) = I1(x) and d/dxK0(x) = K1(x)

Eρ(ρ, z) =
d

dρ
Φ(ρ, z)

= V ·
∞∑

n=1

nπρ

L

(
anI1(

nπρ

L
)− bnK1(

nπρ

L
)
)
· sin(

nπz

L
), (E.20)

where I1 and K1 are the first order modified Bessel functions of the first and second kind.
We represent the voltage mismatch with the gating grid plane as the following error
potential on the inner and outer cylinder boundaries

φ(z) = δV
L− z

L
, (E.21)

where δV is the potential mismatch at the endcap expressed as a fraction of the total
potential on the field cage. Figure E.1 shows the space point distortions due to the endcap
voltage mismatch. The space point distortion is almost independent on the z-position.

The absolute position of the laser track is not known, so the distortion of the laser
track is not measurable. But, the difference between measured positions of the laser track
with different gating grid voltage can be compared with the model calculations.

δYV2 − δYV1 = YV2 − YV1 , (E.22)

where YV denotes a measured local Y-position of the laser track as a function of local
X-position with gating grid voltage V and δYV = YV − YVideal

. A default gating grid
voltage Videal is set to 70 V. The left-hand side of this equation can be calculated by the
analytic formula (C.20) and the 2nd order approximation of the Langevin equation (C.8).
The right-hand side of this equation can be measured with gating grid voltage scan. By
comparing the relative distortions, the other distortion effects can be minimized in these
measurements. Fig. E.1 (a) shows the measured Y70 V − Y40 V as a function of the local
X-position of the readout pad in comparison with the model calculations of δY70 V −δY40 V

for B = 0 T. The measured data points clearly prefer to model calculation with c0 = 1
and c1 = 1. Note the effective voltage at the gating grid plane is not same as the setting
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Figure E.1: The space point distortions by the potential mismatch δV = 20 [V] at the
endcap in the (a) δr and (b) rδϕ directions.
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Figure E.2: A view of the laser tracks from A side endcap.

of the gating grid voltage. Therefore, the Garfield simulations [145] are necessary to
calculate δV , which is an input for the calculations of the space point distortions. The
measured data points have zigzag patterns of order 100 µm around the model lines due
to the pad geometries, which is larger than the precision of the 2nd order approximation
of the Langevin equation.

Fig. E.4 shows χ2 distribution of the comparison between data points at B=0.5 T
and model calculations with various T1, T2 values. A best value of T1, T2 is 1.0±0.1 and
1.0±0.3. These values agree with MagBolz simulation results [145].

E.3 B field non-uniformity

Using Eq. (E.8) with the extracted values of T1 and T2 parameters and the measured B
field map, the space point distortions due to the B field non-uniformity can be calculated.
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Fig. E.5 shows the E × B space point distortion map due to the B field non-uniformity.
The distortion maps are not axial symmetrical since the TPC is not positioned in the
center of the L3 magnet. The maximum magnitude of the distortion is ∼ 3 mm at the
outer radius of the TPC and these distortions significantly degrade the TPC tracking
performance. Therefore, in the reconstruction procedures, the reconstructed space points
are corrected according to these distortion maps.

E.4 E ×B twist distortions and A-C vertex shift

The space point distortions due to an angular mismatch between global axis of E and B
field can be significant even if TPC is slightly inclined in the L3 magnet. This E × B
twist distortion can be calculated in a compact form:

(
δx
δy

)
=

(
c2 −c1
c1 c2

) (
θxzdrift

θyzdrift

)
,

where zdrift is a drift length of electron, θx,y are the angles between x, y axis and twist
vector. Figure E.6 shows the map of the space point distortions when E and B axis are
inclined by 3 mrad. The direction of the space point distortions at the TPC A side is
opposite to that at the TPC C side because E field direction at the A side is opposite to
that at the C side while B field direction is same at the A and C side.

Roughly speaking, the track distortion is a parallel shift and the direction of the shift
is opposite at the A and C side each other as shown in Fig. E.7 (a). Therefore, the effect
of E × B twist distortions can be observed by the measurement of the shift between the
collision vertex reconstructed with the A side tracks and that of the C side tracks, which
is called the A-C vertex shift.

Figure E.7 (b) shows that A-C vertex shift is proportional to E × B twist angle if
twist angle is small enough by using the full and fast Monte Carlo simulation studies.

The A-C vertex shift was found in p+p collision data as shown in Fig. E.8. Primary
vertex is reconstructed with all ITS-TPC tracks and is positioned in the middle of A and
C side vertex. Positions of A and C side vertex are swapped with the negative and positive
B field polarities. Observed A-C vertex shift is ∼ 0.33 cm while the A-C vertex shift at
B = 0 T p+p run is below 0.004 cm. This results in θx = −1.7 mrad, θy = −0.94 mrad if
this A-C vertex shift is only from E×B twist distortions. It is confirmed that possible E
field distortions can not cause A-C vertex shift by the Monte Carlo simulations as shown
in Fig. E.9. To calculate the E field distortions due to the defects on the boundary
conditions, the poisson relaxation method is used [143]. The data obtained from the
survey of the chamber misalignment is used for the calculation of the E field distortions
due to the TPC ROC misalignment. The other possible E field distortions due to the
TPC conical deformations and the shifted rods or strips of the TPC field cage are also
considered.

The A-C vertex shift is reduced to ∼300µm with correction of E×B twist distortions
according to the extracted twist values.
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Figure E.3: A difference of measured laser track rφ with the gating grid voltage scan vs.
radial position of space point (a) B=0 T, (b) B = 0.5 T.
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Figure E.5: E × B space point distortion map due to the B field non-uniformity in the
(a) δr and (b) rδϕ directions.
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Figure E.7: (a) A schematic view of the TPC E×B twist distortions of the tracks in the
A and C side. (b) Relation between twist angle and A-C vertex shift calculated by the
full and fast Monte Carlo simulations.
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Figure E.8: A-C vertex shift measured in p+p collision data. The resolution of the primary
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ITS information.
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Figure E.9: A-C vertex shift fast simulations. The top (bottom) columns are the x (y)
position distributions of the A-side (red line) and C-side (blue line) vertexes. (1)(2): The
TPC ROC misalignment. (3)(4): B field non-uniformity. (5)(6) The shifted rods or strips
of the TPC field cage. (7)(8) The TPC conical deformations.
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Appendix F

Measurement of the identified
particle elliptic flow in√
sNN = 2.76 TeV Pb–Pb collisions

An important test of the hydrodynamic description of the QGP is an interplay between
the radial flow (azimuthally symmetric radial expansion, which can be indirectly measured
by a slope of the pmT spectra) and anisotropic flow [7]. It is expected that this interplay
results in the particle mass dependence of the identified particle elliptic flow at small
transverse momenta.

A scalar product method (SP) [8] is one of the two-particle correlation method and
the differential flow in SP is defined as:

vn(pT, η) =
〈Qn · u∗n,i(pT, η)〉
2
√
〈Qa

n ·Qb∗
n 〉

, (F.1)

where 〈〉 denotes the average over all particles in all events. un,i ≡ exp(inϕi) is the unit
vector of the i-th particle and Qn ≡

∑
exp(inϕ) is the event flow vector. In this analysis,

un,i is calculated by TPC tracks at |η| <0.8 and Qa
n and Qb

n are calculated by the VZERO
detectors at −3.1 < η < −1.7 and 2.8 < η < 5.1, respectively. (Qn = Qa

n + Qb
n). It is

empirically known that non-flow effects on the two-particle correlations can be removed
by introducing η gaps between un,i, Q

a
n and Qb

n. The detector effect can be removed by
the similar way to the two-particle cumulant method.

Pions, kaons and protons/antiprotons are identified using dE/dx and time information
measured by the TPC and the TOF detector [146]. For K0

s , Λ/Λ̄ and φ, an invariant mass
method of the two daughter candidates is used for identification and reconstruction [147].

If the reconstruction efficiency strongly depends on the local particle density at the
detector, this results in the decrease (increase) of the positive (negative) elliptic flow. We
conducted Monte Carlo simulation study in order to estimate this effect and assigned a
few % systematic error for this effect.
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F.1. RESULTS OF IDENTIFIED PARTICLE ELLIPTIC FLOW

F.1 Results of identified particle elliptic flow

Figure F.1 shows the results of identified particle elliptic flow in
√
sNN = 2.76 TeV Pb–

Pb collisions at centrality 10-20% and 40-50% measured by the ALICE experiment [148].
As expected by the hydrodynamics, v2 values of the heavier particles shift toward to
higher pT direction at the low pT region. This can be regarded as a sign of hydrodynamic
pressure on particles by large radial flow at the LHC energy. The mass dependence of v2

in pT <2.5 GeV/c, is reasonably reproduced by viscous hydrodynamic model calculations
shown by solid lines. Models considering the hadronic cascade phase can better describe
the data, particularly heavier particles.

)c (GeV/
T

p

0 0.5 1 1.5 2 2.5 3 3.5

2v

0

0.05

0.1

0.15

0.2
|>1}η∆{SP, |2v

π

K

p

s
0K

Λ

{SP}2v

φ

/s=0.2)ηVISH2+1 (CGC, 
π
K
p
Λ
φ

AIP Conf. Proc. 1441, 766
PRC84 044903

 = 2.76 TeV 10-20%NNsPb-Pb 

ALI−PREL−28470

(a)

)c (GeV/
T

p

0 0.5 1 1.5 2 2.5 3 3.5

2v

0

0.05

0.1

0.15

0.2

0.25

0.3 |>1}η∆{SP, |2v

π

K

p

s
0K

Λ

{SP}2v

φ

/s=0.2)ηVISH2+1 (CGC, 
π
K
p
Λ
φ

AIP Conf. Proc. 1441, 766
PRC84 044903

 = 2.76 TeV 40-50%NNsPb-Pb 

ALI−PREL−28476

(b)

Figure F.1: The pT differential elliptic flow v2 of π, k, p̄, K0
s , Λ and φ with theoretical

prediction VISH2+1 (CGC, η/s = 0.2) at centrality (a) 10-20% and (b) 40-50% [148].

F.2 Kaon elliptic flow via decay topological identifi-

cation

In Fig. F.1, the elliptic flow of the K0
s is systematically lower than that of TOF-TPC

Kaon although the discrepancy is within systematic errors. We also measured kaons by
the kink topology method as an alternative identification method [137, 149]. Kaons have
two main decay modes, K → µν (Branching ratio 63.55%) and K → ππ0 (Branching ratio
20.66%). These decay modes have a large cτ ∼ 371.3 cm and hence can be recognized as a
kink topology in the ALICE TPC active area as shown in Fig. F.2. Kaon can be identified
at wider range of pT with the kink topology than TOF-TPC identification method.

The kink finding algorithm proceeds in two main steps. First, it reconstructs the large
kink angle decays by associating pairs of tracks that intersect (within some tolerance) in
space and have the same charge, then it searches for breakpoints in high pT track candi-
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Figure F.2: Kink kaon decays and topological parameter θ and qT

(a) (b)

Figure F.3: (a) qT distribution of Kaon decays. The arrow indicates the limit of the pion
decays (30 MeV/c). (b) qT distribution of the reconstructed kinks. The area under the
solid line represents the signal (K→ µν), the hashed area the background due to random
association of tracks and the grey filled area reconstructed pion kinks [137].

dates to resolve the small kink angle decays. If the decay angle is large enough, the track
segments in front of and behind the decay are reconstructed by the tracking algorithm as
two distinctive tracks. On the other hand, the track of the decaying particle are misinter-
preted by the track search as a single track if the mother particle pT is above 1.4 GeV/c
and the charged decay product is emitted at small angle. In this case, kink is nothing else
but a sudden change of the state vector, a change both in direction and in momentum
(or curvature). The strategy here is to use the wealth of by-product information of the
Kalman filter to obtain trial breakpoint fits at every hit away from the ends of the track,
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Selection parameter Cut value

pT > 0.2 GeV/c
|η| < 0.9

Rapidity with Kaon hypothesis < 0.7
Number of TPC clusters (TPCncls) > 2

χ2/TPCncls < 4.0
Number of ITS clusters 2

dcaxy < 0.3 cm
dcaz < 0.3 cm

TPC dE/dx < 6σdE/dx

Table F.1: Selections parameters and cut values for mother tracks

Selection parameter Cut value

kink dca < 0.1 cm
Radius of decay points (R) 120 cm < R < 220 cm

Decay angle (loose cut) > 2
qT (loose cut) 0.05 < qT < 0.3
Decay angle 1.2 × MaxPiMu < decay angle

decay angle < 0.98 × MaxKmu
qT 0.12 < qT < 0.24

Invariant Mass (M) 0.4 < M < 0.55

Table F.2: Kink selections parameters and cut values

which we then use to search for and characterize track breakpoints defined as locations
where one or more of the track parameters are discontinuous. Clearly, when both the
kink angle and qT are close to zero the chances of detecting the decay are rather small.

The quality and kinematics cuts for mother track are listed in Table F.1.These cuts
are standard cuts for the primary tracks except for the TPC dE/dx and number of TPC
clusters.

The kink identification cuts in Table F.2 are applied if kink daughters are associated
to the mother track by the kink finding algorithm.

Fig. F.4 shows the distribution of the decay points for all kink candidates. Some
TPC structures can be recognized in this distribution. Fig. F.5 (a) shows the Distance of
Closest Approach (DCA) between the mother and daughter tracks as a function of mother
track signed p. Cut value for the DCA parameter is set to 1.5 cm as shown by black arrow
in this plot. Fig. F.5 (b) shows the TPC dE/dx distribution as a function of mother track
signed p. Red line in this plot represents the Bethe Bloch curve for the kaons. For low
momentum region p < 0.4 GeV/c, the kaon and pion dE/dx bands are well separated but
they are merged at the higher p region. The loose dE/dx cut (< 6σdE/dx, σdE/dx ∼ 7%)
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is reqiured in order to work at low momentum region and avoid to loss signals at high
momentum region.

The expected qT distributions for pion and kaon kinks are shown in Fig. F.3. The
kaon kinks have two main peaks at qT ∼ 0.2 and 0.25 for two main decays K → µν and K
→ ππ0 respectively while qT for the pion kinks are below 0.05. The large fraction of kinks
from pion decays are removed only by loose qT cut (> 0.05). Furthermore, as shown by
two lines in Fig. F.6 (a), the pion kinks can be removed also by the decay angle cuts since
the maximum decay angle of the kaon kink is larger than maximum decay angle of the
pion kink. MaxKmu and MaxPimu in Table F.2 represents the maximum decay angles
for kaon and pion kinks and are calculated by the measured momentum of mother track
and the following formula.

(θlab)max =
p

γE

1√
β2 − p2/E2

. (F.2)

The decay angle distribution as a function of signed momentum is shown in Fig. F.6
(a). After the decay angle cuts, an invariant mass is calculated with the muon daughter
assumption. Therefore, the invariant mass distribution has a peak at kaon mass for K →
µν and another peak below kaon mass for K → ππ0 as shown in Fig. F.7 (b). Fig. F.7
(a) and (b) are projections onto the X-axis and Y-axis of the two dimensional plot in Fig.
F.6 (b). The red square in Fig. F.6 (b) represents the region used for kaon kink signals.
Because the background due to random associations has rather small qT as shown by the
hashed area in Fig. F.3 (b), the final lower qT cut is set to rather large value 0.12.

Since the invariant mass and qT is partially correlated as shown in Fig. F.6 (b),
contamination is estimated by extrapolation of the entries in black square in this plot. It
is confirmed to be less than 7% for mother track pT < 5 GeV/c. At the low pT region, the
contamination can be estimated also by the TPC dE/dx bands and they are consistent.

Figure F.8 shows the pT differential elliptic flow v2{SP} of the kink kaon at centrality
10-20% and 40-50% with various cuts. According to this comparison plots, the systematic
uncertainties are estimated.

Figure F.9 shows the comparison between the elliptic flow v2{SP} of the TOF-TPC
kaon, Ks

0 and kink kaon. They reasonably agree within the systematic errors.
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Figure F.4: (a) X-Y position of kink decay, (b) Radius of kink decay position.
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Figure F.5: (a) Signed p dependence of DCA between mother and daughter tracks. (b)
dE/dx [MeV/g/cm2] as a function of momentum [GeV/c] for kink candidates. Red solid
line: Bethe Bloch curve. Black dotted line: 6σ band.
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Figure F.6: (a) Decay Angle distribution as a function of mother track signed p. Dotted
(solid) line represents the maximum decay angle for kaon (pion) kink. (b) Two dimensional
distribution of qT and the invariant mass. Red square area is for the signal region. Black
square are is used for the background estimation.
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Figure F.7: (a) qT and (b) invariant mass distributions, two main peaks correspond to
the two main decay modes, K → µν (Branching ratio 63.55%) and K → ππ0 (Branching
ratio 20.66%).
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Figure F.8: The pT differential elliptic flow v2 of kink kaon with various cuts (a) at
centrality 10-20% and (b) at centrality 40-50%
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Figure F.9: The pT differential elliptic flow v2 of kaon identified with TOF-TPC method,
K0

s invariant mass method and kink kaon method (a) at centrality 10-20% and (b) at
centrality 40-50%.
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Appendix G

Q-cumulant

In the Q-cumulant method, the estimate of the two-particle correlations in a single event
are calculated as follows.

∑

α,β

expi(nϕα − nϕβ) =
∑

α 6=β

expi(nϕα − nϕβ) +M

⇔
∑

α 6=β

expi(nϕα − nϕβ) = |Qn|2 −M

⇔ {expi(nϕα − nϕβ)} =
|Qn|2 −M

M(M − 1)
(G.1)

Here we provide a proof of the Eq. (4.13),Eq. (4.14), Eq. (4.15) and Eq. (4.16) in the
Q-cumulant method. Eq. (4.13) and Eq. (4.14) are for the three-particle correlations.

∑

α,β,γ

expi(ϕα + ϕβ − 2ϕγ) =
∑

α6=β 6=γ

expi(ϕα + ϕβ − 2ϕγ)

+
∑

α 6=β

expi(ϕα − ϕβ) +
∑

α 6=β

expi(−ϕα + ϕβ)

+
∑

α6=γ

expi(2ϕα − 2ϕγ) +M

= M(M − 1)(M − 2){expi(ϕα + ϕβ − 2ϕγ)}
+2(|Q1|2 −M) + (|Q2|2 −M) +M

⇔ {expi(ϕα + ϕβ − 2ϕγ)} =
Q2

1Q
∗
2 − |Q2|2 − 2|Q1|2 + 2M

M(M − 1)(M − 2)
. (G.2)
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∑

α,β,γ

expi(ϕα − 3ϕβ + 2ϕγ) =
∑

α 6=β 6=γ

expi(ϕα − 3ϕβ + 2ϕγ)

+
∑

α 6=β

expi(ϕα − ϕβ) +
∑

α 6=β

expi(3ϕα − 3ϕβ)

+
∑

α6=γ

expi(−2ϕα + 2ϕγ) +M

= M(M − 1)(M − 2){expi(ϕα − 3ϕβ + 2ϕγ)}
+(|Q1|2 −M) + (|Q3|2 −M) + (|Q2|2 −M) +M

⇔ {expi(ϕα − 3ϕβ + 2ϕγ)} =
Q1Q

∗
3Q2 − |Q3|2 − |Q2|2 − |Q1|2 + 2M

M(M − 1)(M − 2)
. (G.3)

Eq. (4.15) and Eq. (4.16) are for the four-particle correlations.

∑

α,β,γ1,γ2

expi(ϕα + 3ϕβ − 2ϕγ1 − 2ϕγ2) =
∑

α6=β 6=γ1 6=γ2

expi(ϕα + 3ϕβ − 2ϕγ1 − 2ϕγ2)

+
∑

α 6=β 6=γ1

expi(−ϕα + 3ϕβ − 2ϕγ1) +
∑

α 6=β 6=γ1

expi(ϕα + ϕβ − 2ϕγ1)

+
∑

α 6=β 6=γ1

expi(ϕα + 3ϕβ − 4ϕγ1) +
∑

α 6=β 6=γ2

expi(−ϕα + 3ϕβ − 2ϕγ2)

+
∑

α 6=β 6=γ2

expi(ϕα + ϕβ − 2ϕγ2) +
∑

α 6=γ1 6=γ2

expi(4ϕα − 2ϕγ1 − 2ϕγ2)

+
∑

α 6=γ1

expi(4ϕα − 4ϕγ1) +
∑

α 6=β

expi(−ϕα + ϕβ) +
∑

α 6=β

expi(−ϕα + ϕβ)

+
∑

α 6=β

expi(−3ϕα + 3ϕβ) +
∑

α 6=γ1

expi(2ϕα − 2ϕγ1)

+
∑

α 6=γ2

expi(2ϕα − 2ϕγ2) +
∑

α 6=β

expi(ϕα − ϕβ) +M

⇔ M(M − 1)(M − 2)(M − 3){expi(ϕα + 3ϕβ − 2ϕγ1 − 2ϕγ2)}
= Q1Q3(Q

∗
2)

2 − 2
(
Q∗1Q3Q

∗
2 − |Q3|2 − |Q2|2 − |Q1|2 + 2M

)

−2
(
Q2

1Q
∗
2 − |Q2|2 − 2|Q1|2 + 2M

)
−

(
Q1Q3Q

∗
4 − |Q4|2 − |Q3|2 − |Q1|2 + 2M

)

−
(
Q4(Q

∗
2)

2 − |Q4|2 − 2|Q2|2 + 2M
)
− (|Q4|2 −M)

−(|Q3|2 −M)− 2(|Q2|2 −M)− 3(|Q1|2 −M)−M
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⇔ {cos(ϕα + 3ϕβ − 2ϕγ1 − 2ϕγ2)} =
(
Q1Q3(Q

∗
2)

2 −Q1Q3Q
∗
4 −Q4(Q

∗
2)

2

−2Q∗1Q3Q
∗
2 − 2(Q1)

2Q∗2
+|Q4|2 + 2|Q3|2 + 4|Q2|2 + 4|Q1|2

−6M
)
/(M(M − 1)(M − 2)(M − 3)). (G.4)

∑

α,β,γ1,γ2

expi(ϕα − 5ϕβ + 2ϕγ1 + 2ϕγ2) =
∑

α6=β 6=γ1 6=γ2

expi(ϕα − 5ϕβ + 2ϕγ1 + 2ϕγ2)

+
∑

α6=β 6=γ1

expi(3ϕα − 5ϕβ + 2ϕγ1) +
∑

α 6=β 6=γ1

expi(ϕα − 3ϕβ + 2ϕγ1)

+
∑

α6=β 6=γ1

expi(ϕα − 5ϕβ + 4ϕγ1) +
∑

α6=β 6=γ2

expi(3ϕα − 5ϕβ + 2ϕγ2)

+
∑

α6=β 6=γ2

expi(ϕα − 3ϕβ + 2ϕγ2) +
∑

α6=γ1 6=γ2

expi(−4ϕα + 2ϕγ1 + 2ϕγ2)

+
∑

α6=γ1

expi(−4ϕα + 4ϕγ1) +
∑

α 6=β

expi(3ϕα − 3ϕβ) +
∑

α6=β

expi(3ϕα − 3ϕβ)

+
∑

α6=β

expi(5ϕα − 5ϕβ) +
∑

α6=γ1

expi(−2ϕα + 2ϕγ1)

+
∑

α6=γ2

expi(−2ϕα + 2ϕγ2) +
∑

α 6=β

expi(ϕα − ϕβ) +M

⇔ M(M − 1)(M − 2)(M − 3){expi(ϕα − 5ϕβ + 2ϕγ1 + 2ϕγ2)}
= Q1Q

∗
5Q

2
2 − 2

(
Q∗3Q5Q2 − |Q5|2 − |Q3|2 − |Q2|2 + 2M

)

−2
(
Q1Q

∗
3Q2 − |Q3|2 − |Q2|2 − |Q1|2 + 2M

)
−

(
Q1Q

∗
5Q4 − |Q5|2 − |Q4|2 − |Q1|2 + 2M

)

−
(
Q∗4Q

2
2 − |Q4|2 − 2|Q2|2 + 2M

)
− (|Q5|2 −M)− (|Q4|2 −M)

−2(|Q3|2 −M)− 2(|Q2|2 −M)− (|Q1|2 −M)−M

⇔ {cos(ϕα − 5ϕβ + 2ϕγ1 + 2ϕγ2)} =
(
Q1Q

∗
5(Q2)

2 −Q1Q
∗
5Q4 −Q∗4(Q2)

2

−2Q∗5Q3Q2 − 2Q1Q
∗
3Q2 + 2|Q5|2

+|Q4|2 + 2|Q3|2 + 4|Q2|2 + 2|Q1|2

−6M
)
/(M(M − 1)(M − 2)(M − 3)). (G.5)
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Appendix H

Q-cumulant for the pair differential
correlations

Two nested track-loops are necessary to calculate the pair differential correlations

pair sel.∑

i6=j

expi(ϕi − ϕj),

pair sel.∑

i 6=j

expi(ϕi + ϕj),

pair sel.∑

i6=j

expi(3ϕi − 3ϕj),

pair sel.∑

i6=j

expi(ϕi − 3ϕj), (H.1)

where
∑pair sel.

i6=j denotes the sum over the pairs which consist of the i-th and j(6= i)-th
particles and pass the (i, j) symmetric selection criteria such as 0.1 < |ηi − ηj| < 0.2.
Then we can calculate the pair differential three-particle correlations without any extra
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nested track-loops as the follows:

∑

k

pair sel.∑

i6=j

expi(ϕi + ϕj − 2ϕk)

=
∑

k(6=i6=j)

pair sel.∑

i6=j

expi(ϕi + ϕj − 2ϕk) + 2

pair sel.∑

i6=j

expi(ϕi − ϕj)

⇔
∑

k(6=i6=j)

pair sel.∑

i6=j

expi(ϕi + ϕj − 2ϕk)

=

pair sel.∑

i6=j

expi(ϕi + ϕj)×
∑

k

expi(−2ϕk)− 2

pair sel.∑

i 6=j

expi(ϕi − ϕj). (H.2)

∑

k

pair sel.∑

i6=j

expi(ϕi − 3ϕj + 2ϕk) =
∑

k(6=i6=j)

pair sel.∑

i6=j

expi(ϕi − 3ϕj + 2ϕk)

+

pair sel.∑

i 6=j

expi(ϕi − ϕj) +

pair sel.∑

i6=j

expi(3ϕi − 3ϕj)

⇔
∑

k(6=i6=j)

pair sel.∑

i 6=j

expi(ϕi − 3ϕj + 2ϕk) =

pair sel.∑

i6=j

expi(ϕi − 3ϕj)×
∑

k

expi(2ϕk)

−
pair sel.∑

i6=j

expi(ϕi − ϕj)−
pair sel.∑

i6=j

expi(3ϕi − 3ϕj). (H.3)
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Appendix I

Proof of Eq. (2.8)

Here we give the definitions of the charge balance function B(ϕ̃k,∆ϕ), which can be
implemented in the analysis of experimental data and provide a proof of the Eq. (2.8).
While the expressions presented in the main sections of the paper were based on continuous
distributions, we will work with discrete variables here. The multiplicities of positive and
negative charged particles in a single event are then given by

M+ =
∑
α∈+

, M− =
∑
α∈−

, (I.1)

and the total charged particle multiplicity is

M = M+ +M− . (I.2)

Here
∑

α∈+/− denotes the sum over positive and negative charged particles respectively.

Similarly the differential charged particle multiplicities dM/dpα can be calculated by
dividing the momentum space into a complete set of disjunct bins and counting the
number of particles in each bin. This procedure can formally be expressed as

dM/dpα =
1

BinSize(p)

∑
γ∈C

In(pγ, pα), (I.3)

where In(pγ, pα) is one if pγ is in the pα momentum bin and zero otherwise. Here BinSize(p)
denotes the size of the momentum bins and we assumed for simplicity that different bins
have equal size. The number of pairs Ncd(pβ|pα), where c, d = +,− which appear in the
definition of the balance function are defined as

Ncd(pβ|pα) =
1

BinSize2(p)

∑
γ∈c

γ 6=δ∑

δ∈d

In(pγ, pα)In(pδ, pβ) ,

(I.4)

where the terms with γ = δ are excluded from the sum. With these definitions, the
balance function can then be calculated according to Eq. (2.9). In particular for the
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balance function B(ϕ̃k,∆ϕ) in azimuthal angle and with respect to the k-th harmonic
symmetry plane, one obtains the relation

B(ϕ̃k,∆ϕ) =
2〈∆N(ϕ̃k|ϕ̃k + ∆ϕ)〉

〈dM/dϕ̃k〉 , (I.5)

where we abbreviated the charge dependent part according to

∆N =
1

2
[N+− +N−+ −N++ −N−−] , (I.6)

as previously and 〈.〉 denotes averages over different events. With the above expressions for
the balance function and the charged particle multiplicities, we can now prove Eq. (2.8).
The starting point is the right hand side of the identity, which in the continuum takes the
form

RHS =
2

〈M〉
∫

dϕ̃k d∆ϕ

〈
dM

dϕ̃k

〉
B(ϕ̃k,∆ϕ)

× cos[n∆ϕ+ (n+m)ϕ̃k] . (I.7)

We can then rewrite the above expressions in the discrete version, by replacing all integrals
by sums yielding

RHS =
4

〈M〉
bins∑
∆ϕ

bins∑
ϕ̃k

BinSize(ϕ̃k)BinSize(∆ϕ)

×∆N(ϕ̃k|ϕ̃k + ∆ϕ) cos[n∆ϕ+ (n+m)ϕ̃k] ,

(I.8)

where the factor dM/dϕ̃k cancels with the denominator of the balance function. Since
the number of particle pairs Ncd(ϕ̃k|ϕ̃k + ∆ϕ) are given by

Ncd(ϕ̃k|ϕ̃k + ∆ϕ) =
1

BinSize(∆ϕ)

1

BinSize(ϕ̃k)

∑
α∈c

β 6=α∑

β∈d

In(ϕα − ϕβ,∆ϕ)In(ϕβ −Ψk, ϕ̃k) , (I.9)

we can use this expression and individually evaluate the c, d components of the right hand
side yielding

RHS(c, d) =
4

〈M〉
bins∑
∆ϕ

bins∑
ϕ̃k

1

NEv

∑
Events

∑
α∈c

β 6=α∑

β∈d

In(ϕα − ϕβ,∆ϕ)In(ϕβ −Ψk, ϕ̃k)

cos[n∆ϕ+ (n+m)ϕ̃k]

=
4

〈M〉
1

NEv

∑
Events

∑
α∈c

β 6=α∑

β∈d

cos[n(ϕα − ϕβ) + (n+m)(ϕβ −Ψk)] , (I.10)
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where in the last step we first performed the summations over bins and used the fact that

bins∑
∆ϕ

bins∑
ϕ̃k

In(X,∆ϕ)In(Y, ϕ̃k) f(∆ϕ, ϕ̃k) = f(X, Y ) , (I.11)

for continuous functions f(X, Y ) in the limit of small bin sizes. With the assumption that
particle number multiplicities are the same for positive and negative charged particles in
each event, such that M2 = 4McMd for c, d = +,− the right hand side expression can be
rewritten as

RHS(c, d) =
1

〈M〉
1

NEv

∑
Events

M2

McMd

∑
α∈c

β 6=α∑

β∈d

cos[n(ϕα − ϕβ) + (n+m)(φβ −Ψk)]) ,

(I.12)

such that performing the sum over the different charge dependent components RHS(c, d)
yields

RHS =
∆ 〈M2cos[nϕα +mϕβ − (n+m)Ψk]〉

〈M〉 , (I.13)

which completes our proof.
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Appendix J

Calculation of Eq. (5.20 - 21)

We define X ≡ ϕα − ϕβ and Y ≡ ϕβ − ϕγ. Then, we have X + Y = ϕα − ϕγ, cos(ϕα +
ϕβ − 2ϕγ) = cos(X + 2Y ) and cos(ϕα − 3ϕβ + 2ϕγ) = cos(X − 2Y ). Eq. (5.19) can be
written as:

〈〈 dNαβγ

dϕαdϕβdϕγ

〉〉
∼ NαNβNγ

(2π)3

[
1 +

4∑
n=1

2
(vnαvnβ

ε2n

)
〈〈ε2n〉〉cos(nX)

+ . . .

+ 2
v1αv1βv2γ

ε21ε2
〈〈ε21ε2cos(2Ψ1 − 2Ψ2)〉〉cos(X + 2Y )

+ 2
v1αv3βv2γ

ε1ε3ε2
〈〈ε1ε3ε2cos(Ψ1 − 3Ψ3 + 2Ψ2)〉〉cos(X − 2Y )

+ · · ·+ α↔ β ↔ γ
]

×
[
1− 2pT,αpT,β

M ·K cos(X)− 2pT,αpT,γ

M ·K cos(X + Y )

− 2pT,βpT,γ

M ·K cos(Y )

+
4p2

T,αpT,βpT,γ

K2
cos(X)cos(X + Y )

+
4pT,αp

2
T,βpT,γ

K2
cos(X)cos(Y )

+
4pT,αpT,βp

2
T,γ

K2
cos(X + Y )cos(Y )

]
. (J.1)

There are 7 kinds of terms proportional to 1, cos(X), cos(Y ), cos(X + Y ), cos(X)cos(Y ),
cos(X)cos(X+Y ) and cos(Y )cos(X+Y ) in the factor from the pT conservation effect. In
the factor dN/d2pT,α · dN/d2pT,β · dN/d2pT,γ, there are 4 kinds of terms proportional to
1, cos(nX), cos(nY) and cos[n(X + Y)] for n = 1, 2, 3, 4 which we need to consider here.
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Therefore, we need to calculate 4× 7 + 1 = 29 kinds of integrals.

v2,γ〈cos(ϕα + ϕβ − 2Ψ2)〉
=

∫
dϕαdϕβdϕγdpT,αdpT,βdpT,γ

cos(ϕα + ϕβ − 2ϕγ)

NαNβNγ

〈〈 dNαβγ

dϕαdϕβdϕγ

〉〉

=

∫
dXdY cos2(X + 2Y )

+

∫
dXdY cos(X + 2Y ) · 1 · 1

+(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X + 2Y ) · 1 · cos(X)

+(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · 1 · cos(Y )

+(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · 1 · cos(X + Y )

+(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · 1 · cos(X)cos(Y )

+(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · 1 · cos(X)cos(X + Y )

+(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · 1 · cos(Y )cos(X + Y )

+

∫
dXdY cos(X + 2Y ) · cos(nX) · 1

+vn,αvn,β(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos(nX) · cos(X)

+vn,αvn,β(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos(nX) · cos(Y )

+vn,αvn,β(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos(nX) · cos(X + Y )

+vn,αvn,β(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos(nX) · cos(X)cos(Y )

+vn,αvn,β(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos(nX) · cos(X)cos(X + Y )

+vn,αvn,β(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos(nX) · cos(Y )cos(X + Y )

+

∫
dXdY cos(X + 2Y ) · cos(nY) · 1

+vn,βvn,γ(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos(nY) · cos(X)
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APPENDIX J. CALCULATION OF EQ. (5.20 - 21)

+vn,βvn,γ(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos(nY) · cos(Y )

+vn,βvn,γ(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos(nY) · cos(X + Y )

+vn,βvn,γ(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos(nY) · cos(X)cos(Y )

+vn,βvn,γ(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos(nY) · cos(X)cos(X + Y )

+vn,βvn,γ(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos(nY) · cos(Y )cos(X + Y )

+

∫
dXdY cos(X + 2Y ) · cos[n(X + Y)] · 1

+vn,αvn,γ(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos[n(X + Y)] · cos(X)

+vn,αvn,γ(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos[n(X + Y)] · cos(Y )

+vn,αvn,γ(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X + 2Y ) · cos[n(X + Y)] · cos(X + Y )

+vn,αvn,γ(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos[n(X + Y)] · cos(X)cos(Y )

+vn,αvn,γ(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos[n(X + Y)] · cos(X)cos(X + Y )

+vn,αvn,γ(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X + 2Y ) · cos[n(X + Y)] · cos(Y )cos(X + Y )

=

∫
dpT,αdpT,βdpT,γ

[v1αv1βv2,γ

ε21ε2
〈〈ε21ε2cos(2Ψ1 − 2Ψ2)〉〉

+0 + 0 + 0 + 0 + 0 + 0 +
4

K2
pT,αpT,βp

2
T,γ

+0 + 0 + 0 + 0 + 0 + 0 + 0

+0 + v2,βv2,γ
2pT,αpT,β

M ·K + 0 + v1,βv1,γ
2pT,αpT,γ

M ·K +
(
v1,βv1,γ + v3,βv3,γ

) 4

K2
pT,αp

2
T,βpT,γ

+0 + v2,βv2,γ
4

K2
pT,αpT,βp

2
T,γ

+0 + v2,αv2,γ
2pT,αpT,β

M ·K + v1,αv1,γ
2pT,βpT,γ

M ·K + 0 + 0 +
(
v1,αv1,γ + v3,αv3,γ

) 4

K2
p2

T,αpT,βpT,γ

+v2,αv2,γ
4

K2
pT,αpT,βp

2
T,γ

]
. (J.2)
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As a same way, we can calculate them for the correlation 〈cos(ϕα − 3ϕβ + 2Ψ2)〉.

v2,γ〈cos(ϕα − 3ϕβ + 2Ψ2)〉
=

∫
dϕαdϕβdϕγdpT,αdpT,βdpT,γ

cos(ϕα − 3ϕβ + 2ϕγ)

NαNβNγ

〈〈 dNαβγ

dϕαdϕβdϕγ

〉〉

=

∫
dXdY cos2(X − 2Y )

+

∫
dXdY cos(X − 2Y ) · 1 · 1

+(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X − 2Y ) · 1 · cos(X)

+(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · 1 · cos(Y )

+(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · 1 · cos(X + Y )

+(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · 1 · cos(X)cos(Y )

+(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · 1 · cos(X)cos(X + Y )

+(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · 1 · cos(Y )cos(X + Y )

+

∫
dXdY cos(X − 2Y ) · cos(nX) · 1

+vn,αvn,β(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos(nX) · cos(X)

+vn,αvn,β(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos(nX) · cos(Y )

+vn,αvn,β(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos(nX) · cos(X + Y )

+vn,αvn,β(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos(nX) · cos(X)cos(Y )

+vn,αvn,β(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos(nX) · cos(X)cos(X + Y )

+vn,αvn,β(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos(nX) · cos(Y )cos(X + Y )

+

∫
dXdY cos(X − 2Y ) · cos(nY) · 1

+vn,βvn,γ(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos(nY) · cos(X)
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+vn,βvn,γ(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos(nY) · cos(Y )

+vn,βvn,γ(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos(nY) · cos(X + Y )

+vn,βvn,γ(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos(nY) · cos(X)cos(Y )

+vn,βvn,γ(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos(nY) · cos(X)cos(X + Y )

+vn,βvn,γ(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos(nY) · cos(Y )cos(X + Y )

+

∫
dXdY cos(X − 2Y ) · cos[n(X + Y)] · 1

+vn,αvn,γ(−2pT,αpT,β)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos[n(X + Y)] · cos(X)

+vn,αvn,γ(−2pT,βpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos[n(X + Y)] · cos(Y )

+vn,αvn,γ(−2pT,αpT,γ)/(M ·K)

∫
dXdY cos(X − 2Y ) · cos[n(X + Y)] · cos(X + Y )

+vn,αvn,γ(+4pT,αp
2
T,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos[n(X + Y)] · cos(X)cos(Y )

+vn,αvn,γ(+4p2
T,αpT,βpT,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos[n(X + Y)] · cos(X)cos(X + Y )

+vn,αvn,γ(+4pT,αpT,βp
2
T,γ)/(K

2)

∫
dXdY cos(X − 2Y ) · cos[n(X + Y)] · cos(Y )cos(X + Y )

=

∫
dpT,αdpT,βdpT,γ

[v1αv3βv2,γ

ε1ε3ε2
〈〈ε1ε3ε2cos(Ψ1 − 3Ψ3 + 2Ψ2)〉〉

+0 + 0 + 0 + 0 + 0 + 0 + 0

+0 + 0 + 0 + 0 +
(
v1,αv1,β + v3,αv3,β

) 4

K2
pT,αp

2
T,βpT,γ + 0 + v2,αv2,β

4

K2
pT,αpT,βp

2
T,γ

+0 + v2,βv2,γ
2

M ·KpT,αpT,β + 0 + v3,βv3,γ
2

M ·KpT,αpT,γ

+
(
v1,βv1,γ + v3,βv3,γ

) 4

K2
pT,αp

2
T,βpT,γ + 0 +

(
v2,βv2,γ + v4,βv4,γ

) 4

K2
pT,αpT,βp

2
T,γ

+0 + 0 + 0 + 0 + 0 + 0 + 0
]
. (J.3)
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