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Introduction

The Standard Model (SM) of particle physics is a relativistic quantum field theory forming
the foundation of modern particle physics. It describes the entirety of all currently known
elementary particles and their interactions apart from gravity and was developed from an
interplay of theoretical and experimental efforts over several decades and was finalised in
the 1970’s. In the year 2012 it was crowned by the discovery of the last particle which was
predicted within the SM but not yet confirmed experimentally, the Higgs boson.

The SM describes the existence and interaction of so-called fermions with spin 1/2 of
which a subset forms the basis for the matter surrounding us and of so-called gauge bosons
with spin 1 which are the mediators of the fundamental interactions (electromagnetic, weak
and strong). Members of both classes of particles are experimentally known to be massive.
However, local gauge invariance, which is a fundamental principle in the formulation of the
SM, does not allow for the introduction of mass terms and hence requires the particles to be
massless. To solve this contradiction, a mechanism deploying the principle of spontaneous
symmetry breaking was suggested in 1964 independently by Robert Brout and François
Englert [1], by Peter Higgs [2] and by Gerald Guralnik, Carl Richard Hagen and Tom
Kibble [3] and is today mainly referred to as the Higgs mechanism. It implies the existence
of a neutral scalar field, the Higgs field. Massive bosons and charged fermions acquire mass
through interactions with this field. The Higgs boson manifests itself as excitations of this
field. Thus, its long awaited discovery was an important milestone to confirm the validity
of the introduction of the Higgs mechanism into the SM and of the SM itself. The ATLAS
and CMS experiments, located at the Large Hadron Collider (LHC) at CERN1, announced
the observation of a neutral boson with a mass of approximately 125GeV in the search
for the Higgs boson on July 4th 2012 [4, 5]. Subsequent measurements confirmed that
the newly found boson is compatible with the Higgs boson predicted by the SM. So far
many predictions of the SM could be verified experimentally and the SM has proven very
successful.

However, the SM predicts neutrinos to be massless which was falsified by the observation
of neutrino oscillations [6–8] which require neutrinos to have differing masses. In addition,
neutrino oscillations imply that lepton flavour is not conserved in nature in contrast to the
prediction by the SM. This raises the question if lepton-flavour violation is also realised
in the charged lepton sector. One approach to address this question is searching for
lepton-flavour violating (LFV) decays of the Higgs boson. The small decay width of the
Higgs boson allows for decays beyond the SM to have branching ratios sufficiently sized for
detection and LFV decays of the Higgs boson emerge naturally in different models beyond
the SM [9–16]. Models extending the SM aim for providing solutions to deficiencies of the
SM which, for example, are the inability to explain the abundance of Dark Matter, the
size of the matter-antimatter asymmetry in the universe and the non-vanishing masses of
neutrinos. Possible LFV decays of the Higgs boson are H → eµ, H → eτ and H → µτ .
Indirect limits constrain the branching ratio of H → eµ to be smaller than O(10−8) [17,
18] which is currently out of reach for the experiments at the LHC while the branching

1Conseil Européen pour la Recherche Nucléaire
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ratios of H → eτ or H → µτ are allowed to be of the order of 10% [17, 18]. Direct
limits on the latter two decays by the ATLAS and CMS collaborations [19, 20] outperform
the indirect limits. The most stringent limits on the branching ratios B, neglecting the
findings of this thesis, are by the CMS collaboration using the dataset of Run 2 of the LHC:
B(H → eτ) < 0.22 % (0.16 %) and B(H → µτ) < 0.15 % (0.15 %) [20], where the values in
brackets are the expected limits.

The analysis presented in this thesis aims at either finding evidence for one of the two
LFV decays H → eτ and H → µτ or at further constraining their branching ratios by
analysing the full Run 2 dataset of proton-proton collisions delivered by the LHC from
2015 to 2018 at a center-of-mass energy of

√
s = 13 TeV. This dataset was recorded by

the ATLAS detector and corresponds to an integrated luminosity of 138.4 fb−1. Only
leptonic decays of the τ -lepton leading to different-flavour final states are considered. The
requirement of different-flavour final states allows for the suppression of background from
Drell-Yan production. In order to further gain sensitivity in the search for a process with
an expectedly small cross section, two signal regions are defined to exploit different event
topologies and background compositions. Furthermore, neural networks are employed to
obtain a probability for each event indicating its similarity to a signal event. The resulting
probability distributions are utilised as final discriminants in the statistical analysis. The
majority of the background contributions is estimated using the Symmetry Method [21]
which exploits the fact that, at the energies prevalent at the LHC, SM processes are
symmetric with respect to an exchange of electrons with muons and vice versa2. The two
LFV decays H → eτµ and H → µτe, in contrast, break this symmetry as long as their
branching ratios differ. This implies that the Symmetry Method is only sensitive to the
difference of the branching ratios of the two decays. It is, however, expected that these LFV
decays do not simultaneously show sizeable branching ratios when neglecting interferences
of other new LFV sources in µ→ eγ [18]. The notable advantage of the Symmetry Method
lies in the fact that simulations of collision events only play a minor role in this background
estimation method since it is primarily data-driven.

This thesis is structured as follows. An introduction to the theoretical background
relevant for this thesis is given in Chapter 1. The Standard Model is briefly discussed,
followed by experimental results on the measurement of the Higgs-boson properties and by
the topic of lepton-flavour violation with a focus on charged lepton-flavour violation within
the Higgs sector. Chapter 2 provides a description of the LHC and the ATLAS detector and
gives an overview of the different data taking periods. The strategy of the analysis including
a discussion of the basic principles of the Symmetry Method is illustrated in Chapter 3.
Chapter 4 describes the generation of simulated events and discusses the various signal and
background processes and their characteristics. The reconstruction and identification of
physics objects is discussed in Chapter 5. Chapter 6 gives a general overview of neural
networks in the context of signal and background separation. The event selection as well as
the estimation of the different background contributions is presented in Chapter 7. The
separation of these background contributions from the signal by means of the definition
of two signal regions and the application of neural networks is discussed in Chapter 8.
Chapter 9 discusses the statistical as well as the systematic uncertainties relevant to this
analysis while Chapter 10 introduces the statistical concepts required to derive the final
results. The results obtained by the analysis presented in this thesis are discussed and
contextualised in Chapter 11. In addition, the results obtained from combinations with two
partner analyses [22] are presented. Finally, Chapter 12 recaps the analysis and its results
and gives an outlook into the future of searches for lepton-flavour violating decays of the
Higgs boson with the Symmetry Method.

2The differing coupling strength of the Yukawa-couplings for electrons and muons can be neglected as
the expected rates are low and same-flavour final states are produced.
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Chapter 1

Theoretical Background

This chapter introduces the theoretical background relevant for this thesis. First, an overview
of the Standard Model of particle physics is given in Section 1.1 including the mechanism
of electroweak symmetry breaking which entails the Higgs boson. The production processes
of the Higgs boson in proton-proton collisions and its decay modes as well as the latest
experimental results are discussed in Section 1.2, followed by a brief description of the
τ -lepton in Section 1.3. Finally, the topic of lepton-flavour violation with a focus on charged
lepton-flavour violation in the Higgs sector is reviewed in Section 1.4.

1.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics describes the entirety of all currently known
elementary particles and their interactions (excluding gravitation). It was developed over
several decades and finalised in the 1970’s. An overview over the particle content of the
SM and its fundamental forces and interactions is given in Section 1.1.1.

The SM is based on relativistic Quantum Field Theory (QFT) while exploiting the
principle of local gauge (phase) invariance. Particles are described by fields, and excitations
of these fields are identified as the “physical” particles. Similar to classical mechanics,
a Lagrangian density is constructed serving as basis to derive equations of motions by
applying the Euler-Lagrange equations. The Lagrangian density L is typically abbreviated
as “Lagrangian”. The Lagrangian allows for deriving the corresponding Feynman rules [25]
and hence the interactions of the particles and their kinematic properties. The transition
probability of an initial state to a certain final state can be calculated by making use
of perturbation theory. The process can be visualised in the form of so-called Feynman
diagrams [25]. The different components of the Lagrangian of the SM are discussed in
Sections 1.1.2–1.1.4, based on [26–29].

So far many aspects of the SM were confirmed experimentally and no significant
deviations from the SM predictions were observed at colliders. The observation of neutrino
oscillations, however, is for example not in agreement with the SM. This aspect is further
discussed in Section 1.4.

1.1.1 The Particle Content of the SM

The elementary particles can be divided into two categories depending on their spin. All
particles with half-integer spin are called fermions and obey the Fermi-Dirac-statistics. In
the SM all fermions have spin 1/2 and are further sub-divided into leptons and quarks.
The former participate only in electroweak, i.e. electromagnetic and weak, interactions
while the latter additionally carry colour-charge and hence also participate in the strong
interaction. There are six leptons and six quarks which can be grouped in three generations.

5



6 CHAPTER 1. THEORETICAL BACKGROUND

The generations differ only in the masses of their members and in their flavour. The masses
increase with the generations and each of the twelve fermions has an associated flavour. For
leptons, however, both members of one generation have the same lepton flavour quantum
number. The first generation of leptons consists of the electron (e) and the electron-neutrino
(νe) with electric elementary charges of q = −1 and q = 0, respectively. The electron lepton
flavour number is 1 while the muon and tau lepton flavour numbers are 0. The second
generation is built by the muon (µ, q = −1) and the muon-neutrino (νµ, q = 0) where the
muon lepton flavour number is 1 while the other two are 0. The third generation is built by
the tau (τ, q = −1) and the tau-neutrino (ντ , q = 0) where the tau lepton flavour number
is 1 while the other two are 0. Each generation of quarks consists of an up-type and a
down-type quark which have electric elementary charges of +2/3 and −1/3, respectively.
The first generation is built by the up (u) and the down (d) quark, the second by the charm
(c) and the strange (s) quark and the third by the top (t) and the bottom (b) quark. Each
quark carries colour charge which can either be red (r), green (g) or blue (b). In addition,
there exists an antiparticle of opposite quantum numbers, e.g. electric charge and lepton
flavour number , for each particle.

All particles with an integer spin are called bosons and obey the Bose-Einstein-statistics.
The bosons with spin 1, also called gauge bosons, are the mediators of the interactions.
The massless photon (γ) mediates the electromagnetic interactions by coupling to the
electric charge Q. It does not carry an electric charge and hence does not interact with
itself. In addition, it is also neutral with respect to the weak and strong interactions. Weak
interactions are mediated by three massive gauge bosons, W± and Z, which couple to
the weak isospin I and to the weak isospin and hypercharge Y , respectively. They have
masses of 80.4GeV and 91.2GeV [30], respectively, and interact with themselves. The
strong interaction is mediated by eight massless gluons g which also carry colour charge
and hence interact with themselves. The gluons are neutral with respect to electroweak
interactions. An additional boson exists, the Higgs boson, with spin 0. It has an electric
and colour charge of 0 and couples to all massive elementary particles thereby providing
them with mass.

The particles and a selection of their properties are summarised in Tables 1.1 and 1.2.
All matter surrounding us is made of electrons, protons and neutrons. Protons and neutrons
are composite particles made of three valence quarks of up- and down-flavour. Hence, only
the first generation of fermions contributes to our everyday matter. The members of the
higher generations, created in high-energetic events or collider experiments, decay quickly
into particles of the first generation.

1.1.2 Quantum Electrodynamics

The concept of requiring local gauge invariance in order to derive the components of the
SM Lagrangian describing the dynamics of the fermions and gauge bosons is explained in
detail in this section on the basis of the Lagrangian of quantum electrodynamics (QED).
This concept is similarly applied in Sections 1.1.3 and 1.1.4 to obtain the Lagrangians of
quantum chromodynamics and of the electroweak unification, respectively.

Quantum electrodynamics describe the propagation and interaction of electrically
charged particles mediated by the photon. The Lagrangian of a free spin-1/2 particle
(fermion) of mass m is

L = iψγµ∂µψ −mψψ , (1.1)

with ψ being a Dirac spinor describing the field of the particle and ψ the adjoint spinor.
Both depend on x = xµ which are the space-time coordinates with µ ∈ {0, 1, 2, 3}. The
matrices γµ are the Dirac matrices and ∂µ is the short form of the partial derivative ∂/∂xµ .
The Einstein summation notation applies, which is the implicit summation over indices
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Generation Flavour Le Lµ Lτ Electric Charge Mass/GeV

Leptons, Spin 1/2

I
e (electron) 1 0 0 -1 0.5110× 10−3

νe (electron-neutrino) 1 0 0 0 0

II
µ (muon) 0 1 0 -1 0.1057
νµ (muon-neutrino) 0 1 0 0 0

III
τ (tau) 0 0 1 -1 1.777
ντ (tau-neutrino) 0 0 1 0 0

Quarks, Spin 1/2

I
u (up) 0 0 0 +2/3 2.16× 10−3

d (down) 0 0 0 -1/3 4.67× 10−3

II
c (charm) 0 0 0 +2/3 1.27
s (strange) 0 0 0 -1/3 93.4× 10−3

III
t (top) 0 0 0 +2/3 173
b (bottom) 0 0 0 -1/3 4.18

Table 1.1: Overview of the fermions of the SM with a selection of their properties. Le, Lµ and Lτ denote
the electron, muon and tau lepton flavour quantum numbers. The electric charge q is given in units of the
elementary charge e and the values for the masses m are taken from [30]. The quark masses have sizeable
uncertainties and are hence to be understood as estimates. For the neutrino masses the theoretical values
in the SM of 0GeV are listed.

Gauge Bosons, Spin 1

Interaction Mediators Couples to Electric Charge Mass/GeV

weak
W± (W -bosons) weak isospin ±1 80.38
Z (Z-boson) weak isospin and

hypercharge
0 91.19

electromagnetic γ (photon) electric charge 0 0
strong g (8 gluons) colour charge 0 0

Table 1.2: Overview of the gauge bosons of the SM with a selection of their properties. The electric
charge q is given in units of the elementary charge e and the values for the masses m are from [30]. For the
photon and gluon masses the theoretical values of 0GeV are listed.

appearing twice.
The Lagrangian is invariant under a global phase or gauge transformation ψ → eiαψ

with α being a real constant which implies ψ → e−iαψ and ∂µψ → eiα∂µψ. This means the
Lagrangian is not altered by this transformation and hence also the equations of motion
stay the same. When requiring a more general, local gauge invariance, i.e. ψ → eiα(x)ψ
with α depending on the space-time coordinates, the Lagrangian as given in Eq. 1.1 ceases
to be invariant. In QED this transformation is modified to be ψ → eiα(x)Qψ = eiα(x)qψ
where Q is the electric charge operator with eigenvalue q representing the electric charge of
the fermion. When applying this transformation, an additional term from the derivative
∂µψ remains in the Lagrangian:

L → L − q (∂µα(x))ψγµψ . (1.2)

In order to obtain a modified Lagrangian that is invariant under the local gauge transfor-
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mation, the derivative ∂µ is replaced by the covariant derivative Dµ, which itself transforms
as Dµ → eiα(x)qDµ,

Dµ = ∂µ + iqAµ . (1.3)

The second term of Dµ compensates the additional term in Eq. 1.2 if Aµ transforms as:

Aµ → Aµ − ∂µα(x) , (1.4)

with Aµ being a vector field, also called gauge field. It can be identified as the photon field
and a term representing the kinetic energy of the photon must be added to the Lagrangian
in addition: −1

4FµνF
µν with Fµν = ∂µAν − ∂νAµ being the gauge invariant field strength

tensor. Then, the full modified Lagrangian becomes

LQED = iψγµDµψ −mψψ −
1

4
FµνF

µν (1.5)

= iψγµ∂µψ −mψψ − qψγµAµψ −
1

4
FµνF

µν , (1.6)

which is the Lagrangian of QED. The first term in Eq. 1.6 corresponds to the kinetic term of
the fermion field, the second term is its mass term. The third term represents the interaction
between the fermion and the photon field, proportional to q, and the fourth term is the
kinetic term of the photon. When applying the Euler-Lagrange equations to the first two
terms, the Dirac equation is obtained; applying them to the latter two terms, the Maxwell
equations are obtained. Demanding invariance under the local gauge transformations
prohibits adding a mass term of the form m2AµA

µ for the photon. Hence, the photon is
massless which is in accordance with experimental observations and the electromagnetic force
has infinite range. The coupling strength of QED can be reparametrised as αQED = e2/(4π).
It depends on the energy of the underlying process and has at least a value of ∼ 1/137 [30].
The higher the energy or the lower the distance between the interacting particles, the larger
the value of αQED.

The phase transformations eiαQ form the unitary Abelian group U(1)Q. Following
Noether’s theorem [31], the U(1)Q invariance implies the existence of a conserved current:
∂µj

µ = 0. Here, this current is the electromagnetic charge current density jµ = qψγµψ and
hence also the electric charge q =

∫
d3x j0 is conserved. This allows for replacing the third

term in Eq. 1.6 with −jµAµ.

1.1.3 Quantum Chromodynamics

Quantum chromodynamics (QCD) is a non-Abelian gauge theory with symmetry group
SU(3)C describing the strong interactions between particles carrying colour charge C
(quarks and gluons), mediated by gluons. By imposing the same principle of requiring
local gauge invariance of the Lagrangian as in QED, the Lagrangian of QCD is derived
starting from the Lagrangian of a free fermion (Eq. 1.1). However, due to the three colour
states of a quark, the Dirac spinor ψ in Eq. 1.1 representing the fermion field is replaced
by a column vector of three Dirac spinors, ψ = (ψr, ψg, ψb), with r, g, b representing the
three different colour states red, green and blue. This vector transforms under local SU(3)
transformations as follows:

ψ → ei
gs
2
αa(x)λaψ , (1.7)

where summation over repeated indices is implied. The matrices λa with a = 1, ..., 8 are
the linearly independent, traceless 3× 3 Gell-Mann matrices [32] serving as the generators
of the SU(3)C group and αa are the gauge phases. The SU(3) group is non-Abelian as the
commutator of any two matrices λ does not vanish, instead it is a linear combination of all
λ: [λa, λb] = 2ifabcλc with fabc being the structure constants.
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In analogy to QED, the derivative ∂µ in the free Lagrangian is replaced by the covariant
derivative

Dµ = ∂µ + i
gs
2
λaG

a
µ , (1.8)

where the eight gauge fields Gaµ transform as

Gaµ → Gaµ − ∂µαa − gsfabcαbGcµ . (1.9)

In addition, a kinetic term for each of the eight gauge fields of the form

− 1

4
GaµνG

µν
a with Gaµν = ∂µG

a
ν − ∂νGaµ − gsfabcGbµGcν (1.10)

is added to the Lagrangian. Here, Gaµν is the field strength tensor which has an additional
term compared to the field strength tensor Fµν of QED due to the non-Abelian nature of
SU(3)C . Finally, the QCD Lagrangian which is gauge invariant under local colour phase
transformations (SU(3)C) is:

LQCD = iψγµ∂µψ −mψψ −
gs
2

(
ψγµλaψ

)
Gaµ −

1

4
GaµνG

µν
a . (1.11)

The gauge fields Gaµ correspond to eight massless gluons which couple to the quark fields
with the coupling strength gs. The gluons are required to be massless due to the potential
mass terms not being invariant under the local gauge transformations.

The last term in Eq. 1.11 is not a purely kinetic term for the gluons but also adds
self-interaction terms for the gluons due to the last term in Eq. 1.10 arising from the
non-Abelian nature of SU(3)C . The expansion of the kinetic term shows that there are
three- and four-gluon vertices implying that the gluons themselves carry colour charge.

Similar to QED, the coupling strength of QCD can be reparametrised as αQCD = g2
s/(4π)

and also depends on the energy of the underlying process. In QCD, however, the coupling
strength decreases for increasing energies or decreasing distances resulting in so-called
asymptotic freedom [33, 34] where the quarks and gluons are essentially free. Whereas at
increasing distances of the particles, the coupling strength increases, resulting in increased
potential energy. Once the potential energy e.g. between two quarks is sufficiently high,
an additional quark-antiquark pair is created. This proceeds until the kinetic energy does
not suffice anymore to take the particles further apart. Colourless clusters of the created
quarks and gluons, called hadrons, are formed. This is referred to as confinement [27].

1.1.4 Electroweak Unification

The weak interactions, known for example from the β-decay, are formulated in combination
with the electromagnetic interactions within the electroweak theory also known as the
Glashow-Salam-Weinberg model [35–37]. The underlying symmetry group is SU(2)I,L ⊗
U(1)Y with the weak isospin operator I and the weak hypercharge operator Y serving
as generators of the groups SU(2) and U(1), respectively. The fermions are organised
in multiplets of the weak isospin. Left-chiral fermions, indicated by the subscript L,
are grouped in doublets with weak isospin I = 1/2. They participate in charged weak
interactions via the exchange of a W+- or W−-boson within each doublet as well as in
neutral weak and electromagnetic interactions via the exchange of a Z-boson and a photon.
Neutrinos only interact weakly as they have no electric charge. Right-chiral fermions,
indicated by the subscript R, have a weak isospin of I = 0 and are hence organised in
singlets. It is experimentally known that neutrinos only exist left-chiral (and anti-neutrinos
only right-chiral); therefore no neutrino singlets are added. Right-chiral fermions (and
left-chiral anti-fermions) participate only in neutral electroweak interactions through the
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exchange of a Z-boson or a photon. An overview of the different doublets and singlets and
their quantum numbers is given in Table 1.3.

Multiplets Q I3 Y

LeptonsÇ
νe

e

å
L

Ç
νµ

µ

å
L

Ç
ντ

τ

å
L

0 +1/2 −1

−1 −1/2 −1

eR µR τR −1 0 −2

QuarksÇ
u

d′

å
L

Ç
c

s′

å
L

Ç
t

b′

å
L

+2/3 +1/2 +1/3

−1/3 −1/2 +1/3

uR cR tR +2/3 0 +4/3

dR sR bR −1/3 0 −2/3

Table 1.3: Overview of the fermion doublets and singlets of the SM with their values of the electric charge
Q, the third component of the weak isospin I3 and the hypercharge Y . All fermions listed are the weak
eigenstates.

The weak hypercharge Y is connected to the third component of the weak isospin I3

and to the electric charge Q via the Gell-Mann-Nishijima relation [38, 39]:

Y = 2(Q− I3) . (1.12)

The multiplets of the anti-particles have opposite quantum numbers, i.e. opposite chirality,
Q, Y and I3. The components of each doublet are basically described as two states of
the same particle where the third component of the weak isospin, I3, is +1/2 for the first
components of the doublets and −1/2 for the second components. This implies that the
masses in this description are the same (vanishing). The down-type quarks d′, s′ and
b′ are the weak eigenstates and are related to the mass eigenstates d, s and b via the
Cabibbo–Kobayashi–Maskawa (CKM) matrix [40, 41]:Ñ

d′

s′

b′

é
= VCKM

Ñ
d
s
b

é
. (1.13)

The left- and right-chiral fermion fields, χL and ψR, transform under the SU(2)I,L ⊗
U(1)Y symmetry as follows:

χL → eigα(x)·I+i g
′
2
β(x)Y χL , (1.14)

ψR → ei
g′
2
β(x)Y ψR (1.15)

with the coupling strengths g and g′ and the local phases α(x) and β(x). Usually, the
three Pauli matrices σ = (σ1, σ2, σ3) are used for the weak isospin operator: I = σ/2. In
analogy to the procedure for the QED and QCD Lagrangians, invariance under these local
gauge transformations is required for the Lagrangian of a free field, leading to couplings
with the gauge fields. The Lagrangian can be written as the sum of the terms for the freely
propagating left- and right-chiral fields:

L = iχLγ
µ∂µχL + iψRγ

µ∂µψR , (1.16)

where no mass-term for the fermionic fields are considered. In order to obtain an invariant
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Lagrangian, the derivative ∂µ is replaced by the covariant derivative Dµ

Dµ = ∂µ + igIWµ + i
g′

2
Y Bµ (1.17)

by introducing three gauge fields Wµ = (W 1
µ ,W

2
µ ,W

3
µ) for the group SU(2)I,L, one gauge

field Bµ for the group U(1)Y and two couplings g and g′. The replacement of ∂µ by Dµ in
Eq. 1.16 and the addition of the kinetic terms for the gauge fields yield the locally invariant
electroweak Lagrangian for one generation of fermions:

LEW = χLγ
µ

Å
i∂µ − gIWµ +

g′

2
Y Bµ

ã
χL + ψRγ

µ

Å
i∂µ −

g′

2
Y Bµ

ã
ψR

− 1

4
WµνW

µν − 1

4
BµνB

µν ,

(1.18)

where
W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν with i, j, k = 1, 2, 3 ,

Bµν = ∂µBν − ∂νBµ
(1.19)

are the field-strength tensors of the gauge fields with εijk being the Levi-Civita tensor.
Owing to the non-Abelian structure of SU(2)I,L, Eq. 1.19 has an additional term leading
to self-interactions of the W i

µ fields. The physical neutral fields, the photon field Aµ and
the Z-boson field Zµ, are obtained from a mixture of the gauge fields W 3

µ and Bµ:Å
Zµ
Aµ

ã
=

Å
cos θw − sin θw
sin θw cos θw

ãÅ
W 3
µ

Bµ

ã
(1.20)

with the weak mixing angle θw defined by

cos θw =
g√

g2 + (g′)2
and e = g sin θw = g′ cos θw (1.21)

being the relation between the electric unit charge e, the weak mixing angle θw and the
couplings g and g′. This mixture allows the photon field as well as the Z-boson field to
interact with left- and right-chiral particles. The coupling strength to the photon field is
the same for left- and right-chiral particles while the coupling strength to the Z-boson field
differs for left- and right-chiral particles. However, it is ensured that only the Z-boson field
interacts with left-(right-)chiral (anti-)neutrinos while the coupling between photon and
neutrino fields vanishes. The fields of the known charged W -bosons which are eigenstates
of the charge operator are obtained by combinations of the two gauge fields W 1

µ and W 2
µ :

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (1.22)

The W 1
µ - and W 2

µ -bosons and hence also the W±-bosons couple only to left-chiral fermions.
The weak coupling strength αw is defined as αw = g2/(4π).

Electroweak Symmetry Breaking

However, up to now no mass terms for the gauge bosonsW± and Z, which are experimentally
known to be heavy [42–44], were introduced and the fermions are still assumed to be
massless as well. Adding naive mass terms of the form M2W i

µW
i,µ for the gauge bosons

or m(ψRχL + χLψR) for the fermions would violate the gauge invariance, lead to a non-
renormalisable theory and violate the unitarity bound in scattering processes at high energies.
In order to introduce mass terms for the gauge bosons and fermions while preserving gauge
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invariance, the SU(2)I,L ⊗ U(1)Y symmetry is spontaneously broken to a U(1)Q symmetry
by introducing a weak isospin doublet Φ with weak isospin 1/2 and weak hypercharge
1. This mechanism was proposed in 1964 independently by Robert Brout and François
Englert [1], by Peter Higgs [2] and by Gerald Guralnik, Carl Richard Hagen and Tom
Kibble [3] and is today mainly referred to as Higgs mechanism.

The weak isospin doublet consists of complex scalar fields and can be expressed as

Φ =

Å
Φ+

Φ0

ã
=

1√
2

Å
Φ1 + iΦ2

Φ3 + iΦ4

ã
. (1.23)

The corresponding Lagrangian is

LH = (DµΦ)† (DµΦ)− V (Φ) , (1.24)

where the potential V (Φ) is given by

V (Φ) = µ2Φ†Φ + λ
Ä
Φ†Φ
ä2

(1.25)

and Dµ is defined as given in Eq. 1.17. The potential consists of a mass term and a
self interaction term for Φ and is the most general form that fulfils gauge invariance and
renormalisability. The fields Φ+ and Φ0 have electric charges of +1 and 0, respectively. The
free parameter λ is required to be larger than 0 due to vacuum stability. For µ2 > 0, the
potential would have a purely parabolic shape with its minimum at Φmin = 0. For µ2 < 0,
however, the potential has the shape shown in Figure 1.1. In this case, the potential has

− v√
2

v√
2

Φ3

V (Φ3)

Figure 1.1: The Higgs potential V (Φ) for one degree of freedom (Φ3).

an infinite number of degenerate groundstates Φmin, differing from 0. For presentation
purposes, the potential in Figure 1.1 is shown only for a single degree of freedom and hence
possesses only two groundstates. The number of groundstates becomes infinite for two or
more degrees of freedom. All combinations of the fields Φ1,Φ2,Φ3,Φ4 fulfilling

Φ†minΦmin =
−µ2

2λ
=
v2

2
with v2 ≡ −µ

2

λ
(1.26)

minimise V (Φ). Without loss of generality, one specific ground state, also called vacuum
expectation value (vev) can be chosen. Considering that the first component Φ+ of Φ must
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vanish since the vacuum is neutral, one possible choice for the ground state Φmin is:

Φmin =
1√
2

Å
0
v

ã
. (1.27)

By the choice of one specific ground state, the SU(2)I,L ⊗ U(1)Y symmetry is broken.
However, Φmin remains invariant under U(1)Q transformations with Q = I3 +Y/2 (Eq. 1.12)
due to being electrically neutral which results in the preservation of the masslessness of the
photon. The expansion of Φ around the ground state Φmin results in:

Φ =
1√
2

Å
Φ+

v +H + iη

ã
unitary gauge−−−−−−−−→ 1√

2

Å
0

v +H

ã
, (1.28)

with the real fields H and η and the complex field Φ+. The former is the Higgs field, the
latter two correspond to Goldstone fields with three massless Goldstone bosons [45, 46].
By choosing an appropriate gauge, the unitary gauge [47, 48], the fields Φ+ and η vanish
and the released degrees of freedom are taken up by the longitudinal polarisations of the
three massive gauge bosons W i

µ and only the Higgs field remains. Hence, the Higgs field
describes excitations above the vacuum which result in a scalar boson called Higgs boson.
By inserting the righ term of Eq. 1.28 for Φ into Eq. 1.24, making use of Eqs. 1.20–1.22
and remembering that the weak isospin I and the weak hypercharge Y for Φ are 1/2 and 1,
respectively, the Lagrangian becomes:

LH =
1

2
(∂µH) (∂µH) +

g2

8 cos2 θw
(v +H)2 ZµZ

µ +
g2

4
(v +H)2W+

µ W
−,µ

−µ
2

2
(v +H)2 − λ

4
(v +H)4 .

(1.29)

It includes terms bilinear in the fields Z, W± and H while the photon field A is absent.
The factors in front of the bilinear (mass) terms allow for identifying terms for the masses
of the bosons:

MW± =
gv

2
, MZ =

gv

2 cos θw
=
MW±

cos θw
, mH =

√
2λv2 =

√
−2µ2 . (1.30)

The ratio of the W - and Z-boson masses is determined by the weak mixing angle. The
vacuum expectation value v is obtained from Fermi’s constant GF via the relation v2 =
(
√

2GF )−1 to be approximately 246GeV1 with GF being determined experimentally. Further
terms in Eq. 1.29 are interaction terms of the gauge fields W± or Z and the Higgs field
H of the form HV V and H2V V where V stands for either of the three gauge bosons.
The strength of these interactions is proportional to M2

V . The last two terms in Eq. 1.29
corresponding to the potential, provide triple and quartic self-interaction terms of the Higgs
field proportional to m2

H as well as the mass term and contributions to the cosmological
constant.

1using GF = 1.1663787× 10−5 GeV−2 [30]
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Yukawa Couplings

The description of fermion masses is incorporated into the theory by introducing an
additional, gauge invariant term to the Lagrangian which features the same Higgs doublet:

LYukawa = −
3∑

i,j=1

χL,L,iG`,ijψR,`,jΦ + χL,Q,iGu,ijψR,u,jΦc + χL,Q,iGd,ijψR,d,jΦ

+h.c. ,

(1.31)

where χL,L,i denotes the left-chiral SU(2)-doublet of lepton generation i, ψR,`,j the right-
chiral singlet of charged lepton generation j and χL,Q,i, ψR,u,j and ψR,d,j equivalently are
the quark doublet and the up- and down-type quark singlets for quark generation i or j,
respectively. The indices i, j run over the three fermion generations. The matrices Gf ,
f = `, u, d, are arbitrary, complex 3 × 3 matrices with the matrix elements Gf,ij . The
charge-conjugate Φc = iσ2Φ∗ = ((φ0)∗,−Φ−)T Higgs doublet is necessary to generate
masses for the upper components of the quark doublets and has opposite quantum numbers
compared to Φ. The abbreviation “h.c.” stands for hermitian conjugate and indicates that
the hermitian conjugate version of all previous terms is added in addition.

Using the term for Φ after symmetry breaking and in the unitary gauge as in Eq. 1.28,
the Lagrangian of Eq. 1.31 becomes:

LYukawa = − 1√
2

3∑
i,j=1

G`,ijψL,`,iψR,`,j(v +H) +Gu,ijψL,u,iψR,u,j(v +H)

+Gd,ijψL,d,iψR,d,j(v +H) + h.c. ,

(1.32)

where ψL,f,i denotes the respective component of the left-chiral SU(2)-doublet of fermion
generation i. Expanding the term of the Lagrangian further, mass terms for the charged
fermions proportional to ψL,f,iψR,f,j and interaction terms with the Higgs field proportional
to ψL,f,iψR,f,jH become apparent. By reading off the proportionality factors, three mass
matrices Mf with elements Mf,ij = v/

√
2Gf,ij and three coupling matrices Yf , called

Yukawa matrix, with elements Yf,ij = 1/
√

2Gf,ij are obtained.
The off-diagonal elements of the matrices Gf allow for a mixture of the left- and

right-chiral components of different fermions’ generations. However, the matrices Gf can
be diagonalised by a transformation with the unitary matrices UfH with H = L,R such
that the mass matrix as well as the Yukawa matrix become diagonal:

Mf,diag =
v√
2
UfLGf (UfR)† and Yf,diag =

1√
2
UfLGf (UfR)† , (1.33)

where a separate matrix for the charged leptons, up-type and down-type quarks as well as
for right- and left-chiral fields is needed. Consequently, the fermion fields are transformed
from the weak into the mass basis by:

ψ̂H,f = UfHψH,f , (1.34)

By applying these transformations and using Mdiag = diag {mf,1,mf,2,mf,3} where the
elements are the masses mf,i of the fermions of generation i, the Lagrangian of Eq. 1.31
becomes [29]:

LYukawa = −
∑
f

mf

(
ψL,fψR,f + ψR,fψL,f

)Å
1 +

H

v

ã
, (1.35)
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where the sum is over all fermion flavours of all generations. The hats, indicating the mass
basis, are dropped. By reordering the two terms in Eq. 1.33, it becomes apparent that the
coupling strength of the fermions to the Higgs boson is:

Yf =
mf

v
. (1.36)

This means the coupling of the Higgs boson to fermions is proportional to the mass of the
fermion which can be investigated experimentally. Furthermore, it is flavour conserving in
the SM.

The same change of basis (Eq. 1.34) must coherently be performed in all components
of the SM Lagrangian. When doing so, the only additional change is the appearance
of the CKM-matrix, VCKM = UuL(UdL)† introduced in Eq. 1.13, which performs the
transformation of the lower components of the left-chiral quark doublets in Eq. 1.18 from
the mass basis into the weak basis. No equivalent matrix for the left-chiral leptons appears
as the charged leptons and the neutrinos can be transformed with the same unitary matrix
U `L which results in U `L(U `L)† = 1. The matrices also vanish for the right-chiral fields.
The transformation of charged leptons and neutrinos with the same matrix is possible due to
neutrinos being massless in the SM and hence are diagonal in any basis. Once non-vanishing
masses for the neutrinos are assumed, the transformation matrices for the charged leptons
and the neutrinos differ, as it is the case for the up- and down-type quarks. This leads to
the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [49] for leptons equivalent to the
CKM-matrix for quarks. More details are discussed in Section 1.4.

1.1.5 The Complete Standard Model Lagrangian

The complete Lagrangian of the Standard Model is obtained as the sum of the Lagrangians
of QCD, the electroweak interaction, the Higgs-mechanism and the Yukawa interactions.
The single parts need small modifications in terms of notation in order to obtain one
coherent term for the SM Lagrangian and the fermion mass term included by hand in
LQCD must be dropped.

1.2 The Higgs Boson

A neutral scalar boson, the Higgs boson, was predicted as a consequence of the electroweak
symmetry breaking discussed in Section 1.1.4. It was the last particle of the SM to be
observed which succeeded in 2012. Two experiments at the LHC, ATLAS and CMS,
announced the observation of a particle in the searches for the Higgs boson of the SM.
Thenceforth, both experiments continued to investigate the properties of the newly found
particle and up to date all results are in agreement with the SM predictions. The mass
of the Higgs boson is a free parameter in the SM but once it is measured, the production
cross sections and the branching ratios of the Higgs boson can be calculated. Hence, the
following discussion of the production processes of the Higgs boson at the LHC and its
decay modes assumes a mass of mH = 125 GeV. Afterwards, an overview of the latest
experimental results is given.

1.2.1 Production Processes at the LHC

The total production cross section of the Higgs boson in proton-proton (pp) collisions at
the LHC is several magnitudes below the cross sections of other processes of the SM as can
be seen in Figure 1.2 which results in an a-priori low signal-over-background ratio and thus
requires exceptional particle detectors and sophisticated analysis techniques to be enhanced.
Figure 1.2 also shows that to date, all of the measured SM cross sections are in agreement
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Figure 1.2: Measurements of total cross sections of several Standard odel processes by the ATLAS
collaboration for different center-of-mass energies in proton-proton collisions [50]. For comparison, the
theoretical predictions are indicated in gray.

with the prediction. The Higgs boson is produced in pp-collisions via several processes which
differ in their cross sections and phenomenology. Partons, gluons and quarks, which are the
constituents of protons serve as the actual collision partners in pp-collisions. Further details
on the calculation of these cross sections is given in Section 4.1. The four main production
processes are gluon-gluon fusion (ggF), vector-boson fusion (VBF), Higgs strahlung (VH)
and the production in association with a top-quark pair (ttH). The corresponding Feynman
diagrams at leading order and the cross sections as a function of the center-of-mass energy
are shown in Figures 1.3(a)–1.3(d) and Figure 1.3(e), respectively. The values of the cross
sections and their uncertainties quoted in the following are for a center-of-mass energy of
13TeV and are taken from [51].

The most dominant production process is ggF which accounts for 87% of all produced
Higgs bosons. The coupling of the massless gluons to the Higgs boson is mediated by
a heavy-quark loop which is dominated by the top quark due to the proportionality
of the Yukawa couplings to the mass of the fermions. The cross-section is 48.58 pb,
calculated at next-to-next-to-next-to-leading order (N3LO) in the strong coupling strength
αs [52]. Electroweak (EW) corrections calculated at next-to-leading order (NLO) in the
electromagnetic coupling strength αQED are included as well [53–56]. The theoretical
uncertainties are +4.56 %/−6.72 %, including QCD scale uncertainties, and ±3.2 % from
the parton density functions and αs. In contrast to the other production processes, no
additional particles appear in the final state at leading order. Owing to momentum
conservation, the Higgs boson has zero transverse momentum in these cases. Additional
partons can arise in the final state, however, by radiation of gluons off the incoming gluons
or the quarks in the loop which results in a transverse momentum of the Higgs boson
different from zero.

The second largest production process is VBF with a cross section of 3.78 pb which is
more than one order of magnitude below the ggF cross section. Thus, the VBF production
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Figure 1.3: Feynman diagrams at leading order of the four main production processes of the Higgs boson
in pp-collisions (a-d) with V = W,Z and the cross sections of all production processes as a function of the
center-of-mass energy (e) for mH = 125 GeV [51].

accounts for 7% of all produced Higgs bosons. The calculation of the cross section
includes NNLO corrections in αs (QCD corrections) and NLO corrections in αQED (EW
corrections) [57–59]. The QCD scale uncertainties are +0.43 %/−0.33 % and uncertainties
from the parton density functions and αs are ±2.1 %. In the VBF process, two quarks
originating from each of the protons radiate off a W - or Z-boson which fuse to produce a
Higgs boson. Hence, the VBF production is characterised by two additional high-energetic
quarks in the final state which manifest themselves as jets, one in the forward and the
other one in the backward region of the detector. This distinct pattern can be exploited to
suppress background processes. Furthermore, VBF production allows for investigating the
coupling of the Higgs boson to vector bosons.

The VH process accounts for 4% of all produced Higgs bosons. A quark and an
anti-quark annihilate to produce a W - or Z-boson which radiates off a Higgs boson. The
signature with the additional vector boson in the final state can be utilised to suppress
background processes, e.g. when requiring leptonic decays of the vector boson since charged
light leptons can be measured precisely in the detector. The cross section of the Higgs
boson produced in association with a W -boson is 1.37 pb with +0.5 %/− 0.7 % QCD scale
uncertainties and ±1.7 % pdf and αs uncertainties. The production in association with a
Z-boson has a cross section of 0.88 pb and uncertainties of +3.8 %/ − 3.1 % and ±1.6 %,
respectively. The calculation of the cross section includes NNLO corrections in αs (QCD
corrections) and NLO corrections in αQED (EW corrections) [60–62].

The cross section of the ttH production process is two orders of magnitudes smaller than
the one of ggF. It is 0.51 pb with uncertainties of +5.8 %/ − 9.2 % from the QCD scales
and of ±3.6 % from the pdfs and αs. The cross section is calculated at NLO accuracy in
αs and αQED [63–69]. The ttH production accounts for approximately 1% of all produced
Higgs bosons. It allows for investigating the coupling of the Higgs boson to the top quark
which is not possible in decays of the Higgs boson as it is lighter than the top quark.

Other production mechanisms are bbH where the Higgs boson is produced in associaten
with a bottom-quark pair in analogy to the ttH production and tH where the Higgs boson is
produced in association with a single top quark. The former is of the size of ttH production
but plagued with considerable background contributions. The cross section of the latter is
almost another order of magnitude smaller than ttH.
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1.2.2 Decay

The prediction in the SM for the total decay width of the Higgs boson with a mass of
mH = 125 GeV is ΓH = 4.07 MeV [30] with a relative uncertainty of +4.0 %/− 3.9 %. This
is equivalent to a lifetime of 1.6× 10−22 s, meaning that the Higgs boson rapidly decays
after its production. The total decay width is the sum of the partial widths corresponding
to the different decay channels of the Higgs boson. The so-called branching ratios (B) are
defined as the ratio of the partial widths over the total width. The branching ratios as a
function of the Higgs boson mass are shown in Figure 1.4. The coupling strength of the

Figure 1.4: Branching ratios of Higgs boson decay channels as a function of the Higgs boson mass. The
width of the curves indicates the uncertainties [51].

Higgs boson to fermions is proportional to their mass while the coupling strength to gauge
bosons is proportional to the square of their mass. This means the decay probability into
third generation fermions is considerably larger than into first generation fermions. The
available phase space plays another important role in the size of the branching ratios.

At mH = 125 GeV the decay mode with the largest branching ratio of 58% is H → bb̄.
The decay into two W -bosons has the second largest branching ratio of 21%. This is only
allowed as the W -boson is short-lived and hence can be produced virtually. The decay into
two gluons has a branching ratio of 8.2% and is mediated by a heavy-quark loop, dominated
by the top quark, analogously to the ggF production process. The decay into τ -leptons
with a branching ratio of 6.3% is the most probable decay into leptons. It is followed by
the decay into a pair of charm quarks (B = 2.9 %) and a pair of Z-bosons (B = 2.6 %). In
the latter, one of the Z-bosons must be produced virtually. Although the decay into two
Z-bosons has a low branching ratio, it is experimentally well accessible when both bosons
decay leptonically such that four light charged leptons are in the final state. Another decay
with a clean signature in the detector but an even lower branching ratio of 0.23 % is the
decay into two photons. Finally, the decay into a Z-boson and a photon has a branching
ratio of 0.15% and the decay into two muons of 0.02%. The branching ratios of the decays
into first generation fermions are consequently even lower.

1.2.3 Experimental Results

The observation of a neutral boson with a mass of approximately 125GeV in the search for
the Higgs boson was announced on July 4th 2012 by the ATLAS and CMS collaborations [4,
5]. The observation was based on data taken at center-of-mass energies of

√
s = 7 TeV and
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√
s = 8 TeV and the background-only hypothesis could be rejected with 5.9σ (ATLAS)

and 5.0σ (CMS), driven by the two search channels with the best mass resolution: H →
ZZ∗ → 4` and H → γγ. These two decay modes indicate that the new particle is a neutral
boson. And, according to the Landau-Yang theorem [70, 71], no massive spin-1 particle can
decay into two photons. Hence, the excess found in the H → γγ decay channel disfavours
the observed new boson to have a spin of 1, in accordance with the SM prediction. In
addition, the SM predicts that the Higgs boson is even under transformations of charge
and parity (CP). Measurements in diboson decays of the Higgs boson excluded several
alternative spin and CP hypotheses in favour of the SM prediction at more than 99.9%
confidence level [72].

The currently most precise measurement of the Higgs-boson mass is performed by the
CMS collaboration by combining the results of Run 1 of the LHC with results obtained
from data taken in 2016 [73]. The mass of the Higgs boson is obtained by reconstructing
the invariant mass of its decay products. Hence, the measurement is solely based on the
two decay channels H → ZZ∗ → 4` and H → γγ where no neutrinos, which escape the
detector undetected, and only objects which have a clear signature in the detector are in
the final state. The measured value of the Higgs-boson mass is 125.38 ± 0.14GeV. The
values of the single measurements contributing to the combined measurement are listed
in Figure 1.5(a). Figure 1.5(b) summarises the measurements performed by the ATLAS

(a) (b)

Figure 1.5: Measured Higgs-boson mass values of the two collaborations, CMS (a) [73] and ATLAS
(b) [74], with different datasets and in two decay channels and various combinations thereof.

collaboration and also quotes the value obtained from a combination of the Run 1 results
of both collaborations.

The total decay width of the Higgs boson is not accessible via direct measurements as
the value predicted by the SM (ΓH = 4.07 MeV [30]) is three orders of magnitude below
the experimental resolution of the width. However, if a deviation of the decay width from
the SM prediction were found, this would be a sign for new physics beyond the SM (BSM).
It was suggested [75–77] that the ratio of the cross section of the off-shell production of
the Higgs boson to the on-shell production is proportional to the decay width. This was
exploited by the ATLAS and CMS collaborations in the decay channels H → ZZ∗ → 4`
and H → ZZ∗ → 2`2ν which resulted in the following measured values for the width of the
Higgs boson: ΓH = 4.6+2.6

−2.5 MeV [78] (ATLAS) and ΓH = 3.2+2.4
−1.7 MeV [79] (CMS) which is

in agreement with the SM prediction. Simultaneously, evidence for the off-shell production
of the Higgs boson was given.

Depending on the total width, the branching ratios of the different (known) decay
modes may vary. Hence, a combined measurement of the different decay modes is pursued.
Although the production and decay of the Higgs boson are independent processes, they
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cannot be investigated fully disentangled. Therefore, a signal strength modifier is defined:
µif = (σi/σ

SM
i ) · (Bf/BSMf ) [80] for a production process i and a decay mode f . Perfect

agreement with the SM prediction is obtained for µif = 1. The presentation of the following
results focuses on measurements performed by the ATLAS collaboration with the full Run
2 dataset [80]. The results of similar measurements performed by the CMS collaboration
can be found in [81].

The values of µif are measured for different combinations of production processes and
decay channels under varying assumptions. Assuming that all production processes and
decay modes scale with the same signal strength modifier µ, both collaborations perform a
fit to the data of all production modes and decay channels. The resulting values of µ are
both in agreement with the SM: µ = 1.05± 0.06 (ATLAS) and µ = 1.002± 0.057 (CMS).

Individual µif for different combinations of production processes and decay modes
are utilised to obtain the values shown in Figure 1.6. All of the measurements are in
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Figure 1.6: Values of the signal strength modifiers µif for different combinations of production processes
and decay modes, obtained with the full Run 2 dataset by the ATLAS collaboration [80]. The gray bands
indicate the SM prediction, the horizontal bars the 68% confidence intervals.

agreement with the SM predictions. In addition, values for the different µi (µf ) were
obtained when fixing the branching ratios (production cross sections) to their SM prediction.
The production processes WH, ZH and ttH and tH combined are now also observed with
significances of at least 5σ after ggF and VBF were already observed in Run 1. In addition
to the decays into γγ, ZZ, WW and ττ which were already observed in Run 1, the decay
into a pair of bottom (b) quarks is now also established. The rare decays into a pair of
second-generation muons is measured with a significance of 2.0σ and the decay into Zγ
with 2.3σ. The CMS collaboration found evidence for the decay of the Higgs boson into a
pair of muons with a significance of 3.0σ [82].

In order to extract the values of particular Higgs-boson coupling strengths, a simultane-
ous fit within the κ-framework [83] is performed. The coupling strength modifier κp for the
coupling to a certain particle p is defined as κ2

p = σp/σ
SM
p for a production process and as

κ2
p = Γp/Γ

SM
p for a decay mode [80]. It is taken into account that the total decay width

of the Higgs boson on one hand depends on the decay modes that are considered in the
measurements to data but on the other hand also on yet undetected or invisible decays
and decays not predicted by the SM [80]. The latter contribution is divided into decays to
invisible particles (Binv.) and decays which are undetected due to large backgrounds (Bu).

Depending on the assumptions, different models can be constructed and the values of
the corresponding coupling strength modifiers extracted. In order to obtain the values for
the modifiers shown in Figure 1.7, separate modifiers for each of the W , Z, t, b, c, τ and µ
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particles are assumed while the modifiers of the first-generation fermions are set to their
SM-values and the second-generation modifiers are set to the ones of the third generation.
Furthermore, effective modifiers for the loop-induced processes are used: κg, κγ and κZγ for
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Figure 1.7: The measured values of the coupling strength modifiers when excluding non-SM decays from
the decay width (circles and solid lines) and when allowing them (squares and dashed lines) [80]. The
horizontal bars indicate the 68% confidence intervals.

the couplings to two gluons, two photons and a Z-boson and a photon, respectively. This
allows for non-SM particles in the loops. In addition, the κ-values are shown for two cases:
excluding non-SM decays of the Higgs boson (Binv. = 0 and Bu = 0) and allowing them to
contribute. For the latter Bu ≥ 0 and κV ≤ 1 with V = W,Z is assumed. The values of all
measured κ-parameters are in agreement with the SM prediction. No significant change
in the values is observed whether invisible and undetected non-SM decays are allowed or
not. When allowing these decays to contribute to the total width, upper limits on their
branching ratios at 95% confidence level are set: Bu < 0.12 and Binv. < 0.13.

1.3 The Charged Leptons

In addition to the Higgs boson the charged leptons are of particular interest in this thesis.
All values quoted in the course of this section are taken from [30]. The τ -lepton is the
heaviest of all leptons with a mass of mτ = 1776.86±0.12MeV. It has a short mean lifetime
of ττ = (290.3± 0.5)× 10−15 s corresponding to a proper decay length of cτ = 87.03 µm.
Hence, τ -leptons decay within the beam pipe of the LHC and must be reconstructed through
their decay products. The decay is driven solely by the weak force meaning that the τ -lepton
always decays into a τ -neutrino and a virtual W -boson. The W -boson subsequently decays
either hadronically into quarks or leptonically into an electron or muon and the respective
anti-neutrino. If it decays hadronically, the quarks hadronise and form colour-neutral
mesons such that at least one charged meson is in the final state and optionally also neutral
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ones. These mesons are predominantly pions. In 49.04% of all τ -lepton decays, there is one
charged meson in the final state, in 15.2% there are three charged mesons in the final state
while in 17.82% and 17.39% of the decays an electron or a muon are in the final state. The
branching ratios of the decays with more than three charged mesons are very small.

The muon has a mass of mµ = 105.66 MeV and a mean lifetime of τµ = 2.20× 10−6 s
corresponding to a proper decay length of cτ = 658.64 m meaning that it traverses the full
depth of the ATLAS detector and can be detected directly. Muons decay almost exclusively
into an electron, an electron anti-neutrino and a muon neutrino.

The electron has a mass ofme = 0.511 MeV and a mean lifetime of at least 6.6× 1028 years
and hence is stable and therefore can also be detected directly.

1.4 Lepton-Flavour Violation

Lepton-flavour is an accidental symmetry and hence conserved in the SM. The Yukawa-
interaction matrix can be diagonalised in the mass basis of the leptons as was shown in
Section 1.1.4. However, oscillations of neutrinos were observed by the Super-Kamiokande
experiment [7] in 1998 and the Sudbury Neutrino Observatory [8] in 2001 after first evidence
was found by the Homestake experiment [6] in 1968 which was rewarded with the 2015
and 2002 Nobel Prize of Physics. The discovery that neutrinos oscillate, meaning that
they can transmute from one flavour state into another, implies that lepton flavour is not
conserved in nature and hence not an exact symmetry. Therefore, the questions arises
whether lepton-flavour violation is also realised in the charged lepton sector. The oscillations
imply that neutrinos have non-vanishing masses in order to allow for different mixtures of
mass eigenstates at different points in time (in fact it is required that they have differing
masses). This necessitates some form of extension of the SM. Once non-vanishing neutrino
masses are incorporated, the mass matrices of the neutrinos and the charged leptons cannot
be diagonalised with the same matrix U `L anymore which results in the appearance of the
PMNS-matrix and hence in mixing within the lepton sector, as discussed in Section 1.1.4.
The PMNS-matrix can also give rise to charged lepton-flavour violation (CLFV) which can,
however, in this context only occur in loop diagrams [84]. An example of such a CLFV
process is shown in Figure 1.8. The corresponding branching ratio of µ→ eγ in a minimally

V ∗
µi

µ
Vei

e

γ

W
W

νi

Figure 1.8: Diagram of µ→ eγ mediated by neutrinos νi with non-vanishing masses in the SM. The νi
with i = 1, 2, 3 are mass eigenstates, ordered by mass.

extended SM incorporating neutrino masses can be calculated as follows [85, 86]:

B(µ→ eγ) =
3α

32π

∣∣∣∣∣∣∑i=2,3

V ∗µiVei
∆m2

i1

M2
W

∣∣∣∣∣∣
2

< 10−54 , (1.37)

where α is the fine structure constant, Vβi are the elements of the PMNS-matrix, ∆m2
ij are

the differences of the squared neutrino masses and MW is the mass of the W -boson. The
branching ratio is highly suppressed by the GIM-mechanism [87] and hence the observation
of such a decay would clearly be an indication of new physics beyond the SM (BSM). The
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values obtained for the branching ratios of similar processes, e.g. τ → eγ and τ → µγ, are
of similar order of magnitude.

However, numerous models extending the SM were and are developed in order to
address the mentioned and other shortcomings of the SM, e.g. the lack of explanation for
the evidence of dark matter and the baryon asymmetry in the universe. In many of them
(C)LFV processes occur naturally, including LFV decays of the Higgs boson which are the
topic of this thesis. Owing to the small decay width of the Higgs boson, decays of the Higgs
boson corresponding to new BSM physics could have a sufficiently sized branching ratio
in order to be detected. In addition, the current upper limits on the branching ratios of
non-SM decays, obtained in combined fits of the coupling strength modifiers κ discussed in
Section 1.2.3, do not yet exclude such decays.

The following Section 1.4.1 discusses the appearance of CLFV in an effective field theory
ansatz of the SM (SMEFT) and in type-III two-Higgs-doublet models. Section 1.4.2 gives
an overview of the current indirect and direct limits on LFV decays of the Higgs.

To date, no hints or evidence for CLFV were found although many searches in numerous
channels were and are extensively performed.

1.4.1 LFV in Charged Lepton Sector in Extensions of the SM

Charged lepton-flavour violation arises naturally in many models extending the SM, e.g.
two-Higgs-doublet models (2HDM) [9–11], composite Higgs-models [12, 13], minimal super-
symmetric standard model (MSSM) [14], Ranadall-Sundrum models [15] and the Froggatt-
Nielsen mechanism [16]. However, it can be useful to investigate beyond-SM phenomena
within effective theories in order to set model-independent limits on parameters of the
effective theory within a so-called bottom-up approach. Hence, CLFV is discussed first in
the framework of the SM effective field theory in the next section. Afterwards it is reviewed
in the context of one specific model, the type-III 2HDM.

LFV Interactions of the Higgs Boson in SMEFT

Effective field theories (EFT) are used to describe effects of new physics in a model-
independent way at the “low-energy” scale accessible by an experiment. In this context
new physics is characterised by new heavy particles at some high-energy scale Λ. In the
framework of the Standard Model effective field theory (SMEFT), it is assumed that the SM
is valid up to the energy scale Λ above which the effective theory (the SM) must be replaced
by the full (unknown) fundamental theory. The energy scale Λ is required to be above the
electroweak scale v = 246 GeV by several orders of magnitude. At the electroweak scale
only the SM particles are relevant and for Λ → ∞ the full theory should reduce to the
SM. The SMEFT aims to provide a systematic parametrisation of all potentially possible
new physics residing at scale Λ at the electroweak scale v. The Lagrangian describing the
SMEFT can be written as

LSMEFT = LSM +
1

Λ

∑
k

C
(5)
k Q

(5)
k +

1

Λ2

∑
k

C
(6)
k Q

(6)
k +O

Å
1

Λ3

ã
, (1.38)

where LSM denotes the usual SM Lagrangian of mass-dimension 4, the sum runs over the
number of higher-dimensional operators Qk which are built from the usual SM fields and
are gauge-invariant under SU(3)⊗ SU(2)I,L ⊗U(1)Y . The numbers in brackets denote the
dimension of the respective operators. The summands are suppressed by inverse powers of
the new physics scale. The new physics at high energies is absorbed into the dimensionless
Wilson coefficients Ck while the higher-dimensional operators represent the effect at the
low-energy scale. This separation of scales is possible due to the decoupling theorem [88].
The Wilson coefficients are unknown but could in principle be calculated from the full
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theory or any other BSM model affecting the respective coefficient. On the other hand
experimental data can be used to set bounds on the coefficients and thus on corresponding
models (bottom-up approach).

There are many operators per dimension, a complete set of independent operators of
dimension 5 and 6 is listed in [89]. After requiring SM gauge invariance, only one operator of
dimension 5 remains. It is the only operator allowing for massive neutrinos and their mixing
but does not introduce LFV interactions of the Higgs boson [10, 89]. Hence this operator is
not considered in the following. Among the 59 independent dimension 6 operators2 for one
fermion generation only one gives direct rise to modifications in the Yukawa-couplings and
the fermion masses [18] and hence to tree-level flavour-changing neutral currents mediated
by the Higgs-boson [90]. Following the notation in [89] this operator is called QeΦ. It is of
the form

QeΦ = (Φ†Φ)(χ̄L,L,iψR,`,jΦ) . (1.39)

The notation of the fermion fields is as introduced in Eq. 1.31: χL,L,i denotes the left-chiral
SU(2)-doublet of lepton generation i and ψR,`,j the right-chiral singlet of charged lepton
generation j. The SM Higgs doublet is denoted by Φ. Adding the Lagrangian corresponding
to this operator to the lepton-related part of the Yukawa-Lagrangian of the SM (Eq. 1.32)
and denoting the corresponding Wilson coefficients by Cij , the resulting Lagrangian after
electroweak symmetry breaking is:

L modif.
Yuk.,` = − 1√

2

3∑
i,j=1

G`,ijψL,`,iψR,`,j(v +H) +
Cij
2Λ2

(v +H)2ψL,`,iψR,`,j(v +H) + h.c.

(1.40)

= − 1√
2

3∑
i,j=1

Å
G`,ijv +

Cij
2Λ2

v3

ã
ψL,`,iψR,`,j +

Å
G`,ij +

Cij
2Λ2

3v2

ã
ψL,`,iψR,`,jH

+
Cij
2Λ2

3vψL,`,iψR,`,jH
2 +

Cij
2Λ2

ψL,`,iψR,`,jH
3 + h.c. ,

(1.41)

where the first term in Eq. 1.41 corresponds to the mass terms of the leptons and the
second term to the Yukwawa interactions. The last terms represent interaction terms of two
leptons with either two or three Higgs bosons. The mass matrix M as well as the Yukawa
matrix Y , with elements Mij and Yij , gain additional terms compared to the SM only case
discussed in Section 1.1.4 and become

M =
1√
2

Å
G`v +

C

2Λ2
v3

ã
, (1.42)

and

Y =
1√
2

Å
G` +

C

2Λ2
3v2

ã
. (1.43)

Again, as discussed in Section 1.1.4 the mass matrix can be diagonalised by a transformation
with new unitary matrices U ′`,H with H = L,R [18]:

Mdiag =
v√
2
U ′`,L

Å
G` +

v2

2Λ2
C

ã
(U ′`,R)† , (1.44)

264 when allowing for violation of baryon number conservation
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and since Y = M/v + v2/(
√

2Λ2)C, it cannot be diagonalised simultaneously. Instead, Y
expressed in the mass basis becomes:

Ŷ = U ′`,LY (U ′`,R)† = U ′`,L

Å
M

v
+

v2

√
2Λ2

C

ã
(U ′`,R)† =

Mdiag

v
+

v2

√
2Λ2

U ′`,LC(U ′`,R)†

=
Mdiag

v
+

v2

√
2Λ2

C ′ ,

(1.45)

which corresponds to the SM coupling plus an additional, not necessarily diagonal term
that is suppressed by the squared scale of new physics. Thus, the coupling strength of
charged leptons i and j to the Higgs boson is

Ŷij =
mi

v
δij +

v2

√
2Λ2

C ′ij , (1.46)

and hence introduces lepton-flavour violating interactions of the Higgs boson. Measuring or
constraining the values of the elements of the matrix C ′ is the aim of experimental searches
for LFV decays of the Higgs boson.

LFV Interactions of the Higgs Boson in 2HDM

Two Higgs-doublet models (2HDM) extend the SM by adding an additional Higgs doublet
with hypercharge Y = 1 and can, for example, generate a sufficient baryon asymmetry.
Naturally, 2HDMs come with sizeable contributions of tree-level flavour-changing neutral
currents (FCNCs) and thus also lepton-flavour violation [11]. These can be suppressed by
the requirement of discrete symmetries which is applied in type-I and type-II 2HDMs. In
the following, however, a 2HDM allowing FCNCs is used which is typically referred to as
type-III or general 2HDM. The subsequent description is based on [91] with additional
background information from [11]. Both Higgs doublets, Φ1 and Φ2, can couple to all
fermion types in the type-III 2HDM. Furthermore, the Higgs basis in which only one Higgs
doublet acquires a vacuum expectation value v can be used. Then, the scalar potential of
the model reads
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with all parameters being real (assuming CP-conservation3) and the λi being the Higgs
self-coupling constants. The Higgs doublets can be expressed as

Φ1 =

Ç
G+

1√
2

(
v + Φ0

1 + iG0
)å and Φ2 =

Ç
H+

1√
2

(
Φ0

2 + iA
)å , (1.48)

where G+ and G0 are Goldstone bosons, Φ0
1, Φ0

2 and A are neutral scalars and H+ is a
charged scalar. The scalar A is a mass eigenstate and odd under the combined charge and
parity transformation (CP). Assuming CP conservation, it does not mix with the CP-even

3and hence no additional baryon asymmetry
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states Φ0
1, Φ0

2. The latter two are mixed to obtain the mass eigenstates h and H:Å
h
H

ã
=

Å
sin(β − α) cos(β − α)
cos(β − α) − sin(β − α)

ãÅ
Φ0

1

Φ0
2

ã
. (1.49)

Here, β−α is the mixing angle and mh < mH with h being identified with the Higgs boson
discovered in 2012. The corresponding Yukawa Lagrangian for the leptons can be written
in terms of the Higgs basis for the Higgs doublets and the mass basis for the leptons:

L 2HDM
Yuk.,` = −

√
2

v

3∑
i,j=1

χL,L,iMdiag,ijψR,`,jΦ1 + χL,L,iρijψR,`,jΦ2 + h.c. , (1.50)

where the sum runs over the lepton flavours, Mdiag is the diagonal mass matrix and ρ is a
general complex hermitian 3×3 matrix in flavour space with elements ρij . After electroweak
symmetry breaking, using Eqs. 1.48 and 1.49, the Lagrangian becomes:

L 2HDM
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3∑
i,j=1
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Å
1

v
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2
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2
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2
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V †ikρkj
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ψR,`,jH

+ + h.c. ,

(1.51)

with V being the PMNS matrix due to assuming the neutrinos in the mass basis. Hence,
the coupling Y matrix with elements Yij of the light scalar boson h to the leptons is:

Y =
Mdiag

v
sin(β − α) +

1√
2
ρ cos(β − α) , (1.52)

which is not necessarily diagonal. The second term, introducing off-diagonal elements,
becomes zero for β − α = π/2 for which the first, solely diagonal, term is maximal. In this
scenario, the SM case (Eq. 1.36) is reproduced and the alignment limit for the 2HDM is
reached [92]. For small deviations of sin(β − α) from 1, however, lepton-flavour violating
interactions of the SM-like Higgs boson are introduced. But the mixing of the two scalar
bosons h and H, steered by β−α, must still be in agreement with the measurements of the
couplings of the Higgs boson and further constraints, e.g. from low-energy measurements
discussed in Section 1.4.2. A random scan of the parameters mH ,mA,mH± and sin(β−α) is
performed in [91] with a focus on h→ τµ while fixing mh = 125.1 GeV, thereby respecting
the aforementioned experimental constraints. It was found “that the type-III 2HDM
can induce h → τµ rates close to the current bound while being in agreement with all
experimental constraints” [91], where the “current bound” refers to the latest limits by direct
searches for h→ µτ by the ATLAS and CMS collaborations discussed in Section 1.4.2. In
these cases, sin(β − α) is close to 1 (but obviously not exactly 1; ∼ 0.9 in [91]).

The decoupling limit [93] offers one possibility to realise the alignment limit. However,
not the exact alignment (sin(β − α) = 1) is desired but an approximate alignment (sin(β −
α) . 1) where LFV decays of the Higgs boson are allowed but bounded. In the decoupling
limit, the light scalar h corresponds to the SM Higgs-boson while the remaining non-SM-like
scalars, H,A,H±, are very heavy which results in cos(β − α) being close to 0 [93] and
consequently in sin(β − α) being close to 1. In this case the existence of heavy scalars only
become noticeable at the electroweak scale through small deviations of the couplings of
the light scalar h from SM predictions. This clearly allows interpreting this 2HDM setup
within SMEFT. Comparing the 2HDM h`i`j-coupling (Eq. 1.52) to the one obtained in the
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previous section from the SMEFT ansatz (Eq. 1.45) shows a very similar but not identical
structure. In principle, the Wilson coefficient matrix C ′ could be expressed in terms of the
2HDM parameters, Λ and Mdiag.

1.4.2 Current Limits on LFV Decays of the Higgs Boson

This section gives an overview of indirect as well as direct limits on the branching ratios of
LFV decays of the Higgs boson, i.e. on B(H → eµ), B(H → eτ) and B(H → µτ).

Indirect Limits

Indirect limits can for example be derived from low-energy measurements searching for the
decays µ→ eγ, τ → eγ and τ → µγ (radiative LFV decays). There are 1-loop and 2-loop
contributions of the Higgs-boson with CLFV couplings to these decays. The corresponding
dominant diagrams of the 1-loop contributions are shown in Figure 1.9 for τ → µγ, but
are equivalent for the other two decays. The 2-loop diagrams can be found in [18]. By

Yττ

τ
Yτµ

µ

γ

τ τ

H

Yτµ
τ

Yµµ

µ

γ

µ µ

H

Figure 1.9: Example diagrams of the 1-loop contributions to the radiative LFV decay τ → µγ that are
mediated by a Higgs boson and include the LFV off-diagonal Yukawa couplings Yτµ and Yµτ .

evaluating these diagrams and using the latest upper limits on the branching ratios of
µ→ eγ, τ → eγ and τ → µγ, upper bounds B on the off-diagonal Yukawa couplings Yij
with i 6= j and i, j = e, µ, τ of the form»

|Yij |2 + |Yji|2 < B (1.53)

can be derived [17, 18]. The strongest upper limits on these radiative LFV decays are
obtained by the MEG experiment and by the BaBar collaboration and are summarised in
Table 1.4. The MEG experiment is specialised in the search for µ → eγ-decays. It uses

Process Limit Reference Experiment

µ→ eγ 4.2× 10−13 [94] MEG
τ → eγ 3.3× 10−8 [95] BaBar
τ → µγ 4.4× 10−8 [95] BaBar

Table 1.4: Upper limits on the branching ratios of the respective processes at 90% CL.

a continuous beam of positively charged muons which are stopped by a thin target such
that the muons decay at rest. In contrast to the MEG experiment, the Babar experiment
investigates many different processes originating from the collisions of electrons and positrons
of different energy.

The upper bounds B on
√
|Yij |2 + |Yji|2 from [18], obtained using the values in Table 1.4,

are summarised in Table 1.5. It is assumed that “the Higgs is the only additional degree of
freedom with mass O(100 GeV) and that the Yij ’s are the only source of flavor violation” [18],
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Coupling Bound H LFV Decay Bound on B From Process√
|Yeµ|2 + |Yµe|2 < 3.6× 10−6∗ H → eµ 1.6× 10−8 µ→ eγ√
|Yeτ |2 + |Yτe|2 < 0.014 H → eτ 0.19 τ → eγ√
|Yµτ |2 + |Yτµ|2 < 0.016 H → µτ 0.24 τ → µγ

4
√
|YeτYτµ|2 + |YτeYµτ |2 < 2.2× 10−4 - - µ→ eγ

Table 1.5: Upper bounds on the off-diagonal Yukawa couplings from [18], obtained from the limits on the
branching ratios of the radiative LFV processes, and the corresponding upper bounds on the branching
ratios B of the LFV decays of the Higgs boson. The * indicates that this bound was obtained with a weaker
bound on µ→ eγ of 2.4× 10−12 [96]. Thus, the current bound on

√
|Yeµ|2 + |Yµe|2 is stronger.

with the consequence that only the 1-loop and 2-loop diagrams mediated by the Higgs
boson contribute to the radiative LFV decays. Further, it is assumed that the flavour
diagonal Yukawa couplings Yii equal their SM prediction, that the second 1-loop diagram
of Figure 1.9 can be neglected (for Yµµ � Yττ ) and it is used that mµ � mτ � mH . In
order to obtain upper bounds on the branching ratios of the Higgs-boson LFV decays from
the bounds on the couplings, the following relations are utilised:

Γ(H → ij) =
mH

8π

(
|Yij |2 + |Yji|2

)
and B(H → iτ) =

Γ(H → ij)

ΓSM(H) + Γ(H → ij)
. (1.54)

The resultings bounds on the branching ratios B of the Higgs boson LFV decays are listed
in Table 1.5. The bound on B(H → eµ) is very strong and below the sensitivity that can be
reached by the experiments at the LHC. Whereas the bounds on the other two Higgs-boson
LFV decays are rather weak allowing for branching ratios around 20%.

In addition, a bound on the product of the couplings Yµτ and Yτe can be derived from
µ→ eγ, which is also listed in Table 1.5. The corresponding 1-loop diagram is shown in
Figure 1.10. The 2-loop contribution which is proportional to Yµe and Yeµ is neglected. The

Yµτ

µ
Yτe

e

γ

τ τ

H

Figure 1.10: Diagram of the 1-loop contribution to the radiative LFV decay µ→ eγ that is mediated by
a Higgs boson and features two LFV off-diagonal Yukawa couplings: Yµτ and Yτe.

consequence of this bound is that either H → eτ or H → µτ are allowed to be “large” but
no sizeable contribution from both at once is expected. The largest value the two branching
ratios, H → eτ and H → µτ , can take on simultaneously, is 8.28× 10−3%. The constraint
from this bound on the branching ratios is visualised in Figure 11.8 in the discussion of the
results.

Indirect upper limits on Higgs boson LFV decays can also be obtained from measurements
of e.g. µ/τ → 3e, τ → µγ, µ → e conversions in nuclei and from the electron and muon
electric and magnetic dipole moments [17, 18]. However, the limits obtained from the
radiative LFV decays are the most stringent amongst these limits.
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Direct Limits

Direct limits on the branching ratios of the LFV decays of the Higgs boson were derived
in dedicated searches by the ATLAS and CMS collaborations. Both collaborations placed
limits at 95% confidence level (CL) on all three H LFV decays. The latest limits by each
collaboration are summarised in Table 1.6. The strongest direct limit on B(H → eµ) is

ATLAS CMS

Process Limit on B Dataset Limit on B Dataset

H → eµ 6.1× 10−5 [97] 139 fb−1 3.5× 10−4 [98] 19.7 fb−1∗

H → eτ 4.7× 10−3 [19] 36.1 fb−1 2.2× 10−3 [20] 137 fb−1

H → µτ 2.8× 10−3 [19] 36.1 fb−1 1.5× 10−3 [20] 137 fb−1

Table 1.6: Most stringent direct upper limits on the branching ratios of H LFV decays at 95% CL by the
ATLAS and CMS collaborations. All limits are obtained from data recorded at a center-of-mass energy of√
s = 13 TeV, except the one indicated by ∗ which used

√
s = 8 TeV.

achieved by the ATLAS collaboration but is still almost three orders of magnitudes weaker
than the indirect limit obtained from µ → eγ. The strongest direct limits on H → eτ
and H → µτ are from the CMS collaboration, using the full Run 2 dataset. These limits
outperform the indirect limits obtained by the low-energy measurements.





Chapter 2

The LHC and the ATLAS experiment

This chapter introduces the experimental setup. Data from proton-proton collisions created
by the Large Hadron Collider (LHC) described in Section 2.1 and recorded by the ATLAS
detector introduced in Section 2.2 are the basis for this thesis. Section 2.3 gives a brief
overview of the luminosity measurement at the ATLAS experiment. An overview over the
different data taking periods and the dataset used in the analysis presented in this thesis is
given in Section 2.4.

2.1 The LHC

The LHC [99, 100] is the world’s largest and most powerful circular particle accelerator
to date. With a circumference of 26.7 km it is located underground at the France-Swiss
border between Lake Geneva and the Jura Mountains in a depth of 45 to 175m. It was
built between 1998 and 2008 in the tunnel of the former Large Electron-Positron Collider
by the European Organization for Nuclear Research (CERN)1.

Two particle beams circulate in opposite directions in two beam pipes with an ultrahigh
vacuum. The particles accelerated by the LHC are mainly protons (p) and, for a short
run time period, also lead ions (Pb) and other heavy ions. In this thesis, however, only
data from collisions of protons is analysed. At four points of the LHC, these two beams
are brought to collision. One experiment is housed at each of the four points: ALICE (A
Large Ion Collider Experiment) [101], ATLAS (A Toroidal LHC ApparatuS) [102] which
is described in more detail in the next section, CMS (Compact Muon Solenoid) [103] and
LHCb (Large Hadron Collider beauty) [104]. ATLAS and CMS are both multipurpose
detectors while ALICE is sepcialized in the investigation of quark-gluon-plasma states
originating from Pb-Pb collisions and LHCb is set up to study decays of hadrons that
include b- or c-quarks (bottom or beauty and charm quarks).

The LHC is not a perfect circle but consists of alternating eight straight segments
and eight arcs. 1323 superconducting dipole electromagnets bend the particles along
the arcs and reach field strengths up to 8.3T. The particle beams are focused by 392
quadrupole magnets and multiple additional magnets are used to influence and correct
the particles’ trajectories. The hadrons are accelerated and then kept at their energy by
eight superconducting radiofrequency (RF) cavities per beam. The particles are, however,
not solely accelerated by the LHC but travel through several pre-accelerators. The whole
acceleration system is depicted in Figure 2.1.

The protons are obtained by ionising hydrogen atoms from a simple gas cylinder and
are linearly accelerated to an energy of 50MeV by LINAC2 (Linear Accelerator 2) which
injects them into the PS Booster (Proton Synchroton Booster) where they reach 1.4GeV.

1In French: Conseil européen pour la recherche nucléaire
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Figure 2.1: Schematic of the accelerator system [105].

They are further accelerated to 25GeV by the PS (Proton Synchroton) and then to 450GeV
by the SPS (Super Proton Synchroton) from which the protons are finally transferred to
the LHC. It takes the LHC twenty minutes until the protons reach their final energy of
6.5TeV which corresponds to a center-of-mass energy of 13TeV at collision.

In the case of pp-collisions each beam in the LHC during Run 2 consisted of up to 2556
bunches formed by up to 1.25× 1011 protons with a distances of 25 ns [106]. This bunch
structure is already prepared by the pre-accelerators.

Besides the center-of-mass energy, the luminosity is an important measure of the
performance of an accelerator. It has the dimension of events per time and area and is
given by the LHC’s beam parameters [99]:

L =
N2
b nbfrevγr
4πεnβ∗

F . (2.1)

With Nb being the number of particles per bunch, nb the number of bunches per beam
and frev the revolution frequency of the particles. Further, γr is the relativistic gamma
factor, εn the normalised transverse beam emittance, β∗ the beta function, describing the
transverse spread of the beams, at the collision point and F a geometric reduction factor
due to the crossing angle and other effects at the interaction point. Furthermore, the
luminosity integrated over time Lint =

∫
L dt is proportional to the number of produced

events N for a specific process which are given by:

N = σ · Lint . (2.2)

Here, σ is the cross section of the respective process.

Therefore, the aim is to maximise Lint. Luminosities of up to 2.1× 1034 cm−2 s−1 were
reached during Run 2, yielding an integrated luminosity of 138.4 fb−1 from 2015-2018
used for analyses. The measurement of the integrated luminosity performed by ATLAS is
described in Section 2.3.
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2.2 The ATLAS Detector

The ATLAS detector is a multipurpose detector designed not only to precisely investigate
the standard model of particle physics but also to search for new phenomena. It is built
cylindrically around the beam axis with multiple layers of different sub-detectors going from
the inside to the outside, see Figure 2.2. It weighs 7 000 tons, has a length of 44m and a

Figure 2.2: Schematic of the ATLAS experiment [102].

height of 25m. Each sub-detector is optimised for detecting and measuring different particles
or properties of particles such that when combining the information of all sub-detectors,
different particles can be distinguished and finally, the events can be reconstructed. This is
visualised in Figure 2.3.

Figure 2.3: Diagram showing possible particle paths in the ATLAS detector, visualising how they are
detected [107].

The Inner Detector , further described in Section 2.2.2, is used to determine decay
vertices, the sign of charge, the momentum and the trajectory of charged particles by
detecting their tracks. The calorimeters, surrounding the Inner Detector, measure the
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energy of all particles which do not only interact via the weak interaction and their direction
of travel. The Electromagnetic Calorimeter is primarily used for the detection of electrons
and photons, the Hadronic Calorimter for the detection of hadrons. Both are described in
more detail in Section 2.2.3. Muons pass these sub-detectors almost unhampered due to
their large mass compared to electrons and therefore little interactions with the detector
materials and since they do not interaction strongly. They are detected in the Muon System,
described in Section 2.2.4, which also measures their momentum and charge.

Each sub-detector consists of three regions, the barrel region in the central part of the
detector and the two endcaps in the forward and backward regions.

The description of the ATLAS detector follows [102] if not indicated otherwise.

2.2.1 Coordinate System

A right-handed Cartesian coordinate system with its origin at the point of collisions is used
to describe the trajectories of the objects (particles, jets, missing transverse energy). The
x-axis points from the origin to the center of the LHC ring, the y-axis from the origin to
the earth surface and the z-axis along the beam line.

The azimuth angle φ is defined in the transverse plane (the x-y-plane) and gives the
angle around the beam axis. The polar angle θ indicates the angle between the trajectory
of the particle and the beam axis (z-axis). The rapidity y is given by

y =
1

2
ln

Å
E + pz
E − pz

ã
, (2.3)

where E is the energy and pz the z-component of the momentum of the particle. An
advantage of this observable is the Lorentz invariance of differences in rapidity under a
boost in z-direction. In experimental particle physics, the rapidity is typically replaced by
pseudorapidity η which solely depends on the polar angle θ:

η = − ln (tan (θ/2)) . (2.4)

For high energetic particles for which m � p holds with p being the momentum, the
pseudorapidity converges to the rapidity. The values of |η| range from 0 (perpendicular to
the beam axis) to ∞ (parallel to the beam axis).

The angular separation of two objects ∆R is also used frequently and defined as follows:

∆R =
»

(∆η)2 + (∆φ)2 . (2.5)

When the partons of the protons are colliding, the total momentum in z-direction is
not known since the partons carry only parts of the proton’s momentum. However, the
momenta of the partons in the transverse plane are zero before they collide and therefore
the total transverse momentum of all final state particles after collision must be zero as
well. This means that the projection of the particle’s momentum onto the transverse plane
is of particular importance. It is denoted by pT and its absolute value is calculated from
the x- and y-components as follows:

pT =
»
p2
x + p2

y . (2.6)

Another important argument is its invariance under boosts in z-direction.

2.2.2 Inner Detector

The Inner Detector (ID) consists of three independent but complementary sub-detectors.
The Pixel detector which is closest to the beam line is surrounded by the Semiconductor
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Tracker (SCT). Both are silicon based and must withstand a high-radiation environment.
The Transition Radiation Tracker (TRT) makes for the outer layers of the inner detector.
It consists of gas-filled straw tubes interlaced with transition radiation material. The whole
inner detector is contained within a cylindrical envelope of approximately seven metres
length and 2.3 metres diameter and permeated by a 2T magnetic field which is produced
by the central super-conducting solenoid and is parallel to the beam axis. A sketch of a
quarter-section of the ID showing all three sub-detectors is given in Figure 2.4.

Figure 2.4: Sketch of a quarter-section of the ATLAS Inner Detector [108].

With this setup the ID is capable of providing reliable pattern recognition and track-
ing of charged particles, measurement of primary and secondary vertices and precise
determination of momentum and charge. The latter are derived from the radius and
direction of curvature of the particle’s trajectory induced by the magnetic field. The target
resolution of the ID for the transverse momentum measurement is σpT /pT = 0.05 %pT ⊕1 %.

The Pixel and SCT sensors are constructed on concentric cylinders around the beam
axis in the barrel region and on disks perpendicular to the beam axis in the endcap regions.
They cover the region |η| < 2.5.

The Pixel detector has three cylindrical layers and two times three disks at the endcaps.
The layers are segmented in R-φ and z with a pixel size of 50 µm× 400 µm. In total, there
are 1 744 pixel sensors, each with 47 232 pixels which results in approximately 80million
readout channels. The intrinsic hit accuracy is 10 µm in R-φ and 115 µm in z for the barrel
and in R for the endcaps. During Long Shutdown 1, between Run 1 and Run 2 of the
LHC, a forth innermost layer was added to the Pixel detector in the barrel region: the
Insertable B-Layer (IBL) [109]. The additional layer, its even finer granularity and the
smaller distance to the interactions resulted in improved tracking and vertex reconstruction.
The pixels have a size of 50 µm× 250 µm in R-φ× z.

The SCT consists of four silicon microstrip layers in the barrel and two times nine disk
layers in the endcaps. Each of the layers is composed by a pair of strips with one strip being
aligned to the beam line in the barrel and perpendicular to it in the endcaps. The other
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strip is placed at a stereo angle of 40mrad to enable the measurement of the z-coordinate in
the barrel and of the R-coordinate in the endcaps. In total, there are 768 active strips with
a length of 12 cm per sensor and a strip pitch of 80 µm. The intrinsic accuracy is 17 µm
in R-φ and 580 µm in z for the barrel and in R for the endcaps. There are approximately
6.3million readout channels. The SCT exhibits a coarser granularity compared to the Pixel
detector and therefore a worse resolution but covers a larger sensitive area.

The TRT is the outermost and therefore also largest sub-detector of the ID. It is built
by approximately 300 000 gaseous straw tubes with a diameter of 4mm interlaced with
stabilising carbon fiber structures. Straw tube elements are interleaved with transition
radiation material consisting of polypropylene fibres. In the barrel, these straws are installed
parallel to the beam line and have a length of 144 cm, in the endcaps they are 37 cm long
and are arranged radially. Approximately 350 000 readout channels are utilised. The gas
mixture used in the tubes is Xenon-based, although in some tubes it is replaced by a cheaper
Argon-based mixture due to ongoing leaks [110]. A sensitive region |η| < 2.0 is covered
and only R-φ information with an intrinsic accuracy of 130 µm is provided. However, a
large number of hits per track, typically 36, is achieved which results in continuous tracking
information. Furthermore, the TRT contributes significantly to the identification of mainly
low-pT electrons by the detection of X-ray photons originating from the transition radiation.

2.2.3 Calorimeters

Outside the ID and the subsequent solenoid, the Electromagnetic Calorimeter (ECAL) is
installed followed by the Hadronic Calorimeter (HCAL). They are utilised to detect and
measure the energy deposit by electrons and photons (ECAL) and by hadrons (ECAL
and HCAL). The calorimeters cover the region |η| < 4.9 while they extend symmetrically
over the full φ-range and radially up to 4.25m. It is crucial that the particles (electrons,
photons, hadrons) deposit all their energy in the calorimeters to prevent punch-through
into the muon system to not confound the measurements there. All ATLAS calorimeters
are sampling calorimeters, i.e. they are built by alternating absorbing and active detector
material.

The ECAL uses liquid argon (LAr) as active material and lead as absorbing material.
It is divided into a barrel part, covering |η| < 1.475 and two endcaps which cover 1.375 <
|η| < 3.2. A visualisation is shown in Figure 2.5. In order to get a good energy resolution,
the thickness of the lead parts was optimised as a function of η. The final depth of the
ECAL in the barrel is > 22X0 (radiation lengths) and in the endcaps > 24X0. The ECAL
exhibits a fine granularity between 0.003 and 0.075 in ∆η and between 0.025 and 0.1 in
∆φ in the pseudorapidity range matched to the ID (|η| < 2.5) such that the ID is ideally
complemented for precision measurements of electrons and photons. The coarser granularity
of 0.1 × 0.1 (∆η × ∆φ) in the remaining |η|-range of the ECAL and also of the other
calorimeters is sufficient for the requirements on the jet and Emiss

T (missing transverse
energy, see Section 5.6 for further details) reconstruction. In addition, a Presampler is
installed between the solenoid and the ECAL in the region |η| < 1.8 in order to measure
and account for the energy of the particles lost up to this point. It consists of an active
LAr layer of thickness 1.1 cm in the barrel and 0.5 cm in the endcaps. The total number of
readout channels of the ECAL and the presampler is 170 000, the design energy resolution
for electrons and photons is σE/E = 10 %/

√
E ⊕ 0.7 %.

The HCAL, which is placed around the ECAL, is built by a Scintillator-Tile Calorimeter
in the region |η| < 1.7. Steel is used as absorber and scintillating tiles as active material.
There is a larger central barrel covering up to |η| < 1.0 and a smaller extended barrel on
each side that ranges from 0.8 to 1.7 in |η|. The total thickness at η = 0 is 9.7λ (hadronic
interaction lengths). The granularity of 0.1 × 0.1 (∆η ×∆φ) in the first two layers and
of 0.2× 0.1 in the last layer, is coarser than in the main part of the ECAL. The |η|-range
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Figure 2.5: Cut-away view of the ATLAS calorimeters [102].

between 1.5 and 3.2 is covered by the Hadronic Endcap Calorimeter (HEC). It overlaps
with the Tile Calorimter to reduce the drop in material density. Two independent wheels
per endcap are located directly behind the ECAL endcaps and share the same LAr cryostats
since they also utilise LAr as active material. Copper is used as absorber. It has thinner
layers closer to the interaction point and thicker ones further away. The copper layers are
interleaved with 8.5mm thin LAr gaps. Below |η| = 2.5, the granularity in ∆η ×∆φ is
0.1× 0.1, above it is 0.2× 0.2. The HCAL has in total 15 500 readout channels and a design
energy resolution of σE/E = 50 %/

√
E ⊕ 3 % for the measurement of jets.

The LAr Forward Calorimter (FCAL) is integrated into the endcap cryostats as well
and is placed within the HEC, but with a distance of 1.2m to the ECAL front face. This
reduces the neutron albedo from the ID cavity but also limits the depth of the calorimeter.
Therefore, a high density design is needed which achieves a total depth of 10λ. The FCAL
consists of three modules in each endcap: the first uses copper as absorbing material,
optimised for measuring electromagnetic showers. The remaining two use tungsten, pre-
dominantly deployed for hadronic showers. Approximately 3 500 readout channels are used
and the design energy resolution for jets is σE/E = 100 %/

√
E ⊕ 10 %.

2.2.4 Muon System

The outermost part of the ATLAS detector is built by the Muon System (MS). Its purpose
is the detection of charged particles which traversed all previous detector layers, i.e.
mainly muons, and the measurement of their transverse momenta within |η| < 2.7. This
measurement utilises the magnetic deflection of muon trajectories due to large super-
conducting air-core toroid magnets. In the region |η| < 1.4 the magnetic field is created
by the large barrel toroid consisting of eight coils arranged radially and symmetrically
around the beam line. A bending power, i.e. field integral, of 1.5 to 5.5Tm is achieved.
Two smaller endcap toroids, inserted into both ends of the barrel toroid and built up of
eight coils likewise, produce the magnetic field with a bending power of 1 to 7.5Tm in the
endcap regions 1.6 < |η| < 2.7. The transition region in between, 1.4 < |η| < 1.6, is covered
by a superposition of the two fields. The resulting field is mainly orthogonal to the muon
tracks.
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Figure 2.6: Cut-away view of the ATLAS muon system [102].

The MS is assembled by separate fast trigger and high-precision tracking chambers.
Each of them uses two different types of chambers: Monitored Drift Tubes (MDTs) and
Cathode Strip Chambers (CSCs) are optimised for high-precision tracking while Resistive
Plate Chambers (RPCs) and Thin Gap Chambers (TGCs) are well suited for a fast response
required by the trigger within |η| < 2.4 and have a high rate capability. A cut-away view of
the MS is given in Figure 2.6. In addition, the trigger chambers provide the measurement
of the second coordinate (φ) of the muon tracks, orthogonal to that (η) measured by
the tracking chambers and also identify the bunch-crossings. In the barrel, chambers are
installed in three cylindrical layers around the beamline. In the endcaps and the transition
region, they are placed in three layers in large wheels perpendicular to the beamline. There
is a gap in the chamber coverage at η ≈ 0 to facilitate services for the inner detector
elements. It prevents the measurement of straight tracks within ±4.8°, seen from the
interaction point. The detector support structures (feet) create two additional gaps in the
coverage at φ = 240° and φ = 300°.

The MDTs consist of three to eight layers of drift tubes with a diameter of almost 30mm.
They are operated with 93% Argon and 7% CO2 at an absolute pressure of 3 bar. The
track coordinate in the principal bending direction of the magnetic field is measured with
an average resolution of 35 µm per chamber. The CSCs, deployed at large pseudorapidities,
are multiwire proportional chambers with cathodes segmented ino strips. They have a
higher granularity compared to the MDTs as well as better rate capabilities. Hence, they
are used in the innermost plane where a higher flux of particles is expected. The gas
mixture exploited for the CSCs consists of 80% Argon and 20% CO2. The wires are
oriented in radial direction. One of the cathodes is oriented parallel to the wires, providing
the transverse φ-coordinate, the other perpendicular to the wires, providing the precision
η-coordinate. Thus, both cathodes are segmented. The achieved resolution per chamber is
40 µm in the bending plane (R-z-plane) and ∼5mm in the transverse plane.

The whole MS is equipped with approximately 1million readout channels. The design
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resolution of the transverse momentum for an MS standalone measurement is σpT /pT = 10 %
at pT = 1 TeV. In order to achieve these precision measurements, an excellent alignment of
the muon chambers as well as precise knowledge of the magnetic field strengths is mandatory.
Therefore, approximately 12 000 optical alignment sensors monitor the internal deformations
and relative positions of the MDT chambers and ∼1 800 Hall sensors continuously gauge
the magnetic field.

2.2.5 Trigger and Data Acquisition

During Run 2 an instantaneous peak luminosity of almost 21× 1033 cm−2 s−1 was reached.
The bunch-crossing rate was 40MHz with an average number of interactions per bunch
crossing of approximately 35. It is impossible to readout and save such a huge stream of
data. Therefore, the Trigger and Data Acquisition (TDAQ) system of ATLAS [111, 112]
identifies interesting characteristics in real time and stores only these for offline analysis. A
sketch of this system is shown in Figure 2.7. It consists of two stages: the hardware-based
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Figure 2.7: The Run 2 TDAQ system of ATLAS with relevant components for triggering, detector read-out
and data flow [112].

Level-1 Trigger (L1 Trigger) and the software-based High-Level Trigger (HLT). The L1
Trigger utilises custom made electronics located on the detector components. For its decision
whether to keep an event or not, it takes into account only a subset of information from the
calorimeters and the muon system such that this decision can be made within 2.5 µs. In case
of an interesting signature the full event information is read out and passed on to the HLT
which can accept events at a rate of 100 kHz. In addition, the L1 Trigger selects regions of
interest (RoIs) in η and φ which are forwarded to the HLT as additional information. The
HLT performs two steps: first, a fast trigger algorithm based on the RoIs from L1 Trigger
is deployed for an efficient further rejection before the second, more CPU-intense step. The
second step is more precise and already close to the offline reconstruction. A dedicated
computing farm with ∼40 000 cores is available to fulfil this task. Finally, an output rate
of 1.2 kHz is achieved which corresponds to 1.2GB/s that are saved to permanent storage.
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2.3 Luminosity Measurement

Precise knowledge of the integrated luminosity recorded by the ATLAS detector is crucial for
performing high precision cross section measurements. The measurement of the luminosity
is described in [113, 114]. In the following a brief summary of the measurement is provided.
The main luminosity detector used in Run 2 was LUCID-2 [115]. It is a Cherenkov detector
consisting of 16 Photo Multiplier Tubes (PMTs) in each forward arm of the ATLAS detector
at a distance of ±17 m from the interaction point. Cherenkov light from energetic particles
is induced by the quartz windows of the PMTs and measured by the PMTs. The raw hit
counts are converted into a visible number of interactions per bunch crossing µvis which
is proportional to the instantaneous luminosity. The instantaneous luminosity per bunch
crossing Lb is given by

Lb =
µvisfrev
σvis

, (2.7)

with frev being the revolution frequency (11 246Hz for protons) and σvis = εσinel the visible
cross section. Here, ε is the efficiency of the respective luminosity detector and σinel the
inelastic cross-section of pp collisions. Therefore, also µvis = εµinel holds.

The total instanteaneous luminosity is obtained by summing Lb over all colliding bunch
pairs. The revolution frequency frev is given by the LHC, µvis can be directly measured
during data taking while σvis is obtained from dedicated runs using the van der Meer [116]
(vdM) method. During these runs, so-called vdM scans are performed in a low-luminosity
environment to reduce uncertainties. The absolute calibration of the LUCID-2 luminometer
at the conditions of the vdM runs needs to be transferred to physics conditions at high
luminosity. LUCID-2 shows significant non-linearities in the extrapolation from low to high
µ which are corrected using the so-called track-counting luminosity measurement. The
number of reconstructed tracks in the Inner Detector is assumed to be proportional to the
luminosity over the full luminosity range given a dedicated track selection. The uncertainty
in this so-called calibration transfer procedure is the largest single uncertainty component
for the final integrated luminosity measurement.

2.4 Data Taking

The LHC started delivering collisions for data taking for the first time in the year 2010 at a
center-of-mass energy of

√
s = 7 TeV. Until the end of 2011, 5.08 fb−1 of pp-collision data

were recorded by the ATLAS detector. In 2012, the center-of-mass energy was increased to√
s = 8 TeV and 22.8 fb−1 of data were provided by the LHC. This period is referred to as

Run 1 and was followed by the Long Shutdown 1 which lasted until spring 2015 and was
used to perform maintenance and upgrade work of the LHC and of the detectors.

Data taking resumed in spring 2015 at
√
s = 13 TeV and lasted until the end of 2018.

The period from 2015 to 2018 is referred to as Run 2 and is the basis for the analysis
presented here. 156 fb−1 of data from pp-collisions were delivered by the LHC. Figure 2.8(a)
shows the cumulative integrated luminosity versus time during Run 2 data taking. Because
of ramp-up phases of the sub-detectors or data acquisition issues, the actual recorded
amount of data is slightly reduced: 147 fb−1 were recorded by the ATLAS detector. The
data that is declared good for physics and is utilised in this analysis is further reduced to
138.4 fb−1 to ensure sufficient data quality. This includes proper trigger operation, fully
functional sub-detectors and no ongoing luminosity or other calibration activities.

The data were recorded with 2556 bunches of protons in each beam in the LHC
during Run 2, where bunches consisted of up to 1.25× 1011 protons and were spaced with
distances of 25 ns. Instantaneous luminosities of up to 2.1× 1034 cm−2 s−1 were reached
(see Section 2.1). High luminosities are crucial to produce a large amount of data, i.e.
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Figure 2.8: Cumulative integrated luminosity versus time during Run 2 (a) and the luminosity-weighted
distribution of the mean number of interactions per crossing (b).

a high integrated luminosity. However, high luminosities come with a large number of
simultaneous interactions per bunch crossing and therefore with an increased activity in the
detector per event. The integrated-luminosity weighted distribution of the mean number of
interactions per bunch crossing or Run 2 is shown in Figure 2.8(b). The increase from 2015
to 2017/18 is clearly visible.

According to schedule, the LHC started Run 3 on July 5, 2022 with stable beam
collisions at a center-of-mass energy of

√
s = 13.6 TeV, after the Long Shutdown 2 which

was used again for maintenance and upgrade work. Run 3 is expected to last until 2025
and to provide ∼250 fb−1 of data to the ATLAS and CMS experiments. Another 3-year
long shutdown is planned from 2026 onwards to prepare for the High Luminosity LHC
(HL-LHC) starting in 2029. An integrated luminosity of ∼3 000 fb−1 12 years after the start
is targeted at

√
s = 14 TeV.





Chapter 3

Analysis Strategy

The analysis presented in this thesis searches for lepton-flavour violating decays of the Higgs
boson using the Symmetry Method [21] for background estimation. The analysis comprises
the searches for the decays H → eτ and H → µτ and aims at either observing evidence for
these decays or to improve the direct limits on their branching ratios. The decay H → eµ
is not considered due to a stringent indirect limit on its branching ratio. An overview of
the latest indirect and direct upper limits on the respective branching ratios is given in
Section 1.4.2.

This analysis focuses on the leptonic decays of the τ -lepton. The statistical combination
with an analysis targeting the hadronic decays of the τ -lepton is performed and presented
at the end of this thesis. Only different flavour final states are considered due to the
overwhelmingly large Drell-Yan background for same-flavour final states. This means for
H → eτ only τ -leptons decaying into a muon and two neutrinos and for H → µτ only
τ -leptons decaying into an electron and two neutrinos are taken into account. Hence, the
final state at leading order in QCD consists of an electron, a muon and two neutrinos plus
additional jets in the case of production via VBF for both signals. More details about the
signal processes are given in Section 4.2.1. A sketch of the decay is given in Figure 3.1. In

H
` τ ντ

ν̄`′

`′

Figure 3.1: Sketch of a Higgs boson LFV decay in the Higgs boson rest frame.

this sketch and throughout the thesis, ` refers to the light leptons, electron or muon, unless
stated otherwise. Irreducible background contributions, i.e. processes with the same final
state objects, arise from Z → ττ decays, diboson production (mainly WW ), H → ττ and
H →WW decays. Additional contributions are from tt̄-production and from other objects
mis-identified as electrons or muons (fakes). These background processes are discussed in
more detail in Section 4.2.2.

The Basic Event Selection, detailed in Section 7.1.2, requires exactly one electron and one
muon in the final state while a veto is applied on hadronically decaying τ -leptons and on jets
originating from b-flavour hadrons to suppress contributions from tt̄-production. Kinematic
requirements, for example on the transverse momentum, pT, and the pseudorapidity, η,
are defined symmetrically for electrons and muons. Different requirements for electrons
and muons would be possible from a reconstruction point of view and would lead to a
higher acceptance of events but violates assumptions made within the Symmetry Method
illustrated below. In order to search for the two LFV signals, H → eτµ and H → µτe,
suitable and mutually exclusive sub-datasets for each of the searches are defined which aim
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at containing the majority of the respective signal events. The full dataset is split into
two datasets, the eτ - and the µτ -dataset, depending on the transverse momenta of the two
leptons in an approximate Higgs-boson rest frame:

eτ -dataset: peT > pµT in an approximate Higgs-boson rest frame,

µτ -dataset: pµT > peT in an approximate Higgs-boson rest frame.

For signal events it is assumed that the light lepton originating from the decay of the
τ -lepton has a lower transverse momentum in the approximate Higgs-boson rest frame
compared to the light lepton originating directly from the Higgs boson (due to the additional
neutrinos in the τ -lepton decay). Therefore, the H → eτµ-events are expected to be in the
eτ -dataset while the H → µτe-events are expected to be in the µτ -dataset. The definition
of the approximate Higgs-boson rest frame as well as further information on the procedure
can be found in Section 7.1.3.

After the Basic Selection, the events are split into two signal regions to be able to
exploit the distinct topology of the VBF production of the Higgs boson which exhibits
two additional jets in the final state. These jets typically show a large separation in
pseudorapidity and a large invariant mass (Section 8.1). This is done simultaneously for
both the eτ - and the µτ -dataset. In order to reduce the statistical uncertainties, the
selection of events by cuts on single variables is limited to the Basic Selection and the
split into the two signal regions. Further separation of signal and background is achieved
with the help of a multivariate analysis technique. Neural Networks (NNs) are optimised,
trained and applied in each of the signal regions independently (Section 8.2). The NN
output distributions in each of the two regions serve as final discriminants in the statistical
analysis (Chapter 10).

All background contributions apart from fakes are estimated with the data-driven
Symmetry Method, which relies on two assumptions:

1. Standard model processes are symmetric with respect to an exchange of electrons with
muons and vice versa, resulting in approximately the same kinematic distributions
for both lepton flavours.

2. The two LFV Higgs-boson decays H → eτ and H → µτ , on the contrary, break this
symmetry as long as their branching ratios differ.

Owing to the high energies present at the LHC, the different masses of electrons and muons
can be neglected in the first assumption. The different Yukawa-couplings of electrons and
muons can be neglected since different flavour final states are required in the analysis
and both branching ratios are expected to be small: 2.176× 10−2% [83] for H → µµ and
5.1× 10−7% [118] for H → ee. The second assumption is only valid as long as H → eτ
and H → µτ do not have the same branching ratio which is well motivated as detailed
in Section 1.4.2 when neglecting interferences of other new LFV sources in µ→ eγ. As a
consequence of the first assumption, both sub-datasets introduced above are expected to have
the same size and exhibit the same kinematic distributions for SM processes (background).
This means that e.g. the µτ -dataset can serve as an estimate of the eτ -dataset. When in
addition assuming a H → eτµ signal with a branching ratio of 10% and a non-existent
H → µτe signal, the eτ -dataset is enriched with signal while the µτ -dataset only consists
of background. This is depicted in Figure 3.2 which shows the reconstructed Higgs-boson
mass in the collinear mass approximation (Eq. 8.3 in Section 8.2.3). The peak at around
90GeV on the left corresponds to the Z-boson mass. Both datasets are in agreement in
the sideband regions, i.e. outside the Higgs-boson mass range, while the bump around the
Higgs-boson mass of 125GeV is only present in the eτ -dataset. Hence, the µτ -dataset can
serve as background estimate of the eτ -dataset and vice versa for the presence of a H → µτ
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“e/µ-symmetric background”. The lower panel shows the ratio eτ/µτ . Only simulated events are utilised
here.

signal and the absence of a H → eτ signal. The background contribution estimated in this
way will be denoted as e/µ-symmetric background. It comprises all background processes
apart from fakes. Evidently, the Symmetry Method is only sensitive to a difference in
branching ratios of the two LFV Higgs-boson decays H → eτ and H → µτ . Each of
the sub-datasets can be used as e/µ-symmetric background estimate or as data. Hence,
the difference in branching ratios can be determined twice (with opposite signs) by two
correlated measurements; once in the search for H → eτ using the eτ -dataset as data and
the µτ -dataset as e/µ-symmetric background estimate and once in the search for H → µτ
using the µτ -dataset as data and the eτ -dataset as e/µ-symmetric background estimate.
Under the assumption that the branching ratio of H → eτ is zero, the measurement in
the search for H → µτ can be interpreted as the measurement of the branching ratio of
H → µτ . On the contrary, assuming that the branching ratio of H → µτ is zero allows
for interpreting the measurement in the search for H → eτ as the measurement of the
branching ratio of H → eτ . The notable advantage of this method is its reduced dependence
on Monte-Carlo simulations and the inevitable uncertainties associated with them. The
leading uncertainties in the Symmetry Method stem from the available amount of data
statistics and therefore the sensitivity of the method improves with an increasing amount
of collected data.

However, electrons and muons manifest in different ways in the ATLAS detector
(Chapter 5) leading to differing detection efficiencies and energy resolutions which violates
the first assumption of the Symmetry Method. The effect of the energy resolution is negligible
in the distribution of the reconstructed Higgs-boson mass. Thus, this effect is neglected.
The detection efficiencies of electrons and muons are measured and correction factors are
applied to the e/µ-symmetric background contribution (Section 7.2.1). In addition, the
probability of other objects being mis-identified as electrons or muons (the fake rate) differs
between the two lepton flavours which again violates the symmetry assumption. Hence, this
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background contribution must be estimated separately. The estimation is also primarily
based on a data-driven method (Section 7.2.2).

In the statistical analysis where the final results are derived, the background estimation
is performed as detailed above. During the development and optimisation of the analysis
also simulated events are used to estimate the e/µ-symmetric background contributions for
cross checking. Furthermore, simulated events are used partially in the estimation of the
fakes, to determine the detection efficiencies and for the prediction of the signal processes.

While developing the analysis, sensitive bins in the distributions of observables are
blinded such that optimisation processes of the analysis are not biased. In this context
blinding means that the data value in a bin is not shown if the signal-over-background ratio
exceeds 5% when assuming a branching ratio of 1% for signal.

There are three publications regarding the searches for the LFV decaysH → eτ/H → µτ
by the ATLAS collaboration prior to this thesis: two Run 1 and an early Run 2 (2015 + 2016
data) publication. The Run 1 publications [119, 120] estimate all background processes apart
from fakes based on templates from Monte-Carlo simulations in the hadronic decay channel
of the τ -lepton while the Symmetry Method is used for the leptonic decay channel. The
statistical model used for the analysis based on the Symmetry Method is less sophisticated
compared to the one used in this thesis. The early Run 2 publication [19], on the other
hand, is solely based on templates from Monte-Carlo simulations for background estimation
(except estimation of fakes) for both the hadronic and the leptonic decay channels of the
τ -lepton.

The Symmetry Method can also be utilised in the hadronic decay channel of the τ -
lepton, but was not optimised and ready for the full Run 2 publication of which the analysis
presented here is part of. However, a proof of concept is published in a master’s thesis [121].



Chapter 4

Physics Processes and their
Simulation

The relevant signal and background processes in the search for H → eτ and H → µτ
were briefly described in Chapter 3. This chapter discusses them in more detail and gives
an overview of their simulation. The simulations comprise the theoretical prediction of
the cross sections for the processes and of their kinematic distributions described by the
four-vectors of the final state objects in each event. Section 4.1 introduces the methods to
simulate the processes while Section 4.2 discusses the signatures and characteristics of the
signal and background processes and provides further information on their simulation.

4.1 Generation of Simulated Events

Chapter 3 explicated the primarily data-driven ansatz to estimate the majority of the
contributing background processes. Nevertheless, simulated events representing the in-
dividual background processes are an important ingredient to accomplish multiple steps
in the analysis: on one hand they are used to validate the method in various occasions.
On the other hand they serve as inputs to the neural network training which targets the
separation of signal and background and as inputs to the derivation of corrections applied
to the data-driven methods. In any case the estimation of the signal processes can only be
obtained by simulation.

The different components needed for the simulations are discussed in the following,
inspired by [122–129].

Parton Distribution Functions and the Hard Scattering
The number of expected events of a certain process, e.g. pp→ X, for a given integrated
luminosity Lint is obtained by multiplying Lint with the respective cross section σ as given
in Eq. 2.2. Thanks to the factorisation theorems [130], the cross section σp1p2→X of protons
p1 and p2 can be split into two parts: on one hand there is the partonic cross section σij→X
of the hard-scattering process ij → X with partons i and j originating from p1 and p2,
respectively, which takes place at high energies (at a short time scale/distance). And on
the other hand there are the lower-energetic dynamics within the proton described by the
parton distribution functions (pdf) fi, fj which express the probability to find parton type
i, j with a proton momentum fraction x1, x2 inside the proton probed at the energy scale
µF . The factorisation scale µF separates both regimes, i.e. the long and short distance
physics and is typically set to the energy Q of the hard-scattering process. Then, the cross
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section σp1p2→X can be written as:

σp1p2→X =
∑
i,j

∫ 1

0

∫ 1

0
dx1dx2fi (x1, µF ) fj (x2, µF )σij→X (x1, x2, µR, µF , αs(µR)) . (4.1)

The sum goes over all possible parton flavours. The momentum fractions carried by the
partons inside a proton must add up to 1 to fulfil momentum conservation.

The dependence of fi on x is based on non-perturbative QCD dynamics because the
strong coupling strength αs gets too large for low energies which does not allow for an
expansion in αs. Thus, the dependence of fi on x must be extracted from data. Typically,
data from deep-inelastic scattering collected e.g. at the HERA collider but also data from
the Tevatron and now the LHC [131], is utilised. The fi are parametrised for example as
fi(x,Q0) ∝ Ai · x−αi · (1− x)βi and the parameters are extracted from a global fit to data
at different ranges of x and different reference scales Q0. Then, the fi can be evolved to
any value of Q by means of the DGLAP1 evolution equations [132–134]. They describe
the dependency of the pdfs on Q2 and depend on the splitting functions that describe (at
leading order) the probability for a quark to split in a quark and a gluon or for a gluon to
split in two quarks or two gluons. The splitting functions are calculated perturbatively and
are computed up to O(α4

s).
The distributions of the different fi multiplied by x obtained by the NNPDF Collabo-

ration is shown in Figure 4.1 for two different values of Q2, 10GeV2 and 104GeV2. The
two valence quark types (u, d) are peaking at larger values of x while the sea partons
increase with smaller values of x with gluons having the highest probability for small x. At
Q2 = 104 GeV2 (close to the Higgs-boson mass) compared to Q2 = 10 GeV2, the shape of
the valence quarks stays approximatey the same while the peak is decreased and the sea
partons are substantially increased for low x where the gluons are even more dominating.

Figure 4.1: The pdfs (multiplied by x) from a global fit by the NNPDF Collaboration for different
factorisation scales of 10GeV2 (left) and 104GeV2 (right). They are shown as a function of the momentum
fraction x. The width of the line indicates the corresponding uncertainties [135].

1the DGLAP equations were formulated independently by Yuri Dokshitzer, by Wladimir Naumowitsch
Gribow and Lew Nikolajewitsch Lipatow and by Guido Altarelli und Giorgio Parisi
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The partonic cross section σij→X of the hard-scattering process is obtained from
integrating the squared matrix element over the respective phase space dΩ. The energies
involved are large, i.e. the time scale is short, and hence, due to asymptotic freedom [136,
137], the partons can be treated as free particles and the cross section can be calculated with
perturbation theory by expansion in orders of αs2. The matrix element, which represents
the transition amplitude from the initial state ij to the final state X, is calculated up to
some order n in αs following the Feynman rules [25], i.e. taking into account all Feynman
diagrams contributing to this order. Higher orders in αs involve either additional particles in
the final state (real emissions) or virtual loop contributions. Loop corrections in higher-order
Feynman diagrams can lead to divergences when integrating over the infinite loop momenta.
These divergences can be regularised which necessitates the introduction of an (unphysical)
renormalisation scale µR. Absorbing the renormalisation scale into the coupling strength
αs results in αs becoming dependent on µR: αs(µR). Typically, µR is chosen to be equal
to the energy scale Q of the hard process. The value of the cross section obtained by these
calculations evidently depends on the choice of µR (and µF ). However, if all orders were
included in the perturbative calculations, the cross section would not depend on their choice.
Hence, variations of µR and µF can be utilised to estimate uncertainties due to missing
higher orders.

In order to obtain simulated events, four-vectors of the final state particles are generated
according to the differential cross section dσp1p2→X/dΩ using Monte-Carlo (MC) techniques.
The phase-space information of the event is contained in dΩ. So-called parton-level event
generators are utilised to fulfil this task. Thereby, they must correctly sum over the different
colour states, helicities and sub-processes. Depending on the MC technique, so-called
event weights can be assigned to the individual events such that they correctly emulate the
distribution of the differential cross section.

However, there are more components to consider in order to obtain a complete picture
of a pp-collision event as visualised in Figure 4.2. So far, the part illustrated in blue,
corresponding to the initial state partons and hence to the description of the parton
distribution functions, was discussed as well as the part of the red part which indicates the
hard scattering.

Parton Shower and Hadronisation
The matrix element of the hard-scattering process is typically only evaluated up to a finite
number of orders in αs. In order to include the effects of all higher orders at leading log
accuracy, parton shower (PS) algorithms are deployed. The partons, initial state as well as
final state partons, radiate gluons which subsequently leads to further gluon radiation and
parton multiplication [125] and thus a shower evolves. Typically, the radiation happens at
small angles leading to a narrow shower in the direction of the original parton. The energy
of the partons reduces from splitting to splitting with the probablity of the 1→ 2 splitting
being described by the splitting functions already mentioned above. Starting from the scale
of the hard interaction, the evolution proceeds down to some low-energy scale of around
1GeV at which the processes of non-perturbative confinement occur. Hadronisation models
are used to describe these processes of confinement where the partons form colour-neutral
hadrons. These non-perturbative models must be tuned to external data. There are two
main classes of hadronisation models: the class of string models where the Lund model [139,
140] is common and the class of cluster models [141, 142].

Higher-Order Corrections and Matching and Merging
The parton shower represents approximate higher-order corrections due to parton emissions.
If the partonic cross section is calculated and simulated at higher orders, it must be

2in addition, expansion in αw is possible to obtain electroweak corrections
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Figure 4.2: Sketch of all components, apart from pile-up, relevant for simulating a pp-collision event [138].
The initial state partons (constituents of the colliding protons) are depicted in blue. Some of them contribute
to the hard interaction (big dark red blob). Subsequent decays (small red blobs), outgoing partons and
additional hard QCD radiation is illustrated in red as well. The hadronisation of the final state partons is
indicated by the light green ellipses, the subsequent decay of the hadrons is indicated by the dark green
blobs and arrows. The initial state partons not contributing to the hard scattering form the underlying
event (purple). Yellow illustrates photon radiation from electromagnetic charged objects which can occur
at any moment.

ensured that no double-counting between the hard-scatter representation and the PS occurs.
Furthermore, the former is better suited for the description of emissions at large angles and
high energies while the latter describes soft and collinear emissions. Common methods to
address this issue are based on matching or merging. The CKKW [143] and the MLM [144]
method are examples for the merging approach. Here, a threshold scale is introduced below
which the jets are described by the parton shower and above which they are described by
the matrix element calculation. As a result of the matching and merging procedures some
events can obtain negative event weights such that they are subtracted when illustrated in
a histogram. NLO simulations of the hard process can also yield negative event weights in
certain phase space regions due to destructive interference.

Decay
The decay of hadrons produced in the hadronisation process (depicted in dark green in
Figure 4.2) or of other unstable particles, e.g. τ -leptons, into particles stable within the
detector reach is simulated either by dedicated tools or by the same generator that is also
used for the parton shower and hadronisation. The decay products of the unstable hadrons
originating from one parton develop into a so-called jet which can be reconstructed from
its signatures in the detector as explained in Section 5.4.

Underlying Event
Furthermore, the behaviour of the remnants of the colliding protons, the underlying event
(UE) (shown in purple in Figure 4.2), needs to be considered. These partons undergo soft



4.1. GENERATION OF SIMULATED EVENTS 51

but also semi-hard interactions and remain linked to the hard scatter partons due to their
colour charge. Hence, they can be distributed within the active detector regions and do not
necessarily disappear undetected in the beam line. There are different models to describe
the UE, of which models based on multiple parton interactions (MPI) are widely used.
The simulation includes perturbatively calculated cross sections augmented by procedures
similar to the parton shower and the modelling of non-perturbative effects. Although the
partons in the UE are usually not reconstructed as separate jets in the detector, they can
contribute to jets from the hard interaction and bias their measurement.

Pile-Up
Another important component in the simulation of pp-collisions that is not depicted in
Figure 4.2 is pile-up (PU) [145]. It comprises the interactions of other protons apart from
the hard scatter event in the same proton bunch crossing (in-time pile-up) and in adjacent
bunch crossings (out-of-time pile-up) leading to several interaction vertices along the beam
line. The average number of interactions per bunch crossing 〈µ〉, a measure for the size of
pile-up, ranged from 13.4 during data taking in 2015 to 37.8 in 2017 as shown in Figure 4.3.
Reconstructed jets stemming from pile-up can be suppressed by vertex reconstruction but
nevertheless make the event reconstruction more complicated and enhance the uncertainties.
Pile-up events are simulated by single soft QCD interactions that are overlaid on simulated
events for the hard process of interest. The number of overlaid pile-up vertices are chosen
according to the pile-up profile measured in data and shown in Figure 4.3 separate for the
different data taking years of Run 2.
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Figure 4.3: The luminosity-weighted distribution of the mean number of interactions per bunch crossing
for the different years of Run 2 and combined. All data recorded by the ATLAS detector during stable
beams is included [117].

Detector Simulation
After the full event generation, each event is passed on to a sophisticated simulation of the
detector response to the finale-state particles based on GEANT4 [146] which includes a full
description of the ATLAS detector. Thus, all subsequent steps such as the reconstruction
of the particle objects can be performed in the same way for data and simulation from here
on since both are stored in the same data format.
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4.2 Signal and Background Processes

The following sections discuss the physics processes relevant to the search for LFV Higgs-
boson decays and their simulation. The signature and properties of the signal processes are
given in Section 4.2.1 while the background contributions are presented separately for each
considered process in Section 4.2.2.

4.2.1 Signal Processes

The two signal processes of interest are the lepton-flavour violating decays H → eτ and
H → µτ . The main processes to produce a Higgs boson at the LHC were introduced in
Section 1.2.1. However, only the three dominant ones, gluon-gluon fusion (ggF), vector-boson
fusion (VBF) and Higgs strahlung (VH), are considered in this analysis. The production in
association with two top quarks is neglected due to its low cross section and its suppression
as a result of the applied event selection (veto on b-tagged jets), detailed in Section 7.1.
The Feynman diagram at leading order for the most abundant production process ggF
together with the Higgs-boson LFV decay is given in Figure 4.4. In this analysis, only

g

g
¯̀

ντ

`′

ν̄`′
t,b

H
τ W

Figure 4.4: The production of a Higgs boson via gluon-gluon fusion together with a subsequent lepton-
flavour violating decay into a different flavour light-lepton final state.

leptonic decays of the τ -lepton are considered3. In addition, as described in Chapter 3,
only different-flavour final states are considered to suppress background contributions from
Drell-Yan production. Hence, there is always an electron, a muon and two neutrinos in
the final state; independent of which of the two LFV decays is investigated. Owing to
conservation of electric charge and the Higgs boson being neutral, the two leptons in the
final state have opposite-sign electric charges. The neutrinos are weakly interacting particles
and escape the detector without leaving a trace which results in the fact that they cannot
be reconstructed independently from each other. The transverse component of the system
of the two neutrinos is approximated by the measurement of the missing transverse energy
Emiss
T . More details on Emiss

T can be found in Section 5.6.
To be able to distinguish whether an event originates from a H → eτ or from a

H → µτ decay, a lepton assignment procedure is applied where the leptons are labelled
`H (originating directly from the Higgs boson) and `τ (originating from the τ -lepton)
accordingly. The procedure is mainly based on the fact that the lepton `τ from the τ -decay
is expected to have a lower momentum in the Higgs boson rest-frame compared to lepton
`H from the H-decay due to the additional neutrinos in the τ -decay. Further details are
given in Section 7.1.3.

The decay products of the Higgs boson are boosted as a result of their mass difference to
the Higgs boson, leading to likewise strongly boosted decay products of the τ -lepton. This
implies that the angular difference ∆φ(`τ , E

miss
T ) of `τ and Emiss

T is small. Furthermore,
in the case of ggF production of the Higgs boson without any additional jets in the final

3The hadronic decays are considered in a separate analysis (not performed by me) since both decay
modes come with their own challenges and hence each requires customised analysis techniques.
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state as depicted in Figure 4.4, the two leptons are expected to be almost back-to-back and
hence have a large ∆φ(`τ , `H) separation (and therefore also a large ∆φ(`H , E

miss
T )) since

the Higgs boson is produced almost at rest in the transverse plane. However, if there are
additional jets in the final state corresponding to higher-order diagrams, they recoil against
the Higgs boson thereby providing it with a boost in the transverse plane.

In the production via VBF there are two jets already at leading order that show a large
separation in pseudorapidity η and a large invariant massmjj . This distinct signature allows
for an effective separation from background processes. A diagram of the VBF production
at leading order is shown in Figure 1.3(b).

The ggF production of the Higgs boson is simulated using Powheg-Box v2 [147–150] at
next-to-next-to-leading order (NNLO) accuracy in αs which is obtained with the NNLOPS [151]
approach based on HJ-MINLO [152] by reweighting the events in the rapidity of the Higgs
boson. It includes matching to the parton shower. The cross section is calculated with an
N3LO accuracy in αs and includes NLO electroweak (EW) corrections [153, 154].

The VBF and VH production processes are simulated at NLO accuracy in αs using
Powheg-Box v2 [147–149, 155] and the MiNLO [156, 157] approach. The cross sections are
calculated at NNLO accuracy in αs and with NLO EW corrections [57, 59–62] included.

For all production processes the PDF4LHC15 [158] parametrisation for the parton distri-
bution functions (pdf) is used, at NNLO accuracy for ggF and at NLO accuracy for VBF
and VH. The parton shower, the underlying event and the hadronisation are simulated
with Pythia 8.2 [159]. Non-pterurbative effects are modelled using the AZNLO tune [160]
with the CTEQ6L1 [161] pdf set. The decay of the τ -leptons is simulated with Pythia. A
Higgs-boson mass of 125.09GeV is used and a branching ratio of H → eτ and H → µτ of
1% is assumed if not given otherwise. Table 4.1 summarises the generators and pdf sets
used for all processes and also includes their cross sections.

4.2.2 Background Processes

This section gives an overview over the different processes that show a similar signature as
the signal processes and therefore contribute background events in this analysis. Commonly,
one distinguishes irreducible and reducible background contributions. The former consist of
processes creating the same final state objects as the signal, i.e. at least one electron and
one muon of opposite-sign charges and potentially Emiss

T . The latter are also called fake
backgrounds, indicating that at least one of the two leptons is “faked”, i.e. another object
is mis-identified as a lepton (electron or muon). Most processes can contribute to both
categories due to detector deficiencies; however, the majority of their events contributes
either to one or the other category. Typically, the cross sections of the background processes
are substantially larger than that of signal. Hence, they must be suppressed by several
orders of magnitude by a dedicated event selection (Section 7.1) and in the case of this
analysis separated from the signal with the help of a multivariate technique (Section 8.2) in
order to achieve an adequate sensitivity.

At the end of each process description a short summary of the event generators used
to simulate the respective process is given. Table 4.1 summarises this information for all
processes and also includes their cross sections.

Z/γ∗→ ττ/`` + Jets Production
The main irreducible background in this analysis stems from Z/γ∗ → ττ . If both τ -leptons
decay leptonically they can reproduce the same final state, one electron, one muon and
Emiss
T , as the signal process. Example Feynman diagrams of Z/γ∗-production at the LHC

are shown in Figure 4.5. The first diagram, Figure 4.5(a), given at leading order also
includes the subsequent decay into two τ -leptons or two light leptons (`). The second
diagram, Figure 4.5(b), shows a higher-order contribution with an additional gluon in
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the final state while the third one in Figure 4.5(c) shows the electro-weak production of
Z/γ∗+ 2 jets which is similar to the VBF-production of the Higgs boson. Quark and gluons

q

q̄

τ/`

τ̄/¯̀

Z/γ∗

(a)

q

q̄ g

Z/γ∗

(b)

q q′

q2 q′2

W

W̄

Z/γ∗

(c)

Figure 4.5: Example diagrams of Z/γ∗-production at the LHC; leading order (a) and higher order (b) as
well as an electro-weak production diagram (c) are shown. In (a) the subsequent decay of Z/γ∗ into a pair
of τ -leptons or light leptons is shown in addition.

originating from higher-order contributions as well as the electro-weak production are
reconstructed as jets and hence contribute additional objects to the final state. However,
this is equivalent to the signal process as well as many other processes and therefore does
not help in suppressing the contribution from Z/γ∗ → ττ . There are two properties of
the process that can be utilised to distinguish it from the signal processes: on one hand
there are more neutrinos in the final state than in the signal process (four instead of two)
which, in addition, originate from two particles instead of just one. On the other hand the
invariant mass of the di-τ -system peaks at the Z-boson mass.

The two processes Z → ee and Z → µµ, together referred to as Z → ``, are reducible
background contributions since both leptons in the final state have the same flavour.
However, it can occur that one muon of a Z → µµ-event is mis-identified as an electron
and hence the event can pass the different-flavour requirement of the event selection,
see Section 7.2.2. The contribution of Z → ee is very small because the probability that an
electron is mis-identified as a muon is almost zero since it usually does not reach the muon
spectrometer of the ATLAS detector.

Both, the Z-boson as well as the photon γ, contribute indistinguishably to the discussed
processes. However, in the following they will be abbreviated by Z → ττ/``.

The simulated events of Z → ττ and Z → ee are generated with Sherpa 2.2.1 [162]
using Amegic [163], Comix [164] and OpenLoops [165] for matrix element calculation and
the NNPDF3.0 NNLO [166] pdf set is used. The accuracy of the matrix element is NLO in
QCD for up to 2 partons and LO in QCD for up to 4 partons. The matching to the parton
shower is performed using the MC@NLO and the MEPS@NLO [167] prescription. The parton
shower, underlying event and hadronisation are also simulated with Sherpa 2.2.1. The
NNPDF3.0 NNLO pdf set using a Sherpa tune is used to model non-perturbative effects. The
electroweak production is simulated with up to 4 partons at LO. The decays of the τ -leptons
are simulated with Sherpa. The cross sections are calculated at NNLO accuracy in QCD
using FEWZ [168].

These samples are sliced in max(HT , pT (V )) and in b- or c-flavour of the jets which
means that separate samples for different ranges in max(HT , pT (V )) and the flavours are
produced. HT represents the scalar sum of the transverse momenta of all parton-level
jets with pT > 20 GeV while pT (V ) is the transverse momentum of the vector boson.
The lowest slice of max(HT , pT (V )) of the Z → µµ-sample has very low statistics in the
Basic Event Selection (Section 7.1.2) used in this analysis, which yields large statistical
uncertainties. Therefore, it was decided to use Z → µµ-samples that were generated using
Powheg-Box [147–149, 169] at NLO accuracy in QCD and the CT10 NLO pdf set. The parton
shower, underlying event and hadronisation is simulated with Pythia 8.186. The CTEQ6L1
pdf set with the AZNLO tune is used for the simulation of non-perturbative effects. The
decays of b- and c-flavour hadrons are simulated with EvtGen 1.2.0 [170], of τ -leptons
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with Pythia and bremsstrahlung corrections with PHOTOS [171, 172]. The cross sections
are calculated at NNLO accuracy in QCD using FEWZ [168]. These samples consist of only
two slices in the invariant mass m`` of the two leptons and provide better statistics for the
selection used in this analysis.

Diboson Production
The second largest background contribution stems from diboson production of which the
creation of two W -bosons contributes the most. Both W -bosons can decay leptonically
and hence produce a signal-like different-flavour final state with opposite-sign charges.
Exemplary leading order Feynman diagrams are given in Figure 4.6. Figure 4.6(a) includes
the subsequent leptonic decays of both W -bosons which are omitted in the other diagrams.
In addition, small contributions are from WZ- and ZZ-production. The former can only
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W
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Figure 4.6: Example leading order diagrams of diboson production at the LHC. Diagrams (a) and (b)
show possible production modes of two W -bosons, diagram (c) the production of Z/γ∗ and W . In diagram
(a) the subsequent leptonic decays of both W -bosons which are omitted in the other diagrams is depicted.

pass the event selection if e.g. one of the leptons originating from the Z-boson is not
identified or if the Z-boson decays into τ -leptons and one of them decays hadronically (but
is not identified as such) and the other one leptonically. Similar reasons allow an even
smaller amount of the latter to pass the selection. Also, V γ where V stands for W or
Z, contributes a smaller amount, mainly through mis-identification of the photon as an
electron or of a hadronically decaying τ -lepton (if V decays into one) as an electron.

The distribution of the reconstructed mass of the two leptons plus Emiss
T behaves rather

flat which provides at least some separation power. The momenta of the two leptons
are more similar to each other compared to signal for which one shows a clearly harder
momentum than the other. And also the angular correlations between the final state objects
differ.

The simulation of the diboson events uses the same generators as the simulation of the
Z → ττ and Z → ee events. The matrix element is, however, calculated at NLO accuracy
in QCD only for up to one parton and at LO accuracy only for up to three partons. The
cross sections are calculated at NLO accuracy in QCD.

Top-quark Production
The production of a top anti-top pair (tt̄-production) contributes a larger background in
the basic event selection (Section 7.1) although it exhibits additional objects in the final
state. The top quark almost exclusively decays into a b-quark and a W -boson. In the case
of tt̄-production this can lead to a final state consisting of two different-flavour leptons of
opposite-signed electric charges if both W -bosons decay leptonically, neutrinos and two jets
originating from the two b-quarks. This is depicted in Figure 4.7(a) which also shows part
of the subsequent decay of the top quarks.

In the case of single-top production, only the one in association with a W -boson
contributes as irreducible background while the other production modes show at most one
lepton in the final state and hence only contribute as a reducible background component.
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Figure 4.7: Example leading order diagrams of tt̄-production (a), single-top production via t-channel (b)
and in association with a W -boson (c). The first diagram (a) also depicts the decay of the top quarks into
a W -boson and a b-quark.

The top-quark contributions4 are suppressed by requiring a veto on b-jets5 but due
to its large cross section and the imperfect b-tagging there is nevertheless a considerable
amount of events that passes the basic event selection. A further separation from the signal
can also be achieved due to differences in kinematics and due to a rather flat distribution
of the reconstructed mass of the two leptons and Emiss

T .
The generation of tt̄-events is performed with Powheg-Box v2 [147–149] using the

NNPDF3.0 NNLO [166] pdf set. They are interfaced to Pythia 8.230 [159] for the simulation
of the parton shower, the underlying event and the hadronisation. The NNPDF2.3 LO [166]
pdf set with the A14 [173] tune is used to model non-perturbative effects. EvtGen 1.6.0 [170]
is used to simulate the decays of b- and c-flavour hadrons.

The simulation of a single top-quark in association with a W -boson is performed using
Powheg-Box [147–149] with the NNPDF3.0 NLO [166] pdf set. Pythia 8 [159] is used to
simulate the parton shower, the underlying event and the hadronisation. Non-perturbative
effects are modelled by the NNPDF2.3 LO [166] pdf set with the A14 [173] tune. EvtGen
1.6.0 [170] is used to simulate the decays of b- and c-flavour hadrons.

The decays of τ -leptons are simulated with Pythia. The cross section of tt̄ is calculated
at NNLO+NNLL (next-to-next-to leading order + next-to-next-to leading log) accuracy in
QCD, the cross section of Wt at NLO in QCD.

W → τν/`ν + Jets Production
The production of a W -boson and its subsequent decay into a τ or light lepton and a
neutrino contributes to the reducible background component since the second lepton is
missing. However, jets originating from additional quarks or gluons in the final state can be
mis-identified as a lepton and non-prompt leptons from semi-leptonic decays of heavy-flavour
quarks can pass the lepton identification criteria. Figure 4.8 shows a leading order diagram
together with the leptonic decay of the W -boson as well as diagrams contributing to higher
orders in QCD. Events from W + jets are mainly suppressed by the appropriate choice
of lepton identification and isolation requirements described in Chapter 5. Furthermore,
separation power is obtained from the distribution of the reconstructed mass of the two
leptons and Emiss

T and from the transverse mass of `τ and Emiss
T .

The simulation of the W + jets-events uses the same generators as the simulation of the
Z → ττ and Z → ee events, and the same accuracy in the calculation of the cross section.

QCD Multijet Production
QCD multijet production does not create any prompt leptons but nevertheless contributes
to the event yields in the signal region. It contributes solely through mis-identification

4The production of both, tt̄ and single top, will be referred to together as top-quark production.
5More details on tagging jets as b-jets are given in Section 5.4.3.
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Figure 4.8: Example Feynman diagrams for the production of a W -boson at leading order (a), with 1
additional gluon (b) and two additional gluons (c) in the final state (contributing to higher orders in QCD).
Diagram (a) also depicts the leptonic decay of the W -boson while this is omitted in the other diagrams.

of jets as leptons and through selection of non-prompt leptons from semi-leptonic decays
of heavy-flavour quarks, thereby needing to fulfil the different flavour and opposite-sign
charge requirements of the leptons. The probability for this to happen is rather low;
however, the cross section of QCD multijet production at the LHC is many orders of
magnitude larger than for Higgs-boson production such that a considerable amount remains.
This background contribution is mainly suppressed by the appropriate choice of lepton
identification and isolation requirements described in Chapter 5. In addition, the distribution
of the reconstructed mass of the two leptons and Emiss

T is flatter compared to signal and
shifted to lower masses. Exemplary Feynman diagrams representing multijet production
are given in Figure 4.9. There are many more possible diagrams including ones with more
partons in the final state, e.g. through subsequent radiation.
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Figure 4.9: Example Feynman diagrams for QCD multijet production with two partons in the final state.
Subsequent radiation can create more final state partons.

There are no simulated samples representing QCD multijet production used in this
analysis since a huge amount of simulated events would be needed due to their large cross
section but small selection probability. Hence, this contribution is solely estimated from
data (Section 7.2.2).

H → ττ and H →WW Production
The Higgs-boson production with subsequent decay into two τ -leptons or two W -bosons
evidently also shows a similar signature as the signal processes if the τ -leptons or W -bosons
decay into an electron and a muon. Differences compared to the signal, such as the relation
of the resulting Emiss

T with the leptons, the pT-spectra of the leptons as well as differences
in the distribution of the reconstructed mass of the two leptons and Emiss

T , are utilised to
separate the SM Higgs-boson production from the signal.

The simulation of the H → ττ - and H → WW -events of the three main production
channels uses the same generators as the simulation of the signal events. The tt̄H-production
uses Powheg-Box v2 [147–149] and the NNPDF3.0 NNLO pdf set. This is interfaced to
Pythia 8.230 [159] for the simulation of the parton shower, the underlying event and the
hadronisation. The NNPDF2.3 LO [166] pdf set with the A14 tune is used for the modelling
of non-perturbative effects. EvtGen 1.6.0 [170] is used for the simulation of the decays of
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b- and c-flavour hadrons. The cross section is calculated at NLO accuracy in QCD with
NLO EW corrections included.
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Chapter 5

Reconstruction and Identification of
Physics Objects

This chapter summarises the procedures of reconstructing, calibrating and identifying
physics objects, such as muons, from detector signals. In the search for lepton-flavour
violating Higgs-boson decays presented in this thesis, electrons and muons as well as
missing transverse energy representing neutrinos, are of particular importance. Whereas
hadronically decaying τ -leptons and jets originating from b-quarks are vetoed in order to
suppress background processes. Jets originating from quarks or gluons are also crucial, on
one hand for a proper reconstruction of missing transverse energy, on the other hand for
the definition of the two signal regions, nonVBF and VBF (Section 8.1).

The full processing chain is split into reconstruction with calibration, identification and
also isolation from adjacent activity in the detector in the case of electrons and muons.
Several working points (WPs) which differ in signal efficiency and background rejection
capabilities are provided for the latter two and for the tagging of jets originating from
b-flavour hadrons. A higher signal efficiency inevitably comes at the expense of a lower
background rejection, hence each analysis must choose its own optimal choice of WPs.

In addition, two types of reconstructed light leptons, baseline and signal, are defined.
Baseline leptons are used in the overlap removal procedure, to select exactly two light
leptons and to calculate the missing transverse energy. Signal leptons must fulfil stricter
quality criteria and are utilised in all subsequent steps of the event reconstruction and
selection. The overlap removal aims to solve possible ambiguities between identified objects
as they are not mutually exclusive.

The requirements imposed on light leptons partially deviate from the standard ATLAS
recommendations to ensure the best possible symmetric treatment of electrons and muons
which is required in this analysis. In addition, it must be permitted that the light leptons
can originate from τ -lepton decays and hence do not stem for the primary vertex.

Simulated events and data are treated equally during the processing chain. However,
small differences due to imperfect simulations can occur, leading to slight deviations in the
efficiencies. Therefore, scale factors (SF s) are derived as the ratio of efficiencies measured
in data and in simulated events. These are subsequently applied to the simulated events in
order to correct them to agree with data.

Section 5.1 starts with a description of track finding and vertex reconstruction which is
a key component for the reconstruction of all physics objects. It is followed by a discussion
of the reconstruction and identification of electrons and muons in Sections 5.2 and 5.3,
respectively. Jets are discussed in Section 5.4 followed by a brief overview of the applied
algorithms to tag jets originating from b-quarks and of hadronically decaying τ -leptons in
Section 5.5. Finally, the reconstruction of the missing transverse energy and the overlap
removal procedure are introduced in Sections 5.6 and 5.7, respectively.
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5.1 Track and Vertex Reconstruction

The reconstruction of tracks (i.e. the trajectories of charged particles) and vertices in the
Inner Detector (ID) lays the foundation for most of all subsequent object reconstruction.
First, clusters are built from raw measurements by grouping pixels (from the Pixel detector)
or strips (from SCT) in a given sensor if the deposited energy exceeds a certain limit [174,
175]. Sets of three of these clusters in different layers of the ID form a track seed which
has to fulfil additional basic quality criteria. Track candidates are built by successively
incorporating additional clusters from remaining layers in the direction of the track seed.
Depending on the evaluation of this additional cluster based on a combinatorial Kalman
filter [176], it is either added to the track candidate or rejected. If there are several clusters
on the same layer compatible with the track seed, multiple track candidates are formed. This
leads to a collection of track candidates that comprises fake tracks and tracks overlapping
with each other. Therefore, an ambiguity solver is deployed. This tool scores the tracks
based on simple measures of the track quality where higher scores correspond to better
quality and handles them in descending order. Several additional criteria are imposed
on the candidates. Amongst others [175], a minimum transverse momentum of 500MeV
is required [177]. The tracks found in the silicon detectors are then extended outwards
into the TRT if compatible hits are found. This procedure is called inside-out and relies
on finding track seeds in the silicon detectors. However, tracks from prolonged decays of
particles with a longer lifetime or from photon conversions may not leave enough hits within
the silicon detectors. Therefore, the outside-in sequence is deployed on all TRT hits that
remain after the inside-out algorithm. Pattern recognition is used to find track segments in
the TRT which are propagated into the silicon detectors utilising residual clusters [174].
The fraction of tracks that fail to be reconstructed in the core of jets is measured to be
0.061± 0.006 (stat.)± 0.014 (syst.) and 0.093± 0.017 (stat.)± 0.021 (syst.) for transverse
momenta of the jets of 200 to 400GeV and 1 400 to 1 600GeV, respectively [175].

Primary vertices are reconstructed from the track collection in order to find the spatial
coordinates of the hard-scattering interaction [178]. The position of the vertex seed defines
the starting point of the primary vertex finding procedure. The transverse position of
the seed is taken from the beam spot position and its z-coordinate is obtained from the
mode of the tracks’ z-coordinates (at the point where they are closest to the beam spot).
After finding the optimal vertex position through an iterative χ2-minimisation, tracks less
compatible with the position are down-weighted and the vertex coordinates are recalculated.
This is repeated until certain criteria [175] are met. Tracks incompatible with the final
vertex position are removed and are utilised in sub-sequent vertex findings. The vertices
must have at least two associated tracks. The primary vertex with the largest sum of
squared transverse momenta of associated tracks,

∑
p2
T , is chosen as the hard-scatter

primary vertex. The remaining ones are categorised as pile-up vertices. The efficiency of
vertex reconstruction in low-µ (low average number of interactions per bunch crossing) data
is shown in Figure 5.1. It is obtained from data taken in one run in the year 2015.
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Figure 5.1: Vertex reconstruction efficiency in low-µ data (black) as a function of the number of tracks
associated with this vertex. The efficiency obtained from Monte Carlo simulations is given in red [179].

5.2 Electrons

Electrons induce a signal in the ID and the ECAL. Through interactions with the detector
material, they deposit a significant amount of their energy due to bremsstrahlung. This
triggers a subsequent cascade of photons and electron-positron pairs. A relatively narrow
shower in the calorimeter is expected. Photons behave in a similar way. But an unconverted
photon does not show any tracks in the ID while a converted one comes with a conversion
vertex. However, since only electrons are of direct interest to this analysis, the following
description is limited to those.

5.2.1 Reconstruction

The electron reconstruction combines clusters of energy deposition in the ECAL originating
from particle showers initiated by electrons with tracks in the ID [180]. First, so-called
topo-clusters that are clusters spreading over topologically connected ECAL and HCAL
cells are formed [180–182]. Cells with a large signal to noise ratio, i.e. |ζcell| ≥ 4, serve as
seeds for the formation of proto-clusters. The cell signal significance ζcell is defined as

ζcell =
Ecell

σnoise,cell
, (5.1)

with Ecell being the energy deposit and σnoise,cell the expected noise in this cell. Neighbouring
cells with |ζcell| ≥ 2 are added until they fail the requirement. If two proto-clusters share
a cell, these two are merged. Finally, all nearest-neighbour cells of a proto-cluster are
added, independent of their ζcell-value. Proto-clusters are split if they contain more than
one local maximum, i.e. the cell energy Ecell must be larger than 500MeV, it must have
at least four neighbours and none of the neighbours must have a larger energy. When the
formation of proto-clusters is finalised, all proto-clusters are topo-clusters. However, for
the subsequent steps of the electron reconstruction, only the energy of cells in the ECAL
(EEM) is used and only topo-clusters with EEM > 400 MeV are considered. In addition, the
fraction of EEM on the total energy of the topo-cluster is required to be larger than 0.5.
This rejects 60% of pile-up clusters without reducing the efficiency to select true electron
topo-clusters [180]. Tracks are reconstructed in the ID following the procedure described in
Section 5.1. If there are no resulting tracks for a silicon track seed in regions-of-interest
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(ROIs) created from fixed-sized clusters in the calorimeter that exhibit a typical EM shower
profile, a modified pattern-recognition algorithm is deployed. It accounts for enhanced
energy loss from interactions with the detector material due to bremsstrahlung. Tracks
loosely matched to these fixed-sized clusters are refitted to obtain more accurate track
parameters using a Gaussian sum filter (GSF) algorithm [183], also taking into account the
enhanced energy loss due to bremsstrahlung. Finally, the refitted tracks are matched to
the EM topo-clusters. If there is more than one track assigned to a cluster, the tracks are
ranked by several quality and matching criteria and the highest ranked one is chosen.

In order to create superclusters, all topo-clusters are sorted in descending order by their
transverse EM energy ET . Each of them is checked whether it fulfils the requirements to
be a seed candidate. It must be matched to a track with at least four hits in the silicon
detectors and its ET must be larger than 1GeV. Next, so-called satellite clusters within a
window of ∆η ×∆φ = (3× 5) · 0.025 around the seed cluster barycentre are identified. If
the best-matched track of the satellite candidate is identical with the best-matched track
of the seed, the window size is allowed to be (5× 12) · 0.025. All topo-clusters found to
be satellite clusters are removed from the topo-cluster list such that they cannot serve as
seed clusters themselves. The track information is included in this procedure to suppress
electrons from conversions, pile-up noise and unrelated clusters. The satellite clusters are
results of secondary EM showers from the same initial electron. The combination of the
seed and its satellite clusters form the supercluster.

Then, a matching of tracks and superclusters as well as an initial energy calibration
are performed. However, the same seed cluster can lead to both, an electron and a photon
candidate. If it is a cluster without a good associated track (following the criteria described
in [180]), it is reconstructed as a photon. If it is a cluster with a good associated track, it is
reconstructed as an electron. Otherwise an electron and a photon object, which are marked
as ambiguous, are created for analysis. Then, the energies are recalibrated while considering
the matched track in order to represent the original electron energy (via the procedure
described in [184]). Finally, the pT of the electron is obtained by the energy measurement
in the calorimeter while η and φ are taken from the properties of the associated track.

The efficiency of the electron reconstruction as a function of the true ET determined
with simulated events is given in Figure 5.2 (purple triangles). The other curves show the
efficiencies after the single steps in the reconstruction chain.
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Figure 5.2: The efficiencies of the different electron reconstruction steps and their combinations as a
function of the true transverse energy determined in simulated events [180].
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5.2.2 Identification

The identification algorithm aims at an improved purity of real electrons and therefore a
reduction of classification of other objects as electrons.

The identification of prompt leptons is based on a likelihood discriminant dL [180, 185].
It is defined as the natural logarithm of the ratio of the signal and the background likelihood,
LS and LB. The signal likelihood describes the probability for a reconstructed electron
to be prompt while the background likelihood describes its probability to originate from
hadronic jets, converted photons, heavy-flavour decays such as b- and c-flavour hadrons
or hadronic τ -lepton decays. The likelihoods are constructed from a set of discriminating
quantities which are properties of the primary electron track, lateral and longitudinal
development of the EM shower in the calorimeter and the spatial compatibility of the
electron track and its reconstructed cluster. For each variable, probability density functions
are derived from smoothed histograms, separately for signal and background and for 9 bins
in |η| and 7 bins in ET . The signal histograms are filled with Z → ee-events1 recorded in
the years 2015 and 2016 while the background histograms are primarily obtained from dijet
events. In order to select either signal- or background-like data, a tag-and-probe method is
used. The single pdfs are combined into the likelihoods LS and LB. Finally, a cut on the
discriminant dL can be imposed. Depending on the cut value and additional criteria, three
different working points (WPs) for the electron identification are defined. The working
points, loose, medium and tight, differ in their efficiency to identify prompt electrons: loose
has the highest efficiency at the price of the lowest background rejection while it is the
opposite for tight. The improvement in background rejection is approximately a factor 2.0
for medium and 3.5 for tight compared to loose. The efficiencies as a function of ET and η
are shown in Figure 5.3. The efficiencies increase with increasing ET from ET = 15 GeV
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Figure 5.3: Electron identification efficiencies in data as a function of ET (a) and η (b). The three different
colors represent the three different working points. The outer error bars indicate the total uncertainties.
The bottom panels show the efficiency ratio of data and simulation (scale factors) [180].

onwards. A plateau is reached at around 50GeV, a bit later for the tight working point.
At ET = 100 GeV, efficiencies of 95% (loose), 93% (medium) and 88% (tight) are reached.
The increase in efficiency below ET = 15 GeV is due to a known mismodelling of the
variables entering the likelihoods at this energy scale. The electron identification with

1Z → ee-events are used for ET > 15 GeV while J/ψ → ee-events are used for ET < 15 GeV. However,
in this analysis only electrons with pT > 15 GeV are considered.
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respect to η is most efficient in the central region, i.e. for lower |η|-values. Low efficiencies
are experienced in the transition regions of the calorimeter between barrel and endcaps,
1.37 < |η| < 1.52 and perpendicular to the beam axis (η ≈ 0). In addition, scale factors
that are simulation-to-data corrections, are derived in bins of pT and η and shown in the
lower panels of Figure 5.3. They are all below 1 (for pT > 15 GeV) and above 0.9 except
for the highest bins in |η| where the scale factors for the tight working point are below 0.9.

In this analysis, the loose identification WP is chosen for baseline electrons and the
medium identification WP for signal electrons. In addition, pT > 15 GeV and |η| < 2.47 are
required with a veto of electrons inside the calorimeter transition region, 1.37 < |η| < 1.52.
The absolute value of the longitudinal impact parameter of the electron track, calculated
with respect to the primary vertex, and multiplied by sin θ of the track is required to
be |z0 sin θ| < 0.5 mm with θ being the polar angle. The significance of the transverse
impact parameter d0 which corresponds to its value divided by its resolution is required
to be |d0|/σd0 < 10. This requirement is less stringent than the usual recommendation
for electrons but allows for the origin from a leptonically decaying τ -lepton due to the
additional decay length. The same cut value is chosen, independently whether the electron
is assumed to originate directly from the H-boson or from the τ -lepton, in order to keep
a symmetric selection for all electrons which is required for the usage of the Symmetry
Method (Chapter 3).

5.2.3 Isolation

The isolation of an electron from other objects can help to further classify it as prompt
or not. If it is non-prompt or mis-identified it is typically accompanied by many more
particles and the activity around it is enhanced. In general, the isolation is measured by
the amount of additional activity in a cone around the particle of interest, here an electron.
Therefore, two types of isolation variables are defined, on the one hand describing the
additional activity in the ECAL on the other hand in the ID [180, 185].

In the calorimeter, a variable calledEcone20
T is utilised. A cone of size ∆R =

√
∆η2 + ∆φ2

= 0.2 around the electron cluster barycentre is defined. The transverse energies of all
topological clusters whose barycentres are within this cone are summed. In order to
only get a measure of the activity around the electron, its energy in a rectangular of
∆η ×∆φ = (5× 7) · 0.025 around its barycentre is subtracted from the summed energies.
However, not all of the energy of the electron is removed this way and hence a leakage cor-
rection depending on ET and |η| must be considered as well as a correction for contributions
from pile-up and underlying event [186].

In the ID, a variable called pvarcone20
T is utilised. Again, a cone around the electron is

defined. The cone is centred around the electron track direction and has a variable cone
size depending on the transverse momentum of the electron:

∆R = min

Å
10

pT [GeV]
,∆Rmax

ã
, (5.2)

with ∆Rmax being the maximum cone size of 0.2. The cone size is reduced with increasing
pT since the tracks of other decay products from the same boosted primary particle can be
very close. The transverse momenta of all tracks fulfilling certain criteria within this cone
but the one matched to the electron are summed. These criteria comprise a minimum pT
of 1GeV and |η| < 2.5, several requirements on the hits and a loose vertex association.

Isolation working points can either be obtained by imposing fixed cuts on Econe20
T and/or

pvarcone20
T or by aiming at a fixed value of efficiency and hence having varying cut values.

The latter method is used for the gradient working point which is chosen in this analysis. It
is designed to reach an efficiency of 90% at pT = 25 GeV and of 99% at pT = 60 GeV, i.e.
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it is parametrised as a function of pT but aims for uniformity in η. The respective varying
cut values on the two isolation variables are obtained from simulated Z → ee-events1 that
pass the tight identification requirements.

The resulting efficiencies measured in data recorded in the year 2017 are shown in
Figure 5.4 for the gradient isolation WP and other WPs defined by fixed cuts on the
isolation variables. A data sample enriched with Z → ee events and electrons passing the
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Figure 5.4: Electron isolation efficiencies in data as a function of ET (a) and η (b) of electrons passing
the medium identification requirement. The different colours represent different working points. The total
uncertainties are indicated by the vertical bars. The bottom panels show the efficiency ratio of data and
simulation (scale factors) [180].

medium identification requirements were used. In general, the efficiencies vary for different
processes. This can be observed at ET = 15 GeV in Figure 5.4(a) for the gradient isolation
WP. Below ET = 15 GeV, J/ψ → ee simulated events were used to define the variable cuts
on Econe20

T and pvarcone20
T while Z → ee events are used to measure the efficiencies displayed

in the figure. In the range from ET = 15 GeV to ET = 40 GeV it is clearly visible that the
gradient WP provides a good compromise between the Loose (and HighPtCaloOnly) and
Tight isolation WPs, keeping higher event statistics but still benefiting from a reasonable
background suppression. The efficiency as a function of η is close to flat with a slight
decrease in the more forward directions. The scale factors which are the simulation-to-data
corrections, deviate by less than 1% from 1.0 above ET = 15 GeV.

5.3 Muons

Muons are minimal-ionising particles that manifest themselves in the detector as tracks in
the Inner Detector (ID), small energy deposits in the calorimeters and tracks in the Muon
System (MS) while traversing the whole detector.

5.3.1 Reconstruction

The reconstruction of tracks in the ID is done as described in Section 5.1. In the MS
(Section 2.2.4) local straight-line track segments are formed within each chamber from hits
gleaned by a tailored pattern recognition algorithm [187, 188]. Preliminary track candidates
are built by combining the segments from the different layers. They must roughly point
into the direction of the interaction point (IP) and be in agreement with the expected
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bending in the R-z-plane for muons due to the magnetic field. The precision measurement
of η in the bending plane is combined with the φ-measurement of the trigger chambers to
construct a three-dimensional picture. Then, a global χ2-fit on the track candidate hits is
performed. Afterwards, additional hits that lie on the resulting trajectory but were not
taken into account before are added while hits deviating from the trajectory are removed
and the fit is repeated. Possible ambiguities are resolved depending on the quality of the
tracks and the remaining tracks are re-fitted including a loose IP constraint. Eventually,
the tracks are extraploated to the beam line.

For the global muon reconstruction, measurements from the ID, the MS and also the
calorimeters are combined and five different reconstruction strategies are pursued which
are detailed in the following.

Combined Muons (CB) A combined fit of hits corresponding to matched tracks in
the MS and the ID is performed while also taking into account the energy loss in
the calorimeters. The MS tracks associated with the resulting trajectory are again
updated and the fit is repeated.

Inside-out Combined Muons (IO) Again, a combined fit of hits in the ID and the MS
is performed. But to locate the relevant hits, the track in the ID is extrapolated into
the MS and at least three loosely-aligned MS hits must be found. That means no
independently reconstructed track in the MS is necessary.

MS Extrapolated Muons (ME) An MS track is extrapolated to the beamline if no
ID track can be matched. This is mainly beneficial in the |η|-region outside the ID
acceptance: 2.5 < |η| < 2.7.

Segment-tagged Muons (ST) If an ID track can be extrapolated to the MS by fulfilling
tight angular matching requirements with at least one reconstructed MS segment, the
ID track is utilised as muon candidate and provides its properties.

Calorimeter-tagged Muons (CT) If an ID track can be extrapolated to the calorimeters
by matching energy deposits satisfying requirements of minimal-ionising particles,
the ID track is utilised as muon candidate and provides its properties. Due to an
overwhelming background contamination at low transverse momenta, a threshold of
pT = 5 GeV is required.

In addition, a calibration of the momentum scale and resolution is performed and
corrections are applied to simulated events to compensate for an imperfect description
of the detector response due to different areas of detector technology, inaccuracies in the
description of the magnetic field integral and misalignment of the detector components [188].
The correction factors are binned in pT, η and φ, reflecting different detector regions and
are derived from comparing the invariant mass distributions of Z → µµ and J/Ψ → µµ
events in simulation and data. Only CB-muons are considered for this procedure.

5.3.2 Identification

In order to improve the purity of the muon candidates and to enhance their quality,
additional criteria are imposed on them. These include the number of hits in the ID
and MS, properties of the track fit and compatibility of the measurements in the sub-
detectors [187, 188]. Depending on the strictness of these criteria, different working points
(WPs) are defined: loose, medium, tight, low-pT and high-pT . As for the electrons, the loose
WP has the highest efficiency and the lowest background rejection while the tight WP has
the lowest efficiency but the best background rejection. The loose WP is designed for a
specific analysis targeting Higgs-boson decays in the four-muon final state and is used in
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this analysis only for baseline muons. The high-pT WP is intended for W ′ and Z ′ searches
while the low-pT WP targets muons with very low transverse momenta not relevant for this
analysis.

Within the η-range relevant for this analysis (|η| < 2.47), only CB and IO muons are
used for the medium WP which is chosen in this analysis for signal muons. The muon
candidates are required to have at least three hits in at least two layers of the precision
chambers while one layer is sufficient for |η| < 0.1. Furthermore, a loose compatibility
between the ID and MS measurements is ensured by requiring the q/p-compatibility to
be smaller than seven. The latter is defined as the absolute value of the difference of
q/p measured independently in the ID and the MS divided by the square root of the
corresponding uncertainties added in quadrature.

The loose WP, in addition, also accepts CT and ST muons for |η| < 0.1 and has some
looser requirements for muon candidates with pT < 7 GeV which are not considered within
this analysis.

The efficiencies of the three WPs loose, medium and tight as a function of pT and η are
shown in Figure 5.5. All ID tracks that are associated with a reconstructed muon are in
the denominator of the efficiency calculation while in the numerator they have to pass the
WP requirements in addition. The efficiencies are derived from simulated tt̄-events. For
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Figure 5.5: Muon reconstruction and identification efficiencies in simulated tt̄-events as a function of pT
(a) and η (b) for the different working points. Black shows the efficiencies for prompt muons, red for muons
from light hadron decays [187].

prompt muons passing the medium WP, η-inclusive efficiencies of up to 97% are reached.
Whereas the maximum efficiency for muons from light hadron decays is 0.24%.

The scale factors, i.e. the simulation to data correction factors are parametrised as a
function of η and φ. Figure 5.6 shows the data efficiencies as a function of these two variables
and the resulting scale factors. Here, the efficiencies are obtained from Z → µµ-events.
Overall, data and simulation are in good agreement and the scale factors are all close to
1 (100%). The largest deviations from 1 are for |η| < 0.1 and at around φ = −1.2 and
φ = −2.0, corresponding to the support structure of the ATLAS detector.

In this analysis, baseline muons must pass the loose identification WP and fulfil
pT > 10 GeV and |η| < 2.47. Signal muons must pass the medium identification WP and
the cut on the transverse momentum is tightened to pT > 15 GeV to be symmetric with
the cut for electrons. Also due to symmetry reasons, muons in the transition region of
the calorimeters, 1.37 < |η| < 1.52, are vetoed and the same impact parameter cuts as for
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Figure 5.6: Muon efficiencies measured in data enriched with Z → µµ-events (a) and the corresponding
scale factors (b) as a function of η and φ for the medium working point [187].

electrons are applied: |z0 sin θ| < 0.5 mm and |d0|/σd0 < 10. As for electrons, the latter
is less stringent than generally recommended for muons to allow them to originate from
leptonically decaying τ -leptons due to their non-negligible decay length.

5.3.3 Isolation

The activity in the vicinity of non-prompt muons from heavy-flavour hadron decays is
enhanced compared to prompt muons. This difference in isolation is utilised to further
suppress the heavy-flavour background. The muon isolation is defined by the amount of
energy or momentum reconstructed in a cone of ∆R around the muon, divided by the
transverse momentum of the muon. This can be calculated by either using the tracks
in the ID (transverse momentum), the energy deposit in the calorimeters (transverse
energy) or by both. For the track-based isolation, the isolation cone can either have
a fixed size with ∆R = 0.2 leading to the observable pcone20

T or by a varying cone size
∆R = min(10 GeV/pµT , 0.3) leading to the observable pvarcone30

T . The transverse momenta
of all ID tracks (but not the muon) within this cone that are associated with the primary
vertex are considered. For the calorimeter-based isolation, a fixed cone size of ∆R = 0.2
is chosen leading to the observable Etopocone20

T . All energy-deposits, disregarding the ones
associated to the muon, are considered and a correction for pile-up effects is performed.
The advantages of the track-based isolation are the lower pile-up dependence and a better
resolution whereas the calorimeter-based isolation takes into account neutral particles and
particles with transverse momenta below the threshold required in the ID (0.5GeV or 1GeV
depending on the working point).

Different isolation working points are defined, either making use of only the track-based
isolation or of both. In this analysis, the FCTightTrackOnly_FixedRad working point is
applied. It is defined only by the track-based isolation with the fixed and the variable
cone size observables: pvarcone30

T /pµT < 0.06 for pµT ≤ 50 GeV and pcone20
T /pµT < 0.06 for

pµT > 50 GeV, requiring a tight association of the tracks to the vertex and the transverse
momenta of the tracks larger than 1GeV. The resulting efficiencies obtained from simulated
diboson events are visualised in green in Figure 5.7.

It can be seen that the FCTightTrackOnly_FixedRad WP provides a trade-off between
the FCLoose_FixedRad and the FCTight_FixedRad WPs. The efficiencies for FCTight-
TrackOnly_FixedRad are almost flat in η and have a reduced dependency on the average
interactions per bunch-crossing compared to FCTight_FixedRad which, in addition, also
makes use of the calorimeter-based isolation. Scale factors for the isolation efficiencies,
binned in pT, are provided as well and applied to simulated events in the analysis.
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(a) (b) (c)

Figure 5.7: Muon isolation efficiencies obtained from simulated diboson events as a function of pT (a), η
(b) and the average number of bunch-crossings per event (c) for muons passing the medium identification
[189]. (b) and (c) include all muons with pT ∈ [12, 50]GeV. The efficiencies of eight different working points
are shown, the markers indicate the working points with _FixedRad.

5.4 Jets

Partons from the hard-scatter interaction hadronise and are detected as jets which are the
output of a jet algorithm. They manifest in the detector by tracks in the ID and large
energy deposits in the calorimeters. Due to the high production rate of jets, their efficient
and precise reconstruction is crucial. They are an important ingredient to the calculation of
missing transverse energy and in this analysis their multiplicity is utilised to define different
event categories.

5.4.1 Reconstruction

Jets are reconstructed from energy deposits in the calorimeters, taking into account in-
formation from tracks in the ID by utilising the particle flow algorithm[190]. Tracks are
reconstructed as described in Section 5.1 and are required to be within |η| < 2.5 and
have pT > 500 MeV, topo-clusters are formed from the energy deposits in the calorimeters
in the same way as for electrons, discussed in Section 5.2.1. The former are rejected if
they are matched to a candidate electron or muon. The latter are initially calibrated to
the electromagnetic scale (as for electrons and photons) when entering the particle flow
algorithm. The algorithm then matches tracks to topo-clusters and subtracts the energy
corresponding to the matched tracks cell by cell thereby preventing that energy measured
in the different sub-detectors is double-counted. The reason for combining information from
the ID and the calorimeters and not solely taking the energy measurement of the latter
is the superior momentum and η-φ-resolution in the ID, the vertexing-capability and the
possibility to take low-energetic charged particles into account which otherwise are below
the noise threshold of the calorimeters. Therefore, only tracks with a transverse momentum
below 40GeV are considered. Higher-energetic particles are often less isolated, leading to
an inaccurate energy-subtraction. In addition, the quality of the energy measurement in
the calorimeters is comparable to the one in the ID at these energies. The pairs of tracks
and (modified) topo-clusters, or only the latter if no tracks are assigned, are forwarded
to the anti-kT -algorithm [191] performing the jet-finding step. Before, all tracks failing
|z0 sin θ| < 2 mm are rejected together with their associated calorimeter energy to suppress
pile-up activity. And the η and φ components of the topo-clusters are re-computed with
respect to the hard-scatter primary vertex instead of the detector origin.

The anti-kT -algorithm [191] is a jet clustering algorithm that is infrared and collinear
safe and therefore the jet building is insensitive to splitting of partons. First, the distances
dij of all input ’particles’ (either track and modified topo-cluster pairs or topo-clusters only)
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to each other as well as their distances diB to the beam line are calculated as

dij = min
Ä
p−2
T,i, p

−2
T,j

ä ∆R2
ij

R2
,

diB = p−2
T,i ,

(5.3)

with R being the cone radius (in η-φ-space) of the resulting jet. A value of R = 0.4 is used
in this analysis. The smallest distance measure of all dij and diB is identified and if it
is a dij the two corresponding particles are merged by adding their four-vectors and the
distances are recalculated. If it is a diB, particle i is defined to be a jet and removed from
the pool of particles. This procedure is repeated until no particles are left. For energetic
particles without another energetic particle within a distance of 2R, a perfectly conical jet
is built while the shape can differ from a perfect cone otherwise.

A calibration of the jet energy is performed as described in the following Section 5.4.2.
Baseline jets are required to have pT > 20 GeV, |η| < 4.5 and pass the LooseBad cleaning
working point. All jets that additionally pass the overlap removal, detailed in Section 5.7,
have to fulfil the requirements of the tight WPs of the jet and forward jet vertex tagger (JVT
and fJVT) which were developed to further suppress pile-up jets. The JVT-quantity [192]
exploits information of tracks matched to the jets to assign likelihoods whether they originate
from the hard scatter vertex or not (pile-up). It is applied to jets with transverse momenta
between 20GeV and 60GeV with |η| < 2.4. Forward jets with 2.5 < |η| < 4.5 are judged
by the fJVT-quantity [193] which cannot directly make use of track-based information since
the ID only extends up to |η| = 2.5. Instead, it exploits momentum conservation at each
reconstructed vertex. The tight JVT WP, corresponding to JVT > 0.5, has an average
efficiency of 96% [194] with an approximate pile-up fake rate of 3%. The tight fJVT WP,
corresponding to fJVT < 0.4, has an average efficiency below 76% for hard-scatter jets
and below 49% for pile-up jets. In addition, JVT and fJVT scale factors are applied to
simulated events. However, the fJVT calibration was not yet available for particle-flow
jets when processing the events used in this analysis. Therefore, the fJVT decision and
scale factors are taken from matched EM topo jets instead, which correspond to the former
algorithm to obtain the jet constituents.

5.4.2 Jet Energy Calibration

Different energy scale corrections [195] are applied in the course of the jet reconstruction.
First, the energy of the particle flow objects (tracks and topo-clusters) which are at the
scale of the tracks is corrected such that it conforms with the electromagnetic scale of the
cluster-only objects. Then, the jet energy scale (JES) of the final jet objects is restored
in several steps by comparing the energy of the reconstructed jet to the one of a matched
jet reconstructed at particle level (truth jet). The first step corrects for any remaining
pile-up contamination. Then, an absolute calibration is performed, derived from simulated
dijet-events. It corrects for effects due to different calorimeter technologies and varying
granularity, for energy loss in passive material and for out-of-cone effects. Thereby, the jet
four-momentum is aligned to the one of the respective truth jet by applying the inverse jet
energy response as a function of the energy. Due to a remaining difference between the
reconstructed and true pseudorapidity after this correction, a second correction, directly
using the observed difference, is applied as a function of energy and pseudorapidity. This
only affects pT and η of the jet. However, the energy response also depends on the flvaour of
the jet and therefore on its shower shape. The largest difference is observed between quark-
and gluon-initiated jets. The global sequential calibration aims at reducing the dependence
of the jet energy resolution on the flavour without changing the average jet energy response.
It therefore applies six independent corrections, obtained from simulated events, to the
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four-momenta of the jets. Each is derived from one of six observables describing the shower
shape and has a different impact on the jet response. Finally, after the reconstructed jets
are calibrated to particle level, an in situ calibration is applied, accounting for differences in
the jet response between data and simulation. These differences originate from inaccurate
descriptions of the detector material and response and of the physics processes in the
simulations. Hence, the jet response in simulation and data is derived separately and the
ratio is applied as a correction to data.

5.4.3 b-Jet Identification

An efficient algorithm to identify jets initiated by b-flavour quarks (b-tagging) is crucial in
this analysis to suppress events from top-quark production. The DL1r [196, 197] b-tagging
algorithm utilised in this analysis is based on a deep feed-forward neural network. The input
variables exploited by the network are on one hand pT and η of the respective jet and on the
other hand the outputs of several low-level b- and c-flavour jet tagging algorithms exploiting
the special signatures of b- and c-flavour jets. b-flavour hadrons have an approximate
lifetime of 1.5 ps [198] leading to a decay length of a few millimeters assuming a momentum
of several tenth of GeV. That means larger impact parameters as well as a secondary vertex
(and even a tertiary vertex if the b-hadron decays into a c-hadron) can be observed. This
information combined with track and energy qantities and the decay topologies enter the
different low-level taggers [196, 197]. The final high-level DL1r tagger, which combines
the results of the low-level taggers, provides a three-dimensional output. Each output
component corresponds to the probabilities for a jet to be a b-flavour jet, a c-flavour jet or
a light-flavour jet, respectively. Hence, this algorithm can in principle be used to identify
either of the jet flavours. However, it is used here for b-tagging and therefore the final
discriminant is defined as D = ln(pb/(fc · pc + (1− fc) · plight)) with p being the different
probabilities and fc = 0.018 representing the c-flavour jet fraction used to tune whether
a better c-flavour jet or a better light-flavour jet suppression is the goal. Depending on
the cut value on D, four different working points with different b-tagging efficiencies are
defined: 60%, 70%, 77% and 85%. The b-flavour jet efficiency and the c-flavour jet and
light-flavour jet rejection for the 77% working point are shown in Figure 5.8. In this analysis
the 85% WP is chosen to veto b-jets. Further, simulation-to-data correction factors (scale
factors) are applied to all simulated events.
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Figure 5.8: b-jet tagging efficiency (a), c-jet rejection (b) and light-flavour jet rejection (c) measured in
simulated tt̄ events as a function of pT for the 77% working point. The rejections are defined as the inverse
efficiency. The blue markers indicate the tagger used in this analysis [199].
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5.5 Hadronically Decaying τ -Leptons

τ -leptons can either decay hadronically or leptonically as described in Section 1.3. The decay
happens before reaching active detector material and hence τ -leptons must be reconstructed
through their decay products. They manifest as an electron or muon with additional Emiss

T
if the τ -lepton decays leptonically, and as one or three tracks in the ID together with
energy depositions in the calorimeters and Emiss

T depending on whether one or three charged
hadrons are among the decay products if the τ -lepton decays hadronically.

In the following, the reconstruction and identification of the visible decay products
τhad-vis of hadronically decaying τ -leptons is discussed [200]. Jets obtained from the anti-
kT -algorithm, described in Section 5.4.1, are the basis for the reconstruction of τ -lepton
candidates. They are calibrated using a local hadronic calibration [201] and are required
to have pT > 10 GeV and |η| < 2.5, reflecting the coverage of the ID, while candidates in
the transition region, 1.37 < |η| < 1.52, are rejected. The corresponding vertex is chosen
as the vertex candidate with the largest momentum fraction from all tracks matched to
the jet within ∆R < 0.2. The tracks are required to have pT > 1 GeV and to pass several
quality criteria. Further requirements are placed on the transverse and longitudinal impact
parameters. The τ -lepton candidate is defined to be massless, hence its momentum and
energy are identical. A dedicated tau energy calibration is performed such that it agrees
with the one at generator level (from simulations). The η- and φ-coordinates are determined
from the vectorial sum of all topo-clusters within ∆R = 0.2.

In order to separate hadronic τ -leptons from quark or gluon initiated jets, a dedicated
algorithm based on a recurrent neural network (RNN) is deployed [202]; one for tau lepton
decays with one track and one for decays with three tracks. It uses a mixture of low and
high level input variables that describe track and cluster properties and was trained on
simulated γ∗ → ττ -events versus dijet events. Jets originating from τhad-vis are typically
more narrow compared to quark- or gluon-initiated jets due to boosted decay products and
due to the lower number of hadrons and have either one or three tracks associated. The
output of the RNN is a value between zero and one that is tuned to be flat in the transverse
momentum of true hadronic τ -leptons as well as in the average number of interactions per
bunch crossing. The resulting rejection power for jets misidentified as hadronic τ -leptons
against the efficiency to select true hadronic taus is shown in Figure 5.9. In addition, four
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Figure 5.9: Rejection power for jets misidentified as hadronically decaying τ -leptons against the efficiency
to select true hadronic taus resulting from the RNN algorithm. In red, the curve for hadronic taus with
one track are shown, in blue for hadronic taus with three tracks. The dashed lines indicate the curves of
the previously used boosted decision tree algorithm [202].

different working points, very loose, loose, medium and tight, are marked, given in the order
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of decreasing true τhad-vis efficiency and increasing background rejection. In this analysis,
the medium working point is required, corresponding to a signal efficiency of 75%(60%)
and a background rejection of 35 (240) for hadronic taus with one (three) tracks.

Furthermore, Boosted Decision Trees are used to reject electrons that are mis-identified
as hadronic τ -lepton decays with one track. Three working points, loose, medium and tight
are provided, listed in decreasing signal efficiency. The loose working point is utilised in this
analysis, corresponding to a signal efficiency of 95%. In addition, a muon veto criterion
is applied. This selection defines the baseline hadronic tau leptons that enter the overlap
removal procedure and that are used afterwards to veto events with hadronically decaying
τ -leptons.

5.6 Missing Transverse Energy

Weakly interacting particles like neutrinos travel through the detector and escape it without
leaving a trace, and as such cannot be detected directly. However, the total momentum
in the transverse plane is known to sum up to zero due to momentum conservation. The
same does not hold for the longitudinal direction where the initial total momentum is
unknown. Therefore, when assuming perfect resolution, the momentum of the system of the
invisible particles in the transverse plane can be determined indirectly as missing transverse
momentum (pmiss

T ) [203]:

∑
pT =

Nhard objects∑
i=1

pT,i +

Nsoft term objects∑
j=1

pT,j + pmiss
T = 0 (5.4)

=⇒ pmiss
T = −

Nhard objects∑
i=1

pT,i −
Nsoft term objects∑

j=1

pT,j . (5.5)

Here, the hard objects include all baseline muons, electrons, photons, hadronically decaying
τ -leptons and jets although in this analysis hadronically decaying τ -leptons are rejected.
An overlap removal as described in Section 5.7 between the objects is performed. The soft
term comprises all charged signals from the primary vertex that are not associated with
reconstructed objects. Its correct measurement is challenging since it is easily contaminated
by signal from pile-up and underlying event. Here, a soft term calculation based on tracks
only is utilised which is found to perform best (although contributions from neutral particles
are neglected) since signal from out-of-time pile-up2 can be suppressed. The tracks that
are included in the soft term have to fulfil several track quality as well as track-to-vertex-
association criteria. Only tracks matched to particle-flow objects that are not part of the
hard objects are considered.

Usually, the absolute value of pmiss
T is used which is denoted with Emiss

T , the missing
transverse energy. It presumes that the masses of the invisible particles can be neglected.
In practice, Emiss

T is also often used for the vector size pmiss
T .

Two working points for the Emiss
T reconstruction are defined based on the jet selection

due to its large impact on the Emiss
T performance. The loose working point includes all

jets with pT > 20 GeV in the hard objects term which in addition pass the JVT criteria
when they have |η| < 2.4 and pT < 60 GeV. The tight working point excludes forward jets
with |η| > 2.4 and 20 GeV < pT < 30 GeV which results in an improved Emiss

T resolution
at high pile-up and in general a reduced pile-up dependency. The drawback is that also
hard-scatter jets may be removed. In this analysis, the tight working point is chosen.

A non-zero Emiss
T in events where no Emiss

T is expected can arise from imprecisely

2signal from collisions in previous bunch crossings
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measured momenta of the contributing objects, from miscalibration and from detector areas
that are not or insufficiently instrumented as well as from pile-up.

Figure 5.10 shows the resolution of Emiss
T

3 with respect to the number of primary vertices
for different working points and different processes. The resolution of both processes clearly
shows the dependency on the number of primary vertices and also its reduction for the tight
compared to the loose working point. Especially for the VBF H →WW -events that have
more hard scatter forward jets, it is visible that the resolution for the tight working point is
worse for a low number of primary vertices. No true Emiss

T is expected for Z → µµ-events.
The resolution ranges from 10GeV for a low number of primary vertices to 25GeV.
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Figure 5.10: The resolution of Emiss
T with respect to the number of primary vertices, determined with

simulated Z → µµ- (a) and VBF HWW -events (b). Red corresponds to the loose, green to the tight
working point [203].

5.7 Overlap Removal

Reconstructed and identified objects are not necessarily exclusive but can have shared hits
or tracks in the ID or shared energy clusters in the calorimeters. Typically, if one object
overlaps another within a certain ∆R-cone one of them is removed following a pre-defined
scheme which considers the probablities of each object type to be mis-identified as another.
Hereby, the standard working point of the AssociationUtils package [204] is exerted. The
details are summarised in Table 5.1. The removal is performed in the order given in the
Table. For example, after the electron-electron decision based on the size of their transverse
momenta, a hadronic τ -lepton is rejected in favour of an electron if the τ -lepton is within a
cone of ∆R = 2 around the electron. The overlap removal is performed between all baseline
objects, before the missing transverse energy is calculated, the b-tagging is performed and
hadronic τ -leptons are vetoed.

3the previous EM topo (electromagnetic topological) jet and Emiss
T definitions were used here instead of

the newer particle-flow definitions
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Reject Against Criteria

electron electron shared track, p1
T < p2

T

τhad electron ∆R < 0.2
τhad muon ∆R < 0.2
muon electron is CT muon and shared track

electron muon shared ID track
jet electron ∆R < 0.2

electron jet ∆R < 0.4
jet muon Number of tracks < 3 and ghost-associated or ∆R < 0.2

muon jet ∆R < 0.4
jet τhad ∆R < 0.2

Table 5.1: The overlap removal criteria applied to all baseline objects in the order given in the table. The
criteria correspond to the standard working point of the AssociationUtils package [204]. The criterium
“shared track” removes electrons that share an ID track with muons, but vetoes overlapping CT (calorimeter-
tagged) muons. The term “ghost-associated” means that the muon ID track is associated to the jet.





Chapter 6

Introduction to Neural Networks for
Signal and Background Separation

One crucial component in the search for small1 signals is the ability to obtain the best
possible separation of signal from the expected background contributions. There are various
tools available to tackle this challenge. For this analysis, it was decided to use Fully
Connected Feed Forward Neural Networks (NNs). Several reasons led to this decision:

• in general, NNs can approximate any continuous function up to any desired accuracy
and hence, in principle, also the Bayes Optimal Classifier [205],

• the information of many input features can be mapped onto a lower-dimensional
observable,

• easy construction of multiclass classifiers by design,

• possibility to exploit unknown underlying correlations between the input features,

• in connection with the previous point, the usage of mainly low-level input features is
promising.

Put simply, neural networks exhibit more potential for experimentation compared to e.g.
Boosted Decision Trees (BDTs). The basics of NNs are explained in Section 6.1, followed
by an introduction of k-fold cross validation to enhance training statistics in Section 6.2.
Section 6.3 describes the preprocessing and selection of input features as well as a method
to obtain an importance ranking of the input features. The chapter ends with a discussion
of the optimisation of the hyperparameters which define the architecture and the training
process of an NN in Section 6.4.

This chapter gives a general overview of NNs for classification, i.e. in the context of
signal and background separation. The details of the implementation specific for the
analysis presented in this thesis as well as different studies that were performed are given
in Section 8.2.

6.1 Feedforward Neural Networks

Artificial Neural Networks (ANNs), also called Neural Networks (NNs), are inspired by
our understanding of the structure of the human or animal brain: artificial neurons, called
nodes, are connected via artificial synapsis. The aim of an NN is to map the information
of many input features xi (describing a single element or event of the dataset) onto a

1with respect to the expected background contributions

79
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lower-dimensional observable which allows for obtaining simplified, reduced and condensed
information hidden in the complexity of the input features. In NNs the nodes are typically
arranged in layers, where each layer consists of a certain number of nodes. The nodes of
successive layers are connected to each other. A basic example of such an NN where the
information is only passed forward (Feedforward Neural Network) is depicted in Figure 6.1.
The example network has three layers of nodes of which the first layer, shown in green, has
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b2
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l = 2l = 1 l = 3

Figure 6.1: Sketch of a neural network architecture with an input layer (green), one hidden layer (blue)
and an output layer (red). Four input features (four nodes in input layer) of each event are used to classify
it into one of three classes (three nodes in output layer).

four nodes corresponding to four input features, one hidden layer (blue) with five nodes
and an output layer (red) with three nodes. In the analysis presented in this thesis, NNs
are used for classification, i.e. the categorisation of events into different classes. Therefore,
all further description focuses on classification tasks and partially follows the presentation
in [206]. The three output nodes in the example correspond to three individual classes, e.g.
signal, background 1 and background 2. The number of hidden layers and the number of
nodes per layer have impact on the categorisation performance of the NN and as such are
subject to manual or automatic tuning (Section 6.4). In contrast to that, the number of
nodes in the input and output layers are given by the task at hand. Details on how to
choose appropriate input features for the input layer are given in Section 6.3.

6.1.1 Notation

The output values ŷj , corresponding to the different classes j, are a function of the input
features xi and the parameters wlj,i and b

l
j , called weights and biases where l denotes the

corresponding layer (not to be interpreted as an exponent). For example, the output value
o2

1 of node 1 in layer 2 (see Figure 6.1) is given by

o2
1 = σ

(∑
i

(
w2

1,ixi
)

+ b21

)
, (6.1)

with σ being the so-called activation function. The output o2
1 subsequently becomes the

input to all nodes in the next layer. Therefore, the output ŷ1 = o3
1 of output node 1 can be



6.1. FEEDFORWARD NEURAL NETWORKS 81

obtained from

ŷ1 = o3
1 = σ

(∑
i

(
w3

1,io
2
i

)
+ b31

)
, (6.2)

which depends on the previous o2
1 and therefore on the xi. More generally, the output of

node j in layer l can be written as

olj = σ

(∑
i

Ä
wlj,io

l−1
i

ä
+ blj

)
, (6.3)

where i denotes node i in layer l−1. A more compact notation can be achieved by absorbing
the indices i and j into a vector notation. The vector of all outputs ol in layer l can be
written as

ol = σ
Ä
W lol−1 + bl

ä
= σ
Ä
zl
ä
, (6.4)

where wlj,i is the j, i-th element of the weight matrix W l in layer l and o2−1 = x are the
input features. Additionally, the argument of the activation function σ, also called weighted
input, is typically defined as zlj for node j in layer l as given in the second part of Eq. 6.4.

Such an NN can, in general, approximate any continuous function up to any desired
accuracy. This is qualitatively visualised in chapter 4 of [206].

6.1.2 Activation Functions

Various functions qualify for use as an activation function. For classification, a common
choice for the activation function σ

(
zL
)
of the last layer L (the output layer) is the softmax

function. For output node j which is equivalent to class j it is defined by

ŷj = σj
Ä
zL
ä

=
ez
L
j∑Cl

k=1 e
zLk
, (6.5)

which depends on the zLk of all classes with Cl denoting the number of classes. The sum
over all classes adds up to 1,

Cl∑
j=1

σj(z
L) =

Cl∑
j=1

ŷj = 1 , (6.6)

and all σj are between 0 and 1 which allows for interpreting the individual σj as probabilities.
That means ŷj gives the probability for an event with input feature vector x to belong
to class j. An exemplary visualisation of the softmax activation function for three output
classes is shown in Figure 6.2. It illustrates that the sum of the three curves adds up to
1 for each value of z3. Each curve represents the output probability of one of the three
classes as a function of z3 with fixed z1 and z2. While σ3 increases with increasing z3 the
other two decrease, consequently.

The activation function associated with the hidden layers is subject to the optimisation
procedure described in Section 6.4.1. Possible functions among many more are the sigmoid
function and the (Leaky) ReLU function (Rectified Linear Unit) [207, 208]. The sigmoid
function is defined by

σj
Ä
zlj
ä

=
1

1 + ez
l
j

, (6.7)

and is visualised in Figure 6.3(a) together with its gradient. The shape of the sigmoid
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Figure 6.2: The activations σ1, σ2 and σ3 of three output classes are plotted against the free variable z3
which is the weighted input of the third class. The weighted inputs of the other two classes z1 and z2 are
fixed to the arbitrary values of z1 = −0.025 and z2 = 1. Adapted from [206].

function is comparable to the softmax activation function. It maps values in the range
(−∞,∞) onto (0, 1). Its derivative, given by σ(z)(1−σ(z)), is largest for z = 0 and vanishes
for increasing |z|. The (leaky) ReLU function is defined by

σj
Ä
zlj
ä

=

®
zlj if zlj > 0

α · zlj otherwise
(6.8)

and its distribution and gradient are shown in Figure 6.3(b). For α = 0, it is denoted by
ReLU function only and maps values between (−∞,∞) onto [0,∞) and has a slope of 1
for zlj larger than 0 and a value and slope of 0 for zlj ≤ 0. For α > 0, the function is called
leaky ReLU function. It has a small slope α below zlj = 0 which allows for a small positive
gradient in this range. In this case the values are mapped onto a range of (−∞,∞). The
function value of the (leaky) ReLU function as well as its derivative are easy and fast to
compute. All discussed activation functions are not linear, as otherwise the NN could only
model linear functions. The discussion of the importance of the gradients of the activation
functions as well as of the advantages and disadvantages of both activation functions is
part of the following Section 6.1.3.
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Figure 6.3: Two possible activation functions (solid lines) together with their derivatives (dotted lines):
sigmoid activation function (a) and leaky ReLU activation function (b).
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6.1.3 Training of a Neural Network

In order to apply an NN to classify events, appropriate values for the weights wlj,i and biases
blj must be found first. The process of finding the weights and biases is called training. To
perform the training, the network is fed with the values of the input features x of each
training event for which also the true class it belongs to is known (supervised learning).
For example, y = (0, 0, 1) indicates the event belongs to class 3. The cost function used for
this optimisation problem is introduced in the next section.

Cost Function

The optimal values of the weights and biases are found by minimising the cost (or loss)
function C with respect to all wlj,i and b

l
j , hereby averaging over all N training events:

C =
1

N

N∑
n=1

Cn , (6.9)

with Cn being the cost of event n. Formulating the cost function as an average is crucial
for the Backpropagation Algorithm which is discussed later. A typical choice for the cost in
classification problems is the categorical cross-entropy. Its definition is given as

C =
1

N

N∑
n=1

Cl∑
c=1

−yn,c · log ŷn,c , (6.10)

with N being the number of training events, Cl the number of classes, yn,c being 0 or
1 depending on whether the event n belongs to class c (1) or not (0) and ŷn,c being
the predicted probability for event n to be in class c. This means that if yn,c is 0, the
corresponding n, c-term in C is 0 as well and therefore does not contribute. Hence, only
the ŷn values that correspond to the class ctrue to which the event is known to belong to
(yn,ctrue = 1) contribute to the cost function. This reduces the cost function to

C =
1

N

N∑
n=1

− log ŷn,ctrue , (6.11)

with the subscript ctrue indicating that only the ŷn of the corresponding true class remain.
Figure 6.4 shows the term − log ŷ plotted against ŷ. Due to the softmax activation function
in the last layer, the range of ŷ is (0, 1). It shows that if the predicted ŷn,ctrue of an event
n is equal to the true value yn,ctrue (yn,ctrue = 1), the corresponding summand in the cost
function yields 0 = − log(1) and thus minimises the cost function. The further the predicted
probability ŷn,ctrue moves away from the ideal value 1, the larger the cost gets; the penalty
increases exponentially. Thus, the categorical cross-entropy is a suitable cost function for
classification.

Minimisation of the Cost Function

The cost function is a function of many parameters (wlj,i and b
l
j)

2 and hence it is typically
not possible to minimise the cost function analytically. Therefore, an iterative optimisation
algorithm called Gradient Descent [209, 210] is used to find a local minimum. The gradient
of the cost function with respect to all wlj,i and b

l
j at the current parameter space point is

2The actual number of parameters is
∑L−1
l=1 N

l · N l+1 +N l+1 with L being the number of layers and
N l the number of nodes in layer l.
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Figure 6.4: The distribution of the relevant part of the categorical cross-entropy cost function with respect
to the predicted probability ŷ of the corresponding true class.

calculated3 and the parameter values are updated in the direction of the negative gradient
which indicates the steepest descent. This can be expressed with the following update rules
for the parameters, i.e. for the weights and biases:

wlj,i −→ wl
′

j,i = wlj,i − η
∂C

∂wlj,i
= wlj,i −

η

N

N∑
n=1

∂Cn

∂wlj,i
, (6.12)

blj −→ bl
′

j = blj − η
∂C

∂blj
= blj −

η

N

N∑
n=1

∂Cn

∂blj
. (6.13)

The updated values of the parameters are indicated by wl ′j,i and b
l ′
j while ∂C

∂p (p = wlj,i or b
l
j)

denotes the gradient of the cost function with respect to the respective parameter p. When
replacing C by its average over all training events, as defined in Eq. 6.9, the expressions on
the right hand side are obatined. The length of the step that is taken for each parameter in
the direction of the negative gradient is represented by η, also called learning rate. The
choice of the value of η is very decisive for the training success of the network: if it is chosen
too small the network only learns very slowly, if it is chosen too large it may lead to an
increase of the cost function value instead of a decrease. The learning rate is one of the
hyperparameters and as such part of the hyperparameter optimisation procedure described
in Section 6.4.

Evidently, many gradients (for each weight and bias and for each training event) need
to be computed, which is time-consuming. Therefore, in order to decrease training time,
Stochastic Gradient Descent (SGD) is often used instead. The gradient is calculated only
based on a random subset of size M (also called batch) of all N training events, i.e. N is
replaced by M in Eqs. 6.12 and 6.13. This speeds up the calculation of the gradients for
each iteration and more updates of the weights and biases can be achieved in the same
time. If M is large enough, the gradient obtained from the subset is assumed to be a good
approximation of the true gradient. Small fluctuations in the update history are acceptable
since it is more important to move in the approximately correct direction within reasonable
time to decrease C than to know the exact gradient in each iteration. After the iteration
based on the first subset, another iteration based on the next (stochastically independent)
subset of same size is performed until each training event was used once, which corresponds

3This implies that the cost function must be differentiable with respect to the weights and biases which
is true for the categorical cross entropy.
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to one epoch. The training is finished for a pre-defined number of epochs. If the usual
gradient descent instead of SGD were used (M = N), one update per epoch would be
performed. Otherwise, N/M iterations per epoch are performed4. There are various factors
that impact the appropriate choice of M : as mentioned before it should be large enough
such that the fluctuations remain within reasonable limits, but it should also be small
enough to gain from reduced computation times. Importantly, events of all classes should
be represented in each batch and the sum of weights in the batch for each class should be
positive (see Section 6.3.1 for details). Because the batch size M determines how often the
weights and biases are updated per epoch, the choice of M directly impacts the choice of
the number of epochs if the total number of iterations should be kept constant.

Although SGD provides a substantial improvement in training performance, the compu-
tation of the gradients remains costly and hence, a fast algorithm to obtain the gradients is
crucial to perform the training of complex neural networks in a reasonable amount of time.
The Backpropagation Algorithm is used to perform this task and it is introduced in the
following paragraph.

Backpropagation Algorithm

The backpropagation algorithm [211, 212] consists of four equations which allow the
calculation of the gradients with respect to the weights and biases in all layers and nodes.
The four equations are given in Eqs. 6.14–6.17 [206] and are motivated afterwards followed
by an explanation of how this is applied to train an NN.

∂Cn

∂blj
= δlj (6.14)

∂Cn

∂wlj,i
= ol−1

i δlj (6.15)

δlj =
∑
i

wl+1
i,j δ

l+1
i σ′

Ä
zlj
ä
→ δl =

(Ä
W l+1

äT
δl+1

)
� σ′

Ä
zl
ä

(6.16)

δLj =
∂Cn

∂oLj
σ′
Ä
zLj
ä

→ δL =∇oCn � σ′
Ä
zL
ä

(6.17)

The quantity δlj denotes the error of node j in layer l, i.e. it quantifies by how much the
cost changes if the weighted input zlj to neuron j in layer l is changed by a small amount.
Therefore, δlj is defined as [206]:

δlj :=
∂Cn

∂zlj
, (6.18)

and Eqs. 6.14 and 6.15 can be obtained by combining the definition of zlj given in Eq. 6.4,
the chain rule and the definition of δlj . Eq. 6.16 is an instruction on how to backpropagate
the error through the network from layer l + 1 to layer l. First, the transposed weight
matrix is applied to move the error backwards to obtain its impact on the output of the
previous layer l. Then, the derivative of the activation function is applied to move it further
backwards through the activation function of layer l to obtain the error of the weighted
input zl to layer l [206]. Finally, Eq. 6.17 defines the error in the last layer L which is
needed as input to the previous Eq. 6.16. Both Eqs. 6.16 and 6.17 can, again, be proofen
by applying the chain rule. The formulas in Eqs. 6.16 and 6.17 are also given in vector

4If N is not divisible by M , the number of iterations is dN/Me with the last batch being smaller than
the previous ones.
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notation for better readability where the symbol � indicates the element-wise product and
∇o is a vector where each component is the partial derivative with respect to oLj .

The steps needed to apply backpropagation in the course of gradient descent during the
training of a neural network are detailed below. Steps one to four are performed for each
training event in the current batch. Their results are combined within step five in order to
obtain the updated values for the weights and biases from this batch.

1. The output ol = σ
(
zl
)

= σ
(
W lol−1 + bl

)
is calculated for each layer l ∈ [2, 3, ..., L]

in a feedforward manner, starting with o2−1 = x being the input features.

2. The vector of output errors δL of the last layer is calculated using Eq. 6.17.

3. The error is backpropagated into the previous layers by evaluating Eq. 6.16 for each
l ∈ [L− 1, L− 2, ..., 2] and hence all δl are obtained.

4. The derivatives of the cost function with respect to all weights and biases (∂Cn/∂wlj,i
and ∂Cn/∂blj) are calculated using Eqs. 6.14 and 6.15, respectively.

5. Finally, the results of all training events from the previous step are combined according
to Eqs. 6.12 and 6.13 to obtain the updates for the weights and biases from the current
batch.

In conclusion, the back propagation algorithm allows updating the weights and biases
without explicitly calculating the derivatives of the cost function with respect to them.
Only the derivatives of the cost function with respect to the final outputs oLj = ŷj and the
derivatives σ′(zlj) of the activation function with respect to the zlj are needed, which both
are easy to compute. Therefore, the properties of the derivative of the activation function σ
are of high importance with respect to the performance of the backpropagation algorithm.
For instance, the derivative of the sigmoid activation function in Figure 6.3(a) shows
that the overall small value of its derivative, which is at most 0.25 and decreases further
due to continuing multiplication across the layers (see Eq. 6.16) can be a disadvantage.
Furthermore, the derivative almost vanishes for values of |z| larger than ∼ 5, for which it is
0.007, which leads to a slow learning progress. The ReLU activation does not show these
problems, as the gradient is always either 1 or 0. One disadvantage of ReLU can be the
unlimited value of its output. Additionally, the gradient of 0 for z < 0 can lead to dying
nodes (i.e. if z < 0 for all inputs, the gradient is always zero and hence no learning occurs)
which can be undesired. In order to overcome this problem, leaky ReLU was introduced
with a small positive slope α below 0 which leads to a small but non-zero gradient.

Alternative Optimiser

Other optimisers instead of (Steepest) Gradient Descent can be chosen for minimising the
cost function. The Adam (Adaptive moment estimation) optimiser [213] is tested as an
alternative in this work. It is an extension of Gradient Descent, incorporating first- and
second-order moments of the gradients of the loss function with respect to the parameters
wlj,i and b

l
j . The update rules for the weights and biases (Eqs. 6.12 and 6.13) are adapted

to the following terms, where wlj,i and b
l
j are replaced by a common p:

pt−1 −→ pt = pt−1 − η
m̂p,t√
v̂p,t + ε

(6.19)

with

m̂p,t =
mp,t

1− (β1)t
and mp,t = β1 ·mp,t−1 + (1− β1) · ∂C

∂p
(6.20)
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and

v̂p,t =
vp,t

1− (β2)t
and vt = β2 · vp,t−1 + (1− β2) ·

Å
∂C

∂p

ã2

(6.21)

with t indicating the t-th iteration or time step. A new batch for evaluation is used at each
step t. mp,t and vp,t are called running averages of the first- and second-order moments of
the gradient, respectively. At time step t = 0, the mp,0 and vp,0 are initialised with 0 which
leads to a bias of the running averages towards zero. This is circumvented by a correction
that results in the terms m̂p,t and v̂p,t. The parameters β1 and β2 steer the averaging time
of the two moments, respectively and are ∈ [0, 1). The small parameter ε prevents division
by zero and is suggested in reference [213] to be set to 10−8. In reference [213] it is further
recommended that β1 and β2 are set to 0.9 and 0.999, respectively.

Adam does not just take a step into the direction of steepest descent but rather takes
the momentum of past iterations into account by averaging over the previous gradients.
This can lead to a smoother path in the parameter space of all p. By replacing v̂p,t in
Eq. 6.19 with the help of the variance σ2

p,t = v̂p,t − m̂2
p,t [214], one obtains useful insights

into the Adam update rule. Eq. 6.19 becomes:

pt−1 −→ pt = pt−1 − η
m̂p,t»

σ2
p,t + m̂2

p,t + ε
. (6.22)

Assuming the variance of the gradient over the last steps is small, i.e. σ2
p,t � m̂2

p,t, the
update rule becomes pp,t−1 −→ pt = pt−1 − η · sgn(m̂p,t). When, however, the variance
is large, i.e. σ2

p,t � m̂2
p,t, the update rule becomes pt−1 −→ pt = pt−1 − η m̂p,t|σp,t| with

∣∣∣ m̂p,tσp,t

∣∣∣
being small. Hence, the learning rate is effectively adapted individually for each parameter
p and is bound by the size of η.

6.1.4 Regularisation of Neural Networks

A common concern in NN training is overtraining which describes the state where the
network is not able to generalise to unseen data but instead learns specific features exclusive
to the training dataset. This is especially an issue in networks with a large number of free
parameters (weights and biases) combined with limited training statistics. One option to
prevent overtraining is L2 weight regularisation, which is used in this analysis. The key
idea is to add an additional term which is proportional to the sum of all weights to the loss
function [206] which penalises large values of the weights wlj,i in the network:

C = C0 +
λ

2N

∑
i,j,l

Ä
wlj,i
ä2
. (6.23)

The parameter λ, called regularisation strength, steers the impact of the additional term
with respect to the original loss function C0 given in Eq. 6.10. A larger value λ corresponds
to a stronger regularisation, meaning that the training will be more focused on keeping the
weights small compared to reducing C0. With the regularisation term included, the update
rule for the weights (Eq. 6.24) becomes:

wlj,i −→ wlj,i −
η

N

N∑
n=1

∂C0,n

∂wlj,i
− η

∂
(
λ

2N

∑
w w

2
)

∂wlj,i
= wlj,i −

ηλ

N
wlj,i −

η

N

N∑
n=1

∂C0,n

∂wlj,i
. (6.24)

From the adapted update rule it is apparent that the weights are reduced by a factor
(1− ηλ/N), although the last term can increase the weight’s value if this is beneficial for
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the reduction of the overall cost C. A qualitative explanation of why smaller weights are
advantageous for better generalisation is the following: smaller weights also cause a smaller
change in zj = wj,ixi + bj (and hence a smaller change in the outputs) for a small change in
an input feature xi due to e.g. noise. If, in contrast, wj,i is large, zj also becomes larger even
if the change in xi is very small. Therefore, the network is prone to pick up insignificant
specific features of the training dataset. The parameter λ is an additional hyperparameter
and must be tuned for each classification task.

6.1.5 Metrics for the Performance of Neural Networks

Various metrics are available for judging the performance of neural networks. The ones
made use of in this analysis are introduced in the following.

Loss

The value of the previously introduced loss function (Eq. 6.10) is an obvious metric, where
smaller values indicate better performance. The evolution of the loss over the epochs of an
NN-training is called learning curve and its shape gives insight into the learning progress.

Accuracy

In classification, an additional metric that can be monitored during the training process is
the accuracy A. It is defined as:

A =
1

N

N∑
n=1

δarg max
c
{yn,c},arg max

c
{ŷn,c} , (6.25)

with δ being the Kronecker delta. The sum goes over all events, c indicates the respective
class while y denotes the true value whether the event belongs to class c (yn,c = 1) or
not (yn,c = 0). The predicted value ŷ can be any value between 0 and 1 representing the
probability for event n to belong to class c. The classes with the highest values for yn and
ŷn are obtained via the arg max operation. If the true class and the predicted class for
an event coincide, the value of the summand of event n is 1, otherwise it is 0. Thus, the
accuracy is the ratio of events which are correctly classified over all events.

Area-Under-Curve

Another metric, typically only evaluated after training, is the area under the ROC-curve
(AUC), where ROC stands for receiver operating characteristic [215]. It is derived from
the individual output node probability distributions, i.e. for each class separately and
is a measure for the discrimination power of the probability distributions. The curve is
obtained by scanning the probability distribution ŷsignal in small steps (at different cut
values) from right to left (from large to small values), each time calculating the true-positive
rate (TPR) and the false-positive rate (FPR). The TPR is plotted versus the FPR, thus
the ROC-curve evolves from left to right. This is visualised in Figure 6.5. The TPR (signal
acceptance) is the ratio of the signal that is classified as signal over the total signal while
the FPR (1 - background rejection) is the background that is classified as signal over the
total background. In this context, signal corresponds to the class of the respective output
node and background corresponds to the sum of all other classes.

A good separation of signal and background and hence a good performance of the
network is achieved when the TPR is large while keeping the FPR small. Ideally, the
ROC-curve would extend up into the top left corner which is equivalent to an AUC of 1.
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Figure 6.5: Visualisation of the true-positive rate (TPR) (red shaded area) and the false-positive rate
(FPR) (blue shaded area) on the basis of the signal and background distributions of the signal output node
probability ŷsignal (a) and the resulting ROC-curve (b). Note that the ROC-curve is an example and not
related to the curves in (a). The area-under-curve (AUC) is shaded in gray.

Full Statistical Analysis

The most accurate metric for comparing the performances of different networks in the
context of the H-LFV search is the full statistical analysis described in Chapter 10. However,
this is computationally expensive and furthermore, it is evaluated when estimating the
background processes with the Symmetry Method and not when estimating the background
processes from simulated events (as it is done for the training of the NNs as described in
Section 8.2). Hence, this metric is only utilised for networks that were pre-selected with
the help of other metrics.

Binned Asimov Significance

The Binned Asimov Significance [216] is a fast method to calculate a metric that is closer to
the final Statistical Analysis than the accuracy or the AUC. It yields the same result as the
Statistical Analysis performed without considering any uncertainties on the estimation of the
different processes. The Binned Asimov Significance Z is defined in terms of signal (s) and
background (b) (defined as described for the Area-Under-Curve) for a binned distribution of
ŷsignal:

Zi =
»

2 · ((si + bi) · ln (1 + si/bi)− si), (6.26)

Z =

Ã
Nbins∑
i=1

Z2
i , (6.27)

with Nbins being the number of bins and si and bi denoting the number of signal and
background events in bin i, respectively. The uncertainty on Zi based on the uncertainty of
signal, ss,i, and background, sb,i, is given by:

sZ,i =
1

Zi
·
»

(ln (1 + si/bi) · ss,i)2 + ((ln (1 + si/bi)− si/bi) · sb,i)2. (6.28)
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6.2 k-fold Cross Validation

It is good practice to validate the performance of a neural network on statistically inde-
pendent data (the so-called validation set) and to use another independent dataset (the
so-called test set) to perform the final statistical analysis in order to avoid any bias. But
this implies that all available data must be split, leading to reduced statistics for each step.
k-fold cross validation can partially circumvent this. All available data is randomly split into
k equally sized slices. In this work k = 10 is used. Then, k = 10 individual neural networks
(with the same hyperparameters) are trained, each using k − 2 = 8 slices, corresponding to
80% of the data. The remaining 2 slices (10% of the dataset, respectively) of each neural
network are used for validation and testing. The usage of each slice is interchanged for
the different neural networks such that each slice is used eight times for training, once for
validation and once for testing. When adding up the distributions of all k = 10 neural
networks, in total all available data is used for both, validation and testing. The concept of
the cross validation is visualised in Figure 6.6. To apply the neural networks to recorded

NN k

NN k-1

NN 3

NN 2

NN 1

1 2 3 4 k-2 k-1 k
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. . .

. . .

..
.

..
.

test set validation set training set

Figure 6.6: Visualisation of the concept of k-fold cross validation.

ATLAS data, the data is also split into 10 equally sized slices. To ensure that the data
slices are always the same during repeated processing of the data, the splitting is done via
’event number modulo 10’.

6.3 Input Features

The preprocessing and selection of the input features that are utilised for the neural networks
are of high importance for the performance of the trained NN.

6.3.1 Preprocessing

The input features or input variables utilised to classify the event can differ substantially
in their magnitude, range and spread of values. This would inevitably require different
orders of magnitude of the individual weights and biases such that the weighted inputs zlj
have comparable orders of magnitude when entering the activation function. However, the
weights and biases are typically initialised with small random values and hence the training
can be unstable or slow. Therefore, to stabilise the training process, input features are
standardised such that they are in comparable ranges. To do so, the input features of the
training events are shifted by their mean and divided by their standard deviation, such that
they are centered around 0 and have a standard deviation of 1. The mean and standard
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deviation used for scaling must also be applied to the events which are later classified using
the network.

In particle physics, the events in the training dataset usually have associated event
weights, e.g. MC weights coming from the simulation process (Section 4.1), from scale factors
determined to correct for differences observed in simulation and data (Chapter 5), and from
corrections applied in the course of the background estimation techniques (Section 7.2).
These weights alter the shape (and also normalisation) of the distribution of the observables
(i.e. input features) differently for the different classes. Hence, it is important to not
neglect these weights in the training process. This is achieved by weighting each term Cn
corresponding to event n in the loss function (Eq. 6.9) with the respective event weight
which modifies the importance of the single Cn terms. To some degree this is also possible
if an event weight is negative given there are enough events with a positive weight in the
same phase space corner such that their sum remains positive. This can also be steered by
the choice of the batch size. But if the number of events with a negative event weight in
one class is much larger than the number of events with a positive event weight (even if the
sum of weights is positive), the training is at risk of becoming unstable. In such cases it
is advisable to combine two event classes into a single one (e.g. if both classes comprise
background processes). Negative event weights can either arise from negative MC weights
due to higher-order corrections or if a whole process needs to be subtracted in the course of
the background estimation.

There is not necessarily one class per physics process in the neural network training.
Because on one hand there is no clear definition to which detail the physics processes should
be split. And on the other hand the available statistics per class should not be too small.
Hence, the classes defined for the neural network training can each comprise several physics
processes. The number and the choice of these classes is also subject to an optimisation
procedure. The processes that are combined into one class are weighted according to their
respective cross sections. Furthermore, it should be ensured that all classes are weighted
equally for a stable training process. These class weights are obtained by comparing the
sum of weights of each class: the class with the largest sum of weights N largest

weighted gets a class
weight of 1, the class weights of the other classes i are calculated as N largest

weighted/N
i
weighted.

This ensures equal importance of each class in the training. A higher class weight can
intentionally be assigned to some classes in order to bestow more importance on them in
the training. However, equal weighting of the classes is set as default.

6.3.2 Selection

The selection of the input features is decisive for the performance of the network. There
are various options for compiling a set of input features: either a set of input features
mainly based on high-level features such as the collinear mass (reconstructed Higgs-boson
mass, detailed in Section 8.2.3) or ratios of the momenta of final state particles could be
chosen. Alternatively, a set consisting of only low-level features such as the four-vectors of
the final state particles, or a combination of low-level input features and a small number of
well selected high-level features could be chosen. The advantage of a set consisting only
of low-level input features is that the network can identify high-level patterns by itself,
which are (yet) unknown and which it possibly would not be able to learn when other
pre-calculated high-level information is available. The downside of this elegant approach is
that in order to find features and patterns in the training dataset, the statistics must be
large enough to provide sufficient separation power between the classes. Hence, in this work,
different sets of input features are evaluated. The set of selected input features should be
large enough to provide sufficient separation power but should at the same time be as small
as possible to prevent overtraining. Furthermore, only variables that show a good modelling
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of the data by the simulated samples and by the full background estimation should be
included such that a good modelling of the resulting NN output node distribution(s) is
ensured. The Permutation Feature Importance described in the following Section 6.3.3
can help to reduce the number of input features for sets consisting mainly of high-level
features by ordering them by their importance in a specific network. However, this method
does not properly take correlations between features into account, which can influence the
importance ranking. In addition, the correlations between input features and the differences
in the correlations between the classes can be utilised to decide which input variables could
be removed. If two variables show a high correlation that is similar for the different classes,
one of the variables could be removed. But if the correlation differs between the classes
this may provide separation power and both variables should be kept.

6.3.3 Ranking

Knowledge about the importance of the individual input features on the performance of the
trained NN is useful for two reasons. On one hand it aids in improving the understanding
of the underlying model. On the other hand a ranking of the input features can be used
as a basis for removing unimportant features which do not contribute to the classification
power of the NN. There are several different methods to obtain a ranking of the input
features. One option is the successive removal of one input feature, followed by re-training
the NN and evaluating the changes in performance, e.g. via an appropriate metric such as
the value of the loss/cost function. However, this method is computionally expensive since
the NN must be re-trained for each removed feature. In addition, for a fair comparison,
hyperparameters may have to be re-tuned for each training. An alternative option is the
Permutation Feature Importance which is introduced below. It does not require re-training
the NN but instead provides an importance metric based on the change in loss or another
performance metric when the events’ values of an input feature are permuted and hence
the relation between the input feature and the true class is broken.

Permutation Feature Importance

The Permutation Feature Importance is used to obtain an approximate ranking of the
importance of the input features for a specific model, in this work a trained NN. The
implementation and explanation detailed below follows the description given in [217].

A metric Moriginal (e.g. the loss or another performance metric) of the trained NN is
calculated with the validation data set (more details on the validation dataset are given
in Section 6.2). Then, the values of one input feature xi are shuffled between all events
such that the connection of the information of this input feature with the true classes of
the events is destroyed. The metric is recalculated as Mxi

shuffled. In principle, Mxi
shuffled is

expected to indicate a worse performance than Moriginal since information is removed by the
shuffling. The importance Ixi of one input feature xi is defined as Ixi = Mxi

shuffled/Moriginal.
When a smaller value of the metric indicates a better performance, Ixi is expected to be
larger than 1, and the larger Ixi is, the more important the corresponding input feature
is. For a more accurate result, the shuffling is repeated five times per input feature and
the mean of the resulting importance is quoted in combination with its standard deviation
as uncertainty. Finally, a ranking of the input features is obtained by sorting them in
descending order following their assigned importances Ixi .

In case of 10-fold cross validation (detailed in Section 6.2) the Feature Importance is
calculated as described above for each of the 10 NNs separately. Comparing the individual
rankings of the 10 NNs gives insights into the stability and similarity of the single networks
and of the feature importance ranking itself. A combined ranking over all 10 NNs is obtained
by computing the mean of Ixi of all 10 NNs. The uncertainty is given by the standard
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deviation of the Ixi of all 10 NNs.
However, there are also some concerns regarding Permutation Feature Importance: if

the input variables are (highly) correlated, the importance can be biased such that both
variables seem less important due to their shared importance. Furthermore, the shuffling
can introduce unphysical combinations of input features.

6.4 Hyperparameter Selection and Optimisation

There are various parameters of the neural network that either describe its architecture
or steer the training process. These so-called hyperparameters can be chosen freely (and
are not determined in the training process). However, they are, in addition to the choice
and preprocessing of the input features, pivotal for the network’s performance. The
hyperparameters relevant in this thesis are:

• number of output classes Cl

• one NN with Cl output classes vs Cl−1
NNs with two output classes each

• number of hidden layers Lh

• number of nodes per hidden layer N lh

• activation function in hidden layers and
corresponding parameters

• optimiser used in training

• learning rate η

• regularisation of the network and cor-
responding parameters

• batch size sb

• number of epochs Nep

• initialisation of the weights and biases

Identifying the optimal choice or value for the single hyperparameters is a challenging and
costly task. Some hyperparameters are chosen manually, for others systematic optimisation
using the hyperparameter optimisation framework Optuna [218] is performed. A short
description of Optuna is given in the following Section 6.4.1 while the details of the
hyperparameter selection and optimisation specifically for the HLFV analysis are given in
Section 8.2.4.

6.4.1 Optuna

The introduction to the Optuna framework in this section follows the description in [218, 219].
The selection of the optimal hyperparameter values is again a minimisation process. Hereby,
an objective function f(h) is minimised with h ∈ H representing a set of hyperparameter
values of the hyperparameter configuration space H such that h∗ = arg minh∈H f(h)
represents the best performing set. The objective function is defined by the user of the
framework and takes the hyperparameter values as inputs and returns the objective value
which is used to judge the performance of the respective set of hyperparameters. Usually,
the objective function is of unknown structure and the single hyperparameters can be of
different types: categorical, continuous, discrete. Each evaluation of the objective function,
i.e. calculation of the objective value for one set of hyperparameter values, is called trial
within Optuna. Typical choices for the objective value can be the loss, the accuracy, the
AUC or the binned significance (for details see Section 6.1.5). The objective function used
in this analysis is introduced in Section 8.2.4.

The evaluation of f(h) is typically very costly since a full NN training must be performed.
Hence, an efficient method for finding h∗ is desired. Methods such as a grid scan or the
more sophisticated random search [220] do not use the outcomes of previous trials to steer
the search in the hyperparameter space and thus may evaluate the objective function f(h)
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in non-promising regions of the hyperparameter space. Furthermore, badly performing
trials are not stopped prematurely (so-called pruning). Therefore, Optuna allows the user
to make use of Bayesian Optimisation [221], which approximates f(h) with a probabilistic
surrogate model S(T ) (prior) which is based an all previous trials T . The surrogate model
is faster to compute than f(h). It is the basis for the acquisition function a(h|T ) which is
used to obtain the next hyperparameter set hnew to be tested. The acquisition function
a(h|T ) (often the Expected Improvement [221, 222] is used) performs a tradeoff between
exploitation, i.e. selecting a set hnew from a region in H where the surrogate predicts
good performance, and exploration, i.e. selecting a set hnew from a region in H where
the uncertainty on the surrogate is still large. The acquisition function a(h|T ) and the
model S(T ) are chosen such that their evaluation time is short. The new hyperparameter
set hnew that maximises5 a(h|T ) is chosen and f(hnew) is evaluated. The outcome is
utilised to update S(T ) (posterior) and the steps are repeated. Following this procedure,
different promising sets of hyperparameters h are evaluated and the best performing one is
returned. The implementation using Tree-structured Parzen Estimators (TPEs) [223–225]
for Bayesian Optimisation is used in this analysis.

In addition, Optuna provides the possibility to prune non-promising trials. Different
pruning algorithms are provided. For this analysis, the Median Pruner is used, which
prunes “if the trial’s best intermediate result is worse than median of intermediate results
of previous trials at the same step” [226]. Here, the loss of the validation dataset represents
the intermediate result and the training epochs are the steps.

There are also other frameworks that provide tools based on Bayesian Optimisation to
optimise the hyperparameter values. But Optuna has the advantage that it lets the user
define the hyperparameter search space in a define-by-run [218] style. That means that the
value space of one hyperparameter can depend on the value of another hyperparameter.
This allows for a flexible creation of the hyperparameter search space.

The usage of Optuna in the selection process of the hyperparameter values in this thesis
is detailed in Section 8.2.4.

5Higher values of the acquisition function a(h|T ) indicate more promising hyperparameter sets.



Chapter 7

Event Selection and Background
Estimation

This chapter gives an overview of the event selection and the methods to estimate the
individual background contributions. The event selection applies basic selection criteria
to enhance the expected signal contribution compared to background predictions and is
discussed in Section 7.1. The estimation of background contributions uses data-driven meth-
ods for the largest background contributions and simulated events for smaller contributions
and is described in Section 7.2.

7.1 Event Selection

The primary selection of events is performed by the ATLAS trigger system described
in Section 2.2.5. An overview of the triggers utilised for the H-LFV analysis is given
in Section 7.1.1. The event selection aims at efficiently selecting the signal events while
reducing the contributions from background processes. It does so by applying simple
requirements on the objects’ properties in the event which are motivated by the signal
signature. This is described in Section 7.1.2. Finally, the splitting of the events into
two datasets, each containing the majority of one of the two signal processes H → eτ or
H → µτ , is discussed in Section 7.1.3.

7.1.1 Trigger Selection

Events used in this analysis are triggered based on the presence either of an electron or a
muon in the event with so-called single lepton triggers or of both with so-called dilepton
triggers. These triggers apply requirements on the transverse momenta of the particles as
well as identification and isolation criteria to select events relevant for analysis.

The trigger items used in this analysis are listed in Table 7.1, where triggers in 2016-
2018 used tighter criteria compared to 2015 due to increased instantaneous luminosity and
therefore increased pile-up (Figure 2.8(b)). The listed triggers are combined with a logical
OR. Details on the ATLAS trigger system are given in Section 2.2.5. The naming convention
of the triggers is as follows. The term HLT denotes the High-Level Trigger , e or mu indicates
whether this trigger branch is an electron or muon trigger, the number afterwards gives the
pT -threshold required for the trigger object at HLT-level, followed by the quality criteria
at HLT-level. The quality criteria comprise identification criteria (lhmedium or lhloose)
including the information whether the requirement on d0 (transverse distance between
primary vertex and track) is dropped (nod0) as well as isolation criteria (ivarloose and
ivarmedium). The quality criteria are defined similar to the offline1 criteria discussed in

1Offline refers to the processing of the data after the events were triggered and stored while online refers

95
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Trigger Data recommended used
Menu Period Trigger Chain Name pT -thresholds pT -thresholds

Single
Electron

2015
HLT_e24_lhmedium_L1EM20VH 25GeV 25GeV
HLT_e60_lhmedium
HLT_e120_lhloose

2016-18

HLT_e26_lhtight_nod0 27GeV 27GeV
_ivarloose

HLT_e60_lhmedium_nod0
HLT_e140_lhloose_nod0

Single
Muon

2015 HLT_mu20_iloose_L1MU15 21GeV 25GeV
HLT_mu50

2016-18 HLT_mu26_ivarmedium 27GeV 27GeV
HLT_mu50

Dilepton 2015 HLT_e17_lhloose_mu14 18GeV, 15GeV 18GeV, 18GeV

2016-18 HLT_e17_lhloose_nod0_mu14 18GeV, 15GeV 18GeV, 18GeV

Table 7.1: Triggers used in this analysis, combined via a logical OR. Symmetric offline pT -thresholds are
used instead of the recommended ones to avoid introducing an artificial asymmetry between electrons and
muons. For data taking during 2015 the used pT -thresholds do not represent the complete picture; consult
the text for more information.
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Figure 7.1: Visualisation of the trigger offline pT -thresholds for data-taking during 2015 (a) and during
2016-2018 (b). The coloured areas indicate the phase space spanned by the recommended pT -thresholds of
the individual triggers: single-muon trigger (red), single-electron trigger (blue) and dilepton electron-muon
trigger (green). Black solid lines indicate the symmetric thresholds used in the analysis. The offline object
selection requires the leptons to have p`T > 15 GeV, independent of trigger thresholds. This is incorporated
in the diagrams as well. The shaded areas in (a) are not covered by the symmetric pT -thresholds listed in
Table 7.1 but are recovered by additional requirements; consult the text for more information.

Chapter 5 but are typically less costly in order to allow for sufficiently fast processing.
The addition of an L1* requirement indicates that non-default requirements for the Level-1

to the processing during datataking.
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Trigger were used. The term L1EM20VH indicates that instead a pT-threshold of 20GeV
measured by the electromagnetic calorimeter (EM) which varies with η to account for energy
loss (V) is required. In addition, hadronic core isolation (H) is required. The term L1MU15
indicates a pT -threshold of 15GeV for the muon candidate for the Level-1 Trigger .

Dedicated groups within the ATLAS collaboration study the efficiencies of the triggers
and recommend pT-thresholds to be used in analyses above which the triggers are expected
to be fully efficient. Below the recommended pT-thresholds the agreement of data and
simulated events is often insufficient. These recommended pT-thresholds are summarised
in Table 7.1 together with the thresholds that are actually used in the H-LFV analysis
which are at least as large as the recommended ones. The pT-threshold values chosen in
the analysis differ from the recommended ones to ensure a symmetric selection of electrons
and muons. A symmetric selection is crucial for the Symmetry Method as discussed in
Chapter 3. The overall trigger strategy is visualised in Figure 7.1 for 2015 and the other
datataking years separately. Both, the standard recommended pT-requirements and the
adjusted symmetric ones used in this analysis are indicated. Their values depend on the
trigger which fired (Table 7.1) and are indicated by the coloured lines. For 2016-2018
data taking the identification of the symmetric thresholds is straight-forward (Table 7.1
last column and Figure 7.1(b)). The green area of the dilepton trigger for pµT < 18 GeV
and peT < 27 GeV is discarded as a result of the symmetry-considerations essential for
the analysis method. For 2015 data taking the choice of the thresholds is more subtle.
The shaded areas in Figure 7.1(a) are not included by fully symmetric requirements of
pT > 25 GeV for the single lepton triggers and pT > 18 GeV for the dilepton trigger, as
listed in Table 7.1. They are recovered with the following additional criteria:

• if single-µ trigger fired: pµT > 21 GeV

• if dilep trigger fired: peT > 21 GeV and pµT > 15 GeV

In this way, only the area of the dilepton trigger with pµT < 18 GeV and peT < 21 GeV needs
to be discarded as a result of symmetric thresholds.

The different efficiencies of the single triggers introduce asymmetries between recon-
structed electrons and muons; this is, however, taken into account as described below in
Section 7.2.4.

The TrigGlobalEfficiencyCorrectionTool [227] provides the correctly calculated
efficiencies and scale factors (simulation-to-data correction factors) for the OR-combination
of the triggers.

7.1.2 Basic Event Selection

The events taken into account in this analysis must be part of a so-called Good Runs List
(GRL). The list is designed to contain only data where the ATLAS detector was fully
operational and the recorded data is complete and not corrupted. The bad batman event
cleaning is applied to data recorded in the years 2015 and 2016 to remove problematic events
based on the number of high pT clusters of poor quality in the electromagnetic end-cap
calorimeter (EMEC) [228]. This is recommended for analyses susceptible to mis-identified
Emiss
T and selecting jets with pT < 50 GeV. This reduces the number of events in data

from 2016 by 1.66% and those from 2015 by a negligible amount. The number of primary
vertices must be at least one in order to suppress random, non-collision events such as
cosmic rays.

The expected final state objects are required or non-expected ones are vetoed and basic
kinematic cuts are applied. The object definitions themselves are discussed in Chapter 5.
Two baseline light leptons2 that pass the overlap removal (Section 5.7) are required while

2See Sections 5.2 and 5.3 for the definition of baseline and signal for electrons and muons.
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hadronically decaying τ -leptons fulfilling the requirements defined in Section 5.5 are vetoed.
The two light leptons subsequently need to fulfil the signal lepton2 requirements, need to
have different flavour (i.e. one electron and one muon are required) and opposite-sign charges
(OC). The transverse momentum pT of the lepton with the larger transverse momentum,
called leading lepton `0, must be larger than 35GeV while the transverse momentum of
the other lepton, the sub-leading lepton `1, must be larger than 15GeV. The invariant
mass m`` of the two leptons must be between 30GeV and 150GeV to suppress background
contributions, primarily from top-quark production and diboson production, outside this
mass window populated by signal. A veto on b-jets (see Section 5.4.3) is applied in order
to suppress background contributions from top-quark production. The event selection is
summarised in Table 7.2. Distributions of the kinematic observables used to define the

Cut Selection Criteria

0 ∈ GRL + cleaning (data only)
1 npvx > 0

2 nµ = 1, ne = 1

3 nτhad = 0

4 qµ · qe = −1

5 p`0T > 35 GeV

6 p`1T > 15 GeV

7 30 GeV < m`` < 150 GeV

8 nb-jets = 0

Table 7.2: The Basic Event Selection. n stands for number, q for charge and “pvx” for primary vertex.

afore listed requirements, also called cuts, are shown right before these cuts are applied in
Figure 7.23. Requirements on the transverse momenta of the two leptons were, however,
already applied at an earlier stage of the sample processing and hence bias the displayed
distributions: pµT > 10 GeV and peT > 15 GeV. Additionally, the pT -thresholds required
for being near the trigger-efficiency plateau (Section 7.1.1) are applied beforehand. The
background contributions in the figures are estimated here based on simulated events and
split into individual processes that were introduced in Section 4.2.2 such that their individual
distributions can be seen. The reduction of contributions from top-quark production by
the applied b-veto is apparent when comparing Figure 7.2(c) and Figure 7.2(d). The cuts
at p`0T and on m`` are kept loose in order to maintain larger statistics for the subsequent
training of Neural Networks discussed in Section 8.2.

The Basic Event Selection is abbreviated by Basic Selection in the following and the
region defined by this selection is called Basic Selection Signal Region or in short Basic SR.

7.1.3 Lepton Assignment and Dataset Classification

The signal processes in this analysis are H → eτµ and H → µτe. Hence, one of the final
state light leptons originates directly from the Higgs boson while the other originates from
the τ -lepton. The lepton assignment procedure assigns each of the two light leptons to
the Higgs boson or to the τ -lepton, leading to the labels `H and `τ , respectively. This is
visualised in Figure 7.3, showing a sketch of a LFV decay of the Higgs boson in its rest
frame. The assignment is necessary in order to:

3Most of the kinematic distributions shown in this thesis were created with the uhepp python package:
https://uhepp.org/.

https://uhepp.org/
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Figure 7.2: Distributions of the observables to which selection requirements are applied in the context
of the Basic Event Selection. p`0T (a) and p`1T (b) are shown before cut 5 and 6, respectively (Table 7.2)
while the invariant mass of the two leptons, m``, is shown before cut 7 (c). The latter is again shown after
cut 8 (d) to visualise the effect from applying the b-veto. The cuts that are applied to the observables are
indicated by black dashed lines. The coloured and filled histograms correspond to the background processes
that were introduced in Section 4.2.2. The irreducible contributions are estimated directly from simulated
events (Section 4.1) and are scaled according to their cross section and to the respective luminosity. The
estimation of the reducible fake-backgrounds j → ` and other → ` is described in Section 7.2.2. The
H → `τ -signal is the sum of the H → eτ and the H → µτ signals, for better visibility it is displayed with a
branching ratio of 100%.

• classify the event either as H → eτµ or as H → µτe depending on whether the electron
or the muon is labelled as `H or `τ

• improve the mass reconstruction due to the correct assignment of the neutrinos to
the light lepton from the τ -lepton

• exploit the different kinematics of `H and `τ , e.g. in order to separate the H → `τ
signals from H → ττ

As briefly discussed in Chapter 3 and Section 4.2.1, the lepton with the larger transverse
momentum (pT) is assumed to originate from the Higgs boson while the one with the lower
pT is expected to originate from the τ -lepton where the additional neutrinos in the τ -lepton
decay carry away a fraction of the τ -lepton momentum, leaving less for the light decay
lepton (Figure 7.3). Previously,4 the transverse momenta were compared in the laboratory
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H
` τ ντ

ν̄`′

`′

`H `τ

Figure 7.3: Sketch of a LFV decay of the Higgs boson.

frame5 which results in `H = `0 and `τ = `1. However, the assumption is only valid in the
Higgs boson’s rest frame which differs from the laboratory frame when the Higgs boson
is boosted. Therefore, the aim is to boost the system back into the Higgs boson’s rest
frame in order to make the assumption valid again and hence enhance the number of events
for which the assignment is performed correctly. Owing to the measurement of only the
transverse component of the combined neutrino system as Emiss

T , the four-vector of the
Higgs boson pµH is not entirely known; its correct longitudinal or η component is missing. In
order to approximate this component, an estimation of the missing η-component of Emiss

T
is needed. Ideally, η(`τ ) would be used for η(Emiss

T ) due to the approximate collinearity of
`τ and the two neutrinos. However, `τ is still unknown (since the aim of the procedure is
to determine it), therefore the missing η-component of Emiss

T is approximated by η of the
electron-muon system:

η
(
pµ
Emiss
T

)
= η

(
pµe + pµµ

)
, (7.1)

where pµ
Emiss
T

, pµe and pµµ are the four-vectors of Emiss
T , the electron and the muon, respectively.

This approximation defines the full momentum-vector pH of the Higgs boson. In addition
the energy of the Higgs boson is adapted by constraining its mass to 125GeV:

1252 GeV2 = m2
H =

(
pµH
)2

=⇒ E2
H = p2

H + 1252 GeV2 . (7.2)

With the help of the approximated four-vector of the Higgs boson, the system is boosted
back into the approximate rest frame of the Higgs boson. The lepton with the larger
transverse momentum in this rest frame is denoted as `H while the other is denoted as `τ .

A comparison of the assignment accuracies after the Basic Selection using different
options is summarised in Table 7.3. All options listed in the table are based on pT-ordering.
But different assumptions on the frames are made in which the transverse momenta are
compared:

1. laboratory frame: the laboratory frame is used

2. approx. rest frame w/o η-, mH -constr.: the approximate Higgs-boson rest-frame is
used without the assumptions in Eqs. 7.1 and 7.2, i.e. the four-vector of the Higgs
boson used to boost back into the rest frame is the sum of the four-vectors of electron,
muon and Emiss

T as they were measured (no z- or η-component for Emiss
T )

3. approx. rest frame w/o η-constr.: the Higgs-boson four-vector uses the constraint
of Eq. 7.2 but not the assumption of Eq. 7.1, i.e. no z- or η-component for Emiss

T is
assumed

4. approx. rest frame: the assumptions of both Eqs. 7.1 and 7.2 are used; this is the
option which is used in the analysis

4in the Run 1 [120] and in the early Run 2 [19] publications
5which is the reference frame usually used for all observables and in which also all observables in the

scope of this thesis are measured in if not stated otherwise
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H → eτµ H → µτe

option ggF VBF VH ggF VBF VH

1. laboratory frame 88.7 78.0 77.1 85.1 71.1 71.1
2. approx. rest frame w/o η-, mH -constr. 92.4 88.4 82.3 92.0 88.4 80.6
3. approx. rest frame w/o η-constr. 92.9 89.4 82.6 92.3 89.1 80.8
4. approx. rest frame 93.6 91.3 84.6 92.8 90.5 82.3

Table 7.3: Accuracy of the lepton assignment in % for the different H-boson production modes obtained
by pT-ordering in the laboratory and in the approximate H-boson rest frame. The accuracies when using
the approximate H-boson rest frame without the η-constraint on Emiss

T and without the constraint on the
H-boson mass are listed as well. The accuracy is defined as the percentage of signal events for which the
lepton assignment is performed correctly such that the event is classified as the correct signal.

The gain by option 2 compared to option 1 is 4.2% and 8.1% for the ggF production process
for the signals H → eτµ and H → µτe, respectively. The VBF production process gains
13% and 24%, respectively, while the improvemt for the VH production process is 6.7%
and 13%. The improvement due to the additional assumptions (options 3 and 4) is smaller,
up to 3% in addition, but still desirable. Overall, when comparing option 4 to option 1,
the VBF production process exhibits the largest gains, followed by the VH production,
which is the same pattern as observed for option 2 versus option 1. The comparison of the
accuracies of the different production modes within option 4 shows that the ggF production
process achieves the highest accuracy, followed by VBF and VH. The reason why the VH
production process has the lowest accuracy originates from the additional V = Z,W -boson.
If it decays leptonically, there can be up to two additional leptons in the final sate which
can be accepted in the Basic Selection instead of the leptons originating from the Higgs
boson. This can deteriorate the accuracy. The assignment performs better for the H → eτµ
than for the H → µτesignal.

Using the above assignment method, each event can be classified into one of the two
datasets:

eτ -dataset: `H is the electron, `τ is the muon,

µτ -dataset: `H is the muon, `τ is the electron,

where the majority of the H → eτµ-signal events is part of the eτ -dataset and the majority
of the H → µτe-signal events is part of the µτ -dataset according to Table 7.3.

The expected yields of the different processes and the observed data after the Basic
Selection for the eτ - and µτ -datasets are listed in Table 7.4. Apart from one fakes component,
the other → ` contribution which is discussed in Section 7.2.2, there are more events in the
eτ -dataset than in the µτ -dataset. In the eτ -dataset, the muon has the smaller transverse
momentum in the laboratory frame for the majority of the events (if `τ = `1). Compared
to electrons, muons have a steeper and earlier turn-on curve for the offline efficiencies with
respect to the transverse momentum (Chapter 5 and Section 7.2.3). Therefore, more events
can be reconstructed for which the muon has a small transverse momentum than for which
the electron has a small transverse momentum. Whereas the trigger efficiencies for electrons
are higher than for muons (Section 7.2.3). Typically, the leading lepton in the event fires
the trigger which leads to more eτ - than µτ -events as well.
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Yields

Process eτ µτ

Signal (B = 1 %)
H → eτµ 2 457 ± 4 182.70± 1.10
H → µτe 183.30± 1.20 2 155 ± 4

Fake Contributions
j → ` 18 300 ± 160 17 060 ± 120
other→ ` 5 870 ± 70 11 150 ± 90

Symmetric Background

Z → ττ 81 340 ± 140 70 600 ± 130
Diboson 43 840 ± 80 39 470 ± 70
Top 41 400 ± 50 37 360 ± 50
H →WW 1 775 ± 4 1 488 ± 4
H → ττ 810.60± 1.60 722.00± 1.50

Total Background 193 340 ± 240 177 850 ± 210

s/
√
s+ b 5.55 5.08

Data 189 117 175 642

Table 7.4: Yields after the Basic Selection with statistical uncertainties, for the eτ - and µτ -datasets. All
values except for the j → `-fakes (Section 7.2.2) and data are estimated from simulated events. The signal
yields are given for a branching ratio of 1%.

7.2 Background Estimation

The estimation of the background contributions is based on the Symmetry Method introduced
in Chapter 3 which implicitly requires a separate estimation of the fakes since they are one
of the sources for the violation of the e/µ-symmetry assumption.

In the following, a more detailed introduction to the Symmetry Method and its implemen-
tation is given in Section 7.2.1. Section 7.2.2 describes the estimation of the fakes, which are
events where other objects are mis-identified as prompt leptons. The determination of the
detection efficiencies utilised in the Symmetry Method is introduced in Section 7.2.3. Finally,
Section 7.2.4 concludes by combining the individual steps to obtain the full background
estimation and the modelling of the data by the background contributions is investigated.

7.2.1 Implementation of the Symmetry Method

The Symmetry Method is based on two assumptions, as described in Chapter 3:

1. Standard model processes are symmetric with respect to an exchange of electrons
with muons and vice versa.

2. The two LFV Higgs-boson decays H → eτ and H → µτ , on the contrary, break this
symmetry as long as their branching ratios differ.

In the following, the focus is on the first assumption, neglecting any possible LFV decays.
A consequence of this assumption is that the number of produced events nprod from SM
processes in the eτ -dataset is approximately the same as the number of produced events in
the µτ -dataset:

neτprod = nµτprod = n . (7.3)

This symmetry also holds for individual bins of kinematic distributions for both datasets,
resulting in the agreement of differential distributions of the kinematic observables for both
datasets.
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After the events are produced, they need to be detected by the detector to be available
for analysis. However, the efficiency ε of the ATLAS detector to detect e.g. electrons and
muons is not 100%, and the reduced efficiency needs to be taken into account. On the
other hand, other objects can mimic the signatures of electrons or muons and hence be
incorrectly detected as these. This leads to additional events with one detected electron and
one detected muon. These additional events are called fakes (as introduced in Chapter 3)
and are abbreviated in the following equations by f . With these two considerations, the
number of detected events ndet in both of the datasets can be written as:

neτdet = εeτ · n+ feτ , (7.4)
nµτdet = εµτ · n+ fµτ . (7.5)

Here, εeτ and εµτ denote the detection efficiency of the eτ - and µτ -events, respectively.
Although the events of both datasets contain one electron and one muon each, the detection
efficiencies differ (εeτ 6= εµτ ) as they depend on the kinematics of the electron and the
muon in each event and those differ. In one dataset the electron has the lower transverse
momentum in the majority of the events and in the other the muon.

The expected yields of the fakes in the eτ - and the µτ -datasets differ as well since the
probability that other objects mimic electrons or muons also depends on the kinematics of
these objects (and also whether an electron or a muon is mimicked).

Solving now for n and expressing the number of detected events by those of the other
dataset gives:

neτdet =
εeτ

εµτ
·
(
nµτdet − f

µτ
)

+ feτ , (7.6)

nµτdet =
εµτ

εeτ
· (neτdet − feτ ) + fµτ . (7.7)

This allows one dataset to serve as independent estimate of the other dataset. For example,
the eτ -dataset6 can be estimated by the difference of the µτ -dataset and the asymmetric
µτ -fake contribution, corrected by the ratio of detection efficiencies to mimic the symmetric
part of the eτ -dataset. And the asymmetric eτ -fake contribution is added.

Technically, the detection efficiencies are considered for each event individually due to
their kinematic dependency. Hence, after expansion, Eqs. 7.6 and 7.7 become:

neτdet =

nµτdet∑
i=1

εeτi
εµτi
−

fµτ∑
i=1

εeτi
εµτi

+ feτ =

nµτdet∑
i=1

Rµτi −
fµτ∑
i=1

Rµτi + feτ , (7.8)

nµτdet =

neτdet∑
i=1

εµτi
εeτi
−

feτ∑
i=1

εµτi
εeτi

+ fµτ =

neτdet∑
i=1

Reτi −
feτ∑
i=1

Reτi + fµτ . (7.9)

While the efficiency in the denominator corresponds to the efficiency of the respective event
i in the sum, the meaning of the efficiency in the numerator is not obvious: for example, in
the sum over the events of the µτ -dataset, there is no eτ -event and hence also the kinematic
properties needed to obtain the value of εeτi are not available. Therefore, the so-called
switch event is introduced which is a virtual event made up by the switched properties of
the electron and the muon of the real event i. The ratio of the efficiencies of the switch and
of the real event is abbreviated by R as indicated in Eqs. 7.8 and 7.9. The superscript of
R denotes the type (eτ or µτ) of the real event in the ratio.

The relations in Eqs. 7.8 and 7.9 are utilised to estimate the background contributions
in the eτ - and µτ -dataset, respectively.

6If not noted otherwise, dataset refers to the dataset of detected events.



104 CHAPTER 7. EVENT SELECTION AND BACKGROUND ESTIMATION

7.2.2 Estimation of the Fake-Lepton Contribution

In addition to the e/µ-symmetric, irreducible background contributions, events where
either one or both leptons are mimicked of faked by another object contribute to the
backgrounds in this analysis. This contribution is called fakes and is not symmetric for
electrons and muons. The background contribution from fakes after the Basic Selection
accounts for approximately 13% of all background events in the eτ -dataset, and 16% in
the µτ -dataset. When using the Symmetry Method, the fake-estimate of both datasets
contributes to the total background estimate of each dataset (Eqs. 7.6 and 7.7). This makes
a precise estimation of this contribution very important.

The objects falsely passing the electron selection criteria are jets, converted photons,
hadronically decaying τ -leptons and muons. The objects falsely passing the muon selection
criteria are mainly non-prompt muons, i.e. muons that do not originate from the primary
vertex but from decays within jets or hadronically decaying τ -leptons. The largest contri-
bution to both, electrons and muons, are jets mimicking light leptons that mainly originate
from W + jets→ `ν/τν + jets. A smaller contribution where both leptons are imitated by
jets originates from QCD multijet production. More details on both processes can be found
in Section 4.2.2.

Jets, including non-prompt leptons within jets, faking light leptons are denoted as
j → `-fakes and are estimated in a data-driven way, other sources of fakes are denoted as
other → `-fakes and are determined from simulations.

Estimation of Jets Faking Light Leptons

A data-driven method, the so-called Fake Factor Method, is utilised to estimate the
background contribution from jets faking light leptons, abbreviated by j → `-fakes. It is
based on the assumption that the fake probability is a property of the fake lepton depending
on its (kinematic) quantities but independent of the underlying process it stems from. The
fake probablity is larger for low-energetic fake leptons and depends on the detector region
it traverses. Hence, the probability is typically determined as a function of the transverse
momentum pT of the fake lepton, its pseudorapidity η and separate for fake electrons and
muons.

The Fake Factor Method does not directly determine and apply the actual fake probability
but introduces the Fake Factor (FF). It is a measure of the ratio between the number of
events with fake leptons fulfilling the respective lepton identification and isolation criteria
(IdIso) and the number of events with fake leptons partially failing them, i.e. fulfilling the
����IdIso criteria. The definition of these criteria is shown in Figure 7.4. The IdIso criteria
are the identification and isolation criteria defined in Chapter 5. Electrons must fail either
the identification or the isolation criteria or both but still fulfil a minimum identification
criterium (id loose) to fulfil the ����IdIso criteria. Muons must fail the isolation criterium
to fulfil the ����IdIso criteria. The regions corresponding to either of the two criteria are
orthogonal and hence statistically independent. The objects fulfilling the����IdIso criteria are
of low lepton quality and as such are likely to be fakes instead of real leptons. In order to
determine the FFs, an Extraction Region (ER) enriched in events with one fake lepton is
defined which is statistically independent of the Signal Region (SR) defined by the Basic
Selection. In this ER region, the FF is extracted as follows:

FF =
nER,IdIso
nER,���IdIso

, (7.10)

where nER,IdIso denotes the events where the fake lepton passes the lepton identification
and isolation criteria, and nER,���IdIso those events where the fake lepton fails these criteria.



7.2. BACKGROUND ESTIMATION 105

none loose medium tight

no
ne

gr
ad

ie
nt IdIso:

(id medium)
&&
iso����IdIso:

(id loose)
&&

(!(id medium) || !iso)

identification

iso
la

tio
n

(a) Electrons

none loose medium tight

no
ne

FC
T

ig
ht

Tr
ac

kO
nl

y
Fi

xe
dR

ad

IdIso:
(id medium)

&&
iso

����IdIso:
(id medium)

&&
!iso

identification

iso
la

tio
n

(b) Muons

Figure 7.4: Visualisation of the lepton identification and isolation criteria and their inversion for electrons
(a) and muons (b). The green area corresponds to the criteria applied for signal leptons (Chapter 5) which is
the default in the analysis, further denoted by IdIso (numerator of the FF) while the blue area corresponds
to the���IdIso criteria (denominator of the FF).

Definition of the Extraction Region The Extraction Region is constructed by requiring
three leptons in the events, two of which must be compatible with the decay of a Z-boson,
such that the third lepton is likely a fake lepton. Thus, the ER targets the selection of
Z + jets-events where the third lepton originates from a jet being mis-identified as lepton.
The selection applied to obtain data enriched with Z + jets-events is detailed in Table 7.5.
Only requirements (denoted as cuts) differing from the Basic Selection are listed. The
requirements on the leptons are the same as for the Basic Selection and are detailed in the
respective sections of Chapter 5.

Extraction Region Selection

Baseline Cuts:

Nµ +Ne = 3
p`iT > 15 GeV
Emiss
T < 60 GeV

Z-tagging Requirements:

q (`Z,0) · q (`Z,1) = −1
flavour (`Z,0) = flavour (`Z,1)
80 GeV < m`Z,0`Z,1 < 100 GeV

Requirements on the probe lepton:

mT

(
`p, E

miss
T
)
< 40 GeV

Table 7.5: The Extraction Region Selection. Only cuts differing from the Basic Selection (Table 7.2) are
listed. N stands for number, q for charge, the two leptons fulfilling the Z-tagging requirements are denoted
by `Z,0 and `Z,1 while `p denotes the third, probe lepton. The definition of mT is given in Eq. 8.1.

Two of the three leptons, `Z,0 and `Z,1, are assigned to originate from the Z-boson
by requiring opposite charge, same flavour and an invariant mass between 80GeV and
100GeV. If more than one lepton pair fulfils these requirements, the two leptons with
their invariant mass, m``, closest to the Z-boson mass are Z-tagged. The third lepton is
the probe lepton, `p, which is likely to be faked by a jet and that is utilised to determine
the FF-values. The cuts on Emiss

T and mT

(
`p, E

miss
T
)
(defined in Eq. 8.1) are applied to

reduce contributions from WZ-events. The single electron and single muon triggers listed
in Table 7.1 are used to select the events of interest. For the trigger-matched lepton the
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recommended pT-thresholds are applied. One of the Z-tagged leptons is required to have
triggered the event such that the probe lepton is unbiased by possible tighter trigger object
criteria which might be in conflict with the ����IdIso-requirements.

The events passing the ER selection criteria are split into four datasets depending on
the number of electrons and muons in the event. The naming of the datasets is of the form
“`Z,0`Z,1`p”. Hence, the eee- and µµe-datasets are used to derive the electron FFs, while
the µµµ- and eeµ-datasets are used to derive the muon FFs.

The distributions of the transverse momentum of the probe lepton in the (eee+ µµe)-
and in the (µµµ + eeµ)-datasets in the ER are shown in Figure 7.5. The contribution
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(a) (eee+µµe)-datasets with `p passing the IdIso criteria.
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(b) (eee+µµe)-datasets with `p passing the���IdIso criteria.
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(c) (µµµ+ eeµ)-datasets with `p passing the IdIso crite-
ria.
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Figure 7.5: The transverse momentum of the probe lepton, p`pT , in the Extraction Region when `p = e
(a), (b), when `p = µ (c), (d) and whether it is passing the IdIso criteria (a), (c) or the���IdIso (antiIdIso)
criteria (b), (d). The coloured histograms represent the contributing background processes, i.e. processes
where none of the leptons is mimicked by a jet, which are estimated from simulations. The “Other” category
comprises very small contributions from tt̄W, tt̄Z,WH and Triboson production. Credits to Valerie Lang
for the inputs [229].

from processes where none of the three leptons is mimicked by a jet (coloured histograms)
is – as expected – larger when the IdIso criteria are applied for the probe lepton than
when the ����IdIso criteria are applied. The white area between the coloured histograms
and the data corresponds to events where the third lepton is likely to be faked by a jet.
Hence, the FFs are the ratios of these white areas in the IdIso- and the ����IdIso-selection
(Eq. 7.10). Furthermore, due to the smaller ����IdIso region for muons compared to electrons
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(Figure 7.4), the yields for the (µµµ+ eeµ)-datasets in the ER region are lower compared to
the (eee+ µµe)-datasets which increases the statistical uncertainties on the FF for muons.
The main (real lepton) background processes represented by the coloured histograms
are: WZ, ZZ. The first contributes three real leptons, the second contributes four real
leptons although one can be undetected. Additional backgrounds are: V γ, Z → `` and
Z → ττ , where the third lepton must be faked, though not originating from a jet faking
a lepton. This is ensured through a truth matching that is applied with the help of the
IFFTruthClassifier -tool7 [230]. In particular, for electron fakes, the V γ-process where the
third lepton originates from a photon faking an electron is an important process to consider
properly. The estimation of the γ → e-fakes from simulated events was found to provide a
better description of data in fake-dominated regions than an estimation in combination
with the data-driven j → `-fakes. Hence, the modelling of this process from simulated
events was chosen.

Extraction and Application of the Fake Factors The values of the FFs are extracted
for electrons and muons individually and in bins of p`pT and ∆φ(`p, E

miss
T ) for electrons,

and in bins of p`pT only for muons. The dependency of the FF on ∆φ(`p, E
miss
T ) is flat for

muons, and hence no binning in ∆φ(`p, E
miss
T ) is needed for them. A binning of the FFs for

electrons in p`pT and |η`p | was also investigated. More details can be found in [231]. But the
estimation of the γ → e-fakes from simulated events, subtracting its contribution from the
j → `-fakes in the ER, led to the disappearance of the dependence of the electron-FF on
|η`p | and instead a dependence on ∆φ(`p, E

miss
T ).

Subtracting the contributions from other backgrounds except j → `-fakes and considering
the binning in p`pT and ∆φ(`p, E

miss
T ), the definition of the FFs becomes:

FF
Ä
p
`p
T ,∆φ

(
`p, E

miss
T
)ä

=
ndataER,IdIso

Ä
p
`p
T ,∆φ

(
`p, E

miss
T
)ä
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(
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(7.11)

The bin edges used for p`pT in GeV are [15, 20, 25, 35,∞] for electrons and [15, 20, 25,∞] for
muons. The bin edges used for ∆φ

(
`p, E

miss
T
)
for electrons are [0.0, 0.8, 3.2]. The resulting

values of the FFs for electrons and muons are shown in Figure 7.6. Overall, the FF-values
for electrons are smaller than for muons due to the larger yield in the ER-selection with the
����IdIso-requirements for electrons. The origin of the uncertainties is discussed further below.

In order to obtain the fake-estimate in the Signal Region, the FFs are applied to
events passing the Basic Selection where at least one of the two leptons in the final state
must fulfil the ����IdIso- instead of the usual IdIso-requirements. Depending on whether the
����IdIso-lepton is identified as electron or muon, the respective FF-value is applied, thereby
also considering its pT- and ∆φ(`, Emiss

T )-values. This approach implies that events where
both, electron and muon, result from a jet faking the lepton, are counted twice. Thus, the
contribution of these so-called double-fakes needs to be subtracted once.

Contributions from events where none of the leptons originate from a jet mis-identified
as lepton must be subtracted in the����IdIso-SR equivalently to the subtraction performed in
the ER. To do so, the same truth matching requirements as in the ER are imposed. The
respective distributions of the����IdIso-lepton of the eτ - and µτ -datasets in the SR are shown
in Figure 7.7. In the eτ -dataset, the majority of the ����IdIso-leptons are muons while in the

7Each lepton must belong to either of the following IFFTruthClassifier -classes: 2 (prompt electrons),
3 (charge-flip electrons), 4 (prompt muons), 5 (prompt photon-conversion), 6 (electrons from muons), 7
(electrons and muons from hadronic tau-decays).
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Figure 7.6: The extracted values for the FFs for electrons (a) and muons (b) with the statistical and
systematic uncertainties added in quadrature. Credits to Valerie Lang for the inputs [229].

20 40 60 80 100
p aIdIso

T  [GeV]

0

5

10

15

20

25

30

35

40

Ev
en

ts
 / 

5 
G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, antiIdIso

data
H , = 100%
Uncertainty
Z
Diboson
Top
other
H WW
H

(a)

20 40 60 80 100
p aIdIso

T  [GeV]

0

10

20

30

40

50

60

Ev
en

ts
 / 

5 
G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, antiIdIso

data
H , = 100%
Uncertainty
Z
Diboson
Top
other
H WW
H

(b)

Figure 7.7: The distributions of the���IdIso-lepton of the eτ -dataset (a) and the µτ -dataset (b) in the
Basic Selection SR where at least one of the two leptons in the final state must fulfil the���IdIso-criteria.
If both leptons in the event fulfil these criteria, the pT of the lepton with the smaller pT is chosen to be
shown in the distributions. Contributions from events where none of the leptons originates from a jet
mis-identified as lepton (estimated from simulations) are displayed as coloured histograms. The uncertainty
band solely consists of statistical uncertainties on the prediction.

µτ -dataset they are electrons. That is because the probability for fake-leptons is larger
with smaller pT and in the majority of events in the eτ(µτ)-dataset the muon (electron)
has the smaller pT. The double-peak structure arises from the two different pT-thresholds
for the leading (pT > 35 GeV) and sub-leading (pT > 15 GeV) lepton since both can be
the ����IdIso-lepton. The events corresponding to the white areas between the background
processes and the data serve as templates to which the FFs are applied. The fake-estimate
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in the SR where both leptons fulfil the IdIso-requirements is obtained as follows:

fSR,IdIso =

Ö
ndataSR,��IdIso-e∑

i=1

FFei −
nMC
SR,��IdIso-e∑
i=1

FFei

è
︸ ︷︷ ︸

electron fakes

+

Ö
ndataSR,��IdIso-µ∑

i=1

FFµi −
nMC
SR,��IdIso-µ∑
i=1

FFµi

è
︸ ︷︷ ︸

muon fakes

−

Ö
ndataSR,��IdIso-eµ∑

i=1

FFei · FF
µ
i −

nMC
SR,��IdIso-eµ∑
i=1

FFei · FF
µ
i

è
︸ ︷︷ ︸

double fakes

(7.12)

with FF`i being the short form of FF`
Ä
p`T,i,∆φi

(
`, Emiss

T
)ä

and����IdIso-{e, µ, eµ} indicating
which of the leptons in the ����IdIso-SR fulfils the ����IdIso criteria. The number of data events
in the ����IdIso-SR are denoted by ndataSR,���IdIso, the number of events where none of the leptons
originate from a jet mis-identified as lepton (estimated from simulated events) is denoted
by nMC

SR,���IdIso. The last line takes care of removing the double-fake contribution once.

Uncertainties on the Fake Factors Different sources of uncertainties contribute to
the overall uncertainty on the FFs displayed in Figure 7.6:

• statistical uncertainties on ndataER,IdIso and on ndataER,���IdIso

• statistical uncertainties on nMC
ER,IdIso and on nMC

ER,���IdIso

• systematic uncertainties on nMC
ER,IdIso and on nMC

ER,���IdIso [232]:

– variation of the cross-section of WZ process by ±7.1 %

– variation of the cross-section of ZZ process by ±6.0 %

The statistical uncertainties on the single components of the ratio (Eq. 7.11) are propagated
to the final FF-values. For each systematic uncertainty source, the variation is applied
simultaneously in the numerator and denominator of Eq. 7.11 and the FFs are re-calculated.
The difference between this varied FF-value and the nominal value is taken as the uncertainty.
The statistical uncertainties on the electron-FFs range from 5% in the lowest pT-bins to
15% in the highest pT-bins while they range from 4% in the lowest pT-bin to 15% in the
highest pT-bin for the muon-FFs. The systematic uncertainties due to the variation of
the WZ cross-section range from 0.4 to 14% for the electron-FFs and from 1.3% to 26%
in the last pT-bin for the muon-FFs. The systematic uncertainties due to the variation
of the ZZ cross-section range from 0.3 to 5% for the electron-FFs and from 0.9% to 7%
for the muon-FFs. In Figure 7.6, the statistical and systematic components are added in
quadrature and the square-root is taken to obtain the overall uncertainty.

Correction Factors One additional effect that needs to be considered is the possibility
of a different flavour composition of the jets faking leptons in the Z + jets-ER and the SR.
This was studied and more details can be found in Ref. [233].

The differences in the flavour composition can lead to differing values of the FFs in the
Z + jets-ER and the SR since it is expected that the values of the FFs vary for each flavour.
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Hence, so-called Correction Factors (CFs) are derived from simulated events where the
origin of different fake flavours can be traced. These are calculated as the ratio of the FF
in the SR and in the ER where the FF-values are determined from MC-simulated samples:

CF =
FFMC

SR

FFMC
ER

. (7.13)

Although FFs derived from simulations are of limited trustworthiness, it is assumed that
the flavour composition and hence the ratio of the FFs is modelled sufficiently well. In
addition, a systematic uncertainty on the CF-values is determined by deriving the same
CFs with samples that were simulated with another MC-generator. The difference to the
nominal CFs is used as uncertainty. The statistical uncertainties on the samples used to
calculate the nominal CFs are propagated to the CFs. The resulting CFs together with the
systematic and statistical uncertainties added in quadrature are visualised in Figure 7.8.
The CFs are derived independently for electron- and muon-fakes due to differing flavour
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Figure 7.8: The extracted values for the CFs for electrons (a) and muons (b) with the statistical and
systematic uncertainties added in quadrature. Credits to Mattias Birman for the inputs [234].

compositions and are only binned in pT using the same binning as for the FFs determined
in data in the Z + jets-ER. They are applied in addition to the FFs in Eq. 7.12 to obtain
the fake-estimate in the SR. Their values vary around 1 for electrons, although for small
pT (and hence for the majority of the fake electrons) they are below 1. For muons, the
CF-values in the first two bins are compatible with 1 while it is almost 2 for pT > 25 GeV.
In addition, large uncertainties of up to 40% for electrons and up to 30% for muons are
visible. Apart from the last bin of the muon CFs, the systematic component is always
larger than the statistical component.

Validation of the jet→ `-fake estimate The quality of the jet→ `-fake estimate is
investigated by checking how well the data in different regions is modelled by the prediction.

One straight-forward check is the so-called closure test in the ER. The FFs obtained
from the ER are applied to the events in the ER that are in the denominator of the ratio
used to obtain the FFs (Eq. 7.11). The sum of the resulting contribution (the fake-estimate)
and of all processes with three leptons of which none originates from a jet (estimated from
MC-simulations) in the IdIso-ER are compared to data. By construction, the modelling
should be perfect in the distribution of p`pT when the same binning as for the FFs is chosen.
Other distributions should demonstrate decent agreement if the chosen binning of the
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FFs capture the kinematic properties of the fake background. Several observables are
investigated and displayed in Ref. [233] and good agreement is found.

After the discussion of the estimation of the other → `-fakes in the following paragraph,
the fake-estimate is validated in a control region that is orthogonal to the Basic Selection
SR and in the SR itself.

Overall, good performance of the j → `-fake background is seen in the different validation
regions and the SR, indicating a valid fake background estimate.

Estimation of Other Objects Faking Light Leptons

The background from hadronically decaying τ -leptons that are mis-identified as leptons
(τhad → `), from muons that are mis-identified as electrons (µ→ e) and from photons that
are mis-identified as electrons (γ → e) is estimated from MC-simulations and is denoted as
other → `-fakes. It corresponds to the remaining part of the fake backgrounds which is
not covered by the data-driven Fake Factor Method which only describes j → `-fakes. The
τhad → `- and µ→ e-fakes are absent in the Extraction Region used for the Fake Factor
Method. For γ → e-fakes, the modelling of the data by the prediction in control regions is
improved when not including the them in the Fake Factor Method but instead estimating
them separately from MC-simulations – also see the discussion above.

Events for the other → `-fake background estimate are selected according to the Basic
Selection, based on the simulation of the following processes: Z → ττ , tt̄, single-top, diboson
(including V γ), Z → µµ and Z → ee. Contributions from H → ττ and H → WW are
neglected as their contribution is small. A truth-matching8 is applied to the simulated
events to ensure that only the three respective classes of fakes (τhad → `, µ→ e, γ → e)
are selected. The same truth-matching is applied as part of the Fake Factor Method to
ensure that these contributions are subtracted as background such that they do not enter
the j → `-fake estimate to avoid double-counting. At least one lepton has to fulfil the
truth-matching requirements in order for the event to be classified as other → `-fake.

The corresponding yields for each class of other → `-fakes after the Basic Selection-SR
are summarised in Table 7.6. The largest contribution to the other → `-fakes comes from
Z → µµ, where one muon (typically the one with the lower transverse momentum) is
mis-identified as an electron. Thus, the Z → µµ-process contributes more events to the
µτ -dataset than to the eτ -dataset. Other processes only contribute little to the µ → e-
fakes. The τhad → `-fakes contribute more to the eτ - than to the µτ -dataset. Their largest
contribution is from Z → ττ and V γ. The γ → e-fakes are dominated by V γ and contribute
more to the µτ -dataset where the electron is sub-leading in most of the events.

Z → µµ Scaling Uncertainty The largest contribution to the other → `-fakes is from
Z → µµ-events as discussed above. Hence, the modelling of its normalisation is studied in
more detail.

The process mainly contributes to the µτ -dataset where the electron is sub-leading in
the majority of the events (if `1 = `τ , see Section 7.1.3). Therefore, only the µτ -sample is
utilised to study the Z → µµ-background.

In order to check whether the µ→ e-fake rate is well modelled by the prediction of the
MC-simulations, a dedicated Validation Region (VR) is defined. A high purity of Z → µµ-
events is desired such that the expected yield can be compared to the corresponding data
yield. In addition to the Basic Selection (Table 7.2), the following criteria are required for
the Z → µµ-VR:

• 35 GeV < p`0T < 45 GeV

8each lepton must belong to either of the following IFFTruthClassifier -classes: 5 (prompt photon-
conversion), 6 (electrons from muons), 7 (electrons and muons from hadronic tau-decays).
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• 75 GeV < m`` < 100 GeV with m`` being the invariant mass of the two leptons and
the selected window covering the expected Z-peak

• 1.25 < trk-pT/cluster-pT < 3 for electrons, with trk-pT being the pT measured in the
ID and cluster-pT being the transverse energy measured in the ECAL; the ratio of
these variables shows excellent separation power between Z → µµ and the remaining
processes. A muon mis-identified as electron deposits enough of its energy in the ECAL
such that it is identified as an electron. But its trk-pT is larger than its cluster-pT as
it does not deposit all of its energy in the ECAL and hence trk-pT/cluster-pT > 1,
see Figure 7.9.

• mcoll < 115 GeV with mcoll =
√

2p`HT

Ä
p`τT + Emiss

T

ä
(cosh ∆η − cos ∆φ) aiming to

reconstruct the Higgs-boson mass of the LFV decays; more details are given in
Section 8.2.3

0 1 2 3 4 5
ptrack

T /pcluster
T (e)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ev
en

ts
 / 

Bi
n

s  = 13 TeV, 138 fb 1

H e
Basic SR

Data
H e,

=40%
Uncertainty
Z
other  rest
j

Top
Diboson
Z
H
H WW

Figure 7.9: Distribution of the trk-pT /cluster-pT -variable in the µτ -dataset, passing the Basic Selection.
“other → ` rest” in the legend is other → `-fakes without Z → µµ which is shown separately. Only
statistical uncertainties are displayed.

The purity of Z → µµ-events in the VR is calculated as (data−(bkg w/o Z → µµ))/data
where bkg stands for background. A value of (68± 5)% is reached with the above selection.
The yields of the single processes are summarised in Table 7.7.

Different kinematic distributions in the Z → µµ-VR are shown in Figure 7.10. Overall,
an overshoot of the prediction compared to data is observed. The required normalisation
correction, defined as (data−(bkg w/o Z → µµ))/Z → µµ, corresponds to 0.84± 0.06. The
difference to unity (16%) is applied as systematic uncertainty on the Z → µµ-normalisation.
To be conservative, this uncertainty is applied to the total other → `-fake contribution and
not only to its Z → µµ-part.

Validation of the Estimation of the Fake-Lepton Contribution

The fake-estimate is validated in a control region that is orthogonal to the Basic Selection
SR by requiring the two leptons to have the same electric charge (SC) instead of the
opposite charge (OC). All other requirements are the same as for the Basic Selection. The
jet → `-fake estimate in this SC-SR is obtained equivalently to the default OC-SR by
utilising Eq. 7.12. The CFs, which are applied as well, are specifically derived for the SC-SR,
again in the same way as for the OC-SR. The ratio of jet → `- (other → `)-fakes with
respect to the total background is 53% (12%) in the eτ -dataset and 51% (25%) in the
µτ -dataset. The modelling is validated by comparing the sum of the jet→ `-fake estimate,
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Z → µµ-VR, µτ
Process Yield

H → eτµ 0.17± 0.04
H → µτe 1.22± 0.10

Top 6.72± 0.67
Diboson 36.57± 2.07
Z → ττ 127.79± 5.01
j → ` 11.89± 7.69
other→ ` w/o Z → µµ 24.51± 6.18
H → ττ 1.57± 0.07
H →WW 0.24± 0.05

Z → µµ 532.99± 11.61

Data 658

Table 7.7: Contributions of the individual processes in the Z → µµ-VR.
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Figure 7.10: Kinematic distributions in the Z → µµ-VR in the µτ -dataset: p`HT (a), p`τT (b), Emiss
T (c)

and m`` (d). The “other → ` rest” label in the legend refers to the other → `-fakes contribution without
the Z → µµ-contribution which is shown separately. Only statistical uncertainties are displayed.
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the other → `-fake estimate and the contribution of events with two real leptons to data.
The events with two real leptons are estimated from MC-simulations9 and not yet with the
Symmetry Method to disentangle the validation of the fake-estimate from the Symmetry
Method. The normalisation of the predictions from MC-simulations is only based on the
theoretical cross-sections for the individual processes, though. No specific normalisation
factors are derived in dedicated control regions.

In addition, the same validation of modelling is conducted in the OC-SR (the default
signal region). This region counts as validation region nevertheless since in the final
statistical analysis the contributions from events with two real leptons are estimated with
the Symmetry Method rather than from simulations.

Kinematic distributions in both regions are shown in Figures 7.11 and 7.12 for the
eτ -dataset (where the majority of the fake leptons are muons) and in Figures 7.13 and 7.14
for the µτ -dataset (where the majority of the fake leptons are electrons). More distributions
are shown in Appendix A. Blinding of bins is performed as described in Chapter 3.

The overall modelling is convincing. Small trends in the ratio of data over background
prediction shown in the lower panels of the figures are visible for some distributions in the
SC-SR. For example the distribution of Emiss

T (Figures 7.11(e) and 7.13(e)), mT (`H , E
miss
T )

(Figures 7.12(c) and 7.14(c)) and m`` (Figures 7.12(a) and 7.14(a)) show slopes in the range
of the lower values of the observables but are mostly within uncertainties. For some of
the distributions similar slopes are visible in the OC-SR, e.g. in m`` (Figures 7.14(b) and
7.14(b)) but in general the agreement between prediction and data in the OC-SR is good
within uncertainties, especially when considering that no systematic uncertainties on the
background processes estimated from simulations are considered.

9each lepton must belong to either of the following IFFTruthClassifier -classes [230]: 2 (prompt electrons),
3 (charge-flip electrons), 4 (prompt muons) to ensure the selection of two real leptons
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Figure 7.11: Distributions of p`0T (a,b), p`1T (c,d), Emiss
T (e,f) in the eτ -dataset after the Basic SR Selection

with the same-sign electric charge (SC) requirement (left) and the opposite-sign electric charge (OC)
requirement (right). The e/µ-symmetric background components are estimated from MC-simulations, the
j → `-fakes are estimated with the Fake Factor Method and the remaining other → `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate as discussed in the text.
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Figure 7.12: Distributions of m`` (a,b), mT (`H , E
miss
T ) (c,d), ∆φ(`τ , E

miss
T ) (e,f) in the eτ -dataset after

the Basic SR Selection with the same-sign electric charge (SC) requirement (left) and the opposite-sign
electric charge (OC) requirement (right). The e/µ-symmetric background components are estimated
from MC-simulations, the j → `-fakes are estimated with the Fake Factor Method and the remaining
other → `-fakes are estimated from MC-simulations. The uncertainty band includes statistical uncertainties
on the background prediction and systematic uncertainties on the j → `-fake estimate as discussed in the
text.
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Figure 7.13: Distributions of p`0T (a,b), p`1T (c,d), Emiss
T (e,f) in the µτ -dataset after the Basic SR Selection

with the same-sign electric charge (SC) requirement (left) and the opposite-sign electric charge (OC)
requirement (right). The e/µ-symmetric background components are estimated from MC-simulations, the
j → `-fakes are estimated with the Fake Factor Method and the remaining other → `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate as discussed in the text.
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Figure 7.14: Distributions of m`` (a,b), mT (`H , E
miss
T ) (c,d), ∆φ(`τ , E

miss
T ) (e,f) in the µτ -dataset after

the Basic SR Selection with the same-sign electric charge (SC) requirement (left) and the opposite-sign
electric charge (OC) requirement (right). The e/µ-symmetric background components are estimated
from MC-simulations, the j → `-fakes are estimated with the Fake Factor Method and the remaining
other → `-fakes are estimated from MC-simulations. The uncertainty band includes statistical uncertainties
on the background prediction and systematic uncertainties on the j → `-fake estimate as discussed in the
text.
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7.2.3 Light Lepton Detection Efficiencies

The detection efficiencies introduced in Section 7.2.1 are the product of the trigger efficiency
of the event and the offline10 efficiencies of the leptons in the event (one electron and one
muon). For each lepton, the offline efficiency is a product of the reconstruction (reco),
identification (id) and isolation (iso) efficiencies. In total, the detection (d) efficiency of an
event can be written as:

εd = εtrigger · εereco · εeid · εeiso · εµreco · ε
µ
id · ε

µ
iso . (7.14)

The determination of the individual efficiencies is based on a so-called tag-and-probe (T&P)
method. In this method, the events of a well known process, here often Z-boson production
with decay to either electrons or muons, are selected. One object in the event serves as tag-
object which is required to have fired the trigger and fulfil strict selection criteria. Another
object in the event, a lepton in this case, is utilised as probe-object that is unbiased with
respect to the quantity for which the efficiency should be measured, while the kinematic
selection of the event and the tag-object ensure a high purity of true leptons for the
probe-lepton.

All efficiencies except the electron reconstruction, identification and isolation efficiencies
are determined and provided centrally by the ATLAS collaboration and are expected to
be valid in the Basic Selection and any derived selection untilised for the H-LFV analysis.
The electron efficiencies need to be derive in the specific selection of interest (here the
Basic Selection) since centrally determined ones are not valid for all selections. Usually, the
analyses only make use of the scale factors which are the ratio of the efficiencies determined
in data and in simulation and which serve as simulation-to-data correction factors. These
are expected to be valid for all selections, also in the case of electrons.

The following sections give a short overview of the determination of the individual
efficiencies and of the respective values.

Muon Trigger Efficiencies

The muon trigger efficiencies are measured with respect to muons that were reconstructed
offline making use of the T&P-method. The efficiency is the ratio of number of probe-leptons
that are matched to a trigger object within a cone ∆R = 0.01 and of the number of all
probe leptons.

Z → µµ-events are used to determine the efficiencies of the muon triggers used in
this analysis (see Table 7.1) for pµT < 100 GeV while tt̄- and W + jets-events are used for
pµT & 100 GeV [235].

The Z → µµ-events are selected [235] by requiring two muons compatible with origi-
nating from a Z-boson which results in a pure sample of Z → µµ-events with a negligible
background contribution. The tag-muon must have pT > 28 GeV, fulfil the Loose isola-
tion [188] requirement, and must be matched to a trigger object within a cone ∆R = 0.01.

tt̄- and W + jets-events are selected [235] by a trigger requiring large Emiss
T and hence

must fulfil Emiss
T > 200 GeV and must have exactly one muon with pT > 27 GeV without

isolation requirements. Different numbers of jets are required for tt̄- and W + jets-events
keeping the selections orthogonal by requiring at least one b-jet or vetoing b-jets, respectively.

Either selection, the probe-lepton must fulfil the offline identification criteria of in-
terest, e.g. medium identification. The resulting efficiencies of the HLT_mu14 and the
HLT_mu26_ivarmedium OR HLT_mu50 triggers with respect to the offline pT of the probe-
muon fulfilling the medium identification WP are shown in Figure 7.15. The dependence of
the efficiencies on the muon-pT is small after the turn-on region and hence the efficiencies

10Offline refers to the processing of the data after the events were triggered and stored.
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are not provided as a function of pT but instead of η and φ to account for the geometrical
structure of the Muon System, if a muon-pT above the turn-on in pT (within the plateau
region) is ensured. The lower efficiencies in the turn-on region occur because of the miss-
ing isolation requirement on the offline muon while there is an isolation requirement for
the HLT_mu26_ivarmedium trigger. The reduced efficiency in the barrel region compared
to the endcaps originates from a lower L1 Trigger efficiency. Overall, efficiencies of up
to ∼ 70 % (87 %) in the barrel (endcaps) are reached for the HLT_mu26_ivarmedium OR
HLT_mu50 triggers and ∼ 77 % (88 %) in the barrel (endcaps) for the HLT_mu14 trigger. The
efficiency of the latter is higher due to less stringent L1 Trigger requirements.

Only statistical uncertainties are considered for efficiencies measured in data which are
mostly below 1% for the events selected in the H-LFV analysis.
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Figure 7.15: The efficiencies of the HLT_mu14 (a),(b) and of the HLT_mu26_ivarmedium OR HLT_mu50
(c)-(h) triggers with respect to the offline pT of the probe-muon fulfilling the medium identification WP,
measured in 2016–2018 data with Z → µµ-events (a)-(d), with tt̄-events (e),(f) and with W+jets-events
(g),(h) in the barrel (left) and the endcaps (right) [235]. Only statistical uncertainties are shown. The lower
panels show the ratio of data and simulation.
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Muon Offline Efficiencies

In order to derive the muon reconstruction, identification and isolation efficiencies, pure
samples of Z → µµ-decays are selected and an analysis using the T&P-method is performed,
similar to the measurement of muon trigger efficiencies.

Again, the events must be compatible with originating from Z → µµ-decays. The
tag-muon must have fired a single muon trigger, have pT > 27 GeV, |η| < 2.5, fulfil the
Tight isolation requirement [187] and vertex association criteria. For the measurement of the
reconstruction and identification efficiencies (which are measured together), the probe-muon
must have pT > 10 GeV, |η| < 2.5 and fulfil certain isolation criteria [187]. A ∆R-matching
between the probe-muon and a muon candidate which is reconstructed and identified with
the WP of interest is required (∆R < 0.05). The range of the invariant mass of the two
muons is considered from 61 to 121GeV. A purity of Z → µµ-events of 99.9% in the probe
sample is reached. For the measurement of the isolation efficiency, the probe-muon must
have pT > 3 GeV, |η| < 2.5 and fulfil the loose identification criteria (Section 5.3.2) and
vertex association requirements [187]. The separation of the two muons must be larger than
∆R = 0.3 to ensure that the tag-muon is not within the isolation cone of the probe-muon.
The considered range of the invariant mass of the two muons is from 81 to 101GeV.

As mentioned above, a combined measurement of the reconstruction and identification
efficiencies is performed, calculated by the product of independent efficiencies of several
terms [187]. The resulting efficiencies were already shown in Figure 5.6(a) of Section 5.3
describing the methods to reconstruct and identify muons. The efficiencies are derived as a
function of the muon’s η- and φ-values. The dependence on pT is found to be flat above
the turn-on curve as shown in Figure 5.5(a). Overall, the efficiency for reconstruction and
identification with the medium WP is ∼ 98 % for |η| > 0.1. For |η| < 0.1 the efficiency
is low due to a service access installed in this area. Furthermore, reduced efficiencies
can be observed at the ATLAS detector’s support structure positions at φ = −1.2 and
φ = −2.0 and for 1.0 < |η| < 1.3 due to imperfectly aligned MDT chambers. In addition to
statistical uncertainties, several systematic uncertainties are considered: the parameters of
the fit to extract the signal and background contributions are varied by their respective
fit uncertainties. The fitted non-prompt muon background is varied by its fit uncertainty
and the ∆R-based matching of the probe-muon is varied. The luminosity uncertainty on
background contributions estimated from MC simulations is considered as well as their
cross section uncertainties. The single sources are assumed to be independent and added in
quadrature. The statistical as well as the total systematic uncertainties are below 0.5% for
most of the events, overall they are at the level of ∼0.1 to 0.2%.

The definition of the muon isolation was also already discussed in Section 5.3 and its
resulting efficiencies are shown in Figure 5.7. For the isolation WP used in this analysis,
FCTightTrackOnly_FixedRad, only visualisations of the efficiencies measured from simulated
diboson events are available. Since they are almost flat in η, the efficiencies are only provided
as a function of pT, and later also as a function of ∆R of the muon and the closest jet,
but not yet when the processing of data for the analysis presented here was finalised. In
addition to statistical uncertainties, several systematic uncertainties are considered which
are partially the same as for the reconstruction and identification measurement. The
statistical uncertainties are below 0.1% for the majority of the events while the total
systematic uncertainties are below 0.5% and below 0.3% for most of the events selected in
the H-LFV analysis.

Electron Trigger Efficiencies

The electron trigger efficiencies are measured with respect to specific offline identification
and isolation WPs. A T&P-analysis is performed with Z → ee-events [236] which are
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selected with the requirement that the electron-pair is compatible with originating from
a Z-boson. Events in an invariant mass window of ±15 GeV around the Z-boson mass
are considered. The tag-electron is required to fulfil the criteria of the tight identification
WP (Section 5.2.2), must be matched to an object that fired an unprescaled single-electron
trigger, must have ET > 27 GeV and |η| < 2.47 excluding the calorimeter transition region
(1.37 < |η| < 1.52). The probe-electrons must fulfil the same identification and isolation WP
criteria which are used in the analysis utilising the efficiencies. If both electrons in the event
fulfil the tag-requirements, both are used as probe-electrons successively. The efficiency
is calculated as the ratio of probe-electrons which are matched to a trigger object that
fired the respective electron trigger over all probe-electrons, after subtracting background
contributions.

Statistical as well as systematic uncertainties are considered. The systematic uncertain-
ties include variations of the background subtraction method, the invariant mass window,
the offline requirements on the tag-electron and the regions outside the mass window that
are used in the background estimation.

The efficiencies are determined as functions pT and η and separate for the individual
data-taking periods. The resulting efficiencies for the combination of the single-electron
triggers used in this analysis (Table 7.1) are exemplarily shown for data taken during 2018
in Figure 7.16. The displayed efficiencies are calculated with respect to offline electrons
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Figure 7.16: The efficiencies of the HLT_e26_lhtight_nod0_ivarloose OR HLT_e60_lhmedium_nod0 OR
HLT_e140_lhloose_nod0 trigger combination with respect to ET (a) and η (b) for data recorded in 2018 [237].
The efficiencies are calculated with respect to offline electrons fulfilling the tight identification and the
FCTight isolation criteria. The pink open markers indicate the efficiencies measured in data, the black
closed markers the ones measured with simulated Z → ee-events. The vertical error bars represent statistical
and systematic uncertainties added in quadrature.

fulfilling the tight identification and the FCTight [180] isolation criteria and not with
respect to the medium identification and the gradient isolation criteria used in this analysis
(Sections 5.2.2 and 5.2.3). Above pT = 60 GeV (where the identification WP of the trigger
is loosened to medium and the isolation requirement is removed), the efficiency is larger
than 95%. An efficiency larger than 90% is reached from pT = 40 GeV onwards while it
is around 65% just above the threshold of the lowest trigger. The efficiency with respect
to η is almost flat but drops in the transition region of the calorimeter (1.37 < |η| < 1.52)
and for largest |η|. The FCTight isolation WP is tighter than the isolation criteria used
for the HLT_e26_lhtight_nod0_ivarloose trigger. Hence, for the medium identification
and the gradient isolation criteria used in this analysis (which are both looser than tight
identification and FCTight isolation, respectively) lower efficiencies are expected overall.

Figure 7.17 shows the efficiencies of the HLT_e17_lhloose trigger measured with data
taken during 2016. This trigger is part of the dilepton trigger used in this analysis
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(Table 7.1). The efficiencies are determined with respect to electrons fulfilling the loose
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Figure 7.17: The efficiencies of the HLT_e17_lhloose trigger which is part of the dilepton trigger used in
this analysis with respect to ET (a) and η (b) for data taken in 2016 [237]. The efficiencies are calculated
with respect to offline electrons fulfilling the loose identification criteria. Black dots indicate the efficiencies
measured in data, blue triangles the ones measured with simulated Z → ee-events. The vertical error bars
represent statistical uncertainties.

identification (Section 5.2.2) as the trigger itself only has loose identification requirements
and are overall larger compared to Figure 7.16. For the requirements used in this analysis,
medium identification and gradient isolation, the electron trigger efficiencies are larger than
the ones displayed, given that the applied offline WPs are stricter.

The combined statistical and systematic uncertainties of the data efficiencies are below
0.3% and about 0.1% for most of the events in the H-LFV analysis.

Electron Offline Efficiencies

The electron offline (reconstruction, identification and isolation) efficiencies are determined
within the analysis team of the H-LFV analysis as it cannot be guaranteed that the centrally
provided ones are valid in the selection of this analysis. The strategy foresees to determine
the combined efficiencies of reconstruction, identification and isolation from simulated
events in the Basic Selection and multiply them with the centrally provided scale factors
(SF s)11, which are assumed to be valid for all selections, in order to obtain the efficiencies
in data:

εdatareco,id,iso = εsimulation
reco,id,iso · SFreco · SFid · SFiso . (7.15)

A description of these SF s was given in Section 5.2.
The determination of εsimulation

reco,id,iso is also based on the T&P-method. A similar selection
as the Basic Selection (Table 7.2) is applied. Differences are that the p`0T -requirement is
lowered to 15GeV12, no trigger matching is performed and the tag-leptons are only required
to be baseline leptons (Chapter 5). The pT of the tag-lepton must be at least 20GeV.

In order to enhance statistics, not only events with an electron and a muon in the final
state are considered but also events with two electrons. In case of the latter, both electrons
can serve as tag- and as probe-electron successively while in the former case the muon
always serves as tag- and the electron as probe-lepton.

Simulated events of the major processes contributing two real leptons in the Basic
Selection are taken into account, weighted according to their respective cross sections (and
luminosity). These processes are Z → ττ , Diboson and top-quark production. Although

11SF = εdata/εsimulation

12After checking that the efficiencies with and without this cut are compatible.
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considering events with two electrons, Z → ee-events are not included as they do not
contribute two real leptons in the Basic Selection.

The leptons are required to be truth-matched with the help of the IFFTruthClassi-
fier [230]: the muons must be prompt muons (class 4) while the electrons must be prompt
electrons (classes 2, 3).

The efficiencies are obtained as ratio of the probe-electrons that fulfil the reconstruction,
identification and isolation requirements of the H-LFV analysis (Section 5.2) in the numer-
ator and of all probe-electrons in the denominator. The probe-electrons in the denominator
consist of all clusters that fulfil the truth-matching and have pT > 15 GeV, |η| < 2.47 while
the calorimeter transition region (1.37 < |η| < 1.52) is vetoed. In general, only electrons
leaving a cluster in the ECAL are considered which is a minor bias as the cluster efficiency is
very high for the energies relevant in this analysis (see Figure 5.2). The parametrisation of
the efficiencies is consistent with the one used for the provided SF s. Efficiencies determined
for −η and +η are consistent and hence are merged, such that they only depend on |η|.
To enhance statistics further, the different data-taking years are combined, given that no
significant differences in the efficiencies between the datataking years were observed. The
efficiencies, however, depend on whether the probe-electron is leading or sub-leading in pT.
The combined electron reconstruction, identification and isolation efficiencies are therefore
binned in pT, |η| and leading/sub-leading electron.

In order to derive systematic uncertainties on the offline electron efficiencies, two
variations are performed and compared to the nominal case:

• whether the tag-lepton is an electron or a muon

• re-introducing p`0T > 35 GeV.

For both variations, the absolute differences to the nominal case are utilised as up- and as
down-uncertainties. When varying the flavour of the tag-lepton, the variation (electron-
or muon-tag) yielding the larger difference to the nominal case, which uses both, electron-
and muon-tag, is utilised. Both contributions are added in quadrature and the square-
root is taken. The latter variation only impacts the efficiencies for pT < 35 GeV. The
resulting efficiencies with the statistical and systematic uncertainties added in quadrature
are displayed in Figure 7.18. The statistical uncertainties over the data events selected by
the Basic Selection are on average 1% and vary from 0.1 to 5% for the single pT-|η|-bins
in which they are measured. The systematic uncertainties are on average 1.4% and vary
from 0.1 to 6% for the single pT-|η|-bins.

Validation of the Restoration of the e/µ-Symmetry by Applying the Detection
Efficiencies

The application of the light lepton detection efficiencies in order to restore the symmetry
assumption between electrons and muons is validated by applying the efficiencies to simulated
events. The efficiency-ratio Reτ , defined in Eq. 7.8, is applied to the e/µ-symmetric
background processes of the eτ -dataset, estimated from simulations, and the sum of these
processes is compared to the sum of the same processes of the µτ -dataset where the
efficiency-ratio is not applied. The considered processes are Z → ττ , top-quark and diboson
production, H → ττ and H →WW . The efficiency-ratio is calculated using the trigger and
offline efficiencies of electrons and muons discussed above and applied in an event-by-event
basis. The detailed event-by-event formula is given in the next section in Eq. 7.17. The
distributions of several observables are shown in Figures 7.19 and 7.20 where in addition to
the µτ - and the efficiency-corrected eτ -dataset also the eτ -dataset without Reτ applied is
displayed to visualise the impact of the application of the efficiency-ratio Reτ . Figures 7.19
and 7.20 show that the description of the µτ -dataset by the efficiency-corrected eτ -dataset is
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Figure 7.18: The electron offline efficiencies (reconstruction, identification, isolation) as determined for
this analysis with respect to pT and |η| of the electron, separate for when the electron is sub-leading (blue)
or leading (red). For each pT-bin on the lower x-axis, the efficiency values are displayed for each |η|-bin.
The bin edges in |η| are: [0.0, 0.1, 0.6, 0.8, 1.15, 1.37, 1.52, 1.81, 2.01, 2.37, 2.47], also indicated on the
upper x-axis. The efficiencies for the leading electron are only relevant from pT > 35 GeV. The last bin in
pT is open towards larger values, i.e. pT > 150 GeV when the electron is leading and pT > 80 GeV when
it is sub-leading. The vertical error bars represent the statistical and systematic uncertainties added in
quadrature. Credits to Mattias Birman [234] for the inputs to this figure and the way of presentation.

convincing. In the regions of the distributions with sufficient statistics the deviation between
the µτ - and the efficiency-corrected eτ -dataset is at most 4%. Systematic uncertainties of
the simulations and of the efficiency-corrections are not displayed. The restoration of the
symmetry assumption works as intended, which indicates validity of the method.

The same comparison of datasets can be performed the other way around, where the
inverse of Reτ , which is Rµτ , is applied to the the µτ -dataset and compared to eτ -dataset
without Reτ applied. Since this does not provide additional insides, it is not shown here.
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Figure 7.19: Distributions comparing the eτ - and the efficiency-corrected (·Rε) eτ -dataset to the µτ -
dataset using all e/µ-symmetric background processes estimated from simulations: Z → ττ , top-quark
and diboson production, H → ττ , H →WW . The efficiency-ratio Rε is denoted as Reτ in the text. The
indicated uncertainties only represent statistical uncertainties on the simulated events.



7.2. BACKGROUND ESTIMATION 129

0

5

10

15

20
En

tri
es

×10
3

s  = 13 TeV, 138 fb 1

H e
e
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, )

0.75

1.00

1.25

e
 / 

(a) ∆η(`H , `τ ), Basic SR

0

5

10

15

20

25

30

En
tri

es

×10
3

s  = 13 TeV, 138 fb 1

H e
e
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, )

0.75

1.00

1.25

e
 / 

(b) ∆φ(`H , `τ ), Basic SR

0

5

10

15

20

25En
tri

es

×10
3

s  = 13 TeV, 138 fb 1

H e
e
e

0 50 100 150 200 250
mT( H, Emiss

T ) [GeV]

0.75

1.00

1.25

e
 / 

(c) mT (`H , E
miss
T ), Basic SR

0

5

10

15

20

25

30

35
En

tri
es

×10
3

s  = 13 TeV, 138 fb 1

H e
e
e

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( , Emiss

T )

0.75

1.00

1.25

e
 / 

(d) ∆φ(`τ , Emiss
T ), Basic SR

0

5

10

15

20

25

En
tri

es

×10
3

s  = 13 TeV, 138 fb 1

H e
e
e

0 50 100 150 200
mvis [GeV]

0.75

1.00

1.25

e
 / 

(e) m``, Basic SR

0

5

10

15

20

En
tri

es

×10
3

s  = 13 TeV, 138 fb 1

H e
e
e

0 50 100 150 200 250 300
mcoll [GeV]

0.75

1.00

1.25

e
 / 

(f) mcoll, Basic SR

Figure 7.20: Distributions comparing the eτ - and the efficiency-corrected (·Rε) eτ -dataset to the µτ -
dataset using all e/µ-symmetric background processes estimated from simulations: Z → ττ , top-quark
and diboson production, H → ττ , H →WW . The efficiency-ratio Rε is denoted as Reτ in the text. The
indicated uncertainties only represent statistical uncertainties on the simulated events.
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7.2.4 Combining the Ingredients for the Background Estimation with
the Symmetry Method

Combining the individual ingredients for the background estimation with the Symmetry
Method, Eqs. 7.8 and 7.9 need to be expanded in an event-by-event notation. The number
of detected events of the eτ -dataset can be expressed as:

neτSR,det =

nµτSR,det∑
i=1

Rµτi −
nµτSR,��IdIso∑
i=1

Rµτi · w
FF,CF
i −

nµτSR,other→`∑
i=1

Rµτi · w
MC
i︸ ︷︷ ︸

e/µ-symmetric background estimate
∼
n
µτ

+

neτSR,��IdIso∑
i=1

wFF,CF
i︸ ︷︷ ︸

j→`-fakes fj→`

+

neτSR,other→`∑
i=1

wMC
i︸ ︷︷ ︸

other→`-fakes fother→`

(7.16)

The same expression holds for the number of detected events of the µτ -dataset when
interchanging eτ and µτ . The number of events nSR,���IdIso comprise the events in the����IdIso-
SR where either the electron, the muon or both fulfil the ����IdIso-criteria. The event weight
wFF,CF
i is the product of the respective Fake Factor (FF)(s) and the Correction Factor (CF).

In principle, the wFF,CF
i would need to be expanded into the different single- and double-fake

terms discussed in Eq. 7.12; for simplicity and readability this is omitted in Eq. 7.16. For
the other → `-fakes, wMC

i contains the standard weights related to MC-simulations and
nSR,other→` is the number of events of the contributing processes. The efficiency-ratio Rµτ
is obtained from Eqs. 7.8 and 7.14 and corresponds to:

Rµτi (kµi , k
e
i ) =

εeτi (kµi , k
e
i )

εµτi (kµi , k
e
i )

=
ε
e(kµi ),µ(kei )
trigger · εe(k

µ
i )

reco,id,iso · SF
e(kµi )
reco · SF

e(kµi )
id · SF e(k

µ
i )

iso · εµ(kei )
reco,id · ε

µ(kei )
iso

ε
e(kei ),µ(kµi )
trigger · εe(k

e
i )

reco,id,iso · SF
e(kei )
reco · SF

e(kei )
id · SF e(k

e
i )

iso · εµ(kµi )
reco,id · ε

µ(kµi )
iso

.

(7.17)

The variables kei and kµi represent the kinematic properties of the electron and muon in
the i-th µτ -event. The kinematic properties considered here are the variables in which
the efficiencies are parametrised in. The efficiencies in the denominator correspond to
the real event while the ones in the numerator correspond to the virtual switch event
(compare Section 7.2.1). The term for the efficiency-ratio Reτ is obtained equivalently by
interchanging eτ and µτ .

Distributions of the same kinematic observables as in Figures 7.11–7.14 but with
the backgrounds estimated according to Eq. 7.16 are shown in Figures 7.21 and 7.22.
The colours of the single contributions in the distributions correspond to the coloured
boxes in Eq. 7.16. The displayed uncertainty band includes statistical uncertainties and
full systematic uncertainties on the background predictions added in quadrature. The
systematic uncertainties are summarised in Chapter 9.

Small deviations in the ratio of the data over the background prediction from unity
are visible for example in the m``-distribution (Figures 7.22(a) and 7.22(b)), similar to
Figures 7.12(b) and 7.14(b), and in the distribution of ∆φ(`τ , E

miss
T ) (Figures 7.22(e) and

7.22(f)), however, they do not exceed 8%. Overall, the modelling is reasonable within
uncertainties. Figure 7.23 shows the comparison of the modelling with the Symmetry
Method, (a) and (b), compared to a direct estimate from simulated events, (c) and (d),
in the distribution of the number of jets in the event, njets. With simulated events, the
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njets-distribution is typically not well modelled, while the modelling is very good with the
Symmetry Method. This demonstrates the advantage of the background estimation mainly
based on data.

The correlation of the e/µ-symmetric background
∼
n in one dataset with the data of the

other dataset can be observed in all distributions. Each fluctuation in one dataset is visible
in the other dataset with the opposite sign. This is particularly visible in the first three
bins of the distributions of the invariant mass of the two leptons m`` in Figures 7.22(a)
and 7.22(b): When the data of the eτ -dataset shows a down-fluctuation with respect to
the background prediction (a down-fluctuation in the data-over-background ratio), this
results in an under-prediction of the data in the µτ -dataset and hence an up-fluctuation in
the data-over-background ratio in the µτ -dataset (conmpare Eq. 7.16). It is, however, not
apparent whether the eτ - or the µτ -dataset or both are responsible for the fluctuation.



132 CHAPTER 7. EVENT SELECTION AND BACKGROUND ESTIMATION

0

10

20

30

40

50

60

Ev
en

ts
 / 

5 
G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, prefit

Data
H e ,

=10.0%
syst. stat.
Symmetric n
j
other

20 40 60 80 100 120 140 160 180
pl0

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(a) pT(`0), Basic SR, eτ -dataset

0

10

20

30

40

50

Ev
en

ts
 / 

5 
G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, prefit

Data
H e,

=10.0%
syst. stat.
Symmetric ne

j
other

20 40 60 80 100 120 140 160 180
p 0

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(b) pT(`0), Basic SR, µτ -dataset

0

10

20

30

40

50

60

Ev
en

ts
 / 

5 
G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, prefit

Data
H e ,

=10.0%
syst. stat.
Symmetric n
j
other

20 40 60 80 100
pl1

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(c) pT(`1), Basic SR, eτ -dataset

0

10

20

30

40

50

Ev
en

ts
 / 

5 
G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, prefit

Data
H e,

=10.0%
syst. stat.
Symmetric ne

j
other

20 40 60 80 100
p 1

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(d) pT(`1), Basic SR, µτ -dataset

0

10

20

30

40

50

Ev
en

ts
 / 

10
 G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, prefit

Data
H e ,

=10.0%
syst. stat.
Symmetric n
j
other

0 25 50 75 100 125 150 175 200
Emiss

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(e) Emiss
T , Basic SR, eτ -dataset

0

10

20

30

40

Ev
en

ts
 / 

10
 G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
Basic SR, prefit

Data
H e,

=10.0%
syst. stat.
Symmetric ne

j
other

0 25 50 75 100 125 150 175 200
Emiss

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(f) Emiss
T , Basic SR, µτ -dataset

Figure 7.21: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other → `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.
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Figure 7.22: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other → `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.
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Figure 7.23: Distributions of the number of jets for events with pT > 30 GeV in the eτ - (left) and the
µτ -datasets and with the symmetric background contributions estimated with the Symmetry Method (top)
and from simulations (bottom). The j → `-fakes are estimated with the Fake Factor Method and the
remaining other → `-fakes are estimated from MC-simulations. The uncertainty band includes statistical
uncertainties on the background predictions and systematic uncertainties added in quadrature. The
systematic uncertainties in the (a) and (b) comprise all systematic uncertainties while in (c) and (d) they
only consist of uncertainties on the j → `-fakes. The signal prediction assuming a branching ratio of 10%
is overlaid.



Chapter 8

Separation of Signal and Background

This chapter describes the methods to further separate the signal from the background
contributions. First, the region defined by the Basic Selection is split into two Signal
Regions (SRs) which are introduced in Section 8.1. Afterwards, Neural Networks (NNs) are
trained for each region such that the resulting output node distributions can act as final
discriminants in the statistical analysis. The selected input variables, the optimisation of
the hyperaparameters and the results of the NN-training are discussed in Section 8.2.

8.1 Different Signal Regions

The Basic Selection Signal Region is split into two Signal Regions: the Vector-Boson-Fusion
Signal Region (VBF SR) and the Non-Vector-Boson-Fusion Signal Region (nonVBF SR) in
order to exploit the special topology of the VBF-signal. The VBF-signal is characterised by
two additional jets in the final state which exhibit a large separation in the pseudorapidity
(∆ηjj) and a large invariant mass (mjj). Hence, the VBF SR is defined by requiring at
least two jets in the final state which are further required to satisfy the following criteria
regarding their pT, ∆ηjj and mjj :

• njets ≥ 2

• pj0T > 40 GeV

• pj1T > 30 GeV

• ∆ηjj > 3

• mjj > 400 GeV

Normalised distributions of the latter four observables after requiring at least two jets (with
pT > 30 GeV) in the final state are shown in Figure 8.1. The above requirements, indicated
as dashed vertical lines, clearly select the VBF production signal compared to the ggF
production signal or the background predictions.

The above mentioned requirements split the events into the VBF SR (requirements
fulfilled) and the nonVBF SR (requirements not fulfilled). The yields of the individual
processes in the respective regions are listed in Tables 8.1 and 8.2. In the VBF SR, the
yield of the VBF signal is the largest of all Higgs-boson production processes. The yield of
the ggF signal is 55% of the VBF signal yield and still contributes to the sensitivity in this
region. In the nonVBF SR, the ggF signal is the prevalent signal contribution while the
VBF and VH signals both contribute less than 6% of the ggF signal. The contribution from
top-quarks constitutes the largest background contribution in the VBF SR while Z → ττ is

135
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Figure 8.1: Normalised distributions of the observables (pj0T (a), pj1T (b), ∆ηjj (c), mjj (d)) defining the
VBF SR after at least two jets (with pT > 30 GeV) are required. The eτ - and µτ -datasets are combined.
For signal, only the correctly classified signal in each dataset is considered. The VBF signal of interest
and the gluon-gluon fusion (ggF) signal are shown individually. The background processes comprise all
symmetric background processes estimated from MC simulations and both fake-components, j → `- and
other → `-fakes. The dashed black lines indicate the value at which a cut is placed on the observables in
order to define the VBF SR.

dominant in the nonVBF SR. The s/
√
s+ b-significance in the VBF SR is smaller compared

to the nonVBF SR while the s/b-ratio is higher.
The tables also list the number of signal events which are wrongly classified into the eτ -

or µτ -dataset, i.e. for which the lepton assignment method described in Section 7.1.3 does
not yield the correct assignment of the light leptons to the Higgs boson and the τ -lepton. The
prediction for the e/µ-symmetric background is listed once estimated from MC-simulations
and once estimated with the Symmetry Method. The events of the contributions estimated
with the Symmetry Method are from the respective other dataset and are corrected with the
efficiency-ratio Rε (compare Eq. 7.16). The Rε · j → `- and Rε · other → `-contributions
need to be subtracted and are hence listed with a negative sign. The total background
prediction with the Symmetry Method is close to data, the deviation in the VBF SR is
around 1% and 1.7% in the nonVBF SR. The deviations of the background prediction with
simulated events is 10% in the VBF SR and 2.1% (1.1%) for the eτ -(µτ -)dataset in the
nonVBF SR. The MC-smulated processes are, however, only normalised to their theoretical
cross-section predictions and no dedicated normalisation factors are derived.

In order to find phase-space regions with an increased significance, Neural Networks are
trained as discussed in the following.
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Yields

Process eτ µτ

Signal (B = 1 %)

ggFH → eτµ 34.70± 0.50 4.04± 0.17
VBFH → eτµ 62.83± 0.27 5.31± 0.09
VHH → eτµ 1.66± 0.07 0.41± 0.04

ggFH → µτe 4.24± 0.17 31.80± 0.50
VBFH → µτe 5.10± 0.08 57.44± 0.26
VHH → µτe 0.40± 0.04 1.33± 0.07

Fake Contributions
j → ` 334 ± 22 314 ± 17

other → ` 80 ± 7 104 ± 10

Symmetric Background
from MC simulations

Z → ττ 1 098 ± 11 982 ± 10
Diboson 757 ± 7 727 ± 6

Top 2 226 ± 11 2 110 ± 10
H →WW 103.20± 0.60 91.00± 0.60
H → ττ 43.69± 0.24 40.64± 0.24

Symmetric Background
from Symmetry Method

Rε ·Data 4 330 ± 70 3 860 ± 60
Rε · j → ` −353 ± 19 −290 ± 21

Rε · other → ` −117 ± 12 −71 ± 6

Total Bkg. with Sym.Bkg.
from MC simulations 4 643 ± 29 4 367 ± 25

Total Bkg. with Sym.Bkg.
from Symmetry Method 4 280 ± 80 3 920 ± 70

s/b 0.02 0.02
s/
√
s+ b 1.50 1.43

Data 4 230 3 967

Table 8.1: Yields after the VBF SR selection with statistical uncertainties, for the eτ - and µτ -datasets. The
expected yields of the symmetric background contributions are given once estimated from MC simulations
and once estimated with the Symmetry Method. For the latter, all three components (Data, j → `- and
other → `-fakes) are of the respective other dataset, corrected with the efficiency ratio Rε. The signal
yields are given for a branching ratio of 1%. The s in the second to last line stands for the sum of the
respective correctly classified signal events while the b represents the total background prediction with the
symmetric background (Sym.Bkg.) estimated with the Symmetry Method.
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Yields

Process eτ µτ

Signal (B = 1 %)

ggFH → eτµ 2 153 ± 4 144.90± 1.10
VBFH → eτµ 112.50± 0.40 11.33± 0.12
VHH → eτµ 92.10± 0.60 16.70± 0.24

ggFH → µτe 144.40± 1.10 1 882 ± 4
VBFH → µτe 11.48± 0.12 99.91± 0.34
VHH → µτe 17.71± 0.25 82.90± 0.50

Fake Contributions
j → ` 17 970 ± 160 16 750 ± 120

other → ` 5 790 ± 70 11 050 ± 80

Symmetric Background
from MC simulations

Z → ττ 80 250 ± 140 69 620 ± 130
Diboson 43 080 ± 80 38 740 ± 70

Top 39 170 ± 50 35 250 ± 50
H →WW 1 672 ± 4 1 398 ± 4
H → ττ 766.90± 1.60 681.30± 1.40

Symmetric Background
from Symmetry Method

Rε ·Data 197 000 ± 500 160 900 ± 400
Rε · j → ` −19 900 ± 140 −14 800 ± 140

Rε · other → ` −12 920 ± 110 −5 150 ± 60

Total Bkg. with Sym.Bkg.
from MC simulations 188 690 ± 240 173 480 ± 210

Total Bkg. with Sym.Bkg.
from Symmetry Method 188 000 ± 600 168 700 ± 400

s/b 0.01 0.01
s/
√
s+ b 5.40 5.00

Data 184 887 171 675

Table 8.2: Yields after the nonVBF SR selection with statistical uncertainties, for the eτ - and µτ -
datasets. The expected yields of the symmetric background contributions are given once estimated from
MC simulations and once estimated with the Symmetry Method. For the latter, all three components (Data,
j → `- and other → `-fakes) are of the respective other dataset, corrected with the efficiency ratio Rε. The
signal yields are given for a branching ratio of 1%. The s in the second to last line stands for the sum of
the respective correctly classified signal events while the b represents the total background prediction with
the symmetric background (Sym.Bkg.) estimated with the Symmetry Method.
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8.2 Application of Neural Networks

Classification Neural Networks (NNs) are utilised in this analysis to further separate the
signal from the background processes. An introduction to NNs and the concepts relevant to
the following discussions is given in Chapter 6. This section focuses on the implementation
of these ideas within the scope of the H-LFV analysis. First, the strategy is summarised in
Section 8.2.1, followed by the description of the training data in Section 8.2.2 including
the choice of the respective classes. The definition and selection of the input variables
is discussed in Section 8.2.3. The choice and optimisation of the hyperparameters is
discussed in Section 8.2.4 and the results of the NN-trainings are presented in Section 8.2.5.
Section 8.2.6 describes the binning strategy of the NN output node probability distributions
for the final statistical analysis. The chapter concludes in Section 8.2.7 with a selection of
studies performed leading to the final NN structure and setup.

8.2.1 Strategy

The NNs are trained after the loose Basic Selection in order to keep the number of events
large for training. Good sensitivity in the statistical analysis (Chapter 10) is achieved by
the separation power of the NN output node probability distributions which serve as final
discriminants. Individual NNs are trained for the VBF and nonVBF SRs to be able to
include the additional information from the two jets in the final state of the VBF signal
topology. Two different approaches were tested for both regions. On one hand one NN with
three output nodes corresponding to one signal and two background classes was trained
and the signal node probability distribution was used in the statistical analysis. On the
other hand three binary NNs, i.e. with one signal and one background class, were trained.
For each of these NNs signal is trained versus another background class and the signal node
distributions of each of these NNs are linearly combined into one distribution. Studies
showed that the multi-class approach was superior for the NN in the nonVBF SR while the
combination of binary NNs performed better in the VBF SR.

8.2.2 Training Data

As described in Section 6.1.3, supervised learning requires labelled data. That means
for each event in the training dataset the class it belongs to must be known. The three
natural classes in the H-LFV analysis are the LFV signal, the e/µ-symmetric background
contribution and the contribution from fakes. Due to their separate estimation, the labels
for all events of these classes are known.

The signal events are estimated from MC simulations. For the e/µ-symmetric back-
ground contribution events from simulated data are used for the training of the NNs as well
instead of events from the estimation with the Symmetry Method. This is due to several
reasons:

• The estimation with the Symmetry Method is based on the subtraction of the respective
fake-contributions which leads to a considerable amount of events with negative event
weights. This can be problematic as described in Section 6.3.1.

• The number of unweighted events of the estimation with simulated events is larger
compared to the estimation with the Symmetry Method.

• The events can be split into more distinct classes when estimated from simulations (e.g.
Z → ττ , top-quark production, diboson production) compared to the estimation with
the Symmetry Method where only one class, the total e/µ-symmetric contribution, is
available. A finer splitting of the classes can yield better separation power also for
signal versus total background.
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Estimating the e/µ-symmetric background contribution in the training from simulations,
however, requires reasonable modelling of the data in the distributions of the input variables
used in the NN training (in addition to the modelling with the Symmetry Method). The
normalisation of the prediction compared to data is not relevant but the shapes must be
reproduced correctly. When considering the sum of two processes, e.g. of top-quark and
diboson production, the shape of the sum can be altered if their normalisation with respect
to each other is inaccurate. This can introduce a small bias which implies that the trained
NNs may perform not as well for the background estimation with the Symmetry Method as
for the MC-simulations that they were trained on. Although the e/µ-symmetric background
estimate used for the NN training (MC-simulations) and the one used in the statistical
analysis to derive the final results (Symmetry Method) are statistically independent, the
usage of 10-fold cross validation (Section 6.2) is still a necessity due to the fact that the
estimates of the signal and the fakes in the training and the statistical analysis are the
same.

The estimate of the fake contributions for the training is the same as described in
Section 7.2.2. The other → `-fakes are estimated from simulations.

The Choice of the Classes

The three classes of the multi-class NN in the nonVBF SR – the nonVBF NN – correspond to
the three natural classes of this analysis: LFV signal, e/µ-symmetric background and fakes.
The e/µ-symmetric background consists of the simulated events of Z → ττ , top-quark,
diboson, H →WW and H → ττ production. In addition, the other → `-fakes are added
to this class rather than to the fakes class, given that the majority of the other → `-fakes
originates from Z-boson decays and hence their distributions are more similar to the ones of
the e/µ-symmetric background than of the j → `-fakes. The fakes class in the NN training
only consists of the j → `-fakes.

In the VBF SR, each of the three binary NNs discriminates the LFV signal against one
background class. The names of the three NNs and the respective background classes are:

• VBFZ→ττ NN : Z → ττ + other → `-fakes +H → ττ

• VBFtop NN : top-quark production + diboson production +H →WW

• VBFfakes NN : j → `-fakes.

Compared to the nonVBF NN, the e/µ-symmetric background is split into two classes
while the remaining classes are the same. Both setups, binary and multi-class NN, were
tested in both SRs, and different sets (and numbers) of classes were investigated in either
SR. The setups described above showed the best performance in either region. One caveat
is that the NN hyperparameters were not retuned for every variation which can in principle
impact the performance. The effect is, however, expected to be sufficiently small such that
the computational overhead for the optimisation of the hyperparameters was considered
too large, and the comparisons were made using the same hyperparameters in most cases.

In all cases, the signal class consists of the LFV signal produced via the three production
processes that are considered in this analysis (ggF, VBF and VH).

Training Statistics

In order to enhance the training statistics, the eτ - and µτ -datasets are trained together.
One caveat is that in particular the fakes are expected to have different shapes in the eτ -
and µτ -datasets and could benefit from a training performed separately in both datasets.
The shapes of the input variable distributions for the two datasets of the j → `-fakes are
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compared in Figures 8.2 and 8.3 for the nonVBF SR and in Figures 8.4–8.6 for the VBF
SR. The definitions of the single input variables are given in Section 8.2.3. Small shape
differences are visible in the ratio of the j → `-fakes of the two datasets for a few variables.
There are larger differences in the distribution of the transverse mass of the lepton from the
Higgs boson and Emiss

T , mT (`H , E
miss
T ), in Figure 8.2(j) for larger values of mT (`H , E

miss
T ).

In this mass range, however, the contributions of the j → `-fakes is small. Overall, the
differences are considered small enough to justify a combined training.

The available training statistics – number of unweighted events – for each of the SRs are
listed in Table 8.3. In order to enhance the statistics for the training of the VBF NN s, the
requirement on the invariant mass of the two jets was loosened to mjj > 300 GeV instead
of mjj > 400 GeV in the definition of the VBF SR (compare Section 8.1).

Process nonVBF SR VBF SR

LFV signal 856 722 148 990

Z → ττ 3 639 955 143 062
other → `-fakes 157 082 3 670
H → ττ +H →WW 1 281 650 292 887

Top-quarks 1 648 630 141 006
Diboson 4 103 124 204 069

j → `-fakes 2 096 805 130 460
j → `-fakes data 238 844 6 240
j → `-fakes MC 1 857 961 124 220

Table 8.3: The available statistics – number of unweighted events – for training, passing the nonVBF SR
selection (left) or passing the VBF SR selection (right). The events of the eτ - and µτ -datasets are combined.
“Signal” comprises all the considered production modes. Only the events of both signals, H → eτ and
H → µτ , which are correctly classified to each of the datasets are considered. The individual components
of the j → `-fakes, the data part and the subtracted prompt lepton contribution estimated from MC
simulations, are listed individually as well as combined.

The LFV signal is the sum of the H → eτ - and H → µτ -signals. But only the signal
events that are correctly classified following the lepton assignment in Section 7.1.3 are
considered.

For the j → `-fakes two contributions are listed separately in Table 8.3: the data and the
subtracted prompt lepton contribution estimated from MC simulations. The subtraction
is realised by negative event weights and the total sum-of-weights of the data and the
simulated events is positive. The number of events of the subtracted contribution with
negative event weights is, however, substantially larger than the number of data events. This
can lead to an unstable NN training as described in Section 6.3.1. In order to facilitate a
stable training process, only the data part of the j → `-fakes is utilised in the training when
the j → `-fakes form their own class. This is the case for the nonVBF NN as well as for the
VBFfakes NN. In order to see the impact of the neglected prompt lepton contribution, the
shapes of the input variable distributions are compared for the full j → `-fake estimate and
its data part only. Figures 8.7 and 8.8 display the normalised input variable distributions
for the nonVBF SR and Figures 8.9–8.11 for the VBF SR. The definitions of the single input
variables are given in Section 8.2.3. For most distributions, the agreement in the shapes is
very good such that the data-only component can be seen as a decent approximation of the
shape of the full j → `-fake background estimate. In a few distributions, larger impacts of
the subtracted MC contributions on the shape are observed, e.g. in the distribution of the
transverse mass of `H and Emiss

T , mT (`H , E
miss
T ), (Figure 8.7(j)), in the distribution of the

ratio of both leptons, p`HT /p`τT , (Figure 8.7(d)) and in the distribution of the reconstructed
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Figure 8.2: Distributions of input variables to the nonVBF NN separately for the j → `-fakes in the eτ -
and µτ -dataset. The lower panels show the ratio of the j → `-fakes of both datasets. The uncertainties
(bars in the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the
systematic uncertainties of the fake estimate.
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Figure 8.3: Distributions of input variables to the nonVBF NN separately for the j → `-fakes in the eτ -
and µτ -dataset. The lower panels show the ratio of the j → `-fakes of both datasets. The uncertainties
(bars in the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the
systematic uncertainties of the fake estimate.

Higgs-boson mass in the collinear approximation, mcoll, (Figure 8.8(b)) in the nonVBF SR.
The uncertainties in the full j → `-fake estimate include those of the data-only part, thus
the uncertainties of both distributions need to be considered as correlated which is not
reflected in the figures. This lets the distributions appear slightly more in agreement than
they actually are. The main consequence of neglecting the subtracted MC contribution in
the NN training is a potentially reduced separation power when the NN is applied to the
full j → `-fake estimate. A combination of the j → `-fakes with other processes was tested
to see whether this would allow for keeping the subtracted MC part, but having a separate
class with only the data part of the j → `-fakes showed a better performance and was thus
chosen.

Preprocessing

The preprocessing of the training data ensures that the physics processes which are combined
into one class are weighted by their respective cross section. Furthermore, it ensures that
the classes are all weighted equally, i.e. that the sum-of-weights of each class is the same. A
detailed description of the weighting can be found in Section 6.3.1. One study with larger
weights for one class is described in Section 8.2.7, but otherwise equal weighting across
output classes is used in the following.

As detailed in Section 6.2, 10-fold cross validation is used to split the available data
into a training, validation and test set. As a consequence, 10 single NNs with identical
hyperparameters are trained for each setup. A reproducible random number decides for
each event which of the NNs is used. In the following, one NN refers to one setup, i.e.
one set of hyperparameters and input features, which consists of these 10 NNs. Although
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Figure 8.4: Distributions of input variables to the VBF NN s separately for the j → `-fakes in the eτ - and
µτ -dataset. The lower panels show the ratio of the j → `-fakes of both datasets. The uncertainties (bars in
the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties of the fake estimate.
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Figure 8.5: Distributions of input variables to the VBF NN s separately for the j → `-fakes in the eτ - and
µτ -dataset. The lower panels show the ratio of the j → `-fakes of both datasets. The uncertainties (bars in
the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties of the fake estimate.
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Figure 8.6: Distributions of input variables to the VBF NN s separately for the j → `-fakes in the eτ - and
µτ -dataset. The lower panels show the ratio of the j → `-fakes of both datasets. The uncertainties (bars in
the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties of the fake estimate.

the events used for the e/µ-symmetric background in the training are independent of the
events used in the final statistical analysis (estimated with the Symmetry Method), cross
validation is needed since the estimates of the fakes and the LFV signal are the same in
the training and the statistical analysis. In addition, cross validation allows for defining
not only a test set but also a validation set.
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Figure 8.7: Normalised distributions of the input variables to the nonVBF NN shown separately for the
full estimate of the j → `-fakes and its data-only part. The events of the eτ - and µτ -dataset are summed
up. The lower panels show the ratio of the full estimate and the data part only. The uncertainties (bars in
the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties on the fake estimate. A correlation of the systematic uncertainties between both distributions
is not considered.
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Figure 8.8: Normalised distributions of the input variables to the nonVBF NN shown separately for the
full estimate of the j → `-fakes and its data-only part. The events of the eτ - and µτ -dataset are summed
up. The lower panels show the ratio of the full estimate and the data part only. The uncertainties (bars in
the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties on the fake estimate. A correlation of the systematic uncertainties between both distributions
is not considered.
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Figure 8.9: Normalised distributions of the input variables to the VBF NN s shown separately for the full
estimate of the j → `-fakes and its data-only part. The events of the eτ - and µτ -dataset are summed up.
The lower panels show the ratio of the full estimate and the data part only. The uncertainties (bars in the
upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties on the fake estimate. A correlation of the systematic uncertainties between both distributions
is not considered.
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Figure 8.10: Normalised distributions of the input variables to the VBF NN s shown separately for the
full estimate of the j → `-fakes and its data-only part. The events of the eτ - and µτ -dataset are summed
up. The lower panels show the ratio of the full estimate and the data part only. The uncertainties (bars in
the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties on the fake estimate. A correlation of the systematic uncertainties between both distributions
is not considered.
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Figure 8.11: Normalised distributions of the input variables to the VBF NN s shown separately for the
full estimate of the j → `-fakes and its data-only part. The events of the eτ - and µτ -dataset are summed
up. The lower panels show the ratio of the full estimate and the data part only. The uncertainties (bars in
the upper panels, bands in the lower panels) comprise the statistical uncertainties as well as the systematic
uncertainties on the fake estimate. A correlation of the systematic uncertainties between both distributions
is not considered.
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8.2.3 Input Variables

Sets of input features, also called input variables, can include low-level or high-level variables
only, or a mixture, as discussed in Section 6.3. Results based on low-level input features
only are summarised in Section 8.2.7. Given the limited training statistics, a set of low-
and high-level input features with rather shallow NNs (Section 8.2.4) performed best and
was chosen for the analysis. This is discussed in the following.

The nonVBF NN uses 18 input variables, the VBF NN s use 17 of these 18 variables
plus 10 additional, VBF-specific ones. All three VBF NN s use the same variables. The
variables and a short description are listed in Table 8.4. More detailed explanations, the
definitions and motivation for why they were chosen is given below.

Distributions of the input variables in different visual representations are shown in
Figures 8.12, 8.14, 8.16, 8.18 and 8.20 in the nonVBF SR and in Figures 8.13, 8.15, 8.17,
8.19, 8.21, 8.22 and 8.23 in the VBF SR. The left and middle columns show the comparison
of the prediction to data and the ratio of data over background prediction in the lower
panels of the figures. In the left column, the e/µ-symmetric background is estimated from
MC simulations with each process normalised to its predicted cross section. In the middle
column, the e/µ-symmetric background is estimated with the Symmetry Method which is
used in the statistical analysis to derive the final results. Hence, good modelling of the
data by the prediction with the Symmetry Method is required. The right column shows
the normalised distributions for each of the individual classes used in the NN-training
to visualise the potential separation power of the individual input variables. However,
separation power of one variable can also arise only in conjunction with other variables
which is not perceptible from its distribution. The left and middle columns are shown
for the eτ -dataset while the right column considers the sum of both datasets. The same
set of figures for the µτ -dataset is shown in Appendix C where the figures in the third
column are identical to the ones shown here. The data-over-background ratio in the middle
columns for the µτ -dataset often shows the opposite behaviour to the one observed in the
eτ -dataset, thus showing only one here is sufficient. This “mirror”-feature between the eτ -
and µτ -datasets is intrinsic to the Symmetry Method. If the data of the µτ -dataset shows
an upwards fluctuation, this propagates to the e/µ-symmetric background estimate ñ for
the eτ -dataset and leads to an overprediction of the data and hence a downward fluctuation
in the data over background ratio in the eτ -dataset, and vice versa.

The prediction based on simulated events is known to overestimate the data in the
VBF SR. The partner analyses of this analysis, based on MC-templates for background
estimation [22], have derived normalisation factors for the Z → ττ and top-quark production
processes which have been determined to be well below 1. The normalisation factors are
not applied in the figures here. The data-over-background ratios in the figures of the VBF
SR, with the e/µ-symmetric background estimated from simulated events, are therefore
expected to be below 1. In addition, neglecting the normalisation factors also impacts the
shape of the total background prediction and hence the shape of the data-over-background
ratios. Thus, only limited attention should be given to the modelling of these distributions.

The signal-enhanced bins of the distributions are blinded whenever the expected signal-
over-background ratio (s/b) exceeds 5% (assuming a branching ratio of 1% for signal) such
that the judgement is not biased by information from the signal-sensitive bins.

p`HT rest, p`τT rest: The transverse momenta pT of the two leptons (`H and `τ ) in the
approximate Higgs-boson rest frame (see Section 7.1.3) show a better separation power
than the ones in the laboratory frame (Figures 8.12(a)–8.12(f) for the nonVBF NN and
Figures 8.13(a)–8.13(f) for the VBF NN s). In the case of signal, p`HT rest is expected to be
considerably larger than p`τT rest, which can be exploited by the NNs. This pT-imbalance is
larger in the approximate Higgs-boson rest-frame than in the laboratory frame, since in the
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nonVBF NN and VBF NN s:

prestT (`H), prestT (`τ ) transverse momenta of the two leptons in the approx-
imate Higgs-boson rest frame

Emiss
T missing transverse energy (Section 5.6)

pT(`H)/pT(`τ ) ratio of the transverse momenta of the two leptons

pT(`H)/Emiss
T ratio of the transverse momenta of the lepton from

the H-boson and the missing transverse energy

pT(τ)/pT(`H) ratio of the transverse momentum of the τ -lepton and
the lepton from the H-boson

∆φ(`H , E
miss
T ), ∆φ(`τ , E

miss
T ) absolute values of the differences of the azimuthal

angles of the respective lepton and the missing trans-
verse energy direction

∆R(`H , `τ ) angular separation of the two leptons

mT (`H , E
miss
T ), mT (`τ , E

miss
T ) transverse masses of the respective lepton and the

missing transverse energy∑
pT scalar sum of transverse momenta of all high-pT ob-

jects in the event

m`` invariant mass of the two leptons

mcoll collinear mass; aims to reconstruct the Higgs-boson
mass

mmlm
MMC, MMC fit status MMC mass and fit status; aims to reconstruct the

Higgs-boson mass

∆α measure of the collinearity of the τ -lepton decay prod-
ucts

d0(`H)− d0(`τ ) (nonVBF only) difference of the transverse impact parameters of the
two leptons

VBF NN s only:

pT(j0), pT(j1) transverse momenta of the two leading jets

∆φ(j0, E
miss
T ), ∆φ(j1, E

miss
T ) absolute values of the differences of the azimuthal

angles of the respective jet and the missing transverse
energy energy

mjj invariant mass of the two leading jets

∆ηjj , ∆Rjj absolute value of the difference in η and angular sep-
aration of the two leading jets

ptotT absolute value of the vectorial sum of the transverse
momenta of the two leptons, Emiss

T and the two leading
jets

η-centr.(`H), η-centr.(`τ ) η-centrality of the respective lepton relative to the
η-values of the two leading jets

Table 8.4: Input variables used for the Neural Networks with a brief description. A detailed description
and the definitions of the variables is given in the text.



154 CHAPTER 8. SEPARATION OF SIGNAL AND BACKGROUND

latter the effect is smeared out. Both variables show a good modelling of the data by the
background prediction based on the Symmetry Method.

The p`HT rest- and p`τT rest-variables are the only two variables measured in the approx-
imate Higgs-boson rest-frame. All other variables used are measured in the laboratory
frame.

pT(`H)/pT(`τ ), pT(`H)/Emiss
T , pT(τ )/pT(`H): The transverse momenta of the lep-

tons in the laboratory frame enter the training via several ratios: pT(`H)/pT(`τ ) (Fig-
ures 8.12(j)–8.12(l), Figures 8.13(j)–8.13(l)) is expected to be larger for the LFV signal
than for e.g. Z → ττ where both leptons have neutrinos associated from the τ -lepton
decay. The same argument holds for the ratio pT(`H)/Emiss

T (Figures 8.14(a)–8.14(c), Fig-
ures 8.15(a)–8.15(c)). The transverse momentum of the τ -lepton in the ratio pT(τ)/pT(`H)
(Figures 8.14(d)–8.14(f), Figures 8.15(d)–8.15(f)) is obtained as the transverse momentum
of the `τ+Emiss

T -system. And hence this should be approximately 1 for the LFV signal,
which is the case in the nonVBF SR while it is shifted to slightly smaller values in the
VBF SR. In addition, the missing transverse energy Emiss

T itself serves as input variable
(Figures 8.12(g)–8.12(i), Figures 8.13(g)–8.13(i)). The ratios as well as Emiss

T show a con-
vincing modelling by the background predictions. A small slope is visible in the data over
background ratio of pT(`H)/Emiss

T when the e/µ-symmetric background is estimated from
simulated events. In this region – at low values of pT(`H)/Emiss

T – the predictions are
dominated by diboson and top-quark production, which are estimated by data via the
Symmetry Method in the statistical analysis for which good modelling is observed. The
small slope therefore has little effect.

∆φ(`H ,E
miss
T ),∆φ(`τ ,E

miss
T ): The angular separation of `H from Emiss

T in the trans-
verse plane, ∆φ(`H , E

miss
T ) (Figures 8.14(g)–8.14(i), Figures 8.15(g)–8.15(i)), is expected to

be large for signal and equal to π if the Higgs-boson is at rest with respect to the transverse
direction. Consequently, ∆φ(`τ , E

miss
T ) (Figures 8.14(j)–8.14(l), Figures 8.15(j)–8.15(l)) is

expected to be small for signal. Both is clearly visible in the respective figures. In the VBF
SR, however, ∆φ(`H , E

miss
T ) also prefers larger values for signal but does not peak at the

highest value and instead shows a plateau from 1.5 onwards. Since ∆φ(`τ , E
miss
T ) peaks

at small values for signal in the VBF SR, this hints that the leptons themselves are closer
together in φ in this SR. While Z → ττ -events in the nonVBF SR also prefer larger values
it is the opposite in the VBF SR. The modelling of both distributions is very good, a small
increasing slope in the data over background ratio in the nonVBF SR can be observed when
the e/µ-symmetric background is estimated from simulated events. This is also the case
for ∆φ(`τ , E

miss
T ) when the e/µ-symmetric background is estimated with the Symmetry

Method but it is acceptable within uncertainties.

∆R(`H , `τ ): The angular separation ∆R(`H , `τ ) =
√

(∆η(`H , `τ ))2 + (∆φ(`H , `τ ))2 be-
tween the two leptons (Figures 8.16(a)–8.16(c), Figures 8.17(a)–8.17(c)) is peaking at higher
values, around π for all processes in the nonVBF SR. In the VBF SR it is condensed in a
hill-shape around 2.0 with Z → ττ -events preferring slightly smaller values. In each region,
the behaviour observed for the ∆φ-distributions is reflected. The modelling is very good in
both regions.

mT

(
`H ,E

miss
T

)
, mT

(
`τ ,E

miss
T

)
: The transverse mass of a lepton ` and of the missing

transverse energy Emiss
T is defined as:

mT

(
`, Emiss

T
)

=
»

2p`TE
miss
T

(
1− cos

{
∆φ

(
`, Emiss

T
)})

. (8.1)

The transverse mass of `H (Figures 8.16(d)–8.16(f), Figures 8.17(d)–8.17(f)) is expected
to be at larger values for signal since ∆φ

(
`H , E

miss
T
)
as well as p`HT are at larger values as
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Figure 8.12: Distributions of input variables to the nonVBF NN. The left and middle columns compare
the prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.



156 CHAPTER 8. SEPARATION OF SIGNAL AND BACKGROUND

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ev
en

ts
 / 

10
 G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

25 50 75 100 125 150 175
p H

T rest [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(a) prestT (`H)

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ts
 / 

5 
G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

20 40 60 80 100 120 140 160 180
p H

T rest [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(b) prestT (`H)

20 40 60 80 100 120 140 160 180
p H

T rest [GeV]

0

50

100

150

200

250

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(c) prestT (`H)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ev
en

ts
 / 

10
 G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

20 40 60 80 100
pT rest [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(d) prestT (`τ )

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Ev

en
ts

 / 
5 

G
eV

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

20 40 60 80 100
pT rest [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(e) prestT (`τ )

20 30 40 50 60 70 80
pT rest [GeV]

0

100

200

300

400

500

600

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(f) prestT (`τ )

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ts
 / 

10
 G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0 25 50 75 100 125 150 175 200
Emiss

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(g) Emiss
T

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ts
 / 

10
 G

eV

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

0 25 50 75 100 125 150 175 200
Emiss

T  [GeV]

0.75

1.00

1.25

D
at

a 
/ B

kg

(h) Emiss
T

0 25 50 75 100 125 150 175 200
Emiss

T  [GeV]

0

25

50

75

100

125

150

175

200
no

rm
al

is
ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(i) Emiss
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ev
en

ts
 / 

Bi
n

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0 1 2 3 4 5 6
p H

T /pT

0.75

1.00

1.25

D
at

a 
/ B

kg

(j) pT(`H)/pT(`τ )

0

100

200

300

400

500

600

Ev
en

ts
 / 

0.
2

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

0 1 2 3 4
p H

T /pT

0.75

1.00

1.25

D
at

a 
/ B

kg

(k) pT(`H)/pT(`τ )

0 1 2 3 4 5
p H

T /pT

0

20

40

60

80

100

120

140

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(l) pT(`H)/pT(`τ )

Figure 8.13: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure 8.14: Distributions of input variables to the nonVBF NN. The left and middle columns compare
the prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.



158 CHAPTER 8. SEPARATION OF SIGNAL AND BACKGROUND

0.0

0.5

1.0

1.5

2.0
Ev

en
ts

 / 
Bi

n

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0 1 2 3 4 5 6
p H

T /Emiss
T

0.75

1.00

1.25

D
at

a 
/ B

kg

(a) pT(`H)/Emiss
T

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ts
 / 

0.
2

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

0 1 2 3 4 5 6
p H

T /Emiss
T

0.75

1.00

1.25

D
at

a 
/ B

kg

(b) pT(`H)/Emiss
T

0 1 2 3 4 5
p H

T /Emiss
T

0

50

100

150

200

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(c) pT(`H)/Emiss
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ev
en

ts
 / 

Bi
n

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0 1 2 3 4 5 6
pT/p H

T

0.75

1.00

1.25

D
at

a 
/ B

kg

(d) pT(τ)/pT(`H)

0

100

200

300

400

500

600

700

Ev
en

ts
 / 

0.
2

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

0 1 2 3 4 5 6
pT/p H

T

0.75

1.00

1.25

D
at

a 
/ B

kg

(e) pT(τ)/pT(`H)

0 1 2 3 4 5
pT/p H

T

0

20

40

60

80

100

120

140

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(f) pT(τ)/pT(`H)

0

100

200

300

400

500

600

700

Ev
en

ts
 / 

Bi
n

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(g) ∆φ(`H , E
miss
T )

0

100

200

300

400

500

600

700

800

Ev
en

ts
 / 

0.
2

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(h) ∆φ(`H , E
miss
T )

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, Emiss

T )

0

25

50

75

100

125

150

175
no

rm
al

is
ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(i) ∆φ(`H , E
miss
T )

0.0

0.5

1.0

1.5

2.0

2.5

Ev
en

ts
 / 

Bi
n

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( , Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(j) ∆φ(`τ , Emiss
T )

0.0

0.5

1.0

1.5

2.0

2.5

Ev
en

ts
 / 

0.
2

×10
3

s  = 13 TeV, 138 fb 1

H e
VBF SR, prefit

Data
H e ,

=40.0%
syst. stat.
Symmetric n
j
other

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( , Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(k) ∆φ(`τ , Emiss
T )

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( , Emiss

T )

0

100

200

300

400

500

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
VBF SR, prefit

Signal Class
Ztt Class
Top Class
Fakes Class
j

(l) ∆φ(`τ , Emiss
T )

Figure 8.15: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure 8.16: Distributions of input variables to the nonVBF NN. The left and middle columns compare
the prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure 8.17: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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discussed above. Consequently, mT

(
`τ , E

miss
T
)
(Figures 8.16(g)–8.16(i), Figures 8.17(g)–

8.17(i)) peaks at small values for signal. Both SRs show a good modelling of the data
within uncertainties. A small increasing slope is visible in the data over background ratio
of mT

(
`τ , E

miss
T
)
up to 50GeV in the nonVBF SR.∑∑∑

pT: The scalar sum
∑
pT (Figures 8.16(j)–8.16(l), Figures 8.17(j)–8.17(l)) of the

transverse momenta of all high-pT objects in the event is defined by:

∑
pT = p`HT + p`τT + Emiss

T +

njets−1∑
i=0

pji .T (8.2)

All jets in the event with pT > 20 GeV are considered, although the information is only
available for up to three jets (ordered by pT). Given the pT-requirements on the objects,
the minimum value of

∑
pT is 50GeV in the nonVBF SR and 120GeV in the VBF SR. In

the nonVBF SR the signal peaks at larger values than the overall background (at around
125GeV) and in the VBF SR at lower values (at around 270GeV). The prediction models
the data well within its uncertainties in both SRs.

The mass of the Higgs boson cannot be directly reconstructed from its decay products as
the longitudinal component of the neutrinos as well as their individual contributions are
not known.

m``: The simplest mass observable is the invariant mass of the two leptons, m`` (Fig-
ures 8.18(a)–8.18(c), Figures 8.19(a)–8.19(c)), also denoted as mvis. It does not aim at
reconstructing the full Higgs-boson mass as it neglects the neutrinos, but still provides a
good discriminator to background processes. As expected, the signal-distribution as well as
the Z → ττ -distribution peak at lower values compared to their respective resonance masses
and show broadened distributions. Except for the range between 30GeV and 65GeV, where
the prediction overestimates the data, the modelling of the data is good in both SRs.

There are different methods that aim at providing an approximate estimate of the Higgs-
boson mass taking into account the neutrinos in the final state. In the analysis here, the
collinear mass mcoll [238] as well as the missing mass calculator (MMC) [239] which is the
basis for mmlm

MMC are utilised. Both were developed for the reconstruction of the Higgs-boson
mass in H → ττ -decays where the neutrinos originate from both subsequent τ -lepton
decays. In the H-LFV analysis, the calculation is adjusted for the presence of only one
τ -lepton decay. The modified versions are introduced in the following. Both methods,
collinear mass and MMC, depend on the resolution of Emiss

T .

mcoll: The collinear mass (Figures 8.18(d)–8.18(f), Figures 8.19(d)–8.19(f)) is based on
the assumption that the decay products of the τ -lepton travel in the same direction as the
τ -lepton (collinear) and that all missing transverse energy in the event originates from the
neutrinos in the τ -lepton decay. By applying these assumptions, the following equation is
obtained:

mcoll =
√

2p`HT

Ä
p`τT + Emiss

T

ä
(cosh {∆η (`H , `τ )} − cos {∆φ (`H , `τ )}) . (8.3)

The modelling of data by the background prediction is reasonable within uncertainties,
although the prediction slightly overestimates data in the ranges 50 to 90GeV and 190 to
240GeV in the nonVBF SR.

mmlm
MMC, MMC fit status: The MMC performs a scan over the unknown elements of

the di-neutrino four-momentum and the Higgs-boson mass is calculated at each scan point.
Assuming that the the measured Emiss

T in the events solely originates from the two neutrinos
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Figure 8.18: Distributions of input variables to the nonVBF NN. The left and middle columns compare
the prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure 8.19: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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of the τ -lepton decay results in two known elements of the di-neutrino four-momentum. The
squared four-momentum of the system of the two neutrinos and the light lepton from the
τ -decay equals the invariant mass squared of the τ -lepton (on-shell condition). This reduces
the number of unknown elements of the di-neutrino four-momentum to only one. Therefore,
only one variable needs to be considered in the scan; the invariant mass of the di-neutrino
system is used. However, as the resolution of Emiss

T impacts the reconstructed Higgs-boson
mass, also a scan over its two components is performed, constrained by their resolution.
Preassigned probability distributions of the scanned variable depending on the resolution
of Emiss

T and on the τ -decay topology are used in order to weight the resulting mass of each
scan point accordingly when filling it into a histogram. The histogram of the mass for the
different scan points is obtained for each event and the value of the mass at its maximum
is used as a proxy for the Higgs-boson mass, denoted as mmlm

MMC (Figures 8.18(g)–8.18(i),
Figures 8.19(g)–8.19(i)). However, the MMC does not find a solution for every event. If
no solution is found, a retry is performed where the other light lepton is assigned to the
τ -lepton. This improves the success rate, but there are still events where the MMC fails to
find a solution. The outcome is encoded in the “MMC fit status” (Figures 8.18(j)–8.18(l),
Figures 8.19(j)–8.19(l)). It is 1 if a solution is found and 0 if not and hence is a binary
input variable. When no solution is found, mmlm

MMC is set to 0. For the LFV-signal and
Z → ττ -background, the ratio of events for which no solution is found is below 1% in the
Basic Selection Signal Region. For top-quark production this ratio is 35.5%, 28.3% for
diboson production and 7.4% for j → `-fakes. Hence, the “MMC fit status” itself provides
separation power which, however, is also encoded in mmlm

MMC by setting it to 0 if no solution
is found.

The modelling of data by the background prediction in the distribution of both observ-
ables is good within uncertainties, although the prediction slightly overestimates data in
the range 40 to 50GeV in the nonVBF SR.

∆α: Another observable that targets the collinearity of the τ -lepton’s decay products is
∆α (Figures 8.20(a)–8.20(c), Figures 8.21(a)–8.21(c)). It is originally used in the search for
lepton-flavour violating decays of the Z-boson [240]. For H-LFV decays it is defined as:

∆α =
m2
H −m2

τ

2p`Hp`τ
−
p`HT
p`τT

. (8.4)

If the decay products of the τ -lepton are collinear and if the transverse momentum of the
Higgs boson can be neglected, it is expected to be 0 in the case of signal.

Following the first assumption, the four-vector pµ of the τ -lepton can be written as

pµτ = pµ`τ + pµν + pµν̄ ≡ α1 p
µ
`τ
. (8.5)

In combination with

m2
H =

(
pµH
)2

=
Ä
pµτ + pµ`H

ä2
= (pµτ )2 +

Ä
pµ`H

ä2
+ 2 pµτ p`H ,µ ≈ m

2
τ + 0 + 2 pµτ p`H ,µ

=⇒ m2
H −m2

τ = 2 pµτ p
µ
`H

(8.6)

one obtains:

m2
H −m2

τ = 2 α1 p
µ
`τ
pµ`H =⇒ α1 =

m2
H −m2

τ

2 pµ`τ p
µ
`H

. (8.7)

Following the second assumption (pHT = 0) and taking into account Eq. 8.5 leads to:

α2 p
`τ
T = p`HT =⇒ α2 =

p`HT
p`τT

. (8.8)
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And hence, ∆α can be derived from Eqs. 8.7 and 8.8:

∆α = α1 − α2 . (8.9)

The distribution of ∆α indeed peaks around 0 for signal. The bin from 0 to 2 is populated
more than the bin from −2 to 0 but overall the distribution of the signal is negatively
skewed which is the opposite for the symmetric background class (nonVBF NN ) and the
Z → ττ class (VBF NN s). The modelling of the observable is good in the VBF SR and
acceptable for the nonVBF SR where a decreasing slope in the data over background ratio
is visible.

d0(`H)− d0(`τ ): The impact parameters of the light lepton tracks with respect to the
primary vertex are expected to be larger when the light lepton originates from a τ -lepton
decay due to the additional decay length of the τ -lepton. Hence, the difference of the
transverse impact parameters of `H and `τ (with respect to the beam line), d0(`H)−d0(`τ ),
is expected to be slightly wider for signal events compared to background events. Also
other impact parameter observables show a good separation power but typically suffer from
a mis-modelling of data by simulated events or show an asymmetric behaviour between
the eτ - and µτ -datasets. The modelling by simulated events and the Symmetry Method
are sufficient in the case of d0(`H)− d0(`τ ) in the nonVBF SR (Figures 8.20(d)–8.20(f))
but not in the VBF SR. For this reason why the variable is used in the nonVBF NN but
omitted in the VBF NN s.

The remaining variables are only used for the training of the VBF NN s.

ptot
T : The transverse momentum of the system of the two leptons, Emiss

T and the two
leading jets, denoted by ptotT (Figures 8.21(d)–8.21(f)), is expected to be close to zero for
(leading order) VBF signal events assuming the Higgs-boson and the two jets balance each
other in the transverse plane. Hence, this observable can effectively act as a veto on a third
jet. It shows a good modelling of the data within the prediction uncertainties.

pj0T , p
j1
T : The transverse momenta of the two leading jets, pj0T (Figures 8.21(g)–8.21(i))

and pj1T (Figures 8.21(j)–8.21(l)), do not show a distinct separation power by themselves
but can still contribute through correlations. Apart from few fluctuations, the prediction of
the background contributions describes data well in both distributions.

∆φ(j0,E
miss
T ), ∆φ(j1,E

miss
T ): Similar observations concerning the separation power

as for pj0T and pj1T apply to the differences in φ between Emiss
T and the two leading jets,

respectively (Figures 8.22(a)–8.22(c) and Figures 8.22(d)–8.22(f)). A difference in the shape
of the distributions is only observed for ∆φ(j0, E

miss
T ) and the Z → ττ -background. Both

distributions are modelled well.

mjj: In the distribution of the invariant mass of the two leading jets, mjj (Figures 8.22(g)–
8.22(i)), all processes decrease from left to right. However, the signal is flatter compared to
the background processes and therefore is enhanced for higher values of mjj . This is also
highlighted by the fact that the bins at higher mjj-values are blinded. The modelling in
the non-blinded bins is very good.

∆ηjj: The separation in pseudorapidity of the two jets, denoted by ∆ηjj (Figures 8.22(j)–
8.22(l)), has a clear difference in shape between signal and the background processes. It is
shifted to larger values for the signal processes and is even further shifted for the VBF-signal
only as was shown in Figure 8.1(c). This is again indicated by the fact that the bins at
higher values are blinded. The modelling of the data by the background prediction in the
remaining bins is very good.
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Figure 8.20: Distributions of input variables to the nonVBF NN. The left and middle columns compare
the prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.

∆Rjj: Similar behaviour as for ∆ηjj can be observed for the angular separation of the
two jets, denoted by ∆Rjj (Figures 8.23(a)–8.23(c)). The modelling of the data by the
background prediction is very good.

η-centr.(`H), η-centr.(`τ ): The η-centrality of each of the leptons with respect to the
η-values of the two leading jets is defined as:

η-centr.(`) = exp

Ç
−4

(ηj0 − ηj1)2

Å
η` −

ηj0 + ηj1
2

ã2
å
. (8.10)

It is equal to 1 if the lepton lies exactly between the two jets, 1/e if the lepton is aligned
with one of the jets and < 1/e if it is outside the two jets. The VBF-signal is expected to
accumulate close to 1 which is reflected in the distributions of η-centr.(`H) (Figures 8.23(d)–
8.23(f)) and η-centr.(`τ ) (Figures 8.23(g)–8.23(i)), respectively. The background processes
are shifted more to lower values of the η-centrality, especially Z → ττ . The data is described
well by the background prediction in both distributions.

Correlations of the Input Variables The Pearson correlation coefficients in percent for
all input variables, separate for the nonVBF SR and the VBF SR, are shown in Figures 8.24
and 8.25, respectively. They are calculated and shown separately for the signal and the
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Figure 8.21: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure 8.22: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure 8.23: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the eτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datasets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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background processes. Additionally, the differences of the correlation coefficients of signal
and background are given which can be exploited by the NNs.
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Figure 8.24: Matrices of Pearson correlation coefficients in percent of all input variables of the nonVBF NN
for signal (a) and the sum of all backgrounds (b). The difference of the signal and background correlations
is given in (c).

The strongest correlation in the nonVBF SR for signal is with 83% (76% for back-
ground) between ∆φ(`τ , E

miss
T ) and mT (`τ , E

miss
T ). For background, the largest correlation

is found with 85% (80% for signal) between mT (`H , E
miss
T ) and p`HT rest. These high cor-

relations are reasonable when recalling the definition of mT (`, Emiss
T ) (Eq. 8.1). Other

strong (anti-)correlations for signal are observed between m`` and p`τT rest (80%), between
∆R(`H , `τ ) and

∑
pT (−77%) and between p`HT /p`τT and ∆α (51%). The latter correlation

is attributed to Eq. 8.8 which contains the ratio of the transverse momenta of the two
leptons as part of the definition of ∆α. For background, further strong (anti-)correlations
are obtained between m`` and mcoll(79%), between mcoll and p`HT rest (77%), between∑
pT and Emiss

T (75%) and between m`` and ∆α (−73%). The input variable d0`H − d0`τ

shows almost no correlations with respect to any other input variable. This variable is
nearly symmetric around zero in contrast to any other variable. If its absolute value was
used, non-zero correlations would appear. The largest difference in correlations of signal
and background are observed between m`` and mT (`H , E

miss
T ) (−65%), between m`` and

Emiss
T (−56%), between mT (`H , E

miss
T ) and p`τT rest (−49%) and between ∆R(`H , `τ ) and

∆α (46%).
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Figure 8.25: Matrices of Pearson correlation coefficients in percent of all input variables of the VBF NN
for signal (a) and all backgrounds (b). The difference of the signal and background correlations is given in
(c).

In the VBF SR, the strongest correlation for signal and background is observed with
96% and 93% between ∆Rjj and ∆ηjj as expected. Other strong (anti-)correlations that
are also observed for the nonVBF SR are between mT (`H , E

miss
T ) and p`HT rest (78%/85%),

between m`` and p`τT rest (75%/59%) and between p`HT /p`τT and ∆α (54%/−39%) for
signal/background. Strong correlations including input variables that are specific for the
VBF SR are between pj0T and

∑
pT (92%/89%), between the η-centralities of the two

leptons (75%/71%), respectively, between ∆ηjj and mjj (75%/62%) and consequently
between ∆Rjj and mjj (96%/93%). The largest difference in correlations of signal and
background are between m`` and Emiss

T (−58%), between ∆R(`H , `τ ) and ∆α (57%) and
between m`` and mT (`H , E

miss
T ) (−56%). All three input variable pairs also show larger

differences in correlations in the nonVBF SR.

Preprocessing of the Input Variables

The distributions of the input variables are standardised as motivated in Section 6.3.1.
That means that the input variable values of the single events are shifted by the respective
distribution’s mean and divided by its standard deviation such that each input variable
distribution is centered around 0 with a standard deviation of 1.
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8.2.4 Hyperparameters

The choice of the values for the hyperparameters of the NN-architecture and of the training
process is crucial for obtaining a well-performing NN. Some of these hyperparameters are
set to fixed values a priori as a result of experience gained from exploratory studies. They
are summarised in Table 8.5. The remaining hyperparameters listed in Table 8.6 are subject
to the optimisation procedure discussed in the following.

Hyperparameter Choice

architecture fully connected NN
Cl (# output nodes/classes) 3 for nonVBF NN, 2 for VBF NN s
arrangement of nodes # nodes in each layer is half of # of nodes in previous

layer (triangle shape): N lh+1 = 1/2N lh

weight and bias initialisation Glorot uniform for the weights and zeros for the biases
loss function categorical cross entropy
activation function softmax for last layer, leaky ReLU for inner layers
Nep (# epochs) 100

Table 8.5: Hyperparameters fixed a priori for the networks used in this analysis.

Fully connected NNs with three output nodes in the case of the nonVBF NN and with
two output nodes in the cases of the VBF NN s are trained. The nodes of the inner layers
are arranged in a triangle shape [241]. The number of nodes in each hidden layer is half of
the number of nodes in the previous hidden layer. In this way only the number of nodes of
the first hidden layer needs to be optimised and the number of nodes in the others follows
automatically. Another option, for example, would have been to use the same number of
nodes in each hidden layer. But by choosing the triangle shape over this rectangular shape,
the number of free parameters (weights and biases) can be reduced. And it is assumed that
a reduced degree of freedom in later layers is sufficient and no information is lost; and if so,
this is compensated in the optimisation process either by more layers or by more nodes
overall.

The weights of each layer are initialised following the Glorot uniform prescription [242].
A random number from a uniform distribution in the range [−al, al] is drawn for each
weight. The parameter al is defined for each layer l as al =

√
6/(N l−1 +N l) with N l and

N l−1 being the number of nodes in layer l and the previous layer l − 1, respectively. The
biases are initialised with zeros.

The categorical cross entropy loss or cost function as well as the chosen activation
functions were discussed in detail in Sections 6.1.3 and 6.1.2, respectively.

The number of training epochs listed is fixed to 100 for the optimisation of the free
hyperparameters but can be adapted for the final re-training.

Optimisation

The optimisation of the remaining hyperparameters is performed with Optuna [218] which
was introduced in Section 6.4.1. For the optimisation, sets of allowed values for each
hyperparameter to be optimised are defined and passed to the framework. A list of
these hyperparameters and their respective set of values are given in Table 8.6. All 7
hyperparameters which are optimised were introduced in Chapter 6.

The number of hidden layers must be between 2 and 6. The number of nodes of the first
hidden layer can be 64, 128, 256 or 512. The allowed values for the λ-parameter steering the
strength of the L2 weight regularisation is continuous between 10−6 and 10−3. The values
are drawn from a log-uniform distribution. This ensures that the sampling probability is
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Hyperparameter Possible Choices

Lh (# hidden layers) ∈ {2, 3, 4, 5, 6}
N 0h (# nodes first hidden layer) ∈ {64, 128, 256, 512}
λ (of L2 weight regul.) log-uniform ∈ (10−6, 10−3)
α (leaky ReLU slope below 0) uniform ∈ (0.01, 0.1)
optimiser Adam or SGD
η (learning rate) log-uniform ∈ (10−5, 10−1)
sb (batch size) ∈ {128, 512, 1024, 2048, 4096, 8192}

Table 8.6: Hyperparameters to be optimised in the Optuna optimisation.

the same for each order of magnitude. The slope parameter α of the leaky ReLU activation
function is allowed to have values between 0.01 and 0.1 following a uniform distribution.
The optimiser can either be Adam or SGD with learning rates η between 10−5 and 10−1

following a log-uniform distribution. An individual learning rate parameter is implemented
for each of the two optimisers. This ensures that the best performing outcome of one does
not impact the choice for the other, as Adam typically needs smaller learning rates than
SGD. Finally, the batch size is allowed to adopt either of the values in 128, 512, 1024, 2048,
4096 and 8192.

If the optimisation process showed that the most favoured values of one of the hyperpa-
rameters were at the edge of the allowed range, the optimisation procedure was performed
again with a larger range for the respective hyperparameter. The individual ranges were
chosen experimentally to be exhaustive enough to ensure that the search space includes a
solution with acceptable performance. At the same time the ranges were kept as narrow as
possible to avoid an overly expensive hyperparameter optimisation.

In order to judge the performance of the different trials (sets of hyperparameters), an
objective function that returns an objective value is defined. Different metrics for the
performance of NNs were introduced in Section 6.1.5. The Binned Asimov Significance
Z (Eq. 6.27) is used as objective value for the hyperparameter optimisation as it is fast
to calculate and closest to the full statistical analysis. The Binned Asimov Significance is
calculated for each trial using 10 equidistant bins of the signal node probability distribution.
A branching ratio of 1% is assumed for the signal. The objective function only considers
the first two NNs of the 10-fold cross validation discussed in Section 6.2 in order to limit the
required resources and time. That means the events of two validation folds (corresponding to
the two NNs) are considered in the evaluation of Z. Each of the validation folds corresponds
to 10% of the available dataset, hence the objective value (Z) for each trial is evaluated
based on 20% of the full dataset. This is expected to provide a sufficiently precise estimate
of the true objective value in order to compare the different trials. The value of Z also
depends on the number of events considered and increases when evaluated with the full set
of validation folds, which is done for the final NNs after the optimisation is finished.

The histories of the four optimisations with Optuna are shown in Figure 8.26 for the
nonVBF NN and the three VBF NN s. It is apparent that many more trials for the
VBF NN s are performed than for the nonVBF NN. The reason is that each of the four
optimisations was run for the same amount of time (2 days) and the VBF NN s are much
faster to train as the number of processed events is lower. Hence, the number of parameters
(weights and biases) to be trained is typically also lower for well performing trials compared
to the nonVBF NN, which further reduces the average training time per trial. Overall,
the majority of the trials exhibits a good performance. This is a result of the exploitation
versus exploration tradeoff performed by the acquisition function in Bayesian Optimisation
of which Optuna makes use of (Section 6.4.1).



174 CHAPTER 8. SEPARATION OF SIGNAL AND BACKGROUND

0 20 40 60 80 100
Trial

3

4

5

6

7

8

9

10

11

Si
gn

ifi
ca

nc
e

Trials
Best value

(a) nonVBF NN

0 200 400 600 800 1000
Trial

2

3

4

5

6

7

Si
gn

ifi
ca

nc
e

Trials
Best value

(b) VBFZ→ττ NN

0 200 400 600 800 1000
Trial

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Si
gn

ifi
ca

nc
e

Trials
Best value

(c) VBFtop NN

0 200 400 600 800 1000
Trial

3

4

5

6

Si
gn

ifi
ca

nc
e

Trials
Best value

(d) VBFfakes NN

Figure 8.26: History of the Optuna optimisations for the nonVBF SR (a) and for the VBF SR (b-d). The
binned Asimov significance Z (objective value) is shown as a function of the number of trials. The red line
indicates the current best objective value.

An earlier version of the analysis was used to perform the optimisation for the nonVBF
NN. The differences to the final version are as follows: the j → `-fake estimate included the
contribution of electron-fakes from photon conversion and used a binning of the electron Fake
Factors in pT and |η| instead of the final binning in pT and ∆φ(`p, E

miss
T ). Furthermore, the

set of input features was slightly different at that time. A new optimisation was performed
with the final j → `-fake estimate and choice of input variables; but the best performing
trial of the new optimisation obtained only a lower sensitivity in the final statistical analysis
and hence it was decided to use the trial of the previous optimisation whose history is
shown in Figure 8.26(a).

The objective values of the best trials (ranked by the objective value) of each optimisation
are close together; thus, a more precise comparison of the two best performing trials is
performed. Both trials are checked to exhibit reasonable loss curves, i.e. the loss evaluated
on the validation set is meant to decrease with an increasing number of epochs to indicate
that no overtraining is found. If overtraining is visible, the next best performing trial
with a reasonable loss curve is chosen. The 10 networks of the 10-fold cross validation are
trained for the two best performing trials with the respective hyperparameter sets and are
evaluated on the full validation set. In addition, the full statistical analysis using the pre-fit
Asimov dataset (see Section 10.3) is performed and the final trial is chosen based on the
outcome. The latter is discussed in detail in Chapter 10. For the VBF NN s this procedure
is done separately for each of the three NNs (VBFZ→ττ NN, VBFtop NN and VBFfakes
NN ).

The finally chosen hyperparameters are listed in Table 8.7 for the four networks (nonVBF
NN, VBFZ→ττ NN, VBFtop NN and VBFfakes NN ). The nonVBF NN is rather shallow
with only two inner layers but has more nodes per layer compared to the VBF NN s.
Overall, it has 141 827 parameters (weights and biases) to be trained compared to only
14 482, 13 986 and 14 482 for the three VBF NN s, respectively, which is in accordance with
the higher available statistics of the training dataset for the nonVBF NN (see Table 8.3).
The λ-parameter that steers the strength of the L2 weight regularisation is larger for the
VBF NN s, the slope α of the leaky ReLU activation function is comparable for all networks,
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Hyperparameter
Choice

nonVBF NN VBFZ→ττ NN VBFtop NN VBFfakes NN

Lh (# hidden layers) 2 4 3 4

N 0h (# nodes first hidden layer) 512 128 128 128

λ (of L2 weight regul.) 4.8× 10−5 2.92× 10−4 9.4× 10−5 3.56× 10−4

α (leaky ReLU slope below 0) 8.0537× 10−2 1.9614× 10−2 6.2515× 10−2 8.4219× 10−2

optimiser SGD Adam Adam Adam

η (learning rate) 2.5810× 10−2 1.42× 10−4 2.15× 10−4 3.507× 10−3

sb (batch size) 128 128 512 1024

Table 8.7: Chosen hyperparameters for the four networks.

only a bit smaller for the VBFZ→ττ NN. The nonVBF NN favours the SGD optimiser
and hence also a larger learning rate η while it is smaller for the VBF NN s which favour
the Adam optimiser. The batch size sb is largest for the VBFfakes NN which is justified
by the large difference in available training events between the two classes, signal and
j → `-fakes data (compare to Table 8.3). This larger difference requires a larger batch size
to ensure that a sufficient amount of events of both classes are included per batch. There
are approximately 24 times more signal events than j → `-fake data events available, which
means that there are approximately 983 events of the former and 41 events of the latter in
one batch of size 1024.

8.2.5 Results of the NN Training

This section starts with a discussion of the performance of the Neural Networks trained
with the input features and hyperparameters as described above and inspects the ranking
of the input features. Afterwards the compatibility of the eτ - and the efficiency-corrected
µτ -dataset in the distributions of the signal node probabilities, similar to Figures 7.19 and
7.20, is validated with simulated events. The section concludes with the investigation of
the modelling of the data by the predictions in these distributions.

Performance of the Neural Networks

All results shown in this section are based on evaluating each of the 10 Neural Networks of
the 10-fold cross validation with the events of the corresponding validation fold. Hence,
100% of the dataset is used to obtain the results.

The loss and accuracy curves are given in Figure 8.27. They display the evolution of
the loss and accuracy (see Section 6.1.5) and hence the performance of the networks as the
training progresses. In addition to the curves evaluated on the validation set, the curves
evaluated on the training sets are shown. If the validation curves diverge from the training
curves, it indicates that the NN does not generalise well on independent data and as such
is a sign for overtraining. The loss curves of all four networks however do not show any
signs of overtraining. The same applies to the accuracy curves, although they show a higher
variability. It is apparent that the statistics of the validation set (100%) is considerably
smaller than for the total training set (800%).

Confusion matrices are a measure for the classification power of a Neural Network .
Each event in the validation set is classified to belong to the class for which it has the
highest predicted probability. The confusion matrix gives an overview over which ratio of
events of each true class are predicted correctly and which ratios are predicted to belong
to wrong classes. The sum over the ratios over all predicted classes sums up to 1 for each
true class. The confusion matrices of all four NNs are shown in Figure 8.28. A ratio of
87% of all signal events in the nonVBF SR are predicted to belong to the signal class
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Figure 8.27: Loss and accuracy curves with respect to the number of training epochs for the nonVBF SR
(a,b) and for the VBF SR (b-h). Blue represents the loss/accuracy evaluated with the training set and red
with the validation set. The solid line indicate the mean over all 10 networks of the 10-fold cross validation,
the shaded area represents the standard deviation.



8.2. APPLICATION OF NEURAL NETWORKS 177

Sig
na

l
Fak

es

e/
-sy

mm.

Predicted

Sig
na

l

Fak
es

e/
-sy

mm.

Tr
ue

0.87 0.08 0.05

0.16 0.45 0.39

0.11 0.21 0.68

0.0

0.2

0.4

0.6

0.8

1.0

(a) nonVBF NN

Sig
na

l
Z

Predicted

Sig
na

l

Z

Tr
ue

0.94 0.06

0.10 0.90

0.0

0.2

0.4

0.6

0.8

1.0

(b) VBFZ→ττ NN

Sig
na

l
To

p

Predicted

Sig
na

l

To
p

Tr
ue

0.92 0.08

0.13 0.87

0.0

0.2

0.4

0.6

0.8

1.0

(c) VBFtop NN

Sig
na

l
Fak

es

Predicted

Sig
na

l

Fak
es

Tr
ue

0.89 0.11

0.17 0.83

0.0

0.2

0.4

0.6

0.8

1.0

(d) VBFfakes NN

Figure 8.28: Confusion matrices of the four NNs normalised for each true class, obtained with the
validation set.

while 8 and 5% are predicted to belong to the fakes and to the e/µ-symmetric background
class, respectively. Only 45% of the fakes are correctly predicted while it is 68% for the
e/µ-symmetric background class. For the VBF NN s, 94, 92 and 89% of the signal events
in the VBF SR are correctly classified.

The normalised distributions of the output node probabilities for the individual true
classes are shown in Figure 8.29 for the nonVBF NN and in Figure 8.30 for the three VBF
NN s.

The distributions are shown for 20 equidistant bins and were obtained with the validation
set. For the VBF NN s the distributions of the two nodes are the same (just mirrored)
as only two classes or output nodes are used and their probabilities add up to 1. The
signal node distributions of all four networks show a good separation between signal and
background. The separation of the fakes and the e/µ-symmetric background seems to be
challenging for the nonVBF NN. However, this does not pose a problem as only the signal
node distribution is utilised in the final statistical analysis.

The ROC-curves and the areas under these curves (AUC) are obtained for each output
node and for each Neural Network as explained in Section 6.1.5. The resulting curves and
their AUC-values are shown in Figure 8.31 for all four networks. The true-positive rate
(TPR) is displayed on the y-axis, the false-positive rate (FPR) on the x-axis. The former
corresponds to the “signal” acceptance for a given cut value on the respective output node
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Figure 8.29: Normalised distributions of the output node probabilities of the nonVBF NN with 20
equidistant bins, obtained with the validation set.

probablity distribution while the latter corresponds to 1-“background” rejection. Here,
“signal” means the class of the corresponding output node and “background” all other
processes. Ideally the AUC-values are close to 1. Hence, the AUC-values for the signal
nodes of all four networks indicate good performance while the values for the fakes and
e/µ-symmetric background of the nonVBF NN are smaller. The values of the background
nodes of the VBF NN s are the same as for the signal node since their distributions are the
same as for the signal nodes but mirrored.

The Binned Asimov Significance Z (Section 6.1.5), assuming a branching ratio of 1%
for the signal, is calculated for the signal node distributions with 10 equidistant bins for
all four networks. The numbers are listed in Table 8.8. However, in this table Z is only

nonVBF NN VBFZ→ττ NN VBFtop NN VBFfakes NN

24.3± 1.3 14.6± 5.0 9.7± 0.8 15.0± 7.9

Table 8.8: The Binned Asimov Significance Z for each of the signal node probability distributions with 10
equidistant bins.

calculated with respect to the background processes that were also used in the training
which particularly impacts Z of the VBF NN s. Besides that, Z is calculated for the
combined eτ - and µτ -datasets in accordance with the training process.

Finally, the ranking of the input variables based on the Permutation Feature Importance
described in Section 6.3.3 is shown in Figure 8.32 for all four networks. The metric used to
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obtain this ranking is, again, the Binned Asimov Significance Z with 10 equidistant bins.
In general, the importance is calculated as the ratio of the metric obtained after the data is
shuffeled (Zshuff) over the original metric (Zorig). As the original metric is expected to be
larger than the shuffeled metric when using Z as metric, both metric values (original and
shuffeled) are transformed before calculating their ratio according to: Z ′ = 1− Z/20. This
assumes that Z is smaller than 20 which is the case for all four NNs when evaluated for each
validation fold of the 10 networks (in the course of 10-fold cross validation) individually.
Now, the larger the ratio (i.e. the importance) of one input variable is, the higher it is
ranked. For a few very low-ranked variables the importance is slightly smaller than 1, i.e.
the corresponding network performs better when the value of the respective variable is
assigned randomly compared to when its original value is used. Within the uncertainty
given for each importance these are, however, in agreement with 1. Overall, the mass
observables (m``, mcoll, mT (`τ , E

miss
T )) are of high importance in all four networks. The

mass obtained from the missing mass calculator (mmlm
MMC) is less important. Another higher

ranked variable in all networks is the angular separation of both leptons (∆R(`H , `τ )).
After the first three to five observables the importance drops. Otherwise, the ranking varies
between the networks which is reasonable as the considered processes vary. The Permutation
Feature Importance ranking gives an indication of the importance of the variables, but can
be biased by correlations between the input variables. The correlations can result in lower
importance values of the respective variables as they basically share the importances. In
addition, the shuffeling of the values of the input variables over the different events can
lead to unphysical combinations per event.
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(b) VBFZ→ττ NNbackground node distribution
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Figure 8.30: Normalised distributions of the output node probabilities of the VBF NN s with 20 equidistant
bins, obtained with the validation set.
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Figure 8.31: ROC-curves and the corresponding AUC-values of all output nodes of the four NNs, obtained
with the validation set.
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Figure 8.32: Ranking of the input features of the four networks, obtained with the validation set. It is
based on the Permutation Feature Importance with the Binned Asimov Significance Z with 10 equidistant
bins used as metric. The displayed importance values are obtained from averaging the importance values
over all 10 networks of the 10-fold cross validation. The uncertainties on the mean values are indicated by
the black bars.
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Combination of the three VBF NN signal node probabilities into one observable

In order to obtain one discriminating observable for the VBF SR, the probabilities p of the
signal nodes of the three VBF NN s are linearly combined:

pVBFNN =

∑
i ci · pVBFNNi∑

i ci
with i ∈ {Z → ττ, Top, fakes} . (8.11)

The final observable pVBFNN is calculated per event with pVBFNNi being the probability of
the event to belong to the signal class of the respective NN and ci being the corresponding
coefficient which is between 0 and 1. The values of the individual ci are optimised by
performing a scan over all possible coefficient combinations with values between 0.0 and
1.0 in steps of 0.1 per coefficient ci. The Binned Asimov Significance Z evaluated using 20
equidistant bins is used as metric. This optimisation is performed separately for the eτ - and
µτ -dataset. The resulting values of the coefficients are summarised in Table 8.9. The values

VBFZ→ττ NN VBFtop NN VBFfakes NN

eτ 0.2 0.6 0.9
µτ 0.6 0.8 0.1

Table 8.9: Coefficients of the single VBF NN s for their linear combination in order to obtain one final
discriminant, separate for the eτ - and µτ -datasets.

are different for the eτ - and µτ -dataset even though a roughly symmetric behaviour could
be expected. However, the j → `-fake contribution behaves differently for both datasets
which can justify the different importance given to the VBFfakes NN for the respective
datasets. Furthermore, many different sets of coefficient values lead to similar values of the
Binned Asimov Significance Z in the optimisation procedure. The values of Z with respect
to the coefficient values of the VBFtop NN on the vertical and the VBFZ→ττ NN on the
horizontal axis are visualised in Figure 8.33. The figures are shown for the best value and
for two other exemplary values of the coefficient corresponding to the VBFfakes NN. Values
of Z close to the best value can be obtained with other sets of coefficients.

Validation of the restoration of the Symmetry-assumption in the NN distribu-
tions

The restoration of the Symmetry-assumption (Chapter 3) in the distributions of the nonVBF
NN and the combined VBF NN are validated in the same way as done previously for
several kinematic observables in the Basic SR (end of Section 7.2.3). The efficiency-ratio
Rµτ (Eqs. 7.8 and 7.17) is applied to the e/µ-symmetric background processes estimated
from simulation in the eτ -dataset and compared to the sum of the same processes in the
µτ -dataset. The corresponding figures are given in Figures 8.34 and 8.35 for the nonVBF
NN and the combined VBF NN output distributions, respectively. The agreement of the
efficiency-corrected (·Rε) eτ -dataset and the µτ -dataset is good in all of the distributions.
Only the bins at higher values of the nonVBF NN fakes node distribution show a discrepancy
of up to ∼ 13 %. On one hand there are only a few events in these bins (140 and 27 for
µτ in the last two bins), on the other hand this could hint at issues of the applicability
of the efficiencies for these very j → `-fake like events, meaning that the efficiencies are
not valid in this extreme but small phase space. However, the fakes node is not utilised
in subsequent steps of the analysis and to derive the final results and hence the observed
discrepancy is potentially interesting but not important to the analysis. Events which are
assigned to belong to the j → `-fakes class with such a high probability consequently have
a low signal probability value and hence are not in the sensitive region.
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Figure 8.33: Values of the Binned Asimov Significance with respect to the coefficient values of the VBFtop
NN on the vertical and the VBFZ→ττ NN on the horizontal axis for the eτ - (top) and µτ -dataset (bottom).
(a) and (d) show the values when the coefficient corresponding to the VBFfakes NN (cFakes) is fixed to its
optimal value. The best values of cZ→ττ and cTop are indicated by red boxes. (b) and (e) show the values
when cFakes is fixed to the optimal value of the respective other dataset. (c) and (f) show the values when
cFakes is fixed to an (arbitrary) value close to its optimal value.

Validation of the modelling of the data by the predictions in the NN distributions

A good modelling of the data by the prediction of the processes in the probability output
node distributions of the NNs is crucial in order to be able to trust the final results derived
from these distributions. Hence, the modelling of the signal node distribution of the
nonVBF NN and the modelling of the combined distribution of the three VBF NN signal
node distributions are most important as these distributions are used in the final statistical
analysis (Chapter 10). The modelling is less important in the case when the e/µ-symmetric
background is estimated from MC simulations as this is not used in the statistical analysis
and no correcting normfactors are derived (as mentioned above) which makes it a less
precise estimate. It is mainly utilised to see the distributions of the single contributing
processes. Consequently, a good modelling in the case when the e/µ-symmetric background
is estimated with the Symmetry Method is necessary.

The distributions are obtained by using the test set. The signal-enhanced bins are
blinded whenever the signal-over-background ratio (s/b) exceeds 5% when assuming a
branching ratio of 1% for signal. The blinded versions of the distributions are shown here
such that the judgement is not biased by information from the signal-sensitive bins.

Figures 8.36–8.38 show the distributions of the nonVBF NN, of the single VBF NN s and
of the combined VBF NN, respectively, with the e/µ-symmetric background estimated from
simulations. Figures 8.39–8.41 show the same distributions but with the e/µ-symmetric
background estimated with the Symmetry Method.

Modelling using simulations for the e/µ-symmetric background The overall
modelling of the NN distributions with the e/µ-symmetric background estimated from
simulations in the nonVBF SR is reasonable, in particular when considering that not all
systematic uncertainties are included in these figures. However, for high values of the
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Figure 8.34: Distributions of the output node probabilities of the nonVBF NN, comparing the eτ - and
the efficiency-corrected (·Rε) eτ -dataset to the µτ -dataset using all e/µ-symmetric background processes
estimated from simulations (Z → ττ , top-quark production, diboson-production, H → ττ and H →WW ).
The indicated uncertainties only represent the statistical uncertainties of the simulated events.

nonVBF NN fakes node probability distribution, a slight disagreement between prediction
and data is visible which is more pronounced for the µτ -dataset. The µτ -dataset is
dominated by jets faking electrons. As the fakes node distribution is not used in any further
steps of the analysis, the observed behaviour is acceptable.

The prediction by the simulated events in the VBF SR is known to overestimate the
data as discussed in the beginning of Section 8.2.3 and hence the modelling is not further
discussed here. But the strengths of the individual VBF NN s is clearly visible (Figure 8.37):
in the VBFZ→ττ NN distribution, the Z → ττ -events are shifted to the left in contrast to
the other processes. The same applies to events from top-quark and diboson production in
the VBFtop NN. For events of the j → `-fakes in the VBFfakes NN distribution it is not as
noticeable as for the other two.

Modelling using the Symmetry Method for the e/µ-symmetric background The
overall modelling of the NN distributions with the e/µ-symmetric background estimated with
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Figure 8.35: Distributions of the combined signal output node probabilities of the VBF NN s using the
combination coefficients for eτ (a) and for µτ (b). The eτ - and the efficiency-corrected (·Rε) eτ -dataset
are compared to the µτ -dataset using all e/µ-symmetric background processes estimated from simulations
(Z → ττ , top-quark production, diboson-production, H → ττ and H →WW ). The indicated uncertainties
only represent the statistical uncertainties of the simulated events.

the Symmetry Method is very good. The opposite behaviour of the data-over-background
ratio in the lower panel between the eτ - and µτ -datasets is visible which is intrinsic to the
Symmetry Method as discussed in Sections 7.2.4 and 8.2.3. In the nonVBF SR, there is a
small slope in the ratio in the lower panel of the fakes node probability distribution, but
this is still in agreement with 1.0 within uncertainties. In addition, the same behaviour
for higher values of the fakes node probability is visible as observed when estimating the
e/µ-symmetric background from MC simulations.

The modelling in the VBF SR is reasonable. In the distributions of the combined VBF
NN only one bin shows a deviation larger than 1σ (1 standard deviation).

Modelling in the SC-SR using simulations for the e/µ-symmetric background
As the signal sensitive bins are blinded, another cross check where also the modelling
in these bins can be inspected, is useful. For this purpose, the output node probability
distributions in the SC-SR are used. This region was already utilised in Section 7.2.2 to
verify the estimation of the j → `-fakes since it is enriched with such events. Its definition
is identical with the Basic Selection Signal Region, only the opposite-sign electric charge
requirement is inverted such that same-sign electric charges of the two leptons are required.
Since the fakes are the dominant contribution in this region, it is not meaningful to use
the Symmetry Method here to estimate the e/µ-symmetric background. The respective
distributions with the e/µ-symmetric background estimated from simulations are shown in
Figures 8.42 and 8.43.

The modelling of data by the background prediction in the signal node distributions
of the nonVBF SR is very good for the eτ -dataset and good within uncertainties for the
µτ -dataset, although an increasing slope is visible in the data-over-background ratio of
the latter. The e/µ-symmetric background node distribution only has very few events in
the last bins. Apart from the third to last bin in the distribution of the eτ -dataset, the
modelling is very good. The distributions of the fakes-node is very good for the eτ -dataset
while the data in the last bin in the distribution of the µτ -dataset is slightly overestimated
by the prediction.
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Figure 8.36: Distributions of the output node probabilities of the nonVBF NN separately for the eτ -
(left) and µτ -dataset (right), obtained with the test set. The e/µ-symmetric background is estimated from
MC simulations. The uncertainty band includes the statistical uncertainties on the background predictions
and the systematic uncertainties on the j → `-fake estimate.
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Figure 8.37: Distributions of the output node probabilities of the single VBF NN s, separately for the eτ -
(left) and µτ -dataset (right), obtained with the test set. The e/µ-symmetric background is estimated from
MC simulations. The uncertainty band includes the statistical uncertainties on the background predictions
and the systematic uncertainties on the j → `-fake estimate.
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Figure 8.38: Distributions of the combined VBF NN s, separately for the eτ - (left) and µτ -dataset
(right), obtained with the test set. The e/µ-symmetric background is estimated from MC simulations. The
uncertainty band includes the statistical uncertainties on the background predictions and the systematic
uncertainties on the j → `-fake estimate.

The distributions of the combined VBF NN s show a good description of the data by
the prediction. Fluctuations are visible due to reduced statistics but apart from the third
last bin in the distribution of the µτ -dataset, agreement between prediction and data in all
bins is observed. The last bin in the distribution of the eτ -dataset is blinded which means
that the signal over background ratio is larger than 5% when assuming a branching ratio
of 1% for the signal. For a background yield of 7.7 events, 0.39 signal events are sufficient
for the blinding of this bin.
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Figure 8.39: Distributions of the output node probabilities of the nonVBF NN separately for the eτ - (left)
and µτ -dataset (right), obtained with the test set. The e/µ-symmetric background is estimated with the
Symmetry Method. The uncertainty band includes the statistical uncertainties and the full set of systematic
uncertainties on the background predictions added in quadrature.
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Figure 8.40: Distributions of the output node probabilities of the single VBF NN s, separately for the
eτ - (left) and µτ -dataset (right), obtained with the test set. The e/µ-symmetric background is estimated
with the Symmetry Method. The uncertainty band includes the statistical uncertainties and the full set of
systematic uncertainties on the background predictions added in quadrature.
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Figure 8.41: Distributions of the combined VBF NN s, separately for the eτ - (left) and µτ -dataset (right),
obtained with the test set. The e/µ-symmetric background is estimated with the Symmetry Method. The
uncertainty band includes the statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature.
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Figure 8.42: Distributions of the output node probabilities of the nonVBF NN separately for the eτ - (left)
and µτ -dataset (right), obtained in the SC-nonVBF SR. The e/µ-symmetric background is estimated from
MC simulations. The uncertainty band includes the statistical uncertainties on the background predictions
and the systematic uncertainties on the j → `-fake estimate.
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Figure 8.43: Distributions of the combined VBF NN s, separately for the eτ - (left) and µτ -dataset (right),
obtained in the SC-VBF SR. The e/µ-symmetric background is estimated from MC simulations. The
uncertainty band includes the statistical uncertainties on the background predictions and the systematic
uncertainties on the j → `-fake estimate.
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8.2.6 Binning of the Final Discriminants for the Statistical Analysis

The nonVBF NN signal node probability distribution and the distribution of the combined
VBF NN s are used as final discriminants in the respective signal regions in the statistical
analysis. When choosing the binning of the final discriminants, it must be ensured that
each process contributes events to each bin. Furthermore, the sensitivity can be enhanced
by the choice of the binning. In principle, the sensitivity is improved or stays the same with
more bins. However, the previously mentioned requirement must be met and the statistical
uncertainties on the prediction should be kept limited.

This results in the following binning strategy. A finely binned histogram of 100
equidistant bins serves as basis. Starting from the right of the distribution and proceeding
to the left, these sub-bins are merged into a new bin once the following criteria are met:

1. The yield of all single processes in the new bin must be larger than zero. The
single processes are the data-part of the e/µ-symmetric background, the efficiency-
corrected fake contributions R · j → `- and R · other → `-fakes and the j → `- and
other → `-fakes.

2. The background prediction in the new bin must be larger than in the previous bins
combined.

3. The relative statistical uncertainty of all single processes in the new bin must be
smaller than 100%.

The binning procedure is performed separately for the distributions in the eτ - and µτ -
dataset. For the rebinning of the distributions of the combined VBF NN s, the j → `- and
other → `-fakes and the R · j → `- and R · other → `-fakes are combined into one process,
respectively.

The resulting distributions are shown in Figure 8.44. The bins to the right, where the
signal accumulates, are finer than the bins more to the left, as expected. The right-most
bins are a bit wider again due to the requirement on the relative statistical uncertainty. The
left-most bins, especially for the nonVBF NN, are thinner as they comprise the remaining
events. The signal-enhanced bins are blinded whenever the signal-over-background ratio
exceeds 5% when assuming a branching ratio of 1% for the signal. The data modelling by
the background prediction using the Symmetry Method is very good in the remaining bins,
indicating effective background estimation techniques.
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(b) nonVBF NN, µτ
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(c) VBF NN, eτ
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(d) VBF NN, µτ

Figure 8.44: Distributions of the nonVBF NN (top) and of the combined VBF NN (bottom), separately
for the eτ - (left) and µτ -dataset (right), with the binning used in the statistical analysis. The e/µ-
symmetric background is estimated with the Symmetry Method. The uncertainty band includes the
statistical uncertainties and the full set of systematic uncertainties on the background predictions added in
quadrature.
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8.2.7 Precursory Studies

This section presents the results of three studies which, among others, led to the results
presented above. The studies were performed at different earlier stages of the analysis
and hence various aspects, for instance the background estimation, the event selection, the
considered uncertainties as well as the input variables, may differ. Therefore, only setups
that are comparable, i.e. arose from similar stages of the analysis, are used for comparing
sensitivities within one study.

Comparison of one multiclass and three binary NNs for the nonVBF SR

The signal node probability distribution of a multiclass NN is eventually used for the
nonVBF NN as discussed above. However, the same strategy as finally chosen for the VBF
NN was also tested for the nonVBF NN and its results are presented in the following.

Three binary NNs are trained and the signal node probabilities of all three are linearly
combined to obtain one probability value per event (Eq. 8.11). The classes of the networks
are the same as for the single VBF NN s. For each of the three binary networks an Optuna
optimisation is performed and the best performing trial of each optimisation is chosen. The
optimal values of the coefficients ci are obtained according to Eq. 8.11 in order to obtain
one final discriminant.

The expected limit on the branching ratio of the signal is evaluated based on the pre-fit
Asimov dataset. Details can be found in Section 10.3. This limit is compared to the
expected limit obtained from the signal node probability distribution of a multiclass (three
classes) NN. However, not the one presented above is used but one that was obtained
at the same stage of the analysis as the binary NNs in order to have a fair as possible
comparison. The expected limits are summarised in Table 8.10. The multiclass NN shows

search combined binary NNs multiclass NN

H → eτµ 0.272+0.105
−0.076 0.234+0.093

−0.065

H → µτe 0.259+0.105
−0.072 0.239+0.094

−0.067

Table 8.10: Expected limits on the branching ratios of the LFV signals in percent obtained with the
pre-fit Asimov dataset.

better limits for both searches, H → eτµ and H → µτe. The limit is improved by 14 and
8%, respectively.

Investigating the impact of higher class weights for the background classes in
the VBF SR

All NNs presented above are trained with an equal weighting of the single classes, i.e.
all classes are granted the same importance. An additional parameter to be optimised
was added in one hyperparameter optimisation with Optuna, allowing class weights larger
than 1 for the background classes. This background class weight can adopt any value in
{1, 2, 3, 5, 7, 10, 15, 20, 30, 50} with respect to the signal class weight. All best performing
trials favoured large values for the background class weights.

In an optimisation for the VBF NN with two classes, a signal class consisting of the
ggF- and VBF-signal and a background class consisting of all background processes, the
best performing trial used 50 for the background class weight. The signal node probability
distributions obtained for this trial are shown in Figure 8.45. Two additional NNs were
trained with the same hyperparameters but once the background class value is replaced by
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25 and once by 1. The corresponding signal node probability distributions are shown in
Figure 8.45 as well.

In the distributions with the background class weights of 50 and 25 all but the first bin
are blinded. The background processes as well as the signal processes accumulate more to
the left compared to the distributions with a background class weight of 1. Although the
signal distributions decrease from left to right and the signal yield in the bins to the right
is small, the sensitivity is considerably improved due to the absence or strong reduction
of background events in these bins. The expected limits obtained with the pre-fit Asimov
dataset (Section 10.3) are summarised in Table 8.11.

search
background class weight

50 25 1

H → eτµ 0.212+0.096
−0.059 0.250+0.112

−0.070 0.495+0.195
−0.138

H → µτe 0.303+0.127
−0.085 0.346+0.143

−0.097 0.508+0.202
−0.142

Table 8.11: Expected limits on the branching ratios of the LFV signals in percent obtained with the
pre-fit Asimov dataset in the nonVBF SR.

The expected limits are improved by approximately 50% with a background class
weight of 50 compared to 1. However, the statistical analysis requires that each process
contributes in each bin. Thus, if a process has no yield in one bin, it is artificially set to
10−6. When adding systematic uncertainties they also must be treated properly which is not
straightforward. A correct solution to this problem is rebinning, i.e. merging bins from the
right until each process sufficiently contributes. For the distribution of the eτ -dataset and
of the NN with a background class weight of 50 (Figure 8.45(a)) there would be one large
bin from 0.2 to 1.0. This would inevitably lead to a reduced sensitivity and suggests that a
similar behaviour can also be achieved by having an optimised and hence finer binning for
higher values of the signal node probability distribution with a background class weight of
1. Therefore, it was decided to proceed with an equal weighting of all classes and to apply
an optimised binning to the final discriminants. This was outlined in Section 8.2.6.

Comparison of only low-level and high-level input variables for the nonVBF SR

In order to study the power of only using low-level variables, this section compares the
expected limits obtained with the pre-fit Asimov dataset (see Section 10.3) of one NN
trained with only low-level input variables and one NN that incorporates high-level variables.
This comparison was performed at an early stage of the analysis which means that among
other aspects also the set of the high-level input variables differed considerably from the
set introduced above. This includes that the variables were defined in terms of `0 and `1
instead of `H and `τ (more details can be found in Section 7.1.3).

The set of low-level variables consists of 7 variables. These are the transverse momenta
of the two leptons, their pseudorapidities, the absolute value of the missing transverse
energy and the differences in the azimuthal angle of each of the two leptons and Emiss

T .
The set of low- and high-level variables consists of 22 variables. The architecture of the
NN trained with the set of low-level variables was slightly extended compared to the NN
trained with high-level variables to allow for more complex patterns potentially adopted by
the network. The expected limits obtained with the pre-fit Asimov dataset are summarised
in Table 8.12. The limits are obtained without considering any systematic or statistical
uncertainties on the predictions. The sensitivity of both networks is very close, the NN
trained with the set of low-level input variables performs only slightly worse. Nevertheless,
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(a) background class weight: 50, eτ
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(b) background class weight: 50, µτ
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(c) background class weight: 25, eτ
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(d) background class weight: 25, µτ
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(e) background class weight: 1, eτ
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(f) background class weight: 1, µτ

Figure 8.45: Distributions of the signal node probabilities of the VBF NN s with separate weights for
the background class with respect to the signal class, separately for the eτ - (left) and µτ -dataset (right),
obtained with the test set. The e/µ-symmetric background is estimated with the Symmetry Method. The
uncertainty band includes the statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature.
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search set of input variables

high-level low-level

H → eτµ 0.107 0.113
H → µτe 0.122 0.127

Table 8.12: Expected limits on the branching ratios of the LFV signals in percent obtained with the
pre-fit Asimov dataset in the nonVBF SR.

it was decided to proceed with sets of input features that include high-level variables due
to the expectation that they provide more room for improvement in further optimisations.
In addition, some low-level variables like the pseudorapidities η of the leptons show small
issues in their modelling which, however, do not propagate to other high-level observables
they are part of.



Chapter 9

Systematic Uncertainties

The different signal and background predictions come with experimental uncertainties,
uncertainties of the estimation techniques and uncertainties on the theoretical predictions.

Processes estimated from MC simulations are subject to experimental uncertainties. In
the H-LFV-analysis these are the signal processes and the other → `-fakes contribution to
the background. In addition, theoretical uncertainties on the signal processes are considered.
They are neglected for the other → `-fakes. Instead, an uncertainty on the normalisation
of the other → `-fakes is considered, derived in a validation region.

The j → `-fakes and the e/µ-symmetric background are mainly estimated from data
and hence are neither subject to experimental nor to theoretical uncertainties. However, the
methods to estimate these background components come with several uncertainty sources.

The single contributions to the experimental, theoretical and estimation technique
uncertainties are described in Sections 9.1, 9.2 and 9.3, respectively. Section 9.4 discusses the
statistical uncertainties on the predictions which are also treated as systematic uncertainties.
The last Section 9.5 summarises preprocessing steps applied to the systematic uncertainties
before the statistical analysis is performed.

An overview of the effects of the systematic uncertainties on the normalisation, i.e.
yields, of the individual processes after the preprocessing steps is given in Table 9.1 for the
eτ -dataset in the search for H → eτ and in Table 9.2 for the µτ -dataset in the search for
H → µτ at the end of Section 9.3. The individual uncertainty sources are combined into
groups. The effects are listed separately for the two signal regions and for all processes
considered individually in the statistical analysis.

In order to propagate the effects of the individual uncertainty sources to the final
discriminants, which are used in the statistical analysis to derive the results, each uncertainty
source is once varied by +1σ and once by −1σ (standard deviation) and the final discriminant
is re-calculated for each variation. The acceptance (normalisation) as well as the shape of
the distribution can be altered. Each uncertainty source is treated as correlated between
all processes it acts on and between both signal regions. Whereas the effects of different
uncertainty sources are treated fully uncorrelated before the statistical analysis and thus
are added in quadrature of which the square root is taken to obtain the total uncertainties.

The effects of the individual uncertainties are represented in the statistical analysis
by so-called nuisance parameters (NPs). Their names are listed in the following sections
in italic and correspond to the names used in tables and figures related to the statistical
analysis in Chapter 11. In addition, all nuisance parameters are listed in Appendix D.

In the following sections, numbers are quoted quantifying the effect of individual
uncertainty sources on the different processes. Most often, the largest effects with respect to
the individual processes and the two datasets, eτ - and µτ -datasets, are quoted. Typically,
the uncertainty sources behave similarly for the eτ - and µτ -dataset. However, opposite
behaviour is expected for the uncertainties related to the j → `-fakes, the efficiency-

201
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correction ratio R and the electron and muon scale factors. This is in all cases attributed
to the fact that in the eτ -dataset mainly muons are sub-leading with respect to pT, while in
the µτ -dataset these are mainly electrons. In addition, the reconstruction and identification
efficiencies as well as the probabilities for other objects to fake leptons depend on the flavour
and kinematics of the lepton.

9.1 Experimental Uncertainties

The experimental uncertainties of the different physics objects discussed in the following
are uncertainties related to the reconstruction and identification procedures addressed in
Chapter 5. They comprise uncertainties on the energy scale and resolution and on the scale
factors (SF s) which are simulation-to-data correction factors .

First, the uncertainties related to electrons and muons are discussed, followed by the
uncertainties on jets and on Emiss

T . In addition, the uncertainty on the integrated luminosity
is presented.

These uncertainties are applied to simulated events and thus act on the other → `-fakes
and on signal in the H-LFV analysis. All of these uncertainties are determined in separate
auxiliary measurements performed centrally by the ATLAS collaboration which provides
these uncertainties to all analyses.

Electrons

A list of electron related uncertainties with a brief description is given below. More details
can be found in [180].

Uncertainties on the energy scale and resolution depend on the transverse energy and
the pseudorapidity and are parametrised in bins of the latter [184].

There are different sources contributing to the scale uncertainty, e.g. limited knowledge
of dead detector material, non-linearity of the cell energy measurements and modelling
of the shower shape. Overall, there are 69 independent contributions corresponding to
different uncertainty sources in specific decorrelated regions in pseudorapidity. For this
analysis, however, the energy scale is known well enough and its uncertainties impact the
analysis only very little. Thus, a simplified scheme is used which results in just one nuisance
parameter for the energy scale. This is achieved by taking the square root of the individual
sources added in quadrature. The resulting total uncertainty is treated as correlated over
all regions in pseudorapidity which results in an overall larger uncertainty. The effect of
the electron energy scale on the normalisation of the individual processes is below 1%.

There are 9 independent contributions to the uncertainty of the energy resolution which,
amongst others, come from limited knowledge of shower fluctuations, noise of the electronics
and energy loss before the calorimeters. Also here the simplified scheme is used that results
in just one nuisance parameter for the energy resolution. The effect of the electron energy
resolution on the normalisation of the individual processes is well below 1%.

The effects of both, energy scale and resolution, are smaller than the statistical un-
certainties for the other → `-fakes and signal. The names in the statistical analysis
are:

• energy scale uncertainty: eγ scale

• energy resolution uncertainty: eγ resolution

Other sources of uncertainties for electrons are uncertainties on the different SF s for
trigger, reconstruction, identification and isolation [185]. More details on their determination
and uncertainties were discussed in Section 7.2.3. The nuisance parameter names are:

• uncertainty on trigger SF : El Trigger SF
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• uncertainty on reconstruction SF : El Reco Eff

• uncertainty on identification SF : El Id Eff Uncorr NP0-11, El Id Eff Corr NP0-15

• uncertainty on isolation SF : El Iso Eff

For all SF s excluding the identification SF s, a simplified scheme is used which results in
just one nuisance parameter per SF . All systematic uncertainty sources as well as the
statistical uncertainties are added in quadrature and are correlated across all pT- and η-bins.

When using the simplified scheme, the single nuisance parameter for the identification
SF showed a relatively strong constraint when performing a fit with pre-fit Asimov data
(Section 10.3). In such cases, the simplified scheme is not justified anymore and a more
complex scheme must be used. In the H-LFV analysis it consists of 12 nuisance parameters
(El Id Eff Uncorr NP0-11 ) representing the statistical uncertainties in different bins of pT
and η: NP0-5 cover the barrel region in η and NP6-11 the endcap regions. The 6 bins in pT
correspond in increasing order to 15 ≤ pT < 20 GeV, 20 ≤ pT < 25 GeV, 25 ≤ pT < 30 GeV,
30 ≤ pT < 60 GeV, 60 ≤ pT < 80 GeV and ≥ 80 GeV. There are 16 additional nuisance
parameters (El Id Eff Corr NP0-15 ) representing systematic uncertainties. A decomposition
of the full covariance matrix of the systematic uncertainties is performed to obtain these 16
uncorrelated sources.

The impact of the uncertainties of the electron SF s is small, at most 0.7% on the
normalisation.

These electron SF nuisance parameters acting on the other → `-fakes and signal are
correlated with the respective nuisance parameters representing the uncertainties on the
electron SF s used in the efficiency-correction ratio (Section 9.3).

Muons

Uncertainties related to the muon reconstruction and identification are listed below with
brief descriptions. Detailed information can be found in [188]. Similar to electrons, there
are uncertainties on the momentum scale and resolution and on the trigger, reconstruction
and isolation scale factors.

• track resolution uncertainty in the Inner Detector : Muon ID

• track resolution uncertainty in the Muon System: Muon MS

• momentum scale uncertainty: Muon scale

• charge-dependent momentum scale correction uncertainties: Muon Sagitta ρ, Muon
Sagitta res.bias

• statistical and systematic uncertainty on trigger SF : Mu Trigger SF Stat, Mu Trigger
SF Sys

• statistical and systematic uncertainty on reconstruction SF :
Mu Reco Eff Stat, Mu Reco Eff Sys

• statistical and systematic uncertainty on isolation SF : Mu Iso Eff Stat, Mu Iso Eff
Sys

Either a correction of a residual momentum scale bias between positively and negatively
charged muons can be applied to data, or additional uncertainties on simulated events can
be applied. The latter is done for the H-LFV analysis and represented by Muon Sagitta ρ
and Muon Sagitta res.bias. The effect of the momentum scale, resolution and correction
uncertainties in single bins of the final discriminants is at maximum 3% and 1.5% on the
overall normalisation.
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More details on the uncertainties related to the SF s can be found in Section 7.2.3. The
largest effect of these uncertainties in single bins of the final discriminant is 2% and 1.6%
on the overall normalisation.

All muon related uncertainties are smaller than the statistical uncertainties of the
respective processes in almost all bins.

Jets

For jets, uncertainties on the energy scale and resolution as well as on the flavour com-
position are considered. In the case of jet energy scale (JES) and jet energy resolution
(JER), eigenvector decompositions of the covariance matrices of the uncertainty sources
are performed in order to reduce the number of nuisance parameters. More information
can be found in [195]. In the H-LFV analysis 31 JES-related and 14 JER-related nuisance
parameters and 4 nuisance parameters related to jet flavour are used. For the latter,
separate nuisance parameters for both of the signal regions (nonVBF SR and VBF SR) are
used in accordance with the partner analyses [22].

• jet energy scale:

– Jet effectiveNP Stat. 1-6
– Jet effectiveNP mixed 1-3
– Jet effectiveNP Modell. 1-4
– Jet effectiveNP Detect. 1-2
– Jet η-intercalibr. modelling
– Jet η-intercalibr. non-closure highE
– Jet η-intercalibr. non-closure neg.η
– Jet η-intercalibr. non-closure pos.η
– Jet η-intercalibr. non-closure total

stat

– Jet pileup offset µ
– Jet pileup offset npv
– Jet pileup pT term
– Jet pileup ρ topology
– Jet punch through mc16
– Jet single particle highPt
– Jet b-JES response

• jet energy resolution:

– Jet JER effectiveNP 1-11
– Jet JER effectiveNP 12restTerm

– Jet JER DataVsMC

• jet flavour:

– JET Flavour Comp nonVBF
– JET Flavour Comp VBF

– JET Flavour Resp nonVBF
– JET Flavour Resp VBF

A few of the JES related nuisance parameters are almost fully pruned (the criteria are de-
scribed in Section 9.5). The nuisance parameters contributing the most to the normalisation
of the final discriminants are Jet η-intercalibr. modelling with up to 9%, Jet pileup offset µ
with up to 7%, Jet pileup ρ topology with up to 6% and Jet effectiveNP Modell. 1 with up
to 4%. The quoted numbers refer to the effects in the VBF SR as the jet uncertainties are
larger in this signal region, as expected.

The same applies to the JER related nuisance parameters. The nuisance parameter
contributing the most on the normalisation of the single processes in the final discriminants
is the Jet JER EffectiveNP 1 with up to 6%.

The nuisance parameters related to jet flavor have a larger effect on the final discriminants.
JET Flavour Comp has a normalisation effect on the single processes of up to 15% and
JET Flavour Resp of up to 6%.
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Furthermore, uncertainties on the scale factors of the (forward) jet-vertex taggers (JVT
and fJVT) [192, 193] are considered. In the statistical analysis they are denoted by:

• Jet JVT Efficiency

• Jet fJVT Efficiency

Both nuisance parameters have effects on the normalisation of the single processes which
are less than 1%.

Additionally, uncertainties on the b-jet tagging efficiencies are considered [197, 243],
which are uncertainties on the corresponding scale factors, based on an eigenvector decom-
position.

• uncertainties on the b-jet tagging efficiencies:

– b-tag Eigenvar. 0-2
– c-tag Eigenvar. 0-2
– light-tag Eigenvar. 0-3

– b-tag Extrapolation
– b-tag Extrapolation from c

On one hand there are SF s for the efficiencies to tag b-jets as such and on the other hand
there are scale factors on the rate of mistakenly tagging c- or light jets as b-jets. Each of
these SF s have various uncertainty sources. The number of resulting nuisance parameters
is reduced by performing an eigenvalue decomposition of the total covariance matrix of
these systematic and statistical uncertainties. Two additional nuisance parameters for
the extrapolation to high-pT jets and for the extrapolation of SF s for c-jets to hadronic
τ -lepton jets are considered. Aside from b-tag Eigenvar. 0, c-tag Eigenvar. 0, light-tag
Eigenvar. 0 and b-tag Extrapolation from c, the remaining nuisance parameters are pruned.
For them, the maximal normalisation effects are 0.3%, 0.9%, 0.8% and 1%, respectively.

Overall, the jet related uncertainties have larger contributions in the VBF SR than in
the nonVBF SR, as expected.

Emiss
T

The uncertainties on Emiss
T [203] are represented by three nuisance parameters:

• energy scale of the soft term:

– met soft track scale

• energy resolution of the soft term:

– met soft track res.paral. – met soft track res.perp.

Separate uncertainties on Emiss
T are only considered for the soft term as the other objects

contributing to the calculation of Emiss
T (hard objects) have their own systematic uncertain-

ties which are propagated to the calculation of Emiss
T within the analysis. The uncertainties

on the soft term are obtained by varying its energy scale and resolution. For the resolution,
independent variations parallel and perpendicular to the direction of the hard objects’ pT
are considered.

The Emiss
T -related nuisance parameters have a moderate impact in this analysis as they

result in sizeable variations of the shape of the final discriminants and show up to 6%
variation in the signal-like bins.
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Luminosity

The integrated luminosity determination is based on the LUCID2 detector [115]. Its
combined uncertainty for the Run 2 dataset is 1.7% [113] of which the largest single
uncertainty source is from the so-called calibration transfer. The corresponding nuisance
parameter is called

• Luminosity

in the statistical analysis and considered as a normalisation uncertainty on the prediction
of signal and other → `-fakes.

Scaling Uncertainty on other → `-fakes

As described in Section 7.2.2, a normalisation uncertainty on Z → µµ-events where one
muon fakes an electron is derived in a Validation Region. It has a value of 16% and is
applied as an overall normalisation uncertainty to all other → `-fakes in the statistical
analysis and is denoted by:

• MCfakesScalingUnc

9.2 Uncertainties on the Theoretical Predictions of the Signal

In the simulation of LFV signal events, the production of the Higgs bosons is assumed to
follow standard model predictions. These theoretical predictions come with various sources
of uncertainties which include QCD scale uncertainties, uncertainties on the parton-density
functions and on the strong coupling constant αs. Additional uncertainties are obtained by
varying the generators used for the matrix element calculation and the parton shower and
hadronisation model. All uncertainty sources apart from the pdf and αs uncertainties are
treated as uncorrelated between the different production processes.

By having specific requirements on the jet multiplicity (in the definition of the two
Signal Regions and indirectly in the NN output node probability distributions), additional
theoretical uncertainties are introduced.

Perturbative uncertainties, i.e. uncertainties due to higher orders in perturbation theory
for the ggF signal are computed following the recommendations in [51, 244]. This results in
9 independent sources. The first two correspond to uncertainties on the cross sections as a
function of the jet multiplicity, obtained by varying the renormalisation and factorisation
scales for the first and the resummation scale for the second. The fourth and fith source
take care of migration uncertainties between different jet multiplicities [245]. Source five
and six represent uncertainties on the acceptance of ggF events in the VBF phase space
when requiring two and at least three jets, respectively. Uncertainties on the shape of the
transverse momentum of the Higgs boson are considered in the seventh and eighth source.
The last source takes into account uncertainties due to assumptions on the top quark mass.

• QCD scale uncertainties on the ggF production mode:

– uncertainties on the cross section: theory ggF qcd 0
– resummation uncertainties: theory ggF qcd 1
– uncertainties from bin migration between 0 and 1 jet and between 1 and 2 jets:
theory ggF qcd 2/3

– uncertainties from the VBF topology with 2/3 jets: theory ggF qcd 4/5
– uncertainties on the shape of the Higgs-boson pT: theory ggF qcd 6/7
– uncertainty due to assumptions on the top quark mass: theory ggF qcd 8
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The nuisance parameter theory ggF qcd 0 has an impact on the acceptance of the ggF-signal
of up to 5% and is larger in the nonVBF SR than in the VBF SR. The effects of theory
ggF qcd 1-3 are smaller. theory ggF qcd 4 impacts the acceptance of up to almost 12% in
the VBF SR, while its impact in the nonVBF SR is very small, as expected. Figure 9.1
shows the effect of theory ggF qcd 0 and theory ggF qcd 4 on the distribution of the final
discriminants. The remaining nuisance parameters influence the acceptance below 4%.
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Figure 9.1: The effect of theory ggF qcd 0 (a,b) and theory ggF qcd 4 (c,d) on the distributions of the
final discriminant in the nonVBF SR (a,c) and the VBF SR (b,d) for the eτ -dataset. Black indicates the
nominal distribution, red the up-variation and blue the down-variation. The dashed lines correspond to the
original effects while the solid lines are after smoothing and symmetrisation (Section 9.5). The effect on the
overall acceptance is quoted in parentheses.

For the VBF- and VH-signal, uncertainties on the cross section due to missing higher-
order QCD corrections are obtained by varying the renormalisation (µR) and factorisation
(µF ) scales. The nominal values are chosen to be half the Higgs-boson mass: µR = µF =
mH/2. Both scales are varied by factors 1/2 and 2 which results in 9 variations. In each
bin of the final discriminant distributions, the variation with the largest effect is chosen and
a correlation over all bins is assumed (envelope). This results in one nuisance parameter
per production process.

• QCD scale uncertainties on the VBF and VH production modes obtained by varying
the renormalisation (µR) and factorisation (µF ) scales:

– theory VBF qcd – theory VH qcd

The impact on the acceptance of the VBF-signal is up to 2% and on the VH-signal up to
12.8%.
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The uncertainties on the parton-density distribution functions (pdf) are obtained
following the recommendations of the LHC4PDF collaboration [158]. They are represented
by 30 eigenvector variations and two variations (up and down) of αs.

• pdf uncertainties:

– theory sig pdf 0-29

• uncertainty on αs:

– theory sig αs

The pdf variations are largely pruned. The largest contribution with an impact of 1% on
the acceptance of the ggF-signal in the VBF SR is from theory sig pdf 4. The impact of the
uncertainty on αs is at most 1.4%.

Uncertainties due to the choice of the matrix element generator are estimated by
comparing the prediction of the nominal generator (Powheg-Box v2) to the prediction
of an alternative generator (MadGraph5_aMCNLO5 [246]). In the statistical analysis, these
variations are represented by the following nuisance parameters:

• matrix element uncertainties:

– theory ggF ME
– theory VBF ME

– theory VH ME

The impact of theory ggF ME is visualised in Figure 9.2 since this nuisance parameter is
one of the more important ones in the final statistical analysis. Sizeable effects on the shape
of the final discriminant distribution are observed. The impact on the acceptance of theory
VBF ME is up to 7.2% in the VBF SR and a bit smaller in the nonVBF SR. The same
pattern is observed for theory VH ME with an impact on the acceptance of up to 10%.
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Figure 9.2: The effect of theory ggF ME on the distributions of the final discriminant in the nonVBF SR
(a) and the VBF SR (b) for the eτ -dataset. Black indicates the nominal distribution, red the up-variation
and blue the down-variation. The dashed lines correspond to the original effects while the solid lines
are after smoothing and symmetrisation (Section 9.5). The effect on the overall acceptance is quoted in
parentheses. In the VBF SR only the shape effect is considered, hence the acceptance effect is quoted with
0%.

In order to estimate uncertainties on the choice of the underlying event, parton shower
and hadronisation model, the nominal algorithm (Pythia 8.2) is replaced by an alternative
one (Herwig 7 [247, 248]).
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The following nuisance parameters describe the resulting variations:

• parton shower uncertainties:

– theory ggF PS
– theory VBF PS

– theory VH PS

The impact of theory ggF PS on the normalisation of the ggF-signal is up to 10% in the
VBF SR. In the last, most signal-like, bin of the final discriminant theory ggF PS impacts
the yield of the ggF-signal by up to 20%. The same pattern is observed in the nonVBF SR,
but with smaller effects. Stronger shape effects by theory VBF PS and theory VH PS are
observed as well, with effects on the normalisation of up to 6%.

9.3 Uncertainties of the Data-Driven Background Estimation
Techniques

The uncertainties on the background estimation techniques consist of uncertainties on the
j → `-fake estimate and on the efficiency-correction ratio R used in the course of the
Symmetry Method. Both are discussed in the following.

Uncertainties on the j → `-fake Estimate

Uncertainties on the j → `-fake estimate consist of statistical and systematic uncertainties
on the Fake Factors (FFs) and Correction Factors (CFs) which are part of the Fake Factor
Method that is used to estimate the j → `-fakes. A detailed discussion of the method as
well as of the uncertainty sources is given in Section 7.2.2.

The Fake Factors are calculated in the Z + jets-Extraction Region (ER). The statistical
uncertainties on the data yield as well as on the subtracted simulated prompt events are
propagated to the FFs. The statistical uncertainty of each FF-bin is represented by a
separate nuisance parameter in the statistical analysis to keep them uncorrelated a priori.
Separate nuisance parameters for the electron and muon FFs are used.

• electron FF statistical uncertainties: El. Fake FF Stat NP0-3, 8-11

• muon FF statistical uncertainties: Mu. Fake FF Stat NP0-2

For the electron FFs, NP0-3 and NP8-11 are for small and large ∆φ(`p, E
miss
T ), respectively.

For each of the two ∆φ(`p, E
miss
T )-regions, the NPs correspond to increasing pT: 15 to

20GeV, 20 to 25GeV, 25 to 35GeV and > 35 GeV. For the muon FFs, NP0-2 denote three
bins in pT in increasing order: 15 to 20GeV, 20 to 25GeV and > 25 GeV. The largest
impact of the electron FF statistical uncertainties on the normalisation of the j → `- and
R · j → `-fakes is from El. Fake FF Stat NP8 with 1.5%, followed by El. Fake FF Stat
NP11 with an impact of 1.3%. The smallest is from El. Fake FF Stat NP1 with 0.3%.
The R · j → `-fakes are the j → `-fake contribution from the respective other dataset (eτ
or µτ), where each event is weighted with the efficiency-correction ratio R (Section 7.2.1).

For the muon FFs, the number of single components which corresponds to the number
of FF-bins is only 3 compared to 8 for the electron FFs, which helps to reduce the overall
statistical uncertainties. Here, Mu. Fake FF Stat NP0 contributes to the normalisation of
the j → `- or R · j → `-fakes with 1.5%, Mu. Fake FF Stat NP1 with 0.8% and Mu. Fake
FF Stat NP2 with 1.4%. The shape effect of all NPs is entirely negligible in the VBF SR
following the criterium described in Section 9.5.

The uncertainties on the normalisation of the WZ- and ZZ-background in the determi-
nation of the FFs are considered as systematic uncertainties, correlated over all FF-bins
and over electron and muon FFs.



210 CHAPTER 9. SYSTEMATIC UNCERTAINTIES

• FF systematic uncertainties:

– Fake WZxsec – Fake ZZxsec

The impact on the acceptance of the two j → `-fake contributions is up to 6.4% for Fake
WZxsec and 2.2% for Fake ZZxsec. The shape effects are very small and again entirely
negligible in the VBF SR.

The Basic Selection-SR and the Z + jets-ER differ in the flavour composition of the jets
faking leptons. This difference is accounted for by the additional application of Correction
Factors (CFs). They are determined from simulated events as the ratio of the FFs in the
Basic Selection-SR over the ones in the Z + jets-ER. The statistical uncertainties on the
event yields in the respective regions are propagated to the CFs. They are represented by
separate nuisance parameters per electron and muon CFs and separately for each CF-bin
in order to keep them uncorrelated a priori.

• electron CF statistical uncertainties: El. Fake CF Stat NP0-3

• muon CF statistical uncertainties: Mu. Fake CF Stat NP0-2

The binning of the CFs for electrons is reduced compared to the FFs such that it is
one-dimensional (in pT). The correspondence of the NP numbers and the pT-bins is the
same as for the FFs. The impact on the acceptance of electron NPs ranges from 0.8% (El.
Fake CF Stat NP3 ) to 1.9% (El. Fake CF Stat NP0 ). For the muon NPs, Mu. Fake CF
Stat NP0 has the largest impact with 1.5%. The shape effects are pruned for all NPs in
the VBF SR.

Systematic uncertainties on the CFs are derived by comparing their values to values
obtained with an alternative MC event generator. This uncertainty is derived separately
for electron and muon fakes as the mechanisms for jets to fake either of them differ.

• electron systematic uncertainties: El. Fake CF Sys

• muon systematic uncertainties: Mu. Fake CF Sys

The electron NP has a maximum overall impact of 13.2% on the j → `-fake contributions
with up to 18% for the most signal-like bin of the final discriminant. For the muon NP
the maximum overall impact is 9.2%. In the VBF SR, the shape effects are negligible.
Figure 9.3 shows the impact of the two nuisance parameters on the distribution of the final
discriminant in the nonVBF SR.

Uncertainties on the Efficiency-Correction Ratio R

The efficiency-correction ratio R is part of the estimation of the e/µ-symmetric background
described in Section 7.2.1. The e/µ-symmetric background consists of three contributions:
data, j → `-fakes and other → `-fakes. The latter two are subtracted from the former
and each event is weighted with R. The uncertainties on the j → `- and other → `-fakes,
which were discussed in the previous sections, are propagated to the total e/µ-symmetric
background.

This section focuses on the uncertainty sources affecting R. The denominator of the
efficiency-correction ratio consists of the product of trigger, reconstruction, identification
and isolation efficiencies of the electron and the muon in the event (real event). Whereas the
numerator consists of the same product but with the kinematic properties of the electron
and the muon interchanged (switch event).

The determination of the different efficiencies and their uncertainties are discussed in
Section 7.2.3. The uncertainties of the real and switch event are treated correlated and
hence are represented by the same nuisance parameters.
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Figure 9.3: The effect of El. Fake CF Sys (a,b) and Mu. Fake CF Sys (c,d) on the distributions of
the final discriminant for the j → `-fakes (a,c) and the R · j → `-fakes (b,d) in the nonVBF SR for the
eτ -dataset. Black indicates the nominal distribution, red the up-variation and blue the down-variation. The
dashed lines correspond to the original effects while the solid lines are after smoothing and symmetrisation
(Section 9.5). The effect on the overall acceptance is quoted in parentheses.

For each of the muon efficiencies, one nuisance parameter representing the statistical
uncertainty sources and one representing the systematic sources are considered:

• muon trigger efficiency uncertainties: ε Mu Eff Trigger Stat and Sys

• muon reconstruction efficiency uncertainties: ε Mu Eff Reco Stat and Sys

• muon isolation efficiency uncertainties: ε Mu Eff Iso Stat and Sys

Apart from ε Mu Eff Trigger Stat, ε Mu Eff Iso Stat and ε Mu Eff Iso Sys, the remaining
nuisance parameters are fully pruned. ε Mu Eff Trigger Stat has the largest effect on the
acceptance with up to 0.3%.

The total (i.e. reconstruction, identification and isolation) electron offline efficiency
consists of the product of the respective SF s and the total efficiency measured with MC-
simulated events in the Basic Selection-SR (Eq. 7.15). These SF s and their uncertainties
are the same as the ones described in Section 9.1. Hence, the uncertainties of the SF s
in R are treated fully correlated with the SF s applied to signal and other → `-fakes in
Section 9.1. Therefore, they are represented by the same nuisance parameters:

• uncertainty on reconstruction SF : El Reco Eff

• uncertainty on identification SF :
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– El Id Eff Uncorr NP0-11 – El Id Eff Corr NP0-15

• uncertainty on isolation SF : El Iso Eff

Before correlating, El Id Eff Uncorr NP0 has the largest impact on the acceptance, it is
at most 1.6%. Its impact on the distribution of the final discriminant before and after
correlating is shown in Figure 9.4. The up- and down-variations are in opposite directions
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Figure 9.4: The effect of El Id Eff Uncorr NP0 on the distribution of the final discriminant in the
nonVBF SR and the eτ -dataset for the R · other → `-fakes contribution (a-c) and for the data part of the
e/µ-symmetric background (d). (a) shows the effect of the usual SF (i.e. simulation-to-data correction
factor) uncertainty, (b) for the uncertainty within the efficiency-correction ratio R and (c) for both combined.
(d) includes only the uncertainty within R since no usual SF s are applied to data. Black indicates the
nominal distribution, red the up-variation and blue the down-variation. The dashed lines correspond to the
original effects while the solid lines are after smoothing and symmetrisation (Section 9.5). The effect on the
overall acceptance is quoted in parentheses.

in Figures 9.4(a) and 9.4(b) and hence the combined effect (Figure 9.4(c)) is very small.
In addition, there are statistical as well as systematic uncertainties on the total efficiency

measured in the Basic Selection-SR:

• electron offline MC efficiency uncertainties: ε El Eff MC Stat and Sys

The impact of the statistical NPs on the acceptance of the individual processes that are
weighted with R is at most 0.4% and of the systematic NPs at most 0.9%.

Finally, the uncertainty on the electron trigger efficiency is represented by the following
nuisance parameter:

• electron trigger efficiency uncertainty: ε El Eff Trigger

This nuisance parameter is pruned for all processes in both regions.
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9.4 Statistical Uncertainties on the Background Prediction

Another source of uncertainties are the statistical uncertainties on the background prediction.
Although of statistical nature, they are treated as systematic uncertainties. The background
yield bi in each bin i, is the sum of the weights wj of the single events while its statistical
uncertainty σbi is the square root of the sum of the squared weights:

bi =

Nej∑
j=1

wj , σbi =

Õ
Nej∑
j=1

w2
j . (9.1)

The event weights wj are the product of several weights which for example arise from
MC simulations, scale factors, the efficiency-correction ratio R or the fake factors FF .
The relative statistical uncertainties of each background process with respect to the total
background prediction in percent in each bin of the final discriminants is shown in Figure 9.5.
The figures clearly show that the data part of the e/µ-symmetric background has the largest
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Figure 9.5: Relative statistical uncertainties of the individual background processes with respect to the
total background in percent. Given for the eτ -dataset (top) and the µτ -dataset (bottom) in the bins of the
distributions of the final discriminants in the nonVBF SR (left) and the VBF SR (right).

statistical uncertainties with respect to the total background prediction of up to ∼ 15 % in
the nonVBF SR and up to ∼ 40 % in the VBF SR. For this contribution the event weights
are close to 1. Overall the statistical uncertainties of the data part of the e/µ-symmetric
background are larger in the eτ -dataset (i.e. in the search for H → eτ) compared to the
µτ -dataset. The data part of the e/µ-symmetric background of the eτ -dataset corresponds
to the data of the µτ -dataset which has a lower yield than the data of the eτ -dataset and
hence larger statistical uncertainties.

The second and third largest contribution is from both j → `-fake contributions. In
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the search for H → eτ , the j → `-fakes have higher statistical uncertainties than the
R · j → `-fakes while it is vice versa in the search for H → µτ since, apart from R, they
are the same, respectively.

The contribution with the lowest statistical uncertainties is from the other → `-fakes
which are estimated from MC simulations, where typically more events are generated than
expected for this integrated luminosity. Hence the event weights are considerably smaller
than 1 on average. Again, the size of the statistical uncertainties of the other → `- and
the R · other → `-fakes relative to each other is opposite in the search for H → eτ and
H → µτ as they are, apart from the factor R, the same, respectively.

9.5 Preprocessing of the Uncertainties for the Statistical Ana-
lysis

The large number of uncertainty sources results in a high number of parameters (NPs) in
the statistical analysis. In order to simplify and stabilise the fitting procedure, uncertainty
sources that only contribute marginally are removed (pruning). Furthermore, a symmetric
behaviour of the +1σ- and the −1σ-variations is enforced (symmetrisation) and strong
changes of the effect of the uncertainty from one bin to the next in the distribution of the
final discriminant due to statistical fluctuations are smoothed (smoothing).

The three procedures are implemented in the software package TRExFitter [249] which
is used to perform the statistical analysis. Details on the three procedures are given in the
following. Each of the procedures is performed separately for each signal region (nonVBF
SR and VBF SR) and each background contribution.

Pruning

In order to reduce the number of nuisance parameters in the statistical analysis which helps
with stabilising the fitting procedure, nuisance parameters which have a negligible effect on
the final discriminant are omitted (pruned). The normalisation or acceptance effect and
the shape effect of the NPs are treated independently.

The acceptance component is pruned once its effect on the overall yield of the respective
sample is below 0.1%. Both variations, the +1σ- and the −1σ-variation, must be below
this threshold.

The shape effect of a nuisance parameter is pruned if there is no bin in the distribution
of the final discriminant for which either the +1σ- or the −1σ-variation is above 0.1% with
respect to nominal.

An overview of all nuisance parameters and whether the acceptance effect, the shape
effect, both effects or neither is pruned is given in Appendix D.

Symmetrisation

If only the the +1σ- or only the −1σ-variation is available for a specific uncertainty source,
the existent variation is mirrored with respect to nominal.

Kinematic systematics are systematics which impact the four-momentum of the objects
in the event and not only the event weight. This comprises all uncertainties related to energy
scale and resolution. These kinematic systematics often show an asymmetric behaviour of
the +1σ- and −1σ-variations with respect to nominal. There are also cases where in some
bins of the final discriminant both variations have effects in the same direction with respect
to nominal. Hence, all kinematic systematics are symmetrised which is done bin-by-bin. To
do so, the mean value of the absolute values of both variations is calculated (per bin). If
both variations are in the same direction with respect to nominal, the one with the smaller
absolute value is assigned the opposite sign and the absolute values of both are set to the
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mean value. If both variations are in opposite directions with respect to nominal, the signs
are kept but the absolute values are set to the mean value.

The same procedure is applied to the uncertainties related to the electron identification
SF s in accordance with the partner analyses [22]. No symmetrisation is applied to all other
uncertainties.

Smoothing

Statistical fluctuations can lead to a discontinuous behaviour of the variations over the
course of the individual bins. Smoothing is applied in order to flatten these effects. If the
overall relative statistical uncertainty of the respective process is larger than 5%, all bins
for the variation are merged which results in a fully flat behaviour over all bins and no
shape-effect is left. Otherwise, a rebinning in the distribution of the relative statistical
variations is performed until at most three local extrema are left and the relative statistical
uncertainty in each bin is below 5%.





Chapter 10

Statistical Analysis

The final results are obtained using a statistical analysis which is based on binned maximum
likelihood fits. The prediction is fitted to the data in the distributions of the neural
network probabilities in order to extract the parameters of interest. In this analysis, the
parameters of interest are the signal strengths of the two LFV-signals; or, more generally, the
difference of their branching ratios. The likelihood function, taking into account statistical
and systematic uncertainties of the prediction, is discussed in Section 10.1. In order to
quantify the significance of a potential signal and to set upper limits on its branching ratio,
hypotheses tests are performed. This is detailed in Section 10.2. The measures and tools
used to investigate the results of the fit are discussed in Section 10.3. The final Section 10.4
summarises the fit setup used to extract information about the two LFV-signals, H → eτ
and H → µτ and discusses the different options for interpretation of the parameters of
interest.

The technical realisation of the statistical analysis is performed with the TRExFitter
software package [249], which makes use of HistFactory [250] including RooStats [251]
and RooFit [252].

The following sections are based on Refs. [216, 250, 253, 254].

10.1 Likelihood

The probability to observe ni events in bin i of one of the final discriminants, which are
the neural network probability distributions in this analysis, is described by a Poisson
distribution. The expected number of events in bin i, potentially consisting of background
(bi) and signal (si) events, can be expressed by µsi(θ) + bi(θ). The predictions bi and
si are obtained from the background estimation discussed in Section 7.2 and from MC
simulations, respectively. The parameter µ is the signal strength. If it is 0 only background
events contribute to this bin, if it is 1 the signal contribution equals the predicted one.
Hence, this parameter is the so-called parameter of interest (POI) in the analysis. The
symbol θ represents a set of nuisance parameters (NPs) θp affecting the number of expected
signal and background events but whose measurement is not of primary interest. Then, the
Poisson probability for bin i becomes:

PP(ni|µ,θ) =
(µsi(θ) + bi(θ))ni e−(µsi(θ)+bi(θ))

ni!
. (10.1)

After a measurement is performed, the number of observed events in the single bins is
fixed and the parameters of the expectation are fitted to the data with the aim to extract
the signal strength µ. This is realised via the likelihood function L(µ,θ|ni) which is a
function of the parameters µ and θ rather than the data. The likelihood function for the
full distribution with observed events n = (n1, ..., nN ) in N statistically independent bins

219
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is constructed as the product over all bins:

L(µ,θ|n) =

N∏
i=1

(µsi(θ) + bi(θ))ni e−(µsi(θ)+bi(θ))

ni!
. (10.2)

The parameter values µ̂ and θ̂ that maximise L(µ,θ|n) are the maximum likelihood
estimators and represent the best-fit values. The minimisation of − lnL is performed with
Minuit [255]. In order to combine the distributions of several signal regions, equivalent
terms for the additional distributions are multiplied in Eq. 10.2.

The covariance matrix Vij of the parameters (µ̂, θ̂) is estimated in the large sample
limit by inverting the second derivative of the negative logarithm of the likelihood at the
minimum [253]: Ä

V̂ −1
ä
ij

= −∂
2 lnL
∂θi∂θj

∣∣∣∣
θ=θ̂

, (10.3)

and is used to obtain the correlation matrix of the nuisance parameters. The covariance
matrix results in symmetric uncertainties on the parameters. However, the logarithm of the
likelihood function around the minimum is not necessarily parabolic. Hence, the Minos
algorithm of Minuit is run for all parameters after the minimisation to obtain asymmetric
uncertainties by scanning the likelihood.

10.1.1 Incorporating Systematic Uncertainties

Different systematic uncertainty sources affecting the background and signal prediction
were discussed in Chapter 9. They are parametrised by the NPs θ = (θ1, ..., θNθ) for Nθ

systematic uncertainty sources. The statistical uncertainties on the background prediction
are excluded from this; their description follows in the next section. Typically, the systematic
uncertainties are determined in independent auxiliary measurements, which results in
additional information about them. In order to incorporate this additional information
into the statistical model, the likelihood function is adapted. For each NP θp, a Gaussian
constraint term is multiplied, assuming that the probability density function of the auxiliary
measurement θ′ is Gaussian:

Lθ(θ|θ′,σ) =

Nθ∏
p=1

1√
2πσp

e
− 1

2

Å
θp−θ′p
σp

ã2
. (10.4)

Each factor of the product is maximised for θp = θ′p with θ′p reproducing the nominal value
of the prediction and σp being the absolute value of the ±1σ-variations of the systematic
uncertainties determined in the auxiliary measurements. The further the prediction is
pulled away from its nominal values with θp = θ′p, the more the additional likelihood term
decreases, which is steered by σp. However, this can nevertheless be beneficial for the
maximisation of the overall likelihood as these pulls can help to adapt the prediction such
that it describes the data better. Since there is no dependence of the additional likelihood
terms on the individual bins, the systematic uncertainty sources are correlated over all bins,
each.

The effect of the systematic uncertainties is split into an acceptance or normalisation
component η and a shape component σi in bin i with η′ = 1 and σ′i reproducing the
nominal prediction and η± and σ±i representing the ±1σ-variations. An interpolation is
performed to obtain a continuous parametrisation between the ±1σ-variations and beyond.
For the acceptance (normalisation) effect, an exponential interpolation is used while a linear
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interpolation is used for the shape effect:

η (θp) =

®
(η+)

θp θp ≥ 0

(η−)
−θp θp < 0

(10.5)

σi (θp) =

®
σ′i + θp

(
σ+
i − σ′i

)
θp ≥ 0

σ′i − θp
(
σ−i − σ′i

)
θp < 0

(10.6)

The exponential interpolation ensures that η (θp) is always positive. For θp = 0, the nominal
case with η = η′ = 1 or σi = σ′i is obtained. Whereas θp = ±1 results in the ±1σ-variations
η± or σ±i . This results in θ

′
p = 0 and σp = 1 and hence Eq. 10.4 becomes:

Lθ(θ|θ′ = 0,σ = 1) =

Nθ∏
p=1

1√
2π

e−
1
2

(θp)2 . (10.7)

10.1.2 Incorporating Statistical Uncertainties on the Prediction

Other sources of uncertainties are the statistical uncertainties on the background prediction
while the ones on the signal prediction are assumed to be negligible. They are parametrised
by one nuisance parameter γi per statistical independent bin i reflecting that the true rate
may differ from the predictied bi. The true rates are obtained by fitting the prediction,
i.e. the γi to the data. In principle, a nuisance parameter per process and bin could be
introduced for statistically independent processes [256]. The statistical uncertainties of
the individual processes are shown in Figure 9.5. However, this introduces a large number
of those parameters, 95 in the search for H → eτ and 100 in the search for H → µτ .
Therefore, the total background prediction is treated in a combined way as one process or
sample instead, which reduces the number of parameters to 19 and 20, respectively.

The background prediction bi in each bin i consists of the sum of weights wj of the single
Nei events in this bin: bi =

∑Nei
j=1wj . The statistical uncertainty σbi on bi is: σbi =

∑Nei
j=1w

2
j .

This is incorporated into the likelihood function by the additional term Lγ . Assuming an
auxiliary measurement of the true rate with the same relative statistical uncertainty σrel,i
as of bi, which results in the measurement of mi unweighted (i.e. all wj = 1) events, allows
for a Poissonian constraint term of the form [250]

PP(mi|γimi) =
(γimi)

mi e−γimi

mi!
. (10.8)

Here, mi fluctuates around the true rate γimi and equals the true rate for γ′i = 1. From
the relative statistical uncertainty σrel,i = σbi/bi and the requirement that it has to equal
σmi/mi = 1/

√
mi (following Poisson statistics), the following relation for mi can be derived:

mi =
b2i
σ2
bi

. (10.9)

However, as mi is not necessarily an integer, the gamma distribution is used instead and
the following additional term is added to the likelihood function:

Lγ(γ|m) =

N∏
i=1

mmi
i γmi−1

i e−γimi

Γ(mi − 1)
. (10.10)

Here, Γ is the gamma function. Additionally, the prediction bi in Eq. 10.2 must be multiplied
with the nuisance parameter γi.



222 CHAPTER 10. STATISTICAL ANALYSIS

10.2 Hypothesis Testing

In order to quantify the significance of a new signal or to set upper limits on its cross
section times branching ratio (µ), hypothesis tests are performed. This involves formulating
a null hypothesis H0 and an alternative hypothesis H1. For example, H0 could state that
the data is described by known processes, i.e. background processes only (corresponding
to µ = 0) while H1 states that in addition a new signal (µ > 0) is required to describe
the data. A metric to quantify the (non-)compatibility of the data with the hypotheses
is constructed which is a function of the data and called test statistic t. The probability
density functions (pdf) of this test statistic for each of the hypotheses must be known to
evaluate the test statistic. Then, a critical region in t is defined. Assuming that the pdf
of t under H1, f(t|H1), has larger values of t compared to the pdf under H0, f(t|H0), the
value of t defining the critical region, tcut, is defined by:

α =

∫ ∞
tcut

f(t|H0)dt . (10.11)

If the observed value of t is larger than tcut, the null hypothesis H0 is rejected in favour
of the alternative hypothesis H1. The significance level α must be defined beforehand. It
represents the probability to reject H0 although it is true. Similarly, the probability β to
reject H1 (not reject H0) although H1 is true is defined by:

β =

∫ tcut

−∞
f(t|H1)dt . (10.12)

The power of the test statistic is given by 1 − β. It is the probability to not reject H1

when H1 is true. That means that the test statistic t should be chosen such that 1− β is
maximised for a given α. Following the Neyman-Pearson Lemma [257], this is achieved
by the ratio of the likelihoods of the two hypotheses. However, this is only true for simple
hypotheses which do not depend on nuisance parameters. Nonetheless, a test statistic where
the hypothesis of a fixed value µ is tested, is formulated as

tµ = −2 ln
L
(
µ,

ˆ̂
θ, ˆ̂γ

)
L
Ä
µ̂, θ̂, γ̂

ä , (10.13)

where the pdf of tµ is known from Wilks theorem [258] and L is the likelihood function
discussed in Section 10.1. In the denominator, µ̂ and θ̂ are the unconditional maximum
likelihood estimators (MLEs), while ˆ̂

θ in the numerator is the conditional MLE for a specific
fixed µ. The numerator represents the null hypothesis H0 which can either be a background
plus signal hypothesis with signal strength µ or a background-only hypothesis for µ = 0. In
case of perfect agreement of the data (denominator) with the hypothesis (numerator), the
ratio equals 1, i.e. tµ = 0. The further data is away from the hypothesis, the smaller the
ratio gets which is equivalent to increasing values of tµ. The value of tµ observed in data is
denoted by tµ,obs. The probability to observe data that is equally or less compatible with
H0 than the current observation is represented by the p-value which is calculated as follows:

p =

∫ ∞
tµ,obs

f(tµ|µ)dtµ , (10.14)

with f(tµ|µ) being the pdf of tµ under the null hypothesis H0 which is defined by the
value of µ. If p < α, the null hypothesis is rejected. The p-value can be translated into a



10.2. HYPOTHESIS TESTING 223

significance Z via

Z = Φ−1(1− p) (10.15)

where Φ is the cumulative distribution of a standard Gaussian distribution. In order to
obtain expected sensitivities, so-called Asimov datasets are constructed which is described
in Section 10.3.

In addition, tµ as defined in Eq. 10.13 is known to follow a χ2-distribution for one
degree of freedom in the large sample limit [216, 258].

10.2.1 Discovery of a New Signal

For the discovery of a new signal, i.e. rejection of the background-only hypothesis for which
µ = 0, the following slightly modified test statistic q0 is used:

q0 =


−2 ln

Ç
L
(

0,
ˆ̂
θ, ˆ̂γ

)
L(µ̂,θ̂,γ̂)

å
for µ̂ ≥ 0

+2 ln

Ç
L
(

0,
ˆ̂
θ, ˆ̂γ

)
L(µ̂,θ̂,γ̂)

å
for µ̂ < 0

(10.16)

For µ̂ > 0, q0 is positive and for µ̂ < 0 negative. The best-fit signal strength µ̂ can become
negative due to statistical fluctuations.

In order to calculate the p-value, the pdf of q0 must be known. It can either be obtained
by sampling its distribution with the Monte Carlo technique or by using an approximate
analytical form. In this work the latter is used as the large sample limit is reached which
allows for making use of results obtained by Wald [259] and Wilks [258]: the pdf of q0

is φ(
√
q0) for µ̂ ≥ 0, as outlined in [216], and φ(−

√
−q0) for µ̂ < 0 [254] with φ being

the Gaussian pdf. And hence, with Eq. 10.15, the significance Z can be obtained by
Z = +

√
+q0 for µ̂ ≥ 0 and by Z = −

√
−q0 for µ̂ < 0.

By convention in the particle physics community, a new signal is discovered if the
background-only hypothesis can be rejected with at least 5σ (p ≤ α = 2.87× 10−7).
Evidence for a new signal is found if the background-only hypothesis can be rejected with
3σ.

10.2.2 Limit Setting

In the case of limit setting, the background plus signal hypothesis with a fixed value µ for
the signal strength serves as H0 whereas the background only hypothesis serves as H1. The
modified test statistic q̃µ used to extract upper limits on the signal strength µ is:

q̃µ =


−2 ln

Ç
L
(
µ,

ˆ̂
θ(µ), ˆ̂γ(µ)

)
L
(

0,
ˆ̂
θ(0), ˆ̂γ(0)

)
å

for µ̂ < 0

−2 ln

Ç
L
(
µ,

ˆ̂
θ(µ), ˆ̂γ(µ)

)
L(µ̂,θ̂,γ̂)

å
for 0 ≤ µ̂ ≤ µ

0 for µ̂ > µ

(10.17)

The value of µ in the denominator of the first case is set to 0 when only allowing for µ > 0.
The value of the test statistic observed in data is denoted by q̃µ,obs. The pdfs of q̃µ under
the assumption of µ and of a different signal strength µ′ are given in [216].

In order to exclude null hypotheses H0 with signal strengths µ, the CLs-method [260]
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is used with the CLs-value defined as:

CLs =
pµ

1− pµ=0
. (10.18)

The value pµ is obtained according to Eq. 10.14 for a signal hypothesis with fixed µ and by
replacing tµ with q̃µ. Whereas pµ=0 (µ = 0 indidcating the background-only hypothesis) is
defined as:

pµ=0 =

∫ q̃µ,obs

−∞
f (q̃µ|0) dq̃µ . (10.19)

The null hypothesis with signal strength µ is excluded at a confidence level (CL) of 1− α if
CLs < α. Typically, α = 0.05 is used. The upper limit on the signal strength µ is defined
as the largest value of µ that is not excluded. This value can, for example, be found by
iteratively testing different values of µ.

The reason for using CLs instead of only pµ is that hypotheses for which the sensitivity
is very small1, which is the case if signal is much smaller than the expected background, are
excluded with a probability of almost α [260]. Therefore, the pµ-value of the measurement
is basically penalised by the power β = 1− pµ=0 (Eq. 10.12) of the test statistic. The closer
the power is to 1, i.e. the better the sensitivity is, the smaller is the penalty and CLs ≈ pµ.
Whereas if the power of the test is low which results in an increased CLs-value (compared
to pµ), the rejection of the background plus signal hypothesis is prevented. Hence, the
upper limits obtained with the CLs-method are more conservative compared to the limits
obtained from pµ alone.

10.3 Validation of the Fit Results

Several measures and tools that are used to validate and present the fit results in Chapter 11
are introduced in the following.

Pulls and Constraints

The minimisation of the negative logarithm of the likelihood can on one hand pull the
best-fit value of a nuisance parameter θ away from its nominal pre-fit value and on the
other hand constraint it, i.e. reduce the size of its uncertainty due to additional knowledge
from the data.

The pull of a nuisance parameter θ is defined by the relative change of its best-fit value
θ̂ with respect to its nomininal pre-fit value θ′:

pull =
θ̂ − θ′

σθ
, (10.20)

with σθ denoting its pre-fit uncertainty assumed in an auxiliary measurement (see Eq. 10.4).
The constraint of a nuisance parameter denotes the reduction in size of its associated

uncertainty from the fit, σ̂θ̂ as extracted with Minos (see Section 10.1), compared to the
pre-fit value σθ:

constraint =
σ̂θ̂
σθ
. (10.21)

1The sensitivity is small if the pdfs of H0 and H1 strongly overlap.
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Ranking of Nuisance Parameters

The single nuisance parameters (NPs) can have differently strong impacts on the POI, i.e.
the signal strength µ. Therefore, a ranking of the NPs with respect to their impact on µ
can be constructed in order to evaluate their importance on the final results. To obtain the
impact of one NP on µ, the value of this NP is fixed to e.g. its −1σ-variation. Then the full
fit is repeated resulting in a new value of µ. The difference of the nominal value of µ and
its new value is the impact of the corresponding NP. This is repeated for the +1σ-variation
of the NP and for all other NPs.

Pre-fit as well as post-fit impacts of the NPs can be derived by either using the pre-fit
or the post-fit uncertainty on the NPs, respectively.

Finally, the ranking of the NPs is obtained by sorting the impacts obtained from the
post-fit +1σ-variation in decreasing order.

Breakdown of Uncertainties

The breakdown of the uncertainties gives an overview of the impact of NPs on the uncertainty
of the signal strength µ, σµ. Typically, several NPs of similar origin (e.g. all uncertainties
related to electrons) are combined into groups. The impact of one group on σµ is obtained
as follows: a fit is performed where all NPs of this group are fixed to their best-fit values of
the nominal fit. The resulting new σfixedµ is subtracted in quadrature from the nominal σµ
which results in the impact of this group of NPs on σµ, denoted by σgroupµ :

σgroupµ =

√
σ2
µ −

(
σfixedµ

)2
. (10.22)

This is performed for any desired group of NPs. The quadratic sum of the single σgroupµ

does not necessarily add up to σµ due to correlations between the NPs. Owing to the usage
of Minos, the up and down value of σµ can differ and hence also the up and down impact
of one group can be different.

The impact on σµ due to data statistical uncertainties only (without any uncertainties
on the prediction), σstatµ , is obtained by performing a fit where all NPs are set to their
best-fit values of the nominal fit while only the signal strength parameter µ is free. By
subtracting σstatµ in quadrature from σµ, following Eq. 10.22, the impact of all NPs on σµ is

obtained, denoted by σsystµ : σsystµ =
»
σ2
µ −

(
σstatµ

)2.
Asimov Dataset

The H-LFV analysis is developed and optimised while keeping signal-sensitive bins in the
distributions of the different observables blinded (see Chapter 3). However, a measure of
the sensitivity of the analysis is needed for the optimisation process. Furthermore, the
statistical model must be examined for its general soundness before performing the fit with
the observed data. Both is achieved by performing the full statistical analysis, i.e. obtaining
the maximum likelihood estimators, deriving the significance for the potentially existing
new signal and deriving the upper limit on its branching ratio, by making use of the Asimov
dataset [216].

The Asimov dataset is an artificially created dataset. It is constructed as the sum of all
expected background processes and the signal, assuming a certain value µ′ for the signal
strength.

Thus, when performing the maximum likelihood fit on the Asimov dataset, the best-fit
values (MLEs) of the signal strength µ and of all nuisance parameters result in their pre-fit
values: µ̂ = µ′, γ̂i = γ′i and θ̂p = θ′p, but σ̂p 6= σp (Eq. 10.4) can occur. This means no
pulls of the nuisance parameters are observed, whereas constraints can appear. If the fit
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strongly constrains a nuisance parameter, it indicates that the analysis is sensitive to it
and can reduce the related uncertainty compared to the value provided by the auxiliary
measurement. This typically also leads to noticeable pulls once the fit is performed with
observed data. Stronger constraints in a fit with Asimov data hint to an overestimated or
overly simplified description of the uncertainty and as such should be investigated.

Two different versions of the Asimov dataset are used in this analysis. In order to
get measures for the expected sensitivity while optimising the analysis, the pre-fit Asimov
dataset is used. When quoting the expected limit and significance in conjunction with
the observed results, the post-fit Asimov dataset is used. Each of them is constructed as
follows.

Pre-fit Asimov dataset The pre-fit Asimov dataset is constructed from the sum of all
expected background processes as they are predicted before the maximum likelihood fit to
observed data is performed (pre-fit) and optionally signal. The pre-fit expected significance
is derived assuming µ′ = 1 for the signal strength. This corresponds to a branching ratio of
the LFV-signal of 1% if not stated otherwise and therefore to the background plus signal
hypothesis. The pre-fit expected limit is derived using µ′ = 0, resulting in a background-only
dataset and therefore the background-only hypothesis.

Post-fit Asimov dataset The post-fit Asimov dataset is constructed from the sum of all
considered background processes, setting the NPs to their post-fit values obtained from the
fit to the observed data, and optionally signal. Using the post-fit values for the NPs when
constructing the Asimov dataset allows for taking into account changes in the prediction
due to the fit to observed data. The post-fit expected significance and limit are derived
assuming µ′ = 1 and µ′ = 0, respectively, as above.

In the process of investigating the soundness of the statistical model, also a sideband
and a mixed dataset were used.

The sideband dataset only uses the bins of the final discriminants which are not sensitive,
i.e. not blinded. Hence, the observed data can be used in these bins and a more realistic
picture of the behaviour of the individual nuisance parameters with regard to their pulls
and constraints can be obtained.

The mixed dataset combines the sideband dataset with a post-fit Asimov dataset in
the sensitive bins. This Asimov dataset is built with the NPs set to the post-fit values
obtained from a background-only fit to observed data in the sideband bins. With this setup
a more realistic estimation of the expected sensitivity can be obtained as changes in the
background prediction from the background-only fit are taken into account, without using
observed data in the sensitive bins.

10.4 Fit Setup

The statistical analysis as introduced above is performed separately with the eτ - and the
µτ -dataset in order to search for the H → eτ - and the H → µτ -signal, respectively. The
distributions of the neural network probabilities serve as final discriminants which are
used in the maximum likelihood fits. The fit is performed simultaneously in both signal
regions, the nonVBF SR and the VBF SR, with the respective neural network probablity
distributions.

The parameter of interest (POI), an unconstrained overall normalisation parameter, is
the signal strength µeτ or µµτ . It scales the respective signal template, sH→eτ or sH→µτ .
The signal templates are obtained from MC simulations assuming a production cross section
of the Higgs boson as predicted in the standard model and a branching ratio of 1% for
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each of the LFV-signals. Hence, µ = 1 corresponds to a branching ratio of 1% and e.g.
µ = 0.1 to a branching ratio of 0.1%. A short discussion of the interpretation of µeτ or µµτ

is given in the next paragraph.
The main term of the binned likelihood function (Eq. 10.2), without the additional

terms for systematic and statistical uncertainties of the prediction, is given in the following
for the search for H → µτe. This likelihood is used to perform a maximum likelihood fit, to
derive significances with which the background-only hypothesis can potentially be rejected
and to set upper limits on their branching ratios.

L(µ,θ,γ|nµτ ) =

N∏
i=1

PP
Ä
nµτi |γib

µτ
i (θ) + µµτ · sµτH→µτ,i(θ)

ä
(10.23)

=
N∏
i=1

PP
Ä
nµτi |γi

Ä
ñeτi (θ) + fµτj→`,i(θ) + fµτother→`,i(θ)

ä
+ µµτ · sµτH→µτ,i(θ)

ä
(10.24)

with

ñeτi = Reτ ·
(
neτi − feτj→`,i(θ)− feτother→`,i(θ)− µµτ · seτH→µτ,i(θ)

)
. (10.25)

The likelihood for the search for H → eτµ can be formulated eqivalently by exchanging µτ
with eτ and vice versa.

The product is over the bins i of the final discriminants in both signal regions. The
binning of the final discriminants is discussed in Section 8.2.6. The Poisson pdf is denoted
by PP . The number of detected events is denoted by the vector n where the components ni
represent the number of detected events in bin i. The superscript µτ denotes the µτ -dataset,
eτ the eτ -dataset. The nuisance parameters γ describe the statistical uncertainties on the
background prediction b with components γi and bi for bin i, respectively. Each component
θp of the vector of nuisance parameters θ describes one source of systematic uncertainty.
The background prediction is split in its individual contributions as given in Eqs. 10.24
and 10.25. There are the e/µ-symmetric background ñeτ (Eq. 10.25), the j → `- and the
other → `-fakes.

The e/µ-symmetric background consists of the data of the respective other dataset, here
of the eτ -dataset, and of the j → `- and the other → `-fakes of the eτ -dataset, subtracted
and corrected with the efficiency ratio R. In addition, the part of the H → µτ -signal
that is wrongly classified, namely that is assigned to belong to the eτ -dataset, must be
subtracted and also corrected with R, since it introduces an asymmetry between the two
datasets in case the H → µτ -signal exists. Its shape in the final discriminants differs from
the correctly classified signal and hence only has a minor impact on the sensitivity. It is
also scaled by the signal strength parameter µµτ . More details on the dataset classification,
i.e. lepton assignment can be found in Section 7.1.3. In fact, the correction is applied on an
event-by-event basis. More details can be found in Section 7.2.3 and Eq. 7.17.

The estimation of the j → `-fakes is discussed in Section 7.2.2 and a detailed expression
for fj→` can be found in Eq. 7.12. The same section also includes details on the estimation
of the other → `-fakes.

Interpretation of the Signal Strength µ

As detailed in Chapter 3, the Symmetry Method is only sensitive to the difference in
branching ratios of the H → µτ - and the H → eτ -signal, meaning that the signal strength
µµτ (µeτ ) in the search for H → µτ (H → eτ) does not necessarily represent the branching
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ratio B(H → µτ) (B(H → eτ)) in percent, but instead a difference ∆µτ (∆eτ ):

∆µτ = B(H → µτ)− B(H → eτ) . (10.26)

And equivalently, the difference ∆eτ is:

∆eτ = B(H → eτ)− B(H → µτ) . (10.27)

Hence, the absolute values of both are equal:

∆µτ = −∆eτ . (10.28)

That means, in the most general case, the signal strengths µµτ and µeτ are parameters for
the differences. If it is assumed, however, that B(H → eτ) = 0 in the search for H → µτ
and B(H → µτ) = 0 in the independent search for H → eτ , the signal strengths µµτ and
µeτ are direct measurements of the branching ratios. The limit on the branching ratio
of the decay µ → eγ allows for deriving a bound on the product of the two off-diagonal
Yukawa couplings Yeτ and Yµτ , as discussed in Section 1.4.2, suggesting that not both LFV
signals can be “large” simultaneously. The largest value both branching ratios, B(H → eτ)
and B(H → µτ), can take on simultaneously is 8.28× 10−3%. In this case no signal could
be detected with the Symmetry Method. As soon as one of the two signals is greater than
this value, the other must be smaller, resulting in an asymmetry between both and hence
the possibility to detect this difference with the Symmetry Method. Further discussions of
the relations of both measurements of ∆µτ and ∆eτ are given in Sections 11.1.3 and 11.1.4.



Chapter 11

Results

The results obtained in the search for lepton-flavour violating decays of the Higgs boson,
H → eτµ and H → µτe, are presented and discussed in the following. Section 11.1 focuses
on the results derived with the Symmetry Method which are the main focus of this work.

Combinations of the results obtained with the Symmetry Method and of results derived
by the partner-analyses are discussed in Sections 11.2 and 11.3. The estimation of all
backgrounds apart from fakes of the two partner-analyses relies on templates from MC
simulations where the normalisation of the main backgrounds is obtained from data. One
analysis searches for H-LFV decays by exploiting hadronic τ -lepton decays (called MC-
based lephad) while the other exploits leptonic τ -lepton decays (called MC-based leplep)
considering the same final state as in this work.

Section 11.2 presents the combination with the MC-based lephad analysis, Section 11.3
the combination of all three analyses by using one of the leplep analyses for each of the two
signal regions.

11.1 Results with the Symmetry Method

In order to obtain the signal strengths µeτ and µµτ in the searches for H → eτµ and
H → µτe, respectively, and to set upper limits, a statistical analysis as described in
Chapter 10 is performed.

First, a maximum likelihood fit is performed using the likelihood function in Eq. 10.24,
thereby obtaining the best-fit values or maximum likelihood estimators (MLEs) of the signal
strength and the nuisance parameters. The signal strength is defined such that a values of
1 corresponds to a branching ratio or a branching ratio difference of 1%. The significance
of the observed signal strength values and the upper limit on the signal strength at 95%
CL using the CLs-method is calculated. This is discussed in Section 11.1.1.

Section 11.1.2 quantifies the compatibility of the results between the two signal regions,
Section 11.1.3 discusses the relation between µeτ and µµτ and Section 11.1.4 quantifies the
compatibility of the results among the two searches.

11.1.1 Results

The analysis was developed without considering data in sensitive bins (blinding). Bins
are considered as sensitive bins whenever the signal-over-background ratio exceeds 5%
assuming a branching ratio of 1% for the signal. Expected significances and upper limits
were derived using the pre-fit Asimov dataset discussed in Section 10.3 in order to serve as
measures for optimising the analysis. The fit model was validated using a mixed dataset,
introduced in Section 10.3 as well.

229
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The following presents and discusses the observed results obtained from performing the
fit with data in all bins of the final discriminants after all development and optimisation was
finalised. In addition, expected limits and significances are quoted obtained from a fit with
the post-fit Asimov dataset where the nuisance parameters are fixed to their post-fit values
obtained from the fit to data as detailed in Section 10.3. The final results are obtained
from a combined fit in both signal regions (nonVBF SR and VBF SR), in the following
denoted by “combined”, for one particular search channel, either H → eτµ or H → µτe. In
addition, results are derived by performing the fit in each of the signal regions separately,
in the following simply denoted by nonVBF SR and VBF SR.

The best-fit values of the signal strengths µeτ and µµτ are summarised in Table 11.1
where also the corresponding significances Z with which the background-only hypothesis
can be rejected and the upper limits at 95% CL on the signal strengths are given, denoted
by µeτ95 and µµτ95 . The expected significance for a signal strength of 0.1 which is equivalent
to a branching ratio of 0.1% and the expected upper limits are given in brackets.

combined nonVBF SR VBF SR

µ̂eτ −0.330+0.105
−0.110 −0.375+0.114

−0.121 −0.090+0.222
−0.253

Z/σ −3.253 (1.010) −3.399 (0.879) −0.391 (0.507)
µeτ95 0.077 (0.190+0.077

−0.053) 0.083 (0.217+0.088
−0.061) 0.361 (0.400+0.168

−0.112)

µ̂µτ 0.249+0.103
−0.100 0.299+0.114

−0.111 0.060+0.217
−0.195

Z/σ 2.502 (1.042) 2.693 (0.904) 0.304 (0.523)
µµτ95 0.422 (0.191+0.076

−0.053) 0.490 (0.222+0.089
−0.062) 0.476 (0.386+0.163

−0.108)

Table 11.1: The best-fit values µ̂eτ and µ̂µτ of the signal strengths, the corresponding significances Z and
the upper limits on the signal strengths at 95% CL, denoted by µeτ95 and µµτ95 , for the combined fit and the
fits solely performed in the individual signal regions. The expected significance for a signal strength of 0.1
and the expected upper limits, obtained with the post-fit Asimov dataset, are given in brackets. The upper
half of the table summarises the results obtained with the eτ -dataset in the search for H → eτ . The lower
half shows the results obtained with the µτ -dataset in the search for H → µτ .

An upwards fluctuation in data in the µτ -dataset (i.e. in the search for H → µτ),
corresponding to a significance of 2.50σ and a best-fit value µ̂µτ = 0.25± 0.10 is observed
in the combined fit. This translates to an observed downwards fluctuation in the eτ -dataset
with a significance of −3.25σ and a best-fit value µ̂eτ = −0.33 ± 0.11. These results
are either caused by an actual upwards fluctuation in data of the µτ -dataset, an actual
downwards fluctuation in data of the eτ -dataset or by both since with the Symmetry Method
µ̂eτ and µ̂µτ are directly correlated through the e/µ-symmetric background estimate. This
implicates that the Symmetry Method is only sensitive to the difference of the two signal
strengths. A detailed investigation of these results, in particular with regard to the relation
and the compatibility of µ̂eτ and µ̂µτ is performed in Sections 11.1.3 and 11.1.4. Due to
the negative µ̂eτ , the observed upper limit on the signal strength µeτ is smaller than the
expected. And due to the positive µ̂µτ the observed upper limit on the signal strength µµτ

is larger than the expected. When assuming that the branching ratio B of H → µτ is zero,
an upper limit on the branching ratio of H → eτ can be set:

B(H → eτ) < 0.077 % (0.190+0.077
−0.053 %) , (11.1)

where the expected limit is given in brackets. When, in contrast, assuming that the
branching ratio of H → eτ is zero, an upper limit on the branching ratio of H → µτ can
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be set:

B(H → µτ) < 0.422 % (0.191+0.076
−0.053 %) . (11.2)

The observed fluctuations are driven by the nonVBF SR where the absolute values of the
signal strength deviate further from 0 than in the combined fit. Small deviations of µ̂eτ and
µ̂µτ are also observed in the VBF SR. However, within uncertainties they are compatible
with 0 which is also reflected in the small significances.

The post-fit distributions of the final discriminants are shown in Figure 11.1 and the
post-fit yields are listed in Table 11.2. The distributions show the opposite behaviour of
the observed fluctuations in data. The up- or down-fluctuation in one dataset results in an
down- or up-fluctuation in the other and hence in a positive best-fit signal contribution in
one dataset and a negative best-fit signal contribution in the other. Compared to the pre-fit
distributions (Figure 8.44) and the pre-fit yields (Tables 8.1 and 8.2), the uncertainties on
the prediction are reduced due to constraints of the NPs and due to correlations between
the NPs and the processes. The constraints as well as the correlations of the NPs are
discussed below. The post-fit prediction describes the data well over the entire range of the
distributions.

Influence of Individual Uncertainty Sources

The breakdown of the uncertainties on the signal strength µ, i.e. the impact of groups of
uncertainty sources on the uncertainty of µ, is summarised in Table 11.3. Details of its
calculation can be found in Section 10.3. The pulls and constraints (defined in Section 10.3,
likewise) of the 25 nuisance parameters (NPs) with the highest impact on the value of the
signal strength µ are shown in Figure 11.2 for the combined fit and in Figure 11.3 for the fit
in the VBF SR only. The corresponding figure for the fit performed solely in the nonVBF
SR shows similar features to the combined fit (shown in Appendix E). Figures showing
the pulls and constraints of all NPs obtained in the combined fit and in the fits performed
solely in the single signal regions are given in Appendix E as well.

The total uncertainty on µ is smaller in the search for H → µτ than in the search for
H → eτ (Table 11.3). In contrast, the uncertainty due to the data sample size (i.e. due to
the amount of collected and selected data) is larger in H → µτ which reflects the lower
data yield observed in the µτ -dataset (see Table 11.2). This automatically leads to a larger
uncertainty due to the background sample size in H → eτ compared to H → µτ . The
uncertainty due to the background sample size represents the statistical uncertainties on the
total background prediction. It is dominated by the data sample size of the “other” dataset1

(as shown in Figure 9.5) which is the basis for the e/µ-symmetric background estimate.
Hence, the data sample size uncertainty and the background sample size uncertainty are
correlated among the two searches.

Statistical Uncertainties on the Background Prediction The contribution of the
background sample size to the total uncertainty is larger than the contribution of all other
systematic uncertainties and hence, together with the uncertainty due to the data sample
size, the analysis is clearly dominated by statistical uncertainties. This is particularly the
case in the VBF SR where the yields are lower and the systematic uncertainties play an
even smaller role. However, the latter could be amplified by the fact that the shape effect
of more NPs are dropped in the VBF SR due to being flat after the smoothing procedure
(Section 9.5), which is again provoked by low yields. The importance of the statistical

1In the search for H → eτ , for example, the eτ -dataset is used while the “other” dataset, in this case the
µτ -dataset, is used for the estimation of the e/µ-symmetric background.
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Figure 11.1: Post-fit distributions of the final discriminants (neural network output node probability
distributions) for the eτ - (top) and µτ -dataset (bottom) in the nonVBF SR (left) and in the VBF SR (right),
obtained from the combined fit [22]. The binning is equivalent to the one described in Section 8.2.6 but
visualised equidistantly to enhance the visibility of the narrow bins. The hashed band indicates the post-fit
statistical and systematic uncertainties on the prediction. In addition to the stacked signal corresponding
to the best-fit prediction, the signal is overlaid (line) assuming a branching ratio of 0.1% and scaled by 100.
The central panel shows the ratio of data over the prediction (including signal) while the lower panel shows
the difference of data and the background prediction.

uncertainties on the background prediction in this analysis is also reflected in the ranking
of the NPs (Figures 11.2 and 11.3), where several NPs reflecting these uncertainties are
ranked highest. These NPs are denoted by γ(<region> bin <bin number>) where the bin
numbering starts at the left most bin of the final discriminants with 0 and ends at 10 in
the nonVBF SR and at 7 (8) for eτ (µτ) in the VBF SR. Some of them experience stronger
pulls as they are defined bin-by-bin and thus allow for adjustments of the background
prediction for each bin separately.

Systematic Uncertainties on the Prediction The largest impact within the systematic
uncertainties in the combined fit and the fit in the nonVBF SR comes from the uncertainties
on the electron Correction Factors (CFs), followed by uncertainties related to jets, the
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Figure 11.2: The pulls and constraints (black dots and bars and lower horizontal axis) of the 25 highest
ranked nuisance parameters obtained from a combined maximum likelihood fit in both signal regions in the
eτ -dataset (a) and the µτ -dataset (b). The nominal value of the γ-parameters is at 1 and deviations from
it indicate a pull. For all other NPs the nominal value is at 0 and the pre-fit ±1σ-variations correspond to
±1. The value of the highest ranked NP in eτ , the γ-parameter of the last bin of the VBF NN distribution,
is outside the range and is: 2.66+0.58

−0.52. The post-fit impact on the signal strength µ (filled coloured bars and
the upper horizontal axis) is the basis of the ranking (see Section 10.3). In addition, the pre-fit impacted is
shown (empty coloured bars).

efficiency-correction ratio R and the signal theory uncertainties. For the fit in the VBF
SR, the efficiency-correction ratio uncertainties and the electron CF uncertainties have a
comparably minor impact. The electron identification SF uncertainties which are correlated
between the usual SF s applied to all simulated events and the SF s used in the efficiency-
correction ratio R, are considered in the group “Efficiency correction R” and not in the
group “Electrons and Muons”. The observations made are also reflected in the NP ranking
which gives a more precise insight into which NP(s) of the single groups drive(s) their impact.
In the combined fit, apart from the γ-parameters, the NP El. Fake CF Sys describing the
systematic uncertainties of the electron CFs which are part of the j → `-fake estimate, is
ranked highest, followed by El Id Eff Uncorr NP0 which represents the statistical uncertainty
on the electron identification SF in the bin 15 GeV ≤ pT < 20 GeV and 0 < |η| < 1.37.

The NP El. Fake CF Sys is constrained which is also reflected by its reduced post-fit
impact compared to its pre-fit impact. The Mu. Fake CF Sys NP, however, is not among
the highest ranked NPs although its overall pre-fit impact on the j → `-fakes distribution
of the final discriminant is up to 9.2%. This is smaller compared to the El. Fake CF Sys
with 13.2% and also the shapes are different such that the impact of Mu. Fake CF Sys
in the sensitive bins is smaller. In addition, a sizeable correlation of around 50% between
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Figure 11.3: The pulls and constraints (black dots and bars and lower horizontal axis) of the 25 highest
ranked nuisance parameters obtained from a maximum likelihood fit in the VBF SR in the eτ -dataset (a)
and the µτ -dataset (b). The nominal value of the γ-parameters is at 1 and deviations from it indicate a
pull. For all other NPs the nominal value is at 0 and the pre-fit ±1σ-variations correspond to ±1. The
post-fit impact on the signal strength µ (filled coloured bars and the upper horizontal axis) is the basis of
the ranking (see Section 10.3). In addition, the pre-fit impacted is shown (empty coloured bars).

the two NPs is determined in the combined fit. Hence, it seems that El. Fake CF Sys
partially absorbs effects of Mu. Fake CF Sys which results in a reduced importance of the
latter. The correlation matrices of the NPs obtained from the combined fit are shown in
Figures 11.4 and 11.5 in the search for H → eτ and for H → µτ , respectively. Figures
showing the correlation matrices obtained from fits in the individual signal regions are
given in Appendix E. Furthermore, the NP El. Fake CF Sys has a higher rank in the
search for H → µτ than in the search for H → eτ but the impact on µ of ∼ 0.032 is
approximately the same in both searches. The differences in the ranking are rather a result
of the lower statistical uncertainties on the background prediction in H → µτ which are
therefore ranked lower. Thus El. Fake CF Sys is automatically ranked higher.

The NP El Id Eff Uncorr NP0 is only slightly constrained but shows a pull of up to
+1σ. Its pre-fit impact on the distributions of the single processes in the final discriminant
is not that large, however, due to light tensions between its effect on the “real” and “switch”
efficiencies the fit is sensitive to it. After correlating this uncertainty source between the
“real” and “switch” efficiencies, it showed a slightly stronger constraint and pull which was
investigated using the mixed dataset.

Overall, the impact of the systematic uncertainties on the total uncertainty is similar in
both searches. However, the uncertainties related to jets are larger in the search for H → eτ
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Figure 11.4: The correlations in percent of all nuisance parameters that have at least one correlation
with an absolute value larger than 20%, obtained from a combined maximum likelihood fit in both signal
regions with the eτ -dataset.
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Figure 11.5: The correlations in percent of all nuisance parameters that have at least one correlation
with an absolute value larger than 20%, obtained from a combined maximum likelihood fit in both signal
regions with the µτ -dataset.
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than in the search for H → µτ . This is, again, also reflected in the ranking of the NPs of
the combined fit. In H → eτ , the first jet-related NP, Jet Flavor Comp nonVBF, is at rank
13 while the first jet-related NP, Jet pileup ρ topology, in H → µτ is at rank 17 (this NP is
at rank 21 in H → eτ). In addition, Jet JER EffectiveNP 2 and Jet JER EffectiveNP 1
are also ranked higher in H → eτ but are not among the first 25 in H → µτ . Although the
NP Jet pileup ρ topology has indeed different ranks for H → eτ and H → µτ , the absolute
value of its ∆µ of ∼ 0.01 is approximately the same in both searches. This is not the case
for the other mentioned NPs. For them, the value of ∆µ is larger by a factor 5 to 10 for
H → eτ . When comparing their effects on the distributions of the final discriminant of the
individual processes, it is found that it is slightly larger in the right-most, i.e. signal-like
bins in H → eτµ. This is consistently the case for all processes.

Theoretical Uncertainties on the Signal Prediction The impact of the signal theory
uncertainties on the up- and down-uncertainty of µ is asymmetric. For H → eτ , the down-
uncertainty is larger, for H → µτ the up-uncertainty is larger. This is more pronounced
for the fit in the VBF SR. The largest impact on the value of µ and hence the highest
ranked single NPs of this group are theory ggF ME and theory ggF qcd 0 in the combined
(and also in the nonVBF SR) fit while it is theory VBF PS and theory VBF ME/ theory
ggF ME in the fit in the VBF SR for H → eτ/H → µτ . Their up- and down-variations
with respect to nominal are perfectly symmetric as only one variation is available which is
mirrored to obtain the other variation. Hence, the opposite asymmetric behaviour in the
searches for H → eτ and H → µτ probably results from the opposite signs of the respctive
best-fit values µ̂eτ and µ̂µτ .

Correlations of Nuisance Parameters Other nuisance parameters with sizeable cor-
relations but which were not discussed yet as they do not have a large impact on µ are
MCfakesScalingUnc and ε El Eff MC Sys. The former shows a correlation of 38% in eτ and
of −31% in µτ with the statistical uncertainties on the background prediction of the second
bin of the final discriminant in the nonVBF SR. This correlation is reasonable as the bins to
the left have large background contributions and hence serve as control regions to constrain
the background predictions. Due to the same reason other NPs have sizeable correlations
with the statistical uncertainties on the background prediction of the left bins; these are El
Id Eff Uncorr NP0 and El. Fake CF Sys. Furthermore, there are also correlations of up
to ∼ 30 % between the statistical uncertainties of the different bins. The opposite sign of
the correlation of MCfakesScalingUnc and the statistical uncertainty in the two searches
originates from the fact that this uncertainty is dominated by the Z → µµ-contribution to
the other → `-fakes which is more abundant in the µτ -dataset which enters the background
estimate with a positive sign in the search for H → µτ and with a negative sign as part of
the e/µ-symmetric background in the search for H → eτ . The NP ε El Eff MC Sys which
is an uncertainty on the efficiency correction ratio R shows a correlation of −30% with El
Id Eff Uncorr NP0. Also the latter is dominated by uncertainties on R.

11.1.2 Validation of the Compatibility among Signal Regions

A hypothesis test is performed in order to quantify the compatibility of the best-fit values
of the signal strengths in the two signal regions. The default fit setup with one parameter
of interest (POI) for both signal regions serves as null hypothesis, claiming that the same
signal strength in both regions can be assumed. A fit setup with two POIs, one for each of
the two signal regions, serves as alternative hypothesis. In both fit setups a combined fit is
performed in both signal regions simultaneously.

The resulting best-fit values for the two POIs of the alternative hypothesis are sum-
marised in Table 11.4. They are very close to the values obtained when performing
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independent fits in each of the signal regions (Table 11.1).

nonVBF SR VBF SR

µ̂eτ −0.376+0.114
−0.120 −0.084+0.219

−0.249

µ̂µτ 0.298+0.114
−0.111 0.055+0.214

−0.192

Table 11.4: The observed best-fit values for the signal strength µ from combined 2-POI fits (1 POI per
signal region) in the search for H → eτ and H → µτ .

The test statistic tSRs to quantify the compatibility among the regions is again a
likelihood ratio:

tSRs = −2 ln
L1POI

L2POI
= 2 (lnL2POI − lnL1POI) , (11.3)

with the null hypothesis in the numerator and the alternative hypothesis in the denominator.
As noted in Section 10.2, this test statistic follows a χ2-distribution with 1 degree of freedom
corresponding to the difference in the number of POIs (2− 1). The corresponding negative
log-likelihood values and the resulting p-value and significance are summarised in Table 11.5.
For the significance, a two-sided fluctuation of a Gaussian-distributed variable is assumed.
The null hypothesis cannot be rejected and hence the signal regions show a compatible
behaviour.

− lnL p Z/σ

H → eτ
1 POI -2182526.009223 0.281 1.0782 POI -2182526.590176

H → µτ
1 POI -2029627.347605 0.309 1.0172 POI -2029627.865049

Table 11.5: The negative log-likelihood values of the 1-POI and 2-POI combined fits in the searches for
H → eτ and H → µτ , respectibely and the resulting measures for compatibility, p-values and significance
in terms of standard deviations σ (assuming a two-sided fluctuation of a Gaussian-distributed variable).

11.1.3 Investigation and Visualisation of the Relation of µ̂eτ and µ̂µτ

The Symmetry Method is eventually only sensitive to the difference of branching ratios of
the two LFV signals as discussed in Chapter 3 and Section 10.4. In order to investigate and
visualise the relation of the two signals, the presence of a H → µτe signal is considered in
the fit for the search for H → eτµ. A contribution of H → µτe with a fixed signal strength
µµτfixed is included in the likelihood (Eq. 10.24) and the behaviour of µ̂eτ is investigated.
The modified likelihood for the search for H → eτ is given in the following where the new
additional terms are indicated in red and are underlined.

L(µ,θ, γi|neτ ) =

N∏
i=1

PP
Ä
neτi |γi

(
ñµτi (θ) + feτj→`,i(θ) + feτother→`,i(θ)

)
+µµτfixed · s

eτ
H→µτ,i(θ) + µeτ · seτH→eτ,i(θ)

ä
(11.4)
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with

ñµτi = Rµτ ·
(
nµτi − f

µτ
j→`,i(θ)− fµτother→`,i(θ)−µµτfixed · s

µτ
H→µτ,i − µ

eτ · sµτH→eτ,i(θ)
)
.

(11.5)

The H → µτ signal is treated as part of the background prediction since a possible H → µτ
signal or up-fluctuation in the µτ -data propagates to the e/µ-symmetric background
estimate used in the search for H → eτ . The contribution of µµτfixeds

µτ
H→µτ , which is

subtracted, is larger than the contribution µµτfixeds
eτ
H→µτ , which is added, and hence the new

overall background prediction is reduced when including the H → µτ signal and assuming
µµτfixed > 0. The reduced background prediction, however, causes issues with low background
yields in the last bin of the final discriminant in the VBF SR. Therefore, the last two bins
are merged for this study.

First, the signal strength µµτfixed is set to 0.25 which is the best-fit value obtained from the
original combined fit (Table 11.1). The obtained best-fit signal strength µ̂eτ for µµτfixed = 0.25
is summarised in Table 11.6. This study was performed before the signal parton shower
and the signal matrix element uncertainties were included in the statistical analysis. Hence,
the results of the original fit without these uncertainties are additionally quoted in the
table. The last two bins in the VBF SR were not merged in this fit. These results are
denoted by µµτfixed = 0 since not considering the H → µτ signal in the likelihood equals
the assumption that this signal is zero. The changes compared to Table 11.1 where the
additional signal uncertainties are included are mininmal. The best-fit signal strength µ̂eτ

combined nonVBF SR VBF SR

µ̂eτ if µµτfixed = 0 −0.329+0.104
−0.108 −0.377+0.114

−0.119 −0.089+0.221
−0.247

µ̂eτ if µµτfixed = 0.25 −0.081+0.102
−0.106 −0.121+0.113

−0.119 0.090+0.218
−0.236

Table 11.6: The observed results obtained in the search for H → eτµ when considering a H → µτ -signal
with a branching ratio of 0.25% (best-fit value). The upper row summarises the results obtained with the
original fit where no H → µτ -signal is considered. The last two bins of the final discriminant in the VBF
SR are merged when µµτfixed = 0.25 to circumvent issues with low yields.

for µµτfixed = 0.25 is now compatible with 0 for the combined fit and the fits in both regions
separately. The change in signal strength with respect to the original fit corresponds to the
expected difference of 0.25 in the nonVBF SR. This is not exactly the case in the VBF SR,
and therefore also not for the combined fit, which is expected due to the change in binning.

In a next step, the fit in the search for H → eτ is repeated 10 times for different values
of µµτfixed. It is scanned from 0.0 to 0.50 in steps of 0.05. Each time, the corresponding
best-fit value µ̂eτ is obtained and its dependence on µµτfixed is shown in Figure 11.6. The scan
is performed with fits in the nonVBF SR only due to low yields and eventually negative
background predictions in the VBF SR for higher values of µµτfixed. A clear linear dependence
of the two signal strengths is visible which indicates a direct correlation between them. The
orange cross indicates the best-fit value µ̂eτ in the nonVBF SR when assuming µµτfixed = 0
which corresponds to the original fit. The red cross at µµτfixed = 0.3 corresponds to the
best-fit value of µ̂µτ in the nonVBF SR of 0.299 and results in µ̂eτ = −0.070+0.113

−0.118 which is
compatible with zero.

This study clearly shows the direct connection between µeτ and µµτ . However, the
conclusion that the upwards fluctuation observed in the µτ -dataset actually originates from
a H → µτ signal while no H → eτ signal is observed, as perhaps suggested by the previous
elaborations, would be wrong. On one hand, the significance for the upwards fluctuation
(Table 11.1) is not large enough to claim evidence for a new signal and on the other hand
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Figure 11.6: Dependence of the best-fit values µ̂eτ in the search for H → eτ as a function of different
fixed µµτfixed in the nonVBF SR where the H → µτ signal is considered as part of the background estimate.
The orange cross indicates the best-fit value µ̂eτ when assuming µµτfixed = 0. The red cross at µµτfixed = 0.3
corresponds to the best-fit value of µ̂µτ of 0.299.

one cannot judge whether the excess observed in the µτ -dataset and the deficit observed in
the eτ -dataset originate solely from an up-fluctuation in µτ , solely from a down-fluctuation
in eτ or from both.

11.1.4 Compatibility of the Results of the Searches for H → eτµ and
H → µτe and Measurement of ∆ = B(H → µτ)− B(H → eτ)

The linear dependence of µeτ and µµτ discussed in the previous section illustrates that
both parameters essentially describe the same observable (apart from its sign), which
is the difference of both branching ratios, ∆. In the search for H → eτ the difference
∆eτ = B(H → eτ) − B(H → µτ) is measured, in the search for H → µτ the difference
∆µτ = B(H → µτ)−B(H → eτ) is measured for which ∆eτ = −∆µτ should hold. Therefore,
the absolute values of the best-fit signal strengths µ̂eτ and µ̂µτ should be compatible with
each other. This is equivalent to requiring that the sum of µ̂eτ and µ̂µτ is compatible with
0 which allows to formulate the following χ2 test in order to quantify the compatibility.

χ2 =
((µ̂eτ + µ̂µτ )− 0)2

e2
(11.6)

with

e2 = e2
µ̂eτ + e2

µ̂µτ + 2eµ̂eτ eµ̂µτρ . (11.7)

Here, eµ̂eτ (eµ̂µτ ) is the mean value of the up and down uncertainty on µ̂eτ (µ̂µτ ) and
ρ the correlation coefficient between µ̂eτ and µ̂µτ . The values of all variables except ρ
are known and given in Table 11.1. In order to obtain the value of ρ, a bootstrap [261,
262] analysis is performed. With the bootstrap technique, statistical correlations between
measurements can be determined by generating pseudo-experiments in a coherent way.
The code documented in [262] is utilised to conduct the analysis. 500 replicas of the data
samples as well as of the data part of the e/µ-symmetric background estimates are created.
It is ensured that the eτ(µτ)-data used as data in the search for H → eτ(H → µτ) and
as part of the e/µ-symmetric background estimate in the search for H → µτ(H → eτ) is
fluctuated coherently. Furthermore, the systematic uncertainties on the data part of the



242 CHAPTER 11. RESULTS

e/µ-symmetric background estimates are varied accordingly and the statistical uncertainties
on the total background prediction are recalculated for each replica. The combined fit in
both signal regions and for both searches, H → eτ and H → µτ , including all uncertainties
is performed for each replica dataset and the respective signal strengths µ̂eτ and µ̂µτ are
obtained. The results are visualised in Figure 11.7. The absolute value of the best-fit signal
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Figure 11.7: The absolute values of the best-fit signal strengths µ̂ for each of the 500 bootstrap replicas (a),
the number of the replica as a function of the absolute value of the best-fit signal strength in bins of width
0.01 (b) and the number of replicas as a function of the sum of the two best-fit signal strengths (c). In
(a) and (b) blue indicates the results obtained from fits in the search for H → eτ and orange the results
obtained from fits in the search for H → µτ . The lines indicate the results of the original fits.

strengths, µ̂eτ and µ̂µτ , are shown for each replica in Figure 11.7(a) while Figure 11.7(b)
shows the number of replicas against the absolute value of the best-fit signal strength in bins
of width 0.01. Both figures indicate that the mean of |µ̂eτ | is larger than the mean of |µ̂µτ |.
Figure 11.7(c) shows the number of replicas against the sum of the best-fit signal strengths,
µ̂eτ + µ̂µτ , in bins of width 0.01. Concordant to the previous observation, the mean of the
sum is shifted to negative values. Possible reasons for these small differences in absolute
values of the signal strengths could be the different binning of the final discriminants and
the different coefficients used in the combined VBF NN distribution (Section 8.2.5) as well
as the different statistics of the background predictions in the eτ - and µτ -dataset and thus,
in addition, different impacts of the uncertainties.

The correlation coefficient ρ is calculated from the results of the Nrep = 500 replicas
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using the usual equations for the covariance (cov):

cov(µ̂eτ , µ̂µτ ) =
1

Nrep

Nrep∑
i=1

Ä
µ̂eτi − µ̂

eτ
ä Ä
µ̂µτi − µ̂

µτ
ä
, (11.8)

σµ̂xτ =
»

cov (µ̂xτ , µ̂xτ ) , (11.9)

ρ = cov (µ̂eτ , µ̂µτ ) / (σµ̂eτσµ̂µτ ) . (11.10)

Here, x ∈ {e, µ} and µ̂xτ denotes the mean value. The correlation coefficient is calculated
to be ρ = −0.80 which allows for calculating the χ2-value using Eqs. 11.6 and 11.7 and
the results in Table 11.1. The obtained χ2-values for the results of the combined fit and
of the fits in only one of the signal regions are summarised in Table 11.7 using the same
value for ρ in all three columns. Additionally, the corresponding p-value and singificance
Z are listed. Both measurements of the signal strength and therefore of the difference in

combined nonVBF SR VBF SR

χ2-value 1.528 1.114 0.045
p-value 0.216 0.291 0.832
Z/σ 1.236 1.056 0.212

Table 11.7: The χ2-values with the corresponding p-values and singificances Z obtained to quantify the
compatibility of the best-fit signal strengths µ̂eτ and µ̂µτ .

branching ratios of H → eτ and H → µτ , µ̂eτ and µ̂µτ , agree within 1.2σ.
The agreement of both measurements improves further if only statistical uncertainties

on the prediction and no systematic uncertainties are considered. In this case a correlation
coefficient of ρ = −0.86 is obtained and the measurements of both signal strengths agree
within 0.3σ. The corresponding best-fit signal strengths, χ2-value, p-value and significance
for the combined fit are summarised in Table 11.8. However, the values of the best-fit signal
strengths themselves are not relevant as they do not have a reasonable physical meaning
without considering all relevant uncertainties.

µ̂eτ µ̂µτ χ2-value p-value Z/σ

−0.336+0.084
−0.084 0.322+0.082

−0.082 0.105 0.746 0.324

Table 11.8: The best-fit signal strengths µ̂eτ and µ̂µτ obtained from a combined fit in both signal
regions neglecting systematic uncertainties and considering only statistical uncertainties on the background
prediction. In addition, the χ2-value with the corresponding p-value and singificance Z obtained to quantify
the compatibility of the best-fit signal strengths.

Since both measurements of the signal strength and hence of the branching ratio
difference agree with each other, the measurement with the smaller expected uncertainty is
chosen as final result of the analysis. The best-fit signal strengths obtained with the pre-fit
Asimov dataset (see Section 10.3), assuming 1% branching ratio for the signal templates,
is µ̂eτ = 1.000+0.148

−0.135 and µ̂µτ = 1.000+0.139
−0.128. Hence, smaller uncertainties are expected from

the fit in the µτ -dataset and thus the results obtained in the search for H → µτ are chosen
as the main results.

Therefore, a best-fit value of the branching ratio difference

∆̂µτ = B(H → µτ)− B(H → eτ) = 0.249+0.103
−0.100 % (11.11)
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is obtained, suggesting an upward fluctuation of the µτ -data compared to the eτ -data;
although this fluctuation corresponding to 2.5σ is not highly significant. An upper limit
on the branching ratio difference of

∆µτ
95 = 0.422 % (0.191+0.076

−0.053 %) (11.12)

is derived where the expected upper limit is given in brackets. The observed as well as the
expected upper limit are visualised in Figure 11.8, assuming that the limit is on the absolute
value of the branching ratio difference. The observed limit is just above the 2σ-band of the
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Figure 11.8: The observed and expected upper limit on the difference ∆µτ (black solid and black dotted
lines, respectively), assuming the limit is on the absolute value of the branching ratio difference. The red
and blue dashed lines indicates the bound derived from the limit on B(µ→ eγ) using different assumptions
on the Yiτ ; many thanks to [263] for the support.

expected upper limit as anticipated from the observed fluctuation.
In addition, a bound derived from the limit on the branching ratio of the decay

µ → eγ is drawn. The indirect limits on the LFV decays of the Higgs boson are dis-
cussed in Section 1.4.2 where Table 1.5 includes the bound on the combination YeτYτµ:
4
√
|YeτYτµ|2 + |YτeYµτ |2 < 2.2× 10−4, with Yij being the off-diagonal Yukawa couplings.

Eq. 1.54 allows for translating this bound into a simultaneous bound on the branching
ratios of H → eτ and H → µτ which is displayed in Figure 11.8. The details are given
in Appendix F. While deriving the bound on the branching ratios an assumption on the
relation of Yiτ and Yτi is required. For the red curve in Figure 11.8, it is assumed that
they are equal: Yiτ = Yτi. Whereas for the blue curve it is assumed that one of them is
zero while the other is not: Yiτ = 0, Yτi 6= 0 or Yiτ 6= 0, Yτi = 0. The bounds show that if
the branching ratio of H → µτ were equal to the limit of 0.42%, the branching ratio of
H → eτ would only be allowed to have a maximum value of 1.6× 10−4% (8.1× 10−5%)
using the red (blue) bound. If both branching ratios had the same size, in which case no
signal could be detected with the Symmetry Method, they would at most be 8.28× 10−3%
(5.86× 10−3%) which is below the current sensitivity. This means that if there is a LFV
signal in the order of magnitude of the current sensitivity it will be detected with the
Symmetry Method.
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11.2 Combination with the Hadronic Channel

This section briefly discusses the combination with the partner analysis exploiting the
hadronic τ -lepton decays in the search for LFV decays of the Higgs boson. Two LFV-decay
channels are considered: on one hand one electron and one hadronically decaying τ -lepton
in the final state (eτhad) and on the other hand one muon and one hadronically decaying
τ -lepton in the final state (µτhad). The estimation of all background processes apart from
fakes is based on templates from MC simulations, thus this analysis is denoted as “MC-based
lephad” in the following. The fakes are events passing the selection where a jet mimics
the visible part of a hadronically decaying τ -lepton (τhad-vis). They are estimated with
an adapted version of the Fake Factor Method. The largest background contribution is
from Z → ττ -events and is normalised from the most background-like bins of the final
discriminants. The MC-based lephad analysis also makes use of two signal regions, the
nonVBF SR and the VBF SR. In each of the regions and separately for the eτhad and
the µτhad decay channels, two or three Boosted Decision Trees (BDTs) are trained, each
focusing on the separation of one background class and signal. For each region and channel,
the single BDTs are combined into one final discriminant, similar to the method described
for the VBF SR of the analysis described in this thesis (Section 8.2.5). More details of the
MC-based lephad analysis can be found in [22].

The post-fit distributions of the final discriminants (the combined BDT scores) are
shown in Figure 11.9. The fit performed to obtain these distributions is a 2-POI fit where the
two signal strengths µeτ and µµτ (the 2 POIs) are extracted simultaneously by performing
the fit simultaneously in the eτhad- and the µτhad-channel. In addition, the fit combined
the MC-based lephad and the MC-based leplep analyses. More information can be found
in [22].

In order to combine the Symmetry Method -based leplep analysis, in short referred to
as “symmetry-based leplep”, with the MC-based lephad analysis, separate 1-POI fits are
performed in the search for H → eτ and for H → µτ , respectively. A simultaneous 2-POI
fit is not feasible for the symmetry-based leplep analysis due to the direct correlation of the
data part of the e/µ-symmetric background in one search and the data in the other search.

The combination requires the assumption that the branching ratio of the respective
other signal is zero. This allows interpreting the signal strengths µ as branching ratios in
percent. Then, a simultaneous fit in all four regions, symmetry-based leplep nonVBF SR
and VBF SR and MC-based lephad nonVBF SR and VBF SR, is performed; once in the
search for H → eτ and once in the search for H → µτ . The results of the best-fit signal
strengths, significances and upper limits are summarised in Table 11.9. In addition, the
limits are visualised in Figure 11.10. The breakdown of the uncertainties on the signal
strength µ, i.e. the impact of groups of uncertainty sources on the uncertainty of µ, is
summarised in Table 11.10 and the ranking of the 25 highest ranked NPs is shown in
Figure 11.11.

As discussed before, µ̂eτ of the symmetry-based leplep analysis in the search for H → eτ
is −0.33+0.10

−0.11 while µ̂eτ of the MC-based analysis is 0.05+0.09
−0.09 which results in a combined

best-fit value µ̂eτ of −0.12+0.07
−0.07 with a significance of −1.84σ (under the assumption that

B(H → µτ) = 0). Therefore, the observed upper limit on the signal strength of 0.07 is
below the expected upper limit of 0.13+0.05

−0.04 but still within the 2σ-band of the expected
upper limit.

In the search for H → µτ the best-fit values of µµτ of both analyses are larger than
0 which results in a combined µ̂µτ of 0.13+0.05

−0.05 with a significance of 2.88σ (under the
assumption that B(H → eτ) = 0). Therefore, the observed upper limit of 0.22 is above the
expected upper limit of 0.09+0.04

−0.03 exceeding the 2σ-band.
The combination of both analyses is still dominated by the uncertainties due to the
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(a) Search for H → eτ , nonVBF SR
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(c) Search for H → µτ , nonVBF SR
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(d) Search for H → µτ , VBF SR

Figure 11.9: Post-fit distributions of the final discriminants (BDT score distributions) in the lephad final
state in the search for H → eτ (top) and for H → µτ (bottom) in the nonVBF SR (left) and in the VBF
SR, obtained from a combined fit in both regions which extracts both signal strengths simultaneously. The
binning is visualised equidistantly to enhance visibility of the narrow bins. The hashed band indicates
the post-fit statistical and systematic uncertainties on the prediction. In addition to the stacked signal
corresponding to the best-fit prediction, the signal is overlaid (line) assuming a branching ratio of 0.1%
and scaled by 100. The central panel shows the ratio of data over the prediction (including signal) while
the lower panel shows the difference of data and the background prediction [22].

background sample size although they play a reduced role in MC-based analyses if the
number of generated events is considerably larger than the yield corresponding to the
integrated luminosity. However, in the search for H → eτ also γ-parameters (representing
the statistical uncertainties) related to the MC-based lephad search are ranked high
(Figure 11.11(a)). This is also the case in the search for H → µτ , but less pronounced.
The breakdown of the uncertainties (Table 11.10) also shows that the impact on the
uncertainty of µ of the uncertainties due to the lephad background sample size is relatively
large, however still smaller than the impact of the corresponding leplep uncertainties. The
uncertainties related to the fake-estimate of the lephad analysis have the highest impact
on the uncertainty of µ among all systematic uncertainties, followed by the uncertainties
related to the fake-estimate of the leplep analysis and the theoretical uncertainties on
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Figure 11.10: Upper limits at 95% CL and best-fit values of the signal strengths in the combination
with the lephad analysis in the search for H → eτ (left) and for H → µτ (right). The observed limits are
indicated by a solid line, the expected by a dashed line. The results are obtained while assuming that the
branching ratio of the respective other signal is zero and hence the signal strength µ can be interpreted as
the branching ratio in %.

Group Uncertainty on observed µ by NP group
H → eτ H → µτ

Total uncertainty +0.068 /−0.069 +0.049 /−0.047

Data sample size +0.030 /−0.030 +0.027 /−0.027
Syst. unc. + Bkg. sample size +0.061 /−0.062 +0.041 /−0.039

Background sample size lephad +0.039 /−0.040 +0.017 /−0.017
Background sample size leplep +0.045 /−0.047 +0.021 /−0.020

Fakes leplep +0.020 /−0.022 +0.012 /−0.011
Fakes lephad +0.026 /−0.027 +0.014 /−0.014
Efficiency correction R +0.003 /−0.003 +0.001 /−0.001
other → ` normalisation leplep +0.001 /−0.002 +0.001 /−0.001
Z → `` normalisation lephad – +0.006 /−0.007
Jets + Emiss

T +0.015 /−0.014 +0.010 /−0.009
Hadronic τ -leptons +0.011 /−0.012 +0.011 /−0.009
Electrons and Muons +0.007 /−0.008 +0.005 /−0.004
Flavour tagging +0.001 /< 0.001 +0.002 /−0.002
Signal theoretical unc. +0.016 /−0.018 +0.011 /−0.007
Z → ττ theoretical unc. +0.011 /−0.012 +0.012 /−0.012
Top-quark prod. theoretical unc. +0.009 /−0.009 +0.005 /−0.005
Diboson prod. theoretical unc. +0.000 /−0.000 +0.002 /−0.002
Luminosity +0.002 /−0.001 +0.005 /−0.003

Table 11.10: Breakdown of the uncertainties on the signal strength µ in the combination with the
MC-based lephad analysis. Each group in the row just above a horizontal line is decomposed in sub-groups
listed below this line. The square root of the quadratic sum of all single contributions does not add up
to the total uncertainty due to correlations between the single groups. The abbreviation syst. stands for
systematic, unc. stands for uncertainty, bkg. for background and prod. for production.
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the signal prediction. Other important systematic uncertainties stem from jets and Emiss
T ,

hadronically decaying τ -leptons and theoretical predictions of the Z → ττ -estimate which
are mainly driven by or exclusive to the MC-based lephad analysis.
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Figure 11.11: The pulls and constraints (black dots and bars and lower horizontal axis) of the 25 highest
ranked nuisance parameters obtained from the combination with the MC-based lephad analysis in the
eτ -dataset (a) and the µτ -dataset (b). The nominal value of the γ-parameters is at 1 and deviations from it
indicate a pull. For all other NPs the nominal value is at 0 and the pre-fit ±1σ-variations correspond to ±1.
The value of the highest ranked NP in eτ , the γ-parameter of the last bin of the VBF NN distribution of the
symmetry-based leplep analysis, is outside the range and is: 2.07+0.53

−0.46. In the names of the γ-parameters,
“ll” denotes leplep and “lh” lephad. The post-fit impact on the signal strength µ (filled coloured bars and
the upper horizontal axis) is the basis of the ranking (see Section 10.3). In addition, the pre-fit impacted is
shown (empty coloured bars).

In order to quantify the compatibility of the best-fit values for the signal strengths
among the four signal regions, a hypothesis test as described for the Symmetry-Method
in Section 11.1.2 is performed. Again, the default fit setup with 1 POI serves as null
hypothesis, claiming that the same signal strength in all regions can be assumed. While a
fit setup with four POIs, one for each of the regions, serves as alternative hypothesis. The
significance obtained from the test statistic (Eq. 11.3) using three (4-1) degrees of freedom
for the χ2-distribution is 2.1σ in the search for H → eτ and 0.9σ in the search for H → µτ
which means that the two fit setups agree within 2.1σ and 0.9σ, respectively and hence
the null hypothesis cannot be rejected.
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11.3 Combination with both MC-based Analyses

In addition to a combination with the MC-based lephad analysis, a combination of all three
analyses is performed: symmetry-based leplep, MC-based leplep and MC-based lephad.
The two leplep analyses, however, are statistically correlated. Hence, one of them is used in
the nonVBF SR and the other in the statistically independent VBF SR. The definition of
the two signal regions is the same in both analyses, although the Basic Selection differs
slightly due to different challenges of the different background estimation techniques. The
choice of which leplep analysis to use for which region is made based on the expected
sensitivity of each analysis in each region. The symmetry-based analysis showed a better
expected sensitivity in the VBF SR while the MC-based analysis showed a better expected
sensitivity in the nonVBF SR for both searches.

The estimation of all background processes apart from fakes in the MC-based leplep
analysis is based on templates from MC simulations, similar to the MC-based lephad
analysis. The largest background contributions from Z → ττ and top-quark production are
normalised in dedicated control regions which are enriched with events of the respective
process. The fakes are estimated in a data-driven way assuming that the ratio of the
number of events with an electron and a muon of opposite sign electric charges over the
number of events with same sign electric charges is approximately the same when applying
the default isolation and identification criteria and when inverting the isolation and/or the
identification criteria of the sub-leading lepton. More information can be found in [22].

For the combination of all three analyses, two separate 1-POI fits in the search for
H → eτ and for H → µτ are performed. For each of the two fits it is assumed that the
branching ratio of the respective other signal is 0 which allows interpreting the signal
strengths µ (the POIs) as branching ratios in percent of the LFV-signals. Each of the two
fits is performed simultaneously in the four signal regions, MC-based leplep nonVBF SR,
symmetry-based leplep VBF SR and MC-based lephad nonVBF SR and VBF SR, and in
the nonVBF Z → ττ - and top-quark production control regions defined by the MC-based
leplep analysis. The former control region is used to normalise the Z → ττ -contribution
in the MC-based leplep analysis while this contribution in the MC-based lephad analysis
is normalised from the most background-like bins of the final discriminants in the lephad
signal regions. The latter control region is used to normalise the background contribution
from top-quark production in the MC-based leplep analysis as well as in the nonVBF SR of
the MC-based lephad analysis where top-quark production is only a minor contribution.

The results of the best-fit signal strengths, significances and upper limits are summarised
in Table 11.11. In addition, the upper limits are visualised in Figure 11.12. The breakdown
of the uncertainties on the signal strength µ in groups is summarised in Table 11.12 and
the ranking of the 25 highest ranked NPs is shown in Figure 11.13.

Compared to the previous combination of only the symmetry-based leplep and the
MC-based lephad analyses, the best-fit signal strength µ̂ in the nonVBF SR of the leplep
analysis is now provided by the MC-based leplep analysis and is larger than 0 in both
searches. In H → eτ , where it is 0.25+0.10

−0.09, a combined best-fit signal strength µ̂eτ of
0.13+0.06

−0.06 is obtained with a significance of 2.1σ. Hence, the observed upper limit of 0.23 is
above the expected upper limit of 0.12+0.05

−0.03 just beyond the 2σ-band. In H → µτ , where
µ̂µτ in the nonVBF SR of the leplep analysis is 0.07+0.11

−0.10, a combined best-fit signal strength
of 0.09+0.05

−0.05 is obtained with a significance of 2.0σ. Therefore, the observed upper limit of
0.17 is above the expected upper limit of 0.09+0.04

−0.03 slightly below the edge of the 2σ-band.
The uncertainties due to the background sample size also play an important role in

this combination, although their impact is reduced. In H → eτ the impact is considerably
larger than in H → µτ . The largest contribution among the systematic uncertainties is
from the uncertainties related to the fake-estimate of the MC-based leplep analysis, followed
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Figure 11.12: Upper limits at 95% CL and best-fit values of the signal strengths in the combination
of all three analyses in the search for H → eτ (left) and for H → µτ (right). The observed limits are
indicated by a solid line, the expected by a dashed line. The results are obtained while assuming that the
branching ratio of the respective other signal is zero and hence the signal strength µ can be interpreted as
the branching ratio in %.

by the uncertainties related to the fake-estimate of the the MC-based lephad analysis.
Other important systematic uncertainty sources are, as in the previous combination, the
theoretical uncertainties on the signal and on the Z → ττ -prediction, from jets and Emiss

T
and from hadronically decaying τ -leptons. All uncertainty sources related solely to the
Symmetry Method which are uncertainties on the fake-estimates and uncertainties on
the efficiency-correction ratio R are combined in one group called “Symmetry-based bkg.
estimate”. The NPs related to the electron identification scale factors which are also part
of R, however, are assigned to the group called “Electrons and Muons”. Overall, this
combination is as expected dominated by the MC-based analyses. This combination is also
documented in [22].

In order to quantify the compatibility of the best-fit values for the signal strengths
among the four signal regions equivalently to the combination with only the MC-based
lephad analysis, a hypothesis test as described for the Symmetry-Method in Section 11.1.2
is performed. Again, the default fit setup with 1 POI serves as null hypothesis, claiming
that the same signal strength in all regions can be assumed. While a fit setup with four
POIs, one for each of the signal regions, serves as alternative hypothesis. The significance
obtained from the test statistic (Eq. 11.3) and using three (4-1) degrees of freedom for
the χ2-distribution is 1.0σ in the search for H → eτ and 0.13σ in the search for H → µτ
which means that the two fit setups agree within 1.0σ and 0.13σ, respectively and hence
the null hypothesis cannot be rejected.

Compared to the combination of only the symmetry-based leplep and the MC-based
lephad analyses, the upper limit on µeτ in the search for H → eτ is larger in the combination
of all three analyses which can be explained by µ̂eτ being negative in the former and positive
in the latter combination. The expected limit, however, is lower in the combination of all
three analyses. In the search for H → µτ , the observed upper limit in the combination
of all three analyses is lower while the expected upper limit is almost the same as in the
combination of only the symmetry-based leplep and the MC-based lephad analyses.

In addition to the 1-POI fits of the combination of all three analyses, another combination
is documented in [22]. This combination solely considers the two MC-based methods
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Group Uncertainty on observed µ by NP group
H → eτ H → µτ

Total uncertainty +0.061 /−0.060 +0.048 /−0.046

Data sample size +0.029 /−0.029 +0.027 /−0.026
Syst. unc. + Bkg. sample size +0.054 /−0.052 +0.040 /−0.038

Background sample size MC-based ll+lh +0.037 /−0.037 +0.022 /−0.022
Background sample size symm.-based ll +0.019 /−0.020 +0.008 /−0.009

Fakes leplep MC-based +0.029 /−0.028 +0.017 /−0.015
Fakes lephad +0.020 /−0.021 +0.015 /−0.014
Symmetry-based bkg. estimate +0.002 /−0.002 +0.001 /−0.001
Signal theoretical unc. +0.011 /−0.006 +0.009 /−0.005
Z → ττ theoretical unc. +0.009 /−0.010 +0.012 /−0.012
Top-quark prod. theoretical unc. +0.003 /−0.003 +0.003 /−0.003
Diboson prod. theoretical unc. +0.004 /−0.004 +0.007 /−0.007
Z → `` normalisation MC-based +0.002 /−0.001 +0.006 /−0.007
Jets + Emiss

T +0.011 /−0.010 +0.011 /−0.010
Hadronic τ -leptons +0.009 /−0.008 +0.010 /−0.009
Electrons and Muons +0.003 /−0.001 +0.005 /−0.005
Flavour tagging +0.006 /−0.006 +0.004 /−0.003
Luminosity +0.007 /−0.005 +0.006 /−0.004

Table 11.12: Breakdown of the uncertainties on the signal strength µ in the combination with both
MC-based analyses. Each group in the row just above a horizontal line is decomposed into sub-groups listed
below the respective line. The square root of the quadratic sum of all single contributions does not add up
to the total uncertainty due to correlations between the single groups. The abbreviations syst. stands for
systematic, unc. stands for uncertainty, bkg. for background, prod. for production and ll and lh for leplep
and lephad, respectively.

which allows to perform a 2-POI fit where both signal strengths, µeτ and µµτ , are fitted
simultaneously and hence no assumptions on the branching ratio of the respective other
signal must be made. This combination observes best-fit signal strengths of µ̂eτ = 0.095+0.059

−0.059

and µ̂µτ = 0.108+0.046
−0.045 with significances of 1.6σ and 2.4σ, respectively. The observed

upper limit on µeτ of 0.195 is lower than in the combination of all three analyses while
the expected upper limit of 0.115+0.046

−0.032 is slightly lower as well. Whereas the observed
upper limit on µµτ of 0.184 is higher than in the combination of all three analyses while
the expected upper limit of 0.088+0.035

−0.025 is slightly lower than in the combination of all three
analyses.
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Figure 11.13: The pulls and constraints (black dots and bars and lower horizontal axis) of the 25 highest
ranked nuisance parameters obtained from the combination with both MC-based analyses in the eτ -dataset
(a) and the µτ -dataset (b). The nominal value of the γ-parameters is at 1 and deviations from it indicate a
pull. For all other NPs the nominal value is at 0 and the pre-fit ±1σ-variations correspond to ±1. In the
names of the γ-parameters, “ll” denotes leplep, “lh” lephad, “symm.” symmetry-based and “MC” MC-based.
The post-fit impact on the signal strength µ (filled coloured bars and the upper horizontal axis) is the basis
of the ranking (see Section 10.3). In addition, the pre-fit impacted is shown (empty coloured bars).

11.4 Compatibility of both Leplep Analyses

The compatibility of the results of the two leplep analyses is investigated in reference [22].
As discussed in Section 11.1.4, the final result of the symmetry-based leplep analysis is
the best-fit signal strength µ̂µτ interpreted as the difference in branching ratios B(H →
µτ) − B(H → eτ) as well as the upper limit on this difference. The MC-based analysis,
however, measures absolute branching ratios. For the comparison with the symmetry-based
results, the difference of these absolute branching ratios, obtained from a simultaneous fit
of B(H → eτ) and B(H → µτ) in the MC-based leplep analysis is calculated. The fit also
provides the correlation between the best-fit values of both branching ratios which is taken
into account when calculating the difference.

Both analyses are highly correlated as they are based on the same data events to a large
extent. In addition, the same simulated signal samples are used. Hence, all uncertainties
on the signal are treated correlated between both analyses while all other uncertainty
sources are treated uncorrelated due to the different background estimation techniques.
In order to avoid double-counting of the correlated uncertainties, they are fixed to their
post-fit nominal values in the MC-based analysis and the fit is repeated to obtain the
uncertainty on the branching ratios only originating from the uncorrelated sources. The
full uncertainties are kept for the results of the symmetry-based analysis. The correlation
of the data due to the overlap of selected events is not explicitly taken into account. The
values of the branching ratio difference B(H → µτ) − B(H → eτ) measured by the two
analyses and their uncertainties are shown in Figure 11.14 for individual fits in each of
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the two signal regions and for a combined fit in both signal regions. The full as well as
only the uncorrelated uncertainties are indicated for the MC-based analysis. The measured
branching ratio differences of the two analyses agree within 2σ taking into account the
results of both signal regions individually.
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Figure 11.14: Best-fit values of the branching ratio difference B(H → µτ) − B(H → eτ) in percent
measured by the symmetry-based and by the MC-based leplep analyses, from [22]. The lower panel shows
the difference of the branching ratio differences measured by the two analyses. The uncertainty bars indicate
the uncorrelated uncertainties only, while the lines indicate the full uncertainties.





Chapter 12

Conclusion and Outlook

In this thesis a direct search for lepton-flavour violating decays of the Higgs boson using data
from proton-proton collisions at a center-of-mass energy of

√
s = 13 TeV delivered by the

LHC and recorded by the ATLAS detector has been performed. The dataset corresponds to
an integrated luminosity of 138.4 fb−1 collected during Run 2 of the LHC which lasted from
2015 to 2018. The search in this thesis has been focused on the decays H → eτ and H → µτ
with leptonic decays of the τ -lepton leading to an electron, a muon and two neutrinos in
the final state. The signal over background ratio is small and dedicated analysis techniques
were required to improve the sensitivity. On one hand two signal regions (VBF SR and
nonVBF SR) targeting different production processes of the Higgs boson have been defined,
thereby allowing for exploiting the characteristic topology of the VBF production. On the
other hand, machine learning techniques have been deployed. Individual neural networks
have been trained in each of the two signal regions aiming at classifying each collision event
to be background or signal. The resulting probability distributions have been used as final
discriminants in the statistical analysis. The development and training of the NNs required
dedicated optimisations of the NN strategy, hyperparameters and input variables. The
optimisation of the networks and other aspects of the analysis has been performed by a
direct interplay with the statistical analysis in order to obtain a measure for the sensitivity
changes. The statistical model has undergone substantial improvements compared to the
previous publication that included the Symmetry Method.

The Symmetry Method [21] has been used for background estimation. It exploits the
fact that SM processes are symmetric with respect to an exchange of electrons with muons
and vice versa at the high energies prevalent at the LHC.

The difference in branching ratios ∆µτ = B(H → µτ)− B(H → eτ) has been measured
using the µτ -dataset as

∆̂µτ = (0.25± 0.10) % , (12.1)

which indicates that the data favours a larger branching ratio for the decay H → µτ than
for the decay H → eτ . However, the significance of this measurement of 2.5σ is not highly
significant and hence does not allow for rejecting the background-only hypothesis. It is not
possible to judge whether the observed fluctuation originates from an up-fluctuation in the
µτ -dataset, from a down-fluctuation in the eτ -dataset or from both. An upper limit on
∆µτ at 95% confidence level (CL) is set:

∆µτ < 0.42 % , (12.2)

where the expected limit is ∆µτ < 0.19+0.08
−0.05 %. Thus, the observed limit is outside the

upper edge of the 2σ-band. When assuming that the H → eτ -signal is non-existent, the
upper limit on the difference can be interpreted as an upper limit on the branching ratio of
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the H → µτ -signal:

B(H → µτ) < 0.42 % (0.19+0.08
−0.05) , (12.3)

with the expected limit given in brackets. When, in contrast, a non-existent H → µτ -signal
is assumed, an upper limit at 95%CL on the branching ratio of H → eτ can be derived
from analysing the eτ -dataset:

B(H → eτ) < 0.08 % (0.19+0.08
−0.05) . (12.4)

The observed limit is just outside the lower edge of the 2σ-band of the expected limit. This
is a consequence of the Symmetry Method which is sensitive to the difference in branching
ratios but not to the absolute values and hence the up-fluctuation observed in the µτ -dataset
propagates to the eτ -dataset as a down-fluctuation.

This analysis is clearly dominated by statistical uncertainties since it relies heavily on
data for estimating the background contributions and therefore is limited by the size of the
dataset.

Furthermore, combinations with two partner analyses which also search for LFV decays
of the Higgs boson have been performed. One partner analysis has investigated events
where the τ -lepton decays hadronically (called MC-based lephad), the other events where
the τ -lepton decays leptonically (called MC-based leplep) [22]. Both have used a different
technique for background estimation compared to the analysis discussed in this thesis
(denoted as symmetry-based leplep). Two combinations have been performed: 1. symmetry-
based leplep and MC-based lephad and 2. VBF SR of symmetry-based leplep, nonVBF SR
of MC-based leplep and MC-based lephad. The resulting upper limits are summarised in
Table 12.1. In order to perform these combinations, it must be assumed that the branching
ratio of one of the potential LFV signals is zero. In addition, the MC-based analyses
have performed a combination where the branching ratios of both signals are extracted
simultaneously and hence no assumption on the branching ratio of the other signal is
needed. These results (indicated by Comb. 3) as well as the latest direct limits by the
CMS collaboration, obtained with the full Run 2 dataset, are also listed in Table 12.1. The

Comb. 1 Comb. 2 Comb. 3 [22] CMS [20]

B95(H → eτ)/% 0.07 (0.13+0.05
−0.04) 0.23 (0.12+0.05

−0.03) 0.20 (0.12) 0.22 (0.16)

B95(H → µτ)/% 0.22 (0.09+0.04
−0.03) 0.17 (0.09+0.04

−0.03) 0.18 (0.09) 0.15 (0.15)

Table 12.1: The observed (expected) upper limits on the branching ratios of the decays H → eτ and
H → µτ at 95%CL of the combination (Comb.) of the symmetry-based leplep and the MC-based lephad
analysis (1) of the symmetry-based leplep, the MC-based leplep and the MC-based lephad analysis (2),
both MC-based analyses (3) and the latest direct limits by the CMS collaboration. All limits are derived
with the full Run 2 dataset. In the derivation of all limits apart from combination 3 it is assumed that the
respective other LFV signal is zero.

expected upper limits of all three combinations by the ATLAS collaboration are comparable
to each other but lower by ∼ 20 % (40%) for H → eτ (H → µτ), i.e. more sensitive,
compared to the CMS collaboration. All observed limits by the ATLAS collaboration,
except the one of Combination 1 on B(H → eτ), are larger than the expected ones. This
indicates the observation of up-fluctuations in data of which, however, none is statistically
highly significant. The small observed limit of Combination 1 on B(H → eτ) is driven by the
up- and/or down-fluctuation in the µτ - and/or eτ -dataset observed by the symmetry-based
analysis.
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Outlook

Using the Symmetry Method for the search for LFV decays of the Higgs boson is an
innovative approach with a reduced dependence on simulated events. Consequently, the
available amount of data plays a considerable role regarding the sensitivity of the analysis.

However, not only the size of the dataset contributes to the statistical uncertainties
but also the limited amount of simulated events currently used to estimate background
contributions where other objects than jets are mis-identified as an electron or a muon. In
addition, all systematic uncertainties related to these simulated events as well as uncertainties
on their normalisation must be considered. Hence, it will be beneficial if a method is found
with the ability to estimate these contributions in a data-driven way as well. At the same
time, seeking methods to reduce the systematic uncertainties on the data-driven estimation
of the background contribution where jets are mis-identified as leptons would be useful.

Furthermore, it could be beneficial to further improve the statistical model such that
it is less reliant on the subtraction of various contributions which currently enhances the
statistical uncertainties in the sensitive bins of the final discriminant. In addition, related
to the previous point, it would be advantageous to be able to measure the difference in
branching ratios directly by including both signal contributions at once which implies incor-
porating both datasets, the eτ - and µτ -dataset, simultaneously as data and as background
contribution.

Finally, the analysis will evidently benefit from an enhanced dataset. In order to
estimate the sensitivity potentially reachable in the future with the ATLAS detector, an
extrapolation of the analysis presented in this thesis to the high-luminosity LHC (HL-LHC)
scenario is performed assuming an integrated luminosity of 3 000 fb−1 at a center-of-mass
energy of

√
s = 14 TeV [23]. In the process, more precise theory predictions as well as

expected reductions of systematic uncertainties due to detector upgrades are considered
which, however, play a minor role in this analysis. Expected limits as well as expected
significances assuming branching ratios of 0.1% for the LFV signals are derived in the
searches for H → eτ and H → µτ based on the Symmetry Method, thereby assuming
that the respective other signal is zero. The obtained expected limits are visualised in
Figure 12.1. The results are compared to the respective expected results obtained with the
Run 2 dataset. Overall, improvements in the sensitivity by a factor 3.7 can be expected.
This results in an expected upper limit at 95% CL on each of the branching ratios of
0.05+0.02

−0.01 % for the HL-LHC scenario. Such a degree of sensitivity should be sufficient to
judge whether the observed hint for a difference in branching ratios of the two LFV decays
of that size and thus for the existence of the H → µτ -signal hardens or is attributed to
statistical fluctuations.

The sensitivity in the VBF SR profits more from the larger dataset compared to the
nonVBF SR as it is stronger limited by statistical uncertainties due to the lower yield in this
region. The analysis is still dominated by statistical uncertainties when based on a dataset
of 3 000 fb−1 as systematic uncertainties are also expected to be reduced. Nevertheless,
the impact of the systematic uncertainties with respect to the overall uncertainty will be
increased.

The search for LFV decays of the Higgs boson will evidently benefit from a larger
dataset and remain an exciting topic in the search for physics beyond the standard model.
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Figure 12.1: Expected upper limits on the branching ratios B(H → eτ) and B(H → µτ) at 95%CL for
the Run 2 (red) and the HL-LHC (blue, gray) scenario [23]. The respective other LFV signal is assumed to
be zero when deriving the limits. For the HL-LHC scenario two different assumptions on the scaling of the
statistical uncertainties of simulated samples are made: either they are scaled with luminosity (gray) or are
set to 0 (blue).
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Figure A.1: Distributions in the eτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.2: Distributions in the eτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.3: Distributions in the eτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.4: Distributions in the eτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.5: Distributions in the eτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.6: Distributions in the eτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.7: Distributions in the µτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.8: Distributions in the µτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.9: Distributions in the µτ -dataset after the Basic SR Selection with the same-sign electric charge
(SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-symmetric
background components are estimated from MC-simulations, the j → `-fakes are estimated with the Fake
Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The uncertainty
band includes statistical uncertainties on the background prediction and systematic uncertainties on the
j → `-fake estimate.
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Figure A.10: Distributions in the µτ -dataset after the Basic SR Selection with the same-sign electric
charge (SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-
symmetric background components are estimated from MC-simulations, the j → `-fakes are estimated
with the Fake Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The
uncertainty band includes statistical uncertainties on the background prediction and systematic uncertainties
on the j → `-fake estimate.
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Figure A.11: Distributions in the µτ -dataset after the Basic SR Selection with the same-sign electric
charge (SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-
symmetric background components are estimated from MC-simulations, the j → `-fakes are estimated
with the Fake Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The
uncertainty band includes statistical uncertainties on the background prediction and systematic uncertainties
on the j → `-fake estimate.
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Figure A.12: Distributions in the µτ -dataset after the Basic SR Selection with the same-sign electric
charge (SC) requirement (left) and the opposite-sign electric charge (OC) requirement (right). The e/µ-
symmetric background components are estimated from MC-simulations, the j → `-fakes are estimated
with the Fake Factor Method and the remaining other→ `-fakes are estimated from MC-simulations. The
uncertainty band includes statistical uncertainties on the background prediction and systematic uncertainties
on the j → `-fake estimate.
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Figure B.1: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other→ `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.
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Figure B.2: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other→ `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.
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Figure B.3: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other→ `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.
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Figure B.4: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other→ `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.
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Figure B.5: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other→ `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.
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Figure B.6: Kinematic distributions with the e/µ-symmetric background contribution estimated with the
Symmetry Method for the eτ -dataset (left) and the µτ -dataset (right) after the Basic Selection SR. The
j → `-fakes are estimated with the Fake Factor Method and the remaining other→ `-fakes are estimated
from MC-simulations. The uncertainty band includes statistical and full systematic uncertainties on the
background predictions added in quadrature. The signal prediction assuming a branching ratio of 10% is
overlaid.





Appendix C

Input Variables to the NNs for the
µτ -Dataset

The same distributions of the input variables to the nonVBF NN and to the VBF NN s as
shown in Section 8.2.3 but for the µτ -dataset instead of the eτ -dataset are given below.
The right column in all figures is the same as in Section 8.2.3 since the eτ - and µτ -dataset
are summed up for these figures. The signal over background ratio in the middle column
often shows the opposite behaviour to what is observed for the eτ -dataset in Section 8.2.3
which is intrinsic to the Symmetry Method. If the data in the eτ -dataset shows an upwards
fluctuation, this propagates to the symmetric background estimate ñeτ for the µτ -dataset
and leads to an upwards fluctuation of the prediction instead.
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Figure C.1: Distributions of input variables to the nonVBF NN. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.2: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.



302 APPENDIX C. INPUT VARIABLES TO THE NNS FOR THE µτ -DATASET

0

5

10

15

20

25

Ev
en

ts
 / 

Bi
n

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0 1 2 3 4 5 6
p H

T /Emiss
T

0.75

1.00

1.25

D
at

a 
/ B

kg

(a)

0

5

10

15

20

25

Ev
en

ts
 / 

0.
2

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst. stat.
Symmetric ne

j
other

0 1 2 3 4 5 6
p H

T /Emiss
T

0.75

1.00

1.25

D
at

a 
/ B

kg

(b)

0 1 2 3 4
p H

T /Emiss
T

0

20

40

60

80

100

120

140

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
nonVBF SR, prefit

Signal Class
Symmetric Class
Fakes Class
j

(c)

0

10

20

30

40

50

60

Ev
en

ts
 / 

Bi
n

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0 1 2 3 4 5 6
pT/p H

T

0.75

1.00

1.25

D
at

a 
/ B

kg

(d)

0

10

20

30

40

50

60

Ev
en

ts
 / 

0.
2

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst. stat.
Symmetric ne

j
other

0 1 2 3 4 5 6
pT/p H

T

0.75

1.00

1.25

D
at

a 
/ B

kg

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
pT/p H

T

0

50

100

150

200

250

300

350

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
nonVBF SR, prefit

Signal Class
Symmetric Class
Fakes Class
j

(f)

0

10

20

30

40

Ev
en

ts
 / 

Bi
n

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(g)

0

10

20

30

40

50

Ev
en

ts
 / 

0.
2

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst. stat.
Symmetric ne

j
other

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(h)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( H, Emiss

T )

0

50

100

150

200

250

300

no
rm

al
is

ed
×10

3

s  = 13 TeV, 138 fb 1

e +
nonVBF SR, prefit

Signal Class
Symmetric Class
Fakes Class
j

(i)

0

10

20

30

40

Ev
en

ts
 / 

Bi
n

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst.  stat.
Z
Diboson

Top Quarks
j
other
H WW
H

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( , Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(j)

0

10

20

30

40

Ev
en

ts
 / 

0.
2

×10
3

s  = 13 TeV, 138 fb 1

H e
nonVBF SR, prefit

Data
H e,

=40.0%
syst. stat.
Symmetric ne

j
other

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( , Emiss

T )

0.75

1.00

1.25

D
at

a 
/ B

kg

(k)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
( , Emiss

T )

0

100

200

300

400

no
rm

al
is

ed

×10
3

s  = 13 TeV, 138 fb 1

e +
nonVBF SR, prefit

Signal Class
Symmetric Class
Fakes Class
j

(l)

Figure C.3: Distributions of input variables to the nonVBF NN. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.4: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.5: Distributions of input variables to the nonVBF NN. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.6: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.7: Distributions of input variables to the nonVBF NN. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.8: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.9: Distributions of input variables to the nonVBF NN. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.10: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.11: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Figure C.12: Distributions of input variables to the VBF NN s. The left and middle columns compare the
prediction to the data in the µτ -dataset and show the ratio of data over the background prediction in the
lower panel. The LFV signal prediction assuming a branching ratio of 40% is overlaid. The e/µ-symmetric
background is once estimated from MC simulations (left) and once with the Symmetry Method (middle).
The uncertainty band in the left column comprises statistical uncertainties on the background prediction
and systematic uncertainties on the j → `-fake estimate added in quadrature. The uncertainty band in
the middle column comprises statistical uncertainties and the full set of systematic uncertainties on the
background predictions added in quadrature. The right column shows normalised distributions for the sum
of the eτ - and µτ -datsets, separately for each classes used in the NN training. In addition, the distribution
of the full j → ` fake estimate is shown for comparison.
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Search for H → eτ
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eγ scale ♦ F ♦ F F F – – F – F F ♦ © F F © – – © – ©

eγ resolution ♦ ♦ ♦ F © © – – ♦ – © ♦ ♦ © © F © – – © – ©

El Trigger SF × × × × × × – – × – × × × × × × × – – × – ©

El Reco Eff © © © F F © F F © – © © © © © F © © © © – ©

El Id Eff Uncorr NP0 × × × ♦ ♦ × F F × – × × × × ♦ ♦ × F © × – ©

El Id Eff Uncorr NP1 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP2 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP3 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP4 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP5 × ♦ F × × × × × × – × © © © × © × × × × – ×
El Id Eff Uncorr NP6 × × × × × × F © × – × × × × × × × © © × – ×
El Id Eff Uncorr NP7 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP8 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP9 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP10 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP11 × × × ♦ F F × × F – × × × × © F © × × © – ©

El Id Eff Corr NP0 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP1 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP2 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP3 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP4 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP5 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP6 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP7 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP8 × × × × × × × © × – × × × × × × × × © × – ×
El Id Eff Corr NP9 × × × × × × © © × – × × × × × × × × © × – ×
El Id Eff Corr NP10 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP11 × © © × © © × × × – × © © © © © © × × © – ©

El Id Eff Corr NP12 × × × © © © × × © – © × × × © × © × × © – ©

El Id Eff Corr NP13 × × × ♦ × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP14 © © © F ♦ × F © © – © × ♦ × ♦ × × © © × – ×
El Id Eff Corr NP15 × × × ♦ ♦ × © © × – × × × × × × × © © × – ©

El Iso Eff × × © × × × × © × – × × © © © © © × × © – ©

Table D.1: List of nuisance parameters used in the statistical analysis in the search for H → eτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.

313



314 APPENDIX D. LIST OF NUISANCE PARAMETERS

nonVBF SR VBF SR

Nuisance Parameter gg
F
H
→
eτ

V
B
F
H
→
eτ

V
H
H
→
eτ

R
·g

gF
H
→
eτ

R
·V

B
F
H
→
eτ

R
·V

H
H
→
eτ

e/
µ
-s
ym

m
.
bk

g.
da

ta

R
·j
→
`-
fa
ke
s

R
·o
th
er
→
`-
fa
ke
s

j
→
`-
fa
ke
s

ot
h
er
→
`-
fa
ke
s

gg
F
H
→
eτ

V
B
F
H
→
eτ

V
H
H
→
eτ

R
·g

gF
H
→
eτ

R
·V

B
F
H
→
eτ

R
·V

H
H
→
eτ

e/
µ
-s
ym

m
.
bk

g.
da

ta

R
·j
→
`-
fa
ke
s

R
·o
th
er
→
`-
fa
ke
s

j
→
`-
fa
ke
s

ot
h
er
→
`-
fa
ke
s

Muon ID ♦ ♦ ♦ ♦ ♦ F – – ♦ – ♦ F ♦ © © ♦ © – – © – ©

Muon MS ♦ × ♦ ♦ ♦ F – – ♦ – ♦ F ♦ © © ♦ © – – © – ©

Muon scale ♦ ♦ ♦ F F F – – F – ♦ ♦ ♦ × © F © – – © – ×
Muon Sagitta ρ ♦ × × ♦ ♦ × – – ♦ – × ♦ ♦ × × ♦ × – – © – ©

Muon Sagitta res.bias ♦ ♦ × × ♦ × – – ♦ – × ♦ ♦ × × ♦ × – – © – ©

Mu Trigger SF Stat × × × × × × – – © – × × × × × × × – – × – ×
Mu Trigger SF Sys × © © F F F – – F – F © © © F F © – – © – ©

Mu Reco Eff Stat × × × × × × – – × – × × × × × × × – – × – ×
Mu yeco Eff Sys © © © © © © – – © – © © © © © © © – – © – ©

Mu Iso Eff Stat × × × × © © – – × – × × × × © © © – – © – ×
Mu Iso Eff Sys F F F F F © – – © – F © F © F F © – – © – ©

Jet effectiveNP Stat. 1 × ♦ ♦ ♦ ♦ × – – × – × ♦ × × × ♦ © – – × – ×
Jet effectiveNP Stat. 2 ♦ ♦ ♦ F ♦ ♦ – – ♦ – ♦ F ♦ © © F © – – © – ©

Jet effectiveNP Stat. 3 × × ♦ × ♦ ♦ – – × – × ♦ × © × ♦ × – – × – ©

Jet effectiveNP Stat. 4 × ♦ ♦ ♦ ♦ × – – ♦ – × ♦ ♦ × ♦ F × – – × – ©

Jet effectiveNP Stat. 5 ♦ × ♦ ♦ ♦ ♦ – – ♦ – × F ♦ © × F © – – × – ×
Jet effectiveNP Stat. 6 × ♦ ♦ × ♦ × – – × – ♦ ♦ ♦ © F F © – – × – ×
Jet effectiveNP mixed 1 ♦ ♦ ♦ ♦ ♦ × – – ♦ – ♦ F ♦ × © F © – – © – ©

Jet effectiveNP mixed 2 × F ♦ © ♦ ♦ – – × – × F F × © F © – – © – ©

Jet effectiveNP mixed 3 ♦ × ♦ ♦ ♦ ♦ – – ♦ – ♦ F ♦ × © F © – – © – ×
Jet effectiveNP Modell. 1 F F F F F F – – ♦ – © F F © © F © – – © – ©

Jet effectiveNP Modell. 2 ♦ ♦ ♦ ♦ ♦ ♦ – – ♦ – × F ♦ × ♦ F © – – × – ©

Jet effectiveNP Modell. 3 × ♦ F ♦ ♦ × – – ♦ – × ♦ ♦ × × F © – – © – ©

Jet effectiveNP Modell. 4 × ♦ ♦ ♦ ♦ × – – × – ♦ ♦ ♦ © ♦ F © – – × – ×
Jet effectiveNP Detect. 1 × ♦ ♦ F ♦ × – – ♦ – ♦ F ♦ © © F © – – © – ©

Jet effectiveNP Detect. 2 × ♦ × × ♦ × – – × – × ♦ ♦ × ♦ ♦ © – – × – ×
Jet η-intercalibr. mod-
elling

F F F F F F – – F – F F F © F F © – – © – ©

Jet η-intercalibr. non-
closure highE

× × × × × × – – × – × ♦ × × × ♦ × – – × – ×

Jet η-intercalibr. non-
closure neg.η

♦ ♦ × × × ♦ – – ♦ – × ♦ ♦ × ♦ F × – – © – ×

Jet η-intercalibr. non-
closure pos.η

× ♦ × × ♦ F – – ♦ – × ♦ × © F ♦ © – – × – ×

Jet η-intercalibr. non-
closure total stat

♦ F ♦ F F ♦ – – ♦ – × F F © F F © – – © – ©

Jet η-intercalibr. non-
closure 2018data

× ♦ ♦ ♦ ♦ ♦ – – ♦ – × F F © F F © – – © – ©

Jet pileup offset µ F F F F F F – – F – © F F © © F © – – © – ©

Jet pileup offset npv F F F F F F – – ♦ – © F F © © F × – – © – ©

Jet pileup pT term × ♦ ♦ ♦ © © – – ♦ – F F ♦ © © F © – – © – ©

Jet pileup ρ topology F F F F F × – – F – F F F © © F © – – © – ©

Jet punch through mc16 × × × × ♦ × – – × – × × × × × ♦ × – – × – ×
Jet single particle highPt × × × × × × – – × – × × × × × ♦ × – – × – ×
Jet b-JES response × × × × × × – – × – × × × × × ♦ × – – × – ×
Jet JER effectiveNP 1 F F F F F F – – © – © F F © F F © – – © – ©

Jet JER effectiveNP 2 ♦ F F F F F – – ♦ – © F ♦ © F F © – – © – ©

Jet JER effectiveNP 3 F F F F F F – – F – © F F © © F © – – © – ©

Jet JER effectiveNP 4 F ♦ F F F © – – F – © F F © © F © – – © – ©

Jet JER effectiveNP 5 ♦ ♦ ♦ ♦ ♦ ♦ – – © – © F ♦ © F F © – – © – ©

Jet JER effectiveNP 6 ♦ F ♦ F F F – – F – × F F © F F © – – © – ©

Jet JER effectiveNP 7 ♦ ♦ ♦ ♦ F × – – ♦ – × F ♦ © © F © – – © – ×
Jet JER effectiveNP 8 ♦ ♦ ♦ ♦ F © – – F – × ♦ F © © F © – – © – ©

Jet JER effectiveNP 9 ♦ F F ♦ F F – – ♦ – × ♦ F © × ♦ © – – © – ©

Jet JER effectiveNP 10 ♦ ♦ ♦ F ♦ ♦ – – F – © ♦ F © © ♦ © – – © – ©

Jet JER effectiveNP 11 ♦ ♦ ♦ × ♦ F – – × – × F F © © F © – – © – ©

Jet JER effectiveNP
12restTerm

♦ ♦ F ♦ F © – – ♦ – © ♦ ♦ © © ♦ © – – © – ©

Jet JER DataVsMC ♦ ♦ ♦ © F © – – ♦ – × F ♦ py © F © – – © – ©

Table D.2: List of nuisance parameters used in the statistical analysis in the search for H → eτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.
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JET Flavour Comp VBF – – – – – – – – – – – F F © © F © – – © – ©

JET Flavour Resp non-
VBF

F F F F F × – – F – © – – – – – – – – – – –

JET Flavour Resp VBF – – – – – – – – – – – F F © F F © – – © – ©

Jet JVT Efficiency ♦ F F F F F – – F – © F ♦ © F F © – – © – ©

Jet fJVT Efficienc ♦ F × F F × – – × – × F F © © F © – – © – ©

b-tag Eigenvar. 0 × × × × × × – – × – × × × × × × © – – © – ©

b-tag Eigenvar. 1 × × × × × × – – × – × × × × × × × – – × – ×
b-tag Eigenvar. 2 × × × × × × – – × – × × × × × × × – – × – ×
c-tag Eigenvar. 0 © © F © F © – – © – © F F © © F © – – © – ©

c-tag Eigenvar. 1 × × × × × × – – × – × × × × × × × – – × – ×
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light-tag Eigenvar. 3 × × × × × × – – × – × × × × × × × – – × – ×
b-tag Extrapolation × × × × × × – – × – × × × × × × × – – × – ×
b-tag Extrapolation from
c

× × F × × F – – × – × × × © × × © – – × – ×

met soft track scale F F F F F F – – ♦ – × F F © F F © – – × – ©

met soft track res.paral. F F F F F F – – ♦ – © F F © © F © – – © – ©

met soft track res.perp. F F F F F F – – ♦ – × F F © © F © – – © – ©

Luminosity © © © © © © – – © – © © © © © © © – – © – ©

MCfakesScalingUnc – – – – – – – – © – © – – – – – – – – © – ©

theory ggF qcd 0 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 1 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 2 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 3 ♦ – – F – – – – – – – F – – © – – – – – – –
theory ggF qcd 4 ♦ – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 5 ♦ – – ♦ – – – – – – – F – – F – – – – – – –
theory ggF qcd 6 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 7 F – – F – – – – – – – F – – © – – – – – – –
theory ggF qcd 8 F – – F – – – – – – – F – – © – – – – – – –
theory VBF qcd – F – – F – – – – – – – F – – F – – – – – –
theory VH qcd – – F – – F – – – – – – – F – – F – – – – –
theory sig pdf 0 × × ♦ × × ♦ – – – – – × F © © ♦ © – – – – –
theory sig pdf 1 F ♦ × ♦ F F – – – – – × F © © F © – – – – –
theory sig pdf 2 × ♦ × × × × – – – – – × × × × F × – – – – –
theory sig pdf 3 F F F ♦ ♦ © – – – – – © ♦ © F ♦ © – – – – –
theory sig pdf 4 F ♦ ♦ F ♦ ♦ – – – – – F © × © F © – – – – –
theory sig pdf 5 ♦ × ♦ ♦ ♦ × – – – – – © F © © ♦ © – – – – –
theory sig pdf 6 × × × × × × – – – – – × ♦ × × F × – – – – –
theory sig pdf 7 × ♦ × × ♦ × – – – – – × × × × ♦ × – – – – –
theory sig pdf 8 × ♦ × × ♦ × – – – – – © × © © × © – – – – –
theory sig pdf 9 × × × × ♦ × – – – – – × × × × × × – – – – –
theory sig pdf 10 ♦ × × ♦ × × – – – – – © © × © F × – – – – –
theory sig pdf 11 × ♦ × × ♦ × – – – – – © × × ♦ ♦ × – – – – –
theory sig pdf 12 × × × × × × – – – – – × × × × F × – – – – –
theory sig pdf 13 × × × × × × – – – – – × × © × × © – – – – –
theory sig pdf 14 × × × × × × – – – – – × © © × ♦ © – – – – –
theory sig pdf 15 × × × × ♦ × – – – – – © × © × ♦ © – – – – –
theory sig pdf 16 F ♦ × F ♦ × – – – – – © © © © © © – – – – –

Table D.3: List of nuisance parameters used in the statistical analysis in the search for H → eτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.
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theory sig pdf 17 × × × × ♦ × – – – – – × × × × ♦ × – – – – –
theory sig pdf 18 F ♦ ♦ ♦ ♦ × – – – – – © × © © × © – – – – –
theory sig pdf 19 × × F × × ♦ – – – – – × × © × × © – – – – –
theory sig pdf 20 × × × × ♦ × – – – – – × ♦ × × ♦ © – – – – –
theory sig pdf 21 ♦ × × × ♦ × – – – – – © × © © F × – – – – –
theory sig pdf 22 × × × × × × – – – – – × × × × × × – – – – –
theory sig pdf 23 × ♦ × × × × – – – – – × × × × F × – – – – –
theory sig pdf 24 × × × × × × – – – – – × × × × × × – – – – –
theory sig pdf 25 × ♦ × × ♦ × – – – – – × × © × × © – – – – –
theory sig pdf 26 × × × × × × – – – – – × × × × ♦ × – – – – –
theory sig pdf 27 F × × × × × – – – – – × × © © × © – – – – –
theory sig pdf 28 × ♦ × × ♦ × – – – – – × × × × × × – – – – –
theory sig pdf 29 × × × × ♦ × – – – – – × × × × × × – – – – –
theory sig αs F ♦ ♦ F × ♦ – – – – – F F © © F © – – – – –
theory ggF ME F – – F – – – – – – – ♦ – – × – – – – – – –
theory VBF ME – F – – F – – – – – – – F – – F – – – – – –
theory VH ME – – F – – F – – – – – – – © – – © – – – – –
theory ggF PS F – – F – – – – – – – F – – © – – – – – – –
theory VBF PS – F – – F – – – – – – – F – – F – – – – – –
theory VH PS – – F – – © – – – – – – – © – – © – – – – –
El. Fake FF Stat NP0 – – – – – – – F – × – – – – – – – – © – × –
El. Fake FF Stat NP1 – – – – – – – F – × – – – – – – – – © – × –
El. Fake FF Stat NP2 – – – – – – – F – × – – – – – – – – © – × –
El. Fake FF Stat NP3 – – – – – – – F – × – – – – – – – – © – © –
El. Fake FF Stat NP8 – – – – – – – F – × – – – – – – – – © – © –
El. Fake FF Stat NP9 – – – – – – – F – × – – – – – – – – © – © –
El. Fake FF Stat NP10 – – – – – – – F – F – – – – – – – – © – © –
El. Fake FF Stat NP11 – – – – – – – F – F – – – – – – – – © – © –
Mu. Fake FF Stat NP0 – – – – – – – × – F – – – – – – – – × – © –
Mu. Fake FF Stat NP1 – – – – – – – × – F – – – – – – – – © – © –
Mu. Fake FF Stat NP2 – – – – – – – F – F – – – – – – – – © – © –
Fake WZxsec – – – – – – – F – F – – – – – – – – © – © –
Fake ZZxsec – – – – – – – © – © – – – – – – – – © – © –
El. Fake CF Stat NP0 – – – – – – – F – × – – – – – – – – © – © –
El. Fake CF Stat NP1 – – – – – – – F – × – – – – – – – – © – © –
El. Fake CF Stat NP2 – – – – – – – F – F – – – – – – – – © – © –
El. Fake CF Stat NP3 – – – – – – – F – ♦ – – – – – – – – © – © –
Mu. Fake CF Stat NP0 – – – – – – – × – F – – – – – – – – © – © –
Mu. Fake CF Stat NP1 – – – – – – – × – F – – – – – – – – © – © –
Mu. Fake CF Stat NP2 – – – – – – – F – F – – – – – – – – © – © –
El. Fake CF Sys – – – – – – – F – F – – – – – – – – © – © –
Mu. Fake CF Sys – – – – – – – F – F – – – – – – – – © – © –
ε Mu Eff Trigger Stat – – – × × × © © © – – – – – × × × © © © – –
ε Mu Eff Trigger Sys – – – × × × × × × – – – – – × × × × × × – –
ε Mu Eff Reco Stat – – – × × × × × × – – – – – × × × × × × – –
ε Mu Eff Reco Sys – – – × × × × × × – – – – – × × × × × × – –
ε Mu Eff Iso Stat – – – × × × × × × – – – – – × × × × × © – –
ε Mu Eff Iso Sys – – – ♦ × × ♦ ♦ × – – – – – × × × × × © – –
ε El Eff MC Stat – – – × ♦ © ♦ F F – – – – – ♦ × × © © © – –
ε El Eff MC Sys – – – F F © F F F – – – – – ♦ ♦ © © © © – –
ε El Eff Trigger – – – × × × × × × – – – – – × × × × × × – –

Table D.4: List of nuisance parameters used in the statistical analysis in the search for H → eτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.
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eγ scale F F F F F © – – F – F F F © © F © – – © – ©

eγ resolution ♦ ♦ F ♦ F ♦ – – © – ♦ ♦ ♦ × © ♦ × – – © – ©

El Trigger SF × × × × × × – – × – × × × × × × × – – © – ×
El Reco Eff F F © F © © © © © – © © © © © © © × © © – ©

El Id Eff Uncorr NP0 F F F ♦ ♦ © F F F – F F F © ♦ ♦ © © © © – ©

El Id Eff Uncorr NP1 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP2 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP3 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP4 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP5 × × × × × × × × × – × × × × × © × × × × – ×
El Id Eff Uncorr NP6 © © © × × × F © © – F × × © × × × × × © – ©

El Id Eff Uncorr NP7 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP8 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP9 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP10 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Uncorr NP11 F F F ♦ F × × × × – F F F © F F © × × © – ©

El Id Eff Corr NP0 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP1 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP2 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP3 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP4 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP5 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP6 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP7 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP8 × × × × × × × © × – × × × × × × × × © × – ×
El Id Eff Corr NP9 × × × × × × × © × – × × × × × × × × © × – ×
El Id Eff Corr NP10 × × × × × × × × × – × × × × × × × × × × – ×
El Id Eff Corr NP11 © © © × © © × × © – © © © © © © © × × © – ©

El Id Eff Corr NP12 © © © © © © × × © – © © © © – © × × × © – ©

El Id Eff Corr NP13 © © © × × × × × © – © © © × × × × × × × – ×
El Id Eff Corr NP14 ♦ ♦ × © ♦ × F F © – F × × × × ♦ × © © © – ×
El Id Eff Corr NP15 © © © ♦ × × © © © – © © © © × × × © × © – ©

El Iso Eff © © © × × © × × © – © © © © × © © × × © – ©

Table D.5: List of nuisance parameters used in the statistical analysis in the search for H → µτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.
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Muon ID ♦ ♦ ♦ ♦ F F – – ♦ – ♦ F F © ♦ F © – – © – ©

Muon MS ♦ ♦ ♦ ♦ ♦ F – – © – ♦ F ♦ © ♦ ♦ © – – × – ×
Muon scale ♦ ♦ ♦ F © F – – ♦ – F F ♦ © F F × – – × – ©

Muon Sagitta ρ ♦ × × × × ♦ – – × – ♦ ♦ ♦ × × ♦ × – – © – ©

Muon Sagitta res.bias ♦ × × × × × – – × – ♦ ♦ ♦ × × × × – – © – ©

Mu Trigger SF Stat × × × × × × – – © – × × × × × × × – – × – ×
Mu Trigger SF Sys © F F F F F – – F – F F F © F F © – – © – ©

Mu Reco Eff Stat × × × × × × – – × – × × × × × × × – – × – ×
Mu Reco Eff Sys © © © © © © – – © – © © © © © © © – – © – ©

Mu Iso Eff Stat © © © × © × – – × – × © © © © © © – – × – ©

Mu Iso Eff Sys F F F F F F – – F – © F F © F F © – – © – ©

Jet effectiveNP Stat. 1 ♦ × ♦ ♦ ♦ × – – ♦ – × ♦ ♦ © F ♦ × – – × – ×
Jet effectiveNP Stat. 2 ♦ ♦ × F © ♦ – – ♦ – ♦ F F © F F © – – © – ©

Jet effectiveNP Stat. 3 × ♦ ♦ × ♦ × – – × – × ♦ ♦ × × F × – – © – ×
Jet effectiveNP Stat. 4 × ♦ ♦ ♦ × × – – ♦ – ♦ F ♦ © ♦ F × – – × – ©

Jet effectiveNP Stat. 5 × ♦ ♦ ♦ ♦ × – – × – ♦ ♦ ♦ × × F © – – × – ×
Jet effectiveNP Stat. 6 × ♦ ♦ ♦ × ♦ – – ♦ – ♦ ♦ ♦ © © ♦ × – – × – ©

Jet effectiveNP mixed 1 ♦ × ♦ ♦ ♦ × – – ♦ – ♦ F ♦ © F ♦ © – – © – ©

Jet effectiveNP mixed 2 × ♦ ♦ ♦ F × – – ♦ – ♦ F F © F F © – – © – ©

Jet effectiveNP mixed 3 ♦ ♦ × ♦ F ♦ – – ♦ – ♦ F ♦ © ♦ × × – – × – ×
Jet effectiveNP Modell. 1 F F ♦ ♦ F F – – ♦ – ♦ F F © © F © – – © – ©

Jet effectiveNP Modell. 2 × × ♦ F × ♦ – – ♦ – ♦ F ♦ © × ♦ © – – © – ©

Jet effectiveNP Modell. 3 ♦ ♦ ♦ F ♦ F – – ♦ – ♦ ♦ ♦ × © F © – – × – ©

Jet effectiveNP Modell. 4 × ♦ ♦ ♦ × × – – ♦ – × ♦ ♦ © F ♦ × – – × – ©

Jet effectiveNP Detect. 1 × ♦ × ♦ × ♦ – – ♦ – ♦ F F × ♦ F × – – × – ©

Jet effectiveNP Detect. 2 × × ♦ ♦ × ♦ – – × – × ♦ ♦ × ♦ ♦ × – – × – ×
Jet η-intercalibr. mod-
elling

F F F F F © – – × – ♦ F F © © F © – – © – ©

Jet η-intercalibr. non-
closure highE

× × ♦ × × × – – × – × × × × × ♦ × – – × – ×

Jet η-intercalibr. non-
closure neg.η

× ♦ ♦ ♦ × ♦ – – × – × ♦ ♦ © × ♦ × – – × – ×

Jet η-intercalibr. non-
closure pos.η

× ♦ ♦ ♦ ♦ ♦ – – × – × F ♦ × F F × – – × – ×

Jet η-intercalibr. non-
closure total stat

♦ F ♦ ♦ F ♦ – – F – ♦ F F © F F © – – © – ©

Jet η-intercalibr. non-
closure 2018data

♦ ♦ ♦ × ♦ ♦ – – ♦ – ♦ F ♦ © © F © – – × – ©

Jet pileup offset µ F F ♦ F F F – – × – F F F © F F © – – © – ©

Jet pileup offset npv F F ♦ F © F – – F – F F F © © F © – – © – ©

Jet pileup pT term × ♦ ♦ ♦ ♦ © – – F – × F F × F F × – – © – ©

Jet pileup ρ topology F F F F F F – – ♦ – F F F © © F © – – © – ©

Jet punch through mc16 × × ♦ × × × – – × – × × ♦ × × × × – – × – ×
Jet single particle highPt × × ♦ × × × – – × – × × × × × × × – – × – ×
Jet b-JES response × × ♦ × × × – – × – × × × × × × × – – × – ×
Jet JER effectiveNP 1 F F F F F F – – © – F F F © © F © – – © – ©

Jet JER effectiveNP 2 ♦ F F F F © – – ♦ – F F F © F F © – – © – ©

Jet JER effectiveNP 3 F ♦ F F F ♦ – – × – F F ♦ © F F © – – © – ©

Jet JER effectiveNP 4 F ♦ F F ♦ F – – © – ♦ ♦ F © F F © – – © – ©

Jet JER effectiveNP 5 ♦ ♦ F F F F – – © – © F F © © F © – – © – ©

Jet JER effectiveNP 6 ♦ ♦ F ♦ F F – – × – F ♦ F © F F © – – © – ©

Jet JER effectiveNP 7 ♦ ♦ ♦ ♦ ♦ F – – © – ♦ F ♦ © F F © – – © – ©

Jet JER effectiveNP 8 ♦ ♦ ♦ F F F – – × – F F ♦ × © ♦ © – – © – ©

Jet JER effectiveNP 9 ♦ ♦ ♦ ♦ ♦ F – – × – ♦ ♦ ♦ × © F © – – © – ©

Jet JER effectiveNP 10 ♦ ♦ ♦ F ♦ ♦ – – F – F F ♦ © © ♦ © – – © – ©

Jet JER effectiveNP 11 ♦ ♦ ♦ F ♦ F – – × – © F ♦ © © F © – – × – ©

Jet JER effectiveNP
12restTerm

♦ ♦ ♦ F F © – – F – ♦ ♦ ♦ © F F © – – © – ©

Jet JER DataVsMC ♦ ♦ F ♦ F F – – © – ♦ F F © F F © – – © – ©

Table D.6: List of nuisance parameters used in the statistical analysis in the search for H → µτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.
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JET Flavour Comp non-
VBF

F F F F © F – – ♦ – F – – – – – – – – – – –

JET Flavour Comp VBF – – – – – – – – – – – F F © © F © – – © – ©

JET Flavour Resp non-
VBF

F F F F F ♦ – – F – ♦ – – – – – – – – – – –

JET Flavour Resp VBF – – – – – – – – – – – F F © © F © – – © – ©

Jet JVT Efficiency ♦ F F F F F – – F – F ♦ ♦ © F F © – – © – ©

Jet fJVT Efficienc ♦ F ♦ F F × – – × – × F F © F F © – – © – ©

b-tag Eigenvar. 0 × × © × × × – – × – × F × © × × © – – © – ©

b-tag Eigenvar. 1 × × × × × × – – × – × × × × × × × – – × – ×
b-tag Eigenvar. 2 × × × × × × – – × – × × × × × × × – – × – ×
c-tag Eigenvar. 0 © © F © © © – – F – © © F © © F © – – © – ©

c-tag Eigenvar. 1 × × ♦ × × × – – × – × × × × × × × – – × – ×
c-tag Eigenvar. 2 × × × × × × – – × – × × × × × × × – – × – ×
light-tag Eigenvar. 0 F © F F © F – – © – © F F © © F © – – © – ©

light-tag Eigenvar. 1 × × × × × × – – × – × × × × × × × – – × – ×
light-tag Eigenvar. 2 × × × × × × – – × – × × × × × × × – – × – ×
light-tag Eigenvar. 3 × × × × × × – – × – × × × × × × × – – × – ×
b-tag Extrapolation × × × × × × – – × – × × × × × × × – – × – ×
b-tag Extrapolation from
c

× × F × × F – – × – × × × © × × © – – × – ×

met soft track scale F F ♦ F F F – – ♦ – ♦ F F © © F © – – © – ©

met soft track res.paral. F F F F F F – – ♦ – ♦ F F © © F © – – © – ©

met soft track res.perp. F F ♦ F F © – – × – ♦ F F © © F © – – © – ©

Luminosity © © © © © © – – © – © © © © © © © – – © – ©

MCfakesScalingUnc – – – – – – – – © – © – – – – – – – – © – ©

theory ggF qcd 0 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 1 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 2 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 3 ♦ – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 4 ♦ – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 5 ♦ – – ♦ – – – – – – – F – – © – – – – – – –
theory ggF qcd 6 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 7 F – – F – – – – – – – F – – F – – – – – – –
theory ggF qcd 8 F – – F – – – – – – – F – – F – – – – – – –
theory VBF qcd – F – – F – – – – – – – F – – F – – – – – –
theory VH qcd – – F – – F – – – – – – – © – – © – – – – –
theory sig pdf 0 × × × × ♦ × – – – – – × F © © F © – – – – –
theory sig pdf 1 F ♦ ♦ ♦ ♦ ♦ – – – – – ♦ © © © F © – – – – –
theory sig pdf 2 × ♦ × × ♦ × – – – – – × × × × × × – – – – –
theory sig pdf 3 F F F ♦ ♦ × – – – – – F ♦ © F ♦ © – – – – –
theory sig pdf 4 F ♦ ♦ ♦ × × – – – – – F © × F © © – – – – –
theory sig pdf 5 ♦ × ♦ ♦ ♦ × – – – – – F F © F F © – – – – –
theory sig pdf 6 × × × × × × – – – – – × ♦ × × ♦ × – – – – –
theory sig pdf 7 × ♦ × × × × – – – – – × × × F × × – – – – –
theory sig pdf 8 × ♦ × × × × – – – – – © × © © × © – – – – –
theory sig pdf 9 × × × × × × – – – – – × × × × × × – – – – –
theory sig pdf 10 ♦ × ♦ × × × – – – – – © © × F © © – – – – –
theory sig pdf 11 × ♦ × × × × – – – – – × ♦ × × × × – – – – –
theory sig pdf 12 × × × × × × – – – – – × × × × × × – – – – –
theory sig pdf 13 × × × × × × – – – – – × × © × × © – – – – –
theory sig pdf 14 × × × × × × – – – – – × © © × F © – – – – –
theory sig pdf 15 × ♦ × × ♦ × – – – – – © × © × ♦ × – – – – –
theory sig pdf 16 ♦ ♦ × F × × – – – – – © © © © © © – – – – –

Table D.7: List of nuisance parameters used in the statistical analysis in the search for H → µτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.
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theory sig pdf 17 × ♦ × × ♦ × – – – – – × × × ♦ ♦ © – – – – –
theory sig pdf 18 F ♦ ♦ ♦ × × – – – – – © × © © × © – – – – –
theory sig pdf 19 × × F × × × – – – – – × × © × × × – – – – –
theory sig pdf 20 × × × × × × – – – – – × × × ♦ × × – – – – –
theory sig pdf 21 ♦ × × ♦ × × – – – – – © × × F × × – – – – –
theory sig pdf 22 × × × × × × – – – – – × × × × × × – – – – –
theory sig pdf 23 × ♦ × × ♦ × – – – – – × × × × × × – – – – –
theory sig pdf 24 × × × × × × – – – – – × ♦ × × × × – – – – –
theory sig pdf 25 × × × × ♦ × – – – – – × × © × × © – – – – –
theory sig pdf 26 × × ♦ × × × – – – – – × × × × × × – – – – –
theory sig pdf 27 F × × × × × – – – – – F × © F × © – – – – –
theory sig pdf 28 × × × × × × – – – – – × × × × × × – – – – –
theory sig pdf 29 × × × × ♦ × – – – – – × ♦ × × × × – – – – –
theory sig αs F ♦ ♦ F × ♦ – – – – – F F © F F © – – – – –
theory ggF ME F – – F – – – – – – – ♦ – – ♦ – – – – – – –
theory VBF ME – F – – F – – – – – – – F – – F – – – – – –
theory VH ME – – F – – F – – – – – – – © – – © – – – – –
theory ggF PS F – – ♦ – – – – – – – F – – F – – – – – – –
theory VBF PS – F – – F – – – – – – – F – – F – – – – – –
theory VH PS – – F – – F – – – – – – – © – – © – – – – –
El. Fake FF Stat NP0 – – – – – – – × – F – – – – – – – – × – © –
El. Fake FF Stat NP1 – – – – – – – × – F – – – – – – – – × – © –
El. Fake FF Stat NP2 – – – – – – – × – F – – – – – – – – × – © –
El. Fake FF Stat NP3 – – – – – – – × – F – – – – – – – – © – © –
El. Fake FF Stat NP8 – – – – – – – F – F – – – – – – – – © – © –
El. Fake FF Stat NP9 – – – – – – – F – F – – – – – – – – © – © –
El. Fake FF Stat NP10 – – – – – – – F – F – – – – – – – – © – © –
El. Fake FF Stat NP11 – – – – – – – F – F – – – – – – – – © – © –
Mu. Fake FF Stat NP0 – – – – – – – F – × – – – – – – – – © – © –
Mu. Fake FF Stat NP1 – – – – – – – F – F – – – – – – – – © – © –
Mu. Fake FF Stat NP2 – – – – – – – F – F – – – – – – – – © – © –
Fake WZxsec – – – – – – – F – F – – – – – – – – © – © –
Fake ZZxsec – – – – – – – F – F – – – – – – – – © – © –
El. Fake CF Stat NP0 – – – – – – – F – F – – – – – – – – © – © –
El. Fake CF Stat NP1 – – – – – – – × – F – – – – – – – – © – © –
El. Fake CF Stat NP2 – – – – – – – F – F – – – – – – – – © – © –
El. Fake CF Stat NP3 – – – – – – – F – F – – – – – – – – © – © –
Mu. Fake CF Stat NP0 – – – – – – – F – × – – – – – – – – © – © –
Mu. Fake CF Stat NP1 – – – – – – – F – F – – – – – – – – © – © –
Mu. Fake CF Stat NP2 – – – – – – – F – F – – – – – – – – © – © –
El. Fake CF Sys – – – – – – – F – F – – – – – – – – © – © –
Mu. Fake CF Sys – – – – – – – F – F – – – – – – – – © – © –
ε Mu Eff Trigger Stat – – – × × × © © © – – – – – × × × × © × – –
ε Mu Eff Trigger Sys – – – × × × × × × – – – – – × × × × × × – –
ε Mu Eff Reco Stat – – – × × × × × × – – – – – × × × × × × – –
ε Mu Eff Reco Sys – – – × × × × × × – – – – – × × × × × × – –
ε Mu Eff Iso Stat – – – × × × × × × – – – – – × × × × × × – –
ε Mu Eff Iso Sys – – – × × × ♦ ♦ × – – – – – × × × × × × – –
ε El Eff MC Stat – – – × ♦ × ♦ F ♦ – – – – – × × × © © × – –
ε El Eff MC Sys – – – ♦ ♦ © F F © – – – – – F ♦ × © © × – –
ε El Eff Trigger – – – × × × × × × – – – – – × × × × × × – –

Table D.8: List of nuisance parameters used in the statistical analysis in the search for H → µτ and
whether both shape and normalisation effect (F), only the shape effect (♦), only the normalisation effect
(©) or neither (×) are considered for the individual processes in the two signal regions. If shape and/or
normalisation effect are not considered, they were pruned following the criteria described in Section 9.5.
The dash (–) indicates that the nuisance parameter does not act on the respective process.
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Figure E.1: The pulls and constraints of all nuisance parameters obtained from a combined maximum
likelihood fit in both signal regions with the eτ -dataset.
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Figure E.2: The pulls and constraints of all nuisance parameters obtained from a combined maximum
likelihood fit in both signal regions with the µτ -dataset.
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Figure E.3: The pulls and constraints (black dots and bars and lower horizontal axis) of the 25 highest
ranked nuisance parameters obtained from a maximum likelihood fit in the nonVBF SR in the eτ -dataset
(a) and the µτ -dataset (b). The nominal value of the γ-parameters is at 1 and deviations from it indicate a
pull. For all other NPs the nominal value is at 0 and the pre-fit ±1σ-variations correspond to ±1. The
post-fit impact on the signal strength µ (filled coloured bars and the upper horizontal axis) is the basis of
the ranking (see Section 10.3). In addition, the pre-fit impacted is shown (empty coloured bars).
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Figure E.4: The pulls and constraints of all nuisance parameters obtained from a maximum likelihood fit
in the nonVBF SR with the eτ -dataset.
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Figure E.5: The pulls and constraints of all nuisance parameters obtained from a maximum likelihood fit
in the nonVBF SR with the µτ -dataset.
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Figure E.6: The correlations in percent of all nuisance parameters that have at least one correlation with
an absolute value larger than 20%, obtained from a maximum likelihood fit in the nonVBF SR with the
eτ -dataset.
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Figure E.7: The correlations in percent of all nuisance parameters that have at least one correlation with
an absolute value larger than 20%, obtained from a maximum likelihood fit in the nonVBF SR with the
µτ -dataset.
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Figure E.8: The pulls and constraints of all nuisance parameters obtained from a maximum likelihood fit
in the VBF SR with the eτ -dataset.
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Figure E.9: The pulls and constraints of all nuisance parameters obtained from a maximum likelihood fit
in the VBF SR with the µτ -dataset.
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Figure E.10: The correlations in percent of all nuisance parameters that have at least one correlation
with an absolute value larger than 20%, obtained from a maximum likelihood fit in the VBF SR with the
eτ -dataset.

-46.1 10.5 16.5 22.1 100.0

-47.8 11.1 17.2 100.0 22.1

-35.3 8.3 100.0 17.2 16.5

-22.7 100.0 8.3 11.1 10.5

100.0 -22.7 -35.3 -47.8 -46.1

µ

 V
B

F
 b

in
 5

γ  V
B

F
 b

in
 6

γ  V
B

F
 b

in
 7

γ  V
B

F
 b

in
 8

γ

 VBF bin 8γ

 VBF bin 7γ

 VBF bin 6γ

 VBF bin 5γ

µ

Figure E.11: The correlations in percent of all nuisance parameters that have at least one correlation
with an absolute value larger than 20%, obtained from a maximum likelihood fit in the VBF SR with the
µτ -dataset.



Appendix F

Simultaneous Bound on B(H → eτ )
and B(H → µτ ) from Upper Limit on
B(µ→ eγ)

The upper limit on the branching ratio B(µ→ eγ) can be used to derive an upper bound
on the combination YeτYτµ where the Yij are off-diagonal Yukawa couplings as discussed
in Section 1.4.2. The bound on the combination of the couplings can be translated into a
bound on the branching ratios B(H → eτ) and B(H → µτ) which allows for visualising
this bound in Figure 11.8 where the two branching ratios are on either axis. To do so,
Eq. 1.54 [18] is used which is repeated here:

Γ(H → iτ) =
mH

8π

(
|Yiτ |2 + |Yτi|2

)
, (F.1)

B(H → iτ) =
Γ(H → iτ)

ΓSM(H) + Γ(H → iτ)
, (F.2)

where i either denotes an electron e or a muon µ. Assuming that Yiτ = Yτi, Eq. F.1 becomes

Γ(H → iτ) =
mH

4π
|Yiτ |2 , (F.3)

and Eq. F.2 can be rearranged as

Γ(H → iτ) =
B(H → iτ)

1− B(H → iτ)
ΓSM(H) , (F.4)

such that the following equation can be obtained:

|Yeτ |2|Yµτ |2 =
42π2Γ2

SM(H)

m2
H

· B(H → eτ)

1− B(H → eτ)
· B(H → µτ)

1− B(H → µτ)
(F.5)

=⇒ B(H → µτ) =
(mH/4π)2 · |Yeτ |2|Yµτ |2 · (1− B(H → eτ))

Γ2
SM(H) · B(H → eτ) + (mH/4π)2 · |Yeτ |2|Yµτ |2 · (1− B(H → eτ))

.

(F.6)

In principle, the partial decay width of the respective other LFV decay must also be consid-
ered in the denominator of Eq. F.2 but is neglected here. The bound 4

√
|YeτYτµ|2 + |YτeYµτ |2 <
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2.2× 10−4 = b (Table 1.5) can also be simplified by assuming that Yiτ = Yτi:

4
»

2|YeτYµτ |2 < b (F.7)

=⇒ |Yeτ |2|Yµτ |2 <
1

2
b4 . (F.8)

Inserting Eq. F.8 in Eq. F.6 leads to a term for the red curve in Figure 11.8 which indicates
the bound from the limit on B(µ→ eγ). Within the range displayed in Figure 11.8, there
is no visible difference in the curve whether Γ(H → iτ) is considered in the denominator of
Eq. F.2 or not.

Instead of assuming Yiτ = Yτi it could also be assumed that one of both is zero while
the other is not, e.g. Yτi = 0 and Yiτ 6= 0. Then, the 4π in Eqs. F.3 and F.6 are replaced by
8π and the factor 1/2 in Eq. F.8 vanishes. This leads to the blue curve in Figure 11.8.

Many thanks to [263] for support on this topic.
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