
Dissertation

Towards next-generation cryogenic
dark matter searches with

superconducting thermometers

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

im Rahmen des Studiums

Doktoratsstudium der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Dipl.-Ing. Felix Wagner, B.Sc.
Matrikelnummer 01426449

ausgeführt am Atominstitut
der Fakultät für Physik der Technischen Universität Wien
in Zusammenarbeit mit dem Institut für Hochenergiephysik
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“So many things are possible just as long as you don’t know they’re

impossible.”

- from “The Phantom Tollbooth”, by Norton Juster



Abstract

Today we observe overwhelming gravitational evidence for the existence of

dark matter in the universe and its non-null abundance along the solar

circle. Experiments using cryogenic calorimeters spearhead the effort to

measure the scattering of sub-GeV/c2 dark matter particles with nuclei

of a detector target. Among them, the CRESST experiment achieves the

strongest sensitivity for spin-independent, elastic scattering scenarios. Its

spin-off, the COSINUS experiment, is set up to validate the long-standing

dark matter discovery claim of the DAMA experiment, exploiting low en-

ergy thresholds and particle identification. These searches rely on careful

detector design, measurement setup, and data analysis to provide insights

into the nature of dark matter. We review the motivations for the searches,

the operation principles, and study detector design choices in detail by

constructing a dedicated detector response simulation. The analysis tech-

niques are summarized and implemented in a modern software toolbox,

allowing the execution of all established methods and the incorporation of

machine learning classifiers. Building upon these methods, we summarize

the characterization of two detector modules from the latest CRESST-III

measurement campaign, which lead to the currently most stringent lim-

its on spin-dependent sub-GeV/c2 dark matter-nucleus elastic scattering.

Furthermore, we study detector prototypes for COSINUS and estimate

achievable energy thresholds of detector designs for the first physics runs.

We describe the technological challenges for a large-scale measurement

setup and analysis process and study methods based on deep and reinforce-

ment learning with CRESST-III data to automate the required manual

interventions. These methods equip the next generation of cryogenic dark

matter searches with improved sensitivities and higher collected exposure.



Kurzfassung

Heute beobachten wir überwältigende gravitative Beweise für die Existenz

dunkler Materie im Universum und an der Position der Erde. Experimente

mit kryogenen Kalorimetern stehen an vorderster Front, die Streuung von

dunklen Materie Teilchen im Sub-GeV/c2-Massenbereich mit den Atomk-

ernen eines Detektortargets zu messen. Unter ihnen erreicht das CRESST-

Experiment die höchste Empfindlichkeit für spinunabhängige, elastische

Streuungsszenarien. Sein Ableger, das COSINUS-Experiment, soll den seit

langem bestehenden Anspruch des DAMA-Experiments auf die Entdeck-

ung dunkler Materie prüfen, indem es niedrige Energieschwellen und die

Identifizierung von Teilchen nutzt. Diese Suchen benötigen sorgfältiges

Detektordesign, Messaufbau und Datenanalyse. Wir gehen auf die Be-

weggründe für die Suche ein und untersuchen die Wahl des Detektordesigns

im Detail, indem wir eine spezielle Simulation der Detektoren konstruieren.

Die Analysetechniken werden zusammengefasst und in einer modernen

Software-Toolbox implementiert, die die Ausführung aller gängigen Meth-

oden und die Einbeziehung von Klassifikatoren des maschinellen Lernens

ermöglicht. Aufbauend auf diesen Methoden fassen wir die Charakter-

isierung von zwei Detektormodulen aus der letzten CRESST-III Messkam-

pagne zusammen, die zu den derzeit strengsten Grenzwerten für spin-

abhängige elastische Streuung zwischen dunkler Materie und Kernen im

Sub-GeV/c2-Bereich führen. Darüber hinaus untersuchen wir Detektor-

prototypen für COSINUS und schätzen erreichbare Energieschwellen von

Detektordesigns für die ersten Physik Runs ab. Wir beschreiben die tech-

nologischen Herausforderungen für einen groß angelegten Messaufbau und

Analyseprozess und untersuchen Methoden auf der Grundlage von Deep

Learning und Reinforcement Learning mit CRESST-III-Daten, um die

erforderlichen manuellen Eingriffe zu automatisieren. Diese Methoden

rüsten die nächste Generation der kryogenen Dunkle-Materie-Suche mit

verbesserten Empfindlichkeiten und höherer Sammelquote aus.
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Preamble

Before moving on to the main body of this thesis, I would like to address some

organisational issues that readers may find relevant.

First, there are different styles of writing in scientific literature when presenting

the work of authors. Personally, I find the use of a purely passive voice unengaging

and boring for readers (“. . . has been/was done . . . ”). However, using the active voice

(“. . . we did/I did . . . ”) raises the question of how the author should address himself or

herself. For a thesis, the singular form (“. . . I did . . . ”) might be correct, but I like to

say that the work done was done by “us” (“. . . we did . . . ”). This is because, let’s face

it, almost all work done in modern experimental science is the product of a team in

some way, including single-author publications. Writing in a completely singular form

can, in my opinion, sound a bit egocentric, even if it may be correct. Also, this style

is explicitly discouraged by some journals/conferences in order to provide a review

process as anonymous as possible. Therefore, in this thesis, as always, I use the plural

(“we”) to talk about work that I have done.

Second, I have been fortunate enough to have published much of my work during

my Ph.D. studies. Since many of these papers have more than one author, I use the

convention of referring to figures and data that were published with them, but are my

work as part of this thesis, as “also used in Ref. XY”. At the same time, work not done

by me and used only as a basis for information is declared as “taken from Ref. XY”

or simply marked with the reference in square brackets. The papers that overlap

significantly with this thesis are listed below, including details of my contributions to

them and their reference identifier.

I wish you an enjoyable read and hope that you can take something away from it!

—

• White Paper: Complications to comparing results from low-threshold direct

dark matter searches. Paper not yet finalized, to be published in 2024. I wrote

the section about challenges in the collective analysis of multiple experiments.

Ref. identifier [1].
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• Optimal operation of cryogenic calorimeters through deep reinforcement learning.

Paper currently under internal review in the CRESST collaboration (correspond-

ing author: F. Wagner). Based on my second master thesis, [2]. I planned

and executed the project, wrote the code and the paper, and managed the

publication process. Ref. identifier [3].

• Towards an automated data cleaning with deep learning in CRESST. The

CRESST collaboration (corresponding author: F. Wagner), Eur. Phys. J. Plus

138, 100 (2023). I planned and executed the project, wrote the code and the

paper, and managed the publication process. Ref. identifier [4].

• Cait: analysis toolkit for cryogenic particle detectors in Python. F. Wagner et

al. (2022), Comput Softw Big Sci 6, 19 (2022). I planned and executed the

project, wrote the code and the paper, and managed the publication process.

Ref. identifier [5].

• Testing spin-dependent dark matter interactions with lithium targets in CRESST-

III. The CRESST collaboration (2022, corresponding authors: A. Bertolini, S.

Gupta, F. Wagner), Phys. Rev. D 106, 092008 (2022). I analyzed one of two

detector modules, wrote half of the text, created the majority of figures, and

managed the publication process. Ref. identifier [6].

• EXCESS workshop: Descriptions of rising low energy spectra. A. Fuss, M.

Kaznacheeva, F. Reindl, F. Wagner (editors, 2022), SciPost Phys. Proc. 9,

001(2022). I was one of the main organizers of the workshop, reviewed the

section editor contributions, wrote half of the common sections, and managed

the publication process. Ref. identifier [7].

• Nonlinear pile-up separation with LSTM neural networks. F. Wagner, 2021.

arXiv:2112.06792, contribution to the Fourth Workshop on Machine Learning

and the Physical Sciences (NeurIPS 2021). I planned and executed the project

and wrote the code and the paper. Ref. identifier [8].

• A parametric fit model for Gaussian noise maxima in the presence of pollutions.

F. Wagner (2020), CRESST-internal note. I developed the method based on

previous work by M. Mancuso et al., and wrote the note. Ref. identifier [9].
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Introduction

For decades, physicists have been observing the gravitational pull of an overabundance

of non-luminous matter on the scales of galaxies [10], clusters of galaxies [11], and even

the universe as a whole, i.e. on cosmological scales [12]. This missing source of gravity

is called dark matter (DM) and can neither be explained satisfyingly with particles

of the standard model (SM) of particle physics nor with other known physics. Many

theories propose possible explanations: weakly interacting massive particles (WIMPs)

would explain all observed phenomena, leading to the so-called “WIMP miracle”, a

convincing and elegant explanation that fits well to known physics [13]. A WIMP

candidate is naturally included in supersymmetry (SUSY) theories in the form of the

lightest supersymmetric particle (LSP). Alternatively, axions would solve both the

DM problem and the problem of strong charge-parity symmetry violation. A thorough

review of these traditional DM theories can be found in Ref. [14]. In much modern

literature it is, however, assumed that not one DM particle, but a zoo of dark sector

particles exist that interact via so-called “portals” with SM particles [15]. In addition,

many more particle candidates exist, and several theories explain DM without the

need for new particles, among them primordial black holes and theories of modified

gravity [16,17]. However, none of these theories has been experimentally verified so

far. DM is therefore still one of the biggest open questions in modern physics and

resolving its mystery will bring about a new era in our understanding of the universe.

Many experimental efforts focus on the detection of DM or its potential decay

products. Experiments at particle colliders and astroparticle observatories test the

production [18] and decay channels of DM [19], respectively. The latter depend on

models of DM decay hotspots, regions with particularly high DM density, within or

close to our own galaxy. However, a large DM abundance from the galactic halo is

observed in our galaxy and along the solar circle [10], such that the particle density

is expected to be large enough to measure it directly. Therefore direct detection

(DD) experiments test the scattering of DM with nuclei or electrons of a target

directly. Latter experiments have excluded large regions of the favored parameter
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space of the original WIMP miracle, e.g. the XENON and LZ experiments using

nuclear scattering in liquid targets [20,21,21]. As DD experiments with large liquid

targets continue to increase their sensitivity down to the neutrino fog, a region in

the parameter space of nuclear scattering that is expected to be dominated by a

non-reducible neutrino background, another region raises interest in the community.

While the original WIMP model does not allow for DM particles lighter than 2 GeV/c2

due to a violation of the Lee-Weinberg bound [22], a growing set of theories predict

such sub-GeV/c2 (light) DM, e.g. freeze-out scenarios [23–26], asymmetric DM [27],

freeze-in scenarios [28] and portal models [29]. These models are testable via the same

observables as original WIMPs, nuclear or electron scattering. The favored parameter

space is accessible with DD experiments using solid targets due to the achievable

low energy thresholds. The leading experiments in the field are the cryogenic rare

event search with superconducting thermometers (CRESST) and the cold DM search

(CDMS). The CRESST-III experiment, located in the Laboratori Nazionali del Gran

Sasso (LNGS) achieves the currently strongest sensitivity for spin-independent sub-

GeV/c2 DM-nucleus scattering under standard assumptions by employing scintillating

calcium tungstate crystals as athermal phonon detectors [30]. Reaching the required

energy thresholds for testing low-energy nuclear recoils requires the operation of a small

target mass, effectively leading to a decrease in collected exposure compared to liquid

targets. However, future upgrades of the experiments plan to operate a large number

of detectors simultaneously and expect to acquire sensitivity down to the neutrino

fog in the long term. Currently, the CRESST-III experiment simultaneously operates

detector modules with a mix of target materials: calcium tungstate, silicon, sapphire,

and lithium aluminate. The sensitivity of low threshold experiments using solid-state

targets is limited by low energy excesses (LEEs) observed by many experiments [7],

specifically in CRESST-III detectors below 200 eV [31]. Those are unmodelled and

not yet fully understood instrumental backgrounds.

While almost all these experiments achieve increasingly strong null results, one

DD experiment claims to measure a convincing DM signal. A certain aspect of that

signal, namely its seasonal dependency, was previously considered a “smoking gun”

evidence for its DM origin. In our standard assumptions, we expect the distribution

of DM in our galaxy to be stationary compared to the rotation of our solar system

around the galactic center and the rotation of Earth around the sun. The former

rotation happens on the time scale of 225 million years and would be observed by

DD experiments as a constant particle flux. The latter rotation happens on the time

scale of a year and makes for a 5% seasonal change of the total expected DM flux.
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A DD experiment would primarily observe the tail of the DM distribution with high

velocity and therefore a modulating rate of typically 5 % or more of the total observed

DM rate is expected [32–35]. These statements also hold for scenarios with both co-

and counter-rotating DM halos [36]. The DAMA experiment observes such sinusoidal

modulations with the expected phase shift, originally published in Ref. [37]. With an

exposure of more than 2.86 tonne-years and an observation time of more than two

decades, the statistical significance of the modulation has grown to an astonishing

value of 13.7 σ [38]. This signal claim is however in vast disagreement with all other

experiments that reach sensitivity in the same parameter space of tested models.

Ref. [39] summarizes that no theory is compatible with a DM signal observed by

the DAMA experiment while remaining consistent with all other published results.

However, no convincing non-DM explanations for the DAMA signal exist either,

even though several were proposed [40, 41]. The DAMA signal remains a topic of

controversy. Responding to the lack of a suitable explanation, efforts were started

to reproduce the results in an as model-independent way as possible, reusing the

same target material, sodium iodide. The dependency of a DM signal from DM-

nucleus scattering on the nucleus taking part in the interaction is typically modeled

by considering the mass, spin, and nuclear form factors. However, it cannot be

excluded that more complex systematics could play a role in the DM signal. The

ANAIS, SABRE, and COSINE experiments use detection technologies identical to

those used by DAMA, measuring scintillation light at room temperature [42–44]. A

new experiment that is currently in construction at LNGS, the cryogenic observatory

for signals seen in next-generation underground searches (COSINUS) experiment,

uses the CRESST technology and measures both a phonon signal and scintillation

light at cryogenic temperatures [45]. This two-channel readout allows for particle

discrimination (PD) and resolves dependencies on the quenching factor (QF) of the

scintillator. Furthermore, the achievable nuclear recoil energy thresholds for phonon

readouts are much lower than for pure scintillator experiments, where the photon

production from nuclear recoils is suppressed by a factor 3 or more [46]. The COSINUS

experiment employs an adaption to the CRESST detector design, called remoTES,

where the phonon sensor is not directly attached to the target but connected to it via

a gold wire [47]. This design can provide a high athermal phonon collection efficiency,

a crucial factor for the sensitivity of the detector, while no potentially deteriorating

treatment of the crystal surface is required. These features of the COSINUS experiment

allow for a high significance validation of the DAMA signal after a short run time

of only one year under standard assumptions and two years in a model-independent

5



way [48]. Promising R&D results exist with moderate crystal sizes [49, 50]. The final

detector design and the required nuclear recoil energy threshold with the required

target size and number of detectors are yet to be experimentally validated.

The objective of both experiments includes overcoming three major challenges:

first, detector designs need to be further optimized to achieve an as low as possible

threshold with target masses of several tens of grams. Additionally, target materials

need to be optimized for individual physics cases. Second, a large number of detectors

need to be operated simultaneously. For this, as many processes as possible in

manufacturing, operating, and analyzing the detectors must be automated to stay

within reasonable bounds of human workforce. Finally, all types of backgrounds need

to be identified and mitigated as far as possible. This includes all types of radiation

and electromagnetically interacting astroparticles as well as their secondary products,

but especially also the LEE and other instrumental backgrounds. These three tasks

are not only relevant for the CRESST and COSINUS experiments, but they are in

fact the major challenges for the whole community using cryogenic detectors for low

threshold rare event searches.

This work contributes to several of the above-mentioned challenges. We report

on the development of cryogenic artificial intelligence tools (Cait), a modern analysis

framework that leverages the Python open-source scientific computing infrastructure

and enables the usage of machine learning-based data selection methods while main-

taining the run time requirements of high-performance computing tasks. Cait was first

presented in Ref. [5]. Using this framework, we analyze the recorded raw data (RD)

from two detector modules with lithium aluminate targets operated in CRESST-III

and remoTES prototype detectors for COSINUS. We characterize the detectors with

response and noise models and interpret the detector parameters extracted. The

CRESST-III data set is used to test spin-dependent DM-nucleus elastic scattering, for

which lithium-6 is a promising target material: its low nuclear mass provides relatively

high recoil energy from interactions with light DM particles, and the odd spin number

equips it with a high cross-section for spin-dependent interactions. The resulting limits

were first presented in Ref. [6]. Using a dedicated detector response simulation, we

project the achievable energy thresholds in several proposed final detector designs for

COSINUS and show that they meet the performance goals of the experiment. Fur-

thermore, we investigate the automation of certain tasks in the analysis and detector

setup procedure. On a data set of historic CRESST data we train a deep learning

model that can discriminate detector artifacts and pile-up from valid particle events

without fine-tuning to individual detectors. We review the process of finding optimal
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operation parameters for detectors and propose a method that leverages reinforcement

learning (RL) to perform the task without the need for manual interventions. The

latter method is tested in a virtual environment as well as in live operation on the

CRESST experiment. The results of the tests with both methods were first presented

in Refs. [3, 4]. Finally, we review the LEE and unexplained phenomena in cryogenic

detectors using transition edge sensors (TESs) and review the first iteration of a

dedicated workshop series on the topic of instrumental low-energy backgrounds. This

report was originally published in Ref. [7].

The thesis is structured as follows:

In Chap. 1 we provide a brief review of our current knowledge of DM in our universe.

We describe the observations made on galactic and cosmological scales and which

distribution of DM in our galaxy we can infer from them. Furthermore, we summarize

selected models of particle DM. Finally, the current status of the experimental search

for DM via DD is reviewed, with a focus on sub-GeV/c2 DM.

We derive the macroscopic detector response and noise models for cryogenic

detectors with superconducting thermometers in Chap. 2 and connect them with the

physics of solids. The LEE and other phenomena of poorly understood origin are

discussed in detail.

The overall procedure of the data analysis and its implementation in the Cait

package is described in Chap. 3. The statistical methods used in a signal search and in

limit setting, and possible complications in the combination of data sets are discussed

in detail.

The detector modules with lithium aluminate targets operated in CRESST-III and

their spin-dependent DM results are described in Chap. 5.

RemoTES prototypes for COSINUS are analyzed in Chap. 4, and performance

projections of proposed detector designs are simulated.

Finally, in Chap. 6 we treat the challenges of setup and analysis automation with

deep and RL. We especially discuss two methods for automating the data cleaning

and the optimization of operation parameter, respectively.
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Chapter 1

Direct detection of sub-GeV/c2

dark matter

Human understanding of our universe has progressed tremendously within the past

century. Interactions and matter can be described with stunning precision through a

zoo of elementary particles. The knowledge of the properties of these particles lets

us not only describe nature at the smallest scales but also at its largest scales. The

evolution of our universe bears witness to processes that are induced by the mere

existence of types of particles. Today one could tell a clear story of the early universe

that was still a hot soup, its cooling process towards the structures we observe today,

and also about the scenarios for its progression in the future. But would this be

already the whole story?

On the very contrary, it seems that the more we learned to describe nature with

physics, the more questions accumulated that remain unanswered until today: the

nature of dark energy, which leads to an observable acceleration of the expansion of

our universe in the recent Mrds. years [12]; particle physics at highest energies and

in the presence of strong gravity [51]; and finally the matter content of the universe,

which consists to (83.9 ± 1.5)% [12] of DM, a yet not directly measured quantity.

Overall, only ≈ 5% of the energy content of our universe is relatively well described

through our SM of particle physics [52], while the remainder is yet to be understood.

While not all of these questions can be addressed in this work, we shall focus on

the question of the nature of DM. The interaction of DM with ordinary matter is

clearly observed through gravity, in rotational curves of galaxies, the cosmic microwave

background (CMB), and colliding galaxy clusters. Many theories exist about the

nature of DM, and the majority model DM as a new particle not contained in the SM.

These theories include WIMPs, motivated by SUSY, and their generalizations [14];

axions, motivated by the strong CP violation problem, and their generalization [14];
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dark photons that could be mediators to a hidden dark sector, containing a second

zoo of particles [15]. There is no way to predict which of these theories is realized in

our universe, and therefore a broad experimental search program is needed to test

the parameter space of DM models. A shared parameter between all particle theories

is the mass of the DM particle. The above statement can therefore be equivalently

expressed by saying that the mass scale of the DM particle is not fixed. For a complete

picture, it should also be mentioned that non-particle theories exist, including the

idea that DM could consist of primordial black holes [16] and modifications of the

theory of gravity itself [17].

The experimental search for DM has been ongoing for decades, and many dedicated

experiments have been constructed. Searches are conducted with collider experiments,

where DM production mechanisms at high energies are tested [18]. DM annihilation

products are searched with telescopes and other astronomical instruments [19]. Finally,

a significant non-null abundance of DM was measured along the solar circle. Specifically,

a local DM density of 0.4 GeV/c2/cm3 [10] provides motivation to aim for directly

measuring DM particle scattering with a detector target.

Since one of the well-known properties of DM is that it does not, or maximally in a

suppressed way, interact with the photon field, the search for massive WIMP-like DM

particles is usually conducted by assuming nuclear scattering as the primary interaction

channel. For the assumption that this scattering, since it happens at relatively low

energies, would follow the principles of elastic scattering, we can calculate an expected

scattering rate with a target. This rate further depends on assumptions about the

astrophysics properties and has the interaction cross section and the DM mass as

free parameters of the theory. For such searches, no convincing positive signals were

seen in the past decades, but more and more of the potential parameter space keeps

getting excluded through experimental results. Recently, an interest of the community

in lighter DM candidates has risen. Among them is ample motivation for sub-GeV/c2

DM particles, e.g. freeze-out scenarios [23–26], freeze-in scenarios [28], and asymmetric

DM [27].

A highly relevant factor for DD experiments is the detector technology. Technologies

that are able to measure sub-GeV/c2 DM scattering must be sensitive towards ≈
eV energy in their target. The currently strongest limits in this region of the DM

parameter space are superconducting thermometers operated at ≈ mK temperatures.

Besides low recoil energy thresholds, low backgrounds, and a suitable target mass are

necessary for such searches. They are usually conducted in underground laboratories,
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and recently low threshold experiments are starting to scale up their operated target

mass.

In this chapter, we provide an introduction to the field of experimental searches

for sub-GeV/c2 DM. We start with discussing the gravitational evidence for DM

in Sec. 1.1 on different length scales: on a cosmological scale, the scale of galaxies,

and specifically its distribution in the Milky Way. We briefly discuss some widely

known DM models in Sec. 1.2. The expected scattering rates from elastic DM-nucleus

scattering are introduced in Sec. 1.3. We conclude with currently applied experimental

techniques and their latest results in Sec. 1.4.

1.1 Observations of gravitational interaction

The gravitational evidence for DM presented in this section is structured by the length

scale of observation, starting with a cosmological scale, moving over the galactic scale,

and ending with the Milky Way. A historical order would look different and would start

with the galactic scale. We will also discuss some of the important breakthroughs in

history in the corresponding section. An extensive review of the historical development

around the DM phenomenon can be found in Ref. [53].

1.1.1 Cosmological scale

Today the model used to describe the evolution of our universe is the Lambda cold

DM (ΛCDM)model. It is based on the Friedmann equations [54] that govern the

expansion of space in homogenous and isotropic models of the universe. They are

a product of Einstein’s equations of general relativity [55], and include the redshift,

Hubble parameter, gravitational and cosmological constants, and parametrizations of

the energy content and curvature of the universe. The cosmological constant can be

understood as a non-zero vacuum energy that pushes the universe apart, called dark

energy. Einstein’s cosmological constant was historically debated since its motivation

is purely empirical, and its scale seems unphysically small. However, it crucially

determines the expansion phases in the evolution of the universe and is responsible for

the acceleration of the expansion of our universe that we observe today. The ΛCDM

model also naturally includes the existence of DM, with its mass scale and interaction

strength not fixed. Furthermore, the model includes baryonic matter and radiation.

When a universe expands, its energy content shifts. While the matter-energy content

per volume element scales proportional to the expansion, the radiation energy content

additionally decreases linearly since the radiation wavelength is also stretched by

10



the expansion. This also motivates the commonly used units to measure the age of

a universe and quantify distances: the redshift. It quantifies the relative decrease

in energy of traveling photons and measures by the time that they already existed

while their wave length kept expanding. The redshift can be used to determine the

distance of stars by measuring the shift in the light from spectral lines of known

energy. The dark energy content per volume stays constant. While the universe was

radiation-dominated in its very early moments of existence, the matter-dominated era

took over rapidly. Our universe is in an intermediate era, where the matter content is

still relevant, even though dark energy already represents the majority of the energy

content in the universe.

The SM of cosmology foresees that our universe came into existence with very

small spacial expansion and high energy density. In this state, all particles were in a

hot equilibrium of production and annihilation. With the expansion of the universe

and the resulting lowered energy density, the production mechanisms of high-mass

particles started freezing out, followed by lower-mass particles. When the energy

density dropped below the binding energy of hydrogen atoms, the average photon

energy in the plasma was not sufficient anymore to cause ionization of electrons in

bound state1. Photons started traveling freely without a relevant amount of scattering

partners left, and the universe became transparent. These photons travel still today

and produce an omnipresent and almost perfectly isotropic background, the CMB. The

CMB was accidentally discovered in 1965 by the radio astronomers Arno Penzias and

Robert Wilson. Since its characteristics are similar to signals that would be caused

by instrumental backgrounds, the signal was first believed to be the result of “white

dielectric material” on the measuring antenna that was produced by a close-by nesting

bird family [57]. The CMB has a thermal black body spectrum at a temperature of

2.72548 ± 0.00057 K and was emitted about 380000 years after the big bang when

the temperature of our universe was about 3000 K [56]. A heatmap of the CMB is

depicted in Fig. 1.1.

The CMB radiation does not reach Earth perfectly isotropic but has slight

anisotropies. These anisotropies are due to the non-homogeneous structure of the

universe at the time of the last scattering. Gravitational wells would require the

photons to have more energy to escape, causing a higher photon wavelength. The

measured anisotropies therefore contain information about the size of gravitationally

bound structures at the time of photon decoupling. This information can be extracted

1To be precise, this so-called time of last scattering is not at the energy density of 13.6 eV, but
some time later, at an average energy density of 0.26 eV [56].
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Figure 1.1: The fluctuations observed in the CMB, as observed by ESA’s Planck
mission. The figure covers the area visible to an observer at the position of the earth,
with the azimuth on the horizontal axis and the altitude on the vertical axis. The
fluctuations (red) correspond to deviations of ≈ µK from the average value of the
CMB. Fig. from Ref. [58].

by fitting a theoretical model of the expected CMB cluster size to the measurement in

Fourier space. The fit crucially determines the DM content of the universe: without

DM, the radiation counter pressure that is felt by baryonic matter when coupled

to a gravitational well would have caused an immediate wash-out of the fluctuation.

Only a significant amount of matter that does not feel this radiation counter pressure

enabled the buildup of stable and large structures. The latest measurements of the

CMB by the European Space Agency(ESA)’s Plack mission today provide the most

precise measurement of the universe’s energy content [12].

Amazingly, not only the structure formation before and until the production of

the CMB shows evidence for the existence of DM, but also the very first structure

formation that took place in our universe shortly after the period of inflation. This

period was marked by a rapid expansion of the universe, fast enough that random

quantum fluctuations were prohibited from equilibrating. These random vacuum

effects induced the very first density fluctuations, which later grew into galaxies, stars,

and planets. Without DM, they would have washed out immediately after the inflation

era ended. DM contributed already in the earliest moments of our universe to shape

it into the form we observe today.

There are more observations that strongly suggest the existence of DM. One of

them is the upper limit on the amount of baryonic DM in the universe from Big Bang

nucleosynthesis [59], which is far below the total amount of matter in the universe. We

omit a discussion of this evidence in detail in this work. A comprehensive summary

can be found e.g. in Ref. [14].
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1.1.2 Galactic scale

The historically first observations of DM were made by observing the movement,

velocity, and brightness of stars and galaxy clusters. The obvious stars to observe

are within our galactic local group, consisting of the Milky Way and the Andromeda

galaxy M31 which is a distance of 765 kpc away from Earth. The Andromeda has

a satellite galaxy, the Triangulum M33 galaxy, which is the third and third largest

galaxy completing our local group [53].

The first to make the observation of missing mass in galaxies was William Thomson

Kelvin, who compared the light of galaxies with their mass, measured with the velocity

of their stars [53]. The first quantitative estimate of the DM abundance in the universe

was calculated by Fritz Zwicky [60]. He estimated the mass of the Coma cluster from

the number of observed galaxies and the average mass of a galaxy. With an estimate

of the system’s size, he further estimated its potential energy. The virial theorem

predicts a relation between the virial of a dynamic system of gravitationally interacting

masses and its total kinetic energy T in equilibrium:

T = −1

2

N�
i=1

−−−−→−→
Fi · −→ri (1.1)

Zwicky approximated the virial by using the system’s potential energy and could

predict the velocity dispersion. However, the observed velocity dispersion was over 10

times larger than the predicted one from visible matter. The velocity can be extracted

from the Doppler shift of spectral lines in the rotating stars. Therefore he concluded

that the Coma cluster should contain much more mass than is visible. He was then

the first to use the phrase DM to describe the absent matter in his calculation.

These first observations were made on galaxy clusters. Later, Vera Rubin [61]

studied the rotational curves of individual stars in galaxies in detail. The velocity

of stars far away from the center of a galaxy is expected to fall with 1/
√
r, with r

the distance from the center of the galaxy. This statement is based on equating the

centripetal force and the attracting gravitational force in the simple calculation of the

gravity of a point mass:

mv2

r
= G

mM

r2
, (1.2)

v =

�
G
M(r)

r
. (1.3)
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Figure 1.2: The velocity distribution of visible stars depending on the distance from
the galactic center of the spiral galaxy M33. The expectation from the gravitational
pull of the visible matter (grey dashed) deviates strongly from the observed velocities
(white continuous) that are fitted to the observations from starlight (yellow markers)
and hydrogen (blue markers). Fig. from Ref. [62].

Here G is the gravitational constant, m the mass of the point mass, M the mass of

the total mass of the visible orbit, which we assume to be closer to the center of

the system than the point mass is, and v the velocity of the point mass. However,

the experimental observation showed a velocity curve falling with a much weaker

dependency on the distance from the galaxy center or staying almost flat. Fig. 1.2

depicts the situation for another galaxy. This behavior of the rotation curve could be

explained by the existence of a larger halo of invisible matter that extends beyond the

visible and rotating stars. M would then effectively be a quantity that grows with

r, and the point mass would still be inside the growing orbit. For the assumption

M = rρ, we would obtain a constant velocity:

v =
�

Gρ. (1.4)

Another piece of important evidence for the existence of DM was the observation of

galaxy cluster 1E 0657-56, dubbed the bullet cluster [11]. An image of the observation

is shown in Fig. 1.3. This galaxy cluster consists of two (sub-)clusters that collided

150 million years ago, observed from Earth. In the collision, the luminous matter

interacted much stronger than the DM, leading to a shift in the centers of gravity,

visible light, and radiation produced by the interstellar gas. The center of gravity is

nowadays measured through gravitational lensing, where the fact that light bends

towards centers of gravity is used. This leads to distortions in the image of stars

and galaxies in the background, which are otherwise homogeneous distributed. This

observation puts an upper limit on the self-interaction strength of DM and is, until
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Figure 1.3: Color image of the merging cluster 1E0657-558, reconstructed from the
observations of the Chandra X-ray observatory. The distribution of stars and the
interstellar gas that is supposed to make up the largest share of the gravitational pull
(red) is severely displaced from the mass distribution reconstructed from gravitational
lensing (blue). Fig. from Ref. [63].

today, the major argument excluding modified theories of gravity from substituting a

particle theory of DM.

Further evidence is contained in gravitational lensing measurements that allow

us to map the location of the DM content of distant galaxies. Many more historical

contributions discussed the gravitational evidence for DM, and this text solely focuses

on the most prominent ones. A very relevant distribution of DM for experimental

efforts is that along the solar circle, and we discuss the most recent results on this

DM abundance in the following.

1.1.3 Dark matter in the Milky Way

The presence of DM along the solar circle was historically debated since galactic

rotation curves were of poor data quality, leading to large uncertainties in the local

DM density estimations. However, Ref. [10] provided clear evidence for the existence of

DM in the inner Milky Way in a model-independent analysis. They compare the Milky

Way’s recently observed high-quality rotation curves with the expectation from visible

matter alone. They used a data set of 2780 measurements from gas kinematics, star

kinematics, and masers. Furthermore, they benefit from a lowered uncertainty in the

baryonic matter distribution. By bracketing over a large number of models of baryonic

matter distribution, they obtain their estimates on the uncertainties in the baryonic

matter content. For all considered baryonic distribution models, they obtain the result

that the observed gravity is not explicable solely with the observed baryonic matter,
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Figure 1.4: (top) Angular velocity measurements and their uncertainties (red) together
with the bracketing of the contribution of all baryonic models (grey) as a function
of Galactocentric radius, and contribution of the fiducial baryonic model (black).
(middle) Residuals between observed and predicted angular velocities for the fiducial
baryonic model are shown in the central panel. The blue dashed line shows the
contribution of a NFW profile (see text for values). (bottom) The cumulative reduced
χ2 for each baryonic model as a function of Galactocentric radius. The black line
shows the case of the fiducial model, and the thick red line represents the reduced 2
χ2 corresponding to 5 σ significance. Fig. and caption taken from Ref. [10]

with a significance level above 5 σ in a χ2 test, for distances between 5 and 8 kpc

from the galactic center, which is the assumed galactic orbit of the sun. Furthermore,

they obtain an excellent match of the resulting residuals with the residuals obtained

with the widely used Navarro–Frenk–White (NFW) [64] profile of the DM halo, with

a local DM density of 0.4 GeV/c2/cm3 and a local circular velocity of v0 = 230 km/s.

The above-summarized results are essential for earth-based experiments. However,

such experiments have been performed already before, with less precise parameters

and models. To retain compatibility with older results, the conventions that are still

used today differ slightly from those most precise values, and we explain them in the

following.

DM is assumed to be in an equilibrium state in the galaxy, spherically Maxwellian

distributed and without significant movement in the galactic rest frame. The sun

moves through the galaxy and passes through the DM distribution. The speed at
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which an earth-bound observer would see DM passing by modulates since the Earth

moves on an annual cycle around the sun. There are also daily modulations expected

since an observer on the surface of the earth would rotate around the earths core,

which are usually neglected since they are too small to detect experimentally today. 2

This leads to an overall expectation of the velocity distribution of DM observed from

Earth, of

f(v)dv =
1

N
�

3

2πv2rms

� 3
2

exp

�
− 3v2

2v2rms

�
θ (v − vesc) dv (1.5)

with normalization

N = erf(z)− 2√
π
z exp

�−z2
�

(1.6)

and

z :=
vesc
v⊙

(1.7)

and an annual modulation of

v(t) = v⊙ + vearth cos(γ) cosω (t− t0) (1.8)

We followed the notation used in Ref. [66]. Conventionally the following values are

used, based on Refs. [32–35]. The angle between the DM flux direction and the

rotation plane of the Earth around the Sun is γ = 60◦. The average solar velocity

is v⊙ = 220 km/s, which is an outdated value, but still the most widely used one.

The rotation velocity of earth around sun is vearth = 30 km/s, and the galactic escape

velocity vesc = 544 km/s. The local DM density is taken to be ρDM = 0.3GeV/cm3

which is also an outdated but widely used value. The phase of the annual modulation,

determined by t0, is such that peak is at June 1. The variation of the WIMP velocity

is smaller than 10 %, but one would expect to see the peak of the distribution mostly.

Therefore the modulation in an experimentally observed event rate should be larger.

Finally, we define vrms =
�

3/2v⊙.

We assumed in these numbers, that the DM halo does not rotate itself in the

galactic rest frame. Effects of maximally co- and counter rotating DM are studied in

Ref. [36] and can induce an uncertainty of a factor ≈ 2 in the DM velocity.

2However, daily modulations were used to conduct DM searches, e.g. in Ref. [65], not by the daily
modulating strength of the DM velocity, but by the daily modulating effect of earth shielding.
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This section does not require DM to be of particle nature for the validity of the

statements. They hold of any alternative theory of DM as well. In the following

section, we discuss some of the most widely probed DM models in more detail.

1.2 Selected dark matter candidate models

Many theories exist that seek to explain the DM phenomenon. Most assume DM

to be a massive particle since only massive particles have the energy to inflict a

significant gravitational pull in currently known physics. This being said, there are

also theories that suggest DM to be made of black holes and general modifications of

the laws of gravity. While some of these more famous theories have been disproven,

e.g. the modified Newtonian dynamics theory by observing the Bullet Cluster and

non-primordial black hole theories by observing the CMB, others persist. Especially

noteworthy, the theory of primordial black holes seems to provide explanations of

all observed phenomena, and experimentalists expect that it can be tested with the

next generation of gravitational wave observatories. Also, theories of modified gravity

remain but require that the centers of gravity decouple from the centers of mass.

Particle DM theories provide explanations of all observed phenomena by introducing

a new particle that would make up the DM energy density. Since there is no observation

that gives hints about the mass of a DM particle, the mass scale is not fixed, and

different theories provide different candidates for DM particles. The requirements for

a DM particle are that it has to be cold at the time of decoupling, which also excludes

the SM neutrinos, only weakly interacting, stable on the time scale of the universe,

and massive. There are two major types of particle classes that require different types

of experiments: WIMP-like and axion-like particles. The WIMP-like particles are the

relevant class for the work at hand, we shall therefore start by discussing them.

The WIMP model is motivated by the idea that the weak nuclear force could be

the primary interaction mechanism between dark and ordinary matter. There is a

particle predicted by SUSY, the LSP, that cannot decay further and would therefore

be stable. There would be a production mechanism for this particle in the early

universe, above a certain energy density, and also annihilation mechanisms. When the

energy density drops below this energy, both mechanisms freeze out. This scenario is

called a thermally produced DM particle. Different masses and cross sections with

other particles would lead to different residual DM abundances in our universe today.

This model gained significant attention when it was discussed that a DM particle

mass on the scale of 100 GeV/c2 and interaction via the weak nuclear force would lead

18



to the DM abundance observed today. The elegance of this model leads to the name

“WIMP miracle”. The picture for the classical WIMP has changed since then. Collider

experiments have not measured SUSY particles in the previous runs of the large

hadron collider (LHC), which does not mean that any SUSY theory has been excluded,

but the initially favored parameter space of the most favored models is. Furthermore,

the Lee-Weinberg bound [22] restricts a WIMP interacting with the weak nuclear force

to masses above 3 GeV/c2. The parameter space that is experimentally accessible

there was extensively explored by DD experiments, as LZ and XENON [20, 21, 21].

It is not forbidden that a WIMP could hide at weaker cross sections, covered by

backgrounds from neutrinos (see details in Sec. 1.3), but additional mechanisms that

weaken the interaction via the weak nuclear force would be required. However, there

is generally no reason to favor the weak nuclear force as an interaction mechanism. It

is possible that another force mediator exists and carries the interaction between DM

and SM particles or that an existing force carrier experiences a form of shielding of

its interaction, e.g. by a fractional charge of the DM particles [67]. Therefore many

former WIMP searches are today conducted as searches for generalized WIMPs, or

thermally produced DM. Such searches extend down to energies in the sub-GeV/c2

range. The parameter that is tested is usually the cross-section σDM with nucleons,

where searches can be focused on a spin-dependent cross-section with protons or

neutrons or independently of the spin. This will be discussed in more detail in Sec. 1.3.

For thermally produced particles with very weak interaction strengths, another

effect occurs. The lower the interaction probability, the rarer the initial production

and annihilation interactions of DM in the early universe would have happened, and

the longer a time their thermalization would require after the freeze out of those

channels. Below a certain interaction probability, this thermalization process would

still be going on today. We call such a scenario a freeze-in scenario, and theories exist

that predict such DM candidates [28].

The common expectation for particles in the mass regime of MeV and above is

that they would inflict recoils since their De-Broglie wavelength is much smaller than

their distance to each other. This is different from another DM search regime that was

motivated by the problem of strong CP violation [68]. The Peccei-Quinn mechanism

is a proposed solution to the question why quantum chromodynamics (QCD) does

preserve charge-parity (CP) symmetry. The mechanism predicts a pseudo-Nambu-

Goldstone boson at low energies, called the axion [69]. Its mass scale is also not fixed

but could possibly extend from ≈ eV/c2 downwards, without a definite lower limit.

Since the axion would be produced through a spontaneous symmetry breaking it is
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not a thermal DM candidate. A theoretically predicted coupling with the photon

field would lead to distortions in electromagnetic (EM) waves, called the Primakov

effect, which can be used to conduct searches for this axion interaction. Most axions

searches focus on the meV/c2 to µeV/c2 mass range, testing the coupling parameter

gaγ . Generally, particles with such a low mass are called wave-like DM since their de

Broglie wavelength would by far exceed their typical distance to each other, which

can possible lead to long-distance interactions. From the literature, wave phenomena

are expected to appear below DM masses of 30 eV [70].

More wave-like DM candidates exist. The dark photon is a predicted boson that

could be a massive mediator between dark sector particles and SM particles. It could

couple weakly to the EM field through a coupling parameter ϵ, and therefore be

detectable. However, this coupling would be introduced per hand in the Lagrangian

and not predicted from an underlying mechanism.

Another DM candidate exists in an intermediate-mass range of about keV/c2.

While the SM neutrino is excluded as a DM particle due to its too-small mass that

would make it move at relativistic speeds at the time of decoupling and later, dubbed

hot DM, its hypothetical right-handed partner, a sterile neutrino, could be more

massive due to the Seesaw mechanism and a viable DM candidate [71]. Since the

interaction cross section with the sterile would be very low due to its ignorance of

the mediators of the weak nuclear force, it could likely only indirectly be detected as

missing mass from a neutrino spectrum.

In principle, it is not forbidden that DM could only gravitationally interact with

SM particles. In this case, the experimental search would be much harder, and

none of the currently conducted experiments would reach the required sensitivity

for a reasonable signal expectation. There is no lower limit on the non-gravitational

interaction strength with baryonic matter and the self-interaction strength.

Furthermore, it is not excluded that DM has a non-trivial internal structure or

could exist of more than one particle. This motivates DM models as the two mediator

model [29], or strongly interacting DM [72,73]. Also, if DM is not a Majorana particle,

it should have an antiparticle, and possibly the same matter-antimatter annihilation

rules would apply to DM as to SM particles, leading to the same asymmetry in relic

particles observed today. Asymmetric DM [28] is a model that predicts a DM mass

of ≈ 5 GeV/c2 range, motivated by the idea that a similar number of relic particles

would exist for baryonic and DM that survived the annihilation after the freeze out in

the early universe, and to match the factor 5 difference in energy density the typical

energy should be roughly 5 times the proton energy.
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Overall we can summarize that many possible explanations for the DM phenomenon

exist, but for none of them, any convincing experimentally evidence could be collected

yet. The nature of DM remains a mystery and requires further intensive experimental

efforts. In the following section, we will explore the experimental efforts to measure

the scattering of WIMP-like DM particles via nuclear recoils in a target.

1.3 Direct detection of dark matter-nucleus inter-

actions

Having introduced a model for the DM velocity distribution at the position of the

Earth, we can derive an expected scattering rate of DM particles in a detector. We

will do so under the assumption of a WIMP-like particle that would inflict only

nuclear recoils, no electronic scattering, in a target. The scattering rate scales with

the measurement time and target mass for a weak interaction. The product of these

quantities is known as the exposure. This is different from the expected scattering

phenomena of EM interactions, where a penetration depth of the target would need

to be considered. For a low interaction probability, as for DM, the scattering is

approximately uniformly distributed across the target. In the simplest scenario, the

scattering does not depend on the spin of the target. However, the scattering could

also occur spin-dependent, and we shall examine both cases in the following.

The differential rate formula for elastic spin-independent scattering is in Ref. [74]

calculated as:

dσSI

dER

=
σ0

Emax
r (v)

F 2 (ER) , (1.9)

with the definition of the point-like DM-nucleus cross-section

σ0 =
4A2f 2µ2

N

π
. (1.10)

It is useful to define the normalized cross section to one nucleus

σDMN =

�
1 +mχ/mN

1 +mχ/mp

�2

· σ0

A2
(1.11)

The maximal possible energy transfer between the incident particle of velocity v and

that at rest is given by

Emax
r (v) =

2v2µ2
N

mN

, (1.12)
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and the reduced mass by

µN =
mχmN

mχ +mN

. (1.13)

We followed again the notation used in Ref. [66]. Here MTarget is the target mass, mN

the mass of the nuclear scattering partner, ρχ the local DM density, mχ the DM mass,

v the incident DM velocity and dσ(v)
dER

the DM-nucleus cross-section that itself depends

on the velocity. f the coupling strength. The minimal required velocity to inflict a

recoil is given by

vmin =
�

(ERmN) / (2µ2
N). (1.14)

The spin-dependent interaction cross section can be written as [6]

dR

dER

=
2ρ0
mχ

σSD
p/n

�
i,T

fi,T

�
Ji,T + 1

3Ji,T

�
�
Sp/n,i,T

�2
µ2
p/n

�
η (vmin) . (1.15)

The parameter fi,T is the fraction of each nucleus in the target scaled by its mass:

fi,T =
nT ζ

imi
T�

i,T ′ nT ′ζ imi
T ′
. (1.16)

Here we follow the notation used in Ref. [6]. Since we are mostly interested in low

energy scattering, we put the form factor to unity, it would be required for higher

energy scattering to include it as proposed e.g. in Ref. [75]. nT is the multiplicity of

the nucleus T , ξi is the natural abundance of the isotope i, and mi
T is its mass. Ji,T is

the nuclear ground state angular momentum of the isotope i of nucleus T ;
�
Sp/n,i,T

�
is the expected value of the proton/neutron spins in the target isotope i of nucleus T

and µ2
p/n the nucleon-DM reduced mass, and η(vmin) is the mean inverse velocity in

the SM halo where vmin is the minimum velocity required to produce a nuclear recoil

of energy ER.

The spectra for different target materials and DM masses are calculated and

exemplary plotted in Fig. 1.5, normalized to the reference cross-section for spin-

independent scattering. What is clearly visible is the inverse proportionality of the

scattering rate with the DM mass and the proportionally required energy threshold.

The same holds for the nuclear mass: higher mass leads to a higher rate but also to

a lower required energy threshold. Therefore, lighter target nuclei will generally be

beneficial for light DM searches since the required energy threshold for detecting DM

particles of a fixed mass can be higher. However, the overall expected rate will also
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Figure 1.5: Expected DM scattering rates under standard elastic DM nucleus scattering
assumptions. (left) Different scenarios for DM masses (purple-red colored lines), (right)
scenarios for different target materials (blue-yellow colored lines).

be lower, which is why heavier materials can more efficiently test heavier DM masses

at a fixed amount of collected exposure.

The scattering rate does furthermore depend on seasonal effects due to the move-

ment of the Earth around the sun, as discussed in Sec. 1.1.3. This effect is fully

represented in the velocity of the DM particles.

This model includes only the very basic assumptions about DM scattering. It was

recently shown that the expected spectra can be significantly changed by additionally

considering inelastic effects such as Bremsstrahlung or the Migdal effect [76,77]. These

do not intrinsically change the assumptions about DM, only about the scattering

process. In principle, comparing results with different assumptions about the scattering

process is valid. However, it is common in the community to avoid this comparison

since it could lead to misinterpretations about the potential performance reach of the

individual experiments. Very light DM is only accessible by assuming an additional

DM electron scattering channel [78]. This assumption does change the DM model since

the classical WIMP-like DM would not have a relevant cross-section with electrons.

Such results can not be compared directly.

There are different experimental techniques to measure particle scattering in a

detector. We classify them by the detected signal quanta: photons, phonons, and

electron-hole pairs. The channels are visualized in Fig. 1.6. Ionization detectors are

probably the simplest to realize. A particle recoil inside a target will cause a certain

amount of ionized atoms. Simply putting the target under an electrical potential

difference leads the electrons and holes to drift into opposite directions, inducing a

measurable current spike. The amount of produced electron-hole pairs depends on the

material’s technological realization and band gap. A lower band gap generally leads
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Figure 1.6: Schematic visualization of the three experimental detection channels
of particle scattering. (left) A scintillating target produces photons in a particle
interaction that can be measured with a nearby detector. (center) Electron-hole pairs
are created in a particle interaction in a target. Especially sensitive are targets with
low band gaps as semiconductors. (right) Particle interactions in a target produce
excitations in the target structure, a lattice for crystalline solids. These excitations
can be measured with dedicated phonon detectors.

to a higher number of signal quanta and a finer level of signal quantization, which

is beneficial for low-threshold detectors. Charge coupled devices (CCDs), e.g. used

in Ref. [79], can be used to collect charge over a long exposure time and read it out

at a later point, leading to good spatial resolution of the interaction points. The

spatial resolution can be used for event discrimination since different particles leave

different traces in the detector. However, such devices usually have no useful temporal

resolution. A significant advancement was the Skipper CCD [80] technology that has

the advantage that the charge can be read out multiple times, lowering the readout

noise significantly. These devices achieve energy resolutions significantly below their

single electron resolution, they therefore reached their natural quantization limit.

Modern low-threshold ionization detectors use a more sophisticated detection regime

by combining it with phonon detectors [81, 82].

Phonon detectors are detectors that measure the amount of produced thermal and

athermal phonons in a particle interaction. They are often thermistors, e.g. TES and

neutron transmutation doped (NTD) sensors, measuring the temperature increase in a

small-scale sensor, but other types of readout exist that detect magnetization (see also

Sec. 2.2.4) or changes in resonator frequencies, e.g. kinetic inductance detectors (KIDs),

see Ref. [83]. While thermal phonons follow the expected energy distribution of the

observed temperature increase in the material from the deposited energy in the particle

recoils, athermal phonons are out-of-equilibrium short-lived excitations that can have

energies far above the thermal distribution. While the early phonons detectors were
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mostly optimized for thermal signals, real thermometers, modern phonons detectors

are optimized for the efficient collection of athermal phonons and can reach with

that much better sensitivity. For this technology, the deposited energy needs only to

increase the temperature of the sensor, not that of the whole target, which typically

has a larger mass and heat capacity. Differently from the ionization channel, the

energy measured in the phonon channel is in good approximation independent of the

type of particle interaction and provides a total energy scale.

It is possible to manufacture a two-channel readout, combining ionization and

phonon signal. This can be done by applying a moderate or no voltage via the

ionization readout channel and simultaneously reading out the phonon channel. The

significant advantage of two-channel readouts is that they enable PD between charged

and neutral particles and leptons flavors, baryons, and photons since they typically

induce different electron-hole pairs for the same total recoil energy. We discuss the

analysis techniques for PD in more detail in Sec. 3.2. A pure ionization detector needs

to be calibrated individually for different recoil types.

A modern approach to improve sensitivity is to apply a strong voltage to the

ionization channel and exploit the Neganov-Trofimov Luke (NTL) effect. A particle

interaction induces electron-hole pairs, which get accelerated by the strong voltage,

producing more phonons than in the initial recoil. This can effectively lead to an energy

resolution below the single electron limit [84], while retaining temporal resolution of

≈ milliseconds and lower. However, in this scenario, the channels cannot be used

independently for event discrimination.

Finally, scintillation detectors measure the produced scintillation light in a target

from particle scattering. The light is collected in an external, spatially separated

detector with a direct line of sight to the target, which is itself an ionization or

phonon detector. While this technology sounds as if it was the most complex one, it

is likely the easiest to realize, since strong scintillators and sensitive light detectors,

as e.g. photomultiplier tubes (PMTs), are also industrially produced and can be

bought with sufficient sensitivity. Also, scintillation channels can be combined with

the phonon and ionization channels for event discrimination. For the combination of

scintillation and phonons readouts, scintillating crystals are used, where a phonon

sensor sits directly on the crystal, and a light detector collects the scintillation light

close by [30].

Nuclear recoils typically inflict a much weaker signal than electron recoils for

ionization and scintillation channels. This effect can additionally depend on the recoil
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energy. The function quantifying this effect is called the QF. Dedicated measurements

of target QFs are routinely conducted in the preparation of experiments.

An innovative approach for light and phonon read-out is based on superfluid

helium-4. Quasiparticles that scatter with the liquid surface cause evaporation of

helium atoms, which can then be collected with sensors separated through a vacuum

gap [85]. The scintillation light can be collected with remote sensors as well and

potentially with submerged sensors. This technology has great potential since helium

as a light target would cause high expected DM recoil energies, and the adsorption

of helium atoms on suitable sensor surfaces can induce an additional boost in the

measured energy.

The combination of scintillation and ionization channels is often used in time

projection chambers (TPCs) with liquid targets [86]. An incident particle causes a

trace of signal quanta that travels to sensors on the edges of the containing vessel.

The prompt scintillation photons and the electron-hole pairs have different drift times,

which leads to different time delays and amounts of measured signal quanta in the

channels. This effect can be used for PD and for localization of the recoil sight.

The presented signal readout channels are used by various experiments to test DM

models. The following section summarizes some of their most recent results.

1.4 Latest experimental results

Experiments are using a variety of technologies to test DM. Results are quantified for

elastic DM nuclear scattering in the parameter space of the reference cross-section and

DM mass. This is depicted in Fig. 1.7 for several relevant recent results in the classical

WIMP mass region and its lighter generalizations. The strongest results in the GeV/c2

mass region are obtained by the XENONnT and LZ experiments [86, 93], and the

DarkSide experiment [92] by using large TPCs filled with xenon or argon. Those have

the significant advantage that a liquid-containing vessel can be easily scaled up to

high masses, to the order of tons of target mass, and therefore high exposure can be

collected. Furthermore, the heavy targets increase the expected DM scattering rate

for high DM masses. Their results already reach the background from elastic nuclear

scattering of solar and other neutrinos. Testing this parameter space is significantly

harder since the omnipresent background can hardly be discriminated from DM

recoils. Directional approaches could, in principle, discriminate, but with current

technology, those are not realizable for a high mass and high exposure regime [97].

The HeRALD experiment, which is a part of the larger TESSERACT collaboration,
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Figure 1.7: Upper limits on the cross-section of elastic DM-nucleus scattering by
experiments using cryogenic solid state detectors (red) [30, 87–90] and liquid noble
gas TPCs (blue) [86, 91–93]. The DAMIC experiment (light blue dash-dotted) [79]
uses CCD sensors, the EDELWEISS experiment germanium ionization detectors [94].
The two islands (light blue, black edges) are from discovery claims of the DAMA
experiment [37,95]. A limit after background subtraction from the COSINE experiment
(black) constrains the parameters space of the DAMA claim under the standard
assumptions discussed in the text [43]. The lower part of the parameter space is harder
to access experimentally due to the presence of the so-called neutrino fog (grey) [96].

and the DeLIGHT experiment planned using superfluid helium-4 targets and could

reach a new optimum between target mass and low detection threshold [85, 98, 99].

Another technology that was formerly competing with TPCs is germanium ioniza-

tion detectors used by the EDELWEISS experiment [94]. Those have better scaling

properties than phonon readouts, but do not reach competitive energy thresholds, and

not the same exposure as TPCs.

Solid state detectors are today the most sensitive devices for detection of low

mass nuclear scattering, i.e. testing sub-GeV/c2 DM masses. They use phonon

readouts through superconducting thermometers to reach recoil energy threshold down

to energies of eV [87]. These low thresholds are additionally enabled by collecting

athermal high-energy phonons from targets with high Debye temperature and low mass.

Using relatively light target nuclei enables them to detect the low energy scattering

of light DM particles that would remain below the detection threshold of larger
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targets. The strongest results in the low mass DM region are currently obtained by the

CRESST and SuperCDMS [30,87–90] experiments, where CRESST traditionally uses

as scintillation light channel for PD and SuperCDMS an ionization channel. Promising

preliminary results were also presented by the SPICE experiment, which is also a

part of the TESSERACT collaboration. Solid state detectors are currently challenged

by a limiting LEE of events whose origin is not yet fully understood. An external

particle origin has been excluded, and the most likely hypothesis is stress effects in

the target crystal or its interface with the sensor. The technology of superconducting

thermometers and their challenges are discussed in great detail in Sec. 2. The CRESST

experiment and its latest results are discussed in more detail in Sec. 5.

Scintillating targets without PD were used in the early days of DM searches. It is

difficult to reach low energy thresholds with such detectors, and the impossibility of

discriminating EM backgrounds requires pure target crystals and a good knowledge

of the expected EM rates prior to the measurement. Often sodium iodide is used

as a target due to its strong scintillation efficiency. Such searches are relatively

easy to scale to larger target masses. The most prominent experiment using solely

scintillating targets is the DAMA/LIBRA experiment. This experiment has gained

popularity since it is the only one that claims to measure a signal compatible with a

DM hypothesis. With a large measurement time of over 22 years and an exposure of

2.86 tonne years, they measure a modulation in their rate with 13.7 σ confidence that

is within the expectation of the annual modulation of a DM signal [38]. Measuring

the DM modulation was considered a smoking gun evidence of a discovery. However,

the parameter space in which DAMA measures the signal is excluded by numerous

other experiments under standard assumptions. Currently, no model of astrophysics

and DM known would lead to a positive signal in the DAMA measurements but to

null results in all other experiments. The DAMA experiment could so far exclude

all reasonable alternative explanations of their signal modulation. The signal claim

remains, therefore, a mystery and potentially one of the hottest leads to a discovery

of new physics, be it DM or another yet unknown effect.

Multiple other experiments are on the quest to validate the DAMA signal claim,

using the same target material to exclude a dependency on wrongly modeled interaction

mechanisms with different nuclei. Out of those experiments, the ANAIS experiment has

already obtained good results, excluding the DAMA islands with 3 σ confidence [42].

However, a discussion about the compatibility of the light outputs of the different

crystals remains unresolved in the community, which could lead to an additional

uncertainty of the confidence of the exclusion. The SABRE experiment is currently
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built up with the special feature that they have two identical experimental sights on

the northern and southern hemispheres to investigate potential environmental and

seasonal effects in case they would reproduce the DAMA result [44]. The COSINE

experiment is currently built up as well. They have published preliminary results

from above-ground R&D measurements with which they exclude a part of the DAMA

discovery space under standard assumptions [43]. However, in the used data set,

they subtracted the expected background, the validity of this method is debated in

the community (see Chap. 3 for analysis methods). An upcoming experiment, the

COSINUS experiment, uses a two-channel readout in a cryogenic detector setting with

a phonon and light channel on a sodium iodide target [45]. This technology enables

the COSINUS experiment to validate the DAMA claim with much less exposure

through its much lower recoil energy threshold for nuclear recoils. Furthermore, the

two-channel read-out would immediately enable the identification of the recoil type

in the scenario of a measured signal and resolve dependencies on the QF that can

be measured in situ. The COSINUS experiment and its status are discussed in more

detail in Chap. 4.

A number of experiments are specialized to measure not nuclear recoils but electron

recoil DM. While this requires additional assumptions on the DM model, it also does

enable searches for by far lower masses and should therefore be mentioned in the

context of light particle-like DM searches. The DAMIC and SENSEI [100] experiments

and their successors DAMIC-M [101] and OSCURA [102] operate large numbers of

silicon CCDs to reach low thresholds and large exposure, especially for electron recoil

DM. Also, the SPICE experiment plans to operate low bandgap semiconductors such

as gallium arsenite, which could potentially provide them with very good energy

resolutions for these DM models.

This section provided a brief overview of DM models and the experimental efforts

in searching for WIMP-like DM. We will use the developed models in the following

chapters when we introduce the CRESST and COSINUS experiments to test DM

models and argue detector design choices for optimized sensitivity, and argue scaling

techniques with machine learning for the large-scale operation of solid-state detectors

in Chap. 6. Before that, we will discuss the technology of superconducting phonons

sensors in more detail in the following Chap. 2.
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Chapter 2

Cryogenic particle detectors with
superconducting thermometers

In current experiments seeking to measure low-mass DM interactions with nuclei of

a target material, the lowest recoil energy thresholds and the strongest sensitivity

are obtained with cryogenic solid state detectors with TES readout. In Ref. [87], the

currently lowest nuclear recoil energy threshold of only 10 eVnr was reported. TES are

a quantum sensor technology extensively used for physics searches: they are combined

with macroscopic absorber crystals for DM searches and coherent elastic neutrino

nucleus scattering (CEvNS) and used as pixel arrays of X-ray sensors in astrophysics

observatories. Today’s technology used for DM searches is mostly based on the devices

introduced in Refs. [103] and [104].

The TES is a superconducting film with low transition temperature Tc that

is thermally coupled to a monocrystalline absorber. The system is cooled to mK

temperatures in a dilution refrigerator, and the temperature of the TES is fine-tuned

to its transition from superconducting to the normal conducting state. Within this

transition, it features a strong relative change of its resistance Rf for small temperature

fluctuations. The TES is operated in a readout circuit, in parallel connection with

a shunt resistance Rs and a pickup coil of inductance L. This current is turned

into a magnetic field by the pickup coil, then translated into a voltage signal by a

superconducting quantum interference device (SQUID) amplifier and subsequently

digitized. This situation is depicted in Fig. 2.1. For completeness, it should be

mentioned that there are also setups where the SQUID is placed in the TES branch.

A particle recoil in the absorber creates an athermal phonon population, which

thermalizes in the crystal and the sensor, producing heat and a subsequent increase in

temperature. The energy threshold of TES-based detectors scales proportionally to the

heat capacity of the crystal or sensor, depending on the detailed design and operation
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Figure 2.1: (left) Schematic view of the strong temperature dependency of a TES
within the transition from its superconducting to its normal conducting state. A small
temperature increase ∆T causes a strong increase of its resistance ∆R, relative to
its normal conducting resistance. (right) A TES readout circuit. The sensor with
temperature-dependent resistance Rf is in an electrically parallel connection with
a shunt resistance Rs and a pickup coil with inductance L. The bias current Ib
distributes in the two branches accordingly.

mode. Therefore, a low transition temperature of the sensor and low operation

temperature, and low heat capacities are crucial to achieve suitable sensitivity.

In the first section of this chapter Sec. 2.1 we introduce a mathematical model

to describe the response and noise of TES-based cryogenic detectors. Following

that, we discuss experimental realizations of such detectors and elements of the

involved microphysics, such that the built mathematical model can be used to obtain

quantitative descriptions. A series of yet unexplained phenomena are seen across

TES devices, and we introduce them in Sec. 2.2.3. Recently, other quantum sensor

technologies that can be used as sensors for particle scattering have emerged. Several

of them are briefly summarized in Sec. 2.2.4.

2.1 Electrothermal response model

A thermal model describing the temperature evolution in the absorber crystal and the

thermometer was originally introduced in Ref. [103]. In Ref. [105], an electrothermal

description of temperature response and noise for an isolated TES was studied in

detail. We adapt the calculation done in these references into a combined description.

For building a tractable model, we make the following assumptions:

• We include only temperature-dependencies of physical quantities that have a
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Figure 2.2: The thermal equivalent circuit of the cryogenic detector system. The
phononic system of the absorber and the electronic system of a thermometer, described
by their temperatures and heat capacities, are thermally coupled to each other and
coupled to a joint heat bath individually. Power inputs (red) impact the temperature
evolution.

strong impact in close proximity to the critical temperature of the thermometer.

This includes the temperature-dependent resistance of the TES, and the heat

capacity of the TES, which is expected to increase by a factor 2.43 when

transitioning from the normal conducting to the superconducting state [106].

For comparability with the literature, especially Ref. [105], it is to note that the

linearized temperature dependency of the TES resistance is sometimes absorbed

into a parameter α, and the current dependency in a parameter β. This work

considers situations where the bias current does not deviate too strongly from a

reference point, which is equivalent to assuming β = 0.

• We neglect the spatial resolution of all involved components.

• We assume a monochromatic distribution of the initially produced athermal

phonon population after particle recoils that thermalizes through surface scat-

tering.

• We assume the heat capacity of the non-conducting absorber crystal to be

dominated by its lattice phonons and that of the metallic sensor by its electrons.

• We assume that all thermal components are coupled to an ideal heat bath with

infinite heat capacity.

These assumptions are sufficiently met in typical devices. However, they restrict

the reliability of the model to a temperature range close to the critical temperature.
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Furthermore, predictions derived from the model by changing physical quantities

have to be controlled for consistency with measurement, as several of the effects

neglected through our assumptions are absorbed in the parameters of the model. The

evolution of temperatures of the absorber Ta and the thermometer Te are in this model

fully described by the heat capacities of the absorber’s phononic system Ca and the

thermometer’s electronic system Ce, their thermal coupling to each other Gae and to

a joint heat bath of temperature Tb, the time-dependent power inputs in the photonic

system Pa(t) and electronic system Pe(t) and the initial temperatures. This situation

can be described as a thermal-equivalent circuit and is depicted in Fig. 2.2.

The thermal and electronic circuits can be expressed individually by systems of

ordinary differential equations (ODEs). They accumulate into a joint ODE system

through the coupling between them caused by the temperature-dependency of the

TES’s resistance:

Ce
dTe

dt
+ (Te − Ta)Gea + (Te − Tb)Geb = Pe(t), (2.1)

Ca
dTa

dt
+ (Ta − Te)Gea + (Ta − Tb)Gab = Pa(t), (2.2)

L
dIf
dt

+RsIb − (Rf (Te) +Rs)If = 0. (2.3)

Here, Eqs. (2.1) and (2.2) describe the temperature evolution in the thermometer and

absorber components with a heat equation of zero spatial dimensions, respectively.

Eq. (2.3) is a mesh analysis of the currents in the readout loop. The power inputs in

the components have several contributions:

• The thermalization of an athermal phonon population induced by particle recoils

in the crystal releases heat in the crystal and thermometer on an exponential time

scale τn. A share ϵ of the phonon population thermalizes in the thermometer.

The total released heat over time equates to the deposited energy ∆E in the

particle recoil.

• The electrical resistance of the TES causes Joule heating on the TES. This effect

is also called self-heating, bias heating or electrothermal feedback (ETF).

• A constant heating is induced by a heating resistor RH deposited on the crystal.

For controlling the magnitude of the heating, we adopt the conventions of the

electronics of the CRESST experiment, where a digital-analog converted (DAC)

value between zero and ten volt is the output, interpolating linearly between
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the maximal heating current IH and no heating. We introduce an additional

parameter δH that absorbs any deviation of the power released to the TES

from the average temperature increase in the heater. This absorbs any spacial

dependency of the temperature distribution in the crystal and can also be used

to model non-standard heater placement, e.g. in direct thermal connectivity

with the TES.

• Additionally to the heating, heater pulses can be injected through the heating

resistor. Such heater pulses mimic the released heat from phonon thermalization

on an exponential time scale τTP , and their magnitude and distribution of

released heat are analogous to the constant heating controlled by parameters

TPA and δ. The test pulse amplitude (TPA) is the parameter controlling the

height of injected heater pulses, and we will use is extensively in Chap. 3 for

energy calibration and other analysis. The parameter δ can deviate from the

parameter δH , which additionally absorbs potential athermal phonon populations

produced by the heater and other non-equilibrium effects.

The linear and uncorrelated control scales of heating and heater pulses can, in practice,

be realized by square-rooting the sum of the heater and pulse outputs. In summary,

the power inputs for particle recoils, or heater pulse injection at t = 0, for times t > 0,

read:

Pe(t) = ϵ
∆E

τn
exp(

t

τn
) +RfI

2
f

+ δ
TPA

10
exp(

t

τTP

)βRHI
2
H + δH

DAC

10
RHI

2
H , (2.4)

Pa(t) = (1− ϵ)
∆E

τn
exp(

t

τn
)

+ (1− δ)
TPA

10
exp(

t

τTP

)βRHI
2
H + (1− δH)

DAC

10
RHI

2
H . (2.5)

The ODE system (2.1-2.3) is in general not analytically solvable. However, it can

be simplified in certain practically useful scenarios to derive analytic solutions of

the response to particle recoils and noise conditions in equilibrium. Furthermore, a

numerical solution can always be calculated with standard ODE solvers. For this, the

equations can be generalized in matrix-vector notation:
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Ṫ (t) = diag(C)−1

�
P
	
t, T (t), If (t)

�
+ diag

�
Gb

� �
Tb − T (t)

�
+ (G− diag(G1))T (t)

�
, (2.6)

İf (t) = diag(L)−1

�
diag

�
Rs

�
Ib − diag

	
If (t)

�	
Rf (T (t)) +Rs

��
.

Here, underlined (double underlined) quantities are vectors (matrices). This system

has the advantage that it can describe an arbitrary number of thermal components

and readout loops, which is useful for detector designs with multiple TES or additional

separate thermally coupled crystals. G is the symmetric matrix containing the thermal

couplings between all components. All other quantities are analogous to their scalar

versions generalized to vectors.

To study analytical solutions, we separate the system into three temperature scales

that interact with each other only negligibly:

T = Tb +∆Theating +∆Tpulse +∆Tnoise,

where

Tb +∆Theating ≫ ∆Tpulse ≫ ∆Tnoise.

In the following, we discuss solutions of the system on the temperature scale of low

energy particle recoils in the absorber ∆Tpulse, noise fluctuations ∆Tnoise and the

equilibrium state Tb +∆Theating.

2.1.1 Small signal approximation

Consider a particle recoiling in the absorber crystal. We introduced as part of Eqs. (2.4

- 2.5) the resulting power inputs in the thermal system, which we call Pe, particle(t)

and Pa, particle(t). We assume a low energy particle recoil, causing a small enough

temperature rise that we can linearly approximate the resistance change in the TES,

and treat the heat capacity of the TES as constant. Furthermore, we ignore the

feedback of the pickup coil in the readout circuit, L = 0. In this scenario, we only

need to consider the thermal equations of our ODE system Eqs. (2.4) and (2.5). To

isolate the effect of the particle recoil from the equilibrium state, we separate constant

and time-dependent parts of the quantities by substitution:
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Te(t) = Te0 +∆Te(t),

If (t) = If0 +∆If (t),

Pe(t) = Pe0 +∆Pe(t),

and equivalent for the absorber equation. The explicit time-dependency is in the further

considerations omitted for better readability. Before we insert these substitutions in

the system of equations, we treat the self-heating term in Eq. (2.4). It is the only

nonlinear term, and we use its subdominant effect on the total heating to approximate

it linearly. In the following, we depict with ≈ a Taylor series in first order:

RfI
2
f ≈ Rf0I

2
f0 +

d

dTe

�
RfI

2
f

�
(Te0 +∆Te),

where the total derivative can be found as

d

dTe

�
RfI

2
f

�
=

d

dTe

�
RfR

2
sI

2
0

(Rf +Rs)2

�
=



−2Rf0R

2
sI

2
0

(Rf +Rs)3
dRf

dTe

����
Te0

+
R2

sI
2
0

(Rf +Rs)2
dRf

dTe

����
Te0

�

=

�−2Rf0R
2
sI

2
0

(Rf +Rs)3
+

R2
sI

2
0 (Rf +Rs)

(Rf +Rs)3

�
dRf

dTe

����
Te0

= −I2f
(Rf0 −Rs)

(Rf0 +Rs)

dRf

dTe

����
Te0

def
= −GETF .

Here, we used the current divider rule for the currents in the two branches of the

readout circuit. This description of the self-heating effect as an additional coupling to

the heat bath allows us to absorb it in the coupling constant Geb and express them as

a joint and effective thermal coupling:

Geff = Geb +GETF

The equations can then be summarized into the standard matrix-vector form of a

first-order ODE system:
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d

dt

�
∆Te

∆Ta

�
= −



Gea+Geff

Ce
−Gea

Ce

−Gea

Ca

Gea+Gab

Ca

��
∆Te

∆Ta

�
+

�
∆Pe

Ce
∆Pa

Ca

�
. (2.7)

This procedure is also legitimate if the absorber and thermometer have different base

temperatures in their equilibrium state. An analytical solution to this system can be

derived by using the fact that the expression

x = X(t)

� t

0

X(s)−1b(s)ds (2.8)

is a solution to a linear ODE system

x′ = A(t)x+ b(t), (2.9)

where X(t) is the fundamental matrix whose columns are eλ1tv⃗1, e
λ2tv⃗2 with (λi, vi)

the eigenvalues and -vectors of the coefficient matrix of Eq. (2.7):

X =
�
eλ1tv1, eλ2tv2

�
.

This statement also holds for coefficient matrices with non-constant coefficients, where

the integral can always be solved numerically. In our case, the coefficient matrix of

Eq. (2.7) consists of constants, and the eigenvalues read

λ1,2 =
−a∓√

a2 − 4b

2
def
= − 1

τ1,2

�
def
= − 1

τin,t

def
= −sin,t

�
,

with

a
def
=

(Gea +Geff )Ca + (Gea +Gab)Ce

CeCa

, b
def
=

(Gea +Geff )(Gea +Gab)−G2
ea

CeCa

.

The eigenvalue λ1 (λ2) induces a smaller (larger) time constant τ1 = τin (τ2 = τt) that

can be interpreted as the thermal relaxation time of the thermometer (absorber). We

fixate an orthonormal set of eigenvectors by choosing a specific parametrization that

will be useful later in this section:

v1,2 =

�
α1,2

1

��
1 + α2

1,2

�−1/2
, α1,2

def
= 1 +

Gab

Gea

+ λ1,2
Ca

Gea

. (2.10)
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The matrix X(t) and its inverse can now be derived:

X(t) =



(1 + α2

1)
−1/2

eλ1tα1 (1 + α2
2)

−1/2
eλ2tα2

(1 + α2
1)

−1/2
eλ1t (1 + α2

2)
−1/2

eλ2t

�
, (2.11)

X(t)−1 =
1

(α1 − α2)

� �
(1 + α2

1)e
−λ1t −�

(1 + α2
1)e

−λ1tα2

−�
(1 + α2

2) e
−λ2t

�
(1 + α2

2) e
−λ2tα1

�
. (2.12)

With that, we can calculate solutions for arbitrary inhomogeneities ∆Pe(t) and ∆Pa(t).

By using the power inputs expected from scattering particles, we introduce a third

time constant τn in the system that corresponds to the effective thermalization time

of phonons in the combined system of crystal and thermometer:

∆Pe(s) = ϵ
∆E

τn
exp

�−t

τn

�
∆Pa(s) = (1− ϵ)

∆E

τn
exp

�−t

τn

�
.

The integrant of Eq. (2.8) can then be written as

I(s) =
1

(α1 − α2)

� �
(1 + α2

1)e
−λ1s −�

(1 + α2
1)e

−λ1sα2

−�
(1 + α2

2) e
−λ2s

�
(1 + α2

2) e
−λ2sα1

�
...

...

 ϵ∆E
τn

exp(−s
τn
)

Ce

(1−ϵ)∆E
τn

exp(−s
τn
)

Ca


=

∆E
τn

(α1 − α2)

 �
(1 + α2

1)
	

ϵ
Ce

− α2
(1−ϵ)
Ca

�
exp

	
− s

τn
+ s

τ1

�
−�

(1 + α2
2)

	
ϵ
Ce

− α1
(1−ϵ)
Ca

�
exp

	
− s

τn
+ s

τ2

� ,

and the integral in Eq. (2.8) as

� t

0

I(s)ds =
∆E
τn

(α1 − α2)

������

�
(1 + α2

1)
	

ϵ
Ce

− α2
(1−ϵ)
Ca

�	
− 1

τn
+ 1

τ1

�−1

...

...
	
exp

	
− t

τn
+ t

τ1

�
− 1

�
−�

(1 + α2
2)

	
ϵ
Ce

− α1
(1−ϵ)
Ca

�	
− 1

τn
+ 1

τ2

�−1

...

...
	
exp

	
− t

τn
+ t

τ2

�
− 1

�

������ .

By multiplying again with X(t), we reach the solution of the system, which we state

separately for the temperature rise in the thermometer and absorber induced by the

particle recoil:
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∆Te(t) =
α1

∆E
τn

(α1 − α2)

�
α2

(1− ϵ)

Ca

− ϵ

Ce

��
1

τn
− 1

τ1

�−1 	
e−

t
τn − e

− t
τ1

�
...

... +
α2

∆E
τn

(α1 − α2)

�
α1

(1− ϵ)

Ca

− ϵ

Ce

��
1

τn
− 1

τ2

�−1 	
e
− t

τ2 − e−
t
τn

�
∆Te(t)

def
= An

	
e−

t
τn − e

− t
τ1

�
+ At

	
e
− t

τ2 − e−
t
τn

�
, (2.13)

and

∆Ta(t) =
∆E
τn

(α1 − α2)

�
α2

(1− ϵ)

Ca

− ϵ

Ce

��
1

τn
− 1

τ1

�−1 	
e−

t
τn − e

− t
τ1

�
...

...+
∆E
τn

(α1 − α2)

�
α1

(1− ϵ)

Ca

− ϵ

Ce

��
1

τn
− 1

τ2

�−1 	
e
− t

τ2 − e−
t
τn

�
∆Ta(t) =

1

α1

An

	
e−

t
τn − e

− t
τ1

�
+

1

α2

At

	
e
− t

τ2 − e−
t
τn

�
. (2.14)

Note that these equations describe two pulses with individual amplitudes and three

overall time constants. The faster pulse, which incorporates τ1, can be interpreted

as the thermalization of athermal phonons in the thermometer and the subsequent

relaxation of the thermometer. The slower pulse that incorporates τ2 can be interpreted

as a similar process in the absorber. The values α1 (α2) are the values by which the

faster (slower) pulse shape in the thermometer temperature is amplified or suppressed

relative to the absorber temperature. We considered our equation only for times t > 0.

To generalize it to any real-values time, we need to write an additional Heavyside

function in the power inputs and solution to preserve the physical description of a

sudden power input induced by scattering:

∆Te(t) = Θ(t)
�
An

�
e−t/τn − e−t/τin

�
+ At

�
e−t/τt − e−t/τn

��
, (2.15)

∆Pe(s) = ϵ
∆E

τn
exp

�−t

τn

�
, (2.16)

∆Pa(s) = (1− ϵ)
∆E

τn
exp

�−t

τn

�
. (2.17)

The amplitudes of the pulses in the thermometer can be written in compact forms

A1
def
= An

def
=

∆E
τn	

1− α2

α1

� �
α2

(1− ϵ)

Ca

− ϵ

Ce

��
1

τn
− 1

τ1

�−1

(2.18)

= − P0(sin − (Gab/Ca))

ε(sin − st)(sin − sn)

�
st − (Gab/Ca)

Geff − (Ce/Ca)Gab

− ε

Ce

�
, (2.19)
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Ce Ca Geff Gab Gea ϵ τn
(pJ/mK) (pJ/mK) (pW/mK) (pW/mK) (pW/mK) (ms)

1 · 10−3 3.8 · 10−2 3 0.7 4.5 · 10−2 0.08 2

Table 2.1: Physical quantities of an exemplary cryogenic detector, adapted from
Ref. [103], at the operation temperature of 20 mK. The calculated relaxation times of
the thermometer and absorber are τin = 0.373 ms and τin = 51.1 ms. The amplitudes
in the thermometer are An = 154 µK and At = 3.61 µK, and the amplitude of the
thermal temperature rise in the absorber is 243 µK.

and

A2
def
= At

def
= −

∆E
τn	

1− α1

α2

� �
α1

(1− ϵ)

Ca

− ϵ

Ce

��
1

τn
− 1

τ2

�−1

(2.20)

=
P0(st − (Gab/Ca))

ε(st − sin)(st − sn)

�
sin − (Gab/Ca)

Geff − (Ce/Ca)Gab

− ε

Ce

�
, (2.21)

where the second lines match the formulas Ref. [103], except for a global sign (Eq. (2.19),

marked in red), which was accidentally omitted in Ref. [103], according to private

communications with the authors. The temperature rises in the absorber can be

derived by dividing An (At) by α1 (α2).

We confirm our formula by comparing it with a numerically calculated solution

of Eqs. (2.7). We use values for all physical quantities from Ref. [103]. They are

summarized in Tab. 2.1, jointly with the calculated values for the relaxation times

and amplitudes. The resulting pulse shape from a particle recoil is shown in Fig. 2.3.

The rise time of the temperature pulse in the absorber corresponds to τn, while that

in the thermometer corresponds for the chosen detector to τin < τn. This scenario

is called the bolometric mode because the thermometer relaxes faster than it heats

up, and the temperature rise effectively scales with the power input. The scenario

τin > τn would be called calorimetric mode because the thermometer accumulates the

power, and the temperature rise scales with the total amount of deposited energy.

In this scenario, the rise time of the pulses in the absorber and thermometer are

both τn. These two modes, and their impact on the sensitivity of the device, are

discussed in more detail in Sec. 2.2.2. We can observe a discrepancy between the

calculated thermal pulse amplitudes and the observed PHs of a factor ≈ 1.8(1.2) for

the thermometer (absorber), observable by comparing Tab. 2.1 with the pulses in

Fig. 2.3. This discrepancy arises because the values of τin and τn are relatively close
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Figure 2.3: Resulting pulse-shaped temperature rise from a 60 keV absorber recoil in
the thermometer (blue, top panel) and absorber (orange, central panel) of a cryogenic
detector with the physical quantities summarized in Tab. 2.1. Shown are the analytic
solutions calculated with Eqs. (2.13) and (2.14) (continuous lines), numerical solutions
calculated from Eqs. (2.7), and their residuals (bottom panel). The pulse in the
thermometer (absorber) has a height of 86.4 (204) µK, consistent with the pulse
heights (PHs) reported in Ref. [103].

together: the athermal pulse component starts to fall again, before it has risen fully.

The value An is therefore only in a fully calorimetric or fully bolometric mode a useful

description of the height of the non-thermal pulse component.

To derive the observable voltage pulse shape, we need to calculate the proportional

current change in the SQUID branch of the readout circuit caused by ∆Te. This is

given by rearranging Eq. 2.3 in a small signal approximation while neglecting the

impact of the pickup coil L ≈ 0:

∆Is(∆Te) ≈ IbRs

(Rs +Rf (Te0))2
dRf

dTe

����
Te0

∆Te (2.22)

We will use this formula in the next Sec. 2.1.2, to compare the magnitude of voltage

pulses with the omnipresent sensor noise. Neglecting the coil is justified, since it

typically has values of ≈ µH and causes therefore only a pole in frequencies far above

the interesting spectrum.

2.1.2 Noise fluctuations

To quantify the sensitivity of a cryogenic detector, we are interested in its thermal

response to particle recoils and the omnipresent noise in the sensor, above which
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the recoil signature has to rise to induce a detectable event. A noise model can be

derived by adapting the procedure described in the previous section, as was done in

Ref. [105]. To simplify the model to its most relevant contributions, we consider only

the thermal equation of the TES Eq. (2.4) and the electrical equation of its readout

circuit Eq. (2.3). This effectively means that we ignore noise contributions that arise in

the absorber by thermally decoupling the TES from the absorber, i.e. Gea = 0. While

this simplification seems justified, since energy deposition or temperature fluctuations

in the TES should have a much larger effect on the observables, the exact contribution

of noise from the absorber is unclear and is briefly discussed in Sec. 2.2.3. The system

then reads:

Ce
dTe

dt
+ (Te − Tb)Geb = ∆Pe,noise + PJ , (2.23)

−L
dIf
dt

+RSIb − (Rf (Tf ) +RS)If = ∆Unoise, (2.24)

where we consider power and voltage inputs in the system from noise fluctuations

and Joule heating. The equivalent substitutions as in the previous section can be

applied, i.e. Te ≈ Te0 +∆Te , If ≈ If0 +∆If and Pe ≈ Pe0 +∆Pe. A small signal

approximation is used by applying a first-order Taylor approximation on nonlinear

terms. For this, we linearize the self-heating differently from the previous section,

namely with partial derivatives in the state variables. The expression of the Joule

heating that induces fluctuations above the equilibrium state differs for different

types of noise contributions that originate internally in the TES and externally. For

internally produced noise, additional work done by the bias current on an internal

source has to be taken into account:

PJ,ext= RfI
2
f ,

PJ,int= If (RfIf +∆Unoise) .

Here, we introduce color coding to highlight that calculations are applied equivalently

to the two versions of the equations. Treating the external term first, we can linearize:
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PJ,ext = RfI
2
f ≈ Rf0I

2
f0 +

∂

∂If

�
RfI

2
f

�
(If0 +∆If ) +

∂

∂Te

�
RfI

2
f

�
(Te0 +∆Te),

∂

∂If

�
RfI

2
f

�
= 2Rf0If0∆If ,

∂

∂Te

�
RfI

2
f

�
=

∂

∂Rf

�
RfI

2
f

� ∂Rf

∂Te

= I2f0
dRf

dTe

����
Te0

∆Te.

We have used ∆Rf ≈ dRf

dTe

����
Te0

∆Te. Inserting the substitutions and linearized terms

in Eqs. (2.23) and (2.23) leads to the system:

Ce
d∆Te

dt
+∆TeGeb = ∆Pe+2Rf0If0∆If + I2f0

dRf

dTe

����
Te0

∆Te,

L
d∆If
dt

+ (Rf0 +RS)∆If + If0
dRf

dTe

����
Te0

∆Te = ∆U ,

where we omitted the extended subscripts of the power and voltage inputs for better

readability. This system can be treated conveniently in Fourier space, where time

derivatives can be expressed as complex coefficients. Exploiting this, we rearrange the

equations into a system of linear equations:



Geb−I2f0

dRf

dTe

����
Te0

+ 2πwiCe

�
∆Te−2Rf0If0∆If = ∆Pe,

If0
dRf

dTe

����
Te0

∆Te + (Rf0 +RS + 2πwiL)∆If = ∆U.

In Ref. [105], several time constants were introduced to express the underlying physics

and improve the symmetries of the system. These are:

τ
def
=

Ce

Geb

, τel
def
=

L

Rf0 +RS

,

τI
def
=

τ

(1− LI)
, LI

def
=

I2f0
Geb

dRf

dTe

����
Te0

,

where τ is the intrinsic relaxation time of the isolated thermometer, without considering

the effect of self-heating, τel is the characteristic time constant of the RL circuit that

is the readout loop, τI is the relaxation time of the thermometer, including the effect

of the self-heating, and LI , called the low-frequency loop gain under constant current,
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characterizes the sensitivity of the thermometer to temperature fluctuations. The

value LI is a useful control variable for the stability of the TES: a scenario with LI > 1

is called thermal runaway, and can cause unstable operation conditions. The system

can be written in a compact matrix-vector form:	
1

(τI)ext
+ 2πwi

�
Ce (−2Rf0If0)ext

GebLI

If0

	
1
τel

+ 2πwi
�
L

�
∆Te

∆If

�
=

�
∆Pe

∆U

�
. (2.25)

When comparing with Ref. [105], be aware that the element (2,1) of this matrix

contains the equilibrium current through the TES If0 for us, and the bias current Ib

for them. This is because they are using a voltage-biased circuit, where the current

through the TES equals the total current in the loop, while we treat a current-biased

parallel loop, where currents distribute in the branches. The equivalent calculation

can be done for noise fluctuations internal to the TES, where the green marked (·)ext
terms need to be replaced with their internal equivalents. We derive these elements

by linearizing the internal expression for Joule heating:

PJ= If (RfIf +∆U)

= If

�
RsIs + L

dIs
dt

�
= If

�
Rs(−If + Ib)− L

dIf
dt

�
= −I2fRs + IfIbRs − IfL

dIf
dt

≈ −I2f0Rs − 2RsIf0∆If + If0IbRs +∆IfIbRs − (If0 +∆If )L
d(If0 +∆If )

dt

= If0(−If0 + Ib)Rs + (−2If0 + Ib)Rs∆If − If0L
d∆If
dt

,

and expressing the result in Fourier space as done for the external form, where we

also use the formula IbRs =If0(Rs +Rf0 + 2iπwL) from the initial mesh analysis

of the readout loop:

PJ(w) = −I2f0Rs + IbRs + (−2If0Rs + IbRs − 2iπwIf0L)∆If

−∆PJ(w)

∆If
= (2If0 − Ib)Rs + 2iπwIf0L

= If0(Rs −Rf0)int.
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Additionally, we do not observe in this derivation the self-heating term depending

on ∆T , and the green marked element in the (1,1) element of Eq. 2.25 should be

replaced by its internal equivalent. The (·)ext terms in the (1,1) and (1,2) elements

are, therefore, to be replaced with:

(τ)int, (If0Rs − If0Rf0)int . (2.26)

Eq. (2.25) can be solved by matrix inversion, which provides a transfer matrix for

the resulting temperature fluctuations in the TES, and current fluctuations through

the TES, from initial power fluctuations in the TES and voltage fluctuations in the

readout circuit:

�
∆Te

∆If

�
def
=

�
s11(w) s12(w)
s21(w) s22(w)

��
∆Pe

∆U

�
.

The calculation, exemplary for the external form, reads:

�
s11(w) s12(w)
s21(w) s22(w)

�
=

	
1

(τI)ext
+ 2πwi

�
Ce (−2Rf0If0)ext

GebLI

If0

	
1
τel

+ 2πwi
�
L

−1

=
1

ad− bc

�
d −b
−c a

�
... Inversion formula 2x2 matrix

=
1	

1
(τI)ext

+ 2πwi
�
Ce

	
1
τel

+ 2πwi
�
L− GebLI

If0
(−2Rf0If0)ext

...

...

	
1
τel

+ 2πwi
�
L (2Rf0If0)ext

−GebLI

If0

	
1

(τI)ext
+ 2πwi

�
Ce

 ,

resulting in the solutions for the relevant matrix elements of the external transfer

matrix:
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sext21 (w) =
−GebLI

If0	
1

(τI)ext
+ 2πwi

�
Ce

	
1
τel

+ 2πwi
�
L− GebLI

If0
(−2Rf0If0)ext

= − 1

If0

�
Lτ

(τI)extτelLI

− (−2Rf0If0)ext
If0

+ 2πwi
Lτ

LI

�
1

(τI)ext
+

1

τel

�
− 4π2w2τL

LI

�−1

,

sext22 (w) =

	
1

(τI)ext
+ 2πwi

�
Ce	

1
(τI)ext

+ 2πwi
�
Ce

	
1
τel

+ 2πwi
�
L− GebLI

If0
(−2Rf0If0)ext

= sext21 (w)If0
LI − 1

LI

(1 + 2πwiτI).

The equivalent calculation for the internal form results in the solutions:

sint21 (w) =
−GebLI

If0	
1

(τ)int
+ 2πwi

�
Ce

	
1
τel

+ 2πwi
�
L− GebLI

If0
(If0Rs − If0Rf0)int

= − 1

If0

�
Lτ

(τ)intτelLI

− (If0Rs − If0Rf0)int
If0

+ 2πwi
Lτ

LI

�
1

(τ)int
+

1

τel

�
− 4π2w2τL

LI

�−1

,

sint22 (w) =

	
1

(τ)int
+ 2πwi

�
Ce	

1
(τ)int

+ 2πwi
�
Ce

	
1
τel

+ 2πwi
�
L− GebLI

If0
(If0Rs − If0Rf0)int

= −sint21 (w)If0
1

LI

(1 + 2πwiτ).

If the superconductor is in its fully normal conducting or superconducting phase, the

int and ext matrices degenerate to the relevant elements:

snc,sc21 (w) = 0,

snc,sc22 (w) =
1

Rf0 +Rs + 2πwiL
.

These results are consistent with Ref. [105], and provide us with the tools to calculate

the observable current noise in the readout circuit from fluctuations in the system
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caused by underlying physical processes. There are six of these processes that jointly

make up the largest, explainable, share of the observed noise:

• The thermal fluctuation noise from the coupling of the absorber to the heat

bath, called thermal noise or phonon noise, induces a power input in the TES:

|∆Pe|2ph = 4kBT
2
eGeb

2

5

1−
	

Tb

Te0

�5

1−
	

Tb

Te0

�2 ,

|∆If |2ph =
��sint21 (w)

��2 |∆Pe|2ph.

• The electrical Johnson noise in the TES is caused by thermal fluctuations of the

electrons in the resistor:

|∆U |2Jf = 4kBTeRf0,

|∆If |2Jf =
��sint22 (w)

��2 |∆U |2Jf .

• We scale the Johnson noise in the shunt resistors with a factor EJ to account

for excess electrical noise. This phenomenon is further discussed in Sec. 2.2.3.

|∆U |2Js = 4kBTsRsEJ ,

|∆If |2Js =
��sext22 (w)

��2 |∆U |2Js
• The noise in the SQUID amplifier is frequency-independent and decoupled from

the feedback effects in the readout loop. It is therefore added directly to the

output current, with magnitude isq.

• Additional low-frequency excess noise, called 1/f noise or flicker noise, is observed

in TES devices and has a spectral dependency of 1/fα. This phenomenon is

discussed in Sec. 2.2.3 as well. Its magnitude is described following Ref. [107]

with a device- and operation-dependent constant

�
∆Rf,flicker

Rf0

�
, to be found

empirically.

|∆Pe|2flicker =
	

∆Rf,flicker

Rf0

�2

R2
f0

wα
I2f0,

|∆If |2flicker =
��sint21 (w)

��2 |∆Pe|2flicker.
• Electromagnetic inferences cause additional poles in the observed frequency

spectrum. The most prominent contribution is usually the pole from the power

supply and its harmonics at 50 Hz, 150 Hz, and 250 Hz, in the continental

European standard. We include them in noise power spectra and scale them

empirically with constants p0(w), p1(w), and p2(w), respectively.
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Tb Ib Tc k Rt0 Rs p0
∆Rf,flicker

Rf0
α isq

(mK) (µA) (mK) (1/mK) (Ω) (Ω) (pA/
√
Hz)

15 3 40 0.05 0.4 0.05 5 · 10−6 5 · 10−3 1.5 1.2

Table 2.2: Additional physical quantities for the noise simulation, shown in Fig. 2.4.
Additional values not included in the table are p1 = p2 = δ = δH = 0, EJ = 1 and
η = 57.8 (V/µA), where η is the default conversion factor of the CRESST SQUID
system, from current flow in the SQUID branch of the readout loop to an observable
voltage. The TES curve is modeled as a truncated logistics function with derivative
4kRf0 at its steepest point. A lowpass filter is applied at 10 kHz. The transition
temperature of the iridium-gold bilayer TES is higher than typical for modern tungsten
TES. Tc marks the steepest point of the transition and the fully normal conducting
state is only reached above 100 mK (see Fig. 2.4).

Because the noise contributions are independent, they can be summed quadratically.

The absolute value of the observable current fluctuation in the SQUID branch of the

readout circuit is equal to the calculated current fluctuations in the TES branch, as

the total current in the loop has to remain constant. We illustrate this noise model by

calculating the noise contributions of the detector used in Ref. [103] and the previous

section. For this, we need several more physical quantities, which are chosen to be

consistent with the operation at 20 mK in Ref. [103], and summarized in Tab. 2.2.

Note that transition temperatures are lower in modern devices, and transitions are

steeper due to different materials and manufacturing choices. Furthermore, operation

points (OPs) are usually chosen higher in the transition. The resulting transition

curve, observable voltage pulse and noise, and NPS with its individual contributions

are shown in Fig. 2.4. For producing a noise trace from the NPS, we used a method

described in Ref. [108], where uniformly sampled phases are added in Fourier space,

inducing the random noise structure after transformation back into a time-dependent

array.

In the previous calculation, we implicitly assumed all noise to be Gaussian dis-

tributed around the equilibrium state. Such a process can be described as an Ornstein-

Uhlenbeck (OU) process [109], with characteristic time and damping constants. This

theory is again discussed in Sec. 2.2.3. Each OU process has two phases of frequency

dependency in its spectral shape: an inverse frequency dependence for high frequencies,

and a flat frequency dependency for low frequencies. The cutoff frequency that marks

the transition between the phases is given by 1/(2πτ), where τ is the intrinsic time

constant of the process. We can apply this theory of OU processes to a record window
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Figure 2.4: Simulated 60 keV X-ray event in a cryogenic detector modeled after
Ref. [103]. (top left) The transition curve (red) and the OP within it (black), 5
mK elevated above the heat bath (grey, dashed). (top right) The observable voltage
pulse and noise (black) and the part that is attributed to the energy deposition from
a particle recoil (red). (bottom) The noise power spectrum (NPS, black) and its
individual contributions. The dominating noise contribution in the relevant bandwidth
is the Johnson noise internally produced in the TES.

containing a pulse induced from a particle recoil to obtain characteristic cutoff frequen-

cies corresponding to the pulse shape’s characteristic time constants. The frequency

fc,in = 1/(2πτin) (fc,t = 1/(2πτt)) is the upper limit of the bandwidth relevant for

the athermal (thermal) pulse component. For the modeled detector, fc,in = 426 Hz

and fc,t = 3.12 Hz. The value fc,in is also the cutoff frequency of the thermal noise.

The cutoff frequencies for the electronic (flicker) noise are above (below) the observed

bandwidth.

Having obtained descriptions of the detector’s response to particle recoils and

its omnipresent noise, we can quantify the sensitivity of the detector in terms of its

signal-to-noise ratio (SNR). This we define as the ratio of the observed pulse (see

Eq. 2.22) and the NPS, in Fourier space, integrated over the observable bandwidth:
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SNRopt =

�� ∞

0

���� ∆If,pulse(w)

∆E ·NPS(w)

����2 dw, (2.27)

∆If,pulse(w) =

� ∞

0

∆If,pulse(t)e
−2πwtdt. (2.28)

This is an optimal estimate in the sense that only the bandwidth where the character-

istic frequencies of the pulse shape dominate over the noise is accumulated, as is done

in optimum filtering (see Sec. 3). We calculate SNRopt numerically1, this provides us

with a SNR of 0.991 per keV recoil energy for the given detector. Its inverse matches

the energy resolution of 1 keV reported in Ref. [103]. This description assumes a

constant energy resolution equal to the baseline resolution, which is only valid in a

small signal approximation. The relevance and harmfulness of the individual noise

contributions are further discussed in Sec. 2.2.2.

2.1.3 Operating conditions in equilibrium

The developed detector response model provides us with reliable estimates of the

underlying physical quantities in a neighborhood of the critical temperature. However,

strongly extrapolating from this point will violate the temperature-independent heat

capacities and coupling strengths assumption. Nevertheless, for using the model at

hand as a tool to simulate detector response, we need to make assumptions for several

nuisance quantities that are not directly observable in the experiment and for which

we are not interested in their exact physical values. This especially concerns the

absorber crystal’s base temperature and the heating resistor’s resistance. We can

derive effective values for these quantities, which have only meaning within our model,

by considering Eqs. 2.4 and 2.5 in an equilibrium state, and the power inputs from

the constant and self-heating:

(Te − Ta)Gea + (Te − Tb)Geb = RfI
2
f + δHRHI

2
H ,

(Ta − Te)Gea + (Ta − Tb)Gab = (1− δH)RHI
2
H .

1The normalization ζ of the discrete Fourier transform of ∆If,n:

∆If,k = ζ

N−1�
n=0

∆If,n · e− i2π
N kn,

has to be chosen to preserve energy ζ = ∆t, instead of power ζ =
�

∆t
N , where ∆t is the inverse

sampling frequency, N is the number of samples in the record window, n is the time index, and k is
the frequency index.
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This system can be solved to derive the base temperatures of the thermometer and

absorber when we assume the heater resistance as known:

Te =
(Gea +Geb)

�
GebTb +RfI

2
f + δHRHI

2
H

�
+Gea (GabTb + (1− δH)RHI

2
H)

(Gea +Geb)(Gea +Gab)−G2
ea

,

Ta =
Gea

�
GebTb +RfI

2
f + δHRHI

2
H

�
+ (Gea +Geb) (GabTb + (1− δH)RHI

2
H)

(Gea +Geb)(Gea +Gab)−G2
ea

,

or for the absorber temperature and heater resistance, if we assume the thermometer

temperature as known:

RHI
2
H =

(Gea +Gab)
�
GeaTe +Geb(Te − Tb)−RfI

2
f

�−Gea(GeaTe +GabTb)

δH(Gea +Gab) + (1− δH)Gea

,

Ta =
(1− δH)

�
GeaTe +Geb(Te − Tb)−RfI

2
f

�
+ δH(GeaTe +GabTb)

δH(Gea +Gab) + (1− δH)Gea

.

As an artifact of the approximation, the mismatch between phonon and electron

temperature in the TES may be overestimated. In the scope of our model, this is not

harmful, as Eq. 2.5 is purely linear, and the base temperature of the absorber has no

observable effect. However, the constant δH can partially absorb the magnitude of

this effect.

This section has established a simplified mathematical description of cryogenic de-

tectors with superconducting thermometers. So far, we have avoided any specifications

about used materials and their properties, which we will discuss in the following.

2.2 Experimental realization

Many low-threshold experiments use superconducting thermometers, and considerable

progress has been made in their manufacturing in the past decades. The operation

at the lowest temperatures has advantages and disadvantages: many theoretical

models from solid-state physics are more reliable at low temperatures due to the

freeze-out of many thermally induced effects. On the other hand, most measurements

of material properties are done at higher temperatures. Their extrapolated values to

lower temperatures are sometimes subject to large uncertainties. Furthermore, a series

of yet unexplained phenomena appear when devices are pushed towards low recoil

energy thresholds, which impose limits on their sensitivity in practice. In Sec 2.2.1,

we explain which quantities of the cryogenic detector model established in Sec. 2.1
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can be calculated from theory and which need to be extracted empirically. We review

the current state of knowledge of excess phenomena in Sec. 2.2.3. The implications for

designing sensitive devices are studied in Sec. 2.2.2, where we again use our exemplary

detector, modeled after Ref. [103]. Finally, we discuss the similarities and differences

with other quantum sensors and devices and hypothesize which phenomena are or can

become shared technological challenges.

2.2.1 Determination of physical quantities

The heat capacities of metals at low temperatures are dominated by their electronic

heat capacity. This can be well approximated with the Sommerfeld free electron gas

model [110]:

Ce =
π2

2
nekB

T

TF

= γT, (2.29)

where γ is the Sommerfeld constant of the material, ne is the number of conduction

electrons, kB is the Boltzmann constant and TF is the Fermi temperature. The

detector from Ref. [103] uses a TES made of an iridium-gold bilayer. Modern devices

usually use superconductors with lower transition temperatures, e.g. tungsten. The

heat capacity of superconductors additionally increases by ∆c = 1.43γTc, following

the Bardeen-Cooper-Schrieffer (BCS) theory, below its transition curve [106]:

Ce,op = Ce

�
2.43− 1.43

Rop

Rn

�
, (2.30)

where Rop is the resistance of the superconductor in its OP, and Rn is the normal

conducting resistance. The physical constants for several metals often used for

components of cryogenic detectors are summarized in Tab. 2.3.

The contribution of its phonons dominates the heat capacity of the non-metallic

absorber crystal. At low temperatures, it can be well described with the Debye

model [110]:

Cph =
12π4

5
nakB

�
T

ΘD

�3

, (2.31)

where na is the number of atoms in the lattice and ΘD the Debye temperature. Several

properties of materials often used as absorber crystals are summarized in Tab. 2.4.
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Quantity W Au Al Ir Cu

TF (kK) 27 [111] 63.9 [112] 135 [112] - 8.12 [112]
γ (nJ/mole/K2) 1.01 [111] 0.729 [112] 1.36 [112] 3.1 [112] 0.7 [112]
Gep (fW/mK6/mm3) 21 [113] ≈210 [114] - - -
Tc (K) 0.015 [111] - 1.14 [112] 0.14 [112] -

Table 2.3: Fermi temperature TF and Sommerfeld constant γ for several metals. For
tungsten and gold, values of the strength of electron-phonon coupling Gep are shown.
References are stated individually. The values vary in the literature depending on
calculation or measurement methods. The electron phonon coupling for gold was in
Ref. [114] stated as 10 times higher than that for tungsten.

Quantity CaWO4 Si LiAlO2 NaI Al2O3

Density (mg/mm3) 6.06 [115] 2.33 [115] 2.62 [115] 3.67 [115] 9.22 [115]
Molar mass (g/mole) 287 [116] 28.1 [116] 65.9 [116] 150 [116] 102 [116]
ΘD (K) 228 [117] 648 [112] 429 [115] 165 [115] 1041 [117]
νD = kBΘD/h (THz) 4.7 13.5 8.94 3.4 21.7

Table 2.4: Density, molar mass, Deybe frequency νD and Debye temperature ΘD of
several materials often used as targets for cryogenic particle detectors. References
are stated individually. The values vary in the literature depending on calculation or
measurement methods.

The downconversion process of athermal phonons in the absorber crystal was

studied in detail in Ref. [103] and is visualized in Fig. 2.5. The initial particle

interaction in the crystal created a population of high-energy optical phonons, which

downconvert into acoustic phonons on the time scale of ≈ ns. Optical phonons do, in

current devices, not reach the sensor directly [118]. The resulting acoustic phonons

have energies of about half the Debye frequency and continue to decay with a strongly

frequency-dependent decay rate. The system reaches an average phonon frequency

much lower than the Debye frequency, e.g. a factor 27 lower in silicon, after ≈ 100µs,

which stays approximately constant for several ms. The athermal phonon distribution

fills the absorber crystal uniformly in less than a µs, depending on its size and sound

velocity, which effectively eliminates any dependency of the observed signal on the

position of the scattering sight. The athermal phonon distribution thermalizes via

surface scattering in the crystal and interaction with the electrons in the thermometer.

The effective thermalization time of the phonons, which is observed as either the

rise or fast decay time of pulses, is, therefore, a parallelization of these competing

processes:
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Figure 2.5: Schematic visualization of the phonon downconversion process. An incident
particle scatters elastically with a nucleus in the crystal. This induces high-energy
optical phonons that rapidly break down into acoustic phonons of about half the
Debye frequency. A share of the phonons in the crystal can travel to the thermometer
film, and longitudenal (LA) phonons interact with the film electrons, while transveral
(TA) phonons don’t. Therefore a share of the athermal phonons thermalize in the
thermometer, and the remainder in the crystal. Fig. based on the description of the
process in Ref. [103].

τn =

�
1

τfilm
+

1

τcrystal

�−1

, (2.32)

where τfilm (τcrystal) is the thermalization time in the thermometer (crystal). The

thermalization generally depends on the frequency of phonons. However, we shall

follow Ref. [103] and treat them as frequency-independent, which is equivalent to the

assumption of a monochromatic phonon distribution. The thermalization time in the

crystal increases with its volume and decreases with its Debye temperature (and speed

of sound) and with its surface:

τcrystal ∝ Va

AaΘD

. (2.33)

Currently, no theoretical values for the absolute scale of τcrystal exist in the literature.

This quantity has to be extracted from measured data. The thermalization time in

the thermometer has more complex dependencies:

τfilm =
τ0
η̄
, τ0 =

2Va

A ⟨v⊥α⟩ . (2.34)
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Here τ0 is the thermalization time in the thermometer in a scenario where all phonons

that interact with the superconducting film thermalize immediately. η̄ is the film’s

absorption probability of athermal phonons. Ref. [103] measured an approximately

linear temperature dependency between η̄ and the operation temperature:

η̄ ∝ T. (2.35)

We will use this heuristic dependency in Chap. 4 and Sec. 2.2.2, because it provides

a conservative estimate of the change in the athermal phonon collection efficiency

ϵ when the operation temperature is lowered. Furthermore, the Hamiltonian for

electron-phonon interaction in Ref. [110] also features a linear temperature dependency.

However, measurements on individual devices are required for precise statements about

the temperature dependency of the athermal phonon absorption probability. It is

possible that the measured temperature dependency of η̄ in Ref. [103] was due to

the state of superconductor, especially the amount of the film that was in a normal

conducting state, and not due to the operation temperature. The quantity ⟨v⊥α⟩
is the transition probability of phonons from the crystal to the superconducting

film, averaged over all phonon modes, wave velocities, and angles. This quantity is

proportional to the speed of sound in the crystal and, therefore, the Debye temperature

of the crystal material:

⟨v⊥α⟩ ∝ ΘD. (2.36)

The collection efficiency of athermal phonons in the superconducting film can be

written as a competition between the thermalization times in crystal and film:

ϵ =
τcrystal

τcrystal + τfilm
. (2.37)

The collection efficiency is a crucial quantity for the sensitivity of optimized devices,

and scales approximately with the crystal to film surface area ratio. We will analyze

this quantity in more detail in Sec. 2.2.2.

The thermal couplings between the phononic and electronic systems in crystal,

film, and the heat bath can be described as follows. The thermal coupling Gea

between crystal and film must be described as a two-stage process: the thermal

coupling between the phononic systems in the components GK , also called the Kapitza
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resistance and the electron-phonon coupling in the metallic film. Since the heat

capacity of the film phonons is negligibly small, the total coupling can be described as

an in-series connection:

Gea =

�
1

Gep

+
1

GK

�−1

. (2.38)

This expression is dominated by the smaller of the two quantities. Which of them is

smaller depends on the details of individual devices. However, in most standard device

designs, the electron-phonon coupling is much weaker than the Kapitza resistance. The

ratio can change strongly with the operation temperature, to which both quantities

have a higher order dependence:

Gep ∝ T 5Vf , GK ∝ T 3. (2.39)

The electron-phonon coupling additionally scales with the volume of the supercon-

ducting film since the interaction of electrons and phonons is a property of the bulk

of the material. Only LA phonons take part in the electron-phonon interaction, which

additionally weakens this type of thermal coupling. A reliable theoretical model of

the Kapitza resistance between solids exists, e.g. the acoustic and diffusive mismatch

model [119]. The thermal coupling from the crystal directly to the heat bath is deter-

mined by the technology used to mount the crystal and typically has the temperature

dependency of a phononic system. The thermal link between the film and the heat

bath has contributions from the applied bonding wire and is, in some modern devices,

additionally suppressed through a thin gold film. Its thermal connectivity is subject to

the Wiedemann-Franz law [110], which predicts a linear scaling with the temperature

and the electrical resistance Reb of the metal:

Gab ∝ T 3, Geb ∝ TReb. (2.40)

The coupling between crystal and bath Gab is hard to model theoretically and is

usually purely extracted from measured data.

Further electrical properties that have an impact on the observed pulse are the

amplification setting of the SQUID system, which can, for our purposes, be summarized

as a conversion factor η between the current in the SQUID branch of the TES readout

loop and the observes voltage on the SQUID output. The resistance of TES and shunt

56



resistor are usually measured at higher temperatures than the operation temperature

during the measurement and can therefore be subject to errors. An expert operator sets

the currents applied to the heater and TES readout circuit for each device individually.

The parameters p0, α, isq and
∆Rf,flicker

Rf0
of the noise contributions need to be

extracted from data of individual devices. No reliable theory for these noise sources

exists today. These are not the only phenomena that are still currently under research

and not perfectly understood about particle detectors with superconducting thermome-

ters yet. In Sec. 2.2.3, we will look at such unexplained phenomena in more detail.

In the following section, we will explore the detector design choices and operation

parameters that mainly drive the sensitivity of the device by using the established

equations determining the dynamics of the detector response to simulate devices and

their energy resolutions.

2.2.2 Optimizing designs for sensitivity

This subsection is dedicated to developing an intuition for design choices of particle

detectors with superconducting thermometers and how those relate to the sensitivity

of the detector. We start with discussing the two thermal detector modi and follow up

with discussing the sizes of components, the strengths of thermal couplings, and the

operation temperature. All statements are underlined with results from a dedicated

sensitivity simulation based on the theory introduced in the previous sections. We call

our lumped-element, electrothermal detector response simulation software “CryoEnv”.

Finally, we discuss a technology to increase the collection efficiency of athermal

phonons by the deposition of additional aluminum films on the crystal.

Cryogenic detectors with superconducting thermometers have two modi of opera-

tion, determined by the ratio of the thermalization time of phonons τn and relaxation

time of the superconducting film τin. In the mode τn ≫ τin, called the bolometric

mode, the film effectively measures the flux of power induced in the film through

thermalization of phonons. The rise time of pulses is in this regime given by τin, and

the decay time of the first (athermal) pulse component by τn. The PH of the first

pulse component can be approximated with:

An ≈ ϵ∆E

τn (Gea +Geb)
. (2.41)

The sensitivity, which can be reasonably approximated with the PH of the athermal

pulse component, is therefore mainly dependent on the strength of the thermal

couplings and the thermalization time of the phonons. Intuitively, the longer the
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energy is kept in the film, the more energy accumulates before the film relaxes, causing

a larger temperature pulse. A limit of optimal sensitivity leads to the second mode,

the calorimetric mode, where τn ≪ τin, i.e. all athermal phonons are thermalized

before the film starts to relax significantly. This effectively means that a bolometer is

more sensitive the more it approaches a calorimetric mode of operation. The PH of

the athermal component in a calorimetric mode can then be described by

An ≈ −ϵ∆E

Ce

. (2.42)

The sensitivity is given by the total energy deposition in the film. This total energy

crucially depends on the ability to directly collect the initially produced high-energy

athermal phonons in the film. For Eqs. 2.41 and 2.42 the additional assumption Ce ≪
Ca was used. In practice, intermediate states between bolometric and calorimetric

modes exist, where τin and τn have comparable values, such that neither is much

larger or smaller. In such a regime, the simplified formulas can fail as a model for

the detector sensitivity. For our further studies, it is convenient to define a quantity

CAL, that we call “calorimeterness”, as the ratio between the relaxation time of the

thermometers and the thermalization time of phonons:

CAL =
τin
τn

(2.43)

We will discuss in the following the impact of the design choices of the cryogenic

detector on the expected energy resolution, the calorimeterness, and the collection

efficiency. First, we will discuss the different thermal modi in more detail. For this,

we refer again to the detector studied in Ref. [103], for which we already implemented

a pulse shape and noise simulation shown in Fig. 2.4 and discussed in Sec. 2.1.2. We

study this detector again but with variations of its original thermal parameters.

The strengths of the thermal links between components, in relation to the heat

capacities, mostly determine the time constants of the system2. Fig. 2.6 shows the

effect of variations of the thermal link between TES and heat bath Geb in a set of

scenarios (see also caption of the figure). The scenarios are chosen to cover all relevant

types of detector designs. The sensitivity of the original detector from Ref. [103] is

mostly determined by its ability to collect athermal phonons. We, therefore, call it

an athermal design. Furthermore, it operates in a bolometric mode. Lowering the

thermal link between the thermometer and the heat bath causes a transition to a

2The self-heating of the TES can also have an observable impact on the relaxation time of the
TES.
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Figure 2.6: Impact of changing Geb on the calorimeterness (left) and the energy
resolution (right) for different scenarios: the detector from Ref. [103], in a bolometric
mode and with its sensitivity governed by the collection of athermal phonons, is
represented by the green circle. The red continuous line depicts the transition to a
calorimetric mode (red star) with lowered Geb. The solid black line shows a scenario
where the detector sees only thermal phonons (ϵ = 0), which generally decreases the
energy resolution. Increasing the thermal coupling between crystal and heat bath Gab

causes a loss in energy resolution in this scenario but has less impact in the other
scenarios. Increasing the strength of the thermal link between crystal and film (Gae,
dashed and dotted lines) has a negative impact on the athermal calorimeter but a
positive impact on detectors that benefit from the thermal signal. In the extreme case,
the strongly coupled crystal-thermometer system can act as a joint, large calorimeter
with low energy resolution (black square). In all scenarios, a stronger Gae decreases
the thermometer relaxation time, moving the detector closer to a bolometric mode
(left). The quantities on the left side are identical for the different scenarios and,
therefore, only shown for the purely thermal case.

calorimetric mode. This continuously improves the energy resolution, underlining the

statement that a high calorimeterness is for athermal designs generally preferable over

bolometric designs. However, the situation can be different for thermal designs. While

for athermal designs, all thermal couplings from the TES to other components should

be as weak as possible, for thermal designs, the sensitivity generally increases with

a stronger coupling between thermometers and crystal. Furthermore, the combined

coupling from the crystal via the thermometer to the heat bath should be stronger

than the coupling of the crystal directly to the heat bath, such that the preferred heat

decay channel heats the TES. For small crystal dimensions, such thermal designs can

reach comparable energy resolutions as athermal designs, since the combined system

of crystal and TES jointly acts as a calorimeter. The PH of the dominant thermal

component in the calorimeter can then be approximated by
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At ≈ ∆E

Ca



1

1 +Gab

�
G−1

ae +G−1
eb

�� (2.44)

We assume here Ca ≫ Ce and ϵ ≈ 0. However, these designs are more vulnerable to

changes in dimensions and temperature. We have identified three distinct scenarios for

detector designs, the athermal bolometer, the athermal calorimeter, and the thermal

absorber calorimeter. We will discuss their scaling behavior in the following. We

can already expect that the athermal designs’ scaling properties will be similar since

we identified the calorimetric modus as the optimized limit of the bolometric modus

already earlier.

Even though this section is mainly concerned with developing a simplified model for

superconducting thermometers, the experimental realization of the thermal couplings

deserves a brief discussion. The coupling between the crystal and the heat bath directly

is mainly determined by the mounting scheme of the crystal. Common mounting

schemes are metallic clamps or sticks or insulating sticks or balls. The materials

and holder forces can significantly change the strength of the thermal coupling. The

coupling between the crystal and TES is, as discussed above, given by the electron-

phonon coupling in the TES, and the Kapitza resistance between film and crystal.

These can be controlled by adjusting the TES size and the crystal material. Since the

electron-phonon coupling scales intensively with the temperature, this coupling is, in

practice, mostly controlled by applying a low operation temperature, i.e. transition

temperature of the TES. A similar freeze-out of the thermal coupling is not possible

for the metallic coupling from the TES to the heat bath. However, a low value for

this coupling is desired for optimal sensitivity3. The coupling is typically dominated

by the gold bonds that connect the TES to the heat sink. However, the bond wire

cannot be manufactured arbitrarily thin for its mechanical stability. Therefore, in

modern designs, a thin gold film on the crystals builds a bridge between the TES with

the bond wire, requiring the heat to pass. The coupling strength can effectively be

controlled through the film’s thickness and width.

The first interesting dimension to study is the area of the superconducting film.

Increasing this area increases the TES’ heat capacity, but also its collection efficiency.

The situation is visualized in Fig. 2.7. While the TES area has only a minor impact on

the energy resolution of the thermal design since it neither significantly increases the

heat capacity of the combined system nor is the collection efficiency the dominating

3A practical lower limit for the coupling strength exists, below which the film does not cool
properly in the cryogenic setup.
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Figure 2.7: Impact of a changing area of the TES on the calorimeterness (upper left),
the energy resolution (upper right), the phonon thermalization time (lower left), and
the collection efficiency (lower right), for the three scenarios (established in Fig. 2.6)
of an athermal bolometer (green), athermal calorimeter (red) and thermal absorber
calorimeter (black). The quantities in the lower row are identical for the different
scenarios and, therefore, only shown for the athermal calorimetric case. A larger TES
area simultaneously results in a larger TES heat capacity. In all scenarios, a broad
minimum of the energy resolution, depending on the TES area, exists.

quantity for the sensitivity. For athermal designs, the TES area can have a relevant

impact for two reasons: first, the effects of increased heat capacity and collection

efficiency cancel each other only approximately, and a theoretical optimum does exist.

Second, the increased heat capacity of the TES increases the calorimeterness, which

can have a relevant impact if the device is not in a fully calorimetric mode already.

We can therefore turn our athermal bolometric design into an athermal calorimeter

by increasing the TES area, which causes a decrease in energy resolution by a factor

≈ 5. For the other designs, only a much smaller impact is seen.

A quantity with an even stronger impact on the detector performance is the

volume of the absorber crystal. It is especially relevant since rare event searches

typically require a certain amount of exposure. A larger target volume and mass

would therefore be beneficial for such searches. However, in practice, the larger volume

leads to a degradation of the energy resolution. The magnitude of this phenomenon

depends again on the detector design. The energy resolution scales approximately

∝ (Ce + Ca) for thermal detectors. Since the absorber heat capacity is typically the

largest in the system, one would expect the energy resolution to scale linearly with

the absorber volume. A different scaling law was first formulated and experimentally

confirmed for athermal designs in Ref. [120]. With all other technological factors kept
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Figure 2.8: Impact of a changing absorber volume on the calorimeterness (upper left),
the energy resolution (upper right), the phonon thermalization time (lower left), and
the thermometer relaxation time (lower right), for the three scenarios (established in
Fig. 2.6) of an athermal bolometer (green), athermal calorimeter (red) and thermal
absorber calorimeter (black). The quantities in the lower row are identical for the
different scenarios at high crystal volumes and, therefore, only shown for the athermal
calorimetric case. A larger crystal results in a higher heat capacity of the crystal
and generally degrates the energy resolution, with a more dramatic impact on the
thermal design. At a volume around 100 mm3, the crystal’s relaxation time decreases
below the thermometer’s relaxation time. The time constant τin, defined with the
lowest eigenvalue appearing in the system of ODEs discussed in Sec. 2.1 is above this
transition not anymore the relaxation time of the thermometer, but that of the crystal.

constant or equivalent (e.g. the realization of phonon collectors and the thickness of

the superconducting film), the collection efficiency ϵ is expected to scale with the

ratio of the film and absorber crystal surface ϵ ∝ Af

Aa
. Inserting this relationship into

Eq. 2.42 leads to an inverse scaling of the energy resolution with the surface of the

absorber:

ϵ
∆E

Ce

∝ Af

Aa

∆E

Ce

∝ 1

Ac

∝ M2/3 (2.45)

Here, the fact was used that the heat capacity of the film Ce grows proportionally to

its volume, and that for a cubic crystal with fixed geometry, one has Ac ∝ d2 and

M ∝ d3 with d the edge length. This result is intuitively clear: phonons can scatter

with the crystal surface and thermalize in the absorber, effectively preventing them

from thermalizing in the thermometer. We can see the expected scaling behavior of

the thermal and athermal designs in Fig. 2.8.

Not all materials are similarly suitable as targets for cryogenic detectors. While
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Figure 2.9: Impact of a changing Debye temperature of the crystal on the calorimeter-
ness (upper left), the energy resolution (upper right), the phonon thermalization time
(lower left), and the thermometer relaxation time (lower right), for the three scenarios
(established in Fig. 2.6) of an athermal bolometer (green), athermal calorimeter (red)
and thermal absorber calorimeter (black). The quantities in the lower row are identical
for the different scenarios at low Debye temperatures and, therefore, only shown for
the athermal calorimetric case. A larger Debye temperature results in a lower heat
capacity of the crystal and generally improves the energy resolution, with a more
dramatic impact on the thermal design. At a Debye temperature slightly above 1000
K (red) and slightly below 2000 K (black), the similar effect of τin as discussed in the
caption of Fig. 2.8 appears.

materials are, in reality, characterized by various properties that affect their suitability

as targets, we will only treat one of them in detail, which is also included in our

simplified model: the Debye temperature. This quantity strongly changes the heat

capacity of the crystal, but also the speed of sound in the crystal, and therefore

the thermalization time of phonons and rise time of measured pulses. A faster

thermalization time increases the calorimeterness of the TES. We can see the impact

of a changing Debye temperature in Fig. 2.9. While an impact is observable for the

athermal designs, it is significantly stronger for the thermal design. The cubically

lowered heat capacity of the absorber with rising Debye temperature is directly

proportional to the energy resolution.

There are two reasons why particle detectors with superconducting thermometers

are operated nowadays mostly with tungsten TES, the superconductor with the

lowest transition temperature, effectively choosing an as low as possible operation

temperature. The first reason is the scaling of the TES and absorber heat capacities

with the operation temperature. For a thermal design, the cubically lowered heat
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Figure 2.10: Impact of the operation temperature on the calorimeterness (upper left),
the energy resolution (upper right), the phonon thermalization time (lower left), and
the collection efficiency (lower right), for the three scenarios (established in Fig. 2.6)
of an athermal bolometer (green), athermal calorimeter (red) and thermal absorber
calorimeter (black). The quantities in the lower row are identical for the different
scenarios and, therefore, only shown for the athermal calorimetric case. A higher
operation temperature results in higher heat capacities and thermal links and generally
degrades the energy resolution, dramatically impacting the thermal design.

capacity of the absorber is directly proportional to the decrease in energy resolution.

For an athermal design, the same counts for the linearly lowered heat capacity of

the TES. Furthermore, a lowered operation temperature causes a significant decrease

in electron-phonon coupling strength, which at the lowest temperatures, effectively

prevents the backflow of heat from the film into the absorber. Since this is crucial for

athermal calorimetric designs, these lowest temperatures are crucial for the operation

of modern, sensitive devices. The effect of a lowered operation temperature is shown

in Fig. 2.10. The impact is weakest for the athermal, bolometric design. This detector

cannot reach a calorimetric mode due to the strong coupling of its film to the heat bath

and does, therefore, not benefit from the freeze-out of the electron-phonon coupling.

The final property that we shall study is the slope of the TES transition curve. The

detector in Ref. [103] was manufactured with an iridium-gold bilayer TES, resulting

in a transition curve with a width of almost 100 mK. Devices optimized for sensitivity

use mostly tungsten TES with much steeper transition curves, often with a width of

only ≈ 1 mK. From our simplified detector model, we would expect that the observed

PH, which is proportional to the temperature-induced current change in the readout

circuit, scales with the applied bias current and the derivative of the transition curve

in the OP for small signals. The same behavior is expected for noise that is intrinsic
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Figure 2.11: Impact of the slope of the transition curve on the energy resolution in
scenarios with low (blue) and high (orange) flicker noise, and low (dashed) and high
(solid) bias current. A steeper slope improves the resolution unless the TES-intrinsic
noise sources dominate over other noise contributions.

to the TES and the magnitude of the ETF loop. For noise that is extrinsic to the

TES, as e.g. Johnson noise, or SQUID noise, the noise is expected to be independent

of the transition curve of the TES. Therefore we expect from our simplified model

that the steepness of the curve positively impacts the energy resolution as long as the

extrinsic noise sources are not negligible. This situation is depicted in Fig. 2.11, where

we observe that the energy of the detector from Ref. [103] (in athermal bolometric

mode) decreases with the slope of the transition curve in high and low bias scenarios,

unless in a scenario with high bias current and high intrinsic noise. In this scenario,

the intrinsic noise is already dominating over the Johnson noise. We can also observe

in Fig. 2.11 that the same statement holds for the bias current: we can expect an

improvement of the energy resolution from a higher bias current as long as the TES

intrinsic noise sources are not dominating. In a more detailed model, we would expect

the transition curve to change with the applied bias current, introducing additional

effects.

For athermal designs, the collection efficiency for athermal phonons is a crucial

quantity, with which the energy resolution scales linearly (see Eq. 2.42). A technology

to increase the collection efficiency without impacting other properties, as e.g. the TES

heat capacity, is the application of athermal phonon collectors. Those are aluminum

films deposited on top of a part of the tungsten film. Aluminium has a higher transition

temperature of 1.2 K (bulk) [121]. The aluminum is already fully superconducting

at the device operation temperature of ≈ 15 mK. Due to the proximity effect of

superconductors, the covered tungsten film is also pulled into a superconducting
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state. Athermal phonons that scatter in the superconducting film break cooper pairs,

which travel as Bogoliubov quasiparticles [122] diffusively through the superconducting

film until they thermalize in the electronic system of the uncovered tungsten film

in transition or in the phononic system of the crystal. This situation is depicted in

Fig. 2.12.

The technology of phonon collectors was discussed at length in Ref. [104] under

the name quasiparticle-trap ETF assisted TES (QET), where aluminum fins are used

as collectors. Nowadays, it is used in most devices, including all CRESST-III designs,

where two large area collectors are attached on both sides of the TES. There are

several properties that affect the efficiency of a phonon collector. The collection area

cannot be increased indefinitely since the broken cooper pairs have a finite lifetime,

and due to their diffusive travel, they would not reach the TES from a large distance.

Their lifetime was studied in Ref. [123]. Therefore, a too-large phonon collector would

act as a parasitic phonon trap that prevents phonons from thermalizing in the TES.

Additionally, the target’s material can change the phonon collector’s efficiency. The

typical athermal phonon energy is the Debye energy of the crystal material. The

phonon distribution is not monochromatic but a continuum in a more realistic picture.

Only phonons that have higher energy than the superconducting band gap of the

phonon collecting bilayer can break cooper pairs. A material with a lower Deybe

temperature can, therefore, also negatively affect the athermal phonon collection

efficiency through a mismatch of the band gap and Debye energy. A comprehensive

theory for the optimal size and type of phonon collectors was not yet formulated.

Overall, the sensitivity of devices could also be improved by fostering a more

profound understanding of the noise phenomena and phonon non-equilibrium dynamics.

Many phenomena remain a matter of ongoing research and raise nontrivial questions.

For physics searches, the energy resolution and the mitigation of backgrounds play a

crucial role. Instrumental backgrounds that are hard or impossible to discriminate from

particle recoils exist. We will discuss in the following such unexplained phenomena in

more detail.

2.2.3 Unexplained phenomena

Physics at the lowest temperatures and energies keeps surprising experimentalists with

observations of yet unexplored phenomena. Several of such phenomena are present in

devices using superconducting thermometers, leading to excess noise and events above

known noise and background sources. This especially includes excess phonon, flicker,

Johnson, and burst noise. Recently devices have reached recoil energy thresholds
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Figure 2.12: Working principle of athermal phonon collectors. The size of the tungsten
film (dark grey) is increased, and a large part of it is covered with an aluminum layer
(light grey). The higher transition temperature of aluminum pulls the underlying
tungsten film into a fully superconducting state due to the proximity effect, while the
uncovered tungsten remains in transition, acting as the thermometer. When athermal
phonons (red arrow) from the crystal (blue) scatter in the fully superconducting part
of the film, broken cooper pair quasiparticles (Bogoliubov quasiparticles, black arrows)
are created and travel diffusively until they release their energy in the TES or the
crystal. Fig. adapted from Ref. [117].

far below 100 eV, which lead to the observation of a yet unexplained event type:

a so-called LEE, with a steeply rising event rate towards lower energies. It is not

excluded that multiple of the observations at different energy scales could have similar

origins, leading to individual low-energy events or contributing to the omnipresent

sensor noise, depending on their rate and magnitude.

2.2.3.1 Intrinsic excess noise

The known and well-studied noise sources of TES devices were summarized in Sec. 2.1.2.

Additional noise arises from effects that are not represented in our simplified model of

a cryogenic detector. Three of these noise sources were studied in Ref. [124]. We treat

the TES as a single thermal component, while in realistic conditions, the film consists

of a multitude of microscopic heat capacities connected to each other. The thermal

fluctuations between these components can induce internal thermal fluctuation noise

(ITFN), observed with a frequency dependency similar to Johnson noise. Potential

noise arising from the thermal link between the absorber crystal and the metallic film

was neglected as well but might play a role in practice. Furthermore, we neglected the

shape change of the transition curve induced by the bias current (β = 0). Including
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them would introduce an additional nonlinear amplification of the Johnson noise.

Finally, flux flow noise is a known phenomenon in superconductors arising from the

movement of flux quanta across the metallic film. Ref. [124] attributes an inverse

frequency dependency to these fluctuations. In most cases, noise from electromagnetic

interference would be observed as a pole in the NPS and can usually be treated

easily with frequency filters. Also, noise that arises from the digitizers or additional

resistances in the bias line at temperatures higher than the operation temperature

of the detectors can induce additional Johnson noise. Avoidance of such parasitic

components is an incremental part of the experimental setup used to measure cryogenic

detectors. Sub-threshold pulses that are indistinguishably intermixed with the noise

can induce an additional component in the observed power spectrum, similar to the

phonon noise.

Within the setting of our simplified model, we introduced several parameters

heuristically to account for excess noise above the modeled noise sources: excess

Johnson noise can be accounted for with the parameter EJ that scales the Johnson

noise of the reference resistor, and flicker noise with the parameter
∆Rf

Rf0
. The origin

of this additional noise intrinsic to the TES is not fully clarified, nor is it clarified

what share of the observed excess noise could be accounted for with a detailed ITFN,

nonlinear Johnson, and flux flow noise model. Recently, Ref. [125] showed that all

their observed excess Johnson noise can be explained with ITFN. It is to be clarified

if this explanation would hold up for all types of devices.

Besides this omnipresent noise, also burst noise (or telegraph noise), in the form of

sudden, small jumps between discrete TES resistance levels, was observed. Fig. 2.13

shows this type of noise in a CRESST-III detector. This type of noise is typically

connected to certain temperature and bias current points in the operation of the TES.

Ref. [105] explains the jumps with transition in ordering the superconducting film’s

magnetic structure.

The bandwidth relevant for the sensitivity of devices, i.e. for reconstructing pulses,

starts at about the frequency associated with the fast decay time constant of the

pulse (τin in calorimeters) and stays constant towards lower energies. The flicker

noise is, therefore, often the limiting noise process for the device sensitivity since it

typically starts to rise significantly above the flat electrical noise at frequencies around

≈ 10 − 100 Hz. Depending on the pulse shape, the associated frequency region is

already within the region dominated by the steeply rising flicker noise. In the following,

we discuss two interesting details about the observed excess flicker noise:
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Figure 2.13: Telegraph noise events measured with a CRESST detector in run 36 of
the experiment. The frequency and magnitude of the jumps change over time and
might be related to the magnetic structure of the superconducting film.

• Every Gaussian noise process can be described as a OU process [109], using the

common notation for stochastic calculus:

dX(t) = −1

τ
X(t)dt+

√
cdB(t), (2.46)

where τ and c are characteristic time and distance scales of the system, called

the relaxation time and diffusion constant, and B is a Brownian motion. The

resulting stochastic process converges towards a standard deviation given by�
cτ/2 after an initial settling phase. The frequency spectrum of such a process

can be written in closed form:

SX(ν) =
2cτ 2

1 + (2πτν)2
, ν ≥ 0. (2.47)

It rises steeply towards lower frequencies, down to a cutoff frequency a 1/(2πτ),

below which it stays constant. Fig. 2.14 shows an OU process and the associated

NPS. The cutoff frequency is the dominant frequency of the underlying process.

Following this theory, a lower cutoff frequency of the flicker noise in TES devices

must exist, but no systematic studies of this property of the system have been

done so far. This cutoff frequency could still contain information about the

origin of the noise process since it would determine a time scale of the causing

process.

• Flicker noise occurs in many electrical devices and is often attributed to trapped

charges. Ref. [126] studies flicker noise in gold-hydrogen junctions at low tem-

peratures. The authors attribute it to electron scattering, which causes a
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Figure 2.14: Comparison between noise traces (left column) and corresponding NPS
(right column) following an OU process (blue) and telegraph noise (red). The relaxation
time of the OU process τ and the expected number of jumps of the telegraph noise
within the record window are set to realize cutoff frequencies in the NPS (black dashed
line) of 159 Hz (upper row), 15.9 Hz (middle row) and 1.59 Hz (lowest row). The
Euler-Majorana method was used to simulate the OU noise traces. The telegraph noise
traces were simulated by uniformly distributing a number of jumps with magnitude
A, where the number of jumps is a Poisson random variable with expectation λ.

high-frequent telegraph noise. It is further shown that the NPS of high-frequent,

Poisson-distributed telegraph noise is similar to that of an OU process. Fig. 2.14

shows the comparison between noise produced by an OU process and telegraph

noise. A potential connection between the observed telegraph and flicker noise

in TES devices was not studied in the literature yet but would be compatible

with current observations.

In summary, further studies and characterization are needed to fully understand all

noise sources in TES devices and the relations between them. From the observation

of the frequency spectrum alone, the harmful flicker noise could be explained by

high-frequent telegraph noise and flux flow noise. The excess Johnson noise could be

related to ITFN.

2.2.3.2 Low energy excess events

In recent years low-threshold experiments have reached energy thresholds far below

1 keV. Measuring these previously unexplored energy regions lead to the discovery of
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Figure 2.15: Energy spectra of measurements with units of total energy deposition.
The apparent peaks in the CRESST (SuperCDMS CPD) data at 30 eV (20 eV) are
caused by the trigger threshold. Fig. and caption also used in Ref. [7].

new types of backgrounds. Across multiple experiments and sensor types, these LEEs

have in common that their spectral shape is steeply rising towards lower energies.

These LEEs are a matter of intensive, ongoing research. However, most observations

are not fully understood yet. We summarize here the presentations and conclusions

from the first iteration of a dedicated workshop that was held in 2021, the EXCESS

workshop4, where we follow the workshop summary paper [7]. Furthermore, we discuss

the observations made with TES devices by the CRESST experiment in more detail,

which were published in Ref. [31]. Due to variations in the shape, rate, and time

dependency of the signal among experiments, detectors, and measurements, a common

particle explanation, as e.g. DM scattering, seems unlikely, even in non-standard

scenarios. The same conclusion is drawn in Ref. [127], where observations from the

EDELWEISS and SuperCDMS experiments were compared with a nuclear recoil form

factor fitted to the data.

Ref. [7] reports on observations from the CRESST [30], DAMIC [128], EDELWEISS

[129,130], MINER [131], NUCLEUS [132], SENSEI [100], SuperCMDS [84,88,133],

NEWS-G [134], CONNIE [135] and RICOCHET [136] collaborations. Collaborations

shared the data of their excess observations in Ref. [137]. The data is shown in

direct comparison in Figs. 2.15 and 2.16. A rise at low energies is clearly visible

in the recoil spectra. The spectra are distributed across the two figures according

to their energy units. The NUCLEUS, CRESST, EDELWEISS RED20, MINER,

4At the time of writing, already a second, third and fourth iteration of the EXCESS workshop
were held.
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Figure 2.16: Energy spectra of measurements with electron equivalent energy deposition
units. Note that this energy scale can only be approximated for SuperCDMS HVeV
data (see main text for details). Fig. and caption also used in Ref. [7].

and SuperCDMS-CPD measurements are in units of total energy deposition, while

the DAMIC, SuperCDMS-HVeV, Skipper-CCD, EDELWEISS RED30, and SENSEI

measurements are in units of electron equivalent energy, i.e. assuming that all incoming

particles scattered off electrons in the detector material. The conversion from electron

equivalent to nuclear recoil or total energy deposition units can be model dependent.

Since the origin of the excesses is possibly diverse and mostly not clarified, the stated

recoil energies have to be interpreted carefully. Since the measured events are not

discriminable from particle recoil signatures but might, in many cases, not be caused

by particle recoils, the energy scales must be understood in terms of a “particle recoil

equivalent” energy deposition.

In the following, we provide some key information about the measurements at

which LEEs were observed. A detailed description was provided in the workshop

presentations [138]:

• The NUCLEUS (NUCLEUS prototype 2017) measurement was performed with

a sapphire cryogenic calorimeter equipped with a tungsten TES and aluminum

phonon collectors. The operating temperature was 15-20 mK, in an above-ground

laboratory at the Max-Planck institute for physics (MPP) in Munich. No veto

systems or shielding were in place. An iron-55 source was used for the energy

calibration. As a target, 0.49 g sapphire with dimensions of (5 x 5 x 5) mm3

was held in place with bronze clamps, sapphire spheres, and copper plates. An

energy resolution of 3.7 eV and an analysis threshold of 19.7 eV were reported.

The measured energy range was 19.7 eV – 12 keV.
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Measurement Target Sensor Exposure
(kg days)

Operation
Temper-
ature

Depth (MWE)

CRESST
III DetA

23.6 g cal-
cium
tungstate

Tungsten
TES

5.594 15 mK 3600 (LNGS)

EDELWEISS
RED20

33.4 g germa-
nium

NTD 0.033 17 mK above ground

MINER
Sapphire

100 g sap-
phire

QET 2.72 7 mK above ground

NUCLEUS
1g proto-
type

0.49 g sap-
phire

Tungsten
TES

0.0001 15-20
mK

above ground

SuperCDMS
CPD

10.6 silicon QET 0.0099 41.5 mK above ground

DAMIC 40 g silicon CCDs 10.927 140 K 6000 (SNO-
LAB)

EDELWEISS
RED30

33.4 g germa-
nium

NTD, NTL
amplifica-
tion

0.081 20.7 mK 4800 (LSM)

SENSEI 1.926 g sili-
con

Skipper
CCD

0.0955 135 K 225 (Fermilab)

Skipper
CCD

0.675 g sili-
con

Skipper
CCD

0.0022 140 K above ground

SuperCDMS
HVeV Run
1

0.93 g silicon QET, NTL
amplifica-
tion

0.00049 33-36
mK

above ground

SuperCDMS
HVeV Run
2

0.93 g silicon QET, NTL
amplifica-
tion

0.0012 50-52
mK

above ground

Table 2.5: Key properties of the measurements presented at the EXCESS workshop.
The first part contains the experiments shown in Fig. 2.15, and the second part
corresponds to Fig. 2.16. The spectrum of the experiment in the third part is not
shown in this work. Table also used in Ref. [7]. We omitted the NEWS-G experiment,
since it is using gaseous targets.

• The CRESST (CRESST-III) measurement was performed with a calcium tungstate

cryogenic particle detector equipped with a tungsten TES at LNGS, shielded

by 3600 meters water equivalent (MWE). The operating temperature was 15

mK. An active muon veto system and polyethylene, lead, and copper shieldings

were in place. A cobalt-57 source, stimulating the tungsten escape peak, and

peaks from cosmogenic activation were used for the energy calibration. As a

target, 23.6 g calcium tungstate with dimensions of (20 x 20 x 10) mm3 was
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held in place with calcium tungstate sticks. An energy resolution of 4.6 eV and

an analysis threshold of 30.1 eV were reported. The measured energy range was

30.1 eV – 16 keV.

• The EDELWEISS RED20 (EDELWEISS-Surf) measurement was performed with

a cryogenic germanium detector equipped with a germanium-NTD heat sensor

of (2 x 2 x 0.5 ) mm3 size, glued on germanium. The operating temperature was

17 mK in an above-ground laboratory at IP2I Lyon. 10 cm lead with a 50-degree

opening above the detector was in place. An iron-55 source was used for the

energy calibration. As a target, 33.4 g germanium with cylindrical dimensions

of 50 mm diameter and height 20 mm was held in place with teflon clamps on

each side. An energy resolution of 17.7 eV and an analysis threshold of 60 eV

were reported. The measured energy range was 60 eV – 10 keV.

• The EDELWEISS RED30 measurement was performed with a cryogenic ger-

manium detector equipped with a germanium-NTD heat sensor (2 x 2 x 0.45 )

mm3 glued on germanium, together with aluminum electrodes for the ionization

measurement. The operating temperature was 20.7 mK, at LSM (below ground,

4800 MWE). 15 cm lead and 60 cm polyethylene acted as shielding. Peaks from

germanium-71 neutron activation were used for the energy calibration. As a

target, 33.4 g germanium with cylindrical dimensions of 20 mm diameter and 20

mm held was held in place with teflon clamps on each side. An energy resolution

of 1.58 eVee (with 78 V bias, equivalent to 42.7 eVnr) and an analysis threshold

of 6 eVee were reported. The measured energy range was up to 30 eVee.

• The MINER measurement was performed with cryogenic athermal phonon

detectors. Multiple detectors were operated simultaneously. The sensors used

are tungsten TES with aluminum fins. In an above-ground laboratory, the

operating temperature was 7 mK as the base temperature, with Tc from 30-90

mK. An inner active veto (germanium detection with TES) was in place. An

iron-55 and an external cobalt-57 source were used for the energy calibration.

As a target, various masses between 100 and 700 g with germanium, silicon, and

sapphire materials were held in place with standard SuperCDMS style mounting.

An energy resolution of 15 eV and an analysis threshold of 50 eV were reported.

• The SuperCDMS-CPD measurement was performed with an athermal phonon

detector equipped with a single channel of 1031 QETs. The operating tempera-

ture was 41.5 mK, in an above-ground laboratory. A minimal shielding of 5 cm
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copper was in place. For the energy calibration, a collimated iron-55 source and

a 38 um thick aluminum foil for aluminum fluorescence were used. As a target,

10.6 g silicon with 45.6 cm2 surface area and 1 mm thickness was held in place

with six clamps. An energy resolution of 3.86 eV and an analysis threshold of

16.2 eV were reported.

• The SuperCDMS-HVeV measurement was performed with an HVeV (NTL-

gain phonon sensor, see Sec. 1.3) detector equipped with a SuperCDMS QET,

together with a TES-based phonon readout, using the NTL effect at 100 V to

produce quantized charge readout. The operating temperature was 50 mK, in

an above-ground laboratory. No veto systems or shieldings were in place. A

iron-55 source and a laser were used for the energy calibration. As a target, 0.93

g silicon with dimensions of (10 x 10 x 4) mm3 was held in place with fiberglass,

pressured on the corners of the chip.

• The DAMIC (DAMIC at SNOLAB) measurement was performed with a silicon

semiconductor ionization detector and CCD sensors. The operating temperature

was 140 K, at SNOLAB (6000 MWE). A 20 cm lead and 50 cm polyethylene

shielding were in place. For the energy calibration, muons and a cobalt-60 source

on the surface were combined with an in-situ LED calibration. As a target, 7

CCDs of 40 g silicon with dimensions of (62 x 62 x 0.68) mm3 each were held in

place with copper holders. A pixel white noise of 1.3 electrons (6 eVee) and a

dark count rate of <0.5 electrons per pixel were reported. The WIMP search

range is 50 eVee - 6 keVee, the maximal pixel value 14 keVee.

• The Skipper-CCD (Skipper CCD with passive lead shield running at surface)

measurement was performed using a silicon detector with single-electron charge

resolution and a skipper charge-coupled device as a sensor. The operating

temperature was 140 K in an above-ground laboratory. A shielding of 2 inches of

lead was in place. An absolute calibration was done using charge discretization

measurements on the same output data for the energy calibration. As a target,

0.675 g silicon with dimensions of (4.6 x 0.75 x 0.0675) cm3 was held in place as

a package with copper holders. An energy resolution of 0.17 electrons per pixel

from readout noise and an analysis threshold of 5 electrons was reported. The

measured range was 5 to 2000 electrons.

• The SENSEI measurement was performed using a silicon detector with single-

electron charge resolution and a skipper charge-coupled device as a sensor. The

75



operating temperature was 135 K, in a shallow underground laboratory (MINOS

cavern at Fermilab, 225 MWE). A thin non-hermetic lead shield was in place.

For the energy calibration, the self-calibrating charge measurement was used.

As a target, 1.926 g silicon with dimensions of (9.216 x 1.329 x 0.0675) cm3 was

held in place as a package with copper holders. An energy resolution of 0.14

elementary charges was reported, and independent analysis was performed for 1,

2, 3, and 4 electron events.

In summary, with solid and gaseous target materials, LEEs are observed at various

energy scales, from ≈ 10 mK up to > 100 K. Some of the observed phenomena cause

ionization, and others induce only crystal lattice movement. The observations are not

restricted to individual sensor types. Thermistors and charge-counting devices both

see them. The key data of the discussed observations are shown in Tab. 2.5. While

Ref. [7] states, that a common origin of the observed excess signals is possible, this is

in the light of more recent observations unlikely. The CRESST and SuperCDMS-CPD

experiments established in Refs. [31, 139] that their observed LEEs are likely non-

ionizing and caused by stress effects in the crystal, sensor or interface between them,

while the backgrounds measured with CCD-like sensors are necessarily ionizing, as a

pure heat signature would not be measured and therefore go unnoticed. The workshop

also contained a presentation about a single-electron background observed by the

NEWS-G experiments. However, this background is unlikely to be explained by stress

effects due to their gaseous target, hence we omitted a detailed discussion. It is likely

a phenomenon on its own, unrelated to the excesses in solid-state detectors. Ref. [81]

showed that the excess electron-hole pairs measured in SuperCDMS HVeV are likely

due to luminescence from the detector holding structure. Ref. [140] establishes that

the excess seen by the DAMIC experiment is compatible with a DM interpretation.

However, a DM signal observed by DAMIC would, under standard assumptions, be in

tension with limits from multiple other experiments. Overall, there seems to be one

common stress-related, non-ionizing instrumental background in cryogenic detectors

at the coldest temperatures and possibly one common origin of ionizing backgrounds

in CCD devices.

The excesses in the CRESST cryogenic TES-based detectors were studied in more

detail in Ref. [31]. The authors report on a measurement campaign with a total

duration of 670 days and six detectors with thresholds between 10 and 157 eV. The

detectors use different target materials but are otherwise similarly manufactured. Five

detectors have the CRESST-III default target size of (20 x 20 x 10) mm3, while one

76



2-10 1-10 1Energy (keV)

1-10

1

10

210

310

410

510

)-1
 d

ay
-1

Ra
te

 (k
eV

Si2 0.35 g
Li1 11 g
Sapp1 16 g
Sapp2 16 g
TUM93A 24 g
Comm2 24 g

2-10 1-10 1Energy (keV)
10

210

310

410

510

610

710

810

)-1
 d

ay
-1

 kg-1
Sp

ec
ific

 ra
te

 (k
eV

Si2 0.35 g
Li1 11 g
Sapp1 16 g
Sapp2 16 g
TUM93A 24 g
Comm2 24 g

Figure 2.17: Energy spectra measured with six detectors in the CRESST setup in
run 36 of the experiment. A strong rise in the event rate is observed toward lower
energies in all modules. The excess rates agree better among the detectors when the
spectra are scaled to the total measured rate (left) than to the specific rate (right).
The origin of the bump in the Sapp2 spectrum (brown) around 200 eV is unknown
but likely unrelated to the LEE. Figure taken from Ref. [31].

of the detectors, originally meant as a veto detector for photon scattering, has a wafer

target with a size of (20 x 20 x 0.5) mm3. Since all detectors were operated in the same

cryostat, the measurement allows for a direct comparison between different types of

target materials and target sizes. The observed energy spectra in the energy region of

the excess are shown in Fig. 2.17, scaled to units of total and specific rate, i.e. divided

by the target mass. Scaling of the rate with the mass of the crystal would be expected

for weak particle interactions, as for DM or neutrinos. We see in Fig. 2.17 (right)

that the specific rate of the individual measurements varies significantly across the

measurements. This is not a surprise since the LEE is likely not caused by particle

scattering. The total rate scale shown in Fig. 2.17 (left) provides better comparability

between the measurements. However, there are still large variations between the

individual excess rates, of about half an order of magnitude. Most notably, the excess

rate seen in the wafer detector is not significantly smaller than that of the larger

detectors. This clearly excludes a bulk effect as the origin of CRESST’s LEE.

Throughout the measurement, an approximately exponential decay of the excess

rate is clearly visible, starting from the cooldown of the cryostat, and shown in Fig. 2.18.

Several warm-ups of the setup to higher temperatures were performed throughout the

measurement campaign, followed by cooldowns to operation temperature to study the

effect on the excess rate. An effect is clearly visible for the warm-up to 60 K. The

decay of the excess rate was observed on a time scale of (149 ± 40) days before the

warm-up test and on a time scale of (18 ± 7) days after this warm-up. An independent

effect of the successive two warm-ups to 600 mK and 200 mK is not visible.
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Figure 2.18: Rate of excess events measured with six detectors in the CRESST setup,
in run 36 of the experiment, binned by time intervals since the cooldown of the
experiment. The rate clearly decays with time, on an approximately exponential
time scale, and seems to reset after a warm-up cycle of the experiment to 60 K. An
exponential decay model was fitted to the time interval before and after the warm-up
independently, and the resulting time scales of the decay are shown (inset). Fig. taken
from Ref. [31].

A similar effect of warm-ups on superconducting thin films was discussed in

Ref. [141]. The authors have measured quasiparticle-induced charge bursts across a

tunnel junction between a superconducting charge island and a normal metal. They

measure an overall comparable rate of charge bursts, as seen in the CRESST cryogenic

detectors. The mechanism of quasiparticles that break cooper pairs in the charge

island is likely the same mechanism used for collecting quasiparticles with aluminum

collectors in cryogenic CRESST and SuperCDMS detectors. The measured burst rate

decays with time after cooldown and resets after a warm-up and second cooldown.

Therefore, the phenomenon’s characteristics are compatible with the effect causing

the LEE in CRESST detectors.

Understanding low-energy backgrounds has a top priority for the current low-

threshold experiments since they coincide with the region of interest (ROI) for low-

mass DM searches and CEvNS detection. The LEEs are, therefore, a matter of

ongoing research, and it is expected that the coming years will bring insights into

their nature. Solving excesses for superconducting thermometers might not only have

an impact in the field of rare event searches but also on other superconducting devices

used for photon measurements and quantum information processing. We discuss the

connections to such devices briefly in the following section.
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Figure 2.19: (left) Schematic figure of an SNSPD. The superconducting niobium
wire (dark grey) is the target for photon scattering (black arrows), which causes
the wire to become locally normal conducting (red). (right) Schematic figure of an
electrical circuit of a transmon qubit (upper part) and its physical manifestation as
a superconducting layer on a substrate (lower part). Athermal phonons can break
cooper pairs in the superconducting layer, causing spontaneous state changes of the
qubits (inset). Fig. adapted from Refs. [142, 143].

2.2.4 Related quantum technologies

Superconducting thermometers have similarities with other quantum technologies

that are based on thin films. This includes other sensor types on the one hand, but

also devices used for quantum information processing. In this section, we discuss the

similarities with superconducting nanowire single-photon detectors (SNSPDs), briefly

introduce metallic magnetic calorimeters (MMCs), and identify common challenges in

background mitigation with superconducting qubits.

SNSPDs are particle detectors, similar to cryogenic detectors with TES but with

a different use case [144]. Their working principle is visualized in Fig. 2.19 (left).

While cryogenic detectors with TES are commonly optimized to measure particle

scatterings through a weak interaction, requiring a certain target mass, SNSPDs

are optimized to identify EM interactions. Instead of a thin superconducting film,

they use a densely packed nanowire, which acts directly as the target for the particle

interaction, instead of collecting phonons from the target crystal. The high cross-

section for the EM interaction with the metallic wire is sufficient to achieve a high

interaction probability. The wire is operated in a superconducting state slightly below

its transition temperature. Energy deposited by a particle recoil in the wire heats the

wire locally above the transition temperature. The bias heating of the wire causes in

addition the surrounding region to transition into a normal conducting state, causing
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a measurable resistance increase. The locally small heat capacity of the wire results in

a low energy threshold and a fast relaxation time of the sensor. It is noteworthy that

TES detectors can be optimized for photon detection by using the sensor as a low

energy resolution target (see e.g. Ref. [145]). The idea of coupling a superconducting

nanowire to an absorber for DM searches with improved energy threshold by collecting

athermal phonons from the crystal was presented in Ref. [146].

Another type of sensors gaining in popularity are MMCs, reviewed e.g. in Ref. [147].

Those sensors measure the change in the magnetic structure of the metal by coupling

it with a SQUID amplifier. The obtained energy resolutions with these sensors rapidly

improved in the past years and reached today almost identical performance as TES-

based detectors. Their strengths include a high dynamic range and fast relaxation

time. The idea for a DM search with such devices was presented in Ref. [148] and

called the MAGNETO-X experiment. Also, the planned DeLIGHT experiment intends

to use them as sensors to measure the adsorption of helium atoms on a crystalline

absorber [149].

The last quantum technology that we are discussing here are superconducting

qubits. A schematic visualization of these devices and their electrical circuit is depicted

in Fig. 2.19 (right). There are many realizations of superconducting qubits. We focus

only on one of them, the so-called transmon qubits. A charge island is constructed

using a Josephson junction, such that the circuit’s lowest and first excited energy states

are well separated from higher states, resulting in a two-state system. The technology

allows to entangle multiple qubits with each other and can, therefore, be efficiently

used as a fundamental building block for quantum computers. In recent years the

time of error-free operation, called coherence time, of transmon qubits increased to

the order of magnitude of milliseconds. This is required to operate many entangled

qubits, which could be used to compute quantum algorithms. Compared to classical

computers, a significant computational advantage for certain problems is expected

from such operations. Several hundreds of qubits can be operated today, and further

advancements are expected within the next decade. A good review of the technology

is contained in Ref. [143].

Decoherence is caused by any interaction of the electrical circuit with its sur-

roundings. The more energy deposited in the circuit in the interaction, the higher

the error probability. Since the technology is also based on superconducting thin

films deposited on a substrate, similar physics processes are expected to cause errors

that are also seen in cryogenic detectors. What is seen as noise or pulses in a TES

would potentially be observed as errors in qubits. Refs. [142, 150, 151] have shown
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that qubits are indeed sensitive to astroparticle scattering. Methods to mitigate the

error rate are suggested by operating devices with shielding and underground and

implementing phonon-downconversion traps [152]. Ref. [141] studies quasiparticle

poisoning, i.e. the existence of high energy phonons that contribute to the error rate,

in a chip with a superconducting junction and charge island. The mechanism is likely

the same mechanism that is used in aluminum phonon collectors. They measure a

quasiparticle-induced error rate that is compatible with the rate of LEE events in TES.

Furthermore, their error rate decreases on a time scale of weeks after the cool-down of

their setup to Millikelvin, which is as well a common feature with the LEE in TES.

This interesting similarity opens up several questions: is the LEE measured with TES

a relevant error source for superconducting qubits? Could qubits also be used as

sensitive particle sensors since they are sensitive to relatively low-energy interactions?

The idea of using them as such was presented in Ref. [153]. Studying these questions

is a matter of ongoing research.

We have introduced in this section the experimental realization of cryogenic particle

sensors with superconducting thermometers, for which we built a theoretical model in

Sec. 2.1. The scaling of relevant properties with temperature and the resulting impact

on the energy resolution was studied through detector simulations. We introduced

the concept of phonon collectors, a series of yet unexplained noise and excess rate

phenomena, and the similarities with other quantum technologies. Cryogenic phonon

detectors have not yet reached their fundamental limits. It is therefore expected

that their sensitivity will, with advancements in technologies in the future, further

improve. A better understanding of the limiting phenomena and their mitigation is

required to realize this. Analyzing data from cryogenic detectors for physics searches

is a non-trivial process, and Chapter 3 is dedicated to this discussion. We will in the

following apply the built understanding of the detectors to realize a DM analysis with

CRESST data in Chap. 5, and optimize the design choices for COSINUS detectors in

Chap. 4. In Chap. 6, we discuss methods for the large-scale analysis of experiments

and for automating the detector operation.
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Chapter 3

Analysis techniques

Cryogenic detectors with superconducting thermometers are sensitive low-temperature

devices that respond strongly to energy depositions from particle recoils and many

other environmental influences. This is especially true when they are pushing for the

lowest recoil energy thresholds. Obtaining reliable recoil energy spectra and particle

identification requires a careful analysis of the recorded sensor signals, a process

that is commonly called RD analysis. In a further step, the measured data have to

be compared with the tested physics process and backgrounds to make statistical

statements about the occurrence of rare events, e.g. DM scatterings. The canon of

such methods is also called high-level data (HLD) analysis. In this chapter, we develop

the techniques to perform such analysis. We start with the triggering, pulse shape

processing, energy reconstruction, and data quality cuts of the RD analysis in Sec. 3.1.

For this, the Cait Python package has recently been released and described in Ref. [5].

The package is dedicated to performing the RD analysis efficiently in the ecosystem of

Python scientific computing frameworks, enabling the inclusion of modern data science

and machine learning tools. In Sec. 3.2, we discuss typical methods for the derivation

of cross-section upper limits on physics processes by showing the typical procedure

and effects on toy models. We especially discuss the combination of experimental data

from multiple experiments or detectors. This will be relevant for future searches with

large-scale setups, as is the planned CRESST upgrade.

3.1 Raw data analysis

The process of RD analysis can roughly be separated into four major steps. When

a measurement is done, the first step is to characterize the detector. This includes

learning typical pulse shapes, noise conditions, and energy resolution. When fun-

damental knowledge about the typical event distribution is built, the events can

82



Figure 3.1: Visualization of the four steps of the analysis workflow: detector character-
ization, event characterization, event selection, and validation. The tasks that require
significant run-time are automated, i.e. do not require user interaction. The red arrows
indicate the usual order of tasks in the analysis. However, the time-intensive part of
the validation (simulating events and calculating their features) can already be done in
parallel with the event characterization. Also, the detector and event characterization
have to go through at least two iterations: events need to be triggered to characterize
the detector, and triggering with an optimized threshold is only possible after the
detector characterization. Fig. and caption also used in Ref. [5].

be characterized one by one. This includes e.g. triggering with an optimized filter

kernel, and calculation of pulse shape features that already include the knowledge from

detector characterization. The calculation of such features can usually be decently

automated. Based on this characterization, the selection of events must be decided

according to the sought for physics and the data quality. The event selection is done

by designing cuts on the data. In the standard workflow this involves to look at

samples of the recorded data and decide on rejection and acceptance regions. However,

automated procedures are, in principle, possible and will be discussed in this chapter

and in Chap. 6. Finally, the analysis chain needs to be validated by using a data

set of positive events, often simulated ones. This reduces the risk of a selection bias

throughout certain steps of the analysis. The whole analysis procedure is visualized

in Fig. 3.1. In the framework of the Cait Python package, the RD analysis is built

around an HDF5 file, where the triggered voltage traces and all calculated features are

stored. All methods described in this chapter are implemented in the Cait package,

and most of them were also described in Ref. [5].

In measurements with cryogenic detectors, electrical heater pulses, called test and

control pulses (TPs and CPs), are injected periodically to test the detector response.
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The TPs are injected at different amplitudes to monitor the pulse shape and height

for different energy depositions. The CPs are injected with maximal amplitude to

drive the detector out of its superconducting transition and monitor by that the

OP in the transition. Generally, heater pulses have a different shape compared to

the pulses induced by particle scattering. Additionally, random noise triggers are

forced to acquire empty voltage traces for calculating NPS and using them for event

simulations. Typically events are triggered and recorded online, i.e. directly during

the measurement, with a simple threshold trigger. In modern experimental setups,

the continuous data taken from the sensors is additionally recorded to enable offline

triggering in software at any later point with optimized filters and thresholds.

In the following, we discuss the four steps of the RD analysis. Special emphasis

is put on the novel machine learning methods that can be used to separate pile-up

events (see Sec. 3.1.2.6) and the automated event discrimination (see Sec. 3.1.2). They

were for the first time presented in Refs. [5, 8]. Furthermore, a method to determine a

trigger threshold in the presence of high-frequent sub-threshold events (see Sec. 3.1.1.5)

is discussed in detail. This method was introduced in an internal note of the CRESST

collaboration [9].

3.1.1 Detector characterization

3.1.1.1 Standard events

The first step in the detector characterization is finding the typical pulse shape of

particle recoils in the target, called the standard event (SEV). For this, often, the

pulses that were triggered online are used. This event shape deviates for most standard

cryogenic detectors only negligibly with the exact position of the recoil in the target, an

effect that would be called position-dependence. Since targets are crystalline, and the

initial phonon distribution homogeneously fills the crystal much faster than they are

transferred to the sensor, no position dependence is usually observed. It would rather

be an indication of some type of harmful phonon down-conversion, e.g. on impurities

of the crystal structure. The height of the pulse is approximately proportional to

the deposited recoil energy. The SEV is constructed by choosing a number of clean

particle pulses from a similar energy region, e.g. from a peak in the PH spectrum

induced by a calibration line. The pulses are then sample-wise averaged, leading to

the reduction of noise fluctuations.

Special care has to be taken that the onset of the pulses in the record window

is similar in all averaged traces since strong deviations in the onset would lead to a
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smearing of the rise and decay of the SEV. Assuming that the online trigger algorithm

works consistently, the onset of pulses with similar heights should be close enough to

each other. Depending on the trigger algorithm, a systematic onset drift for pulses

with different PHs can be visible, called the trigger walk. Furthermore, it’s important

that the SEV is built from an energy region where the detector response is still in good

approximation linear. For higher energies, non-linear saturation effects are expected.

They are discussed in more detail in Sec. 3.1.2. The equation developed in the previous

chapter, Eq. 2.13, can be used as a fit model to extract the pulse shape’s characteristic

time constants and amplitudes. This fit usually leads to different values for the particle

and TPs. For TPs, the underlying physics process is different from the process with

particle pulses since the initial phonon distribution arriving in the crystal is already

more of a thermal nature. It is a common procedure to construct SEVs also for the

TPs and in case of multiple pulse shapes in the data, e.g. from recoils in different

parts of the detector, for each of them individually. Multiple pulse shapes were seen

e.g. due to carrier crystals [154] and holding structures [30].

3.1.1.2 Noise power spectrum

The typical noise conditions should be characterized after the typical pulse shape was

obtained. This is done by constructing an NPS. For this, a selection of clean noise

traces is made. A Fourier transform (FT) is applied to them, and they are sample-wise

averaged in Fourier space. The fluctuating noise frequencies are smoothed out through

this procedure, while the characteristic frequencies in the NPS remain at their typical

amplitude. The phase information of the events is lost, which is no problem under

the assumption that the frequencies are not correlated with each other. In practice,

this assumption is certainly not satisfied since harmonics are correlated. For the set

of methods we want to use in the further analysis, we would not benefit from the

additional phase information and can neglect the correlation. The total scale of the

NPS, and its normalization, is of relevance to make meaningful physics statements

about the noise conditions and contributions. The proper normalization to retain

interesting information is

NPS[ω] =
2

N ·R · F · ξ
N�
i=1

rFFT(xi[t])[ω], (3.1)

where rFFT is the fast FT for real values, which contains only the frequencies larger

or equal to zero to reduce redundancy. xi are the noise baselines, N is the number of

noise baselines used to compute the NPS, R is the record length, F is the sampling
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frequency, t is the index of the record in time-space, and ω is the index of the record in

Fourier space. The factor 2 is necessary since we use the rFFT operator instead of the

full fast FT. The square brackets indicate that the functions worked with are discretely

sampled arrays. The values need then still be converted from a SQUID output voltage

to the current in the readout loop. For most use cases in the analysis workflow, the

NPS units are unimportant since we only need their shape instead of their absolute

values to build e.g. frequency filters. However, to learn information about the physics

of the detector, we do need the proper physics units, and we will use them in Chap. 4

and Sec. 6.2. Usually, we build the SEV and NPS from a statistically representative

subset of the measured data. If the observation is made that the event shape or noise

conditions change significantly within the data set e.g. after interventions on the setup,

such as adjustments of the OPs or warm-ups, then new SEVs and NPSs should be

constructed for those time periods.

3.1.1.3 Optimum filter

Once we constructed the SEV and the NPS, we have not only learned something of

the physics of our detector but can also use them to build an optimized frequency

filter for detecting the pulse signature in a noisy data stream. This filter is called the

matched or optimum filter (OF) [155], and the filter kernel that maximizes the SNR

for Gaussian, colored noise with the frequency distribution of our NPS and a linearly

superposed SEV. The OF is built as the ratio of the SEV and NPS in Fourier space:

H(ω) = h
SEV ∗(ω)
NPS(ω)

e−2iωπτ , (3.2)

where h is a normalization factor to conserve the PH of the SEV, the asterisk indicates

the complex conjugation and τ is a constant between 0 and 1, indicating the position

of the maximum in the record window of the SEV. The OF was discussed in more

detail in Ref. [156]. Filtering a record window is typically done by transforming

it into Fourier space, multiplying the filter kernel, and transforming it back. This

methodology can be applied only for records of the fixed length of the noise traces

that were used to construct the filter kernel. In Sec. 3.1.2, we discuss the procedure

to filter a longer data stream by deconstructing it into partially overlapping records

of the desired length. However, if filtering a longer window is necessary, a trick can

be applied to extend the filter kernel. For this, the filter can be transformed back

into time-space, and the record can be symmetrically padded with zeros, starting

in the center of the record. By transforming the filter back into Fourier space, we
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find a kernel with a longer shape, i.e., containing lower frequencies but an unspoiled

frequency spectrum.

3.1.1.4 Energy resolution

Another essential information about the detector is its energy resolution, often abbrevi-

ated with σ. This value describes how well the detector can resolve the energy transfer

from an incident particle. The energy resolution is an energy-dependent quantity.

However, the most important information, and the one that is routinely extracted and

stated for a cryogenic detector, is the baseline resolution, i.e. the energy resolution at

zero or small recoil energies. This quantity is especially important since it is typically

used to optimize a trigger threshold, as will be discussed later. Several methods exist

to estimate this resolution, and in practice, multiple of them are applied to validate if

their resulting values agree or obtain systematic uncertainties. Since these estimates

usually change systematically beyond their statistical uncertainties and depend on the

method used to calculate the estimate, it should be described which method was used

to calculate the resolution.

The most widely applied method is to simulate artificial low-energy events by

superposing the SEV, scaled to a fixed PH, on an empty noise baseline. These events

can then be filtered with the OF, and their PH can be reconstructed. Ideally, the

PHs would form an approximately Gaussian distribution around the true PH. The

standard deviation of this distribution is an estimate of the energy resolution. Special

care must be taken of the empty baselines used for this procedure. In practice, noise

traces are typically not empty, but events often appear on the records that coincide

with the random triggers. The choice of the baselines can therefore impose a strong

negative or positive bias on the calculated energy resolution. In practice, data quality

cuts are applied to the noise traces; ideally, these should be the same data quality cuts

applied in the analysis of all events. We will discuss data quality cuts in more detail in

Sec. 3.1.2. The advantage of this method is that the estimate of the energy resolution

is very realistic since the same procedure is applied for the simulated events as for the

measured ones. This comes at the price of a higher necessary effort as for alternative

methods since a reasonably high number of events must be simulated, e.g. a thousand

or more. The statistical uncertainty on the estimate is not straightforward to calculate

since it is the standard deviation of a sample standard deviation. However, we can

use the assumptions of a normal distribution and large sample size, which leads us to

the estimate [157]
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var (σ) ≈ 2σ2

n− 1
. (3.3)

Another method to estimate the energy resolution that does not require simulation of

events is to use pulses from a source with known energy. This can be an X-ray source

that provides a clean peak in the PH spectrum or induced heater pulses with constant

injected amplitude. This method saves the effort of simulating events and reduces

the uncertainty that could be induced by potential shifts in the pulse shape or height

over time, which could lead to small bias effects in the previously explained method.

However, it induces additional uncertainty if not all events from the chosen line in

the PH spectrum have the true energy that is assumed for them. Such deviations are

often not expected from X-ray or heater pulse lines, but they can occur e.g. when

pulses from another background cannot be perfectly discriminated from the pulses

with the desired energy. For heater pulses, uncertainties in the electronics or setup

could spoil the process, even though this is expected to have a small effect. Typically

a higher estimate of the energy resolution is reached with this method. Spectral lines

from particle sources feature additionally all potential smearing effects from a position

dependence of the recoil, while spectral lines from heater pulses do not show this

effect.

The energy resolutions calculated with these two methods will generally have the

physical units of a voltage difference since we are calculating the standard deviation

of reconstructed PHs. The desired information is the energy resolution in units of

the recoil energy. To translate between those units, an energy calibration has to be

performed. We will discuss the procedure of the energy calibration in Sec. 3.1.2, and

we will see that a linear calibration factor can be used for the conversion of the voltage

value of the baseline resolution to energy units.

3.1.1.5 Trigger threshold

We mostly need the energy resolution in voltage units at this point of the analysis

workflow to define an optimized trigger threshold. The threshold is typically chosen to

balance a high detection efficiency at low energies with the appearance of accidental

noise triggers. We often assume a Gaussian distribution of the noise samples, which

is a reasonable approximation. The expected number of noise samples above the

threshold, and therefore the noise trigger rate, can then be estimated from the tail of

the Gaussian distribution of noise samples with mean zero and standard deviation of

the energy resolution. We can extract the probability for noise samples to exceed a

threshold chosen as a certain multiple of σ from the cumulative distribution function
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(CDF) of the normal distribution. In a naive calculation, we can treat all noise

samples as independent random numbers occurring with the sampling frequency of

the recording. From this, we can estimate the number of noise triggers exceeding the

threshold in a given measurement interval. Often the threshold is chosen between 5

and 6.5 σ or as one noise trigger in one kg day exposure. For the later estimate, the

target mass is required. However, this procedure can be refined even better since not

all noise samples are independent random numbers, but a finite correlation length

exists, which is also represented in the nature of the noise as an OU process.

In a recent paper [158] the authors consider this correlation between noise samples

and estimate an effective value of the independent noise samples in-situ by constructing

a fit model for the maxima in empty noise traces. They propose a method to define

a noise trigger rate for sensors with Gaussian noise. For this, they calculate the

probability that one sample in a record window has a value of xmax, while all others

have a lower value, with a binomial distribution:

Pd (xmax) =
d!

1!(d− 1)!
(P (xmax))

�� xmax

−∞
P (x)dx

�d−1

. (3.4)

Here, d is the number of independent samples in the record window, and P is the

sample distribution. They assume that all samples follow Gaussian distributions with

identical sample variance σ2 and zero mean, which yields the distribution

Pd (xmax) =
d√

2 · π · σ ·
�
e
−
�

xmax√
2σ

�2
�
·


1

2
+

erf
�
xmax/(

√
2σ)

�
2

�d−1

, (3.5)

where σ is the standard deviation of the Gaussian distribution, and erf is the error

function. This assumption is well-motivated and common in many signal processing

frameworks, e.g. in the assumptions for optimum filtering. The noise trigger rate

is then determined with a fit of the above model to the maxima of recorded noise

baselines and the choice of a suitable quantile. This fit immediately determines a

value for the energy resolution.

While most detector noise is very well modeled by a Gaussian distribution, especially

after applying a frequency filter, the assembly of record windows containing only

noise is often challenging. A high signal rate in the low energy region or non-trivial

pollution might violate the assumption of a purely Gaussian noise sample distribution.

A simple adaption to the distribution can be made to account for this fact, which was

presented in Ref. [9].

A natural extension of the purely Gaussian, zero-mean model for the sample

distribution is the inclusion of different distribution components. For the following
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elaboration, we define pollution as a compact, non-oscillating object within a record

window. This form of pollution is well motivated for temperature sensors because

solutions of the heat equation typically have such a form. Furthermore, the sample

distribution of oscillating polluting objects is typically well-modeled with the Gaussian

sample distribution and would therefore be covered by the original model already. To

include pollution in the model, we assume that the pollution governs only a single

independent sample, i.e., the pollution is well described by a template allowing only

for time- and scale variations. We extend Pd to the case, where one out of the d

sampled follows a different distribution F :

Pd(xmax) =F (xmax) · DP (xmax)
d−1 (3.6)

+DF (xmax) · (d− 1)P (xmax) · DP (xmax)
d−2. (3.7)

Here D denoted the CDF of P and F respectively. Exemplary, we can assume pollution

with the shape of a Gaussian peak. This type of pollution would e.g. occur if a known

decay process contributed energy depositions in the temperature sensor with a discrete

energy but smeared with an uncertainty. Also, frequently occurring vibrations with

fixed amplitude would cause pollution of this kind. The correct model for peak-shaped

pollution is then

Pd(xmax) =
1√

2 · π · σ1

·
�
e
−
�

(xmax−µ1)√
2σ1

�2�
·


1

2
+

erf
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√
2σ)

�
2

�d−1
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where σ1 and µ1 are the standard deviation and mean of the peak-shaped pollution,

modeled as Gaussian. The second type of pollution is especially interesting for

measurements that observe an exponentially rising low-energetic signal rate, as was

discussed in Sec. 2.2.3. To model this signal contribution, we include an exponentially

rising pollution term instead of the peak-shaped pollution:
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where λ is the rate parameter of the exponential distribution. For values of xmax

smaller than zero, this model collapses to the original model for pure Gaussian noise

but with only d− 1 independent samples.

This method was used in Ref. [87], to define a trigger threshold in the presence of

high frequent low energy events that were not separable from the empty baselines.

Finally, the last method to estimate an energy resolution is based on simulated

events as well and is discussed in more detail in Sec. 3.1.4. It is usually done as a final

cross-check of the events used for validating the analysis chain.

3.1.2 Event characterization

3.1.2.1 Trigger algorithm

In many modern low-threshold experiments, the continuous data stream of the sensor

signals is recorded in addition to the online triggered events. This is especially useful

since an optimized trigger threshold, and software algorithm can be used after data

taking, and the whole data stream is available for event simulations for arbitrary time

intervals within the measurement period. An optimized trigger algorithm uses the

OF to maximize the SNR for particle pulses while decreasing the impact of other

events. Since the OF can only be applied in Fourier space and only to record windows

containing the number R samples, we need a non-trivial algorithm to perform the

filtering that also takes care of any edge effects that can appear during the filtering.

This algorithm works as follows:

1. Choose the first R sample from the stream and multiply them with a window

function that forces the values to zero at the edges but leaves the inner half of

the record unspoiled.

2. Transform the record into Fourier space, multiply if with the OF, and transform

it back into time-space.
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3. Evaluate the maximum of the filtered record and check if it surpasses the trigger

threshold.

4. If the trigger threshold is not surpassed, jump to step 9.

5. If the trigger threshold is surpassed, we call the position of the maximum in

that window the triggered sample.

6. Choose a new stream record with the triggered sample at 1/4 of its length

and apply the same procedure as above (window function, filtering, evaluate

maximum).

7. If the new triggered sample does not sit at 1/4 of the record window, repeat

the procedure until the triggered sample is at 1/4 of the record window or a

stopping condition is reached. This stopping condition can e.g. be a number

of maximal iterations, to avoid a shifting of the window too far away from the

original trigger.

8. Add the time stamp of the triggered sample to a list of triggers and store the

record window with the trigger sample at 1/4 of its length.

9. Pick the next record half-overlapping, i.e. such that it starts R/2 samples after

the triggered event, and start from the algorithm from the top.

This algorithm is optimized for a scenario where the stream’s baseline is mostly a

constant value only disturbed by Gaussian noise conditions, and only discrete, compact

events rise significantly above the noise level. Several pitfalls could happen with this

algorithm. However, in practice, they rarely have an observable impact: in a scenario

with a very high event rate, small events are less likely to be recorded since higher

pulses in the same record window would mask them. Pulses that exceed the record

window by far can trigger a second time with their tail. These effects make it important

to ensure a good efficiency of the trigger algorithm by first choosing record windows

of a reasonable size that ideally contain the whole pulse and, second, by checking the

consistency of the algorithm with simulated events. Latter practice is described in

detail in Sec. 3.1.4. The algorithm works well in practice. However, its computational

cost is non-negligible since it is auto-regressive. With this, we mean that the position

of the record window on the stream depends on the content of the previous window.

The algorithm can, therefore, not be fully parallelized. In practice, a suitable solution

to that problem is data parallelism, i.e. splitting the measurement interval into chunks
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of several hours, for which the algorithm takes only about a minute to trigger and

launch multiple jobs for the triggering in parallel. The potential loss of the last and

first record window around splits is typically negligible since the measurements taken

are usually about hours, and record windows have lengths of fractions of a second. The

same paradigm of data parallelism is applied in the whole event characterization and

validation procedure. Parallel computing literature often argues that data parallelism,

i.e. performing the same processing pipeline individually for different chunks of data,

comes with a higher risk of bottlenecks than task parallelism, where one processing

pipeline uses a large number of computing cores through specifically designed software.

However, such bottlenecks arise only when common data is accessed by all pipelines.

This is not the case for our analysis pipelines, and the proposed procedure is therefore

suitable for a large-scale analysis workflow.

Once the list of time stamps of triggers is available, the list needs to be compared

with the timestamps of injected test and CPs to identify the artificial pulses caused

by the heating resistor and separate them from the particle event candidates. This is

done by a proximity cut on the time stamps. In some data acquisition systems, the

list of TP time stamps might not be accessible directly. In this case, the voltage values

applied to the heating resistor can be continuously recorded and equivalently triggered

instead to identify the injected pulses. If this data is unavailable, it is impossible to

separate the lists of particle and heater pulses clearly. While this scenario should be

avoided, it is still possible to discriminate between particle and heater pulses based on

their pulse shape and discrete PHs.

In situations where multiple sensor signals were recorded from one detector, e.g. in a

two-channel readout, we usually trigger all of them independently. If one of the channels

is defined as dominant, i.e. exclusively used for the recoil energy reconstruction, one

could only trigger the dominant channel. However, by doing so, one would potentially

miss out on learning the characteristics of the sub-dominant channels, which can

contain many interesting learnings about the detector.

3.1.2.2 Pulse height reconstruction

Once the list of triggered events is fixed, we need to identify their PH. The logical

and most commonly applied method is to use the difference between the baseline level

and the maximum of the filtered record window as PH. This has the advantage that

the PHs used in the analysis are consistent with the record window maxima used

during triggering. However, there are some situations where additional methods are

useful: first, this PH, after applying the OF, always depends on the SEV that was
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Figure 3.2: Simulated, saturated pulse shape, superposed with readout noise (black).
Pulse without saturation effects and readout noise (olive), which is proportional to
the true, underlying temperature increase in the thermometer originating from the
particle recoil.

used to build the OF. If a measurement contains multiple pulse shapes, the others will

therefore be biased towards lower values. Second, PHs scale only linearly with the

energy deposition in a small signal approximation. For higher energy depositions, the

pulses can reach or come close to the normal conducting region of the superconducting

film, which causes non-linear saturation effects on the pulse shape.

A moving average filter can be applied for a scenario in which we want to mitigate

the noise to some extent but not spoil the pulse shape too much. This filter assigns

to each sample in the record the average of its N/2 - 1 preceding and N/2 successive

samples. The filter efficiently mitigates high frequent noise above a wavelength of the

moving window size and can be calculated efficiently as a convolution between the

record window and a window of the desired filter length. Often a filter with length

N=50 samples is used. This filter especially improves the visibility of compact shapes

on a record and can be useful to compare PHs between events of different shapes

quickly without building OFs for all event shapes. However, the estimate of the PH

is certainly not comparable to the quality of the estimate from an OF. Furthermore,

for fast pulses that rise and fall within the length of the filter window, the moving

average filter will introduce a significant negative bias on the PH estimate.

High-energy events often exceed the approximately linear detector response range.

This happens, when the temperature increase in the thermometer is large enough

to drive the resistance close to or in the normal conducting range of the film (comp.

Fig. 2.1). For such events, any of the above-discussed PH estimators will be negatively
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biased since the peak of the pulse is deformed. The situation is depicted in Fig. 3.2.

As long as the event is only deformed within the record window, and the voltage

values return to the baseline level well within the record window, this bias can be

mitigated by the use of a truncated pulse shape fit. In this procedure, the SEV pulse

shape is fitted through the minimization of the mean squared error (MSE) between the

SEV pulse shape and the record. Typically the free parameters of such a fit are the

onset and height of the SEV, and superposed polynomials up to the third degree, to

decently model the baseline and its long-range fluctuations. This fit can be truncated

by excluding samples from the MSE where the record exceeds a certain voltage value,

called the truncation limit. By this, the rigid shape of the SEV will reproduce the

height of the unsaturated event while only fitting to the samples that are well within

the linear region of the detector response. This fit was discussed in more detail in

Ref. [156], and also its potential complications. While it provides a mostly unbiased

estimate, which can be controlled for with the test and CPs, the obtained energy

resolution is in the saturated region by far worse than that of the OF in the linear

region. Furthermore, in scenarios where no high-energy TPs are available to control

for bias effects, it is possible that strong bias could be introduced by the absence of

ETF in the duration when the pulse is in the normal conducting region of the detector.

The absence of ETF can lead to a slower release of the pulse back to the baseline.

Another bias effect can be introduced by the temperature dependency of the thermal

couplings. Since the couplings scale ∝ T 3 this effect can lead to a faster release of

the pulse back to baseline. The magnitude of these effects varies strongly between

detectors. The SEV-fit procedure can also be used to evaluate the PH of unsaturated

pulses. However, the computational cost is higher compared to the application of an

OF, and it only rarely exceeds the quality of the OF PH estimate, e.g. in situations

with unstable noise conditions.

The reconstruction of PHs is especially complicated when a detector has two

channels that are worked on in parallel, e.g. a phonon and a light channel. In this case,

the decision has to be made if one channel is dominant and will be used exclusively

for energy reconstruction, such that the other channel is only used as additional

information to veto events or for particle identification. In this case, the PH on the

veto channels should be evaluated in correlation with the PH on the dominant channel.

This is done by fixing the position at which the value of the record is taken in the

subdominant channels, not as its maximum but as the position of the maximum in

the dominant channel. While the dominant channel will generally be biased by noise

upward fluctuations, the subdominant channel is, with this restriction, statistically
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unbiased, even for low energies. This procedure will lead to negative PHs and negative

energies if the secondary channel does not record a signal from the event and the

record is evaluated at downward fluctuations of the noise. Although negative energies

may seem counterintuitive, this is the desired result of the method and the only way

to avoid bias in subsequent statistical analysis. It is important to remember that the

reconstructed PHs are an estimate of the true physical quantity and not the true

quantity itself.

In a situation where neither of the channels should be defined as dominant, but

both are supposed to be included in the estimate of the energy, a function of the

individual PHs has to be defined that acts as an energy estimator. This can e.g. be a

weighted average of the values.

3.1.2.3 Energy calibration

The translation of PHs in estimates of the recoil energy is a crucial part of the RD

analysis. Since one rarely knows all physics parameters of the detector precisely

enough to derive a transformation that maps voltage values to recoil energies from first

principles, it is necessary to do a calibration with a source of known recoil energies.

Typically this is done with a radioactive source that produces photons with a high rate

and known energy. The photon is then absorbed in the detector target and releases

its whole energy in the crystal. By this, a line with a well-defined true energy appears

in the PH spectrum. This line can be used to calibrate the energy scale. A naive

approach would be to define a linear conversion factor between PH and recoil energies.

This is an acceptable solution if the calibration line resides well within the linear

region of the detector response (see e.g. Fig. 2.1, for small ∆T ) and the measurement

conditions and detector response stay stable over the time of the measurement. If

these conditions are not met, the detector resolution will significantly degrade for

non-zero energy depositions. This can be prevented by finding a better approximation

that maps PHs non-linearly and time-dependent to recoil energies. Typically this is

done by using the injected heater pulses. These pulses originate from heat inputs in

the detector target, and as was discussed in Sec. 2.1, they scale similarly to energy

depositions from particle recoils. The TPs can therefore be used to fit a function

f : (PH, t) → TPA, (3.14)

where t is the time stamp. Constructing this function is a two step process: First,

for each of the discrete injected TPA values, a time-dependent approximator for the

PH is fitted. This approximator is e.g. a linear, polynomial or spline regression. In
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the second step, at the time stamp of each event individually, a linear or polynomial

approximator is built to map the PH of the event to an equivalent TPA value, called test

pulse equivalent (TPE) value. Alternatively, other function approximators (e.g. two-

dimensional fits) could be used, as long as the applied procedure is controlled for

overfitting and the gaps between the discrete TPA values are continuously filled. Once

the TPE values for each event are found, a calibration factor, called the conversion

pulse-energy (CPE) factor, can be defined between them and the true recoil energies.

This is done by matching the average value of the calibration line TPEcal with the

true energy Ecal of the source:

CPE =
Ecal

TPEcal

. (3.15)

Multiplying the TPE values of events with this factor leads to an estimate of the true

energies. Since voltage values at different time stamps now lead to different energy

estimates, it is not trivial anymore to translate the baseline energy resolution from

voltage to energy units. Since we want to state in practice a single value for the

energy resolution, we build an average over the measurement for comparability among

measurements and detectors. We do this by sampling time stamps uniformly in the

measurement interval and building the average of the energy estimate. However, the

systematic uncertainty from time-dependent effects is usually small.

3.1.2.4 Pulse shape features

The shape of the voltage trace of an event contains important information about

the origin of the event. Several of the often-appearing events are shown in Fig. 3.3,

simulated with the Cait package. While particle recoils create pulse shaped traces, not

all pulses are necessarily target recoils. When particles recoil in e.g. holding structure

or utility crystals, as carrier crystals, or in the TES directly, they induce a pulse with

a shape that can vastly differ from the shape of target recoils. Other origins create

voltage traces that do not have the shape of a pulse at all, and we call these events

artifacts. The typical origins of such events are summarized in Tab. 3.1.

There are several typical features that contain information about the pulse shape

and are used in the RD analysis. We will discuss them in the following, one by one.

Since analysis chains are in the standard workflow handcrafted by each analyst and for

each detector, it is likely that some analysts use features that are not described here.

The offset of a record is the mean value of the first 50 samples. These should

usually be fully in the pre-trigger region and therefore provide an estimate of the
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Event pulse A pulse-shaped target recoil (see Fig. 3.3, i).
We simulate them with a parametric model
from Ref. [103].

Noise An empty noise trace (see Fig. 3.3, ii).
Decaying baseline The decaying part of a particle recoil, which

happened before the start of the trigger record
window.

Temperature rise A sudden rise in temperature, producing a
linear upwards drift of the baseline.

Spike Glitches in the digitizer can cause a small
number of consecutive samples to have a mali-
cious value, effectively producing an upward-
or downward-facing spike in the sensor signal
(see Fig. 3.3, iii).

SQUID jump A fast rise of the thermometer temperature,
often due to a high-energy particle recoil, can
cause the jump from a higher flux quantum
state of the SQUID amplifier to a lower one,
i.e., the loss of a flux quantum (see Fig. 3.3,
iv).

Reset After a certain number of flux quanta losses,
the SQUID amplifier resets to a higher voltage
baseline level.

Carrier event Depending on the design of the cryogenic detec-
tor, there might be additional thermal compo-
nents, other than the target crystal, in which
particle recoils can happen. An example is
a carrier crystal, a small separate crystal on
which the TES is evaporated.

Tail event A pulse-shaped event with an additional,
slowly decaying component, usually caused
by a feedback effect, e.g., the reabsorption of
scintillation light.

Decaying baseline with event pulse A decaying baseline event, which is coincident
with a particle recoil (see Fig. 3.3, v).

Pile-up Multiple particle recoils happening inside the
same record window, seen as partially overlap-
ping pulse shapes (see Fig. 3.3, vi).

Early or late trigger In some scenarios, the maximum of the pulse
can appear too early or too late inside the
record window, e.g., when a time interval with
a blocked trigger overlaps with a subsequent
event.

Table 3.1: Typically appearing event and artifact classes. Table also used in Ref. [5].
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Figure 3.3: Simulated voltage traces corresponding to events. Apart from pulse shaped
target recoils (i) and noise triggers (ii), a set of typical artifacts occur frequently
in measured data. The data acquisition electronics can introduce spikes or glitches
(iii). SQUID readout systems can transition between individual flux quanta, causing
discrete jumps in the voltage offset (iv). Pulses can pile up in various ways, fully
or partially within the same recording window, leading to strongly decaying voltage
baselines (v) or multiple pulse shapes within one window (vi). Fig. also used in
Ref. [5].

SQUID amplifier’s baseline level corresponding to the current in the SQUID branch

of the readout circuit without a particular energy deposition in the detector. This

estimate should be close to one value from a discrete set of values corresponding to

the SQUID baseline voltage, shifted by a multiple of the voltage of flux quantum. The

value can be biased for events triggered on the tail of a large pulse, where the shape

of the voltage trace falls throughout the whole record window.

The onset of pulses is calculated by finding the sample with the maximal value in

the pulse trace. The last preceding sample that has only 20 % of its height gives the

time stamp of the onset. The offset of the record has to be subtracted beforehand.

This value should be close to 1/4 of the record window for pulses. It can be far away

from this supposed trigger point for artifacts or noise triggers. The rise time of pulses

is the time difference between the onset and the maximum of the record. The decay

time is the time difference between the maximum and the first subsequent sample

that falls below 1/e of the maximum. These features are crucial for discriminating

different pulse shapes, but they return nonsensical values for voltage traces that are

not pulse-shaped.

The baseline difference is calculated as the average of the last 50 samples in the

window minus the offset. This feature makes artifacts with rising or falling voltage

traces, such as SQUID jumps, easily identifiable.

The sample mean, variance, skewness, and minimum are defined according to their

99



definition in statistics considering the values in the record window as a sample of

random variables (see a suitable statistics textbook, e.g. Ref. [159]).

The maximal and minimal derivatives in the record window are calculated by

building the differences between succeeding samples and finding their maximum and

minimum. They are a good indication of the presence of spikes induced by electronic

artifacts.

The (truncated) SEV fit that we used earlier to reconstruct saturated PHs can also

be used to quantify the similarity between the event in question and the SEV. Small

fit residuals generally point towards an event with a pulse shape that is similar to the

SEV, while large residuals of the fit are typically observed for artifacts. This quantity

can serve as a multipurpose discriminator. However, there are several potential pitfalls

to consider. The fit residuals are, also for target recoil events, energy-dependent and

individually different for pulse shapes. Furthermore, small artifacts are sometimes

hard to spot according to their fit residuals, whereas other pulse shape features might

be more sensitive.

The pulse shape fit can be taken one step further by fitting not the SEV but the

full parametric pulse shape model that was introduced in Eq. 2.13. This fit would

automatically produce estimates of the rise and decay times in the pulse shape and

does not depend on the formerly produced SEV. The fit error can again be used as

an estimate of the similarity between a pulse and the measured event. It is, however,

much harder to implement a properly converging fit with this model since most of the

parameters in the model induce nonlinear and potentially chaotic changes to the fit

function. This method will be studied in more detail in the yet unpublished Ref. [160].

3.1.2.5 Veto yields

Veto channels are secondary channels recorded simultaneously with the target channel

to monitor coincidences. These are in standard designs, mostly light channels for

scintillating targets or ionization channels for semiconducting targets. Also, secondary

TES placed on utilitarian structures surrounding the target, e.g. holders, can be veto

channels. The energy deposition in veto channels is often quantified in terms of the

strength of the coincident signal in the veto channel as a fraction of the signal strength

in the target channel, called a “yield”. In this work, we will use the light yield (LY)

for detectors with phonon and secondary light channels, which is defined as

LY =
El,ee,target

Ep

(3.16)
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where El,ee,target is the energy measured with the light channel, calibrated to EM

interactions in the target crystal. Ep is the energy measured in the phonon channel,

which is in a standard analysis workflow also used to estimate the total deposited

energy1. Since the PH in veto channels is usually reconstructed in coincidence with

the primary target channel (see Sec.3.1.2.2), the estimate of the energy deposition in

the veto channel, and therefore also the yield value, can be negative.

3.1.2.6 Pile-up separation

In Ref. [8], a special treatment of pile-up events was studied. Since we observe above-

ground and calibration runs large amounts of pile-up events due to the high trigger

rates, we can get into a situation where discarding all pile-up events might remove a

non-negligible share of exposure. On the other hand, all information necessary for an

energy reconstruction of two overlapping pulses is contained in the voltage trace. The

problem is that the information that two and not just one pulse are sitting on the

trace must be included in the method. Ref. [8] approaches the problem with the use of

long-short term (LSTM) neural networks (NNs) [162], which are trained to disentangle

the two pulse shapes. Their good results are especially interesting since not only the

linear region of detector response is addressed, where the two pulses would live in a

simple, linear superposition, but also nonlinear saturation effects can be counteracted.

The data used for training for the LSTM model in Ref. [8] consist of simulated pile-

up events. They were simulated similarly to the simulation discussed in Sec. 3.1.1.4.

Instead of just superposing one pulse shape to a noise trace, a second one was

superposed, with an onset that was uniformly sampled between the first onset and

the end of the record window. Afterward, the simulated record was input into a

generalized logistics function to mimic the detector saturation. The simulated record

lengths consisted of 16384 samples. The maximal PH was 0.5 V, and significant

saturation started at a value of 0.25 V. A data set of 60k events was simulated. The

simulated events were prepared for the training process by normalizing the dataset

such that the highest sample is 1 and the lowest 0. Furthermore, the records were

downsampled such that they have a record length of 512.

The used model was a 3-layer LSTM with 8 input values, 16 output values, and

200 hidden nodes per layer. The record is input by processing it in 64 time steps.

1More precise methods for the energy estimation exist. In a readout scheme with phonon and
light channel, the total deposited energy splits between the production of phonons and photons. For
scenarios with high light output, the energy in the phonon channel should be corrected to account
for the produced photons, to build a reasonable estimate of the total energy scale. This phenomenon
is called “phonon anti-quenching” and was described in more detail in Ref. [161].
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Figure 3.4: The record windows of the recorded particle recoils. The five columns
correspond to five independent samples in the data set. The first row shows the
time series that are input to the LSTM (black) and the summed outputs after the
application of the non-linear transition function (red). We observe a good agreement
in most samples, with minor distortions for events with a low SNR. The second and
third rows show the two output traces of the LSTM (red), which are mostly in good
agreement with the ground truth, plotted underneath (olive). Fig. and caption also
used in Ref. [8].

NNs were built in PyTorch and PyTorch Lightning [163, 164]. The record windows

containing the pile-up events (Fig. 3.4, black) were the input to the model, and the

model was trained to reconstruct the ground truth of the underlying individual pulses

(Fig. 3.4, olive).

The data set was split in the ratio 7/1/2 into a training, validation, and test set.

The LSTM model was trained on the training set with the ADAM optimizer [165], a

learning rate of 10−5 and a batch size of 32, for 100 epochs with an MSE loss function.

Final loss values obtained were 2.4 · 10−4 on the test set, and 1.9 · 10−4 on the training

set. Training took on a Tesla P100 GPU with 12 Gig RAM ≈ 0.35 minutes per

training epoch and on an Intel Xeon Gold 6138 CPU @ 2.00GHz ≈ 5 minutes per

training epoch. Once trained, the model could process more than 30000 events/second

during inference on a single-core CPU.

The authors obtained good results in reconstructing the original pulse shapes (see

Fig.3.4) and the shape of the simulated PH spectrum (see Fig.3.5). They reason that

the impact of the remaining distortions on the pulse traces could be mitigated by

using OFs of the resulting separated events, while they only used the maximum value

of the record. The resolution of the separated PHs, i.e. the standard deviation of the

reconstructed PH of separated events from their ground truth, show energy-dependent
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Figure 3.5: The results of the PH reconstruction on an independent test set. (a) The
black histogram represents the maximal values of the piled-up and saturated traces.
These strongly deviate from the uniformly sampled ground truth of the appearing PHs
(two per record window, olive). We observe a much better agreement of the maximal
values of the separated pulse traces (red), with only slight deviations for strongly
saturated pulse shapes close to the upper end of the spectrum. Fig. and caption also
used in Ref. [8].

effects by blowing up for intermediate and very high PHs and having almost as low

values as events that were simulated without pile-up for low and high PHs. The

resolution is expected to rise towards higher PHs due to the saturation. However, the

drop at intermediate-high PHs seems confusing at first sight. The authors attribute

it to a statistical effect. The reconstructed PHs at the upper end of the energy

spectrum are visibly spoiled toward too-low values. The resulting overdensity at

intermediate-high energies leads to a better estimate for pulses with ground truth in

that value range, while it leads to worse estimates above and below that range.

The workflow of applying this pile-up separation method is the following:

1. Characterize the detector, extract the typical pulse shape, and model the

saturation conditions with a generalized logistics curve.

2. Simulate a suitable data set of pile-up events.

3. Train the LSTM model to separate the events.

4. Apply the LSTM model to the whole data set. Events that are not pile-up

events are negligibly affected by the model. The higher number of resulting

sub-threshold events can be cut with quality cuts (see Sec. 3.1.3.2).
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Figure 3.6: (b) The energy resolution of pulses without pile-up and saturation does not
depend on the recoil energy but only on the noise conditions (olive). The reconstructed
pulses’ energy resolution depends on the energy, with local maxima at 0.25 and 0.5
and local minima at 0 and 0.45. This peculiar shape is discussed in the text. Fig. and
caption also used in Ref. [8].

This method was not yet used in a production analysis. However, since the model

performance was suitable for practical applications, we will mention this method again

in Sec. 4, where we will identify a suitable application for it the upcoming COSINUS

measurements. This method is currently the only method that can reconstruct pile-

up events in the nonlinear region of the detector response of cryogenic TES-based

detectors. It is likely that the method could also be applied to other types of detectors

that record pulse traces as sensor signals.

In this section, we have introduced the event characterization process with special

emphasis on our machine learning method that separates pile-up events. We continue

with the next step in the RD analysis, the event selection, where we will discuss the

criteria to be applied in a statistically sound analysis of a measurement.

3.1.3 Event selection

3.1.3.1 Data cuts

From all triggered and recorded events we need to identify those that correspond to

target recoils, and for which we can reconstruct the recoil energy reliably. The goal of

the event selection is to construct a data set of such events by applying cuts based on

the data quality and the features of the triggered event. Here we discuss the former

ones, and they especially include stability and rate cuts.
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The stability cut is to exclude time intervals when the detector was not in stable

operation, i.e. where its OP deviated. This can happen due to any environmental

influence, such as vibrations or fluctuations in the cryostat’s base temperature. The

OP is monitored through the injected CPs (heater pulses with maximal TPA) that

drive the TES out of its superconducting transition. The pulses therefore saturate at

a certain PH. If the detector is consistently in the same OP, this maximal PH value

should always be constant within the uncertainty of the detector resolution. If the

OP fluctuates, these fluctuations are additionally visible in the measured CP PHs

over time. The strategy to exclude unstable time periods is to calculate the mean and

standard deviation of the CP PHs over time and exclude all regions where the CP

PHs are not within a certain number of standard deviations of their mean value. For

the exact procedure, it is important to consider several useful tricks that avoid cutting

or leaving too many time intervals due to the possibly significantly non-Gaussian

distribution of the CP PHs. First, before the mean and sigma values of the CP PHs

are calculated, a rough cut should be applied to them. This can be done by plotting

the distribution and cutting strong outliers by eye. Also, quantile-based statistics can

be used, by e.g. flagging the lowest and highest several percent of the CPs as unstable.

The exact values of these cuts need to be finetuned to the measurement conditions.

The second useful choice is to ignore individual outliers. This means that all CPs

outside the desired confidence region are flagged as unstable, but only events that are

within two unstable CPs are excluded, while individual unstable CPs have no effect

on the event exclusion. This is an allowed cut on the data, since real fluctuations in

the operation conditions, as in the overall temperature, would happen on longer time

scales than the spacing between two CPs. Individual outliers are therefore very likely

due to e.g. pile-ups or other artefacts that affect one individual events.

The rate cut is to identify regions with changed noise conditions that can lead

to highly frequent triggering of noise upward fluctuations. Such changes in the noise

conditions can happen because of external magnetic fields or mechanical vibrations.

We calculate the number of non-heater-induced event triggers for the rate cut and bin

it into intervals of 10 minutes elapsed real time. Then we build again the mean and

standard deviation and exclude outliers of the distribution. In this case we exclude

only the bin that is an outlier, but leave the bins before and after. Here again, we

need to exclude far outliers before we calculate the mean and standard deviation, to

avoid spoiling the calculated values of the distribution. This can be done similarly as

it was done in the stability cut.
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3.1.3.2 Quality cuts

Within stable measurement periods, not every triggered event is a useful particle

pulse, but many of the recorded events are artifacts that need to be cut from the data

set (see also Fig. 3.3). Such cuts are then typically done based on the pulse shape

in a procedure called pulse shape discrimination (PSD). Every reasonably justifiable

cut can be done on the pulse shape, even if it takes out potential signal events, as

long as the effect of the cut on the expected signal is taken into consideration (see

Sec. 3.1.4 for details). Cuts can be applied on any of the pulse shape features that

were discussed in Sec. 3.1.2.4, as well as on the veto yields discussed in Sec. 3.1.2.5.

Often cuts are performed as one dimensional acceptance criteria on individual features.

It is also possible to construct two-dimensional criteria to e.g. accept only events

within a box of the parameter space. It is useful to have interactive tools available

to define such cuts, such as the VizTool that comes with the Cait package and is

shown in Fig. 3.7. The VizTool has a Plotly backend and allows to scatter events

in two feature dimensions, zoom and select in this space. However, only cuts should

be defined that can be automatically applied later in the validation step. Often this

means they should be writable as a logical expression, which disfavors the use of a

lasso tool to select and cut events, despite its availability in Cait.

The data quality cuts should generally be designed with the goal of discarding

artifacts and keeping particle recoils in the target crystal. However, there are some

individual choices that can be made depending on the goal of the analysis. Ideally,

an analysis leads to a multi-purpose data set, with which all physics searches that

can be done with the detector at hand are possible. The data selection in the RD

analysis should be a mere data cleaning, and it is also sometimes called that. In

practice, choices are often made to tune cuts more towards a certain recoil energy

ROI, e.g. the low energy region for low mass DM searches. Cuts that are intended

for PD, usually based on veto yields, have a special purpose in this sense since they,

per definition, will discard target recoils if they do not satisfy the desired properties,

e.g. EM recoils. Therefore cuts on the veto yields intended for PD are often kept for

the high-level analysis to avoid restricting the feasible physics searches already in the

data selection (see Sec. 3.2). The separation between PD and data cleaning is easier

for our TES-based cryogenic detectors since PD is not feasible through PSD, as EM

events and nuclear recoils have the same pulse shape, and the features can therefore

be separated into two distinct sets according to their purpose for PD or data cleaning.
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Figure 3.7: Screenshots of the VizTool from Cait. (upper panel) A clickable scatter
plot of two feature dimensions allows for zooming and selecting regions of the feature
space with a box and a lasso tool. Through the color of the markers, a third feature
dimension can be made visible. (middle panel) The pulse shape of clicked events is
shown when an event is clicked in the scatter plot. (lower panel) A histogram of the
feature dimension on the abscissa is shown for the selected event population. Fig. and
caption are also used in Ref. [5].
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3.1.3.3 Quality cuts with machine learning

The tuning of quality cuts is one of the steps in the RD analysis that can be poorly

automated since the distributions dealt with are of no predictable shape. They are

especially not Gaussian. Furthermore, sometimes quality cuts are tricky to design

when the information contained in multiple features must be combined. The typical

procedure is to engineer features that contain all relevant information, such that

cuts can be done in one or maximally two dimensions. However, it was shown in

Ref. [5], and by others e.g. in Refs. [166–174] that this handcrafted feature engineering

procedure can be replaced by using classifiers that work in multiple dimensions. The

challenge is then to have labeled data sets available that contain the desired types of

events, e.g. only target recoils and only artifacts or a specific class of artifacts. This

can be overcome by dedicated data sets from calibration runs, where it is known that a

high rate of target recoils is contained, as was done e.g. in Ref. [175], or by simulating

the desired event classes. The simulation procedure was studied in Ref. [5] and is very

similar to the simulated pulses for the energy resolution evaluation. However, in this

section, no measured noise traces were used for the simulation, but simulated noise

(with the method from Ref. [108]) from artificially created NPS.

The Cait package and its contained methods discussed in Ref. [5] add new possi-

bilities to the discrimination with machine learning classifiers. It contains methods

to simulate not only pulse-shaped events but also artifacts and construct artificial

events that can be used as negatively labeled sets for training classifiers dedicated

to data cleaning. Ref. [5] contains a demonstration of such a classifier trained and

evaluated on distinct training and test sets of simulated data, which we shall review

and discuss in this section. The distributions of event types within their two data sets

are shown in Tab. 3.2, and the event types were introduced in Tab. 3.1. There is one

qualitative difference between the event class “event pulse” in the training and the

test set: while in the test set, this is always a fixed pulse shape, in the training set, the

pulse shape parameters are sampled from a set of reasonable pulse shapes parameter,

such that every pulse has an individual shape. With this, the largest part of the

reasonable parameters space of possible pulse shapes is contained in the training set.

Event heights are sampled from a uniform distribution between zero and a reasonable

maximal height.

A classifier was trained in Ref. [5] to discriminate between pulse-shaped events,

the event types called “event pulse” and “carrier event”, and other events that are all

artifacts, i.e. to perform exactly the task of data cleaning. A convolutional NN (CNN)

was used as a classifier with two convolutional layers performing feature extraction
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Event type Test set Training set

Event pulse 8000 20000
Noise 3000 10000
Decaying baseline 500 1500
Temperature rise 500 1500
Spike 500 1500
SQUID jump 500 1500
Reset 500 3000
Tail event 500 5000
Decaying baseline
with event pulse 500 5000
Decaying baseline
with tail event 500 -
Pile-up 9000 10000
Early or late trigger 500 5000
Carrier event 8000 -

Table 3.2: Event classes in the simulated data sets. Table also used in Ref. [5].

from the raw voltage traces, followed by a logical unit of two feed-forward layers. The

architecture of the network is summarized in Tab. 3.3. The PyTorch [163] framework

was used for constructing the NN. Before, the events were normalized to a PH of one,

such that the PH and, therefore, the energy cannot have an impact on the choice of

whether the event survives or not. All time series were downsampled to a length of

512 samples.

The training set was again split in the ratio 7:2:1 into a subset on which the weights

of the network are trained, one on which the hyperparameters (validation set) are

trained, and one that is used to test the model performance (test set). The training

was done in 70 epochs with the ADAM optimizer [165], a learning rate of 0.001,

and a batch size of 64 and otherwise the default PyTorch options for the optimizer.

Loss values of the used negative loglikelihood function were observed as 0.070 in

the training, 0.081 in the validation, and 0.085 in the test set after the training was

completed. The training was done within the PyTorch Lightning framework. The

full training took 23 min on a 2 GHz Quad-Core 10th gen Intel Core i5 CPU. The

survival rates of the two pulse classes, from which one is a longer and one a shorter

pulse and the survival rate of noise events are shown in Fig. 3.8, in comparison to a

threshold of five times the energy resolution. It can be seen that the survival rates are

close to optimal above the threshold. Ref. [5] reports furthermore the model reaches

an unweighted accuracy score of 0.941 across all event classes. The largest group that
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Layer Specifications

1D convolu-
tional layer

1 input channel, 50
output channels, ker-
nelsize 8, stride 4

1D convolu-
tional layer

50 input channel, 10
output channels, ker-
nelsize 8, stride 4

Feed forward
layer

639 input nodes, 200
output nodes, ReLU
activation function

Feed forward
layer

200 input nodes, 2 out-
put nodes, ReLU acti-
vation function

Table 3.3: The CNN model architecture. The rectified linear unit (ReLU) is used as
activation function. Table also used in Ref. [5].

could automatically not perfectly be cut are pile-up events. A combination with the

method studied in Sec. 3.1.2.6 could significantly improve the results. A distribution

of the survival rate depending on the PH does not make sense for artifacts since the

PH is not a reasonably descriptive quantity for events that are not pulse-shaped.
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Figure 3.8: Survival rate of different event classes after application of the CNN as a
quality cut. As a reference, a black dashed line indicates a typical threshold value at
five times the noise resolution σ value. The long pulse shapes (medium blue) and the
short pulse shapes (light blue) achieve both an efficiency of around 0.9 down to the
threshold. No noise events (dark blue) survive the CNN cut above the threshold. Fig.
and caption also used in Ref. [5].

A demonstration of the capability of such an automated data cleaning CNN is

shown in Fig. 3.9. The output of the CNN is a scalar between 0 and 1 and can be

interpreted as the belief of the network that the event is pulse-shaped. The network
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successfully discriminated against strong pile-ups of pulses or decaying baselines from

pulse-shaped events. The network especially also interprets the event class “decaying

baseline with tail event” as positive pulse-shaped events even though they were not

contained in the training set. This choice resembles the choice an analyst would make

with handcrafted cuts. The demonstration from Ref. [5] is uplifting and provides

optimism that data cleaning could be automated with pre-trained NNs.
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Figure 3.9: Exemplary “pile-up” (first and second columns) and “decaying baseline
with tail event” (third and fourth column) events from the test set. For the first
event class, only pulse shapes with small piled-up, secondary pulses survive the cut
(CNN out > 0.5), while severe pile-ups are significantly rejected (CNN out << 0.5).
The second event class was not included in the training set and serves, therefore, as
a metric for the performance of the CNN on yet unseen event classes. Events with
a strong decaying baseline get rejected, while events with a weak decaying baseline
survive the cut. Fig. and caption also used in Ref. [5].

There are several limitations of the method as it is presented in Ref. [5]: if the

validation of the analysis, which will be discussed in Sec. 3.1.4, is done with simulated

data and the training of classifiers is also done on simulated data, is unclear how one

would spot a difference in the effect of the model to measured and simulated data

due to a systematic difference between simulation and measured data. Therefore the

analyst must trust that the simulation resembles the measured data in the realistic

reproduction of pulse shape and noise so closely that no difference in the effect of the

classifier is possible.

To resolve this issue Ref. [4] applied a similar method, but with training on labeled

data sets from measured data. Those results will be discussed in more detail in Sec. 6.1.

One further limitation of this automated data cleaning method should be mentioned:

the discrimination between different pulse shapes that all survive the classifier. This
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cannot be fully automated since the analyst must decide which pulse shape corresponds

to the target recoils. However, the procedure can be further simplified, e.g. with a

PCA method that was used for PSD in Ref. [176], and is further discussed for our

purposes in Ref. [4] and reviewed in Sec. 6.1.

3.1.3.4 Coincidence cuts

Many experiments operate multiple detector modules simultaneously in a joint ex-

perimental setup. In such scenarios, the coincidences between energy depositions

in the detectors can be used to further discriminate between candidate events for

physics searches and events with other origins. Weakly interacting events, such as DM

events, are expected to interact only in one of the detector modules due to their low

cross-section and interaction probability. EM events are expected to leave a trace of

interactions along their flight path. This is often used to discriminate muon events

with dedicated muon veto detectors. Also neutrons were in previous CRESST runs

observed to leave a trace of coincidental interactions. This is possible due to the

strongly interacting nucleus of the neutron, which provides it with a higher interaction

probability with other nuclei than DM has. Also environmental impact, as vibrations,

could cause events in coincidence in multiple detectors. The coincidence cut is then a

cut that excludes events in temporal proximity of several milliseconds, depending on

the temporal resolution of the system, with events in the veto channel.

In this section, we have discussed the selection criteria often used to discriminate

target events from artifacts. This process can be called data cleaning and consists

of elements of PSD, data cuts based on the operation conditions, and coincidence

cuts. Large parts of this process can be automated using hard-coded criteria based on

feature statistics or machine learning. The process of PD, where e.g. EM nuclear events

are discriminated, is typically kept for the HLD analysis. The categorization between

cleaning and PD is not strict, and in the literature used with different meanings in

different references. Finally, the impact of the chosen cuts on the expected scattering

rate of the sought-physics process must be estimated, which we discuss in the following

section.
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3.1.4 Validation

3.1.4.1 Cut and trigger efficiency

We discussed the data processing pipeline in the previous section, starting from the raw

sensor signals to the final recoil energy estimates. A crucial step was the data cleaning,

the discrimination between target events and artifacts. In a realistic experiment, the

feature distributions of these positives and negatives do not cover distinct subsets of

the parameter space but usually overlap in the tails of their respective distributions.

In addition, the processing pipeline itself might be prone to errors which makes it

necessary to validate the whole procedured, and to take systematic effects into account.

This is, in practice, done by calculating the efficiency of the data selection cuts and the

trigger algorithm by simulating target events and subjecting them to the whole data

processing pipeline. The cut efficiency is an energy-dependent function that returns

an estimate of the probability that target events with the given recoil energy survive

all selection criteria. The trigger efficiency is analogously defined, but for the chance

that those events are triggered. The simulation of target events is done similarly

to the described procedure in Sec. 3.1.1.4 used to determine the energy resolution.

The relevant differences are the choice of PH and pulse onset distribution. The onset

distribution should be chosen as similarly as possible to the expected onset distribution

in real target recoils. Usually, this requires covering a narrow interval around 1/4 of

the record window. For the PH distribution, two different approaches exist: the best

approach is to choose the energy distribution exactly as the expected DM signal, which

means, in the case of elastic nuclear scattering, a roughly exponentially decreasing

function towards higher energies (exact formula in Sec. 1.3), with its parameters

determined from the DM mass that shall be tested. However, this procedure can be

impractical since an individual simulation must be made for each tested DM mass.

Alternatively, we simulate signal events with a uniform or a generic logarithmic PH

distribution, fulfilling the requirement to cover energy regions densely where strong

changes in the effect of the survival criteria are expected. Such a region is especially

the trigger threshold, which needs to be sampled with a dense mesh grid. Since the

simulated PH distribution is known, we can later adjust the expected DM scattering

rate by multiplying it with the energy-dependent cut and trigger efficiency. For the

simulation of veto channels, as e.g. the light channel, it is important that those are

simulated according to the expectation from the DM scattering process, in this case

with the relevant QFs.
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The trigger probability of the simulated events is typically error-function shaped

around the set trigger threshold. By fitting an error function to the histogram of

triggered events, depending on their simulated PH, we can read an estimate of the

energy resolution from the fitted width of the error function. This estimate is a final

check of the resolution and should agree with the calculated values as described in

Sec. 3.1.1.4.

Before we end this section, we want to motivate a thought experiment about the

reliability of efficiencies. Assuming that we can simulate perfectly realistic events,

their distribution fully overlaps with the distribution of signal events that would be

observed in an experiment. In this scenario, we could simulate such events and train

a classifier on the full set of event features, or even directly on the pulse trace, with

the objective to discriminate (simulated) signal events and measured events. An

ideal classifier would learn to reject measured events that do not fulfill the signal

characteristics and retail the largest share of the simulated signal events and measured

events that fulfill the signal characteristics. To validate the cut efficiency, we could

simulate a second, distinct set of signal events, acting as a test set. While it sounds

like a good strategy to design an ideal data selection, it comes at the same time at the

price of the impact of systematic uncertainties in the data simulation. As an example:

it was shown in Ref. [156] that simulated noise traces are clearly distinguishable from

measured ones by NNs. Such an effect would effectively enable the classifier to fit the

systematic differences between the simulation and measured data and score a high cut

efficiency while actually rejecting a much larger share of measured events with signal

characteristics. One has to be careful with the details of the data selection criteria

that one applies, both when using learned or handcrafted cuts. Applying strong cuts

is generally often beneficial for the results, but it should always be made sure that in

the parameter regions where strong cuts are applied, the simulated and measured data

(e.g. from calibration sources) are similar enough to estimate reliable cut efficiencies.

3.1.4.2 Blinding schemes

One could expect that the calculation and inclusion of an efficiency in the statistical

verification of signals is alone a strong enough intervention to assume the validity of

an analysis chain and the emerging results. This is not always the case. Consider one

of the following two scenarios where a limit on DM interactions would be spoiled: first,

let’s extend the thought experiment from the previous section. An analyst trained a

model to reject all measured events while retaining all simulated efficiency events. If

they have enough capability to learn complex dependencies, classifiers can learn the

114



positive and negative events by heart, an effect called overfitting in machine learning

literature. The second and equivalent scenario is that of a “human” classifier, an

analyst that designs sophisticated enough cuts to reject all the measured events while

the cut efficiency stays high. This procedure could be considered a manual form of

overfitting. In both cases, the discrete distribution of measured events was used to

design selection criteria instead of an estimate of the underlying, true probability

distribution. Automatically, results on the data set at hand will be better than on an

equivalent but freshly measured data set.

This problem is in physics searches dealt with by a blinding scheme. The idea of

a blinding scheme is that a defined subset of the measured data, or events within a

certain region of estimated recoil energies, are left untouched and are not looked at

until the analysis chain and all selection criteria are defined. Using the analysis chain,

which was designed on another data set, on the blinded subset prevents a series of

cognitive bias effects that analysts can otherwise unknowingly be subject to.

Designing quality cuts in the presence of a blinding scheme has many parallels to

the well-known problem of bias-variance trade-off in machine learning and function

approximation literature. This problem formalizes the optimum between overfitting

to training data, i.e. learning samples by heart, and underfitting it, i.e. not using all

information that is available in the data. There are many strategies to address this

problem. A widely used one is the application of a second data split of the unblinded

data set in a training set, on which classifiers are trained, or cuts are designed, and a

validation set, on which those are compared and cross-checked for consistency.

In physics searches, the common practice is sometimes to have multiple analysts

in parallel and to decide the official analysis chain that shall be applied to the blind

data based on the results that were obtained by the analysts on the training set. This

is a reasonable strategy, as long as all analysis chains fulfill quality criteria sufficiently

to avoid overfitting on the training data. However, we know from the problem of

bias-variance trade-off, that it would be a much better strategy to compare results

on a validation set, instead of the training set. Furthermore, reviewing the analysts’

consistency and quality of decisions, instead of the obtained results, would likely

provide better chances of a good generalization to the blind data set. This statement

holds not only for decisions in the analysis of physics experiments but in all other

situations of data-based decision-making as well.

In this section, we discussed the process of RD analysis in detail, with its four
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subprocesses: the detector characterization, the event characterization, the event

selection, and the validation of the analysis chain. The subprocesses are partially

entangled with each other. In theory, they can be executed subsequently or indepen-

dently in parallel. It’s often a fourth and back between the individual steps. The

event characterization and validation steps can be readily automated by choice of a

few reasonable parameters. The detector characterization and event selection process

are in the currently used analysis chain, not automated, but performed manually

per hand. The contributions of Ref. [5] towards automation of the data cleaning are

crucial and enable the automation of the full RD analysis procedure for well-behaved

detectors that do not surprise with unseen event classes. The problem of validating

event selections that were trained on simulated events remains and will be dealt with

in Chap. 6.

The final result of a RD analysis is a list of the cleaned target events, including their

recoil energies and auxiliary information that might be useful in the HLD analysis,

such as veto yields and time steps. Additionally, the energy-dependent cut and trigger

efficiencies are required, either as a binned histogram or as a list of simulated events

with their energies, auxiliary information, and binary flags that mark if they were

triggered and if they survived the selection criteria. The further information necessary

for the HLD analysis is the measurement time and target weight to calculate the

exposure to scale the expected DM scattering rate accordingly. Finally, information

about the energy resolution and energy threshold is typically required. The full

procedure of the HLD analysis is discussed in the following.
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3.2 High-level data analysis

We have established a systematic workflow for the RD analysis in Sec. 3.1. Such

analysis results in a spectrum of measured recoil energies, a corresponding cut efficiency,

and auxiliary quantities, such as e.g. LYs or signals from veto detectors. The goal

of physics searches is to make a statement about the existence of a certain physics

signal in those data. Since this process is relatively detached from the exact detectors

and experimental apparatus, we call it HLD analysis. We will start in this section

by introducing HLD selection cuts, which aim to discriminate particle backgrounds

from signal candidates, i.e. PD. Once we establish this procedure, we will investigate

statistical methods to conduct signal searches: Yellin’s maximum gap and optimum

interval methods and the likelihood (LH) analysis. Finally, we will discuss challenges

in the combination of multiple data sets by using simulated toy data from generic

experiments.

3.2.1 Particle discrimination

We introduced the idea of experimental multi-channel readouts in Sec. 1.3. These

experiments allow for collecting data on multiple energy scales. The energy scale

from phonon readouts is typically described as total recoil energy since the largest

share of the recoil energy is transferred into quasiparticles that successively induce

heat in the target or sensor. This energy scale only negligibly depends on the type of

recoil, nuclear or electron, massive particle, or X-ray2. The situation is different for

light and ionization channels, which significantly depend on the type of recoil. Their

energy scales are usually described as electron-equivalent or nuclear recoil-equivalent,

depending on the source which was used for calibration.

We will consider for this section an experiment that has measured a total and an

electron-equivalent energy scale through the measurement of a phonon and a light

channel. This is the concept that is used in the CRESST and COSINUS experiments.

The energies are typically plotted in a scatterplot or two-dimensional histogram against

each other to characterize the particle types in the data set. We will consider, for now,

that total energy depositions correspond to x-values and electron-equivalent energy

depositions to y-values. For better visibility, these quantities are often visualized by

scattering the the y/x ratio against the x values. A plot of these quantities will be

2As mentioned in the previous section, this statement is only true for crystals with relatively low
light output. Otherwise, the energy scale has to be corrected for the energy that was emitted as
photons, as was e.g. done in Ref. [161].
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shown later in this work, in Fig. 5.6. Since both energy estimates are subject to noise

fluctuations, the distributions of individual event types build band-like structures

in the landscape of the two energy estimates. Depending on the energy resolutions

in the channels, individual bands for recoils on individual nuclei appear and for the

scattering of α, β and γ particles. The commonly used analysis method to determine

the LH of individual events belonging to a certain distribution is a bandfit. A band B

is a weighted Gaussian function N (·|µ, σ), where the mean value µ is a function of

the total energy deposition:

B(x, y) = b(x)N (y|µ(x), σ). (3.17)

The Gaussian distribution is justified since most readout noise, which determines the

baseline energy resolution, is approximately Gaussian. A fit with a mixture of such

functions allows the description of any band-like structure in the two-dimensional

energy plane, where the explicit choice of the parametrization of µ determines the

flexibility of the fit. It is possible also to parametrize the standard deviation σ. Since

this leads to a more complicated fit, it is often not done in a standard analysis.

Furthermore, this fit allows in the presence of both electron and nuclear recoils in the

data for a determination of the light-quenching factors and their energy dependence,

i.e. the difference in the light output of the target between nuclear and electron recoils.

This allows for in-situ measurements of the QFs, which is a strong advantage of

two-channel readouts compared to single-channel experiments.

For an individual event with energy values (x0, y0), the LH of belonging to one

of the bands can be determined by normalizing the mixture of bands along the y-

axis while fixing x0. The Gaussian mixture can then be interpreted as a probability

distribution, and their evaluations at (x0, y0) are the LHs of the event belonging to

the specific bands.

Typically a ROI is defined in the two dimensions plane, which is expected to

contain the signal-like events. This can e.g. be chosen as the lower half of one of

the nuclear recoil bands3 to search for DM-nucleus scattering. Alternatively, to the

definition of an ROI, the bands can also be used for a full statistical LH analysis by

including specific backgrounds and the sought-after signal in the coefficients of the

bands. Statistical methods for both searches with and without ROI are discussed in

the following section.

3Each nucleus has an individual QF and recoil band.
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3.2.2 Statistical methods for a signal search

Searches for evidence of a physics process in a collected data set follow statistical

procedures to ensure the validity of the signal or limit claim. These procedures are

typically designed to compare an expected signal distribution S with the measured

data set in the presence of expected background distributions B that would inflict

events in the signal region while accounting for random fluctuations. We will call

samples from our collected data set in this section x for simpler notation.

The statistical method for performing this analysis is a hypothesis test. A hy-

pothesis H is a certain statement that can make a difference in the observed data.

In our case of testing the parameter space of a specific signal model, the hypothesis

would be the statement that a parameter of the signal model equals a certain value,

e.g. the interaction cross section that causes signal events σS. There are generally

two types of hypothesis tests. A test can be designed to test the LH of an alternative

hypothesis H1 against a null hypothesis H0. The second design is a test that seeks

to reject the null hypothesis without an alternative hypothesis. Statistical tests are

always bound to a significance level α. The significance level is the probability that

the null hypothesis is rejected when it is true, which is also called a type 1 error. A

second type of error, the type 2 error, is that an alternative hypothesis H1 is falsely

rejected. The probability of this error is denoted with β, and the value 1− β is called

the power of the test. A type 2 error can only occur in the first test design introduced

above. The ideal test has a low probability of both type 1 and type 2 errors, i.e. a low

significance level α and a high power 1− β. The feasibility of this goal is determined

by the available data. In physics and everywhere else, the goal of experiment design is

to collect data with a distribution that would be as different as possible if the null or

alternative hypothesis were true.

In many branches of science, the test result is quantified with a p-value, which is

the probability of obtaining the observed data, assuming the null hypothesis is true.

The null hypothesis should be rejected once the p-value falls below the significance

level p < α. Since we want to make general statements about nature in physics, we

usually work with very low significance levels to not risk a chance of wrongly rejecting

established rules of physics. The significance level is typically stated not as a p-value

but at the equivalent outlier probability of a random number drawn from a standard

normal distribution. The probability of observing this random variable further than “1

σ” (one standard deviation) away from its expected value is 0.317. For higher values of

σ, see Tab. 3.4. A typical significance level of hypothesis tests in physics is 5 σ, which

is equivalent to α = 5.73 · 10−7. Luckily we can conduct many types of experiments
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in reproducible lab environments, different from other fields e.g. medicine or social

sciences, which enables us to collect relatively large amounts of high-quality data.

Number of Sigmas (k) Probability (2(1− Φ(k)))

1 0.317310507863
2 0.045500263896
3 0.002699796063
4 0.000063342484
5 0.000000573303

Table 3.4: Probability of a random number from a standard normal distribution being
further than k sigmas away from the expected value. Φ(k) is the CDF of the standard
normal distribution.

In signal searches, our alternative hypothesis H1 is that the data distribution

contains signal and background components:

H1 : x ∼ S(σS) + B. (3.18)

We want to test this hypothesis against the null hypothesis H0, which is that the data

contains only background components:

H0 : x ∼ B. (3.19)

Since the signal models which we treat in this work scale linearly with an interaction

cross section parameter σS, the above-stated hypothesis is equivalent to the hypothesis

H1 : σS > 0 and H1 : σS = 0. We have no predicted value for σS a-priori in many

searches. We therefore want to treat σS as a free parameter. The methodology used

is that of a LH ratio test, which we will introduce in the following.

3.2.2.1 The likelihood ratio test

The LH function L(σS, λ, θ) is a function of the model parameters and equivalent to

the evaluation of the data distribution P(x) predicted by the model with the observed

data points xi:

L(σS, λ, θ) =
�
i

P(xi|σS, λ, θ). (3.20)

The evaluation of the probability distribution of events can be multiplied since the

events are assumed to be independent of each other. Here λ is a placeholder for

other parameters of the signal model S(σS, λ), and can in general be a vector of real
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numbers. In the case of testing DM-nucleus elastic scattering, the mass of the tested

DM particle would be such a parameter. θ corresponds to free parameters of the

background model B(θ), which are also called nuisance parameters. θ is in general a

vector of real numbers as well. Note that for this framework, the alternative hypothesis

must supersede the null hypothesis H1 ⊃ H0.

The LH function requires per design that the distribution P must be a probability

distribution, it especially must be normalized. Since the normalization of the predicted

data distribution usually depends on the parameters, adjustments to the parameters

could have unpredictable effects on the LH. We therefore use a simple extension to

the LH function that was introduced in Ref. [177]:

L(σS, λ, θ) = e−ν
�
i

P(xi|σS, λ, θ). (3.21)

This function is called the extended LH function. Here ν is the norm of the predicted

data distribution over the observation space, e.g. the ROI:

ν =

�
ROI

P(u|σS, λ, θ)du (3.22)

This adaption is based on the assumption that the number of observed events is a

Poissonian distributed random number, with the expected value ν. When we adjust

the parameters of the signal model, the extended LH cannot rise indefinitely, while

the normal LH function could.

Maximizing the LH function w.r.t. the parameters of the model (σS, θ) leads to

the so-called maximum LH estimator for the model parameters (σ̂S, θ̂). We use this

estimator to describe the collected data set. Note that we consider a scenario where

we only test the cross-section of the signal model while we keep the other signal

parameters λ fixed. This corresponds to testing a specific theory, in our case, a specific

DM mass. The procedure can then be applied to all theories of interest.

Since a numerical optimization procedure for the product of many probabilities

can be cumbersome, one usually maximizes the log-LH, where the product is naturally

replaced by a sum. Furthermore, since most optimization literature follows the

convention that parameter optimization problems are minimization problems, we

minimize the negative logarithmic LH function:

(σ̂S, θ̂) = argmin
σS ,θ

(− lnL(σS, λ, θ)) . (3.23)

Our alternative hypothesis H1 can now be stated as σS = σ̂S. The LH ratio test

is based on the comparison of the value of the LH function with the maximum
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LH estimator, the alternative hypothesis H1, and the LH function under the null

hypothesis H0. The null hypothesis restricts the signal cross section σS = 0, while the

nuisance parameters are fitted alone, resulting in θnull. The test statistic D that we

shall use for our hypothesis test is

D = −2 ln



L(0, λ, θnull)
L(σ̂S, λ, θ̂)

�
. (3.24)

Wilk’s theorem [178] states that D is asymptotically distributed according to the χ2

distribution with k degrees of freedom if the null hypothesis is true. Here k is the

number of fitted signal parameters minus the number of fitted background parameters,

i.e. k = (dim(σS) + dim(ν))− (dim(ν)) = 1 in our case. The null hypothesis should

then be rejected if the quantity 1 − Φ(D) is smaller than the required significant

level α, where Φ is the CDF of the χ2 distribution. Since the χ2 distribution with k

degrees of freedom is the sum of the squares of k independent standard normal random

variables, we can, for our case with one degree of freedom, compare the quantity
√
D

with the CDF of the standard normal distribution.

When the sign of a signal is observed in a DM data set, we would typically perform

a so-called positive analysis, to confirm the statistical significance of the signal. This

procedure is equivalent to the procedure explained above, only that also the theory,

i.e. the λ parameters, are fitted to the data. In this scenario, the degrees of freedom

of the χ2 distribution increase by the number of signal parameters dim(λ). Fixing the

theory already a-priori is usually done to construct signal islands in the parameter

space, or to set upper limits on the cross section. The procedure for setting a limit is

explained in the following.

In a scenario where no convincing signal is observed, we want to quantify which

regions of the signal parameter space are incompatible with our observations by a

certain significance level. We keep our previous alternative hypothesis H1 as the

maximum LH parameters for this scenario. Instead of fixing the null hypothesis,

we fix the significance level. For testing which parameter space is excluded by 90%,

a commonly used significance level for exclusion limits, we compare the quantity�
D(σexcl) with the value 1.282, which is the corresponding quantile of the standard

normal distribution. The procedure works equivalently to produce signal-islands, by

using different significance levels, and a symmetric CDF. The test quantity has in

this setting a free parameter, the free parameter of the null hypothesis, which is the

cross-section σexcl that can be excluded with the chosen significance. Since we know

that higher cross-sections would lead to a stronger signal signature in the data, we
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know that any cross-section higher than this value is excluded as well, with at least

similar significance.

Technically the calculation of exclusion limits requires a two-step process of

numerical optimization. The problem we want to solve has the character of a root

search:

Find σexcl s.t. 0 = −Z2

2
− ln

	
L(σexcl, λ, ˆθexcl)

�
+ ln

	
L(σ̂S, λ, θ̂)

�
. (3.25)

For every evaluation of the LH function with a new parameter, we need to solve a

minimization problem again when obtaining the best fitting background parameters
ˆθexcl for the new setting of the cross-section. Calculating an exclusion limit through the

LH ratio test can be costly, especially considering that the process needs to be repeated

for every signal parameter λ of interest. We will explore in the next section another

method for calculating exclusion limits that is cheaper in terms of computational cost

and has other advantages.

3.2.2.2 The maximum gap and optimum interval methods

We have discussed in Sec. 2.2.3 excesses above known backgrounds that are currently

observed in data sets from cryogenic detectors. Usually, suitable excesses could

be interpreted as a signal. However, for these excesses, it is known that they are

incompatible with signatures of new physics. This information is not reflected in the

data in a way that is accessible to our default statistical methods for signal searches.

Therefore, we need to account for this knowledge in how we use our methods. Typically

this is done by interpreting the excesses as signal events but setting only exclusion

limits. This way, we reach a conservative limit, and by not performing a positive

analysis, we witness that the excesses can and should not be interpreted as signal.

Such excesses are not only harmful since they could inflict a wrong signal claim, but

the situation is even more complicated since no proper or justified parametrization

exists for many of them. They cannot be included in a background model. For such

situations, we require a method that can set limits on a signal model without explicit

knowledge of the background distribution. Therefore, we have only a null hypothesis

H0 and seek to reject it.

The simplest method of such kind would be a cut-and-count analysis: the total

number of events in the ROI is the test statistic. We can test this quantity against a

Poissonian distribution where the mean value is the number of events predicted in

the ROI by the signal model. This method is likely the most conservative since all
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Figure 3.10: Illustration of the maximum gap method. The horizontal axis is some
parameter “E” measured for each event. The smooth curve is the signal expected
for the proposed cross section, including any known background. The events from
signal, known background, and unknown background are the small rectangles along
the horizontal axis. The integral of the signal between two events is “xi”. Fig. and
caption taken from Ref. [179]. The quantity dN

dE
corresponds to S in the text.

background events in the ROI are automatically interpreted as signal events. However,

we would discard the information about the expected distribution of signal events

within the ROI.

Another set of methods can use the expected signal shape to discriminate between

this and background distributions. These are the maximum gap and optimum interval

methods, introduced in Ref. [179] for DM searches and often called Yellin methods,

after the author.

We consider here the case of a one-dimensional observation space, namely the

scenario of interest, where this data dimension is the measured recoil energy E. For

the maximum gap method, we define the gap sizes xi as the values 4:

xi =

� Ei+1

Ei

S(E)dE. (3.26)

Here S is again the signal model. A gap is visualized in Fig. 3.10. Ref. [179] motivates

an injective transformation of the data, such that the expected signal distribution

would be uniformly distributed with unit density in the interval 0 to µ, the total

number of expected events. Ref. [179] further derives that the probability C0 of the

maximum gap size being smaller than a particular value of x is given by:

4Be aware that in this discussion, xi does not correspond to the individual events as in the
previous section, but to the gaps in between.
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C0(x, µ) =
m�
k=0

(kx− µ)ke−kx

k!

�
1 +

k

µ− kx

�
, (3.27)

where m is the greatest integer ≤ µ/x. Since µ is linearly dependent on the signal

cross section σS, we can now increase σS until C0 reaches the required significance

level for the exclusion.

The optimum interval method is based on the same idea, but instead of measuring

gaps, we measure intervals between data points:

xij =

� Ej

Ei

S(E)dE, (3.28)

where j > i. The interval xij covers j − i− 1 events. We can then equivalently define

probabilities Cn(x, µ) for any n > 0, that all intervals that cover ≤ n events have

their expected number of events ≤ x. The Cn functions are not accessible analytically

but must be tabulated numerically with Monte Carlo methods. The largest Cn for a

given data set and signal model is called CMax. Ref. [179] defines further a function

CMax(C, µ) to be the value such that fraction C of random experiments with that µ,

and no unknown background, will give CMax < CMax(C, µ). Also, this function has to

be computed with Monte Carlo. The exclusion limit with probability 0 < C < 1 is

then the smallest value of σS where CMax of the data equals CMax(C, µ). The optimum

interval method is today widely used for setting exclusion limits for low threshold

experiments.

With Yellin’s methods it is generally only possible to test a specific theory, i.e. the

signal parameters λ, e.g. the DM mass, introduced in the previous section, need to

be fixed a-priori. Several extensions of the Yellin method exist. Ref. [180] introduces

an asymptotic function for Cn that can be used for data sets with high statistics. It

further introduces a generalization of the procedure for more than one data dimension.

Ref. [181] discusses methods to combine limits from multiple data sets that were

derived with the optimum interval method. The combination of limits will be the

subject of the following section, where we discuss the potential and risks of combining

data sets with both Yellin’s methods and the LH ratio test in detail.

We have introduced the LH ratio test for a statistical signal search and limit

setting with known background distributions and Yellin’s methods for setting limits

in the presence of unknown backgrounds. We have not explicitly included the time

information of events in our elaboration. However, it can be included in the same way
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as other observables of the events, as energy information, given a decent model of the

expected event distribution in time. This is particularly the case when looking for

an annual modulation in the event rate. We refer to Ref. [95], where such a search

was conducted with data from the DAMA/LIBRA experiment and signal islands were

projected in the landscape of DM nucleus scattering (see Fig. 1.7). Intuitively we

would expect that more data are always better for a signal search. However, this is

only the case if the used method is capable of extracting all the information from

the data. Otherwise, the combination of data sets can even lead to results that allow

only for weaker statements as one of the individual data sets. Exactly this question is

discussed next in this chapter.

3.2.3 Challenges for the joint analysis of multiple data sets

This section closely follows the discussions that will be put forward in Ref. [1] (unpub-

lished), and part of this section will be part of the publication. The DM community is

interested in performing joint analyses of experiments to possibly gain stronger limits,

or hints towards signals, by using even more of the information in the data. The first

part of this section deals with the necessary ingredients for a combined analysis, and

the later parts discuss complications in the statistical methods applied.

The results of a DM search depend strongly on the statistical procedures used and

the preparation of the measured data. An open data policy is explicitly encouraged

to enable comparability between experiments and reproducibility of results. This also

enables independent searches for non-standard DM models by individual scientists and

the joint analysis of measurements from multiple experiments. The information and

data necessary are discussed in the following. This chapter’s subsequent subsections

describe examples of analysis techniques that are popular in the community to compare

data between experiments and derive combined results.

First, the observables used for deriving the DM result are necessary on a suitable

level of abstraction. Experiments measuring particle recoils in a detector material

concern the measured recoil energies and additional information, e.g. time, stamps,

if relevant to the analysis. Auxiliary observables should be included if they are used

directly in the extraction of DM results, e.g. in combined LH fits on recoil energies

and LYs. They can be absorbed in the overall cut efficiency if they are merely used

to perform veto cuts (see below). Unbinned data formats are generally preferably

over binning of physical quantities. However, there are scenarios where the latter

is sufficient, especially for experiments that cannot resolve energies beyond natural

binning (counting experiments) or face very high interaction rates. The recoil energies
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should be specified as total recoil energy, nuclear-recoil equivalent energy, or electron

equivalent energy, depending on the procedure of energy calibration.

The tested DM signal model should be described as a function mapping the

experimental observables to the magnitude of the interaction rate density per exposure

depending on the tested physics parameters. These are typically effective interaction

strengths and variable parameters of the DM model. In the example of elastic DM

nucleus scattering, the former would refer to a mapping from particle recoil energy to

an expected count density and the latter to the DM mass. Results are only comparable

and combinable under the identical underlying assumptions made in the derivation,

they therefore need to be stated.

An understanding of applied data selection cuts on signal events is crucial for the

derivation of reliable physics statements. The common procedure to develop such an

understanding is the simulation of signal events with all features that are relevant for

the selection criteria, e.g. recoil energies, LYs, pulse shapes, or SNRs. The simulation

should be tuned to the individual measurement, e.g. by using calibration or training

data, under consideration of the applied blinding scheme. After applying equivalent

selection criteria to the data set of simulated signal events, their survival probability

can be estimated as a function of the experimental observables used in deriving physics

results. This typically results in an energy-dependent cut efficiency for recoil-based

experiments. The derived efficiency should ideally be shared separately from the signal

model to allow for independent modifications.

Setting an upper limit on the interaction strength of a scattering process is possible

solely based on the absence of events and without knowledge of the origin of appearing

background contributions. Many DM searches are conducted this way, as backgrounds

appearing for detectors using novel technologies are sometimes not fully characterized

or of an instrumental nature with varying, hardly predictable count rates and features.

While this lies in the nature of such experiments and will likely not change for future

searches, there are clear benefits in the knowledge of background contributions that

can be used to improve upper limits and are especially important to claim discoveries

reliably. A description of known backgrounds should therefore be included.

A special challenge for the data analysis is, when a background component resembles

the spectral shape of the expected signal. At the time of writing, this harmful situation

is present for various LEEs observed by low threshold experiments, described e.g. in

Refs. [31, 139] and summarized in Ref. [7]. This case has to be treated with special

caution: such observations can be declared as backgrounds, even if their origin is not

fully understood, if they feature qualitative properties that are incompatible with
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Experiment identifier “A” “B” “C”
Exposure (kg days) 7 5 100
Rate ( 1 / (kg days)) 300 200 20
Number surviving events 2100 1000 2000
Threshold (keV) 0.1 0.035 1
Upper end of ROI (keV) 20 10 400
Energy resolution (eV) 15 5 150
Cut efficiency above threshold 0.8 0.65 0.5

Table 3.5: Summary of the characteristics of the simulated data sets. See Sec. 3.2.3.1
for details.

the sought-for signal. This especially includes incompatibilities in the count rates

across different measurements or in the time dependency. Ideally, such information is

represented in the statistical method chosen to derive the physics result. If this is not

feasible, certain pitfalls can occur both for individual and combined analysis of such

data, which shall be discussed later in this section.

Finally, the derived physics statement should be included in a tabulated format

that is usable in a data processing pipeline or for plotting routines. For this, the

information in the published file naturally depends on the method used to obtain

the result. Generally, combining results that were derived with different of the above

named methods can be problematic. A more detailed discussion of these methods and

the types of combined analysis they allow for follows in subsequent sections.

In full presence and knowledge of the above-summarized items and information,

released data can reach their maximal impact. We showcase exemplary procedures

to combine results in the following sections: in Sec. 3.2.3.2, we discuss counting

experiments and the optimum interval and maximum gap methods for the scenario

of unknown backgrounds, in Sec. 3.2.3.3 we discuss counting experiments and the

profile LH method with background models. We use several simulated data sets for

our examples that we describe in Sec. 3.2.3.1.

3.2.3.1 Characterization of the simulated data sets

Several effects of the methods of combined data analysis shall be shown on exemplary

data in the following sections. To keep the examples simple, we simulate data that

is qualitatively realistic but simplified and is sampled from known and analytically

tractable distributions. We simulate data sets from three mock experiments A, B,

and C. All of them share the same parametrization of an expected signal model,

depending on a parameter β. The experiments have individual backgrounds, count
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rates, and measurement characteristics. We generally simulate background-only data,

but experiments A and B are designed to have background components that resemble

signals for certain choices of β. The relevant observables are exclusively the recoil

energies, and the energy calibration is done such that it is independent of the type of

recoil. The corresponding cut efficiencies are flat but below unity, above the energy

threshold, and smeared out by the baseline energy resolution around the threshold

as they rapidly approach zero. The same applies to the upper end of the ROI. The

global characteristics of the simulated measurements are summarized in Tab. 3.5. The

common signal model for all three experiments has the form:

S(E|β, w0) = w0 · E(E|β), (3.29)

where E is the recoil energy, β is a parameter of the DM model, and w0 is a parameter

describing the effective interaction strength between DM and the detector material.

E(E|β) describes an exponential distribution with shape parameter β. We can think

of this model as a simplification of the model for elastic DM-nucleus scattering, with

β taking the role of the DM mass. However, a realistic model for a scattering rate

would depend on additional parameters, especially the detector material, and would

have an upper bound, i.e. a highest possible energy that can be inflicted in a recoil,

due to the upper bound of the velocity distribution of DM in the Milky Way. These

refinements would not change the qualitative statement for which we aim in the

following sections. The advantage of our simplified model is that the parameter β

immediately corresponds to the expectation value of the recoil energy of signal events.

The individual background events for our experiments A, B, and C are sampled from

the following probability distributions:

BA(E) = 0.4 · U(E) + 0.3 · N (E|6, 0.5) + 0.3 · E(E|0.3) (3.30)

BB(E) = 0.35 · U(E) + 0.3 · N (E|6, 0.5) + 0.35 · E(E|0.1) (3.31)

BC(E) = 0.5 · Γ(E|0.375, 933.33) +
�
i

wi · N (E|µi, σi) (3.32)

with wi = (0.08, 0.12, 0.05, 0.15, 0.1), µi = (45, 75, 120, 200, 300) and σi = (2, 3, 5, 10, 20).

Here U(E) describes a uniform distribution in the ROI, N (E|µ, σ) describes a normal

distribution with mean µ and standard deviation σ and Γ(E|k, θ) a gamma distribution

with shape and scale parameters k and θ.

We will in the following sections proceed to determine signal exclusion limits with

our data sets. As experiments A and B contain exponentially decaying background
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components, we first want to compute the signal parameters matching their back-

grounds’ shape and rate. For experiment A(B), the choice β = 0.3(0.1) keV leads

to identical signal and background shapes. For the rate parameter, we need first to

disentangle the prefactor of the corresponding background component: 30% of the

observed events are sampled from the exponential background component, which gives

a rate of 100(70) counts / (kg days) for experiment A(B). We want to note that all

background parameters are for our data sets chosen such that the choice of ROI and

the cut efficiency change the distribution of events between the individual background

components only negligibly. Therefore the distribution of observed background events

resembles the distribution of simulated background events.

3.2.3.2 Combining upper limits with unmodelled backgrounds

Methods for statistical statements about the presence of a signal in a measurement

were introduced in Sec. 3.2.2. Measurements with unmodelled backgrounds that inflict

events in the ROI can easily be used to establish upper limits on the signal interaction

rate. However, establishing signal discoveries under the presence of unmodelled

backgrounds is generally not possible, as the statistical method has to make an

implicit signal-only assumption.

Combining limits derived with a cut-and-count analysis is straightforward: the

result of a cut-and-count analysis contains all information in the number of observed

events, and the probability distribution is determined by the assumption of Poissonian

statistics. Therefore, the observed event rates can be summed, and the signal rate

corresponding to the smallest excluded hypothesis with the desired significance can

be derived. That being said, this simple merging strategy will improve the limits for

two experiments with similar background count rates, but if the background count

rate of one experiment is significantly higher than the other, the combined limit will

come out to be weaker than the individual limit of the experiment with lower count

rate. This is not the result that one wants to achieve by combining information from

measurements, and a similar issue was treated in detail for the maximum gap and

optimum interval methods in Ref. [181]. This effect is shown for the maximum gap

method in Fig. 3.11. Upper limits for the signal interaction rate are derived with the

maximum gap method for experiments A, B, and C. The kinks in the limits from

A and B around the parameter space where the background is compatible with the

signal model are clearly visible. Merging the data and deriving combined limits does

not lead to stronger limits: the combined limits are positioned between individual
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Figure 3.11: Upper limits on the signal interaction rate of experiments A, B, and
C (left) and their combinations (right), depending on the signal shape parameter β.
The error bounds are derived by the independent sampling of ten datasets from the
background densities described in Sec. 3.2.3.1. The mean values of the individual
limits are shown as dotted lines in the right plot. The combination of experiments
does not improve the limits, which is fully expected as all experiments are limited by
background and not exposure.

ones. This is fully expected due to the fact that the background rate is the limiting

factor in our experiments instead of the exposure.

In Ref. [181] several alternative methods are studied to combine limits derived with

the maximum gap and optimum interval methods, with the objective to a) improve

limits from experiments with similar background rates due to the gain in exposure

and b) to avoid a degradation of a limit far below the individual limits by using the

information that all experiments would have to have observed a DM signal separately,

within bounds of statistical fluctuation. It is concluded that methods exist that do well

in both of the stated objectives individually, but no method exists that achieves good

performance in both objectives when combining limits derived with the maximum

gap or optimum interval method. An individual decision on which methods should

be used has to be made based on previous knowledge about the compatibility of the

measurement background rates. An interesting fact has to be noted about the methods

presented in Ref. [181]: there are several methods that allow for combining maximum

gap/optimum interval limits without accessing the data that was used to derive the

limits directly, but by only accessing the calculated limits. This is interesting for

large-scale joint analysis projects, where accessing all data sets individually would
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create some technical overhead.

Generally, limits that are conservatively derived with different methods but identical

confidence levels are comparable but not necessarily combinable without extra effort.

Counting and profile LH methods automatically include LH functions that can easily

be combined, while for the maximal gap and optimum interval methods, a probability

distribution for the appearance of the gap/interval size has to be designed first, which

can then be redefined as LH. This extra step enables the combination of maximum

gap and optimum interval limits with limits from counting experiments and profile

LH methods, and it is discussed as well in Ref. [181].

A blinding scheme for a combined analysis has to consider the included data sets

to avoid a bias due to including only sets with beneficial realizations of statistical

fluctuations. In practice, a fully blind analysis that combines several experiments is

certainly challenging, as none of the used data sets may be unblinded for an individual

analysis first. However, it is realistic that one experiment would wish to combine

data sets from several detectors, and for that, the choice of included detectors must

be made before the data is unblinded or otherwise justified with arguments that are

statistically independent of the sought-for physics process, e.g. technical problems of

detector operation.

3.2.3.3 Combining results with full background models

Models of expected background count rates are an advantage for any physics search.

Such rates can be included in LH functions, which can be used to compare combined

signal and background hypothesis and background-only hypothesis to derive upper

limits and discoveries. Even more, the observed background in a combined analysis of

several data sets can be attributed to the background components of individual data

sets by using a global fit where only the signal parameters are shared. This procedure

formalizes the information in the statistical method that a signal would necessarily be

seen by all experiments, while backgrounds can differ. For this, special caution to a

complete background model is required. The absence or a poor model of individual

background components can not only lead to wrong physics statements but also lead

to the same effect that was discussed in Sec. 3.2.3.2 where one data set deteriorates the

individual results of another. Therefore it is generally preferable that contributions

that were clearly identified as backgrounds but for which no model derived from

the underlying origin is available are included with heuristic parametrizations in the

background model.
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Figure 3.12: Same plot as shown in Fig. 3.11, but with upper limits derived with
the profile LH method and full background models. Combining experiments always
leads to an improvement in this setting, provided there are no unmodelled or poorly
modelled backgrounds left, as the correlated fit can attribute events to background
contributions from different experiments individually. The signal-like background of
experiment A(B) for β = 0.3(0.1) is also excluded in the combined fit.

As an example, we derived limits with the profile LH method for our experiments

A, B, and C. For this, we use the full background models of the corresponding data

sets and the signal model and perform a fit of all contributions’ prefactors (weight

parameters) by minimizing the extended negative log-LH. The extended LH method

has the advantage of not requiring the LH to be normalized to one, i.e. it does not

require a probability density, but any density function [177]. To derive upper limits,

we compare the LH of the “best fit” hypothesis with a hypothesis with increased

signal contribution. The signal contribution of the second hypothesis is increased,

starting from the best-fit parameters, until the desired confidence level of exclusion is

reached. Results for all data sets and their combinations are shown in Fig. 3.12. It is

significant to note that the combined results are better in all cases, and the parameter

space corresponding to the backgrounds compatible with the signal hypothesis in

experiments A and B can be excluded in the combined fit.

A noteworthy detail is, that the LH functions of the individual experiments can

be tabulated, only depending on the parameters of the signal model. This allows for

combined fits and analysis without evaluating fits again depending on the individual

events of the data sets, with the same results as are shown in our mock experiments.
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A similar procedure can be applied for deriving signal discoveries. The hypotheses

that are compared in that case are background-only and the combined signal and

background scenario. As per definition, the signal component is missing from the

background-only scenario, the significance of a signal verification with combined data

sets will always be in between the significance of the individual data sets. This already

represents the statement that all experiments would necessarily see a signal.

This chapter was dedicated to the analysis techniques for cryogenic detectors.

We first introduced the methodology of the RD analysis. This procedure can be

categorized into the detector characterization, the event characterization, the event

selection, and the validation of the analysis chain. We especially emphasized machine

learning methods for data cleaning and pile-up separation. We will mention the former

method again in Chap. 4 and come back to the latter method at length in Chap. 6,

where we shall further refine it. The RD analysis results in the clean recoil energy

spectrum of the measurement, the corresponding cut efficiency, and auxiliary quantities.

Using this data, we can conduct a HLD analysis consisting of PD and statistical signal

searches, for which we introduced the LH ratio test and Yellin’s methods. Finally, we

discussed the challenges when combining data sets for signal searches. The last studies

will become relevant for future large-scale setups, such as the CRESST upgrade and

the final setup of the COSINUS experiment. These experiments are the subject of

the following chapters, where we will discuss the COSINUS experiment, its current

status, and optimized detector designs in Chap. 4. In Chap. 5, we discuss the latest

measurements and DM results from the CRESST experiment, and in Chap. 6 we

discuss automation strategies for the detector setup and analysis of the CRESST

upgrade.
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Chapter 4

Characterization of remoTES
prototypes for COSINUS

Experiments have achieved stronger and stronger sensitivity to low DM masses and

interaction rates in the past decades. More than once, excesses appeared close to

the detection thresholds [182]. Most of them turned out to be detector effects or

unmodelled backgrounds. Some of these excesses are the subject of ongoing research,

with continuously new insights published (see Sec. 2.2.3). However, one excess is

especially puzzling: the claimed DM signal of the DAMA/LIBRA experiment. With

high statistical significance, the experiment measures an annual modulation of its

event rate compatible with that expected from DM scattering. That was considered

for a long time a “smoking gun” evidence for a DM signal. The problematic fact about

their results is that the parameter space compatible with their observations is severely

excluded by other experiments. Currently no DM model exists that would explain

a signal observed by the DAMA experiment, but not by any other experiment [39].

However, it is not excluded that DM could have non-trivial interactions with certain

nuclei, which could not satisfyingly be modeled in our assumptions (see Sec. 1.3).

Therefore, an independent verification of the DAMA/LIBRA excess, using the same

target material, is one of the recommendations of the APPEC committee report [38].

Several experiments are dedicated to this mission. They were discussed in Sec. 1.4.

Almost all of them are using single-channel readouts from scintillating sodium iodide

targets. This leaves questions about the compatibility of light-QFs open, since not

all experiments use identically grown crystals. The available measurements suggest

that discrepancies between DAMAs QF and that of other experiments exist [46].

While calibration of these setup factors is possible, there is also an even more elegant

way to resolve the question of QFs while acquiring more beneficial capabilities on

the way: using a two-channel readout. The COSINUS experiment [45] is set to
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instrument sodium iodide targets with TES while simultaneously measuring the

produced scintillation light with a beaker-shaped light detector, fully surrounding the

target. This design choice enables both an in-situ measurement of the QF and PD

on event-by-event basis through the two energy scales (see also Sec. 3.2). Therefore

the COSINUS experiment can reach much lower nuclear recoil energy thresholds, and

in case of a verification of the DAMA/LIBRA excess, determine if it is of nuclear or

electron recoil origin. In the case of nuclear recoil events, it would even be possible to

determine whether the signal originated from scattering off sodium or iodine.

Manufacturing cryogenic detectors with sodium iodine introduces interesting ques-

tions in the detector design. This target material is naturally hygroscopic, which

makes it impossible to evaporate films on the target directly. Furthermore, the low

Debye temperature of sodium iodide requires fine-tuning the thermal properties of the

sensor to the target. The originally planned detector design for COSINUS features

unexpected problems due to the re-absorption of schintillation light in the carrier

crystal, which was manufactured with another material than the target. The collabo-

ration recently published a dedicated alternative design and works intensively on R&D

to optimize their energy thresholds and reach their performance goal. Furthermore,

the achievable threshold depends for phonon readouts strongly on the crystal size,

which makes it harder to collect high exposure. The COSINUS experiment plans to

operate ten identical detectors in a first run, and 20 in a second run. This is about

the maximum number of detectors that can be operated in parallel without exceeding

the available resources. We provide projections of the achievable energy threshold in

this chapter, depending on the target mass, based on recent measurements. We show

in our electrothermal response simulation (CryoEnv), also used in Sec. 2.2.2, which

design choices can lead to achieving the performance goals of the experiment.

We discuss the necessary sensitivity to validate the DAMA/LIBRA claim and

the performance goal of the experiment in Sec. 4.1. A conservative and preliminary

analysis of two current measurements is discussed in Sec. 4.2. Our propositions for the

final detector design that can reach the COSINUS performance goal are calculated in

detail in Sec. 4.3.

4.1 Physics case and performance goal

The DAMA/LIRBA experiment, operated in the LNGS, has been taking data in its

second phase since 2011, previously in its first phase, and previously under the name

DAMA NaI. They use 250 kg sodium iodide target mass, distributed to 25 detectors,
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Figure 4.1: Experimental residual rate of the single-hit scintillation events measured by
DAMA/LIBRA–phase1 and DAMA/LIBRA–phase2 in the (2–6) keVee energy intervals
as a function of the time. The superimposed curve is the cosinusoidal functional forms
A cosω(t− t0) with a period T = 2π

ω
= 1 yr, a phase t0 = 152.5 day (June 2nd) and

modulation amplitude, A, equal to the central value obtained by best fit. Fig. and
caption from Ref. [38].

and measure the produced scintillation light with PMTs. Their energy threshold was

2 keVee in the first phase with a total exposure of 1.04 tonne years and 1 keVee in

their second phase with an exposure of 1.53 tonne years. In their single hit events,

they observe an annually modulating signal between 2-6 keVee, peaking close to June

2nd. This phase of the annual modulation is consistent with what would be expected

from Earth orbit through a DM halo. The rate of the part of their energy spectrum

that is attributed to the modulation is shown in Fig. 4.1, with the constant event rate

subtracted. Their total event rate is not publicly available.

An extensive sensitivity study for the COSINUS experiment was performed in

Ref. [48]. They study three different scenarios: the standard assumptions of elastic

DM-nucleus scattering with a Maxwell-Boltzmann distributed DM velocity, a generic

falling DM spectrum, and finally, an arbitrary DM-nucleus scattering recoil spectrum.

The necessary sensitivity to test the DM signal region is visualized in Fig. 4.2. In

this work, we do not study the official COSINUS performance goal, corresponding

to a event rate of 0.1 counts/kg/day in the signal region. Instead, we study the

potential of the experiment in a background-free scenario. We include a note on

how realistic this assumption is further below. This means we require less than 2

counts in the signal region and the whole measurement interval considered, which is

compatible with a zero count hypothesis under Poissonian assumptions. We perform

our projections for the assumption of a 10 GeV/c2 DM particle mass, which is the

mass corresponding to the lower DAMA island, from a hypothesis of DM scattering

elastically on sodium. The statements hold qualitatively for higher and lower WIMP

masses (see also corresponding plots in Ref. [48]). The threshold projections are based

on the analysis done in Sec. 4.2, and are calculated in Sec. 4.3.
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Figure 4.2: COSINUS exclusion power, defined as the bound on the total rate (or
equivalently the total exposure with zero observed events) that COSINUS must achieve
for excluding DAMA in a halo-independent way, as a function of the assumed threshold
in COSINUS for different DM masses. More general assumptions correspond to weaker
exclusion power, meaning that stronger bounds are necessary to achieve an exclusion.
All bounds are derived in Ref. [48]. The red dot indicates the design sensitivity of
COSINUS. We added the golden stars and blue lines, they visualize the achievable
threshold and sensitivity that we project in two scenarios in this work. Fig. and
caption from Ref. [48], with adaptions.

We assume the COSINUS experiment will collect data in two run, that will last

for one year each. The goal of the first run is to test the standard spin-independent

scattering scenario, the second run should be sensitive to arbitrary recoil spectra.

We make conservative assumptions about the technical performance of the experi-

ment, namely that 7(14) out of 10(20) detectors that are built in the final setup of run

1(2) can operate with an overall efficiency in the signal region of 80 % (accumulating

effects of cut efficiency, interruptions of the measurement, etc.). We assume that energy

thresholds are set at 6.5 times the energy resolution, ≈ 1 noise triggers/kg/day are

expected from this threshold. However, noise upward fluctuations of this magnitude

are typically easily identifiable with standard pulse-shape cuts. We therefore assume

that no noise triggers survive in the signal region.

According to our projections, the experiment should achieve a nuclear recoil

threshold of 1 keV or lower in the first run, using 29.4 g crystals for each of the ten

detectors. With this target mass and the assumed efficiency, an exposure of 50 kg days

could be collected in 11 months. Assuming that the count rate in the signal region

stays below the required 3 counts (equivalent to 0.06 counts/kg/day), this scenario
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would reach the performance goal for the first run.

For the second run, we project a threshold of 1.68 keV, using a 99.1 g target

for each of the 20 detectors. A measurement time of one year would lead to a net

exposure of 400 kg days, which is sensitive to arbitrary recoil spectra, assuming a

signal candidate count rate below 0.007 counts/kg/day.

Ref. [48] only considers cut and count experiments, neglecting any spectral infor-

mation within the ROI. Including this information could potentially lead to stronger

sensitivity. Also, analysis of the modulation, not only the total rate, can lead to much

stronger results. Our performance projections are, in that sense, the most conservative

analysis.

There is one strong limitation about this type of analysis: non-discriminable

backgrounds. In this work, we do not treat the expected EM interaction rate. Due

to the strong discrimination power of the two-channel readout for EM events in the

signal region, we can reasonably assume that no electron scattering events would

be interpreted as signal candidates. The muon flux and their decay products are

the subjects of simulation studies [183], where the ambient neutron flux inside the

passive shielding was calculated to be ≈ 0.035 counts/year. An active muon veto will

identify muon events, reducing the cosmogenic neutron flux to ≈ 0.11 counts/year [183].

The potential cosmogenic activation of the crystals and the cryostat materials are

the subject of ongoing screening and simulation campaigns. Generally, known and

previously measured backgrounds can be included in a more sophisticated analysis

procedure, see e.g. 3.2 for methodology.

4.2 Performance of sodium iodide remoTES proto-

types

The initially planned COSINUS design was composite: the TES was evaporated on a

small carrier crystal made from a different material such as calcium tungstate, which

was then glued to the target sodium iodide crystal. This detector concept reached

suitably low thresholds in the earlier runs of CRESST-II [154], where the same carrier

and target materials were used. However, this concept turned out to be problematic

since the usable carrier crystal materials are not fully transparent for the scintillation

photons from sodium iodide, with a maximum of its emission spectrum at λ = 415

nm / ≈ 3 eV. The scintillation light from the target was to a large extend reabsorbed

in the carrier crystal, degrading the discrimination power and energy resolution. The
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Figure 4.3: Schematic view of a remoTES detector. The wafer where the TES is
fabricated onto (right) is separated from the absorber crystal (left). This crystal is
equipped with a gold pad which is linked directly to the TES via a gold bonding wire.
Fig. and caption from Ref. [47].

phonon signal in the composite design was already relatively small and masked by the

reabsorbed light signal. This problem was intensively studied in Ref. [184].

An alternative and suitable design choice was proposed in Ref. [114]. The TES

is placed on a remote wafer and is connected to a gold pad on the target through a

gold bond. A particle recoil in the target induces a temperature increase in the gold

pad. Ideally, the electron system in the gold pad is strongly coupled to the electron

system in the TES. This would lead to a comparable temperature increase in the

TES as in the gold pad. Gluing a gold pad on the sodium iodide crystal is a much

simpler procedure than evaporating or sputtering directly on the crystal. COSINUS

performed the first successful measurement of this design, and we refer to it under the

name “remoTES” [47]. An image of the situation is shown in Fig. 4.3.

Recently several results were published from remoTES detectors with 3.7 g sodium

iodide targets. Ref. [49] contains the report from a measurement in an above-ground

laboratory in Munich at the MPP in December 2021, collecting a data set of 9.06

g days and an analysis threshold of 15 keV for nuclear recoils. This measurement

showed PD in a sodium iodide target on event-by-event basis for the first time. At the

same time, Ref. [50] reports from a measurement in the CRESST test cryostat in the

Gran Sasso underground laboratory (3800 MWE), internally referred to as run 376, in

July 2022. They collected 11.6 g days of data with an energy resolution of 441 eV and

an analysis threshold of 4 keV. They further performed the first DM search with a

cryogenic sodium iodide detector. Under standard assumptions, the resulting limit on

the cross-section is less than two orders of magnitude above the DAMA-compatible

region. This result bears evidence of the potential of the COSINUS experimental
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Figure 4.4: Images of the detectors used to measure COSINUS remoTES prototypes in
run 376 of the Munich R&D lab in spring 2023 (left) and the run 599 of the CRESST
test cryostat in the LNGS underground laboratory (right). The black beaker is the
light detector, fully surrounding the remoTES phonon detector.

design. Assuming the limit to scale approximately linearly with the collected exposure,

the sensitivity could already, with a few kg days of data, fully exclude the DAMA-

compatible region under standard assumptions. Both measurements were done with a

two-channel readout and PD.

For this work, we performed a dedicated and conservative analysis of two measure-

ment with sodium iodide remoTES. First, we do an individual analysis of the phonon

channel of run 376. Second, we analyze another measurement that was done in the

MPP above-ground laboratory, dubbed run 599, in spring 2023. The latter one was

also performed with a 3.7 g sodium iodide target. We show images of the operated

detector in Fig. 4.4. In both measurements (run 376 and run 599), a lead castle was

built around the cryostat, shielding from EM particle interactions, e.g. induced by

muons and radioactivity.

The goal of our analysis was to learn the physical properties of the detector. We

want to extract SEVs, NPSs, an energy resolution, and a rough energy spectrum that

enables us to identify strong features. In the following (see Sec. 4.3) we will use this

information to simulate detectors with larger targets and optimized components and

operation conditions. We chose these two measurements because they had comparably

good results, but with different choices in the detector design. While run 376 featured

a relatively good athermal phonon collection efficiency, the detector used in run 599

was optimized towards measuring the temperature of the target crystal. This was

realized by a thicker gold pad and a thick glue layer below the pad. More details of

the detectors are discussed in Sec. 4.3. We will learn in that section, that the thermal

readout scheme, which is realizable with current fabrication methods, is suitable for
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achieving the performance goal of the first COSINUS run, while the athermal readout

scheme is required for the performance goal of the second COSINUS run.

We took for our analysis exclusively the online triggered data from a measurement

time of 63 h (run 376) and 21 h (run 599). The sampling frequency was set to 50

kHz (run 376) and 200 kHz (run 599), and the length of the record window to 32768

samples (both runs). An iron-55 source was mounted inside the detector housing

in both runs, shining on the target. We performed quality cuts on the pulse shape,

which rejected the majority of artifacts and strongly saturated pulses. After cuts, the

surviving number of events is 4385 (run 376) and 4219 (run 599). The SEVs of target

hits and TPs after quality cuts are shown in Fig. 4.5.

The PHs were estimated with the OF for particle and TPs, respectively. The

energy calibration was done by interpolating between TPs’ PH and TPA values (see

Sec. 3.1). The CPE factor was extracted from the position of the iron peak in the

TPE spectrum. The spectra are plotted in Fig. 4.6. The iron line is for both data

sets close to the threshold and in an approximately linear region of detector response.

The pulses in the upper part of the energy spectrum show slight saturation effects,

which introduce an uncertainty of up to ≈ 30% on their energy estimate. No such

uncertainty is expected for small pulses and the threshold and resolution estimates.

We estimate the baseline resolution by applying the fit model of Gaussian noise

trigger maximal that was discussed in Sec. 3.1.1.5. The number of available clean,

empty baselines is 916 (run 376) and 1721 (run 599). The resulting fit, including

the estimate of a trigger threshold for 1 noise trigger/kg/day, is shown in Fig. 4.7.

The voltage units of the PHs are converted to recoil energies with the interpolator

function from the energy calibration. This procedure finds energy resolutions of 0.33

mV / 344 eV (run 376) and 1.33 mV / 410 eV (run 599). The estimate from run 376

agrees, within the expected systematic errors from different methods of calculating

the resolution, with the estimate from Ref. [50].

We did not simulate a cut efficiency since we don’t intend to state any physics

results with these data sets for which the rate would be of importance.

In summary, we have found comparable energy resolutions with two data sets,

which furthermore agree with the resolutions calculated in previous literature. In

the pulse shapes of the SEVs, we see that several choices in the detector design were

different enough to impact the thermal processes. While in run 376 the athermal part

of the pulse shape dominated, the sensitivity of run 599 was driven by the thermal part.

In the following section, we will use these two measurements to project achievable
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Figure 4.5: The SEVs for target hits (upper row) and TPs (lower row) for run 376
(left) and run 599 (right). The athermal part of the pulse shape is more pronounced
in run 376, while the pulse shape of run 599 is clearly dominated by the thermal part
of the signal. The heater was placed on the wafer, close to the TES, suppressing
the thermal part of the TP shape, which measures the temperature of the absorber
crystal.

Figure 4.6: The energy spectra of run 376 (left) and run 599 (right), with highlighted
positions of the iron lines (red dashed) and the typical bump-ish feature induced by
muons (grey dashed). The rising event distribution below the iron line in the run 599
spectra are majorly noise triggers. Due to a higher trigger threshold, such noise events
are not visible in run 376. Additionally to the histogram of recoil energies of run 599,
we show a density plot that highlights the peak induced by X-ray events from the iron
source.

143



0 1 2 3 4 5
Pulse Height (mV)

0.5

1.0

1.5

C
o

u
n

ts
 (

1
 /

 k
g

 d
ay

s 
m

V
)

1e8

Fit

Counts

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Pulse Height (mV)

0.25

0.50

0.75

1.00

1.25

C
o

u
n

ts
 (

1
 /

 k
g

 d
ay

s 
m

V
)

1e8

Fit

Counts

0 1 2 3 4 5
Threshold (mV)

10 1

101

103

105

107

N
o

is
e 

T
ri

g
g

er
 R

at
e 

(1
 /

 k
g

 d
ay

s)

Noise Triggers

1 / kg days

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Threshold (mV)

10 1

101

103

105

107

N
o

is
e 

T
ri

g
g

er
 R

at
e 

(1
 /

 k
g

 d
ay

s)

Noise Triggers

1 / kg days

Figure 4.7: Fit to the noise trigger maxima after application of the OF for run 376
(left) and 599 (right). The top panel shows a histogram of the noise trigger maxima
and function with the maximum LH estimates from an unbinned fit. The lower panel
shows the expected rate of noise triggers, depending on the chosen energy threshold.
The black line in the lower panel is the integral of the black line in the top panel, from
the respective PH and to the end of the window, and scaled to the exposure. The
recommended trigger threshold for 1 noise trigger/kg/days exposure is highlighted
(red).

thresholds for two different choices of detector design optimized for the thermal or

athermal signal components.
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4.3 Propositions for the final detector designs

The remoTES design consists of more components than a standard detector design, as

we introduced in Chap. 2. Therefore, a full electrothermal model should individually

contain components for the wafer phonons and the electrons in the gold pad, bond,

and TES. Furthermore, the heat inputs from the heater and target recoils have more

differences than in the standard design, as the heater is placed on the remote wafer.

However, the thermal couplings between these components would be hard to determine

from measurements, and the vastly larger number of parameters would not contain

more actionable intelligence than a simple 2-component model. For the purpose of

this work, we introduce several simplifications:

1. we assume that the electron systems of the gold pad and tungsten TES, and the

bond connecting them, are much stronger thermally coupled to each other than

to the phononic systems of the wafer, absorber, and the thermal link between

TES and heat bath. We assume that the temperature is uniform in all these

metallic components. While this assumption is certainly not fulfilled in practice,

the electron temperature can also be interpreted as an effective temperature,

determining the resistance of the TES and absorbing all geometric effects in the

other constants.

2. we ignore the wafer as a thermal component by assuming that the thermal link

between TES and wafer is either frozen out or can be absorbed in an effective

coupling between TES and the heat bath.

3. we assume the same base temperature of crystal and wafer. Since the wafer is

heated, this is very unlikely. However, the absolute temperature of the crystal

has no impact on the results, only its rise due to pulses.

Due to these assumptions, we can again use the CryoEnv simulation that was already

used in Sec. 2.2.2. In the first step, we use the simulation to determine several of

the thermal parameters. Other parameters we know a-priori or from theory. We

summarize the determination of the parameters in the following. Once found, we

use the simulation to scale the targets to the larger size that is required to reach the

exposure goal of COSINUS and optimize the components of low thresholds. We will

see that the performance goal is indeed achievable.

Many of the values necessary for a proper detector response simulation are known

or can be reasonably estimated. The values are summarized in Tab.4.1. Most of them
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are explained in Chap. 2. The value Vset is the parameter for a proportional-integral-

derivative (PID) controller, regulating the DAC value such that the CPH stays close

to this value. If the CPs drive the TES in its normal conducting region, the OP in the

transition curve can be determined from the knowledge of the Vset value, the shunt

resistance RS, the SQUID conversion factor η and the bias current Ib. The rise and

decay time of heater pulses is not the observed rise and decay time of the voltage

trace corresponding to TPs in the data but the time constants of the injected pulse

signal driven through the heater. The decay time of the injected pulse is expected to

match the rise time of observed TPs.

Quantity Run 376 (summer) Run 599 (spring)

size sodium iodide (10 x 10 x 10) mm3 (10 x 10 x 10) mm3

size gold pad 1 µm x 1.77 mm2 8 µm x 1 mm2

size gold bonds 1 bond, 2.3 mm, 17 µm
diameter

2 bonds, 1 cm, 17 µm di-
ameter

size tungsten TES (400 x 100 x 0.08) µm3 (400 x 100 x 0.24) µm3

(est)
size thermal link (1 x 200 x 100) µm3 (est) (1 x 200 x 100) µm3 (est)

bath temperature Tb 15 mK (est) 7 mK
shunt resistance Rs 40 mΩ (est) 40 mΩ
coil inductance L 1.3 µH (est) 1.3 µH
heater pulse rise time 0.5 ms 0.5 ms
heater pulse decay time 3.0 ms 3.0 ms
SQUID conversion factor
η

6.67 V/µA (est) 16.67 V/µA (est)

bias current Ib 1 µA 1 µA

Vset 0.9 V 2 V
PH iron line 0.0057 V 0.02 V
PH TPs 0.23 V (TPA = 1 V) 0.35 V (TPA = 0.6 V)

Table 4.1: Table of known values of the cryostat, electronics, and detector components.
Some of the values are known precisely, others are reasonable estimates, marked with
(est).

Further parameters were extracted from the data. This is a step-wise process

and not trivial. Some parameters are strongly correlated. In such cases, we tried to

determine conservative estimates.

We calculated the heat capacities of the TES and the gold pad with the Sommerfeld

model and the absorber heat capacity with the Debye model using the physical

constants from Tab. 2.3 and Tab. 2.4.
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The time constants of the pulse shape were determined by fitting the analytic

pulse shape model 2.13 to the SEVs.

An initial guess of the thermal couplings can be extracted from numerically

inverting the equations for the pulse shape time constants derived in Sec. 2.1. They

need manual adjustment to reproduce the observed pulse shape.

The transition temperature and the steepness of the transition curve were adjusted

to match the measured data. Measurements of the transition curve steepness are

known to have strong systematic uncertainties due to bias heating and systematic

uncertainties in the measurement setup. The steepness is, therefore, also adjusted

to match the measured NPS. This parameter is also correlated with the SQUID

conversion factor η. Further parameters extracted from the NPS are the magnitudes

of the adjustable noise components.

ϵ, β, DAC, and Rh were determined to match the PH of particle and TPs and the

OP in the transition curve.

The resulting values are contained in Tab. 4.2.

We use the determined parameters to simulate the response of detectors. The

transition curve, a pulse from a 6 keV X-ray event from an iron-55 source, and the

NPS of the simulated and measured data are shown in Figs. 4.8 (run 376) and 4.9

(run 599). While the simulated and measured data agree mostly, there are deviations

in the steepness of the transition curve and the athermal part of the pulse shape from

run 599. Also, the OPs calculated from the Vset did not agree very well with the

otherwise observed data and were adjusted to match the measurements. Since these

quantities do not strongly impact the purpose of this work, projecting the changes in

the sensitivity when the target size is increased, we can neglect these deviations.

As discussed in Sec. 4.1, the first COSINUS run requires to collect 50 kg days of

exposure, and the second 400 kg days of exposure. To reach this goal, larger targets

are needed than in the R&D runs. A challenge in lowering the threshold is the heat

capacity of the gold pad on the crystal, which directly decreases the observed PH for

a recoil with a given energy. A thinner gold pad would lead to a lower heat capacity,

and a thickness of < 100 nm is a common value for phonon collectors and TES e.g. in

the standard CRESST detector design. However, the COSINUS collaboration has

currently not developed a technique to sputter or evaporate directly on the sodium

iodide crystals, and the gold pad is typically glued to the crystal. This gives a practical

lower limit for the thickness of the pad of ≈ 1 µm. We will therefore consider two

scenarios.
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Quantity run 376 (summer) run 599 (spring)

Cf,nc (pJ/mK) 1.53·10−5 6.02·10−5

Cau (pJ/mK) 3.55·10−3 1.87·10−2

Ca (pJ/mK) 0.23 0.37

Geb (pW/mK) 0.46 0.3
Gab (pW/mK) 0.15 0.04
Gea (pW/mK) 0.51 18

τn (ms) 2.42 2.44
τeff (ms) 4.44 2.80
τt (s) 0.6 1.2
τTP (ms) 3 3
ϵ 0.04 0.15

RH (Ω) 10 10
Rf,op(Ω) 0.055 0.12
Rf0 70 mΩ 290 mΩ
Tc (mK) 27.85 32.6
k (1/mK) 2.86 3.1

β 0.1 0.1
IH (µA) 2 2

isq (pA/
√
Hz) 1.2 1.2

EJ 2 3
∆Rf,flicker

Rf0
(pJ) 9·10−3 1·10−2

α 2.5 1.

Table 4.2: Physics parameters for the sodium iodide remoTES detectors operated in
run 376 and 599 that were calculated from theory or extracted from the data.

First, we will show that the required threshold is achievable with a (2 x 2 x 2) cm3

crystal, with the already accessible techniques (gluing the gold pad), by optimizing for

the thermal part of the pulse shape. We will use the measured data from run 599 and

our simulation to optimize the component sizes and measurement conditions. This

detector design is sufficient to reach the goal of 50 kg days of exposure within the

experiment’s first run, with a planned measurement time of one year.

Second, we assume that R&D efforts continue during the experiment’s first run

and that depositing a gold pad with a thickness of ≈ 100 nm on the sodium iodide

crystal becomes feasible for the second run of the experiment. We show then that

the required threshold is achievable with a (3 x 3 x 3) cm3 crystal by optimizing for

athermal phonon collection. With this target size, the exposure goal of 400 kg days

for the second run of the experiment is achievable within 2 years of operation. We use
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Figure 4.8: Comparison between simulated and measured 6 keV X-ray event in the
run 376 remoTES sodium iodide detector. (upper left) Measured (grey dotted) and
simulated (red) superconducting transition curves and the OP within them. The
discrepancy between the curves is due to the measured curve’s peculiar shape and
does not impact our projections. (upper right) A measured SEV, scaled to the height
of measured 6 keV events (grey dashed), almost perfectly overlapped by the simulated
pulse (red) and the simulated pulse with superposed noise (grey). (lower panel)
Simulated noise contributions (colored) and total NPS (black) overlapped by the
measured NPS (grey dashed). We neglect the EM interference contributions.

the measured data from run 376 for these projections.

To account for systematic uncertainties in the determination of the physical

quantities from runs 376 and 599, and in our simulation, we make several conservative

assumptions: we assume that the coupling between absorber and bath, which is purely

parasitic for the sensitivity, scales with the surface of the absorber. Furthermore, we

assume, similarly to Sec. 2.2.2, that the absorption efficiency of athermal phonons in

the gold film scales with the temperature. While this is very unlikely to be a real

effect, we stick to the assumption to account for other systematic uncertainties, which

might only become apparent once the final designs are measured.
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Figure 4.9: Comparison between simulated and measured 6 keV X-ray event in the
run 599 remoTES sodium iodide detector. (upper left) Measured (grey dotted) and
simulated (red) superconducting transition curves and the OP within them. The grey
dots far outlying from the curve are measurement artifacts. (upper right) A measured
SEV, scaled to the height of measured 6 keV events (grey dashed), overlapped by
the simulated pulse (red) and the simulated pulse with superposed noise (grey). The
discrepancy in the rise time is due to a smear-out when creating the SEV. We will be
using mostly the thermal component of this measurement, and any uncertainty in the
athermal part and rise has little impact on our projections. (lower panel) Simulated
noise contributions (colored) and total NPS (black) overlapped by the measured NPS
(grey dashed). We neglect the EM interference contributions.
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4.3.1 Optimizing for a temperature measurement of the ab-
sorber

Our simulation using the physics parameters from run 599 gave a resolution after

optimal filtering of 482 eV. This is slightly worse than the measured value of 410 eV

and, therefore, suitable for a conservative estimate.

We optimized the detector components for scenarios with target sizes of 1, 2 and

3 cm3, within our CryoEnv simulation. To optimize the threshold, we successively

performed the following steps in the simulation. We first lowered the operation

temperature. A lower operation temperature is generally better for the sensitivity of

the detector. It can practically be challenging to achieve lower transition temperatures

of the TES but transitions as low as 10 mK were measured before for CRESST

detectors. Since it is not yet clear is the dry COSINUS cryostat of the final setup will

reach as low base temperatures as the wet CRESST cryostat, we made the conservative

assumption that transition temperatures of 17 mK can be achieved. With the updated

physics parameters of the detector, which scaled with the temperature as introduced

in Sec. 2.2, we then optimized the dimensions of the gold pad. A larger gold pad

adds parasitic heat capacity but also increases the collection efficiency of phonons

and prolongs the relaxation time of the TES τin, which contributes to a calorimetric

operation mode (see Sec. 2.2.2).

Finally, we argue that in run 599 the record window was chosen very short. We

performed a simulation with Gaussian, white noise and showed that a lower record

window would allow for better filtering with the optimal filter and a further decrease

in the energy resolution. This can only be tested in an underground measurement

since the high background rate above ground would lead to significant losses due to

pile-up.

The impact of lowering the temperature and increasing the gold pad size is shown in

Figs. 4.10 and 4.11 for multiple possible target sizes. The energy resolutions achieved

for the target size of interest with 29.4 g are 0.85 keV after lowering the temperature

and 0.34 keV after additionally matching the gold pad size.

The optimal dimensions of the gold pad, depending on the dimensions of the cubic

target crystal, are an interesting question. One could assume that the best choice is to

scale them proportionally to each other. However, the thermal dynamics of the system

are more complicated. We show in Fig. 4.12 the optima of the gold pad dimensions

found in our simulation for the three target weights, corresponding to side lengths of

the cube of 1, 2, and 3 cm. It is clearly visible that the points deviate strongly from a

linear scaling behavior. The reason is that the size of the gold pad changes multiple
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Figure 4.10: Impact of a changing operation temperature on the calorimeterness
(upper left, see Sec. 2.2.2 for Def.), the energy resolution (upper right), the phonon
thermalization time (lower left), and the collection efficiency (lower right), for the
three scenarios of target sizes (green, red, black). The missing points and the outlier
in the energy resolution curves are non-physical artifacts of the simulation and can be
ignored. Based on measured data from run 599.

Figure 4.11: Impact of a changing area of the TES on the calorimeterness (upper left),
the energy resolution (upper right), the phonon thermalization time (lower left), and
the collection efficiency (lower right), for the three scenarios of target sizes (green, red,
black). Based on measured data from run 599.

physics parameters in the model: the athermal collection efficiency is a function of

the competing thermalization of phonons in the pad and the crystal; the relaxation

time of the TES and, with that, the calorimeterness of the detector; finally, the heat

capacity of the pad. The effects are partially counteracting and generally not linear.

Our final intervention is prolonging the record windows. Very short record windows
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Figure 4.12: Optimal dimensions of a quadratic gold pad, all other parameters kept
constant depending on the dimensions of a cubic crystal. The linear regression is a
guide for the eye, visualizing the non-linear dependency. Based on measured data
from run 599.

were used in run 599 since the high rate above ground would have created significant

losses due to pile-up. The energy resolution after optimal filtering can intuitively be

understood to scale with the area of the pulse covered within the record window. To

test this hypothesis, we made a simulation of pulses as they were measured in run 599

and superposed with Gaussian noise. We test how sensitivity changes with the length

of the record window by densely simulating such pulses and measuring the energy

resolution. The results are shown in Fig. 4.13. We observe that the energy resolution

for run 599 could have been a factor 0.4 better if the record windows were chosen

much longer than the relaxation time of the crystal. We conservatively assume the

same factor for the optimized design we calculated above. The improvement would

likely be even better since we measured the energy resolution with the record window

length from run 599, despite the pulses in the optimized design being longer. With

the conservative assumption, we still reach an energy resolution of 136 eV after all

interventions for the 29.4 g target crystal.

A simulated pulse with the optimized design is shown in Fig. 4.18. The time

constants of the pulse shape are τn = 4.7 ms, τin = 11.5 ms, and τt = 2.78 s.

In summary, we projected a conservative estimate of the achievable energy reso-

lution with a value of 136 eV, using a 29.4 g crystal and measuring its temperature.

It is, therefore, very realistic that the performance goal, assuming a threshold of 6.5

times the resolution, for the first run of the COSINUS experiment can be reached with

already accessible and tested methods. An interesting detail for the reproducibility of

the run 599 measurement is that a thick glue layer was used to increase the thermal

coupling between the gold pad and the crystal. Differently from that in run 376, a
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Figure 4.13: Dependency of the energy resolution on the record window. (left) A
simulated 6 keV X-ray pulse with the parameters from run 599, with white, Gaussian
noise superposed. The end of the used record window (grey dotted) is close to the
onset of the pulse (red dotted). (right) Energy resolution after optimum filtering,
depending on the length of the record window, normalized to the energy resolution
from run 599. The data is based on simulated and optimum filtered pulses. The
run 599 record length is marked with a horizontal grey line. The best achievable
energy resolution with optimum filtering is a factor 0.4 lower and marked with a grey
horizontal line.

thin glue layer was used.

There are several uncertainties that will potentially need to be dealt with. It is

possible that electron recoils and events in the wafer crystal can induce a high pile-up

rate, also below ground. For this case, we recommend using the dedicated method

presented in Ref. [8] and summarized in Sec. 3.1.2.6 to separate pile-up events.

Another uncertainty stems from the behavior of low frequent noise, which is hard

to predict. We believe that we overestimated the steepness of the NPS’s rise towards

lower frequencies in our analysis of run 599. This phenomenon is commonly occurring

for short record windows and is likely an edge effect. It is also possible that sub-

threshold events are mixed in the baselines we used to calculate the NPS, creating a

steeper rise since the cutoff frequency of the pulse frequencies is very low. Comparing

the steepness of the rise with NPS from other sodium iodide detectors, we expect

that the lower frequencies do not rise too strongly, such that our estimates of the

sensitivity increase due to a longer record window are legitimate. Furthermore, is was

observed in previous measurements that a lower operation temperature also lowers

the low frequent noise contribution. We did not account for this effect, since there is

no suitable model to simulate it.

However, both these uncertainties would be eliminated if pulses were shorter, as in

a design optimized for athermal phonon collection. Such a design will be discussed

in the next section. A summary of the energy resolutions after interventions in our

simulation is contained in Tab. 4.3.
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Figure 4.14: Simulated 6 keV X-ray pulse with the optimized design for measuring
the absorber temperature. The thermal signature is shown in red, with superposed
noise in grey. The pulse after optimum filtering is shown in green. The waves at the
end of the record window are artifacts from the edge of the record window. A longer
record window (as discussed in the text) would prevent such edge effects.

Energy resolutions
(keV) with . . .

3.7 g target 29.4 g target 99.1 g target

. . . lower temperature
(Top = 17 mK)

0.15 0.85 2.72

. . . optimal gold pad
size

0.1 (d = 1.8 mm) 0.34
(d = 3.1 mm)

0.82
(d = 3.8 mm)

. . . longer record win-
dow (>> τt)

0.04 0.136 0.328

Table 4.3: Energy resolutions of a remoTES optimized to measure the temperature of
the absorber crystal after certain interventions. Based on data from run 599. The
values in each row also include all interventions from the rows above.
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4.3.2 Optimizing for athermal phonon collection

Modern thermometer-based low-temperature detectors do not measure the temperature

of the target but collect the initial wave of athermal phonons, causing a stronger

temperature increase in the sensor with lower heat capacity. The sensor must be

weakly thermally coupled to the target for this concept to work, such that the heat

does not easily flow back from the sensor to the crystal. This is done by freezing out

the electron-phonon interaction that scales ∝ T 5. The collection of athermal phonons

works despite a weak electron phonon coupling since the athermal phonons can cause

quasiparticles in the metal. We projected energy thresholds for such a detector design

based on the data from run 376. The parameters from run 376 provide an energy

resolution of 397 eV in our simulation. This value is higher than that from our analysis

(344 eV) and closer to the official value from Ref. [50]. The target size required for

reaching the performance goal of the second run of the COSINUS experiment is a

cube with a 3 cm side length that weighs 99.1 g.

Figure 4.15: Impact of a changing operation temperature on the calorimeterness
(upper left, see Sec. 2.2.2 for Def.), the energy resolution (upper right), the phonon
thermalization time (lower left), and the collection efficiency (lower right), for the
three scenarios of target sizes (green, red, black). Based on measured data from run
376.

We performed the first two steps of the optimization procedure as in the previous

section by decreasing the operation temperature and optimizing the dimensions of

the gold pad. After the first intervention, we observed a resolution of 4.06 keV

for the large crystal. With an optimized gold pad size, the resolution improved to

0.844 keV. Figs. 4.15 and 4.16 show the effects of the optimization process. We can
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Figure 4.16: Impact of a changing area of the TES on the calorimeterness (upper left),
the energy resolution (upper right), the phonon thermalization time (lower left), and
the collection efficiency (lower right), for the three scenarios of target sizes (green, red,
black). Based on measured data from run 376.

clearly observe that the lower operation temperature has less impact compared to the

thermally dominated signal discussed in the previous section.

We assume for this scenario that the COSINUS collaboration will find a way

to deposit thin films on sodium iodide crystals (e.g. by sputtering). We therefore

optimized the thickness of the gold film to w = 100 nm. The optimized thickness and

size of the gold film are close to the sizes used in Ref. [185] for a similar design by

the RICOCHET experiment. The energy resolution of the 99.1 g crystal with lowered

thickness is 0.26 keV. The impact of the changing thickness is shown in Fig. 4.17.

The transition from a thermally dominated signal to a signal dominated from the

collection of athermal phonons is clearly visible at the point where a lower thickness

of the TES also lowers the energy resolution.

A pulse from the final, optimized design for athermal phonon collection is shown

in Fig. 4.18. The time constants of the pulse shape are τn = 6.98 ms, τin = 16 ms,

τt = 3.66 s.

The resolutions after the several interventions are summarized in Tab. 4.4. Inter-

estingly enough, the final resolution is not much better than that which we projected

for a thermal detector in Sec. 4.3.1. This is likely due to the reason that also, in the

scenario that was planned as thermal, the athermal signal takes over for the largest

crystal size. Furthermore, our overly conservative assumption that the collection

efficiency decreases with the temperature as well had more impact in the athermally

optimized scenario.
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Figure 4.17: Impact of changing the thickness of the TES on the calorimeterness
(upper left, see Sec. 2.2.2 for Def.), the energy resolution (upper right), the phonon
thermalization time (lower left), and the collection efficiency (lower right), for the
three scenarios of target sizes (green, red, black). Based on measured data from run
376.

Figure 4.18: Simulated 6 keV X-ray pulse with the optimized design for collecting
athermal phonons. The thermal signature is shown in red, with superposed noise in
grey. The pulse after optimum filtering is shown in green.

An uncertainty in this scenario is that it is not precisely known how the absorption

probability of phonons in the film changes with the thickness of the film. However,

many experiments are using films of the proposed thickness.

Furthermore, experience with above and below-ground measurements provides

optimism that we have not discussed yet. It was typically observed that noise conditions

improve because measurements are performed in shielded below-ground and for low

noise conditions optimized environments. Also an improvement of the excess noise

conditions with lower temperature was observed.

We kept the transition curves from the runs that provided the data in all projections.

In the case of run 376, where the simulated transition curve was less steep than regularly
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Energy resolution
(keV) with . . .

3.7 g target 29.4 g target 99.1 g target

. . . lower temperature
(Top = 17 mK)

0.3 1.49 4.06

. . . optimal gold pad
size

0.14
(d = 3.8 mm)

0.4 (d = 6.5 mm) 0.84
(d = 7.3 mm)

. . . thinner gold pad
(w = 100 nm)

0.04 0.12 0.26

Table 4.4: Energy resolutions of a remoTES optimized to collect the athermal phonons
from the absorber crystal after certain interventions. The values in each row also
include all interventions from the rows above. Based on data from run 376. The
optimization process is done one after the other, not in parallel.

observed in measurements, we could also hope for a curve that allows for picking

better OPs in the final detector design. We did not account for this in our projections

and can therefore hope for an even better final result.

Overall, we have shown that the performance goals of the two runs of the COSINUS

experiment are very realistic: excluding arbitrary falling recoil spectra within the

first year of measurement time and arbitrary recoil spectra after an additional year

of measurement time. We based our projections on trigger thresholds of 6.5 times

the energy resolution and assumed that we could discriminate noise triggers by their

pulse shape. While this is a reasonable assumption, we could also choose a higher

trigger threshold. A threshold of 7.5 times the energy resolution would lead to ≈ 1

noise trigger in 1000 kg days. We used for this estimate the approximation of the

CDF of the standard normal distribution Φ(n), depending on the number of standard

deviations n, with

1− Φ(n) ≈ e−n2/2

n
�
π/2

. (4.1)

In our projection, this would lead to a threshold of 1.94 keV for the second run,

slightly exceeding the required 1.85 keV for the exclusion of arbitrary recoil spectra.

However, we did not consider that the energy resolution of our detector would smear

recoil spectra, effectively making a threshold of ≈ 1-2 energy resolution higher than

the target threshold still suitable to calculate exclusions.

Finally, it should be noted that the projections from Ref. [48], on which the

performance goals we have discussed are based, are for a DAMA threshold of 2 keVee.

Recently, results have been resealed with a lower threshold [38], and the additional,
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lowest bins show a strong modulation amplitude. It would be possible to compute

exclusions based on these new results that require much less exposure, given a lower

nuclear recoil threshold. Since the COSINUS detectors could easily be tuned to a

lower threshold for a smaller target mass, an even more convenient exclusion scenario

is conceivable. We have not used this information in our work.

In this chapter, we used our simulation of cryogenic detector response to project

energy thresholds with optimized detector designs for sodium iodide targets to be

used in the COSINUS experiment. We have shown that the performance goals of the

experiment are feasible, provided a low enough background rate. We will continue

in the following Chap. 5 by using similar methods for light DM searches with the

CRESST experiment. In the final Chap. 6 we discuss automation techniques based on

machine learning for future large-scale detector setups.
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Chapter 5

Spin-dependent results from lithium
aluminate targets in CRESST-III

The CRESST experiment spearheaded the technology of two-channel readouts for

particle identification with phonon and light channels in the past decade. The

experiment is in its third phase, CRESST-III, focusing on the detection of light DM.

They hold currently the strongest results for sub-GeV/c2 DM-nucleus interactions

under standard assumptions [30]. In recent runs, the low energy sensitivity of the

CRESST experiment is limited by the LEE, as introduced in Sec. 2.2.3. This problem

is not unique to the CRESST experiment but a joint challenge of the low-threshold

cryo-detector community. In a scenario that is not background-limited, there are

two strategies to increase the sensitivity of the CRESST experiment further: lower

nuclear recoil thresholds would make the parameter space of even lighter DM masses

testable; larger target masses would make the parameter space of even lower cross

sections accessible. We will treat the second of these strategies in Chap. 6. Concerning

the achievability of lower recoil energy thresholds, we discuss here an interesting

alternative.

We introduced in Sec. 2.2.2 the scaling properties of cryogenic detectors with

TES at length. One of the key messages was that, in a design-optimized limit, a

trade-off between target mass and low threshold must be made as a design choice of

the operated detector. However, with a fixed energy threshold, sensitivity towards

lower DM masses could also be achieved by using lighter target nuclei (see Fig. 1.5).

The CRESST experiment traditionally used calcium tungstate as the target material

due to its strong scintillation light output, and the heavy tungsten nuclei, since the

DM-nucleus cross section increases ∝ A2. The oxygen in its molecular composition,

with proton number 8, realizes the sensitivity to light DM. Lithium aluminate is an

even better material for this purpose, which contains oxygen and lithium, with proton
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number 3, and a significant abundance of the lithium-6 isotope. The odd proton

and neutron number of lithium-6 makes it additionally sensitive to spin-dependent

scattering processes.

The CRESST collaboration has carried out an intensive R&D campaign using

lithium aluminate as the target material. Refs. [186–188] report on the first tests

of lithium aluminate targets in above and below-ground settings. A framework

for calculating spin-dependent DM interaction limits was developed, and the first

limits on spin-dependent DM-nucleus interactions with lithium aluminate targets were

presented.

This work reviews Ref. [6], where the first limits on spin-dependent DM-nucleus

interactions from a blinded data-taking period in the main CRESST setup at LNGS

were reported. We summarize the performed RD analysis in Sec. 5.3 and the DM

results in Sec. 5.4. Additionally, we extract a set of physics parameters with which

we can simulate detectors in CryoEnv that reproduce the performance of the three

detectors (two phonon detectors, one light detector) used in Sec. 5.2. These simulations

were initially presented in Ref. [3]. Before that, we specify the experimental setup of

the CRESST experiment in Sec. 5.1. We conclude with a discussion of the obtained

results and potential directions for future CRESST measurements in Sec. 5.5.

5.1 Experimental setup and data taking

The main CRESST experimental setup is located in the LNGS underground laboratory,

shielded from environmental radiation and astroparticle impact by a rock overburden

of 3600 MWE. A dilution refrigerator cools the setup to ≈ 5 mK. The detector modules

are mounted inside a copper carousel, which is thermally linked to the cryostat through

a copper rod called the “cold finger”. Layers of polyethylene, lead, copper, and a

second inner polyethylene layer shield the detectors from radiation in the lab and

neutrons, produced by the environment or decay chains in outer shielding layers.

Scintillator panels are built around the setup to build an active muon veto. The

muon flux inside the LNGS underground lab was measured to ≈ 1 count/m2/hour in

Refs. [189–191], which is 106 times lower than at sea level.

The data set used for Ref. [6] included data from two detector modules, “Li1” and

“Li2”. The first one has a working phonon and light channel, while the second one has

only a working phonon channel since the TES on its light detector never showed a

superconducting transition. Later we will refer to the channels individually as Li1P,

Li1L, and Li2P. The targets of the modules are crystals of size (1 x 2 x 2) cm3, which
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Figure 5.1: The Li1 detector module. Inside the copper housing, a LiAlO2 crystal
(right, transparent) as a target for particle scattering is held by three copper sticks as
a target for particle scattering. Next to the crystal an SOS light detector (left, grey)
is mounted. The inside of the housing is covered with reflective foil, best visible on
the detached side of the module (centre, lower part of the picture). Fig. and caption
from Ref. [6].

amounts to 10.46 g of lithium aluminate target mass. The light detectors target is of

size (0.04 x 2 x 2) cm3 and made of a silicon-on-sapphire (SOS) substrate. The lithium

aluminate crystals are held by copper sticks and the light detectors with plastic sticks.

The modules are individually housed in copper boxes, fully lined with reflective and

scintillating foil on the inside. The foil maximizes the amount of scintillation light

that arrives from the lithium aluminate crystals at the light detector, and enables to

veto surface backgrounds.

The data were continuously recorded between February and August 2021 with a

sampling frequency of 25 kHz and triggered in software. Triggered records were stored

with a record length of 16384 samples. The data taking consisted of a background

data set and a neutron calibration during which an AmBe source with activity of

≈35.5 MBq was deposited outside the shielding. Throughout the measurement, an

iron-55 source with activity of ≈1 mBq was mounted inside the housing of the detector

modules.
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5.2 Characterization of the detector modules

The same detectors that were used for Ref. [6] were characterized with their physics

parameters in Ref. [3]. This was done by adjusting a CryoEnv simulation to reproduce

the detector response of the three detectors Li1P, Li1L, and Li2P. The procedure

was described in Sec. 4.3 and the simulation in Sec. 2.1. The resulting parameters

are summarized in Tab. 5.1. It is important to note that some of the parameters are

strongly correlated in their effects on the detector response, such as RH and the DAC

values and the pulser strength β, the parameter δ, and δH .

Figure 5.2: Simulation and measurement of a 5.95 keV X-ray event induced by a
calibration source in the Li1P detector. (upper left) The OP (black/blue lines) within
the simulated transition curve of the TES (light red line). A measurement of the
transition curve is shown for comparison (grey dots). (upper right) The voltage pulse
induced in the simulated SQUID amplifier without noise (red) and overlayed with
noise generated from the simulated NPS (black). A measured voltage pulse is shown
for comparison (grey dashed). (lower part) The simulated NPS (black) has individual
noise contributions (colored). The 1/f, excess Johnson, and EM interference noise
components were adjusted to fit the measured NPS (grey dashed). Fig. and caption
also used in Ref. [3].

It is especially positive to note that the parameters agree with the expected value

ranges of their designs. The plastic sticks realize a much weaker coupling between
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absorber crystals and heat bath than the copper sticks. The electron-phonon couplings

of Li1P and Li2P and much larger due to the higher temperature and the larger

tungsten area than in the light detector. The collection efficiency of the sensors on the

large crystals is larger since the TES-to-crystal surface is also much larger. However,

the scaling is not linear. The phonon collectors on the large crystal have a surface of

16.53 mm2, and those on the light detector have a surface of 1.01 mm2. The collection

efficiency on the large crystal is a factor of 2 smaller. The less fortunate shape of

the light detector, with a larger surface-to-volume ratio, also has an impact on the

collection efficiency. All tungsten and aluminum films have a thickness of roughly 200

nm. The thermal links made of gold have a size of (40 x 610 x 0.08) µm3 on the large

crystals and (40 x 2000 x 0.08) mm3 on the light detector. Differently to the data we

were working with in Sec. 4.3, the simulation can reproduce the noise power spectra

of Li1P, Li1L, and Li2P without additional excess Johnson noise.

We show exemplarily the detector response of Li1P in Fig. 5.2. A suitable agree-

ment between measured data and simulation is visible. The small deviations do not

significantly impact the difference in performance. The fitted time constants of the

measured pulse shapes were τn = 0.38 ms, τin = 9.4 ms and τt = 72 ms for Li1P;

τn = 0.094 ms, τin = 3.7 ms and τt = 17.8 ms for Li1L; and τn = 0.4 ms, τin = 12 ms

and τt = 79.2 ms for Li2P.

The PHs of the 5.9 keV iron-55 events were 0.37 V (Li1P), 3.3 V (Li1L), and 0.523

V (Li2P). The highest observed pulses were 3.35 V (Li1P), 2.24 V (Li1L), and 9.28 V

(Li2P). The CPs of the detectors did not fully saturate the TES. The Vset values were

much lower than the values reported above.
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Quantity Li1P Li1L Li2P

Vf (mm3) 4.08 · 10−4 1.44 · 10−5 4.08 · 10−4

Va (mm3) 4 · 103 2 · 102 4 · 103
Ce (pJ/mK) 2.11·10−3 3.5·10−5 2.5·10−3

Ca (pJ/mK) 0.113 1.61·10−4 9.7·10−2

Geb (pW/mK) 0.123 2.66·10−2 0.138
Gab (pW/mK) 1.565 9·10−3 1.16
Gea (pW/mK) 0.214 2.27·10−3 0.1

τn (s) 3.82·10−4 9.4·10−5 4·10−4

τTP (s) 4.97·10−3 2.98·10−3 4.97·10−3

ϵ 0.115 0.056 0.104
δ 0.144 0.26 0.056
δH 0.9 0. 0.8

Rs (Ω) 4·10−2 4·10−2 4·10−2

RH (Ω) 6.75 7.25 5.25
Rf0 (Ω) 0.11 0.115 0.1

L (H) 3.5·10−7 3.5·10−7 3.5·10−7

Tc (mK) 30.7 23.0 29.4
k (1/mK) 4.4 13.5 5.52

β 2.25·10−2 6.25·10−3 2·10−2

IH (µA) 4.8 0.904 8.27

isq (pA/
√
Hz) 1.2 1.2 1.2

EJ 1 1 1
∆Rf,flicker

Rf0
(pJ) 8·10−5 1·10−4 8·10−5

α 2 1 2
p0 1.5 · 10−5 3 · 10−5 3 · 10−5

p1 1 · 10−5 2 · 10−5 2 · 10−5

p2 1.5 · 10−5 2 · 10−5 2 · 10−5

IBmin (µA) 0.5 0.5 0.5
IBmax (µA) 17.9 17.9 17.9

η (V/µA) 5.77 5.77 5.77

Table 5.1: Values used in the simulation of the detectors Li1P, Li1L and Li2P. See
text, Sec. 2.1 for definitions. Tab. and caption also used in Ref. [3].
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5.3 Raw data analysis

The RD analysis performed in Ref. [6] follows the procedure introduced in Sec. 3.1.

The measured background data set was split into a training data set of 0.153 kg days

for Li1 and Li2 each and a blind data set of 2665 h / 1.161 kg days (Li1) and 2716 h /

1.184 kg days (Li2). The data set from the neutron calibration period amounted to

0.178 kg days for Li1 and Li2 each.

SEVs, NPSs, OFs, pulse shape features, PHs, and recoil energies were calculated

as explained in Ref. 3.1. The trigger thresholds were tuned to 1 noise trigger/kg/day,

assuming Gaussian noise, using a fit on the noise maxima as discussed in Sec. 3.1.1.5.

For the analysis of the Li1 module and a cross-check analysis of the Li2 module,

performed in Ref. [6] and this work, the Cait package was used [5]. The official analysis

chain for the Li2 module, and a cross-check analysis for the Li1 module, were done

with the collaboration-internal CAT software package.
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Figure 5.3: Overlay of the normalized Li1 light detector energy count distribution
of the iron line from scintillation light (black, bottom x-axis) and the iron line from
direct hits (purple dotted, top x-axis). The two x-axes are shifted and scaled such that
the average value of the two iron lines overlap. Their ratio determines the collected
light of the target (see text). Fig. and caption also used in Ref. [6].

Only a relatively small share of the recoil energy in the absorber is converted into

scintillation photons, and not all of them are collected in the light detector. The

collected scintillation light is useful for estimating the discrimination power of the

two-channel readout. Lithium aluminate is a worse scintillator than the traditionally

used calcium tungstate. The collected scintillation light can be measured by comparing

the position of the iron peak from direct hits and that from scintillation light events

in the energy spectrum of the light detector. They are shown in Fig. 5.3. Ref. [6]

reports that (0.302 ± 0.001)% of the recoil energy in the absorber is collected in the

light detector as scintillation light, for an e−/γ-event.
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The data were cleaned with a stability and rate cut, where outliers of 3 sigma and

more were rejected. The average trigger rate, excluding heater pulses and random

triggers, was 0.4 events/min. Furthermore, pulse shape cuts were performed on the

events to reject artifacts. Events with higher energy as 32 keV are cut. The total

number of surviving events is 12487. The distribution of decay times versus PHs of all

events, and only the events that survived the pulse shape cuts, are shown in Fig. 5.4,

for the phonon and light channel individually. The event band with the characteristic

target recoil pulse shape is clearly separated from event bands that are artifacts, direct

hits of the light detector, or SQUID resets. One peculiar event distribution is visible

whose origin was attributed to the scintillating foil in Ref. [6]: while the light channel

shows a strong energy deposition and the pulse shape of a direct hit, the phonon

detector shows only a low energy recoil, intermixed with the LEE. These foil events

could be identified and removed in Li1 due to the coincidence between phonon and

light channel, but not in Li2, where they remain and make up a large share of the low

energy events. They cannot be interpreted as the sole origin of the low-energy event

distribution because their spectral shape is significantly different from the known LEE

events.
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Figure 5.4: Visualisation of the surviving (purple) and cut (grey) events in the Li1
DM data set. (left) The distribution of decay times in the phonon channel over PHs
in the phonon channel. The band of recoil events is clearly visible and mostly distinct
from the artifact events. For PHs below 0.2 V, the band widens, which degrades the
discriminating power of quality cuts. (right) The distribution of PHs in the light
channel versus the corresponding PH in the phonon channel. Again, the band of
particle recoils is clearly visible. For low phonon PHs the event class of foil events
appears: due to their high PH in the light channel, higher than for regular target
recoils, these events can be rejected as background. In both pictures, the vertical and
secondary horizontal event bands are SQUID resets caused by high-energy recoils.
Fig. and caption also used in Ref. [6].
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Additional coincident cuts were applied for the data sets that were later used for a

DM analysis. Events that showed a coincidence with muon veto triggers in a time

window of -5 to +10 ms w.r.t. the trigger time stamp of the muon veto were rejected.

The muon veto triggered with 4.52 Hz, which reduced the exposure by 6.79 %, and

6.82 % of the events that survived all previous cuts were rejected. The expected rate

of events removed with non-muon induced origin is (6.79 ± 0.23) %. The error was

calculated with the binomial formula for the variance of the proportion of wins in

N Bernoulli trials:
�

(p(1− p)/N), where N is the number of events that survived

the previous cuts, and p is the percentage of removed exposure. In a window of -10

to +10 ms, events that were coincidental with other channels were removed. This

removed 0.93 h runtime, corresponding to 0.0387 % of the exposure. In Li1, 2 events

were removed by this cut, and none in Li2.
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Figure 5.5: Recoil energy spectrum for the Li1 (grey) and Li2 (black) modules. (inset)
The energy region up to 8 keV. The most prominent event clusters are the LEE and
the two iron lines (purple dashed - K-α, purple dotted - K-β). (main window) The
energy region up to 0.5 keV, dominated by the LEE. The Li1’s LEE is less prominent
due to the cut based on light channel information, which removes the foil events.
Fig. and caption also used in Ref. [6].

The recoil energies are calibrated with the prominent spectral line from iron-

55. The surviving recoil candidate events are shown in Fig. 5.5. There are three

dominant contributions visible: the iron-55 line, an approximately flat distribution

and the steeply rising event rate close to thresholds. The low energy event distribution

contains the known LEE events (discussed in Sec. 2.2.3) in both modules and in Li2

additionally foil events. The flat background is majorly from the beta spectrum of

tritium. Lithium-6 is subject to the reaction lithium-6(n, α), where tritium nuclei are

a product.
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Figure 5.6: Fitted LY bands as a function of the recoil energy in the Li1 neutron (left)
and blind (right) data sets, after application of the selection criteria. Electron/γ (blue)
and nuclear recoils off the nuclei with odd proton number (lithium red, aluminium
green) cluster in band-like structures and are fitted with Gauss distributions, with
energy dependent means and standard deviations. The acceptance region for DM
candidates (light green) is chosen as the lower half of the lithium and aluminium
bands, mitigating the EM background. Fig. and caption taken from Ref. [6].

A band fit, as introduced in Sec. 3.2, was performed on the recoil energies and

the LYs. The LY is due to the definition of target-electron-scattering equivalent

energies in the light channel automatically one for events from the iron source. The

resulting bands are shown in Fig. 5.6. The drawn lines correspond to the 80 %

inclusion interval of the Gaussian distributions along the LY axis. For the bandfit,

the collaboration-internal software “Limitless” was used. Individual bands for all

recoils, and for electron recoils were fitted with the data from the neutron calibration.

The nuclear recoil bands are clearly visible in the neutron calibration data, while the

electron recoil band is distributed over a large range of LYs. This is due to the low

light output of the lithium crystals. The oxygen band overlaps with the aluminum

band and is not resolved individually.

For Li2, no LY data were available, and a bandfit could therefore not be performed.

Particle identification could not be used for the discrimination of electron recoils.

For the DM search, the ROI was defined as the lower half of the lithium nuclear

recoil band and up to recoil energies of 5.5 keV.

The LEE is the subject of many ongoing studies, and the comparability of energy

spectra is an important question to draw conclusions from experiments. In Ref. [6]

a heuristic, parametric description of the LEE was fitted to the low energy event

spectrum of Li1. The equation that was fitted to the histogram is

f(x, a, b, c, d) = a exp(−bx) + cx−d, (5.1)
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Figure 5.7: Recoil energy spectrum of particle events inside the target of Li1. (left)
The recoil spectrum up to 30 keV (black), the ROI for the DM search ends at 5.5 keV,
indicated by the grey shade. The choice of the ROI is motivated in the text. The
three prominent contributions are the clearly visible iron line (purple dashed - K-α,
purple dotted - K-β), the tritium background (olive line to guide the eye) and the
LEE. The events within the acceptance region are considered nuclear recoil candidates
(red). (right) The region below 0.5 keV, which is dominated by the LEE. The recoil
energy spectrum of all recoil candidate events (black dots) can be fitted with the sum
of an exponential (grey, dotted) and a power law component (grey, dashed). Fig. and
caption also used in Ref. [6].

where x is the recoil energy variable, and a, b, c, and d are free fit parameters. The

results from the fit are shown in Tab. 5.2. It was especially important to use two

components instead of one exponential or one power law to achieve a meaningful

spectrum description. The fitted low energy spectrum is shown in Fig. 5.7 (right).

The exponential component describes a steeper rise close to the threshold, and the

power law component describes an event population at higher energies. In Fig. 5.7

(left) the spectrum of Li1 with all recoil candidates and only the events inside the ROI

are shown. The flat background is significantly reduced by the particle identification

procedure. A spectral component of the tritium beta spectrum, adjusted to the height

of the flat background, is shown in comparison, as a guide for the eye, to pronounce

the characteristic beta spectrum.

To validate the analysis chain were 2 M events were simulated, and the identical

analysis chain was used on them as on the measured data. The share of triggered

and surviving events is visualized in Fig. 5.8 for Li1 and Li2 individually. An error

function fit to the triggered events was used to define the energy threshold, with the

method discussed in Sec. 3.1.4. The fit resulted in an energy threshold of (83.60 ±
0.02) eV for Li1 and (94.09 ± 0.13) eV for Li2. The baseline energy resolution was

estimated for the phonon channels from the width of the error function, which results
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value uncertainty units
a 4.7 · 108 ± 7.3·108 (keV · kg · day)−1

b 84 ± 16 (keV)−1

c 162 ± 41 (keV(1 - d) · kg · day)−1

d 1.2 ± 0.2

Table 5.2: The parameters obtained from a χ2 fit of Eq. (5.1) to the binned spectrum
for the Li1 LEE. The errors were calculated from the covariance matrix of the fit
parameters. Tab. and caption also used in Ref. [6].

in (13.10 ± 0.02) eV for Li1 and (15.89 ± 0.18) eV for Li2. The errors were calculated

from the covariance matrix of the fit parameters. The resolutions were also calculated

by superposing events on empty baselines, and the results agreed within the error

bounds. For the light channel of Li1 only the second method was used and resulted in

a baseline resolution value of (748 ± 7) eVee, for target recoils, and (2.26 ± 0.02) eV

for direct hits. The errors were calculated as described in Sec. 3.1.1.4.
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Figure 5.8: The normalized trigger rate (grey) and survival rate (black) of simulated
Li1 events (Li2 events in inset), as a function of the simulated recoil energy. The latter
provides a realistic estimate of the survival probability. The energy threshold (olive,
dashed) is the recoil energy at which the fitted error function (red) drops below 0.5
times the constant triggered fraction above threshold. The constant trigger efficiency
for Li1 is (85.71 ± 0.01)% and the trigger energy threshold (83.60 ± 0.02) eV. For Li2
the trigger efficiency is (81.26 ± 0.08)% and the trigger energy threshold (94.09 ±
0.13) eV. Fig. and caption also used in Ref. [6].
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5.4 Dark matter results

The data sets of Li1 and Li2 were used in Ref. [6] to calculate exclusion limits on

the spin-dependent interaction of DM with nuclei. For this, all events inside the ROI

defined in Sec. 5.3 were interpreted as signal candidates. This especially includes the

largest share of the LEE event population. This is a conservative analysis. However,

an analysis of this kind is limited to setting limits on the interaction rate. A LH based

on these data and assumptions could not reasonably be combined with results from

other experiments.

For the DM analysis, the natural abundances of the lithium isotopes were used:

92.41 % of the lithium nuclei were assumed to be lithium-7 and 7.49 % lithium-6. All

aluminum nuclei were assumed to be the aluminum-27 isotope. The oxygen nuclei were

not included in the calculation since they would only negligibly raise the expected signal

for spin-dependent scattering. The DM analysis is done as introduced in Sec. 3.2, using

the Yellin optimum interval method and the astrophysical assumptions introduced

in Sec. 1.1.3. The neutron- and proton-only limits were calculated independently.

For the rate formulas the following variables were used: ⟨Sn⟩ = ⟨Sp⟩ = 0.472 for

lithium-6 according to Ref. [192]; ⟨Sp⟩ = 0.497 for lithium-7 according to Ref. [193];

and ⟨Sn⟩ = 0.0296, ⟨Sp⟩ = 0.343 for aluminum-27 according to Ref. [194].

The spectra of expected scattering rates for given DM masses are adjusted to the

realistic expected observed spectra. For this, the event spectrum used for the cut

efficiency simulation was reweighted to resemble the expected DM scattering spectrum.

The spectrum of surviving events automatically is then the expected DM spectrum

observed in the detector. Strong up- and downward noise fluctuations are not allowed

since they likely correspond to artifacts or unphysical effects of the analysis. They

are removed by excluding simulated events for which more than 3 times the energy

resolutions are between the simulated and the reconstructed recoil energy.

In Fig. 5.9 the resulting 90 % confidence upper limits for spin-dependent scattering

on protons and neutrons are shown for DM masses between 0.16 and 0.6 GeV/c2, and

in comparison to leading limits from other experiments. The limits from Li1 are lower

since the rate of signal candidates is reduced by the PD through the LY.

5.5 Discussion

We reviewed in this chapter the analysis and results from Ref. [6], obtained with two

detector modules with lithium aluminate targets, and the detector characterization
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Figure 5.9: The exclusion limits for proton-only (left) and neutron-only(right) spin-
dependent DM-nucleus cross sections versus DM particle mass set by various experi-
ments compared with the two lithium modules described in this work with lithium-6,
lithium-7 and aluminum-27. This work gives the most stringent limits between
0.25 GeV/c2 - 2.5 GeV/c2 for proton-only and between 0.16 GeV/c2 - 1.5 GeV/c2 for
neutron-only interactions. The solid red line shows the Li1 limits which includes the
scintillation light information and the dashed red line shows the Li2 limits where no
light information was available (hence worse). The previous above ground results from
CRESST using the same detector material and procedure with higher threshold and
lower exposure is also shown with solid black line [188]. Also, CRESST-III 2019 results
for neutron-only interactions using oxygen-17 are shown also in dashed light-blue
line(right) [30]. Additionally, we show the limits from other experiments: EDEL-
WEISS [195] and CDMSlite with germanium-73 [196], PICO with fluorine-19 [197],
LUX [198] which use xenon-129 and xenon-131, J. I. Collar with hydrogen-1 [199] and
the constrain derived in [200] from Borexino. Fig. and caption from Ref. [6].

of the same detector modules reported in Ref. [3]. The resulting cross-section upper

limits for proton- and neutron-only spin-dependent scattering are world-leading in

the mass region 0.25 to 2.5 GeV/c2 for proton-only and 0.16 to 1.5 GeV/c2 for

neutron-only interactions. Overall, lithium aluminate was confirmed as a promising

target material for further DM search projects. The obtained energy thresholds were

relatively high, compared to other CRESST detector modules. However, it’s unlikely

that this is due to the target material since lithium aluminate has a reasonably

high Debye temperature. The thresholds could very likely be much improved by

using TES with a lower transition temperature. With a similar threshold, a lithium

aluminate target leads to a much stronger sensitivity for low-mass DM compared

to tungsten. Comparing isotope masses of lithium-6 and oxygen-16 shows, that the

lithium aluminate target could detect a factor 16/6 ≈ 2.7 lighter DM, compared
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with a calcium tungstate crystal of the same energy threshold. Lithium aluminate is

therefore also highly interesting for spin-independent light DM searches.

The tritium background needs to be accounted for in future analysis with lithium

aluminate targets. This can easily be done by including its spectral shape in a LH

model as background. Also, the prominent background enhancement at low energies

from the iron source should be avoided in the future. Other calibration methods must

be found. For this, the fixed endpoint of the beta spectrum from tritium could serve

as a useful calibration point. However, collecting the necessary exposure for a suitable

fit to obtain an energy calibration might be impractical.

The same reaction, which causes the tritium background, could also be an appealing

property to monitor the neutron flux in the CRESST setup [187]:

6Li + n → α + 3H+ 4.78MeV.

The incident muons are expected to produce secondary neutrons in the outer shielding

layers. This process has never been measured in the CRESST setup, and the neutron

flux produced by this reaction and reaching the detector is not well known, although it

is expected to be very small. The 4.78 MeV γ produced in the neutron capture process

would far exceed the range of recoil energies that can reasonably be reconstructed

in the phonon channel. However, the scintillation light produced could be measured

and reconstructed in the light channel. A coincidence analysis of recoils in the light

channel in the favourable energy range with the muon veto trigger could therefore

lead to an estimate of the neutron flux produced.

In the remainder of this section, we discuss other possible actions for the CRESST

experiment to improve its sensitivity. The LEE is one of two major challenges for

the CRESST experiment. A major measurement campaign to establish more insights

about the phenomenon was carried out in the past year, and the major learnings

are summarized in Ref. [31]. An open question is whether the excess is a process

located in the superconducting film or in the absorber crystal. We would expect that

a process in the film induces pulses with a faster rise time than absorber recoils and

that they would have a suppressed thermal part of the pulse shape. However, the

SEVs built from low-energy and intermediate-energy events do not look significantly

different. It is possible that the limited slew rate of the SQUID, the limited sampling

frequency, and the imperfect overlap of events when building an SEV could smear out

the rise time. Furthermore, the thermal part of the pulse shape is also subdominant

for absorber recoils. A potential strategy to clarify the questions of varying rise times

with existing detectors would be to fit the two-component pulse shape model to all
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pulses individually and perform a statistical comparison of the rise times of events at

the lowest and higher energies.

Another test that we have performed is to consider the change in the energy

scales when events would originate in the TES directly, compared to an origin in the

absorber. A TES event is expected to appear with a much larger phonon collection

efficiency, probably ϵ ≈ 1. To test if the excess spectra overlap better under this

hypothesis, we multiplied the low energy spectra of Li1P, direct hits in Li1L and

Li2P with their individual collection efficiencies and show them in Fig. 5.10. The

disagreement between the spectra is smaller than without this correction. However, it

remains large. The low energy spectrum of Li2P is also in this scenario spoiled by the

foil events and therefore only shown for the sake of completion, not to be interpreted

as LEE.

Figure 5.10: Low energy spectra of direct hits in Li1P, Li1L and Li2P, interpreted as
hits in the TES. The energy scale was multiplied by the individual phonon collection
efficiencies. The low energy spectrum of Li2P is visibly spoiled by the foil event
background. The spectra of Li1P and Li1L do not agree, where the rate in the smaller
TES of the light detector is significantly larger. The hypothesis of TES scattering is
therefore not more plausible than the standard hypothesis of absorber scattering.

The CRESST phonon collectors are another subject for future studies. We observe

a decrease in the phonon collection efficiency of factor two by comparing the light and

phonon detectors studied in this chapter. This difference is already expected from the

different geometries of the crystals. The fact that the light detector’s phonon collectors

are a factor 16 smaller does seemingly not impact the collection efficiency too much.

Interesting questions to study would be the movement of produced quasiparticles in

the aluminum film and if this movement can be directed towards the TES, e.g. through

applied current or fields. A systematic study, maybe supported by simulations, of the

collectors’ optimal shape and size could also be of interest. Phonons that produce
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quasiparticles in the films that do not reach the TES are lost, and a too-large phonon

collector can therefore be seen as a parasitic phonon trap.

The second major challenge for the CRESST experiment is the collection of larger

amounts of exposure. This requires the simultaneous operation of a large number of

detectors, likely hundreds. We address this challenge in the following chapter, where

we propose methods to automate the control and crucial parts of the analysis with

machine learning, such that fewer manual interventions are necessary. Operation of a

large number of detectors is planned for CRESST in the future in a major hardware

upgrade. As proposed in the following chapter, methods will become essential to

handle the larger workload for analysts and operators.
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Chapter 6

Automating detector optimization
and analysis for large-scale detector
setups

Cryogenic calorimeters with TES and single crystals as targets are currently the most

sensitive devices to test interactions of sub-GeV/c2 DM with target nuclei. This is

mostly due to their low nuclear recoil energy thresholds and their strong discrimination

power for EM interactions. Accessing the parameter space of even lighter DM masses

and lower cross sections requires optimization of the detector design and the operation

of larger target masses. While the former requirement was discussed in Chap. 5, we

focus on the operation of larger target masses in this chapter.

In Chap. 2 we established a relationship between target mass and threshold for

detectors using TES. Using a larger target would necessarily lead to a higher threshold.

The strategy of low threshold experiments using solid targets is to operate many

detectors with small targets simultaneously instead of a single, large target. In an

upcoming hardware upgrade the CRESST experiment plans to realize this by operating

more than 100 detector modules [97]. Also other experiments such as the SuperCDMS

experiment plan to scale up their operated target mass.

The operation of a large-scale multidetector setup brings several challenges. As-

suming that the necessary detector modules and electronics can be mass-produced in

a suitable way, the detector still needs to be analyzed, and its measurement conditions

need to be optimized. Both processes require manual interventions, and the available

human workforce resources are already exhausted by the current operation of ≈ 10

detector modules in the latest CRESST runs. Therefore, the processes need to be

streamlined and automated so that a handful of human operators and analysts can

reasonably handle a detector setup of hundreds of detectors.
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We have introduced a method for automating the event selection in Sec. 3.1.3.3,

also reported on in Ref. [5]. In the same section, we emphasized that there are

potential issues with the method when training and validation are done exclusively

with simulated data. In Sec. 6.1 we review the follow-up work Ref. [4], where these

uncertainties were mitigated by using measured and augmented data for the training

of the event classifiers. The authors efficiently generalized previously performed pulse

shape cuts on a large set of historic CRESST data to new and unseen detectors.

The optimization of the control parameters of a TES-based detector is a task that

is currently performed by human experts, for each device individually. An optimum

of the SNR needs to be found, depending on the bias current run through the TES

and the temperature governed by the heating resistor. Per detector, the optimization

task typically takes several hours to be completed. In Ref. [3] it was proposed to

automate the task with RL. The authors achieve human-level performance both in a

virtual environment and live on the CRESST experiment. We review their method

and results in Sec. 6.2.

Finally in Sec. 6.3 we discuss the impact of these automation methods with machine

learning on large-scale detector setups. We elaborate on which necessary manual

interventions remain and what a realistic workflow could look like.

6.1 Automated data cleaning with deep learning

One of the tasks that requires the most manual interventions in the RD analysis is the

data cleaning process. The methodology was introduced in Sec. 3.1: particle pulses

are jointly triggered with artifacts, and a data pre-selection has to be made to achieve

useful energy calibrations and avoid unnecessary instrumental backgrounds. Examples

of such artifacts and pulses are shown in Fig. 6.1.

Figure 6.1: Particle recoils produce a pulse-shaped record (blue). Flux quantum
losses of the SQUID amplifier in the read-out circuit are caused by fast magnetic field
changes, e.g. from high energy recoils (orange). Decaying baselines are residuals from
earlier high-energy pulses (green). Pile-up originates from multiple particle recoils
within the same record window (red). Fig. and caption also used in Ref. [4].
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The quality cuts, which are defined as rejection regions in the feature space of the

events, are different for each operated detector since pulse shapes and artifacts look

different. They are hardly predictable a-priori but designed by using a training set

of the data. Most cuts are performed in one dimension, leading to overlaps between

artifact and signal candidate populations.

Ref. [4] interprets the discrimination between pulse shapes and artifacts as a binary

classification problem. NNs show good performance in image recognition tasks, and

the authors argue that the data structure of the triggered records of events can be

interpreted as one-dimensional “images” of the events or as time series. They build

the case that it should be possible to pre-train a binary classification model to decide

if given events are pulses or artifacts without the necessity for a training set from

the detector being worked at. Their work builds directly on the NN-based data

classification method introduced in Ref. [5] and discussed in Sec. 3.1.3.3.

In Ref. [4] the authors created a large data set to train classifiers for the discrimina-

tion between pulse shapes and artifacts. The authors labeled the data set per hand by

performing pulse shape cuts on the detectors individually, as it is done in a standard

analysis chain. The data labeling was done using the Cait analysis package [5].

Machine learning was previously used for the event selection in similar cryogenic

detectors. The discrimination between different pulse shapes from different particle

recoil types or detector components was studied in Refs. [156, 167–172], unsupervised

data cleaning with autoencoders was studied in Refs. [156,174] and with a principal

component analysis (PCA) in Ref. [176]. While the method proposed in Ref. [4]

is trained in a supervised fashion, it works on previously unseen detectors, where

the shape of the pulse shapes is yet unknown. This is accomplished by pre-training

classifier models on historical data. Therefore, all types of pulse shapes are positives,

while all shapes deviating from a pulse-like shape are negatives.

Ref. [4] also discusses potential combinations between the proposed pre-trained

discrimination method and the PCA method from Ref. [176] to cluster different types

of pulse shapes for further analysis.

The fact that their method does not require a training set from the detector at

hand is convenient and prevents potential selection bias induced by subjective choices

from a human analyst.

This section is structured as follows: in Sec. 6.1.1 we describe the used data set for

training the classifier models; in Sec. 6.1.2 the training process and model architectures

models are summarized, and in Sec. 6.1.3 we report on the final performance metrics

obtained with the pre-trained models on a test set. An extensive summary and
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discussion of this method, jointly with another one for automation in the detector

optimization process, follows later in this chapter, in Sec. 6.3.

6.1.1 Large-scale historical data set

The data set used in Ref. [4] was put together from several tens of hours from all

measurements that were performed in the main CRESST setup between 2013 and 2019.

Since CRESST traditionally uses detector modules with multi-channel readouts, the

individual channels, mostly phonon and light channels, were interpreted as individual

detectors for the data set. Additional TES are used as veto channels on holding

structures in several detector modules. They were also treated as individual detectors.

The data set consisted of 68 detectors and more than a million triggered records.

Only calibration data from the periods where the detectors were exposed to strong

neutron or γ flux from americium beryllium and cobalt-57 sources was used to prevent

potential bias effects if the trained models would later be applied to background data

from the same detectors. Seven detectors were chosen to make up a test set, and five

percent of the remaining data was randomly selected to build a validation set. The

sizes of the resulting data sets are summarized in Tab. 6.1.

Data set # of records

Training 930,368

Validation 49,024

Test 78,084

Table 6.1: The sizes of the used data sets. Tab. and caption also used in Ref. [4].

The rejection regions on the pulse shape features that define the positive and negative

labels (see also 3.1.2.4) were set with the rectangle and lasso selection tools of Cait’s

VizTool (see also Sec. 3.1). The objective of the applied cuts is described in Ref. [4]

as:

• reject all jump, drift, spike, glitch, and pile-up artifacts that deviate significantly

from a recoil-type pulse shape;

• reject all pulse shapes that rise far away from the trigger position at 1/4 of the

record window or do not decay within the window;
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• accept all pulse shapes that fit the above criteria, not only those from target

recoils, even if they show saturation effects typical for high energy recoils;

• accept empty noise traces if their slopes are within the typical slope of noise

traces for the corresponding detector.

A small share of events was mislabeled by the applied cuts since rejection regions

defined in one- or two dimensions cannot perfectly separate artifacts from pulses.

Overall, 83.6 % of the events in the data set are positives. The voltage traces of all

events were sampled with a frequency of 25 kHz, and the records have a length of

8192 or 16384 samples, depending on the measurement campaign.

The data was preprocessed to convert it to the format that is most useful for

training classifier models. The voltage traces were downsampled to 512 samples by

averaging over 16/32 samples in the record window. All records were normalized

individually such that every record’s minimal value is 0 and maximal value is 1. These

manipulations reduce the precision of the time resolution and the information about

the energy of the event. However, this information is not useful for the classification

task anyway and discarding it significantly reduces the computational cost of training

classifiers.

Data augmentation was used to counteract three potential bias effects:

1. Pile-up events are especially tricky to discriminate. A share of the positive

events was superposed with a time-shifted copy of themselves to introduce more

pile-up events into the data set artificially. The resulting events were relabeled

as negatives.

2. Gaussian noise was superposed on the voltage trace to reduce the SNR and

increase the robustness of the classifiers to high-noise conditions.

3. The record windows were randomly shifted by up to 26 samples to increase the

robustness of the classifiers against small time shifts.

The augmentations were applied on the fly when mini-batches of data were pulled

from the data set. The three types of augmentations were applied with chances of

20%, 20%, and 100%, respectively. A mini-batch of data from the training set is shown

in Fig. 6.2.
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Figure 6.2: A mini-batch of 41 positive (blue) and 23 negative (red) records from
the training set, all from the same detector. About half of the negative records are
created from positive ones, with a data augmentation technique (see text). At least
one record (first row, second column) is wrongly labeled as negative. Fig. and caption
also used in Ref. [4].

6.1.2 Models and training

Classifiers were trained to map the raw time series to a number between 0 and 1,

corresponding to the degree of belief that the time series shows a pulse. Four different

models were tested in Ref. [4]: two different sizes of CNNs, a bidirectional LSTM [201],

and a transformer. Since the architectures are dedicated to time series we call the

larger CNN a time series convolutional network (TSCN) and transformer a time series

transformer (TST). The transformer architecture was previously used in Ref. [202]

and uses linear embedding layers for building the key, value, and query functions that

govern the internal self-attention layer. The details of the model architectures are

shown in Tabs. 6.2, 6.3, 6.4, and 6.5. All models were implemented in PyTorch [163].

The binary cross entropy loss function was used for training. The loss from negative

records was weighted such that all positive records had the same impact as all negative

ones. If we did not weight the loss values it would be beneficial for the classifier to

preferably classifying events as positive.

All models were trained for 15 epochs. The mini-batch size used during the

training was set to 64, and the order of the mini-batches was randomized. Training

was performed on a Tesla P100 GPU on the Vienna CLIP cluster, using the ADAM
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Layer Specifications

1D convolutional kernel size 8, 4 output channels, pooling 4, stride
1, ReLU activation

1D convolutional kernel size 8, 16 output channels, pooling 4, stride
1, ReLU activation

1D convolutional kernel size 8, 64 output channels, pooling 4, stride
1, ReLU activation

Fully connected 320 input nodes, 200 output nodes, ReLU activa-
tion function

Fully connected 200 input nodes, 84 output nodes, ReLU activation
function

Fully connected 84 input nodes, 1 output nodes, sigmoid activation
function

Table 6.2: The details of the CNN architecture. Tab. and caption also used in Ref. [4].

Layer Specifications

Bidirectional LSTM 3 layers, input size 8, hidden size 200

Fully connected 12800 input nodes, 1 output node, sigmoid activa-
tion function

Table 6.3: The details of the LSTM architecture. Tab. and caption also used in
Ref. [4].

optimizer [165]. The used learning rates are summarized in Tab. 6.6. They were

optimized with the cyclic learning rate finder technique described in Ref. [203].

The training loss for each mini-batch and the validation loss after each epoch are

shown in Fig. 6.3. The typical elbow shape of the training curve is clearly visible,

where the TSCN reaches the lowest values, followed by the LSTM and the CNN. The

TST is relatively far behind and catches up towards the end of the training. The

validation loss decreases except for the TST where it increases towards later episodes,

a clear sign of overfitting. The models from the episode where the lowest validation

losses were achieved are saved and used for the tests reported later in Sec. 6.1.3. The

validation loss, usually expected to be higher than the training loss, is in our case lower

than the training loss, since data augmentations are only applied during training.
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Layer Specifications

1D convolutional kernel size 3, 16 output channels, stride 1, padding
1, ReLU activation

1D convolutional kernel size 3, 16 output channels, pooling 2, stride
1, padding 1, ReLU activation

1D convolutional kernel size 3, 32 output channels, stride 1, padding
1, ReLU activation

1D convolutional kernel size 3, 32 output channels, pooling 2, stride
1, padding 1, ReLU activation

1D convolutional kernel size 3, 64 output channels, stride 1, padding
1, ReLU activation

1D convolutional kernel size 3, 64 output channels, pooling 2, stride
1, padding 1, ReLU activation

1D convolutional kernel size 3, 128 output channels, stride 1, padding
1, ReLU activation

1D convolutional kernel size 3, 128 output channels, pooling 2, stride
1, padding 1, ReLU activation

Fully connected 4096 input nodes, 1024 output nodes, ReLU acti-
vation function

Fully connected 1024 input nodes, 512 output nodes, ReLU activa-
tion function

Fully connected 512 input nodes, 1 output nodes, sigmoid activation
function

Table 6.4: The details of the TSCN architecture. Tab. and caption also used in
Ref. [4].

Hyperparameter Value

n. blocks 1

n. heads 8

dim. model 64

dim. linear 256

Table 6.5: The hyperparameters of the TST architecture. Tab. and caption also used
in Ref. [4].
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Model Learning rate

CNN 5 · 10−4

LSTM 10−4

TSCN 5 · 10−5

TST 10−5

Table 6.6: The learning rates used for the training process of the models. Tab. and
caption also used in Ref. [4].

Figure 6.3: Progression of loss values throughout the training process for the four
considered models. (left) Loss on the training set, recorded for each optimizer step.
(right) The loss on the validation set is evaluated at the end of each epoch. The spline
interpolation is a guide for the eye. The yellow dots indicate the point in the training
process, where the model reached the best agreement between labels and predictions
(accuracy) on the validation set. The bumps in the validation loss, clearly visible for
the CNN around 150 k steps, are a typical artefact of stochastic optimizers. Fig. and
caption also used in Ref. [4].

6.1.3 Performance on unseen detectors

The performance of the classifiers was evaluated on the test set, and several metrics

were calculated in Ref. [4]. Those were defined as:
Recall R := TP/T ,
Selectivity S := TN/N ,
Balanced Accuracy BA := (R + S)/2,
Precision P := TP/(TP + FP ),
Integral Over Recall IOR :=

�
Ω
R(µ)dµ,

Integral Over Selectivity IOS :=
�
Ω
S(µ)dµ,

where T are positive records, N are negative records, TP are true positive predictions,

and TN are true negative predictions. R(µ) and S(µ) are the recall and selectivity as
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functions of pulse shape features. Ω is the region over which the recall or selectivity

was integrated, and µ is a placeholder for one or multiple pulse shape features (e.g.

the PH) w.r.t. which the integration was performed.

Figure 6.4: Metrics of all classifier models, under varying cutoff values, evaluated on
the test set. The white dot marks the default cutoff value of 0.5. (left) The balanced
accuracy w.r.t. the cutoff value. (right) The precision vs. recall curves, for cutoff
values between 0.05 and 0.95. Fig. and caption also used in Ref. [4].

Model Accuracy (b.) Recall Precision IOR IOS Runtime (s)

CNN .915 .991 .98 .970 .905 1.9 (1)

LSTM .932 .986 .985 .993 .97 12.5 (6.5)

TSCN .926 .985 .983 .987 .976 3.0 (1.6)

TST .852 .994 .964 .998 .689 23.2 (12.1)

Table 6.7: The metrics of the trained models, evaluated on the test set and simulated
data. (col. 2-4) The balanced accuracy, recall and precision on the test set with a
cutoff value of 0.5. (col. 5, 6) The IOR score for the simulated positive particle recoils,
and the IOS score for the simulated negative pile-up events. The values are defined in
the text. (col. 7) The runtime for predicting the whole test set. The runtime divided
by the lowest runtime is given in brackets. Tab. and caption also used in Ref. [4].

A cutoff value on the degree of belief of the classifier was defined. Above it, the

event is accepted and below it, the event is rejected. The evaluated metrics as a

function of the cutoff value are shown in Fig. 6.4. A natural trade-off between recall

and precision exists and is clearly visible for the trained classifiers in Fig. 6.4 (right).

This curve is also called the receiver operating characteristic (ROC) curve, and the its

are is called the area under the ROC curve (AUC). Generally, classifiers are interpreted

as reaching a higher quality if their AUC is higher (shown in Fig. 6.4 right). The LSTM
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classifier achieved the largest AUC. This model’s accuracy is relatively insensitive to

the cutoff value for values close to 0.5. A generic choice of 0.5 as a cutoff is therefore

suitable. The fact that a value of 0.5 is not fine-tuned is clearly a further asset of the

choice.

The metrics for the generic cutoff value are shown in Tab. 6.7 (col. 2-4). The best

performance is reached by the LSTM model, only closely ahead of the TSCN classifier.

However, the latter one is a factor ≈ 4 faster in making predictions since it does not

have to iterate through the record window recursively compared to the LSTM model.

The runtime was evaluated with a batch size of 32, and the total time required for

making predictions on the whole test set in Tab. 6.7.

Figure 6.5: A batch of events from the test set that were wrongly predicted by the
LSTM. The grey color indicates wrong labels. Some records, among them the tilted
baselines, can hardly be flagged as positive or negative without additional context,
namely the distribution of the remaining data of the corresponding detector. Fig. and
caption also used in Ref. [4].

Further evaluations of the model performance were conducted. This includes an

event-by-event analysis of the wrong predictions to understand the internal mechanics

of the model’s decision-making. An exemplary detector from the test set was chosen,

from which for 70 out of 8422 records the LSTM predictions disagreed with the

human-made cuts (labels). A visual inspection of the 70 events (also shown in Fig. 6.5)

revealed that 39 of them were wrongly labeled, i.e. the human-made cuts rejected them

despite the fact that they were reasonably normal pulses, or the other way around.
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For noise traces the ground truth is detector-dependent. Therefore a disagreement

on such events should not be interpreted as too harmful. In most practical analysis

chains they would not be triggered anyway and are therefore irrelevant.

Figure 6.6: Metrics of the classifier models, evaluated on simulated data. (left) The
recall values w.r.t. the SNR of simulated events. The recall drops towards lower values
of the SNR, but is still reasonably high around a typical trigger threshold value of 5
baseline noise resolutions (grey, dashed). The reason for the local minimum of the
CNN curve above 10 SNR is not cogently clarified. The most likely hypothesis is
the absence of many low energy pulses in the training set, which can introduce a
bias in models predictions. The simultaneous dip in the recall of multiple models
around 80 SNR is a small sample effect of the simulation: it could be connected to two
simulated events with similar energies, with relatively strongly tilted baselines. (right)
The selectivity values for the LSTM model on simulate pile-up events, featuring two
pulses, w.r.t. the difference in onset and relative difference in PH. Only pile-up events
with large relative PH differences or very small onset difference are not rejected by
the model. (right, inset) An example of a simulated pile-up event. The area that is
covered by the inset holds only selectivity values of one. Fig. and caption also used in
Ref. [4].

A further evaluation of the classifier performance was conducted using simulated

events. These events have the advantage of making a ground truth without noisy

labels accessible. Since the classifiers were trained with measured instead of simulated

data, the evaluation of simulated data is more realistic and trustworthy, and overfitting

of the systematics of the simulation can be excluded. The events were simulated as

was done in Secs. 3.1.4 and 3.1.2.6 for single pulse shapes and pile-up events. Noise

traces were simulated from the NPS of an exemplary detector from the test set, using

the methods discussed in Ref. [108].

A data set of 50,000 events was simulated for pulses and pile-up events each.

The PHs were distributed uniformly between zero and 300 times the SNR of the

corresponding detector. The second pulse onset was uniformly distributed for pile-up
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events in the record window, while the first pulse was put at 1/4 of the window. The

recall and IOR were calculated with the simulated pulses depending on the PH in

units of the SNR. For pile-up events the selectivity and IOS were calculated depending

on the difference in PH and onset of the two pulses. The results are shown in Fig. 6.6

and values are also reported in Tab. 6.7. The IOR and IOS were calculated for the

whole plotted range.

Figure 6.7: The data manifold visualized with the first two principal components.
(left) The RD, without cleaning (black) and the cleaned data (orange), both projected
to the first and second principal components of the RD matrix. (right) The cleaned
data projected to the first and second principal components of the cleaned data matrix.
The lines corresponding to the individual event types are clearly visible. The PH
spectrum of the target channel is shown in Fig. 6.8. Fig. and caption also used in
Ref. [4].

An exemplary detector module was chosen from the test set for the final evaluations.

This detector module consists of three individual detectors and three readout channels.

Two of them were used as phonon channels, with one TES on a holding structure

called a ring and another TES on the target. One channel was a light channel, where

the TES was placed on a beaker-shaped light detector that fully surrounded the target.

The data for this module was triggered in a multi-channel readout mode. Therefore

for each event voltage traces exist for each of the tree channels. The voltage traces

corresponding to events of all three channels were cleaned with the LSTM model, and

only events where the records of all three channels survived are considered clean.

For a visualization of the data distribution the records were concatenated and a

PCA was performed on the data matrix of these sample trajectories that were then

1536 samples long. The first and second principal components of this data matrix were

extracted for scenarios where the data matrix only included clean events as well as

where it included all triggered events. The projections to these components are shown
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in Fig. 6.7, with the components from the RD matrix on the left and the components

from the cleaned data matrix on the right. The components from RD mostly identify

SQUID jumps, leading to a raster-like structure of artifacts in the data manifold, while

all pulses are collapsed to a small region of the transformed space.

For the cleaned principal components the meaningful data structure of different

types of pulses is clearly visible. Bands corresponding to specific particle recoil types

can be identified. The second principal component correlates strongly with the light

channel, while the first principal component includes information from both phonon

channels. Electron and nuclear hits can be discriminated by the strength of their light

signal, and the same counts for direct light detector hits and ring and target hits. The

ring structure is thermally coupled to the light-detecting beaker. Therefore, a stronger

signal in the light channel is expected for hits in the ring. Finally, another event

distribution is visible in Fig. 6.7 (right), which also appeared in Chap. 5. While this

distribution features a strong signal in the light channel, it also shows a non-negligible

signal in the phonon channel, leading to a widespread cloud of these events above the

ring and target hit bands. While these events were identified as foil events in Chap. 5,

we cannot assume the identical origin for this different detector design.

Figure 6.8: The PH spectrum of an exemplary detector without cleaning (black), with
the cut analysis that we used as labels (blue) and the LSTM predictions (LSTM).
The blue and orange curves almost fully overlap due to the strong agreement between
cuts and LSTM. The data manifold of the corresponding 3-channel detector module is
visualized in Fig. 6.7. Fig. and caption also used in Ref. [4].

The PH of the voltage trace is approximately proportional to the recoil energy

released into the detector. The PH distribution for the target channel of the identical

detector module as was used for Fig. 6.7 is shown in Fig. 6.8, in comparison for cleaning

with human-made cuts and the events accepted by the LSTM. The two distributions
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show a very good agreement. In comparison, the uncleaned PH distribution is also

shown, which features significant bumps that are identifiable as various artifact classes.

We summarized the work originally presented in Ref. [4] on automated data

cleaning. It was shown that NNs can be trained to event classifiers and perform the

task of data cleaning with the same accuracy as humans using quality cuts. The

pre-trained event classifiers can then especially be used instead of creating individual

new cuts for each detector. The runtime of the trained models was in the order of

several thousand predictions per second. A balanced accuracy score of 0.932, a recall

of 0.986, and a precision of 0.985 were recorded for the best-performing LSTM network

on a data set of historic, measured data and labeled by human-made cuts. A notable

half of the wrongly predicted events were identified as wrongly labeled events. The

IOS and IOR scores on simulated data were almost unity.

For the differences between the trained models we want to note that the trained

transformer model could perform better with more training data or a dedicated,

pre-trained feature extraction model, as often used for audio data [204].

The impact of this method on large-scale detector setups and their analyses is

discussed in more detail in Sec. 6.3.

We continue in the following Sec. 6.2 with a second machine learning method for

the automation of the initial optimization process of the detector control parameters.
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6.2 Detector setup with reinforcement learning

The operation conditions of a cryogenic detector with an attached TES are mostly

dependent on three influence variables impacting the state of the superconducting film.

The most crucial of these variables is the temperature, which should be stable through-

out the measurement but also tuned to find an opportune OP in the superconducting

transition curve. The temperature is mostly controlled by the voltage applied to the

heating resistor, governed by a parameter called DAC. The second parameter is the

bias current IB lead through the film. A higher bias current emphasizes film-internal

noise over external noise in the readout circuit and has a noticeable impact on the

shape of the transition curve. Finally, the magnetic field has a noticeable impact on

the shape of the transition curve and the noise conditions.

Two of these quantities are actively controlled in a default setup, the bias current

and the temperature. They need to be placed in suitable settings in an optimization

process at the beginning of measurements, often called the detector setup process.

The magnetic field is ideally canceled by an active veto or superconducting shielding.

It is therefore not included in a standard optimization procedure.

The default process for the optimization is to inject TPs with different TPA values

through the heating resistor to observe the detector response in the current state.

Usually, sweeps of the DAC value are performed for a small set of constant IB values.

This procedure is not ideal for multiple reasons: the noise conditions are mostly

neglected, only the observed PH is optimized for, and the procedure takes several

hours and requires a significant amount of manual interventions. Optimal values for

the control parameters are not predictable from theory due to the complexity of setup

and detector response. Furthermore, the TES accumulates an internal state due to

Joule heating, also called self-heating, when the film is not fully superconducting.

This state-dependency generally confuses standard optimizers due to possibly different

detector responses despite the same control settings. Therefore a state-dependent

optimization algorithm is required, or the problem should be considered as optimizing

a trajectory.

Ref. [3] proposes to automate this process using RL. RL is a framework to model

decision-making problems that depend on a state and potentially have time-delayed

results. In RL, an agent receives a state and a reward by taking actions in an

environment. The objective of the agent is to maximize its returns, which are the

sums of rewards over time. RL has already been used to optimize control settings in
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physics in Refs. [205–207] for particle beams, in Ref. [208] for nuclear fusion reactors

and in Ref. [209] for superconducting quantum bits.

Figure 6.9: Schematic drawing of the detector environment. (center) The detector can
be described as an electrothermal system, where the readout and heater electronics
and the temperatures in the crystal and sensor interact with each other. (right) The
recorded observable from particle recoils is a pulse-shaped voltage signal. (left) A NN
is trained with RL to control the measurement settings w.r.t. the SNR of the observed
pulses. See text in Sec. 2.1 and 6.2.1 for details. Fig. and caption also used in Ref. [3].

The situation of optimizing the detector with RL is depicted schematically in

Fig. 6.9. The detectors used for the experiments in Ref. [3] were operated in the main

CRESST setup at LGNS and are the same as reported on in Chap. 5: Li1P, Li1L,

and Li1L. For the purpose of the experiments, they were treated as three independent

detectors.

Virtual twins of the detectors were built, using the physics parameters determined

in Sec. 5.2, to test the approach. The training procedure and results are summarized

in Sec. 6.2.3. Furthermore, the system was tested live on the CRESST setup on

the real-world version of the detectors. Results are summarized in Sec. 6.2.4. In

preparation for the experiments, in Sec. 6.2.2 the reward function is defined, and in

Sec. 6.2.1 we provide a general introduction to RL.

6.2.1 Reinforcement learning

RL is used to find optimal policies to decision-making problems or trajectories opti-

mizing state-dependent processes. A long introduction can be found in Ref. [210], and

a concise introduction will be provided here.

The original formulation is based on Markov decision processes (MDPs). An MDP

is a 4-tuple of a state space S, an action space A, a dynamics function p, and a reward
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Figure 6.10: The mechanics of RL: an agent follows a policy function to interact
with an environment. The environment, defined by its dynamics and reward function,
responds to the agent’s actions with a reward and observable state. Fig. adapted from
Ref. [210]. Fig. and caption also used in Ref. [3].

function r. The dynamics function maps action-state pairs to transition probabilities:

p : (A, S) �→ {probabilities for S ′} , A ∈ A, S, S ′ ∈ S.
The reward function defines a scalar for each state transition and action combination:

r : (S,A, S ′) �→ R ∈ R.

The agent follows a policy function that provides action probabilities for a given state:

π : S �→ π(A | S) = {probabilities for A given state S}.
The agent searches for an optimal policy function that maximizes returns. The

framework is depicted in Fig. 6.10. Dynamics and reward function are not observable

for the agent and must be learned from experience, i.e. the data observed from the

environment. This formulation of an MDP satisfies the Markov property automatically,

which states that the system’s dynamics depend only on its current state and not on

prior history. However, while most theorems for convergence derived for RL assume

MDPs, the framework also works well in many settings where the Markov property is

violated.

For using RL as a state-dependent optimizer for cryogenic detectors, Ref. [3]

introduced definitions of the state and action spaces. The procedure is to repeatedly
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and alternatingly inject TPs and CPs, and the spaces are defined depending on

observables from those pulses and the control parameters that are currently set:

S := {PH,RMS, IB,DAC, TPA,CPH},
A := {DAC, IB},

Here PH and RMS are the PH and the pre-trigger region root mean square (RMS)

value of the TP, respectively. TPA is the TPA of the TP, and CPH is the PH of

the CP. Several of these quantities scale, among other dependencies, proportionally

with the IB value. To reduce these unnecessary correlations in the state space, the

PH, RMS, and CPH values were divided by the IB value. Furthermore, all values

were normalized such that they are contained in the interval (-1, 1). The used reward

function is derived in Sec. 6.2.2.

The exact RL algorithm used in Ref. [3] was the Soft Actor-Critic (SAC) algorithm.

The algorithm was originally introduced in Ref. [211], and is one of the state-of-the-

art algorithms for deep RL in continuous state and action spaces. It showed good

performance on real-world robotics tasks in Ref. [211]. Actor-critic algorithms use an

additional value function that estimates the future returns for given state-action pairs:

q : (S,A) �→ Q ∈ R,

In the context of Actor-Critic algorithms the policy function is also called the actor,

and the value function is the critic. Both are realized as NNs πϕ, qθ and their

weights ϕ, θ are trained with gradient descent algorithms. The actor is additionally

parameterized as a Gaussian function with the dimensionality of the action space to

have an accessible probability distribution for the actions. The NN outputs are then

the mean and standard deviation values for each dimension in the action space.

The data collected from the environment is stored in an experience replay buffer

that consists of all past transitions and the corresponding rewards (S,A,R, S ′).

The NNs are trained on the collected data, where the loss function critic for the

value function is the soft Bellman residual

Jq(θ) ∝ (qθ(S,A)− (R + γ (qθ(S
′, a′)− α ln πϕ(a

′|S ′))))2 ,

with a′ ∼ πϕ(·|S ′) and α the temperature, a parameter of the algorithm. The so-called

discount factor γ emphasizes immediate rewards over the long-term future. The

weights θ are those of the target critic network, explained at the end of this section.
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The loss function used for the policy network is

Jπ(ϕ) ∝ α ln πϕ(a|S)− qθ(S, a),

with a ∼ πϕ(·|S). It balances entropy of the action with exploitation.

There are several more details about the SAC algorithm that contribute to a stable

and fast convergence: two critic functions are trained in parallel, their minimum is

used for inference; the target critic’s weights are exponentially smoothed θ versions of

the critic’s network weights; in every step, the α parameter is updated with the goal

that the target entropy is retained.

In Ref. [3] an additional adjustment to the algorithm was introduced. The authors

lower the target entropy with each gradient step. They argue that this enables the

Gaussian actor to converge towards smaller details in the control parameter space,

which would otherwise be smeared out. A detailed discussion of this effect is given in

Sec. 6.2.5.2, and the results of this effect are mentioned again in Sec. 6.2.4.

6.2.2 A metric for low thresholds

For using RL to optimize control parameters of cryogenic detectors an objective

function needs to be defined first. This function needs to balance several objectives.

High-energy pulses tend to saturate when the corresponding temperature increase in

the sensor reaches the upper end of the transition curve, and low-energy pulses can

drown in sensor noise. Both effects should ideally be avoided. As a third objective, an

optimal control parameter setting should provide stable operation conditions. Any

setting will be a trade-off between dynamic range, noise conditions, and stability.

It was shown in Ref. [3] that these objectives are equivalent to minimizing the

energy threshold of a detector

argmin
DAC, IB

(Eth). (6.1)

Using a small-signal approximation the energy thresholds can be written with a linear

conversion constant γ as a voltage threshold Uth
1:

· · · = argmin
DAC, IB

(γUth). (6.2)

The voltage threshold is typically defined as a multiple of the noise resolution:

1It should be noted that γ appears twice in this section, with different meanings: in the context of
RL-algorithms, γ is the discounting factor. In the context of this derivation, γ is the linear PH-energy
conversion factor.
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· · · ∝ argmin
DAC, IB

(γRMS). (6.3)

Finally, the conversion constant γ can be estimated from the ratio between an injected

TPAi and the observed PHi :

· · · ∝ argmin
DAC, IB



N�
i=1

TPAi

PHi

RMSi

�
. (6.4)

In the last step we switched from a formula for a single injected TP to that calculated

from a number of injected TPs. Multiplying Eq. (6.4) with -1 provides a return

function suitable for maximization:

argmax
DAC, IB



−

N�
i=1

TPAi

PHi

RMSi

�
. (6.5)

The rewards can be additionally weighted by the inverse of the TPA to emphasize

the search for best noise conditions over the objective of a large dynamic range, as for

many physics searches this poses the most relevant objective:

argmax
DAC, IB



−

N�
i=1

1

PHi

RMSi

�
. (6.6)

This function has several convenient properties:

1. The TPA value is not explicitly contained anymore in the equation. It could

therefore also be used for triggered particle events.

2. The function can be evaluated on an event-by-event basis and therefore be used

as a reward.

3. The value range of the function is restricted to the interval from -1 to 0, which

makes it convenient to use.

This function realizes the balance between the three objectives as follows: the main

objective is the optimization of the energy threshold. The saturation of pulses would

appear as a violation of the small signal approximation. Flattening the pulses has the

same impact on the reward function as worse noise conditions. Since the target of

the optimization problem is the sum of the rewards, stable operation conditions are

intrinsically contained in the target.

198



6.2.3 Tests in virtual environment

For testing the proposed method, virtual twins of Li1P, Li1L, and Li2P (discussed in

Sec. 5) were built in the CryoEnv detector simulation. The CryoEnv simulation was

then wrapped as an OpenAI Gym environment. The detector response was tested

by injecting TPs with TPA values from 1 to 10 in integer steps, and 0.1 and 0.5, in

successive and cyclic order, and CPs in between. The action that the agent could take

after each TP and CP combination was to change the control parameters, as defined

in Sec. 6.2.1.

The training was performed in episodes of 60 environment steps, and the control

parameters were reset to an edge of the parameter space after each episode. Each step

in the environment takes 10 seconds of equivalent measurement time since the system

needs to equilibrate before control parameters can be readjusted. A total number

of 315 agents were trained, equally distributed over the three detectors. Among

these agents, 3 different scenarios of the environment settings were tested, as well

as 7 different sets of hyperparameters of the agent. For each of these combinations,

5 agents with different random seeds were trained. The physics parameters of the

detectors were randomized by 20 % for each version of the agents to ensure that the

performance of the method does not degrade too much for adjustments in the detector

design. Each training consisted of 40 episodes. The three scenarios considered were:

1. The first scenario did not involve any adjustments to the explained procedure.

2. In the second scenario a fast sweep of the control parameter space was performed

at the beginning of the training. This sweep consisted of 120 environment steps,

where the bias current oscillates between its minimal and its maximal values,

while the DAC value was gradually decreased. This intervention is used to help

the agent find the position of the superconducting transition in the parameter

space.

3. The third scenario also started with a sweep of the parameter space. Additionally,

the effect of adjusting the DAC value was delayed on an exponential time scale

of 20 seconds to simulate the behavior of either slowly responding electronics or

long thermal relaxation processes.

The agents were trained on the Vienna CLIP computing cluster as single CPU jobs

that took about two hours to complete. Half of the runtime was spent in the simulation,

which currently can be run on CPU only. Using GPUs would therefore not significantly
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improve the runtime. Policy and value functions were both NNs with 2 layers and 256

nodes, ReLU activation functions, implemented in PyTorch [163]. For training the

ADAM [165] optimizer was used with a weight decay of 10−5. For the SAC algorithm

the τ value, governing the exponential smoothing of the weights of the target networks,

was set to 0.005, and the initial entropy α was set to 0.2. The training started once one

minibatch of data was collected in the replay buffer from the environment. Gradients

were clipped at 0.5.

The target entropy was set to the entropy of a multivariate Gaussian distribution

with a given standard deviation in each dimension. At the beginning of the training

this standard deviation was set to the value 0.088 and gradually decreased to 0.05

times its original value at the end of the training.

Figure 6.11: The average rewards per episode during training for all 105 versions of
the three detectors Li1P (red, left), Li1L (blue, center), and Li2P (green, right). The
thick lines are the mean values of all curves corresponding to the first/second/third
scenario (violet/turquoise/yellow). The mean values rise close to the apex of the
curves after 15 to 20 episodes. The second and third scenarios reach convergence
significantly faster than the first. During the first 5 to 10 episodes, only little return
is collected. The distribution of curves is clearly not normal distributed around the
mean value, which is due to the different hyperparameter settings in the training of
the individual detector versions. Fig. and caption also used in Ref. [3].

The average rewards obtained per episode during training are shown in Fig. 6.11. After

15 to 20 episodes, the agent converged to a high plateau of rewards. This corresponds

to an equivalent measurement time of 2-3 hours, which is about the same time a

human expert needs to perform the task. Generally, any intervention that shortens the

exploration period speeds up the convergence but increases the risk of failure. The plot

contains all trajectories from all hyperparameter settings and scenarios. According to

the median values of the scenarios, it is clearly visible that the initial sweep of the

control parameters has a positive impact on the speed of convergence and the number

of agents that found an optimal setting after training concluded. A slight positive
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Figure 6.12: Average reward during all training episodes of the different versions of
the virtual detectors, grouped into violins for each scenario (violet, turquoise, yellow)
and setting of the hyperparameters learning rate (lr), batch size (bs), γ and gradient
steps (gs). Each violin includes five versions of Li1P, Li1L, and Li2P each, sampled
and trained with individual random seeds. The red bars indicate the mean values of
the violins and the violins thickness the density of the represented return distribution.
The dotted horizontal lines indicate the mean values of the collected returns of the
first (lowest), second, and third (highest) scenarios of detector versions. The dotted
vertical lines separate the violins with different hyperparameter settings. The values
for the hyperparameters are written in the ticks on the abscissa. Fig. and caption also
used in Ref. [3].

effect of the delayed DAC setting is visible. This is generally counterintuitive and

will be discussed in detail later.

A detailed study of the used hyperparameters, performed in Ref. [3], is visualized

in Fig. 6.12. In this plot, faster training and a higher final reward are collapsed

variables and cannot from this plot alone be studied independently. However, it is also

clearly visible that the initial sweep positively impacts the average rewards obtained.

The authors of Ref. [3] contribute this effect to the beneficial covering properties of

grid-based methods over Monte Carlo sampling for a parameter space with less than

four dimensions. This argument is based on the fact that before the agent finds the

region of control parameters that leads it into the superconducting transition, it can

only randomly sample the parameter space without useful feedback about its choices.

Once this region is found, the systematics of the temporal difference method take over,

leading to a much faster convergence.

The delayed effect of the heating also causes slightly higher rewards. The origin

of this effect is not fully understood. It is believed that the relaxation decreases the

size of jumps the agent makes in the parameter space, which can lead to a better

understanding of the system’s mechanics. Also in the choices of hyperparameters, it

can be seen that hyperparameters that emphasize a shorter exploration period can

lead to a higher risk of overall failure. This especially includes the number of gradient
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steps and the learning rate.

The performance of the trained models was tested by running inference trajectories

on the detectors they were trained on. In an inference trajectory, the expected value of

the Gaussian actor is taken instead of a random number drawn from the distribution.

The behavior of the agents was generally that they moved directly to the found optimal

control parameters. However, the agent changed the control parameters after each

environment step. This is generally not beneficial for physics data taking, where stable

and constant operation conditions are needed. This behavior can be explained by one

of two possibilities: first, it is likely that different OPs in the superconducting transition

are optimal for different injected TPA values. Second, the random initialization of

the networks can lead to stochasticity in the choices of the network when different

choices are equally good. The first of these phenomena is discussed in Sec. 6.2.4 using

real-world data from the live CRESST experiment. The second phenomenon is studied

in detail with a toy model in Sec. 6.2.5.1. A regularization term was added to the

reward to mitigate the magnitude of jumps between control parameters. This term is

the Euclidean distance between the current and the new control settings, weighted by

a factor ω = 0.1. The choice of ω is also discussed in Sec. 6.2.5.1. For larger values,

the performance of the models degraded, while for smaller values, no effect was visible.

Figure 6.13: Histogram of the average reward achieved during inference trajectories
with the trained agents for the 105 versions of Li1P (red, top), Li1L (blue, center), and
Li2P (green, bottom) each. While rewards from versions with opportune choices of
hyperparameters cluster around a benchmark value (black line), achieved by a human
expert, other versions exhibit features in the histogram at lower rewards. The results
of Li1L surpass the benchmark value, since high pulses saturate more strongly in this
detector, which can be accounted for with the machine learning method. Fig. and
caption also used in Ref. [3].

To arrive at a quantitative statement of the agent’s performance, the average

rewards obtained throughout the inference trajectory are shown for all trainings

in Fig. 6.13. The values are compared with benchmark values that were recorded

in a previous period of physics data taking with human-optimized control settings.
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This comparison is subject to uncertainties: first, the randomization of the physics

parameters changes the highest achievable rewards. Second, the figure includes all

scenarios and hyperparameters; some were clearly more opportune for the results and

optimization process than others. Third, the benchmark value originates from a stable

period of data taking, where control parameters were not changed over a long time.

However, despite these uncertainties, the SAC agent performs similarly to the

human-optimized benchmark value for good choices of hyperparameters. Furthermore,

the optimization with SAC agents is about as fast as a human expert but can be

parallelized for all detectors, while a human expert cannot reasonably divide their

attention onto more than 1-2 detectors. These results confirm that RL is a promising

candidate for automating the detector optimization process. Before we review the

real-world operation results reported in Ref. [3], we discuss the optimization of more

complicated detector designs with larger state and action spaces in the following

section.

6.2.3.1 Detector designs with multiple components

An interesting question is the behavior of the RL optimization method for more

complex detector designs. Recently designs with multiple TES, where heat signals

are seen in both simultaneously, were used, and their optimization with the default

methods creates significant overhead in the required time. Often only sub-optimal

settings can be found. To test the performance of the automated method Ref. [3]

built versions of Li1P, Li1L, and Li2P with 2 TES. The CryoEnv simulation can also

accommodate much more complex designs since the system of ODEs describing the

current and heat flow can easily be generalized into a matrix equation of an arbitrary

number of thermal and electrical components:

Ṫ (t) = diag(C)−1

�
P
	
t, T (t), If (t)

�
+ diag

�
Gb

� �
Tb − T (t)

�
+ (G− diag(G1))T (t)

�
, (6.7)

İf (t) = diag(L)−1

�
diag

�
Rs

�
Ib

− diag
	
If (t)

�	
Rf (T (t)) +Rs

��
, (6.8)

where underlined (double underlined) quantities are vector (matrix) valued, and

G describes the symmetric matrix of thermal couplings between components. All
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other quantities are equivalently generalized to vectors from Eq. (2.7). The noise

is independently simulated for each TES and readout circuit since there are no

correlations between the expected noise sources.

The optimization of the correlated heaters is harder since the parameter spaces

are a factor of 2 larger. The physics parameters of the simulation were adjusted to the

parameters of Li1P, Li1L, and Li2P. The parameters were changed to the expectation

from a two-TES design. Specifically, the TES size, thermal couplings, and collection

efficiency were divided into two.

Figure 6.14: Return per episode for Li1P (red), Li1L (blue) and Li2P (green) adjusted
to two TES. The thick lines represent the mean of five trained versions of the detectors,
sampled with different random seeds. The shaded regions show the upper and lower
standard deviations. We show benchmarks (dashed lines) for all three detectors. These
benchmarks were calculated by taking the average reward in the last episode of the
training for all versions of the single-TES detectors that were trained in Sec. 6.2.3,
and multiplying it by two. The benchmark is reached by Li1P and Li2P, but not by
Li1L. Fig. and caption also used in Ref. [3].

Five versions of each detector were trained, and the training took 6-8 hours each,

as single CPU jobs. A five times higher target entropy was used than for the single

TES detectors. For all trainings, the first scenario introduced in the previous sections

was used. In Fig. 6.14 the obtained average rewards are shown. The training was

successful for 4/5 versions of Li1P, 3/5 versions of Li1L, and 4/5 versions of Li2P. The

others found only one of two superconducting transitions. A plausible explanation

for this is that a good local optimum was found that was further separated in the

parameter space from the global optimum. This could be solved by choosing the

hyperparameters of the algorithm in a way that encourages more exploration.

Finding optimal control settings takes about twice as much equivalent measurement

time for the detectors with two TES. The scaling behavior for larger setups is not

predictable from these data. In a worst-case scenario, it could scale exponentially with

the number of dimensions. However, NNs are known not to suffer from this curse of

dimensionality in many other tasks. They are generally good at disentangling complex
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dependencies and the identification of underlying, uncorrelated variables. There is

therefore reason to believe that the scaling behavior would be better than exponential.

6.2.4 Live operation on the CRESST setup

Having established the applicability of the RL method in a virtual environment, the

ultimate test is the training and operation on a live setup and in the real world. For

this, a measurement spot of 12 days was dedicated to the main CRESST underground

setup in February 2023, where the real-world versions of Li1P, Li1L, and Li2P were

operated. These measurements have originally been reported on in Ref. [3], and are

reviewed here.

The first week of operation was dedicated to the implementation of the technical

setup and debugging. The communication between the Python-based RL control

and the control and data acquisition (DAQ) software of the CRESST setup was

implemented via the internet of things (IoT) protocol MQTT [212]. The DAQ system

acted as the RL environment and pulse shape parameters were calculated on the

environment side and broadcast via the MQTT broker to the RL model. The RL

control was run on the Vienna CLIP cluster, and messages were sent through an SSH

tunnel to the MQTT broker running in the LNGS network. The RL control side

had simultaneously two processes running: one process to receive messages, calculate

rewards, write to the buffer, query the policy model, and reply with the new control

parameters. A second process continuously trained the models on the buffer. The

replay buffed was implemented as memory-mapped arrays. This setup is also visualized

in Fig. 6.15. With the current CRESST electronics, no parallel training on detectors

is possible. All operations and training were therefore performed in succession.

In the given time frame a total of 48 experiments were performed, where the

majority was dedicated to debugging of the system. Finally, 6 runs were performed to

benchmark the performance of the method. Of these, one run was done with Li1P,

two with Li1L, and three with Li2P. The training started in all runs with a sweep

of the action space, and long-term thermal relaxation processes were observed. The

real-world setting is therefore best compatible with the third scenario from Sec. 6.2.3.

The same NN architecture was used as in the runs in the virtual environment.

The ADAM optimizer with a batch size of 16 was used, and 20 gradient steps with

a learning rate of 3 · 10−4 were taken after each environment step. Otherwise, the

default settings of the optimizer were used. Gradients were clipped at the value of 0.5,

and the initial entropy of the SAC algorithm was set to 0.2. The τ update parameter
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Figure 6.15: Schematic visualization of the implemented setup to optimize CRESST
detector control. (right side) The detectors are operated in a cryostat and read out
by a DAQ system. The parameters of recorded TPs are sent via an MQTT broker
to a client as state. (left side) The client calculates the reward from the state, stores
the data in an experience replay buffer, and responds to the DAQ system with new
control parameters. An independent process trains the AC agent on the buffer. This
is a symbolic visualization, the algorithm we are using is the SAC algorithm. Fig. and
caption also used in Ref. [3].

Detector Li1P Li1L Li2P Li2P Li2P Li1L
run 1 1 1 2 3 2

γ 0.9 0.99 0.99 0.99 0.99 0.99
Reward Eq. (6.5) Eq. (6.5) Eq. (6.5) Eq. (6.5) Eq. (6.6) Eq. (6.6)
TP int. (s) 20 20 10 10 10 10
DACmax 10 10 5 5 5 10
IBmin 0.5 0.1 0.5 0.5 0.5 0.1
IBmax 5 3 5 5 5 3
ADC range ±10 ±0.3 ±1 ±1 ±1 ±0.3
TPA in state yes no no no no yes
CPH in state no no no no yes yes
ADCs/IB no no yes no yes yes
ω 0 0 0 0 0.01 0.01

Table 6.8: Hyperparameter and settings of the RL problem used for the six performance
runs on the CRESST underground setup. See the text for explanations. Tab. and
caption also used in Ref. [3].

was set to 5 · 10−3. The target entropy was set to the entropy of a 2-dim Gaussian

function with a standard deviation of 0.088.

Individual adaptions to the hyperparameters, the configuration of the state space,

and the number and length of training episodes were made in all trainings; they
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are summarized in Tab. 6.8. The settings were chosen to prioritize fast and reliable

convergence over optimality of the final configuration. For this, the ω values were

generally chosen smaller, and the target entropy was fixed to its initial value and not

reduced during training.

The unweighted reward function, Eq. 6.5, was used in some runs, whereas the

reward weighted with the inverse TPA Eq. 6.6 was used in some other runs. A

higher waiting time between TPs was tested to control the impact of longer relaxation

processes.

The normalization intervals and value range of the analog-digital converter (ADC)

were individually adjusted for the runs and detectors. Some runs contained the

TPA and CPH in the state space, which enables to control for the usefulness of the

contained information in these values. Furthermore, the ADC values were divided by

IB for some of the runs.

Figure 6.16: Average rewards per TP sent during the live training on the CRESST
setup, smoothed with a moving average of 60 TPs. Results from six runs with different
training settings are shown for Li1P (red), Li1L (blue, blue dashed), and Li2P (green,
green dashed, green dotted). For this comparison, we re-calculated the rewards after
training with Eq. 6.6, while during training for some of the runs, the unweighted
reward function was used. Fig. and caption also used in Ref. [3].

The average obtained reward depending on the number of TPs sent since the start

of the run are shown in Fig. 6.16. Convergence has been in all runs achieved before

600 pulses were sent or before 1.5 hours of measurement time elapsed. The total run

time was dominated by the measurement time, not the time required for computing.

Convergence was therefore reached faster than on average in the virtual environment,

and also faster than a human expert.

It is generally hard to disentangle all effects of the adapted parameters with the

limited amount of data. However, we believe that no impact of the longer waiting

time between pulses was observed.
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A larger state space generally needed more time to converge but provided a better

responsivity to the environment. This is especially the case for the adjustments to

different injected TPA values, which will be discussed in detail further below.

A faster convergence can also be attributed to the weighting of the reward function,

the regularization factor ω, and the division of the ADC values by the IB value.

However, it cannot be claimed that the effects are significant compared to random

fluctuations given the complexity of the system and the small data set.

It should also be noted that not all learnings from the virtual environment could be

used for choosing the hyperparameters on the live setup since the studies in the virtual

environment were not concluded before the measurement slot on the experiment.

Figure 6.17: Visualization of the cyclic adjustment of the control parameters during
an inference trajectory on Li1L, run 2. The ascending trajectory of injected TPs is
visualized in the circle in anti-clockwise direction. The voltage traces of the observed
pulses (black) are normalized to a fixed voltage interval. The pulses are normalized to
the applied bias current, leading to smaller pulses and noise for higher IB. The TPA
values (bold) and measurement time since the start of the TP trajectory are written
next to the voltage traces. The polar plot includes the IB and DAC values that were
set while the corresponding pulse was recorded. Three OPs are marked with black,
red, and white crosses, corresponding to OPs that were chosen for low, intermediate,
and high TPA values. Fig. and caption also used in Ref. [3].

After training was concluded, inference trajectories were run with all six trained

agents. All agents find control parameters and OPs in the superconducting transition.
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The jumping between control parameters after each environment step was also visible

in this setup, and it is exemplarily visualized in Fig. 6.17 for run2 of Li1L. The agent

prefers small DAC and high IB values for small TPA values and the other way

around. This provides a strong hint that the agent switches between two OPs, where

one is better for small pulses due to better noise conditions, and the other is better

for large pulses due to a higher dynamic range. The OP corresponding to the energy

of interest can be fixed for physics data taking.

While the jumping between OPs seemed to be a malicious feature in the beginning,

it turned out that the agent had learned even more information than expected. It

learned not only to find optimal control parameters, but it found a function that

provides optimal control parameters for a given recoil energy or TPA value. This can

practically be used to tune detectors for different objectives without the necessity of

repeating the initial setup process.

Figure 6.18: Histogram of the average reward obtained during inference trajectories
with the trained agents on the real-world versions of Li1P (red, top), Li1L (blue,
center), and Li2P (green, bottom) each. The rewards obtained in the simulation
(grey, dotted histogram) and the human-optimized benchmark value (black line) are
shown for comparison. The obtained rewards are worse than the benchmark value but
correspond to our expectations from the simulation. For a discussion of the achievable
optimality see also Fig. 6.19. Fig. and caption also used in Ref. [3].

We show the average reward obtained in the inference trajectories to quantify the

optimality of the found control parameters in Fig. 6.18. For comparison, the rewards

obtained in the virtual environment and the benchmark value from a human-optimized

OP are also shown. The comparison is subject to the same uncertainties as discussed in

Sec. 6.2.3. Furthermore, it is unclear if the noise conditions of the worked-on detectors

have changed after the previous data-taking period, from which the benchmark value

and the physics parameters were extracted. In the meantime, several warm-up tests

on the CRESST setup were performed and reported in Ref. [31].

The optimality of the found OPs is worse than that of the benchmark value.

However, this does not come as a surprise since the hyperparameters of the agents
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were not tuned for optimality but for fast and reliable convergence. The results lie

well within the expected distribution from the simulation. Therefore, tuning the

parameters for optimality of the control parameters is expected to reach the human

expert level. The technical details for this expectation are discussed below.

Figure 6.19: Visualization of the Gaussian policy probability distribution (blue) and
the critic function (grey-black) over the two-dimensional action space, for a fixed
“current” state (red text, lower left) and Li1L run 2. The maximum of the critic
function is marked with a white plus. The current control parameters are marked with
a red cross, that of OPs that were chosen by the agent for high/low TPA values with
a white/black cross. These crosses correspond to the OPs marked with similar crosses
in Fig. 6.17. The trajectory of actions that are chosen by the agent in inference is
drawn with a red line, partially covered by the blue policy function. We can clearly see
a mismatch between the actions preferred by the policy function and the maximum
of the critic function. The reason for this mismatch is discussed in the text and in
6.2.5.2. The expected lines of equivalent heating caused by the DAC through the
heating resistor and the IB through Joule heating are shown in the background (light,
transparent green). As expected, the island of actions that are preferred by the critic
stretches along the equivalent heating lines. The state values are normalized to the
interval -1 to 1. The original value ranges are written in Tab. 6.8. Fig. and caption
also used in Ref. [3].

The value function and policy function for a fixed (current) state are studied

in Fig. 6.19. These functions are from a state in the trajectory of the Li1L, run 2.

The current state is also marked in the trajectory in Fig. 6.10. A severe mismatch

between the chosen actions and the maximum of the critic function is observed. This

is generally not expected since after successful training, the policy function should

choose actions previously identified as beneficial by the critic function. However, the

policy function acts intrinsically stochastic. Therefore it is optimized to position

its probability distribution in the parameter space such that the expected value is

maximized, and not that the value at the mean value of the Gaussian function is
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maximal. Simultaneously, the target entropy forces a minimum width of the Gaussian

function, preventing it from converging to features on smaller scales in parameter

space than its own width. However, the decreasing target entropy used in the virtual

environment can enable the agent to converge on arbitrarily small scales. This issue is

discussed at length using a toy model in Sec. 6.2.5.

In summary, a proof of principle was provided for the applicability of the RL

method for optimizing control parameters of cryogenic detectors in the real world.

With a time to convergence of 1.5 hours the time required for training was faster than

the typical human expert. The optimality of the found control parameters was as

expected from simulations and slightly worse than the benchmark value. This was

due to the deliberate choice of the hyperparameters, which can be tuned in follow-up

studies for optimality.

Before we reach the overall conclusion of this chapter, we continue with two toy

model studies of two interesting phenomena that were observed and discussed in

this section. The profound understanding of these effects, which we will develop

in the following Sec. 6.2.5, can be useful for similar RL implementations to control

experiments.

6.2.5 Toy-model studies

We study several effects we observed while working with RL on cryogenic detectors in

this section. These effects seemed to be interesting enough to dedicate an individual

discussion to them. The first is the jumping parameters in inference trajectories. We

learned that these jumps are mainly caused by the changing optimality of OPs for

different TPAs and discussed this in Sec. 6.2.4. However, we also expect an effect from

the initialization of the NNs, and we study the magnitude of this effect in Sec. 6.2.5.1.

The second effect we dedicate a discussion to in Sec. 6.2.5.2 is the mismatch between

the policy function and value function observed in the live training. This is fully

expected from the enforced entropy of the Gaussian policy function.

The studies in this section are performed with small toy experiments to isolate the

effects from other physics of the environment.

6.2.5.1 Regularization of jumps in inference

The impact of the random initialization of the network parameters on the chosen

actions was studied in Ref. [3] in a toy environment. This environment is a two-

dimensional box, corresponding to the value range -1 to 1 in each dimension. In the
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box, a target line is drawn that changes its position, and the agent has to try to get

close to this line.

The available actions are to jump to a specific position in the box. The state space

consists of the current position in the box and a third value, which cyclically changes

between -1, 0, and 1, independently of the actions taken.

Also, the position of the target line changes cyclically between three states. The

reward is the Euclidean distance from the target line, depicted in Fig. 6.20.

Figure 6.20: Movement of a SAC agent in a two-dimensional toy box environment.
The goal of the agent is to jump close to the cyclically changing target lines (black
dashed). The paths taken by an agent in inference trajectories are drawn with colored
lines, for different magnitudes of the jump regularization parameter ω. Fig. and
caption also used in Ref. [3].

The optimal policy for the agent is to jump directly to the next target line, which

requires the agent only to understand the order in which the target lines appear. The

point that the agent chooses along the target line to jump to can be arbitrary. There

is therefore not a unique optimal policy function.

The situation is different when a regularization term −ω(A1 − A0)
2 is introduced,

where A1 is the current and A0 is the previous action. Now the optimal policy is to

choose a trajectory of movement orthogonal to the target lines. The optimal policy is

still not unique but severely restricted compared to the original scenario.

The results from training a SAC agent in this environment in the two scenarios are

shown in Fig. 6.20. In the first scenario, the chosen point along the target lines depends

only on the initialization of the network and the weight decay regularization of the

ADAM optimizer. Competing effects from the regularizers are visible for the second

scenario, and small values of ω. For larger values of ω the jump regularizer clearly

overrules the weight regularizer but also starts competing with the main objective of

jumping close to the target lines.
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The choice of the ω parameter of the regularizer is therefore delicate, and an

optimum likely depends on the exact environment and NNs used.

6.2.5.2 Entropy mismatch for action fine-tuning

We observed a mismatch between the actions taken by the actor and the actions

preferred by the critic in the experiments reviewed in Sec. 6.2.4. The reason for

this mismatch was attributed to the target entropy for the Gaussian actor, which

kept it from converging towards small-scale features in the value distribution over

the parameter space. This is generally a desired feature, as it keeps the policy from

collapsing early in the training. Furthermore, the automatic tuning of the entropy

ensures a certain width of the Gaussian policy function and prevents that we need to

make an educated guess for the α parameter that would stay in a trade-off with the

a-priori unknown returns. However, it can lead to a degradation of the final model

performance in situations such as ours.

Using a toy model, this effect is visualized in Fig. 6.21.

Figure 6.21: Toy environment of an agent that climbs a mountain. The reward function
(black) has the shape of a side view of the mountain that ends in a cliff on one side.
The critic function (green) learns the shape of the reward function sufficiently well.
The policy function (red) learns to overlap with the mountain, instead of placing its
expected value on top of the mountain (see text for details). To keep all actions in
the interval between -1 and 1, the actions sampled from the Gaussian are in the SAC
algorithm again input to a hyperbolic tangent function. This leads to a deviation
between the mean, the median, and the mode of the resulting probability distribution.
We show by comparing the expected/mean value of the policy (red dashed) with its
median (grey) and its mode (peak of the red Gaussian) that this effect does not play
a significant role in our experiment. Fig. and caption also used in Ref. [3].

The toy model corresponds to the side view of a mountain with a cliff on one side.

The reward is the height of the agent on the mountain. The state is one-dimensional,
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a parametrization of the distance between the agent and the mountain top, and the

action is a position the agent can jump to on this axis. The optimal policy of the

agent is to jump to the peak of the mountain and stay there.

The SAC agent learns to jump immediately towards the peak but does not aim

directly for the peak, but to a point offset from it (Fig. 6.21, red dot). The maximum

of the value function does agree with the position of the peak (Fig. 6.21, green dot).

The mismatch is owned to the fact that the SAC agent is trained to maximize the

return for actions sampled from the actor function, not the return when the expected

value of the actor function is taken.

The enforced width via the target entropy prevents the actor from moving closer

to the peak because otherwise, the agent would step with a certain probability over

the cliff, earning a very low reward.

This issue can generally be resolved by tuning the target entropy to the length

scale of interest in the parameter space. In Sec. 6.2.3 we used a decreasing target

entropy throughout the training to accomplish this.

6.3 Discussion

We have reviewed Refs. [4] and [3], in which studies were presented for automating

the data cleaning process and the optimization of control parameters for cryogenic

detectors.

In Sec. 6.1 the training of several deep learning models was reported for the task

of discriminating artifacts and pulse shapes. For this, a large-scale data set from

historic CRESST data was labeled. The best-performing model, a bidirectional LSTM,

reached a balanced accuracy score of 0.932, a recall of 0.986, and a precision of 0.985

on a test set. About half of the wrongly predicted events turned out to be wrongly

labeled. The recall and selectivity were practically unity for a data set of simulated

pulses and pile-up events. With a runtime of several thousand predictions, the model

performs considerably faster than for instance fit-based methods. The methods can

be applied to new detectors without fine-tuning. Therefore, the amount of manual

workforce necessary is considerably reduced compared to a standard cut-based data

cleaning procedure.

In Sec. 6.2 the training of deep RL models was reported to find optimal control

parameters for cryogenic detectors. The first experiments were performed in a virtual

environment, where 315 trainings were performed on randomized versions of three

CRESST detectors. The agents converged after less than 3 hours of equivalent
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measurement time and reached with suitable hyperparameters the same performance

as human-optimized benchmark values. Experiments on the live CRESST setup led

to convergence within less than 1.5 hours of measurement time. The optimality of the

found control parameters was inferior to the benchmark value but was well within

the expectation from the simulation. In follow-up experiments, the hyperparameters

of the SAC algorithm can be further tuned to reach the benchmark values, and the

necessary measures for that were discussed.

Future experiments with RL to find control parameters could also include the

possibility to tune the magnetic field. Also, both above summarized methods could

be combined to reach a better stability and convergence speed by validating that in

fact pulses are visible on the considered event traces.

A higher TP rate could be used in stable conditions to speed up the process. Also,

a sine wave in the relevant frequency range could be used instead of the pulse, and the

signal and noise frequencies could then be separated with a notch filter. With this,

potentially much shorter record windows could be used. Finally, the change of the

noise conditions that are observed when the phase transition is crossed could be used

to understand where the transition is in the control parameter space.

By using the two newly introduced automation methods and all tools discussed

in Chap. 3, the whole analysis could be put into a script and performed with almost

no manual interventions required. The structure of such a script could follow the

following steps:

1. Estimate a conservative, high threshold and trigger events with that threshold.

2. Clean all events with the LSTM model.

3. Build SEVs, NPS, OFs.

4. Estimate the threshold and resolution with a fit to the filtered noise triggers

(see Sec. 3.1.1.5).

5. Trigger the recorded stream again with an optimized trigger threshold and an

OF.

6. Clean again the events from all channels with the LSTM, or only the dominant

channel, depending on the detector concept.

7. Perform additional automated data cuts based on statistics of the feature

distribution, e.g. rates and stability cuts.
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8. Calibrate the energy with the TPs to find the TPE values for each particle event.

9. Create the plot of the projections to the principal components as was shown in

Sec. 6.1.3.

10. Plot the cleaned TPE spectrum.

11. Simulate a large number of signal candidate events and apply the same analysis

chain to them to obtain trigger and cut efficiencies.

12. A human operator decides which peak in the TPE spectrum is the calibration

peak with known energy.

13. A human operator controls that all the surviving structures in the data manifold

visualized with the principal components belong to events that were meant to

survive the quality cuts.

In a script like this only the last two steps require manual interventions, and these

can be executed for many channels in rapid succession.

Steps that are not automated yet are to decide which pulse shape corresponds to

target events in a scenario where multiple pulse shapes exist in the data. However,

detectors can be designed to majorly feature one pulse shape, namely that from target

recoils. This would be realized by avoiding large holding structures or carrier crystals,

with which particles could interact. For a large-scale setup, a simple detector concept

would therefore be beneficial.

Finally, the HLD analysis also needs to be streamlined in the future. As discussed

in Sec. 3.2.3.2, there can be difficulties if the HLD sets from multiple detectors have

different background rates but should be combined. Detectors should therefore ideally

be manufactured as identically as possible to obtain similar background and artifact

rates.
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Conclusion

In this work we discussed several contributions to the quest of measuring light dark

matter-nucleus interactions with superconducting thermometers.

In Chap. 1 the observational evidence for the existence of dark matter and the

challenges for dark matter direct detection were summarized. The key ingredients

for next-generation dark matter searches with superconducting thermometers were

identified to be optimizing detector designs, scaling up the number of simultaneously

operated detectors, and mitigating instrumental backgrounds.

The details of the technology of superconducting thermometers for dark matter

direct detection were introduced in Chap. 2. We especially established a mathematical

description of the detector response and used historical data to show the scaling

properties of a standard detector design in a dedicated response simulation called

“CryoEnv”. We furthermore discussed the results from the first iteration of a dedicated

workshop series for low energy excesses, the EXCESS workshop.

We explained the standard methods for raw data and high-level data analysis

in Chap. 3. Furthermore, we discussed our recent release of “Cait”, a software

package for a Python-based raw data analysis workflow that can include modern

machine learning methods and a method to reconstruct pile-up events based on deep

learning. In Sec. 3.2.3 we show that the combined analysis of data sets taken with

different detectors can lead to complications and that one has to account for individual

backgrounds of the data sets in a likelihood framework to satisfactorily exploit the

information of the combined data.

The introduced CryoEnv detector simulation was used in Chap. 4 to project achiev-

able thresholds for proposed COSINUS detector designs with optimized components

and operation conditions, under the constraint of a given target mass. The results are

based on measured data from recent R&D runs with smaller target crystals.

In Chap. 5 we used the framework of the CryoEnv simulation to extract the physics

parameters of several CRESST detectors, dubbed Li1P, Li1L, and Li2P, that were

operated in the CRESST experiment. These detectors were grouped into two detector

217



modules Li1 and Li2, which both have a target made of lithium aluminate. This

material is especially useful for dark matter searches since the isotope lithium-6 has

an especially light nucleus and odd proton and neutron numbers. A data set measured

with these detectors was used to set the currently strongest limits on spin-dependent

sub-GeV/c2-nucleus interactions. In this analysis, we used the Cait software package.

The final Chap. 6 treats the challenges of large-scale detector operation and

analysis. Solutions to automate the required manual interventions in data cleaning

and the initial optimization process of control parameters are proposed using deep

and reinforcement learning. For this, a data set of events from historic CRESST runs

was assembled, and all events were labeled as pulses or artifacts. It was then shown

that deep learning models could learn to classify unseen data with similar accuracy as

human analysts would achieve with quality cuts. Furthermore, the physics parameters

extracted from Li1P, Li1L, and Li2P were used in Chap. 6 to build an reinforcement

learning environment that simulated the optimization process of detector control

parameters. The reinforcement learning environment is built as a wrapper around

the CryoEnv simulation. Within this environment, Soft Actor-Critic agents were

successfully trained to perform the optimization with similar quality, but faster than

a human expert. The identical method was then tested live and in the real world on

the actual detectors, achieving promising results.

In summary, we contributed to the key quests for measuring dark matter in the

following ways: first, the CryoEnv detector response simulation is used to extract

physics parameters from measurements and optimize detector designs. Second, the

Cait software package lays the foundation for machine learning methods to become

part of the standard analysis workflow. Using Cait and our method for automated data

cleaning, the raw data analysis can be fully automated for standard detector designs.

Together with our automated control parameter optimization method, the presented

methods enable the operation of large-scale cryogenic detector setups by only a small

number of analysts and operators. Finally, the summarized results from the EXCESS

workshop are an essential contribution to the understanding and mitigation of low

energy excesses.

Specifically for the COSINUS experiment, we have provided the first projections of

achievable thresholds, including a full detector response model. Our projections provide

actionable intelligence for planning the experiment’s runs. Especially important is

the recommendation that a first run can be performed with detectors optimized for

thermal signals, while for the second run with larger targets, the realization of thinner

films and an athermal readout scheme is necessary. Our method for separating pile-up
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events can increase the efficiency of cuts significantly in the first run, where pulses are

expected to be several seconds long.

For the CRESST experiment, this work summarized the analysis and the results

from the first physics data taking in the main CRESST setup of detectors with lithium

aluminate targets. The extraction of the physics parameters of the modules identified

promising opportunities for improving the detector design. Most crucial among them

is a lower transition temperature; component sizes of the transition-edge sensors and

phonon collectors could be further optimized to achieve lower thresholds as well.

Several questions remain that would provide an interesting research program

for follow-up studies. Assuming that raw data analysis and detector operation

are sufficiently automated using the results of this work, the mass production of

cryogenic detectors remains a challenge. Automation may require a very different set

of methods. Furthermore, while we have simulated optimized detector designs in this

work, experimental verification of these results would be very interesting and would

directly lead to improved sensitivity in the search for dark matter.

Potential connections between the low energy excesses observed in cryogenic detec-

tors and unexplained phenomena in superconducting qubits can be studied for future

applications. The two major unexplained phenomena observed in superconducting

qubits are two-level systems and excess quasiparticles in superconducting films. A

1/f-noise is also observed in superconducting qubits, where it could potentially be

explained with a large ensemble of two-level systems [213]. The two-level systems most

harmful for coherence and gate operations live in the oxide layer of the superconducting

tunnel junctions. Interestingly, their frequency changes on a time scale of several days

after the cool-down of the setup, and their frequency shifts also with stress in the silicon

substrate on which the junctions are sputtered. The excess quasiparticle density in the

superconducting film of which the qubit consists drops with time after the cooldown

as well [141], and it was also observed to scale with stray infrared radiation. The

latter observation confirms that energy depositions on the eV-scale in the qubit can

cause an increased quasiparticle density. Since the low energy excess could also cause

comparable energy depositions, a connection between these phenomena is possible.

For all these phenomena different types of defects in crystal and film could explain all

observations. However, to date, no sufficient model of the microscopic mechanisms

exists.

Finally, the biggest open question is the question of existence of dark matter

particles in the mass range of MeV/c2-GeV/c2. However, this question can only
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ultimately be answered once dark matter is experimentally characterized. Until then,

every effort towards an initial measurement of such particles is valuable.

In conclusion, significant progress in the quest of testing sub-GeV/c2 dark matter

was made in the past years, but the journey remains challenging. The operation of

large-scale setups will enable fine-grained studies of instrumental backgrounds in early

runs. With the knowledge gained from there, the following runs will allow us to test

dark matter masses on MeV/c2-scale and down to the neutrino fog. While these are

certainly ambitious outlooks, they may realistically be realized within the coming

years.
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Appendix A

Table of abbreviations

Abbr. Definition Abbr. Definition

ΛCDM Lambda cold dark matter ADC analog-digital converter
AUC area under the ROC curve BCS Bardeen–Cooper–Schrieffer
CCD charge coupled device CDF cumulative distribution function
CDMS cold dark matter search CEvNS coherent elastic neutrino nucleus

scattering
CMB cosmic microwave background CNN convolutional neural network
COSINUS cryogenic observatory for signals

seen in next-generation under-
ground searches

CP control pulse

CP sym-
metry

charge-parity symmetry CPE conversion pulse energy

CRESST cryogenic rare event search with
superconducting thermometers

DAC digital-analog converter

DAQ data acquisition DD direct detection
DM dark matter EM electromagnetic
ESA European Space Agency ETF electro thermal feedback
FT Fourier transform HLD high level data
ITFN internal thermal fluctuation noise IoT internet of things
KID kinetic inductance detector LA longitudenal
LEE low energy excess LH likelihood
LHC large hadron collider LNGS laboratori nazionali del Gran

Sasso
LSP lightest supersymmetric particle LSTM long short term memory
LY light yield MDP Markov decision process
MMC metallic magnetic calorimeter MPP Max-Planck-Institut für Physik
MSE mean squared error MWE meters water equivalent
NFW Navarro-Frenk-White NN neural network
NPS noise power sprectrum NTD neutron transmutation doped
NTL Neganov-Trofimov-Luke ODE ordinary differential equation
OF optimum filter OP operation point
OU Ornstein-Uhlenbeck PCA principal component analysis
PD particle discrimination PH pulse height
PID proportional–integral–derivative PMT photomultiplier tube
PSD pulse shape discrimination QCD quantum chromodynamics
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Abbr. Definition Abbr. Definition

QF quenching factor RD raw data
RL reinforcement learning RMS root mean squared
ROC receiver operating characteristic ROI region of interest
ReLU rectified linear unit SAC Soft Actor-Critic
SEV standard event SM standard model
SNR signal-to-noise ratio SNSPD superconducting nanowire single-

photon detector
SOS silicon-on-sapphire SQUID superconducting quantum inter-

ference device
SUSY supersymmetry TA transversal
TES transition edge sensor TP test pulse
TPA test pulse amplitude TPC time projection chamber
TPE test pulse equivalent TSCN time series convolutional network
TST time series transformer WIMP weakly interacting massive parti-

cle
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