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Abstract: Radiation is a process common to classical and quantum systems with very different effects
in each regime. In a quantum system, the interaction of a bound electron with its own radiation
field leads to complex shifts in the energy levels of the electron, with the real part of the shift
corresponding to a shift in the energy level and the imaginary part to the width of the energy
level. The most celebrated radiative shift is the Lamb shift between the 2s; /, and the 2p; /; levels
of the hydrogen atom. The measurement of this shift in 1947 by Willis Lamb Jr. proved that the
prediction by Dirac theory that the energy levels were degenerate was incorrect. Hans Bethe’s
calculation of the shift showed how to deal with the divergences plaguing the existing theories
and led to the understanding that interactions with the zero-point vacuum field, the lowest energy
state of the quantized electromagnetic field, have measurable effects, not just resetting the zero of
energy. This understanding led to the development of modern quantum electrodynamics (QED).
This historical pedagogic paper explores the history of Bethe’s calculation and its significance.
It explores radiative effects in classical and quantum systems from different perspectives, with the
emphasis on understanding the fundamental physical phenomena. Illustrations are drawn from
systems with central forces, the H atom, and the three-dimensional harmonic oscillator. A first-order
QED calculation of the complex radiative shift for a spinless electron is explored using the equations
of motion and the mass? operator, describing the fundamental phenomena involved, and relating the
results to Feynman diagrams.

Keywords: Bethe; radiative shift; vacuum fluctuations; vacuum field; mass renormalization; Lamb
shift; QED; radiative reaction; radiative shift harmonic oscillator; zero point fluctuations

1. Introduction

1.1. Background

The shift of atomic energy levels from the levels given by the Dirac or Klein-Gordon equations
with the appropriate potentials results from effects that may be classified into four groups [1-13]:
(1) The interaction of the bound particle with its own radiation field, or equivalently with the zero-point
(T = 0) quantized vacuum electromagnetic field; (2) vacuum polarization effects; (3) finite nuclear
mass effects, including recoil corrections; and (4) nuclear structure effects, including finite size and
polarization corrections. The most frequently discussed and measured shift in energy levels is the
celebrated 257/, — 2p; /, Lamb shift in the hydrogen atom.

Although measurements of the shift were attempted in the 1930s, it was not measured accurately
until 1947 when Lamb and Retherford employed rf spectroscopy and exploited the metastability of the
2515 level and determined the shift was about 1050 MHz, or 1 part in 10° of the 2s; /2 level [14-18].
Shortly thereafter Bethe [19] published a nonrelativistic quantum theoretical calculation of the shift
assuming it was due to (1), the interaction of the electron with the vacuum field. This radiative shift
accounted for about 96% of the measured shift.

In this historical pedagogic paper, we discuss aspects of Bethe’s pivotal calculation, including its
history, its significance, and its impact on the development of quantum electrodynamics. We then
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consider radiative shifts from different perspectives, classical, and QED, with the objective of
highlighting the connections between different aspects of the Lamb shift, and clarifying the physical
processes involved.

As a pedagogic paper, the QED calculations in this paper are limited to the lowest-order shift for
spinless electrons, the same as Bethe’s calculation. To explore the connections between the physical
phenomena and the mathematics, we derive the complex first-order radiative shift in terms of the mass?
operator using the fundamental equations of motion, and then relate the results to Feynman diagrams.
This is a more difficult derivation than simply using second-order perturbation theory or Feynman
diagrams. Generally, textbook derivations only consider the real part of the shift. The radiative shifts
are interpreted as the difference in energy or mass renormalization between a free electron and a bound
electron both in the vacuum field, precisely as Bethe described it. The real part of the shift is the level
shift and the imaginary part the level width, and we derive a dispersion relation between these parts.
Atomic level shifts can be modeled as arising from transitions with the absorption and emission of
virtual photons that are causing the atom to be in different energy states some of the time. To offer
two perspectives, we discuss results for two central forces systems, a H atom and a three-dimensional
isotropic simple harmonic oscillator.

The hydrogen atom is the fundamental two-body system and perhaps the most important tool
of atomic physics and the continual challenge is to calculate its properties to the highest accuracy
possible. The current QED theory is the most precise of any physical theory [20]:

The study of the hydrogen atom has been at the heart of the development of modern
physics...theoretical calculations reach precision up to the 12th decimal place...high
resolution laser spectroscopy experiments...reach to the 15th decimal place for the 15-25
transition...The Rydberg constant is known to 6 parts in 10'? [20-22]. Today the precision is
so great that measurement of the energy levels in the H atom has been used to determine
the radius of the proton.

This remarkable precision began with the measurement and calculation of the first-order radiative
Lamb shift and that is why we are presenting a historical and pedagogic discussion of it. The derivation
of this shift is present, in one form or another, in virtually every book on quantum field theory [23-27].
The derivation is often based on the Dirac equation for an electron with spin and second-order
perturbation theory.

There are many excellent and comprehensive reviews of the Lamb shift and the computation
of energy levels to high precision in hydrogen-like atoms, including all the different effects [1-13].
As noted above, the purpose of this paper is quite different from those reviews. No new physics is
presented. Instead, we offer some new perspectives on the old physics which began the new age of
QED. We hope this exploration will be of value, particularly to students and non-experts.

1.2. Outline of This Paper

In Section 2 of this historical /pedagogic review, we present a historical account of the Lamb
shift, Bethe’s calculation, and its significance for QED. In Section 3, we discuss radiative effects in
classical physics and quantum physics for central force potentials, and illustrate with two examples,
the Coulomb potential and the 3-D isotropic harmonic potential. We try to provide an intuitive sense
of radiative shifts that appear in field theory by considering the effects of the zero point fluctuations
of the electromagnetic field in a semiclassical analysis of the motion of a bound particle. We discuss
the general nature of radiative shifts, for example that the presence of a boundary can lead to a
radiative shift.

In Section 4, we consider the radiative shift in the language of field theory: the shift equals the
change in the mass renormalization of the particle that occurs when it becomes bound. The approach
reflects Bethe’s interpretation of the divergences he encountered. We derive an expression for the
complex shift in terms of matrix elements of the mass? operator M?, which corresponds to the total self
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energy squared of the bound particle. Using the equations of motion for a relativistic scalar particle in
a potential, we derive an expression for M? to order « in the radiation field, i.e., assuming that only
one radiation field photon is exchanged. We also consider the requirements for gauge invariance in
our expressions for a physical shift.

In Section 5, we consider the radiative level shifts in the non-relativistic dipole approximation,
demonstrating that the shift is complex: the imaginary part corresponding to the width for decay by
dipole emission and the real part corresponding to the displacement of the energy level. This result is an
extension of Bethe’s second-order perturbation theory calculation of only the level shift. We show that
the real and imaginary parts satisfy a dispersion relation, which is fundamentally just an expression of
causality [28]. We interpret the radiative shift as due to the virtual transitions induced by the interaction
of the particle with its own radiation field. This interaction means that a given energy level has a finite
width and that the mean energy of the particle, averaged over time, is shifted. After developing the
results for an arbitrary central force potential , we illustrate with two particular cases: the harmonic
oscillator potential and the Coulomb potential.

In Section 6, we apply the methods developed in the calculation of the radiative shift to a fully
relativistic, spinless electron bound in a harmonic potential. In Section 7, we offer a conclusion.
The Appendix A includes brief biographies of Willis Lamb Jr. and Hans Bethe.

2. History and Significance of Bethe’s Calculation

2.1. Brief History before Bethe’s Calculation

Physicists had considered the need to account for an interaction of the electron with the vacuum
field but had no suitable theory. Oppenheimer in 1930 had computed that this interaction would lead
to an infinite shift in energy and therefore he rejected the notion as unphysical and thought major
changes in the theory were needed [29]:

The theory thus leads to the false prediction that spectral lines will be infinitely displaced
from the values predicted by the Bohr frequency condition... As it stands the integral over
v diverges absolutely.. We have treated these difficulties in some detail because they show
that the present theory will not be applicable to any problem where relativistic effects are
important, where that is, we cannot be guided by the limiting case c— > co...It appears
improbable that the difficulties discussed in this work will be soluble without an adequate
theory of the masses of the electron and the proton; nor it is certain that such a theory will
be possible on the basis of the special theory of relativity.

In 1938 Kramers had suggested the idea of renormalization of the mass due to interactions with
the vacuum field and its necessity in classical as well as in quantum theories, but had no clear idea
how to do it in practice [30]. As Bethe said in an interview in 1996 [31,32]:

Kramers had said [at the Shelter Island Conference] that we misunderstood the self
energy of the electron. The divergent self energy of the electron was already included in
the physical mass. We need to consider the difference in the self energy between a free
electron and one bound in an atom.

It was believed that the divergence in the self energy of a electron due to its interaction with
the radiation field was linear in the cutoff frequency, until, in 1939, at Fermi’s suggestion, Weisskopf
used the relativistic Dirac theory and showed (after correcting a critical error in sign pointed out by
Furry [33]) that the electron self energy divergence was logarithmic [34]. He computed that the electron
charge distribution was spread over a Compton wavelength with a shape described by a Hankel
function because of its interaction with the vacuum field, a calculation that remains valid today [23].

The Dirac theory predicted that the 2s;,, and 2p;,, levels in the H atom were degenerate.
Measurements of the energy difference had been done but with mixed results. Then, in 1947,



Physics 2020, 2 108

Willis Lamb Jr. applied the expertise in microwave technology that he developed working with
Prof. Isador Rabi [35] at Columbia on radar research during WWII to the precise determination of the
2515 — 2pq /o energy difference of 1050 MHz or 0.004 eV. Dyson who, as a graduate student working
with Bethe at Cornell, recalled [36]:

And of course the people at Cornell were very closely in touch with the people in
Columbia, and in particular Willis Lamb talked to Hans Bethe who was the professor
at Cornell, and Bethe then sat down and gave the first more or less adequate theory of
the Lamb shift, just from a physical point of view. He understood that the reason why
you had the Lamb shift was that the electron in the hydrogen atom was interacting with
the Maxwell electromagnetic field, in addition to interacting with the proton, so that the
effect of the fluctuations in the Maxwell field were disturbing the electron while it was
revolving around the proton, causing a slight change in the position of the orbits. And so
it was the back reaction of the electromagnetic field on the electron that Lamb had been
measuring. And so Bethe understood that from a physical point of view. The problem was
then, could you actually calculate it? And with the quantum electrodynamics as it was
then, it turned out you couldn’t; that if you just applied the rules of the game as they were
then understood and tried to calculate the Lamb shift, the answer came out infinity, not a
number of megacycles but an infinite number of megacycles. So that wasn’t very useful
and so it was clearly a real defect of the theory that it couldn’t grapple with this problem.

Lamb presented his results at the Conference on the Foundations of Quantum Mechanics held
at Shelter island during 1-3 June 1947, and published them 18 June 1947 in a three-page paper in
Physical Review [14]. Dyson later commented on the reaction to Lamb presenting his results at the
conference [36]:

The hydrogen atom being the simplest and most deeply explored object in the whole
universe, in a way—I mean if you don’t understand the hydrogen atom, you don’t
understand anything, and to find that things were wrong even with a hydrogen atom
was a big shock. So it became the ambition of every theoretical physicist to understand this.

At the conference, many people, including Schwinger, Weisskopf, and Oppenheimer, suggested
that the deviation resulted from quantum fluctuations acting on the electron in the atom. However,
the shift from this interaction was infinite in all existing theories and therefore had been ignored.
The consensus was that the current theory was fundamentally flawed and that a radically new
idea was needed to deal with this. On the 75-mile train ride home to Schenectady, NY, Bethe did a
non-relativistic calculation using second-order perturbation theory, assuming an interaction with the
vacuum field arising from minimal coupling. The calculation predicted that the interaction of the
electron with the vacuum field would lead to a shift of 1040 MHz [19]. Bethe wrote a paper that was
three pages long and sent it to the participants on 9 June. The paper was received by the Physical
Review and published on 15 August. As Bethe later recalled in an interview [31,32]:

The combination of these two talks of Kramers and Lamb stimulated me greatly and
I said to myself: lets try to calculate that Lamb shift, lets try to calculate the difference
between the self energy of a free electron and that of an electron bound in the hydrogen
in the N = 2 state. At the conference I said to myself: I can do that. And indeed once the
conference was over I traveled to Schenectady to General Electric Research Labs. On the
train I figured out how much that difference might be. I had to remember the interaction of
the electromagnetic quanta with the electron. I wasn’t sure about a factor of two. So if I
remembered correctly, I seem to get just about the right energy separation of 1000 MHz,
but I might be wrong by a factor of two. So the first thing I did when I came to the library
at General Electric was to look up Heitler’s book on radiation theory. I found that indeed I
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had remembered the number correctly and that I got 1000 MHz. ...I was helped very much
by a previous paper by Weisskopf who had show that in Dirac pair theory that the energy
of an electron only diverged logarithmically when you get to high energy. So I said to
myself once I take the difference between bound electron and free electron the logarithmic
divergence will probably disappear and it will converge. So lets just calculate the effect of
quanta up to the energy of the electron mass times ¢ squared and lets hope the relativistic
correction won’t make any difference.

Dirac has called this result the “most important calculation in physics for decades.” Freeman
Dyson described it as “a turning point in the history of physics...It broke through a thicket of
skepticism and opened the way to the modern era of particle physics. It showed us all how to connect
QED with the real world” [36,37]. In his Nobel lecture, Feynman called Bethe’s calculation “the
most important discovery in history of quantum electrodynamics” [38,39]. The importance of this
calculation cannot be understated. In a major 2001 review article, Eides states: “Discovery of the
Lamb shift, a subtle discrepancy between the predictions of the Dirac equation and the experimental
data, triggered development of modern relativistic quantum electrodynamics and subsequently the
Standard Model of physics” [7].

The key to Bethe’s success was in his interpretation of the infinities that arise in the calculation.
He saw that one infinite energy shift was independent of the Coulomb potential, and therefore,
he reasoned, should correspond to a mass renormalization of the free electron. He interpreted the
infinity as a renormalization of a bare electron resulting in an electron with the observed physical mass.
This insight allowed him to continue with the calculation and compute the finite energy shift due to
the interaction of the electron with the vacuum field for a specific atomic state. The resulting frequency
integration led to another divergence, but only logarithmic, thus he used an energy cutoff of mc? to
insure a finite result, reasoning that since the calculation was non-relativistic a cutoff was justified.
His insightful assumptions led to a result of surprising accuracy.

To obtain the final numerical result required a calculation of the so-called Bethe log (which he
credited to GE workers Dr. Stehn and Miss Steward) which can be interpreted as the average excitation
energy for the radiative interaction. It equals the average energy difference between the level whose
shift is being computed and the other levels which are reached by virtual transitions due to interaction
with the quantum vacuum. The calculations showed that the average excitation energy for the N =2
state was about 17.8 Rydbergs or 240 eV (1 Rydberg = 13.6 eV, corresponding to the energy of the
ground state of the H atom), which Bethe thought was “an amazingly high value” that indicated
scattering states dominated the Bethe log, but the result was still clearly in the non-relativistic energy
range since 240 eV << mc? = 0.5 MeV. That value of the Bethe log was in error, and the currently
accepted value for the 2s state is 16.6392 [7], which changes the calculated 2s; ,, — 2p1 / shift from
1040 MHz, the value Bethe gave in his paper, to 1052 MHz, compared to the currently accepted value
of about 1057.8 MHz.

Some reflections of Freeman Dyson shed some light on Bethe’s personality and his work style
that may have led to his success [36]:

He had this intense love of doing physics collectively. I mean that it wasn’t really
physics if you did by yourself, it was something you did with a group of people. And so I
just loved it from the beginning and became very much a part of it right away. And then,
of course, his way of work was actually quite unique, I mean if you compare Bethe with
anybody else I knew. First of all, he had total command of the facts, that he absolutely
just—you never needed to look up a number in a table because he knew them all. He knew
all the energy levels of hydrogen and he knew the atomic weights of the different elements
and the density of lead and gold and uranium, all these just physical quantities, he knew
them all. In addition of course, he had an extraordinary ability to sit down and calculate
and just simply go at it...And he was, of course, also just extraordinarily reliable: if he said
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something, you could believe it. He was very careful about everything he said. So just a
thoroughly solid person. Very different from Feynman, because Feynman was far more
imaginative. I mean, one thing Bethe did not have was imagination; he never really
invented anything, he just used the theories that were there to explain the facts, and he
knew the facts and he knew the theories, so he just put them together; whereas Feynman
was always inventing things and he didn’t believe the theories that were taught in the
textbooks, he had to make them up for himself, so he had a much harder time; but still,
of course, in the end you need imagination too; I mean, both kinds of physicists are needed.

The lowest-order radiative shift of magnitude ma(Za)? that Bethe computed, which involves the
emission and absorption of one virtual photon (so-called one-loop correction, thus « is raised to the
first power) accounts for about 96 % of the difference in energy between the 2s; /, and 2p /; states.

The other major effect of the same order contributing to the classic Lamb shift is vacuum
polarization, often called the Uehling contribution, which had been computed successfully before the
Lamb shift measurement and gives a shift of about —27 MHz [13,40,41]. Vacuum polarization arises
from the presence of a virtual electron positron cloud, approximately a Compton wavelength in radius,
surrounding a charge, essentially producing a dielectric constant in the vacuum region near a charge.
For s states, the electron goes very close to the proton, penetrating this cloud, and therefore effectively
seeing a larger charge and experiencing a stronger binding force, which lowers the energy level [7,33].
The fact that including the effect of the vacuum polarization insured greater agreement with the
experiment convinced physicists that the vacuum polarization contribution was real and correct.

2.2. Brief History after Bethe’s Calculation
Bethe commented about his 1947 paper in a videotaped interview in 1998 [31]:

And as far as I know, this paper both disappointed and stimulated other people who
were who were more versed in relativistic theory, namely Schwinger and Feynman. .. and
also Weisskopf. Weisskopf pursued the theory in an old fashioned way and calculated
the relativistic part, together with some of his collaborators. And Schwinger was
stimulated to produce a completely new theory, relativistically invariant theory of quantum
electrodynamics. But essentially extending the old quantum electrodynamics, making it
relativistically invariant and so on... Feynman at Cornell used the completely novel and
independent way of getting at the same problem. He had his own way of doing quantum
mechanics, his own way of putting in the electric field. And it turned out that in the end
that Feynman’s new way was very much easier than Schwinger’s way.

Shortly after Bethe’s calculation, Dyson published, as a problem assigned by Bethe, a calculation
of the Lamb shift for a spinless electron [42]. Formal and rigorous relativistic calculations using
perturbation theory and including spin were done in 1949 by J. French and V. Weisskopf [43] and
N. Kroll and W. Lamb [44]. Weisskopf later commented about these calculations that they “.. . resulted
in good agreement with the experiment. However, the methods used by those authors of subtracting
two infinities were clumsy and unreliable [33].” However, history has been kinder to these calculations
which were not dependent on cutoffs, which were perhaps clumsy and difficult, but produced excellent
results that have stood the test of time [23,25].

Bethe’s breakthrough in understanding the role of the vacuum electromagnetic field and
how to deal with divergences led to intense theoretical work in quantum electrodynamics. It is
most remarkable that within a year three different approaches to quantum electrodynamics were
independently developed that were relativistic and could deal with divergences with some success.
Schwinger, Tomonaga, and Feynman each had proposed a manifestly covariant method, and shown
its capability to address a broader range of QED problems that just the energy levels of the H
atom [38,45]. Although these methods all appeared to be different, with his characteristic insight
Freeman Dyson showed that they had essential similarities and were mutually consistent [46]. He
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summarized: “The advantages of the Feynman theory are simplicity and ease of application, while
those of Tomonaga-Schwinger are generality and theoretical completeness.” These new methods could
be used to treat the radiative interaction as a perturbation to any desired order of approximation. Dyson
also compared the results to those from the S matrix theory [47]. Dyson observed that Oppenheimer
was particularly reluctant to accept Feynman'’s approach [48].

Welton provided some physical insight into the radiative shift with an approximate calculation
based on a semi-classical model of the vacuum field which caused oscillation of the electron bound
in the Coulomb field, effectively increasing its size [49]. This motion meant that the electron saw a
modified Coulomb potential. Only for s states was the spread of the electron sufficient to modify the
energy level, in rough agreement with Bethe’s result. This calculation is discussed in more detail in
Section 3.3.

In their comprehensive 2001 review [7], Eides et al. give a different perspective on the spread of
the electron: “According to QED an electron continuously emits and absorbs virtual photons and as a
result its electric charge is spread over a finite volume instead of being pointlike,” and then they use
the expression for the form factor, F(—k?) = 1 — (1/6) < r? > k2, to obtain the rms radius, obtaining
a value of 1330 MHz for the Lamb shift. Their calculation differs from that of most authors [23,27],
in that they assume the bound electron is slightly off mass shell so the cutoff term becomes I11(1/ Z«)?
rather than In(1/Za).

A period of intense theoretical development followed Bethe’s calculation, characterized by
calculations of the energy levels of the H atom, and QED in general, done with greater and greater
precision and complexity. Some of the key developments from 1950 to about 1970 are in the papers
[12,50-55]; from 1980 to 2000 are in [56-73]; and from 2000 to current are in [74-88]. Theorists applied
themselves to compute the numerous other effects leading to the total shift between the 2s; ,, and
2p1,2 levels, as well as for other levels, including relativistic corrections, center of mass effects, recoil
corrections, radiative recoil corrections, nuclear size and spin effects, and more rigorous, more precise
and higher order calculations of the radiative shifts (for reviews, see [1-10]).

One of the biggest challenges in the computation of the radiative shifts is the necessity to deal
with frequencies from the IR to relativistic values. For the low frequencies, the starting point is the
non-relativistic dipole approximation, and the Coulomb gauge is the most convenient. On the other
hand, for the high frequencies, relativistic dynamics is needed, the binding energy can be neglected,
and the most convenient gauge is the covariant Feynman gauge. Matching the contributions from both
regions is a challenging procedure. Commenting on these perennial matching issues in a 2001 review,
Eides et al. observe [7]

It is a strange irony of history that due to these difficulties it became common wisdom in
the sixties that it was better to avoid separation of the contributions coming from different
momenta regions than to try to invent an accurate matching procedure... Bjorken and
Drell wrote, having in mind the separation procedure: ‘The reader may understandably
be unhappy with this procedure. .. we recommend the recent treatment of Erickson and
Yennie which avoids the division into soft and hard photons.” Schwinger wrote “...there
is a moral here for us. The artificial separation of high and low frequencies, which are
handled in different ways, must be avoided.” All this advice was written even though
it was understood that the separation of the large and small distances was physically
quite natural and the contributions coming from large and small distances have a different
physical nature.

Davies concluded in a 1982 paper:

..the explanation of the Lamb shift is a far more orderly affair it is is consistently carried
through within the framework of old-fashioned perturbation theory...the joining up of
the low- and high- energy contributions does not involve any new physics: it is a simple
mathematical device to enable the use of two distince approximation schemes [73].
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In actual fact, the attitude has changed over the last decade and theorists have developed more
elaborate methods for dealing with matching contributions from high and low frequency regions,
and are now trying to embrace the split in order to clarify the physical nature of the corrections and to
improve the results of computations [7,86].

In Steven Weinberg’s 1995 classic “The Quantum Theory of Fields,” he uses an elegant method
of computing radiative shifts in which he introduces a photon mass in the photon propagators that
ultimately cancels when the low and high momenta regions are combined. As he says, his result is
1052.19 MHz, “just the same as the old result of Kroll and Lamb [44] and French and Weisskopf [43]
which they obtained using the techniques of old-fashioned perturbation theory [25].” Lowell Brown in
his book “Quantum Field Theory” advocates using analytical continuation in the spatial dimensionality
of the field [26]. He notes that in n>4 dimensions there is no IR divergence and, in n<4, there is no UV
divergence, thus, in limit of n->4, one can secure the correct results.

2.3. Current Focus in Precision QED for Light Atoms

New developments in calculations include simplifications to the Bethe-Salpeter equation
for a system with masses that are very different, like the proton and electron [56,64,86-89].
The simplifications are described as effective potential methods, and the “on the mass shell”
approach [5]. Computers are used heavily for numerical computations. Higher and higher order
corrections are being computed [59,64,66,71,74-79,86-88] , using numerical as well as analytical
methods [80-85]. In Lamb shift calculations for the classic 251/, — 2pj /, shift, there are hundreds of
separate terms that are computed to secure the 1 part in 10'? precision.

The interest in the Lamb Shift in hydrogen has moved to a more general interest in the
QED analysis of two particle bound states in systems generally with low Z and one or two
electrons [1-7,45,50-53,56]. This includes bound states of an electron and a positron (positronium) and
bounds states of a muon and a proton (muonium), and even antihydrogen. Systems with high Zx
coupling are of interest for the study of nuclear effects or the study of perturbations as a function of
Zu. Precision QED analysis has also been applied to deuterium and ionized tritium and systems with
two electrons, like He. There have been incredible advances in experimental methods which now
include atom interferometry, laser spectroscopy, and two photon spectroscopy, which can be used to
study transitions such as 1s — 2s and 1s — 3s that do not have a change in the angular momentum.
The 1s — 2s transition has a natural line width of only 1.3 Hz, so experimental determinations are a
thousand times more accurate that for any other transition in H, where typical line widths are about
1 MHz or more. For this transition, precision up to 15 decimal places is possible [20]. This means the
determination of the 251/, — 2pq/, Lamb shift is not limited by the 2s line which is very broad. Many
different transitions in these systems are studied, and the results correlated to secure more precision
and to determine likely values of the fine structure constant and the Rydberg constant, and hopefully
the radius of the proton. The radius obtained from measurements of hydrogen and muonic hydrogen
differ by four standard deviations, a puzzle which is being addressed currently [90,91].

There are physicists, including notables Dirac, Schrodinger, Einstein, Pauli, Lamb, Bohm, Feynman
and others who are not satisfied with the present version of quantum electrodynamics, in which
perturbation theory, which should rightfully deal with small perturbations, is dealing with infinite
terms. Three years before he died, Feynman wrote:

The shell game that we play..is technically called renormalization. But no matter how clever
the word is, it is what I would call a dippy process! Having to resort to such hocus-pocus has
prevented us from proving that the theory of quantum electrodynamics is mathematically
self consistent [92].

It is ironic that Bethe’s original calculation appears to have set this direction for the development
of QED. Had he not has such success with his original calculation, perhaps we would have a theory
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without infinities today that provided a more satisfying intellectual and philosophical viewpoint.
However, it is hard to argue with success.

3. Radiative Shifts, Classical Physics, and the Zero Point Fluctuations of the Electromagnetic Field

3.1. Background on QED Radiative Shift Calculations

The zero-point vacuum fluctuations have a spectral energy density of p(w) = hw?/27%c3. In QED,
the vacuum field is typically expressed as a sum over an infinite number of plane waves with all
possible momenta 7tk and directions k/k with the restriction that the energy Ej in each mode is
hwy /2 = hk/2c. The vector potential is [23,93]

27thc?
aJkV

A(r,t) =
kA

(ak)\ei(krfwkt) + al'i;)\efi(k-rfwk)\)) e, (1)

where the raising and lowering operators obey the commutation rules

[axr, 3t /] = 1aedan, ()

and the two polarization vectors (A = 1,2) are orthogonal to k, thus k - e; , = 0, and

e\ e\ = O 3)

The electric field is E(r, t) = —0A(r,t)/dt and B(r,t) = V x A(r, f). The interaction Hamiltonian
for a particle of charge e and mass m in the vacuum field is

Hy = 5 (F—eA)?, 4)

where A is the vector potential for the vacuum field. The radiative shift in energy levels, such as the
Lamb shift, arises from the 7 - A term.

To summarize the properties of the vacuum field in QED: no real photons are present, only random
virtual photons of energy fiwy /2 and momentum hk/2c, with all possible momenta present consistent
with Equation (1). The expectation values of the electromagnetic fields vanish but the variances do
not. The fields are isotropic (invariant under rotations), invariant under space-time translations
(homogeneous), and under boosts (Lorentz invariant). The energy density spectrum which is
proportional to w? is also Lorentz invariant. For temperatures above 0 K, there is an additional
black body component to the vacuum field, which we do not consider here.

In QED, we can model mass or charge renormalization with the process:

bare point electron + vacuum fluctuations + radiative reaction —
electron with physical mass, charge and effective size of a Compton wavelength.

A similar process occurs for an atom, in which the atom undergoes allowed virtual
(energy conserving) transitions due to radiative reaction or the vacuum field. These transitions can be
seen as shifting the average energy of the atom. This mechanism responsible for the radiative part of
the Lamb shift is discussed in Section 5.2.3 from the QED viewpoint.

In QED, radiative shifts are often calculated using Feynman diagrams, in which the atom
is depicted as propagating in time, and it absorbs or emits a virtual photon changing its state
correspondingly, then a short time later (consistent with the time-energy uncertainty principle) emits
or absorbs the same virtual photon and returns to the initial state. This model in a sense describes
the interaction of the electron with its own radiation field. For QED radiative shifts, this process is
equivalent to interacting with the ubiquitous virtual fluctuating zero-point vacuum field.
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3.2. Radiative Effects in Classical Physics

Classically any charge radiates when it is accelerated, and this emission of radiation, which carries
away momentum, angular momentum, and energy, alters the unperturbed motion of the particle.
To account for this radiation classically, we include in the equations of motion a resistive or damping
force proportional to the third derivative with respect to time of the position. For a classical radiating
electron in a Coulomb potential, Newton’s second law becomes the Abraham-Lorentz equation
of motion

d’r Ze’r  2e* d3r

The second term on the right is the Abraham-Lorentz force, the non-relativistic radiative reaction
force for an accelerating charged particle. The radiation field from the particle is essentially exerting
a force on itself, sometimes called a “self-field”, a phenomena which leads to renormalization and
radiative shifts. The classical equations of motion become sufficiently complicated so that they are
usually solved only in an approximation [94]. We illustrate the effects by considering the non-relativistic
simple harmonic oscillator and the non-relativistic classical hydrogen atom.

3.2.1. Radiative Shifts in the Simple Harmonic Oscillator to Lowest Order

The damping shifts the resonant frequency and causes the oscillations to decay in time.
Consequently, the emitted radiation is no longer monochromatic but has a frequency spectrum
with a finite width. For an undamped one-dimensional classical oscillator with charge e, mass m,
and resonant frequency wy, the displacement from equilibrium is

X(t) = Re(Xge '“0t). (6)

Including a damping force in the equations of motion produces a complex shift in the resonant
frequency [94]

wo — wo + Awp + %r, )

where [95] - )
o «
—E(W)ZWS I'= gww%- ®)

We display the factors of ¢ and 7 for clarity. The term af1/mc? is the time it takes for light to travel
a distance equal to « times the reduced Compton wavelength, which also equals the time it takes for
light to travel a distance equal to the classical electron radius [96]. Only for accelerations that result
in changes in velocity for times less than a1/ mc? are radiative effects important. For the classical
harmonic oscillator, the shift Awy is a higher order effect than the width I'.

When we recall that in quantum mechanics the energy is proportional to the frequency E = fiw
and that the time dependence of an eigenstate of energy E is e **F, it is no surprise that in quantum
electrodynamics radiative effects produce a complex shift in the bound state energies of a system,
the real part being the shift in the energy level and the imaginary part being the width of the state that

Awo =

determines its lifetime.

We can verify the Bohr Correspondence Principle for the three-dimensional isotropic harmonic
oscillator. This principle states that in the limit of large quantum numbers the classical power radiated
in the fundamental band is equal to the product of the photon energy and the quantum mechanical
transition probability (or the reciprocal of the lifetime). The power radiated from the classical isotropic
oscillator is all in the fundamental band and has the value

P = %zxwgﬁ, )
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where A2 is the mean square amplitude of oscillation. The corresponding transition rate or line width
I'is p 5
= — = Zpw3A2. 10
wo 3 4 ( )
For a quantum mechanical three-dimensional oscillator, the energy for a state N is Exy = (N +
3wy ~ mw3 A? and we find
-5 3\ 1
A2= N+ | —. 11
( " 2) mwo ()

Accordingly in the limit of large quantum numbers, it follows from the Bohr Correspondence
Principle that

Iy = % (%) wiN. (12)

We show in Section 5.2.4 that this width I'y equals the radiative level width computed in quantum
mechanics. The Correspondence Principle makes no statement about the level shift, the real part of the
radiative shift, and indeed the classical calculation yields a level shift of order («)? while the quantum
mechanical result is of order «.

3.2.2. The Classical Hydrogen-like Atom

Without radiative damping, a classical electron in a Coulomb potential would travel in elliptical or
circular orbits in a periodic way. Including the damping means that the orbits decay with the emission
of radiation. As time passes elliptical orbits tend to become circular and the mean radius decreases
leading to collapse of the atom. The electron in a classical H atom, starting at the radius 0.5A (given by
quantum mechanics), would collapse in about 1.3 x 10~ s [97-99]. Consideration of the rate of decay
of the energy and the angular momentum for an atom with charge Ze leads to the equation for the
radius r,(t) of a circular orbit for a mass m and charge e as a function of time

x(Zu
m
with classical orbital frequency
Zu
Wel = 3. (14)
mr
Using the Lamor equation P = (2/3)(a9?) for power radiated gives
2a(Za)? 1
P(t) = - ————. 1
Applying the Correspondence Principle we obtain the transition probability
3/2
ro 20 _2, @ (16)

Wel 3 (er)S/Z'

Substituting the quantum mechanical result for the radius for large principal quantum number N

N2
_ , 17
Te mzZa (17)
gives the transition rate or width for state N
2 a(Za)*
I'n = 1
N 3 N5 ( 8)



Physics 2020, 2 116

This width is 277 times the energy lost classically by radiation in one revolution (about 27t 487
MHz assuming N = 2). We show that for large N this width equals the imaginary part of the radiative
shift calculated from quantum field theory.

3.2.3. Comparison of Results for Harmonic Oscillator and Coulomb Potential

The level width (Equation (12)) of the harmonic oscillator increases with principle quantum
number N, whereas for the hydrogen atom, the level width (Equation (18)) decreases with N. There is
a similar inverse relationship with the mass. These results follow because the force on the particle
increases with distance for the harmonic oscillator while it decreases with distance for the H atom.
For the harmonic oscillator the force center is at the center of the ellipse; for the Coulomb potential the
force center is at a focus. The classical radiative damping in the harmonic oscillator gives a complex
shift that illustrates the close relationship between radiative level shifts, as in the Lamb shift, and
radiative widths. The level widths for both systems are related by the Bohr Correspondence Principle
to the classical power radiated.

3.3. The Relationship between Radiative Shifts and the Zero Point Field

In classical physics, the electromagnetic field in the vacuum vanishes. However, from quantum
electrodynamics, we know that we must consider the zero point vibrations of the electromagnetic
field [100]. For a particle in an electromagnetic field with scalar and vector potentials ¢ and A,
the non-relativistic Hamiltonian is

_ 1 gy
H = 2m(p eA)” + e, (19)

and the relativistic Klein-Gordon equation is
(F—eA)? — (E—¢)*> +m? =0. (20)

The radiative shift for an energy level for a particle interacting with its own radiation field,
like the Lamb shift, is due to the - A term [23]. The A2 term contributes to the free particle mass
renormalization but does not contribute to the radiative shift of an atomic level since its expectation
value does not depend on the state of the atom.

To understand the radiative shift on a more intuitive basis, we investigate the link between the
zero point vibrations and the energy or mass shift of free and bound particles following an approach
of Welton and Weiskopf [49,101]. The zero point vibrations are incoherent and the mean field (E)
vanishes but (E2) does not. A free charged point particle is constantly being accelerated in the field,
acquiring a mean kinetic energy that increases its effective mass. Since the particle is oscillating, the
effective volume occupied by the particle increases and it can no longer be usefully regarded as a
point particle. It cannot radiate because the zero point vibrations represent the lowest energy state of
the vacuum.

Now, consider the effect of the zero point vibrations on the same particle when bound in an
external central force potential, such as a Coulomb or harmonic potential. The external potential will
modify the motion of the particle in the zero point field. The difference between the effective energy for
this particle when bound and when free constitutes the finite measurable radiative shift. To estimate
the radiative shift from the zero point vibrations we can derive an expression for the real part of the
radiative shift in terms of the Laplacian of the potential and the mean square displacement &2 of a
charged particle in the zero point field. If 7 is the location of the particle when unperturbed by the zero
point field, then when perturbed the particle effectively sees a potential V(7 + &). For weak binding,
¢ << r, and we make the expansion [102]

- =

VEH =V +ETV@ 45 (89) V). 1)
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Since () vanishes, the radiative shift is given approximately by the vacuum expectation value of
the last term:

AE = @? <v2V(f)> . 22)

where we assume the potential has spherical symmetry, thus (¢7) = (&3) = (&3) = (&2/3).
Equation (22) gives AE as the product of two factors, one depending on the nature of the fluctuations
of the radiation field and the other depending on the structure of the system. To estimate (&2) for the
vacuum field we consider the Hamiltonian for a particle of mass m and charge e in the vacuum using
the radiation gauge (V =0,V - A = 0) :

_ 1o % 2
H= %(p —eA(t,0))". (23)

We use the value of the vector potential for the free vacuum field at the origin, which is equivalent
to the dipole approximation. The proton and the electron can be considered to become a point
dipole [23]. Hamilton’s equations give the result

md*E/d> = edA/dt. (24)
Integrating gives
S et
i == ./_oo dtA (,0). (25)
Squaring this and taking the vacuum expectation value gives:

EB= () [ aree [ are = ((A(10)-A(7,0)s). @

The vacuum expectation value on the right side is simply —i gl-]-Dij , where DY is the radiation
gauge propagator in configuration space [103]:

1 : 1 1
D;; (t’ _ t”) - @ / d4k (51,], — kik; ﬁ) Pe icw(t' 1) (27)
Accordingly, we find
20, h We dw
2\ _ N2 pitad
<§ > o (mc) /Eo w '’ @8

where we display the factors of /1 and c to stress that the term in parenthesis is A, the reduced Compton
wavelength of the particle, which we take to be the electron, thus A is 3.86 x 10~ cm. We take
the upper limit to correspond to approximately the mass of the particle. For greater frequencies,
it is clear that our semiclassical calculation is invalid because of relativistic kinematical effects and
particle-antiparticle pair creation, which will become possible. (Another justification for taking this
limit is given when we discuss this process from the viewpoint of the uncertainty principle). For the
lower limit, we take some characteristic energy of the bound state system, for example the magnitude
of the ground state energy. The final estimate for the shift in the energy of a particle bound in a

potential V(r) is
x  h we
AE= —(—)*In( — | (V?V(7)). 2

37r(mc) n<EO><V (r)> 29)

If we use a quantum mechanical average for the Laplacian, then this formula is precisely the
same as the first term in the quantum mechanical result for the real part of the radiative shift for a
potential V(r) (see Equation (134)), and gives a shift of 1340 MHz for a H atom with N = 2. However
this formula does not give a complex shift because of simplifications made in the treatment of the zero
point vibrations. For the Coulomb potential the Laplacian is proportional to 63(r), so classically the
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shift vanishes since the classical electron is never at the center, while quantum mechanically the shift is
for S states only. For the H atom, the In term is about 10.5 if we take Ej as the ground state and mc? for
the upper limit and /(¢?) is about 0.22A,. For the 3D harmonic oscillator, the Laplacian is a constant,
thus we get the same constant shift whether we take a classical or a quantum mechanical average.
The In term is about 12.4 for an oscillator with ground state energy 2 eV.

3.3.1. Observing Zero Point Vibrations of the Electron

We might ask: Why do not we observe point particles with their unrenormalized masses oscillating

in the zero point field? The answer is that an observation of distances of the order of (&2) ~ (a/m?) }
would, by the uncertainty principle, involve momenta of the order of mc/a'/?
of mc?/a, causing violent uncontrollable perturbations in the zero point motion and leading to the
creation of particle-antiparticle pairs in the vicinity of the particle we were attempting to observe.

To illuminate the nature of the free particle renormalization by analogy, consider an impenetrable

and energies of the order

massless black box containing a gas. Since E = mc?, the kinetic energy of the gas molecules contributes
to inertial mass, and the observable mass depends not only on the mass of the gas molecules but
on their temperature, which is an index of their mean kinetic energy. The separate contributions
to the observable mass of the box cannot be measured directly, but if we know the temperature,
we can compute them. The analogy of this hypothetical situation is quite close to the free particle
renormalization since we can regard the zero point vibration as causing infinite or very large virtual
temperature fluctuations. In renormalization, the initial mass of the particle is chosen so that the
renormalized mass equals the known physical mass.

3.3.2. General Nature of Radiative Shifts

Before ending this section, it seems important conceptually to stress the general nature of
radiative shifts [23,104-107]. First, we note that a shift in the particle mass from the infinite free
space (renormalized) value occurs whenever the particle is not in infinite free space. Not only an
external potential but any object altering the infinite free space zero point field will produce a shift
in the energy levels of an atom in the field [108]. For example, there is a shift in the mass, charge,
and magnetic moment of an electron or a shift in the Lamb shift of an atom when we put it near a
surface or between two surfaces [104,105,109].

A second observation we would like to mention is that radiative shifts can occur whenever
we have an interaction between a particle and a field, not necessarily just the electromagnetic field.
For example there are shifts for the gravitational field or for the meson field of a nucleus [106].

4. The Radiative Shift In Field Theory

There are numerous ways to compute first-order radiative shifts as explained in detail in excellent
texts, to cite a few [23-27]. We do it differently than most, in terms of the mass? operator, in hopes that
this displays the physical significance of the renormalization and of the shift more clearly than some
other methods, and we give comments from different perspectives [110]. We do not include the effects
of electron spin in our calculations.

4.1. The Mass? Operator

The radiative shift of a particle can be understood as the difference between the mass
renormalization for a bound particle and the mass renormalization for a free particle, which we
consider to be a spinless electron or meson. Therefore, we briefly review the mass renormalization of a
free electron (we assume all other quantities except the mass have been renormalized). The equation
of motion for a free bare meson field is

— 3o (x") + mipo (x') =0, (30)
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where my is the unrenormalized mass [111]. The propagator for the bare meson Gy(x’, x”") satisfies
the equation

(—8/2 + m%) Go (x/, x//) -5 (x/ . x//) ) (31)

We can rewrite this equation as

1
Go (v, x") = §(x =x"), (32)
_8/2 + m%
or in momentum space
1
G = —. 33
O(P) pz T m% (33)

The meson has a charge distribution and therefore interacts with its own electromagnetic field,
producing a change in the mass. The propagator for a free self-interacting meson becomes

1

Gr(p) = . (34)
p? +mg + Mi(p)
where M2(p) is the mass? operator for a free, self-interacting or dressed meson. If m? is the observed
(renormalized) physical mass, then the propagator Gr(p) must have a pole at p> = —m?. Thus,
m? = m2 + M2 (pz = —mz) . (35)

A discussed in Section 2, the space-time methods of Feynman, which were developed right
after Bethe’s calculation, were helpful to provide a physical picture of the phenomena and facilitated
calculations [38]. In that spirit, we consider the diagrams in Figure 1 that show to the order e? or & in
the meson’s radiation field (one radiation field photon present) the processes that represent the mass?
operator M2. By analyzing the mass? operator in Section 4.3, we show these are indeed the appropriate

Feynman diagrams.

Fa NS

Figure 1. Feynman diagrams for mass renormalization. Time axis is horizontal. The diagram on the
left corresponds to the 7 - A term and shows an electron emitting a virtual photon and then at a later
time reabsorbing the photon. The diagram on the right corresponds to the A2 term.

In configuration space, the equation of motion for the free self-interacting meson is
(pz + m(z)) Gr (x/, x//) + /d4x’"M% (x/ _ x///) Gr (x///, x//) -5 (x/ . x//) ) (36)

The presence of the convolution integral indicates we can view the meson as having a finite extent.
The “shape” of the meson “centered” at ' is proportional the Fourier transform of m% + M% (p), namely

1
5(1"—1’”)4-@ (M% (r’—r”)—i—m%—m2). (37)

The effective finite extent of the meson in the vacuum field is central to the interpretation of the
Lamb shift, as discussed in Sections 2 and 3.3. Evidently, we can still say we have a point particle but
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now it is in a non-local potential. Although we need never explicitly mention the zero point vibrations
in our field theoretic calculation we could interpret the Feynman diagrams as corresponding to the
zero point fluctuations.

We can estimate the amplitude (Z2) of the zero point oscillations (or equivalently the emission and
absorption of virtual photons) by applying the uncertainty relations to the process depicted in Figure 1.
When the photon is emitted, the particle receives a momentum k; with uncertainty Ak;. Accordingly,
the uncertainties in position ¢ and velocity 7 of the particle satisfy the relations AZ > 1/Ak; and
Av; = Ak;/m. Requiring that Av; ~ 1 implies that Ak; ~ m and AZ; > 1/m = Compton wavelength.
To get the effective (&2), we must multiply by the probability that the photon has been emitted.
The diagram has two vertices so the probability is proportional to &, which leads to the result a(AZ)? =
(&2) ~ 3 /m? the mean amplitude squared of the zero point vibrations, which is comparable to the
result (Equation (28)) obtained using the equations of motion for the vector potential.

When we put a bare meson in an external potentia, we assume it forms a bound state.
The propagator and therefore the equations of motion are as before except: (1) the free (mass)? operator
M2 is replaced by a bound state mass operator M?; (2) the propagator Gr for a free particle with
radiative interaction is replaced by the corresponding propagator for a bound particle G; and (3) p;, is
replaced by the four-vector by I, = p, — V},, where V), is the external four-potential in accordance
with minimal coupling [23]. The energy of the state is shifted by a mechanism similar to that for a free
bare meson. The Feynman diagrams are shown in Figure 2.

Sy 4

Figure 2. Feynman diagrams for the bound state mass renormalization. The double line represents a

meson bound in an external potential.

The double line represents a meson propagating in the external potential. The difference between
the diagrams for the bound meson and the free meson is the radiative level shift (Figure 3). In other
words, the radiative shift in a bound state level is the change in the self-energy of a particle that occurs
when it becomes bound. As discussed in Section 2, this is exactly the way Bethe framed the problem of
computing the Lamb shift. The intermediate state of the atom, i.e., while the virtual radiation field
photon has been exchanged, is unknown. In his historic approach, the cumulative effect of these virtual
transitions in given by the Bethe Log term.

Figure 3. Feynman diagrams showing the level shift is the difference between the bound state mass
renormalization and the free particle mass renormalization. The double line represents a meson bound
in an external potential.

To indicate in more detail the process involved in the radiative shift for a Coulomb potential,
we expand the double line representation of the bound meson, indicating separate meson and proton
lines and the photons exchanged that represent the Coulomb force (Figure 4). The graphs giving the
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radiative shifts are of the form shown in Figure 5. The lowest-order shift, to order « (first order) in the
radiation field and (Za)* (second order) in the Coulomb field, is given simply by the vertex correction
(Figure 6).

Rather than consider separately all the various graphs in the Coulomb field and obtain an answer in
a series with powers of Za or In(Za) as is done with higher order calculations [7,50,66,71], we calculate
the radiative correction using the equations of motion for a meson (spinless electron) in a Coulomb
field and then make approximations to first order assuming that the proton or Coulomb source is an
infinitely heavy point charge. We are neglecting recoil effects, center of mass corrections, radiative
corrections and size effects for the proton. To include these effects we would use the Bethe-Salpeter
equation [3,13,78]. On the other hand, Weinberg (in 1995) did not think the Bethe-Salpeter equation
was the correct equation for relativistic interactions (it includes no crossed photon diagrams), and he
concluded: "It must be said that the theory of relativistic effects and radiative corrections in bound
states is not yet in entirely satisfactory shape [25]".

Figure 4. Feynman diagrams for the meson (top line) bound to the Coulomb field of a proton

(bottom line). The dots indicate that all possible configurations of Coulomb photons, including crossed

Figure 5. Feynman diagrams for the meson (top line) bound to the Coulomb field of a proton

photon lines, are to be included.

(bottom line), with the exchange of Coulomb photons and one radiative photon emitted and reabsorbed
by the meson.

Figure 6. Feynman diagram for lowest order radiative correction to the bound meson.

In general, we are concerned with directly measurable quantities, namely the shift in the difference
between two energy levels of a bound meson. For example, we compute the change in the 2s — 2p
separation. Clearly, this shift is given by the difference in renormalization between a meson bound in a
2s state and one bound in a 2p state. Thus, the renormalization of a free meson is never actually used.

4.2. Expressing the Radiative Shift in Terms of the Matrix Elements of the Mass® Operator

From the equation for the propagator of a self- interacting meson in a potential V*(x), we find
the equation obeyed by the corresponding meson wave functions. Taking mass renormalized wave
functions of the meson in the potential field as our unperturbed states, we apply first-order perturbation
theory to find the expression for the radiative shift in terms of matrix elements of the perturbation M.
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The Green’s function or propagator for a meson field ¢(x’) that interacts with its own radiation field
and the external potential V), satisfies the equation:

(H’z—l—mz—l—Mz)G(x’,x”) =5(x' —x"), (38)

where

1
p=20 = Ve (v), (39)

. . . —2 . .
m is the physical mass, M? is the (mass)? operator, and M" is the renormalized mass> operator both
for a meson in a Coulomb potential

M = M2+ mi — m. (40)

In Equation (38), we use a shorthand notation for the integration as in Equation (36). We assume
our 4-potential is such that we can work in a gauge with V; = 0, V? = V(r). Since we want an energy
shift, we take the Fourier transform of Equation (38) with respect to time

(b = (E=V'24+m2+ M(E)) G (E7,7) =6 (F ~7), (41)
where we define
MZ(E)G = 7 —»// /d3 ///M B R —»///) G (E,f”’,f”) ) (42)

and E is the relativistic total energy. We can convert Equation (41) to an equation for the wave functions
by expressing the Green’s function as the vacuum expectation value of the time ordered product of the
meson field ¢(x'):

G, x") =i < (0 () 4" (x”))+> . (43)

If we insert a complete set of eigenstates of the Hamiltonian (particle, antiparticle, bound,
and scattering) in this equation for G and use the equation of motion for ¢(x):

(7, t) = (7, 00e, (44)
we find ® ®
G (E,i” B ) =) M + contributions scattering states. (45)
m E—Em

The ®,,(7) are the relativistic bound state particle wave functions (0|¢(7,0)|E) with the
renormalized mass and a relativistic total energy En. If Equation (41) is to be satisfied when we
substitute this form for G and let m = n, E = E,,, and ¥’ # 1", then it follows that

(P2 +m?2 = (B, = V')* + B2 (E) ) @4 (7)) = 0. (46)

. . c . T2
We now use first order perturbation theory to calculate the radiative shift due to M (E,).
The unperturbed wave functions are the renormalized relativistic wave functions ¢, (7') for a meson
which satisfy the equation

P2 = By = V)2 40| §u(7) =0, 47)

where EY is the unperturbed relativistic energy eigenvalue. For our normalization, we choose

($n, (ER—V) o) =m, (48)
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where the scalar product is defined as follows:
(@ Ap) = [ &' ¢ ) (Ap()). 9)

We take the scalar product of Equation (46) with t;l;n and substitute Equations (48) and (49) to
obtain, in lowest order in the radiation field, the shift for the state N:

AEy =Ey—E} = (lPN , M (En)n), (50)
which is shorthand for
AEN = /d3r1p /d3 M (En L) g (7). (51)
If we define the relativistic state |#7)such that §,,(7') = (¥|71) and note that
M (En #,7") = (¥ |M(En)|1"), (52)
then we obtain the simple and important result
AEy = ﬁ <N ‘MZ(EN)‘ N> (53)

The radiative shift of the level Ey equals 1/2m times the expectation value of the renormalized
(mass)? operator MZ(E N) with respect to the state (N| , where E is the relativistic energy.

In Section 4.3, we derive an expression for Mz to order « in the radiation field by using the
equations of motion for the meson in an external potential, a method we believe is closest to
fundamental principles.

S Matrix Approach

As an alternative to our approach, we should mention that it is possible to use the S matrix
formalism to find the radiative shift. As mentioned in Section 2, Dyson showed the equivalence of
the formulations of QED of Schwinger and Feynman with the S matrix formalism [46,47]. For the
interaction Lagrangian, we use

Lint = e].ﬂAfad/ (54)

where Afﬂ 4 is the meson’s radiation field and j* is the meson current in the potential field. We calculate
the S matrix element between pure bound states with the usual harmonic time dependence. Since we
have a perturbation to a bound state the matrix element must be expressible in the form (S)N =
e T(EN"EY) where T is the interaction time. To obtain the shift we perform the integrations and use
the usual trick of equating T and 2716(0).

4.3. Derivation of Mass* Operator for Relativistic Meson (Spinless Electron) in an External Potential

We now outline the calculation of Mz( E) in a covariant gauge in which the meson’s radiation
field A} g and the meson field ¢ obey the equations:

[Afad( ,) ’ ];ad(xll)} e — ig,‘uv(sx/ Y
[ AP0 07" )] =0 (55)

(048, 1) , 9", 1)] = 0.
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Since the results are gauge invariant, we can choose the Feynman gauge in order to simplify
the calculation. In the final answer, we simply replace the Feynman propagator with the radiation
gauge propagator. The derivation proceeds by converting the Klein-Gordon equation for a self-inter-
acting meson in an external potential into an equation for the corresponding Green’s function G(x/, x”').
An explicit form for M?(E) is then obtained by comparing this equation to the defining equation for G
which includes M? (Equation (38)). If desired, one may skip to Section 4.3.2.

4.3.1. Detailed Derivation of Mass?> Operator from Equations of Motion

To take electromagnetic self-interactions into account in the Klein-Gordon equation, we make
the substitution
H;, — H; —eAy paa(x). (56)

H’y is defined in Equation (39)) with the result

(12 + mg)p(x') = j(x), (57)

where
j(x) = e { A (x') T} ¢ (x') = Al (¥) Apraa (¥) ¢ (). (58)

The anticommutator insures that the A - p term is Hermitean. To convert Equation (57) into an
equation for G(x’, x""), we make use of Equation (43). We multiply by ¢ (x”), time order, and take the
vacuum expectation value. We use the equation

XII )

2 (A () B (X)), = (9/A (<) B(x)
[20'A (), B ()] 8 (¢ ) 9
B (x")

+00" [A (X)), B(X")] o (Y —t")
+AK), BN -t),

(
(

which follows from the lemma
%' (A(x')B(x")), = (%A (x') B(x")), + [A(x),B(x")] o (t —t"), (60)

to obtain the result

(H’2 +m%) G, x")y=+6(x—x")+i < (j (x) 9" (x”)>+> ) (61)

. . -2 . - .
Since we are calculating M to order e in the radiation field the term

62((AL”d (E ()@ (x) ¢t (x)),) in ((j(x")¢T(x"))+) may be calculated with a free photon
field rather than the radiation field. In essence this follows since the radiation field is equal to the free
field plus terms of higher order. To show the formal justification, consider the matrix element
= (4" @) 4" @) () ot () ) ©)
Recall
IFAN (&) = e (§'), (63)
thus

e =e{ (&) 4 @) 0 )9 (@) )
v (@ -2 (0 )0 (), ).

(64)
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To lowest order, we may drop the first term. Solving for o gives

o= [gﬂ‘/a;zé & =& |G (x,"). (65)

Considering the boundary conditions, we realize the term in brackets is just the usual Feynmann
propagator. Accordingly, we obtain

o=-DM (g -¢g")G(«,x"). (66)

This result is to be expected since to lowest order the complete Hilbert space factors into two
independent spaces, one for ¢(x’) and one for A(x’). Thus, we show that

()0 ("),) =i ((Ax () A" (+)),) G (+,2")

(67)
e <((A;fd () I+ T A () ) () (x"))+> .
We can rewrite the second term on the right side using the notation
ﬁ/yAmd / N = (AT (/) TT* L TTH AT (5! /
i (e () = (AR () TT¥ + i) ¢ (x)
1 Iz 2 1z U rad (x/ / (68)
= (Fak 4 29 —2vr () ) A (&) 9
From Equation (61), we have
(102 +m3) G (', 2") = 6 (x' — &) +ie T (A7 (') ¢ (') ¢ (x")) >
- (69)

= ((Ap () A (x)), ) G (+,x").

Using Equations (38) and (40) for the unrenormalized mass? operator M? shows the last two terms
on the right side of Equation (69) are equal to

MG, ) = T (A () g () 9 (1)) ) - (A (¢) 4" (), ) G (+,x"). (70

+

where M2G(x/, x'") represent a convolution integral as in Equation (42). To order ¢?, we may replace
the full propagator G by the propagator G¢ for a particle in the potential with the physical mass:

(1072 4 2) GE (x/,2) =6 ('~ x"). 71)
Operating on Equation (70) from the right with I12(x”") + m? therefore gives

M2 (¥, x") = -ie ﬁ’”<(A;ad () ¢ (+) ¢+ (x//))+> (Hz (x") + mz)

(72)
+ e (A (¥) A" (), )6 (x = ).
Following the same procedure as before gives the result
M2 () = =il () (4 () 4° () 0 () o (1)) )T () -

+6 (A () AF (x)), ) 8 (¢ = "),
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which is a shorthand notation for

2 1
2 22 H "
M? (¥, x") =ie <i8x, + ?8‘:/ _QVH (x’)) Dy (&' —=28") G («',x") x
9 1 (74)
1 : 21H / i
<Z 1;// + ?81/,/ — 2V'u(x )> |§//=x//, F=x' — 1e DV (0)(5(3( — X )
Since our calculation is to order €2, we again substitute G¢ for G(x/, x”). Now that we have
derived the equation for M?(x/, x"’), we return to the radiation gauge.

4.3.2. The Expression for MZ(E )

For our calculation of the radiative shift, we need the operator corresponding to the time Fourier
transform of M?(x’,x""). To obtain this result, we use the expression for G¢ which follows from
Equation (71) and time translation invariance [112]:

o (") = [ 5 7 | ) 75)
where
I*=p5, TI°=E-V(r). (76)
If we substitute Equation (75) and
D I =l __ ' d4k ik(gl—é/,)D k 77
nv (6 g ) - (27.[)46 141/( )r ( )

into our expression for M2, Equation (74), and we note the derivative with respect to gy, brings down a
factor of k,, we find, after some computation, the important result for the unrenormalized relativistic

mass* operator
<~ ie? d*k
M?(E) = — Gyt P (DT, (78)
where .
™ = (2IT* — k#) ———— (211" — k")
IT— k)% +m?
(T=5) 7o)

We exploit the symmetry of the photon propagator under k — —k to write T*" in a form that
manifests crossing symmetry. From the Feynman rules we see that the diagrams corresponding to the
T operator are as shown in Figure 7.

k k k k k k

mT+k m-k

Figure 7. Feynman diagrams for the Compton scattering amplitude T#" of a photon by a bound meson
(double line).

The double line in the figure refers to the meson propagating in an external potential. T#¥ is the
operator Compton scattering amplitude in the forward direction. The seagull term on the right in
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Figure 7 must be included to insure gauge invariance. At threshold, it gives the Thomson scattering
amplitude. As Equation (78) indicates, we obtain the diagrams for M? by contracting the above
diagrams for T#” with the diagram for the photon propagator D,,, giving the resulting Feynman
diagrams for M? in Figure 8. The crossed diagram may be deformed into the uncrossed diagram,
therefore both diagrams give equal contributions to M2. Note that, in a calculation of the shift between
two levels, the bubble term gives no contribution since its matrix elements are independent of the state.

oy | ot

Figure 8. Feynman diagrams for M? which give the radiative shift of a bound meson, which arise

from the Compton scattering amplitude (Figure 7) of virtual radiation photons by a bound meson
(double line) .

4.3.3. Gauge Invariance of the Shift AEy for a Relativistic Meson (Spinless Electron)
We must show that the most general gauge transformation [26]
Dyv — Dyy + A'nyky + p'nuky +v'kuky, (80)

induces no change in the observed shift. Under a gauge transformation, the radiative shift changes by
an amount

5 (8x) = s [ ok (N

Ak T 4 e T + 43k e, TN ) (81)
We contract T with k;, and use the identities

k(2IT+ k) = (IT+ k) + m? — (I12 + m?)

k(T — k) = —[(IT— k)2 + m?| + T2+ m? ’ (82)
to obtain
k, TH = (ZHV —l—kv) — (H2 —|—m2> ; (ZHV +kv)
g (11 k)2 + m2

= (I K)o QI =K (s (1 ) )

—2Kk".

For our unperturbed basis states, we have

(HZ + mZ) IN) = 0. (84)

Consequently, (N |k, T*’| N) = 0 and since T*" (k) = T'#(—k) it follows that (N |k, T*'| N) = 0.
Accordingly, we see that T*" is gauge invariant between physical states and that §(AEy) vanishes.

5. Calculation of the Radiative Shifts in the Nonrelativistic Approximation

5.1. Relationship to the Dipole Approximation

The dipole approximation and the nonrelativistic approximation are often considered as two
separate approximations. In radiative shift calculations, the dipole approximation is often given by
the prescription: in the radiation gauge, compute the shift ignoring the dependence of T#" on the
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photon three-momentum k. Asa consequence, we find that the term T% ¢ corresponding to the static
Coulomb or longitudinal photon interaction gives a vanishing contribution to the shift. Seen in this
way the dipole approximation breaks gauge invariance which is why we must specify the gauge.
Another form of the dipole approximation is to let A(7) be independent of 7. To understand
the properties of this form of the dipole approximation under gauge transformations consider the
nonrelativistic interaction Hamiltonian for radiation with a four-potential (¢(7), A(7)) and a scalar
particle of charge e and mass m:
e
T oom

H, (F- A) + ed. (85)

Under a gauge transformation A=A+ @/\, ¢ — ¢ — 9¢A, and Hj transforms into Hy + A, where
A= —%ﬁ- VA — edyA. (86)

To obtain gauge invariance, the matrix elements of between the initial and final states must vanish:
(fIA]i) = 0. If we let A = K71t then gauge invariance requires that

<f|%ﬁ.7<’ei” — we)i) = 0. (87)

Following the customary prescription for the dipole approximation, we set exp(ik' -7) equal to
unity, then, since (f|i) = 0, we conclude that the matrix element (f|7 - k|i) must vanish if we are
to obtain gauge invariance. Clearly, this is not generally the case and gauge invariance is violated.
The difficulty lies in the fact that setting the exponential equal to one resulted in approximating the
change in the vector potential to first order in k and the change in the scalar potential to zero order in
k. If we approximate the change in the scalar potential to one order higher, then we find that gauge
invariance requires

<f\%ﬁ-7€—iwﬁ-?|i> =0. (88)

This quantity does indeed vanish since
(i

In the radiation gauge, the scalar potential vanishes, thus we circumvent these difficulties.

Alternatively, we may obtain the unrenormalized M? operator in the nonrelativistic approximation
from a different perspective, by noting that the pole in the photon propagator in Equation (78) insures
that the integration over k¥ leads to the result |%[ = k¥ but since |E| is a momentum it equals a frequency
over the speed of light k| = w/c. As c increases the magnitude of the spatial momentum vanishes
and we obtain the dipole approximation. Seen in this way, the dipole approximation is not gauge
dependent but simply part of the nonrelativistic approximation. If we work in the radiation gauge,
then this method gives the result obtained from the usual proscription.

P
m

1) = it 7)1) = (k¢ ~ B ()

= i (f[2i).

(89)

From dynamical considerations we can show that in a bound system characterized by a small
coupling constant the motion is nonrelativistic and |k, the approximate change in momentum for
radiative transitions between states, may be neglected with respect to the momentum p of the
bound particle.

Consider a potential of the form

V(r) = %mgm'z(mr)n n> —2. (90)
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The exponent of the mass m is chosen so that the coupling constant g is dimensionless;
the exponent of g and the overall coefficient are chosen so that V agrees with the conventional
expressions for the simple harmonic oscillator (n = 2,¢ = \/wp/m and the Coulomb potential
(n = —1,¢ = Za). The total nonrelativistic energy of the atom is E = T + V. Employing the virial
theorem for our potential T = —(1/2)V and the uncertainty principle gives the results

~gmc, E

p%

E me
r & !

~ D200 1)
2

where c is the speed of light. These results justify the use of nonrelativistic dynamics for small
g. The contribution to the shift of a bound state energy level will be greatest for resonant virtual
transitions, that is, when the photon energy equals the difference between two energy levels. For these
resonant transitions E ~ |k|c and

n+2

2n

p

for weak coupling. To insure that the nonrelativistic approximations remain valid during the integration
over frequency, it may be necessary to use a cut off which is proportional to the mass. The shift for

~

‘k ‘g <<1, 92)

greater (and therefore nonresonant) frequencies for physically realistic situations can be calculated by

neglecting the bound state energy and keeping only the lowest order terms in the coupling constant.
To understand the physical meaning of the dipole approximation more clearly, we employ the

translation operator in momentum space ¢i*7 to show that for a function f(p) we have the identity

NP - R)(F - K)2F - B)IN) = (Nl * ") 2F + K)A(F)QF + K)(e F TIN)). 93)

Applying this result to the expressions for M?(E)and T*¥ (Equations (78) and (79)), we see that
—)

the matrix elements for the shift are between translated atomic states (e~ ¥ T IN)) that have a center
of mass momentum —Fk in order to conserve momentum when the virtual photon of momentum +k
is emitted. In addition, from the Feynman rules for spinless mesons, we know that the k present in
27+ k insures momentum conservation at the vertex. Accordingly dropping the k dependence means
that we are violating momentum conservation and neglecting the recoil of the particle, which is a
reasonable approximation since we are dealing with long wavelength photons whose momentum is
much less than the particle’s momentum. In more accurate calculations, we need to maintain center of
mass momentum conservation and include the corresponding recoil terms [3,7,50,66,71,86].

5.2. M2 in the Nonrelativistic Dipole Approximation

We first take the nonrelativistic limit of our expression for T# (Equation (79)). We obtain the
crossing symmetric, gauge invariant Compton scattering amplitude operator in the forward direction
for a meson or a spinless Schrodinger electron in a potential V:

) 1
T = (2p; — k) 2p; — ki
‘ 1(?—?)2+2mV—(E—k0)2m(] 7 o1
1 )
+ (2pi+ ki (2pi + ki) — 24",
S (P + K)2+2mV— (E+k)2m
1
T = 4m?
(P — K)2+2mV — (E— k°)2m o5
+ 4m? — ! — 2% )
(P + K)2+2mV — (E+Kk0) 2m
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1

(P — K)2+2mV — (E—k0)2m
1

+2m (2pi + ki),

(F+ K)2+2mV— (E+K)2m

T = 2m (2p; — ki)

(96)

where E is the nonrelativistic energy E = E — m (which is negative for the hydrogen atom). As a check
on the nonrelativistic limit, we can prove gauge invariance by noting

)2_ﬁ2

G o7

k‘l »‘l

(2f+k) = (F+k
2P —k) =—(p—

and remembering that for matrix elements between physical states we can use the Schrodinger equation

(H—-E)IN) =0, (98)
where
7
H= -~ (99)

The expression for the (mass)? operator in the non-relativistic limit is given by
ie? d*k
2J (2n)

where T is given by the nonrelativistic form in Equations (94)—(96). We use the photon propagator in
the radiation gauge:

M2(E) = g Dy (k) TH, (100)

P..
Doo —% Dij; :kfzz], (101)
where ok

We perform the k¥ integration first. There are poles in the complex k° plane at X = E — V —

% +ie and +(w/c — ie) where w = c|k| and we display the speed of light c. Closing the contour
in the lower half plane enclosing the single pole at kg = w/c — ie gives the result

2 _ _
M= 2m7lr f
A Y
{Pij[(zr’i—ﬂi‘ﬁ) TEraE (2Pj—”j;)—2mgij}
p—h—
47%Lf+vfwfw) , (103)
+4m?c? 7o ﬁﬂ)z ! —ngoo}

—ft + V- (E-w)

where 71 = k/|k| and we have combined cross terms since they give equal contributions to M?. As we
let c — oo, the terms in fiw/c vanish leaving us with the expression for M? obtained by making the
dipole approximation in the usual manner (k| — 0).

The angular integration for the g;; T term is

a0, 2

e, S Y 104
= 25, (104)
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corresponding to the two transverse polarization states of a photon. Using the identity,

w H-E
P 1
H=(E—w) H—(E—w)’ (105)
we find
2
ZZ_DE/d 87" apiomt_r, H-E _ 2 H-E 1
M . “’l32m 3w Ime = B P E—w) P T P H S (E—w) (106)

The expectation value of the last term, which comes from ggoT%, vanishes for physical states.
The first term can be interpreted as the change in the kinetic energy due to the mass renormalization in
the nonrelativistic limit [23]. The second and third terms compose the free particle mass renormalization.
The next to the last term is the only term that depends on the potential V, and gives a vanishing shift in
the free particle limit V — 0. Thus, the renormalized mass? operator in the nonrelativistic limit is

4oc H—-E
- 37mm /dwpiH —(E-w) — et (107)

5.2.1. Calculation of the Radiative Shift in the Nonrelativistic Limit

M’ (E)

The shift is given by matrix elements of M~ between nonrelativistic meson states. To find the
nonrelativistic limit of the normalization in Equation (48) of our relativistic meson wave functions
(r'|1), we use our definition of the nonrelativistic energy E = E — m to write the normalization in

the form
En %4

mc2  mc?

JEriimp+

where we make the factors of ¢ explicit. Clearly, in the nonrelativistic limit, we obtain the usual

) =1, (108)

Schrodinger wave functions (#'|n) with the normalization

[EriwmE =1, (109)

or
(nlm|n'I'm"y = 6,y 61 5mm’. (110)

The effective shift in the unperturbed level EY; due to the radiative interaction is the matrix
element of the renormalized (mass)? operator with respect to [N >:
1

AEN = Ey — EY, =
N N 2

2
S (NIF(En)IN). a1

Substituting the expression for M (Equation (107)) and inserting a complete set of intermediate
states gives the result

_2a & @ [(En— Ex) (N |pi|n) (n|pi| N)]
AEN_San;/O daw En —En+w —ie ’ e

where the s on the summation indicates we also include scattering states [113]. This is the same result
as in Bethe’s original paper and his book [13,19].

Equation (112) can be easily derived from second-order perturbation theory, as Bethe did, in which
the complete set of states |n) represent intermediate states [23] and this is often the approach in
calculations of the radiative Lamb shift in textbooks. We derive this equation for the shift using
the fundamental equations of motion. We now show that the term in brackets in this equation
is proportional to the probability for a transition between state N and state n by the emission or
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the absorption of dipole radiation, which leads to a model for the radiative shift. The interaction

Hamiltonian is o
Hin (t) = a13(t) - Ard(7(1),1), (113)

where A" is the vector potential for the spinless electron’s or meson’s radiation field. The S matrix
operator is

s_ (e” j“m:dtHf,zf(t):> , (114)
+

where the double dots mean the Hamiltonian is normally ordered, with creation operators to the left
of the annihilation operators. We want the matrix element p for a transition n — n’,n’ < n by the
emission of a photon of momentum k and polarization €:

p = (ken'|S — 1|n). (115)

To lowest order, the Hilbert spaces are separable and A" equals the free field vector potential A.
The matrix element of A is the photon wave function:

(ke A(E(t), 1)]0) = ge—kFHwt, (116)
In the interaction representation,
p(t) = e p(0)e M. (117)
Accordingly, we find
0= —zm%s (Ey + w — Eq) (0| B|n), (118)

where we use the dipole approximation k-7~ 1. The decay rate for n — n’ by dipole emission is

re, _ total probability

/ . 11
" interaction time (119)
In the usual way, we take 2716(0) as the interaction time, giving
Pk 1 o
re, = / — . 120
wn ZI; (271)3 2w 27tr6(0) (120)
po
Recalling
kik;
) €ui€uj = Oij — 77 (121)
I
we obtain A
o
oo = W(E" — E){(n'|pi|n)(n|pi|n’) >0, n' <n, (122)

for the decay rate from n — n’ by dipole emission where E, — E;, = w,,,y. Similarly, the rate for the
transition n — n’ for n’ > n, by absorption of dipole radiation, is

4o
rﬂ = W(En/—En) <]’l/‘pl|n> <n|pl|n/> >0’ n/ > 1. (123)

n',n
In accordance with the principle of detailed balance, we see

L (124)

n',n nn'*
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From our definition, I, is defined only for #’ > n and then is always positive or zero. We see
formally that I, = —TI7, . Accordingly, if n > n’, we interpret I, »as —I7, . Using this convention
with our expression for I'} ,, we find that, after changing variables, the expression in Equation (112)
for the shift may be written in the simpler form:

1 S En+wc —%FﬁN
AEN = — dw————. 125
N n;/n ww—EN—ze (125)

From Equations (94)-(96) for T"", it is clear that AEy is an analytic function f(N, Ey) of the
energy En, which is in the denominator. We define

AEN =f(N;En) = ifn (N;En).- (126)

n

The partial shift fu(N;EN) represents the contribution to the shift in level N from virtual
transitions from level N to level n. We replace Eyx by the complex variable z and investigate the
structure of the partial shift as a function of z:

1 [Entwe —%FeN
N;z) = — dw—=—"~
fu(N;2) /n “Yo—z—ie

- (127)

We extend the lower limit of integration to E; and the upper limit to co and multiply by the
appropriate theta functions (0(t) = 0ift < 0,= 1ift > 0) so that the value of the integral is
unchanged. After summing over all states, we find that the complex radiative shift obeys the dispersion
relation [28]

F(N;z) = %/: dw%, (128)
where .
Imf(N;z) =} —%FZ’NG(w — E)0(we + En — w). (129)

n

We can separate the integral into its real and imaginary parts

f(N;z)==P | dw

31 | : 71%(1\];“’) +ilm f(N;2). (130)

Figure 9 shows the cut structure for f(N;w) in the complex w plane.

VI\AN‘V : )
Ey E2 Es En-1 En o [Enea Ene2
1. M€
“2P1,N
1.r€
"2r'2,N
e e
“35(13,1\1 "%PN—l,N
1. M€ b
'EFN,N+1 1/,-.e
2 N,N+2

Figure 9. Cut Structure of f(N;w) in the complex w plane. At each value of E,, which is less than Ey;,
there is a cut with a discontinuity of — %I’Z N at En, there is no cut. At each value of E,; which is greater
than Ey, there is a cut with a discontinuity of %Ff\, n
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5.2.2. Radiative Shift for Physical Energy Levels

The function f(N;z)|,—g,, gives the radiative shift for the energy level Ey. The imaginary part of

the shift is
ImAEN = Im f (N; EN)

:——ZI‘nN_

n<N

1 (131)

where I'y is the total width for decay of state N by dipole radiation. The imaginary part of the shift
equals the half-width in magnitude and is always negative as it must be to insure that the probability
density decreases exponentially:|e_it(E?V+AEN ) |> = e~ TNt Only states to which the state N can decay
by the emission of real radiation contribute to the width of the level Ey.

The real part of the shift Re f(N; Ey) is given by the principal part of the integral. Since we
integrate from E; to oo, skipping the infinitesimal portion |w — Ex| < € , all cuts (or equivalently all
intermediate states) contribute to the real part of the radiative shift. Integrating over w we obtain an

expression for the real part of the partial shift f,,(N; Ey):

re, n<N 1 we—Ey+E
Refu(N; En) = nN e AN B 132
¢fn(N;En) {rf/n n>N 27 |En— En| (132)

We can approximate Re f,,(N; Ex) by neglecting E, — Ey in the numerator of the log. With this
approximation, and writing the log of the ratio as a difference in logs, we can sum Re f, (N; Ey) over
all states using the dipole sum rule:

3m2 S s )
= YT, = 2% (Ea — En) (N [piln) (n|pi| N) = —(N|V2V|N). (133)

This gives the result

2w 1 5 w
B (134)
E.—E : (IN)in ——2——
+ L (En = Ex) (N piln) {n i N) in 5 }
where Ej is an arbitrary energy parameter, which we shall take to be some characteristic energy of
the bound system, for example, the ground state energy. The first term is the same expression for the
shift that we obtained by considering the motion of the particle in the zero-point field (Equation (29)).
Note that we only assume the spinless electron is in a central force potential V(r).

5.2.3. A Model to Interpret the Results

We can construct a simple model (Figure 10) to interpret the salient features of the partial radiative
shifts f,;(N; En), which give the shift in the energy Ex due to virtual transitions to level m. The features
are expressed in the following equations, which hold for any positive integer m < N:

1. Refm(N, EN) + REfN<m; Em) =0.
2. Re fu(N;En) <O.
3. Im fu(N;En) = Refu (N En)[FIng %] 7"

The first relation shows that the average energy of two levels that shift each other is unchanged.
Together, the first two relations show that virtual transitions to lower states cause downward shifts
and transitions to upper states cause upward shifts. The third statement shows that a lower level’s
contribution to the width is less than its contribution to the shift by the factor lln( TnoEn ). We can
deduce relations (1) and (2) for the level shifts exactly and relation (3) for the level w1dth in an
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approximation by assuming that the observed energy corresponds to a time-weighted average of the
original energy and the energy of the state to which the system made a virtual transition. To make this
interpretation quantitative, we consider a state N with a partial widthI' =T, =I7, \ form < N.
The system makes I' transitions from N to m in one second and remains in the state m for a time
allowed by the time-energy uncertainty principle [114]

1

)
Ex — Em

(135)
Therefore, for a system in which I' << Ey — Ej; (e.g., atomic systems), the average energy Engye
of level N is shifted and is approximately

ENave = Em + (1 ) En = EN —T. (136)

EN — Em " En — Em

The level shift for state N due to a transition from a state N to a lower state m is En,pe — En OF
Refn(N; En) = =T}, \ - Similarly we find that for a transition from a state m to a higher state N the
level shift is Refx(m, EN) = 'Yy » which is positive. From these two expressions, relations (1) and (2)
follow. Corresponding to the third relation we find using Equation (129) and the results directly above
that the model predicts a level width

Imfy,(N;En) = —%F = %Refm(N} En), (137)

This result agrees with relation (3) only if we replace %ln EN“fEm by unity [115]. If we use the
dipole sum rule, then in our model we find that the total level shift is 4/3 of the result obtained in the
discussion after Equation (37) where we obtained the shift by applying the uncertainty principle to
determine the effects of the zero point field on a bound particle.

¢T'= Re £, (N;E) [ & 1n 25171
m N

o S ‘..ras:ﬂ}

EN Re fm(N.;EN)
E

m

EI:I . } Re fN(m,Em)

Figure 10. The energy level EON is shifted to Ey by intermediate virtual transitions to EY,, which also
increases the width of the level to I'. The level E?,, is shifted to Ej; by virtual transitions to E?\,. The latter
transition does not increase the width of the level for E,;,.

5.2.4. Two Examples: The Harmonic Oscillator and the Coulomb Potential

In our discussion thus far we only assume we have a spinless particle of mass m and charge e in a
central force potential V(r) interacting with its own radiation field. Now, we can apply the results to
these two specific potentials.

(1) The Isotropic 3 D Harmonic Oscillator

Consider a simple isotropic harmonic oscillator in three dimensions for which

V(r) = %mwérz, (138)
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with energy levels

3
EN:(N+§>w0/ N=ny+ny+nj3. (139)

The fact that V(r) increases formally with r without bound does not introduce difficulties since
transitions are possible only between adjacent energy levels. Employing the matrix elements of the
momentum operator

(gl me) = /T (V4 L1 = Vi, 1) (140)

we can easily compute the real and imaginary parts of the radiative shift using Equations (122), (123),
(131) and (132). For the complex radiative shift of level Ey, we find

__r 2 we .
AEN = 37me0 (3 In 0 zZnN) , (141)
giving a corresponding width
2
Iy = ﬁwgw. (142)

In the dipole approximation, the shift is the same for all levels: no degeneracy is split. On the other
hand, the radiative width I'y increases with N and agrees with the width Equation (12) obtained
by applying the Bohr Correspondence Principle to the classical expression for the radiated power.
The ratio of T'y/Ey is constant and equals (2/3)afiwg/mc?. In Section 6, we compute the radiative
shift for a relativistic spinless electron and show that for some levels the degeneracy is lifted.

(2) The Coulomb Potential
We have
V(r)=-=, (143)

and therefore
V2V (r) = 4 Zad(r). (144)
Since the matrix elements vanish except for S states, we may isolate the L dependence of the shift
by defining the Bethe log (N, L) where [13]
Y(N,L) 13 (En — En) (N O [pi| 1) (n [pi| N O)
= X5 (En — Ex) (NI [pif ) {m pi| NL) In 227

1m(Za)?

(145)

Using Equation (134), setting the frequency cutoff to w. = m, and substituting the Schrodinger
wave function

3
o 1 (Zam
_1 14
[¥n(0)] ﬂ( N ) d10, (146)
we find for the shift for level NL
4m 1 2
Re AEN; = | —a(Za)*| = In—— — L)§. 147
e, = | 3ma(ze)!] 5 {0 o — 1N L)} (147)

where (N, L) must still be numerically evaluated [116]. The result is essentially the same result Bethe
obtained in his original calculation. The Bethe log is tabulated for a few energy levels in the original
work in which it is was introduced [13] and in various articles for additional levels and at a higher
precision, for example [7,82].

To provide a scale of magnitude for the shift, we note that the term in square brackets is the energy
radiated in one revolution of the electron in the ground state according to the laws of classical physics
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and equals Planck’s constant times 1090 MHz. For N = 2, the 2s shift is 1051.84 MHz. The currently
accepted value for the Lamb shift is about 1057.87 MHz. We can estimate

(Za)?
N

AEN/EN = o (148)
which is about 1 part in 1.3 x 10° for N = 2. The width for low-lying states may be obtained by
computing the sum in Equation (129) explicitly.

In the limit of very large quantum numbers for any central force field for circular orbits, we can
simplify the expression for the width I'y by assuming that the most important transitions are those
for which An << N. The strongest transitions in the classical limit are between wave packets
corresponding to the circular orbitsn = N, [ = N—1andn = N —1, [ = N — 2. This is equivalent
to saying that the classical radiation is primarily in the fundamental band. Accordingly, our sum

collapses to
4o

3m?2’
where w; is the classical frequency of rotation. This matrix element can be obtained without direct
computation by noting that

I'n = wo (N |pi| N = 1) (N — 1 p;|N) (149)

(NIP*IN) 2 (N[pi| N+ 1) (N +1[ps| N) + (N |ps| N = 1) (N = 1 |pi| N}, (150)

which follows from our assumption that the only significant transitions are those for which AN = +1
and from the fact that (N|p;|N) = 0 for a bound state. We assume that the matrix elements do not
change rapidly with N, thus

(N[pi|N =1) (N =1[pi|N) = (N|pi| N +1) (N +1|pi| N). (151)
Therefore, our final expression for I'y is

Iy = %wd <N ‘pz‘ N>. (152)

For the Coulomb potential wy; = m(Za)?/ N3 (see Equations (14) and (17)), we find

4
I'v = %m(x%, (153)
which is in accordance with the result obtained through the correspondence principle Equation (18).
Note that nowhere in our derivation of Equation (152) do we specify the detailed nature of the
central force. We only assume that the radiation was in the fundamental band, which is always true for
classical circular orbits. Indeed, this equation agrees with the expression for I' obtained by applying
the correspondence principle to the classical expression for the radiated power P, for any circular orbit

of a charged particle
2

P. = gmrﬂw?l, (154)
namely )
14
[ = gﬁpzwcl. (155)

For both examples, the relative shifts go approximately as a(Bound State Energy Level)/(Rest
Mass Energy), reflecting the fundamental nature of radiative shifts (and that we are considering
radiative shifts in lowest order).

For exact nonrelativistic calculations, the sum over states for the real part of the energy shift was
trivial to compute for the oscillator since only two intermediate states contribute. Alternatively, if we
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compute the shift from Equation (107) without inserting intermediate states, then from the equations of
motion we can easily compute the contraction over p;. We will follow this procedure in our calculations
of the level shift for the relativistic harmonic oscillator in Section 6. Unfortunately, to secure exact
results for the Coulomb potential is more difficult. If we use Equation (112), we must include an infinite
number of intermediate states in our sum. If we do not use intermediate states but use Equation (107)
directly, then we find that the equations of motion are intractable unless we use group theoretical
techniques, which we will publish elsewhere [117].

6. Radiative Shift of a Relativistic Meson (Spinless Electron) with a Harmonic Interaction Lagrangian

6.1. Introduction

We compute the radiative shift for a spinless, relativistic meson with a charge e with a harmonic
interaction Lagrangian L;,; = V? where i is the meson field and V = C?r?, and C is a real constant.
From consideration of the equations of motion, we compute the the radiative shift of the energy levels
that corresponds to the difference of the contribution to the mass renormalization from a mass m
bound by the harmonic interaction and a free meson [118,119]. We derive an integral expression
for the complex radiative shift to order « in the radiation field and to all orders in the binding field.
In Section 6.2, we perform the computations after making the simplifying assumption that the virtual
photon is spinless. In Section 6.3 we include the effects of spin.

We assume the unperturbed meson state |N) obeys the Klein-Gordon equation with the
interaction term

(p? — p3 + C¥% + m?)|N) = 0. (156)

The equations of motion can be written in the form

(H—EX)IN) =0, (157)

where p2 o
H=_+ E(a)zrz' (158)

and S
EY = 0 —. (159)

This form shows that the equations of motion are the same as those of a simple harmonic oscillator
with frequency
w=C/m. (160)

Accordingly, we know the unperturbed energy levels are

3
EY = (N+3)w, (161)
and 3
p3 =2(N + E)c+mz. (162)

6.2. Relativistic Radiative Shift for a Scalar Photon Interaction

The shift is given by the equation

) d*k 1
AEN:EN—Egzlg/Wp <N

v
D(k) — i€’

N> , (163)
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where ¢ = 2me? and D (k) is the inverse momentum space propagator for the bound meson:
D (E,ko) = D(k) = (F—F)? — (po — ko) + C** + m?. (164)

We employ the integral representations

1 iAk2 1 0 P /
: /\ —iAkc—eA / t ltD(k)7€ t. 1
k2 —ie l/o dhe " D(k) — i€ ! 0 dte (165)

By employing the translation operator in momentum space, we see that
o—itD(k) _ ik T —itD(0,ko) e—il?-f, (166)

where
D (6, ko) = 2mH + m? — (po — ko)?. (167)

By applying the equations of motion for the canonical variables for an elapsed time equal to mt,

e imHpeitmH — 1 065(Ct) — p; sin(Ct)

‘ . . 168
e itmHp eltmH — b cos(Ct) + 1;sin(Ct) (168)
we can compute the translations in Equation (166) explicitly with the result
1L _ [ ggp—itmH ,i2k-pv ,+itmH
D = 1o dte”!MHeRE e X (169)
e ink? o =it (m? =(po—ko)?) €'t ’
where
§= sin(Ct) cos(Ct)
_ Sin(Ct)C : (170)
V="c

The integration over the scalar photon momentum can be performed by completing the square,
and employing the general formula

/oo dxei(iaxz—Zihx) _ Eﬁéei’%. (171)
—00 a
After taking matrix elements, we find that the shift is

AENN)N; = /o dt /0 dAONQN,N,N;3/ (172)

where we have used the product representation for the three-dimensional harmonic oscillator states
IN1N;N3) = [N7)|N2)|N3) and N = Nj + N + Nj. The quantities o and Q) are

-8 -3, () 17
on = — 55 (1) R ML), (73)

o, 2
gy, = (A + 1) 73 <N1N2N3 7 ) N1N2N3>. (174)

We can calculate the matrix elements directly and express the results in terms of the quantity

(isz)j

Qfj) = —.
(A + 1 — iv2C)t3

(175)




Physics 2020, 2 140

We find
Qoo = Q(0)
0100 = Q(0) + Q(1)
Mg = Q(0) +20Q(1) +30(2)
O110 = Q(0) +20(1) + Q(2)

(176)

The radiative shifts lift the degeneracy for some levels and this parameterization simplifies the
calculation of shifts between degenerate levels. The free particle mass shift is contained in )(0) to all
orders. This follows by noting that, for j > 0,as C — 0

lim Q(j) — 0. (177)

C—=0
For calculations of the shift between the nondegenerate energy levels, we would use a different
formulation, subtracting the free particle shift in the beginning. To check our equations, we consider
the limit C — 0, which should yield the free particle renormalization. In this limit we have y — t and

v — t so the only nonvanishing () is
Q(0) > (A + )3 (178)

Substituting these quantities into the expression for the shift, we find

— 8 /l /Oo ﬁ —imzyt
AEfree 1672 Jo dY 0t € ’ (179)
where we have made the substitution
— L (180)
AT

To avoid having a spurious imaginary term, we do not include the contribution from the pole at
t = 0, but start our integration at t = €. Using the formula

00 e*iat
/ dt = —In(ea) — 1, (181)
€
we find p
__8& 2 _
AEfre = 755In (em ) ty-1, (182)

where € in the infinitesimal cutoff for the ¢ integration and -y is Euler” constant. This result has the same

structure as the conventional result with respect to the divergences. The finite parts depend on the

values of the cutoffs and on the particular procedures used to evaluate the integrals. The infinite terms

cancel in the calculation of measurable shifts and consequently have no direct physical significance.
The expression for the bound state shifts can be rewritten in terms of y and T = 2Ct:

i12C = g (el" +e77 —2) : (183)

The integral used to calculate the shifts is

1 9]
AEN(j) = /O dy /O dtonQ(j), (184)
which equals
1 0 J (T —iT_zj —iynT
BENG) = iy [ [ AT LT e T (185)
1672 (2i)/ Jo 2Ce T/ 1L (e*“%—ir—l)}”f
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where the degree of coupling to the harmonic oscillator is given by the dimensionless parameter

v5

The shift can be expressed as a single integral of a confluent hypergeometric function with two
arguments. The structure is similar to that for H atom where the shift can also be expressed in terms of
an integral over a confluent hypergeometric function [11].

6.3. Relativistic Radiative Shift for a Spin 1 Photon Interaction

The expression for the shift is

AEN:EN—EI%:ig/g::;“(zl_ie<N’TZ‘N>, (187)
where
T) = (2p - k)yD(k)l_ie(Zp — -, (188)
Executing the trace gives
T =4 [pigigpi ~ P | ~2{ B K. ol | — 4pokopiy— (K2-1) ol - (189)

We can derive expressions for each of these quantities in terms of our previous results by
employing the Heisenberg equations of motion for p; and gq; (Equation (168)) and also our form
of the Klein-Gordon equation (Equation (156)). Our final result is

AEN,NyN, = 4 /0 A /0 dt {—pé —chac (N n ;) ~ 3ipC?
2t 2, A\10
pOH_A—i—(ZyUC +1/ 2i dv

1 d
2.2 (ne2,2 9
+C%y (ZC v 1) —ia()t+;4)} ONON, NN,

(190)

1
+7 / dton O, NyN; [A—0,
where oy and Qp, n,n; have the same meaning as before (Equations (173) and (174)).

7. Conclusions

We discuss the history of Lamb shift and Bethe’s pivotal calculation, and how it influenced the
direction of theoretical physics for over half a century.

We discuss the general nature of radiative shifts of bound state energy levels, from the classical
and the quantum perspectives, examining in some detail results for the harmonic oscillator and the
hydrogen atom. The radiative shifts are complex, the real part being the level shift and the imaginary
part being the level width. The shifts arise because of the emission and absorption of virtual photons
which occurs due to interaction of the charged particle with its own radiation field, or, equivalently,
with the vacuum zero-point fluctuations. We know vacuum fluctuations are affected by geometry and
therefore radiative shifts differ from free space values for atoms in a cavity, for example, or near a
surface [104-107,109,120]. Lamb shifts have even been used to model gravitational energy in black
holes [121].

Today, the computation of radiative shifts and atomic energy levels can be done very precisely,
from 1 part in 10'2 to 1 part in 10" for certain energy levels, the most precise computations
for any physical system [20]. Today, the corresponding experiments demonstrate comparable
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precision. Some see the opportunity for developing metrology [122-126]. This favorable situation
allows atomic systems to be a platform for the discovery of new physics beyond the standard
model. Theoreticians are already calculating the effect on energy levels due to the quantization
of space, the non-commutativity of space-time coordinates and space-time fluctuations for H atoms,
muonic atoms and Rydberg states [127-134]. Measurements are being done on collaborative Lamb
shifts for mesoscopic arrays [135,136].

Because of this high precision, measurements of radiative shifts and atomic energy levels reveal
detailed information about phenomena causing shifts aside from radiative effects. This precision has
led to a new understanding low Z two body systems, including muonium, positronium, and tritium,
revealing nuclear structure effects and other higher order effects. We can expect that atomic energy
level measurements and computations will continue to contribute significantly to the development of
quantum physics in the future.
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Appendix A

We thought a few selected comments about the lives of Lamb and Bethe might help frame their
activities during the years in which they played such key roles in the development of QED.

Appendix A.1. Brief Biography of Willis Lamb Jr.

Willis Eugene Lamb Jr. was an American physicist, born in Los Angeles in 1913, who won the
Nobel Prize in Physics in 1955 “for his discoveries concerning the fine structure of the hydrogen
spectrum.” He went to the University of California at Berkeley where received an undergraduate
degree in chemistry, and then a PhD in theoretical physics in 1938, working with J. Robert Oppenheimer
as his advisor. David Bohm received his PhD with Oppenheimer a few years later. At one point as
a young man, Lamb considered becoming a professional chess player instead of a physicist [137]!
After receiving his PhD, he then joined the faculty at Columbia University, where he did research at the
Columbia Radiation Laboratory from 1943 to 1951 with Prof. Isador Rabi [35]. He taught at Stanford,
Oxford, Columbia, Yale, and University of Arizona. Norman Kroll was one of his students. For the
last three decades of his life, he was critical of the standard interpretation of quantum mechanics,
particularly the quantum theory of measurement and did not believe in the idea of a photon [138].
He died in 2008 at age 94.

Appendix A.2. Brief Biography of Hans Bethe

Hans Bethe was born in Germany in 1906. As a child, his father, a physician, told of Hans at age
four sitting on the stoop of their house, a piece of chalk in each hand, taking square roots of numbers.
By the age of five, he had fully understood fractions and could add, subtract, multiply, and divide
any two of them. At age seven, he was finding ever-larger prime numbers and had made a table of
the powers of two and three, up to 2! and 3'°, and had memorized them [139]. After two years at
Frankfort University, he transferred to Munich in 1926, joining Arnold Sommefeld’s group, where he
learned the need to work hard and built his confidence. He received his doctorate summa cum laude a
few years later. On a fellowship, he went to Rome and worked with Fermi. From Fermi, Bethe learned
to reason qualitatively, to obtain insights from back-of-envelope calculations, and to think of physics as
easy and fun, as challenging problems to be solved. Bethe’s craftsmanship was an amalgam of what he
learned from Fermi and Sommerfeld, two great physicists and teachers, and combined the best of both:
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the thoroughness and rigor of Sommerfeld with the clarity and simplicity of Fermi. This craftsmanship
is displayed in full force in the many reviews that Bethe wrote [13], which remains a classic even today.
In 1932, Bethe began an appointment at Tubingen, but Hitler’s rise to power and the enactment of
racial laws in 1933 prohibiting any Jew from state of federal position forced Bethe to leave. In 1935,
he joined the physics faculty at Cornell, and enjoyed the atmosphere very much, and remained there
for most of his career. During WWII, he served as head of the Theoretical Division at Los Alamos,
under Oppenheimer. Bethe won the Nobel Prize in physics in 1967 for “for his contributions to the
theory of nuclear reactions, especially his discoveries concerning the energy production in stars.”
He explained why the sun keeps shining, and did not win it for his contributions to QED. In later years,
he advocated for peaceful use of nuclear energy and nuclear disarmament. He died in 2005 at age 98.
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