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Abstract. In this work the non-singlet structure function FNS
2 (x, t) have been obtained by

solving DGLAP evolution equation in leading order (LO) at the small x limit. Here we have
used a Taylor series expansion and then the method of characteristics and Lagrange’s method
to solve the evolution equations. We make a detailed comparison of the predictions of the two
methods with two different levels of approximations with experimental data as well as with
numerical solutions.

1. Introduction
The structure functions of the nucleon are not calculable in QCD but their evolution in Q2

are predicted by a set of integro-differential equations known as DGLAP equations [1]. Apart
from the numerical solution [2], there is the alternative approach of studying analytically these
equations at small x and there are many analytical solutions available in literature [3, 4] and
the present authors have also pursued such an approach with reasonable phenomenological
success [5–7]. In this paper we study analytical solutions of the non-singlet structure functions.
We convert the LO DGLAP equation into a partial differential equations in the two variables
(x,Q2) by a Taylor series expansion, with two different levels of approximations, valid at low x.
The resulting partial differential equations are then solved analytically by two different methods:
Lagrange’s auxiliary method [8] and the method of characteristics [9,10]. The aim of the paper
is to make a detailed comparison of the predictions of the two methods, with two different levels
of approximations. In section 2 we give the formalism, section 3 is devoted to discussions of the
solutions and in section 4 we give our conclusion.

2. Formalism
The evolution equation for non-singlet flavour dependent contribution, which evolve
independently in the DGLAP approach can be written as [1],

δFNS2 (x, t)

δt
=
Af
t

[
{3 + 4 ln(1− x)}FNS2 (x, t)

+2

∫ 1

x

dz

1− z

{
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(
x

z
, t

)
− 2FNS2 (x, t)

}]
. (1)
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Here Af = 4/(3β0) and β0 = 11−2nf/3 is QCD beta function at LO. At small x, approximating
FNS2 (xz , t) on RHS of Eq.(1) and defining u = 1− z [6, 7] we get,

δFNS2 (x, t)

δt
=
Af
t

[
{3 + 4 ln(1− x)}FNS2 (x, t) + 2

∫ 1

x

dz

1− z
(z2 − 1)FNS2 (x, t)

+2

∫ 1

x

dz

1− z
(1 + z2)(x

∞∑
k=1

uk)
δFNS2 (x, t)

δx

]
. (2)

Carrying out the integration in z, we can write Eq.(2) as,

δFNS2 (x, t)

δt
− Afx

t

δFNS2 (x, t)

δx

[
2 ln(

1

x
) + (1− x2)

]
=
Af
t

[3 + 4 ln(1− x)

+ (x− 1) (x+ 3)]FNS2 (x, t). (3)

Eq.(3) is a partial differential equation for the non-singlet structure function FNS2 (x, t) with
respect to the variables x and t.

While performing the integration in z, neglecting terms O(x2) and higher, we can also express
Eq.(2) as,

δFNS2 (x, t)

δt
− 8Af

3

x

t

δFNS2 (x, t)

δx
=
Af {4 ln(1− x) + 2x}

t
FNS2 (x, t) (4)

This we get by considering,

x
∞∑
k=1

uk = xu = x(1− z) (5)

during integration.
We solve both the PDE Eq.(3) and Eq.(4) with the two formalisms, the Lagrange’s method

and method of characteristics.Though both these PDE are obtained from the same Eq.(1).

2.1. Solution by the method of characteristics
By adopting the method of characteristics [9, 10], one can express Eq.(3), as an ordinary
derivative with respect to t and the equation becomes an ordinary differential equation:

dFNS2 (x(t), t)

dt
= cNS (x(t), t)FNS2 (x(t), t) (6)

where

cNS(x(t), t) =
Af {4 ln(1− x(t)) + (x− 1)(x+ 3)}

t
(7)

Integrating Eq.(6) over t from t0 to t along the characteristic curve, one gets the solution for
the non-singlet as:

FNS2 (x, t) = FNS2 (τ)

(
t

t0

)α
, α =

8

3β0
{2 lnx− x} (8)

Eq.(8) is the analytical solution of the Eq.(3) within the present formalism. Using the same
formalism for the PDE Eq.(4), in a similar way we get a different form of solution for the
non-singlet structure function FNS2 as,
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)β
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4Af
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Eq.(8) and Eq.(9) are the two analytical solutions of Eq.(3) and Eq.(4) respectively.
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2.2. Solution by the Lagrange’s auxiliary method
To solve the equation Eq.(3) and Eq.(4) by the Lagrange’s Auxiliary Method [8], we can write
the Eq.(3) and Eq.(4) in the form:

Q(x, t)
δFNS2 (x, t)

δt
+ P (x, t)

δFNS2 (x, t)

δx
= R(x, t, FNS2 ) (10)

The general solution of the Eq.(10) is obtained by solving the following auxiliary system of
ordinary differential equations,

dx

P (x)
=

dt

Q(t)
=

dFNS2 (x, t)

R(x, t, FNS2 (x, t))
(11)

If u(x, t, FNS2 ) = C1 and v(x, t, FNS2 ) = C2 are the two independent solutions of Eq.(15), then
in general, the solution of Eq.(10) is,

F (u, v) = 0 (12)

where F is an arbitrary function of u and v.
In this approach we try to find a specific solution that satisfies some physical conditions on

the structure function. Such a solution can be extracted from the combination of u and v linear
in FNS2 ,

u+ αv = β (13)

where α and β are two quantities to be determined from the boundary conditions on FNS2 . Using
the physically plausible boundary conditions, the solution of Eq.(10) takes the form,

FNS2 (x, t) = FNS2 (x, t0)

(
t

t0

)
(14)

In a similar way for the Eq.(4), the Lagrange’s method leads us to a solution for the non-singlet
structure function FNS2 as given below,

FNS2 (x, t) = FNS2 (x, t0)

(
t

t0

)
h(x, t) (15)

where

h(x, t) =
XNS(1)−XNS(x)]

[( tt0 )XNS(1)−XNS(x)]
(16)

with h(x, t) ≤ 1 for t ≥ t0. Here h(x, t) measures deviation of Eq.(15) from solution Eq.(14). We
note that the apparent absence of log x dependence in the solution Eq.(15) is due to algebraic
cancellation. Eq.(14) and Eq.(15) are the solutions of the Eq.(3) and Eq.(4) respectively.

3. Results and discussion
We test the validity and compatibility of the two sets of analytical solutions, by comparing them
directly with the available data [11] and with the MSTW 08 numerical solutions [12], using
the MSTW2008 [13]input. We plot our set of solutions Eq.(8), Eq.(14) and Eq.(9), Eq.(15)
respectively with the BCDMS data in Fig.1, where we explore a relatively high x and Q2 range,
(0.07 ≤ x ≤ 0.75) and (13 GeV2 ≤ Q2 ≤ 63 GeV2). From that we observe that though our
both set of solutions predict the same behaviour at low value of x and agree with the numerical
solutions towards low x range, as we approach the high x range our solutions overshoot both
data and the numerical solutions. In case of the solutions obtained by Lagrange’s method given
by Eq.(14) and Eq.(15), while the Eq.(14) shows logarithmic growth with the increasing Q2

values, the other solution Eq.(15) remains almost constant with increasing Q2 for fixed x values.
The solutions by Method of Characteristics Eq.(8) and Eq.(9), also show very slow growth with
increasing Q2 for fixed x values.
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Figure 1. Non-singlet structure function FNS2 (x,Q2) as function of x at different Q2 values
according to Eq.(8) and Eq.(14) (left) and values according to Eq.(9) and Eq.(15) (right). Data
from refs [11].

4. Conclusion
The Taylor approximated DGLAP equation for the non-singlet structure function is solved
analytically by two different methods: the Lagrange’s auxiliary method and the Method of
Characteristics. The quantitative and qualitative differences of the solutions are then discussed.
Considering the solutions together, they are valid towards low x region. This demonstrated that
two powerful methods of solving differential equations can be successfully applied in the DGLAP
framework to obtain analytical solutions. Results of these methods to the polarised structure
function gNS1 (x, t) has been reported elsewhere [14].
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