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Abstract

By analogy with N/ = 4 super Yang-Mills theory, the superspace constraint
equations for N' = 8 supergravity are also solvable in a certain sector where the
spinorial curvatures vanish. This sector can naturally be interpreted as an anti-
self-dual part of N' = 8 supergravity. As in the Yang-Mills case, we find that the
solvable part of these constraints arises from a Wess-Zumino-Witten (WZW) model
whose target space is some extended superspace.

1 Introduction

It is well known that N = 8 supergravity is closely related to the eleven-dimensional
supergravity (for the foundation of this theory, see [1]; for the superspace formulation of
it, see [2, 3]). It is shown by Howe [4] that the constraint equations for eleven-dimensional
supergravity can be expressed as a simple supertorsion constraint by use of the so-called
Weyl superspace. Dimensional reduction of this constraint leads to the N' = 8 super-
gravity constraints. This is analogous to how one obtains the constraints of N = 4 super
Yang-Mills theory [5] by those of ten-dimensional super Yang-Mills theory [6] via dimen-
sional reduction. In [7], this analogous relation was utilized to investigate the geometrical
meaning of superstring theory. Following these lines, in this paper we attempt to solve
a subset of the constraint equations for N = 8 supergravity. Our strategy is similar to
the harmonic superspace approach which has been successful for N/ = 2 super Yang-Mills
theory [8] as well as for some supergravity theories [9, 10]. This paper can be consid-
ered as a natural extension of the previous work [11] on the maximally supersymmetric
Yang-Mills theory to a theory of gravity.
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2 Superspace constraints and dimensional reduction

It is known that the equations of motion for 10-dimensional super Yang-Mills theory are
equivalent to its superspace constraints by use of Bianchi identities [6, 7]. The constraints
can be expressed as a flatness condition, as we briefly review below. Ten-dimensional
superspace is described by the coordinates (z™,0*). The spinorial covariant derivative is
given by

0 )
Dy = —— —il"™0° — 1
96>~ " e g M)
where I is a 10-dimensional gamma matrix (m = 1,2,---,10) and 6 is the correspond-
ing spinor (o = 1,2,---,32). Gauged versions of the covariant derivatives are written
as 9
D,.=D,+A,, D,=—+A, 2
+ oo (2)

by which we can define the following field strengths on the superspace

Fop = {Da, Dy} +i2I7D,, (3)
Fam = [DaaDm] (4)
Fon = [Dm, Dyl (5)

The constraint equations are simply expressed as
Fos = 0. (6)

Under naive dimensional reduction, this constraint reduces to the superspace constraints
of N' = 4 super Yang-Mills theory [5].

We would like to consider analogous constraint equations for 11-dimensional super-
gravity such that dimensional reduction to the NV = 8 theory is transparent. It is shown
by Howe [4] that the equations of motion for 11-dimensional supergravity are described
by the following (super)torsion constraints

where I'"™ is now a 11-dimensional gamma matrix (m = 1,2,---,11) and the torsion and
curvature are defined by
{D.,Ds} = T2Dy + RGE™. (8)

Here D), denote composite covariant derivatives Dy = (D,y,, D, ), while ¥ denotes the
Lorentz generator on 10-dimensional (vectorial) space. Gauge potentials relevant to Dy,

can be defined as
Ay = el Dy + Qprym, (9)

(Note that one can impose 7,); = 0 by an analysis on the so-called Weyl superspace [4].)
Dimensional reduction of the constraint (7) can be carried out and we obtain

w0 (_1\ii—1)/2 §j _p
T = 22' ( 1) oj oy (10)
TﬁiBj = TXB” =0 (11)

where p = 1,2,3,4 and o = (1, —0") with o’ being the Pauli matrices. Equations (10)
and (11) can be considered as the superspace constraints of A/ = 8 supergravity.
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3 A sector of vanishing spinorial curvature and self-
duality

Eleven-dimensional supergravity has three dynamical fields in z-space, i.e., the 11-bein
(graviton), the Rarita-Schwinger field (gravitino) and a totally antisymmetric tensor field
Xpmnr [1]. In the superspace formulation [3], the torsions and curvatures are all described
by a single superfield H,p.q which is defined by Hypeq = Oy A Xpea (a,b,¢,d = 1,2, 11
are vectorial indices). In the previous section, we observe that there is a direct analogy
between Yang-Mills theory and general relativity in a subspace where those terms that
involve the Lorentz generator X" are negligible. This subspace can be identified with a
condition that a spinorial curvature of vanishes in the definition (8). In terms of Hpeq,
the spinorial curvature is expressed by

1 Ci 1 cae
Ry = 6| D) Haved + 3 (Labedef)apH e (12)
where T'@02an — TlaTez... Tl are the antisymmetrized product of 11-dimensional

gamma matrices (up to normalization). Under dimensional reduction, the vanishing of
(12) leads to the relation

1
('VCd)aﬂHabcd - _5 €abed (’Vofyef)oz,@HCdEf (13>
where 7’s are the usual 4-dimensional gamma matrices and Veped = €apeay’. Notice the
indices are now reduced to 1,2, 3,4. This relation can be further written as

Wab - _% €abed ’YOWCd (14)
with an introduction of a matrix field W,, = v*“H 4. The relation (14) can be seen
as an anti-self-dual condition for W,,. In this sense, the sector of vanishing R ap can
be considered as ‘anti-self-dual’” supergravity, although self-dual supergravity is generally
defined in a different manner (see, for example, [12]).

The vectorial curvature in 11-dimensions are defined by [3]

Ry = (I*)apRgy (15)

Rab,'y& = DaTb'y5 - DbTayé + D'yTabé + T;»YTbeé - Tbe’yTae'y (16)
1 1

Ty, = TN Hape T abede) pH" % 17

o ~35 ()5 bd+8( bede) 5 (17)

Taba == _E(FCd)gD,BHabcd- (18>

Under dimensional reduction we find 77 ap = 0, using {4°, 7.} = 0. The vectorial curvature
then reduces to

R = DaDa(y ) Honey
= DD W)
)

= —i(y" aﬂaxu< VW) (19)
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where we use {D,, Dg} = —i2(I"™)455% to obtain the last line (with m — p=1,2,3,4).
This reduction means that the vectorial (non-supersymmetric) curvature does have a
nontrivial value in the sector of our interest and that this sector is indeed physically
sensible.

4 A solution to the constraints of N = 8§ ‘anti-self-
dual’ supergravity

Under the ‘anti-self-dual’ condition (14), the constraints of ' = 8 supergravity (10), (11)
reduce to the following forms

{DAiaij} = {D;,DJB} = 07 (20)

(Dan D} = —i2 (<12 60 D, (21)
In what follows, we will obtain a solution to these constraints. We introduce a complex
two-component spinor v with scale invariance u? — Au?, with A being a non-zero
complex variable. This spinor is closely related to the harmonic variables introduced in
the construction of harmonic superspace. In our case, since there is a scale invariance on
u?, the extended superspace corresponds to supertwistor space cpW, (In the case of
N =4, it is known that this space is a supersymmetric Calabi-Yau manifold and one can
construct string theory on it.) Motivated by our previous work [11], we then introduce
the following additional derivative operators
Df = (=1)=V24yAD,;, | Dy = —(=1)"Y2 54Dy, (22)

3 2

where @? is another two-component spinor that can be related to u4 by w4 = K Ady i

where @ ; is a complex conjugate of u”, i ; = (u)*, and K , ; is an arbitrary frame vector.
~ Note that we can express the constraints (20) and (21) as flatness conditions; Fia;p; =
F;iJB =0 and F qué = 0, respectively. Let Dii, Di‘ be the gauged versions of spinorial

derivatives. In terms of these, the constraints can be written as Fii ™ = Fi~ = F;* =
F;7=0,F7 =0and F.7 =0, or explicitly,
{D/,Df} = {D/,D;}={D;, D} ={D;,D;} =0 (23)
(D}, D)} = 0 (24)
(D, D’} = —i2(=1)""V2 6l u'D,y, (25)
(D, Dy} = 2(-1)"V2 6 54Dy, (26)

The derivative operators on our extended superspace are expressed by Dz»i, Di.‘, D, =

o’y Aa% along with
0 0
A — ~A
D++ = U ?7 D = —W 87
0 0
D = AL Al 2
ouA Y (27)
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Commutation and anticommutation relations among these derivatives (or bases) are given

by

[D**,Df] =0, [D*,D;]=-Df, [D*, D4 =0
[D~—,Df]=D; , [D--,D;]=0, [D~",D%]=0

[D*+, D°| = —2D*" | [D~, D" =2D"~ (28)
[

D%, Df|=D;}, [D°,D;]=-D; , [D°,Di]=0
{D, D]}y = ADS, Dy} ={D;, Df} ={D;, D;} =0
{D Dyt = 0

{Df, D} = —i2(~1)0” 50 utD, (20)

)

{D;.Di} = i2(-1)2 5 oD, .

The covariantization of anticommutators (29) are identical to the constraints in (23)-
(26). The extra gauge potentials A™" A=~ do not involve in the anticommutators. The
commutators in (28) mean that it is necessary to make A%, A° vanish in order to satisfy
the constraints (23)-(26) in the extended superspace. These constraints are hard to solve
by themselves. Our strategy to solve these is to carry out ‘gauge transformaitons’ in the
extended superspace such that there are non-zero A*=.

Let us look at one of the constraints, {D;", D)} = {Df + A, Df + A7} = 0 with
Af = (=)D 44 A 45 (A = XDy + QY™ Notice that A" can be expressed as
a pure gauge form, A7 = —D;"gg~" such that {D;", D'} = ¢{Df, D] }g~" = 0, where
g(a:“,@Ai,ég;uA,@A) is some matrix, realizing gauge transformations on the extended
superspace. One can eliminate A;, using such a matrix. In doing so, the additional
potentials A** are no longer zero, rather, in this new gauge we have

AT =0

A7 = g 'A7g+g'Diyg

A = g 'AYg+g ' Dig (30)
A/++ — g—1D++g

A7 = ¢g'D g

A0 = ¢ 'D%.

Note that D° is a charge operator, assigning 41 charge to u* and -1 charge to @”. Since
this charge is to be preserved for any potentials under a ‘gauge transformation,” we require

0 0
o, _ [,A A _
Dg—(u 5ud @ 8WA)g—O. (31)
This implies g(z, 6, 0; (uw)), where (uw) is the inner product of spinors, (u@) = e4gu’@®

= u'®y = @M. The (uw) dependence may lead to (31), however, as one can easily

seen, this keep A’** vanishing. We are looking for a solution of the constraints (23)-(26)
by executing a ‘gauge transformation’ in the extended supersupace such that we have
non-vanishing A’ *£_ This leads us to introduce the quantities

UAQQ :gz ’ @Aeg :gz (Z = 1a2778) (32)
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We can parametrize g = g(z,0,0;&,£') such that it is linear in & as well as in &'. This
parametrization naturally leads Dg = 0 and non-zero A’ by use of D*HE = uA 280 =
¢ and D¢ = —w 280 = ¢

A
For simplicity, let us write the gauge potentials without primes. In the new gauge,

Al =0, the gauged versions of the anticommutation relations (29) become
DfA; =DjA7 = 0 (33)

Dy A7 + D;jA; +{A;7, A7 = 0 (34)

DFA, = —i2(=1)" V2 gl A, (35)

Dy A + DX AT +{A7 A} = i2(—1)" D2 §lotA, (36)

Dy AL, + DAY +{A ALy = 0 (37)

where we omit the trivial relation {D;", D]} = 0. The gauged versions of the commutation
relations (28) become

DA™ — D TATTH[ATTATT] = 0 (38)
DYATT = 24*t (39)

DA™ = —2A™ (40)

DfAT™ = 0 (41)

D** A% — DYAT + [A*, 4] = 0 (42)
D¥F A7 — Dy ATE +[AFF A7) = 0 (43)
DfA™ = —A7 (44)

DOA; = —A; (45)

DA = 0 (46)

where we also omit the trivial relation [D° Df| = 0. Equations (39) and (40) imply
that the group element g further has a dependence on £°¢*, that is, it is parametrized
by g(z,0,0;¢¢") rather than g(x,0,0;¢',&"). Parametrization of A% = A’ (x,0,0;£°¢)
and Ay = Ani(z,0,0;6¢) (A7 = —(=1)"D/254A ;) is also compatible with (45) and
(46). The expression of A" in (30), however, includes the term g~' D’ g. Because of the
spinorial derivative Di-‘ acting on g(z,0,0; £'¢Y), this term potentially change the degree of
homogeneity of £’s or &’s in A’ f4 by the ‘gauge transformations’ in the extended superspace.
We then further impose
D% g=0. (47)

Notice that we need to have D 4; g # 0, since otherwise, A; =—D;f A~ ~=—g D} D g =
g Y (D~~D;t — D; )g vanishes and we will have a trivial solution. The chirality condition
(47) means that the z#-dependence of g always comes in the form of y* = z# — i@AiUZ Aé’_g‘i.
This allows us to parametrize g as g(y*, 0; €Y.

Let us recapitulate the results we have obtained so far. In terms of g(y*,0;£¢") we
parametrize the gauge potentials as

ATt = g7lDty
A" = g'D ¢
AP =0 (48)

7
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A7 = -DfAT =-Di(g7'D g

Ai’x — g—lA(—y)’Ag
where A(=9)"; is defined in an ordinary superspace, i.e., AC9"% = AC9"(z,0,0). The
gauged version of this, AiA’ is then parametrized as Ai‘(x, 0,0; &€ in general. In addition
to the above set of potentials, we also have A, = A, (2,0, 0;u,). With the expressions
in (48), one can straightforwardly check the equations (33), (34), (38) and (42). As we
have seen, the relations (39), (40), (45) and (46) are imbedded in the parametrization
(48).

The rest of the constraint equations can be understood as follows. We consider the
equation (41) as an analyticity condition on A**. Following an idea of harmonic super-
space, we regard A™" as an unconstrained analytic function with which every potential
is to be expressed. With (38) and (41), it is easy to check one of the relations in (43)
involving D™+ and A*". We may have D; A=~ = 0 as a consequence of (41) and, with
this relation, the other equation in (43) involving D~~, A~ also holds. The equation
(38) can alternatively be considered as a defining equation for A=~ in terms of A** (or
an expansion of A™1’s) as is first shown in [13]. The equation (44) then shows A; is
given by A*t*. The rest of the constraints can be considered similarly, namely, we re-
gard the equation (37) as a defining equation for A% and the equations (35), (36) as
that of A, in terms of Aii' Since Ai‘ can be given by a function of AT, all gauge
potentials (in extended superspace) are then expressed by A™ = ¢7'D¥*g, the uncon-
strained analytic (chiral) function of (y*, ;&% €%). The parametrization of g~ (y*, §; £°€7)
and DTg = g™ (y*, 0; €'¢") indicates that AT+ depends on the combinations of both £7¢°
and ¢ This implies that AT contains antiholomorphic factor in terms of the spinors
(which is different from what happens in the Yang-Mills theory).

We end our discussion with the following few remarks. The equation (38) can be
used to determine a proper group element g. It is possible to obtain this equation as
an equation of motion for a gauged Wess-Zumino-Witten (WZW) action [11]. By use of
the Polyakov-Wiegman identity, this gauged WZW action becomes a WZW action whose
target space is our extended superspace CP?®. As in the Yang-Mills case, we expect that
current correlators of this WZW model describes multigraviton tree level amplitudes. It
is also possible to interpret graviton amplitudes in the same manner as gluon amplitudes,
with an introduction of appropriate Chan-Paton factors [14]. In this context, the graviton
amplitudes can arise from the so-called super-ambitwistor space CP?* x CP34.
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