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Abstract

This work is divided in four parts. In chapter one a new estimate of the one loop contributions of
the standard model to the chromomagnetic dipole moment (CMDM) µ̂q(q

2) of quarks is presented
with the aim to address a few disagreements arising in previous calculations. The most general
case with arbitrary q2 is considered and analytical results are obtained in terms of Feynman
parameter integrals and Passarino-Veltman scalar functions, which are then expressed in terms
of closed form functions when possible. It is found that while the QCD contribution to the static
CMDM (q2 = 0) is infrared divergent, which agrees with previous evaluations and stems from
the fact that this quantity has no sense in perturbative QCD, the off-shell CMDM (q2 6= 0) is
finite and gauge independent, which is verified by performing the calculation for arbitrary gauge
parameter ξ via both a renormalizable linear Rξ gauge and the background field method. It is

thus argued that the off-shell µ̂q(q
2) can represent a valid observable quantity. For the numerical

analysis we consider the region 30 GeV< ‖q‖ < 1000 GeV and analyze the behavior of µ̂q(q
2) for

all the standard model quarks. It is found that the CMDM of light quarks is considerably smaller
than that of the top quark as it is directly proportional to the quark mass. In the considered
energy interval, both the real and imaginary parts of µ̂t(q

2) are of the order of 10−2−10−3, with
the largest contribution arising from the QCD induced diagrams, though around the threshold
q2 = 4m2

t there are also important contributions from diagrams with Z gauge boson and Higgs
boson exchange.

Further, in chapter two the effects of the absorptive (imaginary) parts of the top quark

chromomagnetic µ̂t and chromoelectric d̂t dipole moments on top quark production at the LHC
are studied and the allowed area in the Im

[
µ̂t
]
− Im

[
d̂t
]

plane is obtained using the experimental

data at
√
s = 14 TeV, with the limits on Im

[
µ̂t
]

being of the order of 10−1 − 10−2, which
are consistent with the standard model prediction. The most recent limits on the real parts of
µ̂t and d̂t reported by the CMS collaboration are then used to assess the potential impact of
their corresponding imaginary parts on top quark production via the study of some kinematic
distributions, but no significant deviation from the standard model at leading order contribution
is observed.

In chapter three the one-loop contributions to the chromomagnetic dipole moment µ̂t(q
2)

and electric dipole moment d̂t(q
2) of the top quark are calculated within the reduced 331 model

(RM331) for non-zero q2. It is argued that the results are gauge independent and thus represent
valid observable quantities. In the RM331 µ̂t(q

2) receives new contributions from two heavy
gauge bosons Z ′ and V ± and one neutral scalar boson h2, along with a new contribution from
the standard model Higgs boson via flavor changing neutral currents. The latter, which are
also mediated by the Z ′ gauge boson and the scalar boson h2, can give a non-vanishing d̂t(q

2)
provided that there is a CP -violating phase. The analytical results are presented in terms of
both Feynman parameter integrals and Passarino-Veltman scalar functions, which are useful to
cross-check the numerical results. Both µ̂t(q

2) and d̂t(q
2) are numerically evaluated for parameter

xiii



values still allowed by the constraints from experimental data. It is found that the new one-loop
contributions of the RM331 to the real (imaginary) part of µ̂t(q

2) are of the order of 10−5 (10−6),
which are at least three orders of magnitude smaller than the standard model prediction, but
are larger than the predictions of other models of new physics. In the RM331 the dominant
contribution arising from the V ± gauge boson for ‖q‖ in the 30-1000 GeV interval and a mass

mV of the order of a few hundreds of GeVs. As for d̂t(q
2), it receives its largest contribution from

h2 exchange and can reach values of the order of 10−19, which is smaller than the contributions
predicted by other standard model extensions.

And finally, in chapter four the one-loop contributions to the trilinear neutral gauge boson
couplings ZZV ∗ (V = γ, Z, Z ′), parametrized in terms of one CP -conserving fV5 and one CP -

violating fV4 form factors, are calculated in models with CP -violating flavor changing neutral
current couplings mediated by the Z gauge boson and an extra neutral gauge boson Z ′. Ana-
lytical results are presented in terms of Passarino-Veltman scalar functions. Constraints on the

vector and axial couplings of the Z gauge boson
∣∣∣gtuV Z

∣∣∣ < 0.0096 and
∣∣∣gtcV Z

∣∣∣ < 0.011 are obtained

from the current experimental data on the t → Zq decays. It is found that in the case of the
ZZγ∗ vertex the only non-vanishing form factor is fγ5 , which can be of the order of 10−3, whereas

for the ZZZ∗ vertex both form factors fZ5 and fZ4 are non-vanishing and can be of the order of
10−6 and 10−5, respectively. Our estimates for fγ5 and fZ5 are smaller than those predicted by

the standard model, where fZ4 is absent up to the one loop level. We also estimate the ZZZ ′
∗

form factors arising from both diagonal and non-diagonal Z ′ couplings within a few extension

models. It is found that in the diagonal case fZ
′

5 is the only non-vanishing form factor and its
real and imaginary parts can be of the order of 10−1 − 10−2 and 10−2 − 10−3, respectively, with
the dominant contributions arising from the light quarks and leptons. In the non-diagonal case

fZ
′

5 can be of the order of 10−4, whereas fZ
′

4 can reach values as large as 10−7 − 10−8, with the
largest contributions arising from the Z ′tq couplings.



Chapter 1

Chromomagnetic dipole moment
of quarks in the standard model

The anomalous magnetic dipole moment (MDM) of fermions has been a fertile field of study,
giving rise to a plethora of theoretical work within the context of the standard model (SM)
[1, 2, 3, 4], as well as beyond the SM (BSM) theories [5]. Furthermore, the fermion electric
dipole moment (EDM) has also been analyzed in several models [6, 7, 8, 9, 10, 11, 12]. More
recently, the calculation of radiative corrections to the gluon-quark-quark q̄qg vertex has also
become a topic of considerable interest. Radiative corrections to the t̄tg coupling are expected
to be considerably larger than those of lighter quarks due to the large top quark mass [13]. In
particular the top quark chromomagnetic dipole moment (CMDM) and chromoelectric dipole
moment (CEDM) have been studied within the framework of the SM [14], two-Higgs doublet
models (THDMs) [15], the four-generation THDM (4GTHDM) [13], little Higgs models [16, 17],
the minimal supersymmetric standard model (MSSM) [18], unparticle model [19], vector like
multiplet models [20], etc.

The anomalous q̄qg coupling can be written as

L =
gs
2
q̄T aσµν

(
aq

2mq

+ idqγ
5

)
qGµνa , (1.1)

where aq and dq are the CMDM and CEDM, respectively, whereas Gµνa is the gluon field strength
tensor and T a are the SU(3) color generators. The CMDM and CEDM are usually defined in
the literature as dimensionless parameters [21]

µ̂q ≡
mq

gs
µ̃q,

d̂q ≡
mq

gs
d̃q, (1.2)

where µ̂q = aq/2 and d̂q = mqdq.

In the SM, the CMDM is induced at the one-loop level or higher orders via electroweak (EW)
and QCD contributions. On the other hand, the CEDM is induced up to the three-loop level
[22, 23] since all the partial contributions exactly cancel out at the two-loop level [24]. The
lowest order SM contributions to the CMDM of the top quark have been studied in [14] and
more recently in [25, 26]. However, there are some disagreement between those calculations (see

1



CHAPTER 1 CHROMOMAGNETIC DIPOLE MOMENT OF QUARKS IN THE
STANDARD MODEL

q(p1) q(p2)

qµ

Figure 1.1: Notation for the quark-gluon vertex.

section 2.1 of [25] and section 3.D of [26]). In particular, authors of Ref. [14] only focus on the
static CMDM, which they claim it receives an infrared finite QCD contribution, whereas authors
of Ref. [25] argue that the on-shell CMDM (q2 = 0) has no sense in perturbative QCD as this
contribution diverge, so they consider the off-shell CMDM (q2 6= 0). Even more, the analytical
results presented in [14], [25] and [26] disagree.

In the experimental side, the advent of the LHC has triggered the interest on the anomalous
t̄tg couplings, which have become an important area of study in experimental particle physics.
Searches for any deviation to the SM t̄t production has made it possible to set constraints on the
top quark CMDM and CEDM, which are regularly improved [27, 21, 28]. In fact, the current
upper bounds have been enhanced by one order of magnitude as compared to the previous ones
[21]. Hopefully, more tight constraints on these top quark properties, closer to the SM predictions,
would be achieved in the future, and thus a more precise and unambiguous prediction of the SM
contributions to the top quark CMDM is mandatory. Also, since contributions to the CMDM
in extension theories could give rise to a sizeable enhancement, a precise determination of such
contributions is in order.

In this chapter we present a new calculation of the SM one-loop contributions to the quark
CMDM, which is aimed to address some ambiguities of previous results. Our calculation is
done via both a renormalizable linear Rξ gauge and the background field method (BFM), which
allows one to verify that the off-shell CMDM of a quark is gauge independent, which in turn
is a necessary condition for a valid observable quantity. The rest of the chapter is organized
as follows. In Sec. 1.1, we present the main steps of the analytical calculation, stressing any
disagreement with previous results. The corresponding loop functions are presented in terms of
Feynman parameter integrals, Passarino-Veltman scalar functions and closed form results in A.1,
which may be useful for a numerical cross-check. In Sec. 1.2, we present a numerical analysis
and discussion of the behavior of the CMDM of SM quarks, with emphasis on the top quark one.
The conclusions of this chapter are presented in Sec. 1.3.

1.1 Analytical results

1.1.1 Quark-gluon vertex function

For off-shell quarks and gluon, the most general CP conserving quark-gluon vertex function can
be cast as [29]

Γaµ = gsT
aΓµ = gsT

a(ΓLµ + ΓTµ ), (1.3)

where the longitudinal ΓLµ (transverse ΓTµ ) vertex function can be decomposed into four (eight)

independent form factors λi (τi), which depend on q2, p2
1 and p2

2, where we follow the notation

2



1.1. ANALYTICAL RESULTS

of Fig. 1.1. When p2
1 = p2

2, only the following linear independent terms survive:

ΓL
µ

=λ1γ
µ + λ2p

µ
/p+ λ3p

µ, (1.4)

and

ΓT
µ

=τ3

(
q2γµ − qµ/q

)
+ iτ5q

νσµν − iτ7 pµpν1pλ2σλν

+ τ8

(
−ipν1pλ2γµσνλ + pµ2 /p1 − pµ1 /p2

)
, (1.5)

where p = p1 + p2. For on-shell quarks Γµ is enclosed by Dirac spinors and we arrive at the
standard form

u(p2)Γµu(p1) = F1(q2)u(p2)γµu(p1)

− iF2(q2)u(p2) (σµνqν)u(p1), (1.6)

where the static CMDM can be obtained from the Pauli form factor as follows aq = −2mqF2(0),

but in this work we are interested in the case with q2 6= 0. At the one-loop level, aq(q
2) receives

QCD and EW contributions from the SM via the Feynman diagrams depicted in Figs. 1.2 and
1.3, respectively. We will address below the issue of the gauge independence of aq(q

2), which is
necessary to have a valid observable quantity.

(a)

gq q

q

(b)

qq q

g g

Figure 1.2: One-loop Feynman diagrams for the QCD contributions to the CMDM of quarks:
(a)QED-like diagram and (b)three-gluon diagram. For the BFM the external gluon is replaced
by its background field gB .

1.1.2 The off-shell CMDM of quarks

While on-shell Green functions are gauge invariant and gauge independent, this is not necessarily
true for off-shell Green functions as they do not correspond to a physical process but just to an
amputated set of Feynman diagrams. The first systematic approach to obtain well-behaved off-
shell Green functions out of which valid observable quantities can be extracted was the so-called
pinch technique (PT) [30, 31, 32], which is based on a diagrammatic method that combines self-
energy, vertex and box diagrams associated to a physical process to remove any gauge dependent
term. It was later shown that at the one-loop level the results obtained via the PT coincide
with those obtained by the BFM via the Feynman-’t Hooft gauge (ξQ = 1) [33, 34]. In this
work we use the later approach to obtain a gauge independent quark CMDM as it is simpler in
computational grounds.

Since we are interested in the CMDM of quarks for an off-shell gluon, we need to verify that
the contributions of Figs. 1.2 and 1.3 are gauge independent and thus provide an observable quan-

3
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STANDARD MODEL

(c)

hq q

q

(a)

q

A,Zq q

(d)

q

ϕZq q

(e)

q′

ϕ+q q

(b)

q′

W+q q

g g g

gg

Figure 1.3: Feynman diagrams for the SM electroweak contributions to the CMDM of quarks
at the one-loop level in a renormalizable linear Rξ gauge: (a) and (b)gauge boson exchange, (d)
and (e) Goldstone boson exchange, and (c)Higgs boson exchange. For the BFM the gluon is
replaced by its background field gB .

tity. With this aim, to cross-check our result, for our calculation we use both the conventional
renormalizable linear Rξ gauge and the BFM [33] with arbitrary gauge parameters. Indeed, both
computations are technically identical except for the contribution of the three-gluon diagram of
Fig. 1.2 as for the remaining diagrams the only dependence on the gauge parameters arises from
the gauge boson propagators. The main outline of our calculation is as follows. We first wrote
out the amplitude for each contributing Feynman diagram for arbitrary ξ (ξQ) and then used the
Passarino-Veltman reduction scheme to perform the integration over the four-momentum space.
Once the gauge parameter independence of µ̂q(q

2) was verified, we used Feynman parameter
integration in the unitary gauge to obtain an alternate result, which can be used for a numerical
cross-check. The loop functions are thus presented in terms of Feynman parameter integrals and
Passarino-Veltman scalar functions. For the latter we include the results in terms of closed form
functions if possible. The Dirac algebra and tensor reduction was done with the help of FeynCalc
[35] and Package-X [36], which prove very helpful to verify explicitly that the gauge parameter
drops out from the calculation.

Below, p1 (p2) denotes the four-momentum of the ingoing (outgoing) quark, whereas q is
the gluon four-momentum as shown in Fig. 1.1. It is understood that in the D-dimensional
integrals, the volume element dDk is accompanied by a factor of µ4−D, with µ the scale of
dimensional regularization, that drops out from the final results as they are ultraviolet finite.
Also, a small imaginary part iε must be added to the propagators. Below, the gauge parameters
are indistinctly denoted by ξ as they cancel out for each partial contribution.

The CMDM is defined in a similar fashion to the electromanetic case. We thus write the
S-matrix element for q̄qg coupling as

iM = igsT
au(p2)Γµu(p1), (1.7)

4



1.1. ANALYTICAL RESULTS

where, from Lagrangian (1.1), the corresponding vertex function Γµ can be written as

Γµ = iσµνq
ν

(
aq

2mq

+ idqγ
5

)
. (1.8)

We now turn to outline the main steps of the calculation.

1.1.3 QCD contribution

The contribution to the vertex function Γµ from diagram 1.2(a) is

ΓµQCD1
=
ig2
s

6

∫
dDk

(2π)D
γβ
(
/q2 +mq

)
γµ
(
/q1 +mq

)
γα(

q2
2 −m2

q

)(
q2
1 −m2

q

)(
k2
)

× Pαβ(k), (1.9)

where Pλρ(p) =
(
gλρ + (ξ − 1)p

λ
p
ρ

p
2

)
, qi = k + pi, and mq is the quark mass. In this case we

have three color generators T a, which simplifies as follows

T bjnT
a
nmT

b
mi =

1

2
δjiT

a
nn −

1

2N
T aji = −1

6
T aji, (1.10)

where we used T bjnT
b
mi = 1

2

(
δjiδnm − 1

N δjnδmi
)

and Tr [T a] = 0, whereas N stands for the quark
color number.

After four-momentum integration, the ξ parameter drops out and the following contribution
to the CMDM is obtained:

aQCD1
q

(
q2
)

=
αs
6π

FQCD1
q

(
q2
)
, (1.11)

where the function FQCD1
q is presented in A.1.1 When q2 = 0, it is straightforward to obtain

aQCD1
q (0) = − αs

12π
, (1.12)

which agrees with the well-known QED result after the replacement of the electric charge e by
the strong coupling constant αs and the insertion of the color factor of Eq. (1.10).

The non-abelian contribution to the quark CMDM from diagram 1.2(a) can be obtained from
the following vertex function:

ΓµQCD2
= − i3g

2
s

2

∫
dDk

(2π)D
γρ
(
−/k +mq

)
γλΣλρµ(

q2
2

)(
k2 −m2

q

)(
q2
1

) , (1.13)

1
From now on, all the corresponding loop functions appearing in the contributions to aq

(
q
2
)
, denoted by

calligraphy letters, will be presented in terms of Feynman parameter integrals, Passarino-Veltman scalar functions

and closed form results in appendices A.3.1, A.3.2, and A.1.3, respectively, including the results for q
2
= 0.
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with

Σλρµ =
(
gαµ (p2 − k − 2p1)

β
+ gβµ (p1 − k − 2p2)

α

+ gαβ (2k + p1 + p2)
µ

+
1

ξ

(
gαµqβ2 + gβµqα1

))

× Pλα (q1)P ρβ (q2), (1.14)

for the BFM, whereas for the linear Rξ gauge we must drop the 1
ξ term between the parenthesis.

As for the corresponding color factor, it was worked out as follows

TmjbT
n
bif

anm = −2iTr [Tm [Tn, T a]]TmjbT
n
bi = − i3

2
T aji. (1.15)

After four-momentum integration, our result for the quark CMDM is given as

aQCD2
q

(
q2
)

=
3αs
2π

FQCD2
q

(
q2
)
, (1.16)

which disagrees with the result obtained in [25] as there is a disagreement with the color factor
used by those authors.

When q2 = 0, Eq. (1.16) yields an infrared divergent result for q2 = 0:

FQCD2
q (0) =

1

2

(
1

ε
+ log

(
µ2

m2
q

)
+ 3

)
, (1.17)

where ε is the pole of dimensional regularization. Therefore, the contribution of the three-
gluon diagram is not well defined when q2 = 0 as it was also pointed out in [25]. Since QCD

contributions to the CMDM are proportional to the strong running coupling constant αs

(
q2
)

,

such contributions have not perturbative sense at q2 = 0 but at a scale where a perturbative
calculation is valid.

1.1.4 Electroweak contribution

We now present the calculation of the contributions to the quark CMDM induced through the
Feynman diagrams of Fig. 1.3. We note that the diagrams with photon, Z gauge boson, ϕZ
Goldstone boson, and Higgs boson exchange are similar to those inducing a lepton anomalous
MDM [2, 37], but with the external photon replaced by a gluon. Therefore, the CMDM just
differ by the coupling constants gs and the SU(3) generators T aij instead of the electric charge.
Thus our result must reproduce that of the anomalous MDM of a lepton. As far as the diagrams
with W± gauge boson and GW Goldstone boson exchange are concerned, the lepton anomalous
MDM has no analogous contributions.

Photon exchange

The corresponding contribution to the q̄qg vertex function can be written as

6
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ΓµA = −ie2Q2
q

∫
dDk

(2π)D
γβ
(
/q2 +mq

)
γµ
(
/q1 +mq

)
γα(

q2
2 −m2

q

)(
q2
1 −m2

q

)(
k2
)

×
(
gαβ + (ξ − 1)

kαkβ

k2

)
, (1.18)

with Qq the quark electric charge in units of e. After a straightforward calculation, we arrive at
a gauge-parameter independent result for an on-shell gluon. It reads

aAq

(
q2
)

= −e
2Q2

q

4π2 FA
q

(
q2
)
, (1.19)

which gives a result similar to that of the lepton anomalous MDM for q2 = 0:

aAq (0) =
αQ2

q

2π
. (1.20)

We note that the electric charge factor Q2
q is missing in the corresponding result of [25]. However,

since the internal photon of diagram 1.3(a) is attached to two quark lines, such a factor must
appear in this contribution.

Z gauge boson and ϕZ Goldstone boson exchange

We now present the calculation for the contributions of the loops with the neutral Z gauge boson
and its associated Goldstone boson ϕZ [diagrams (a) and (d) of Fig. 1.3]. The corresponding
contributions need to be added up to cancel out the dependence on the gauge parameter ξ. As
far as the diagram with Z gauge boson exchange is concerned, the q̄qg vertex function in terms
of the axial (vector) gqA (gqV ) couplings reads:

ΓµZ =
−ig2

c2W

∫
dDk

(2π)D
Ξµ(

q2
2 −m2

q

)(
q2
1 −m2

q

)(
k2 −m2

Z

) , (1.21)

where

Ξµ = γβ
(
gqV − gqAγ5

) (
/q2 +mq

)
γµ
(
/q1 +mq

)
γλ

×
(
gqV − gqAγ5

)(
gβλ + (ξ − 1)

kβkλ

k2 − ξm2
Z

)
, (1.22)

the vector and axial vector couplings are defined as

gqV =
1

2
T3q
−Qqs2

W , gqA =
1

2
T3q

, (1.23)
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with T3q
the weak isospin (T3u

= 1
2 , T3d

= − 1
2 ). On the other hand, the contribution from the

diagram with ϕZ Goldstone boson exchange is

ΓµϕZ =
−ig2m2

q

4m2
W

∫
dDk

(2π)D
γ5 (

/q2 +mq

)
γµ
(
/q1 +mq

)
γ5

× 1(
q2
2 −m2

q

)(
q2
1 −m2

q

)(
k2 − ξm2

Z

) . (1.24)

The explicit integration in the four-momentum space shows that the dependence on the ξ gauge
parameter cancels out after adding up the contributions of the Z and ϕZ exchange diagrams.
The total contribution is thus given by

aZq

(
q2
)

=

√
2GFm

2
q

π2

(
(gqA)

2
A Z
q

(
q2
)

+ (gqV )
2
V Z
q

(
q2
))

, (1.25)

whereas the result for q2 = 0 is analogue to the Z contribution to the anomalous MDM of a
lepton [2]. There is agreement with the calculation presented in [26], but there is no agreement
with the result of [25] as those authors use the Feynman-’t Hooft gauge propagator for the Z
gauge boson but seem to omit the ϕZ Goldstone boson exchange contribution.

W± gauge boson and ϕ± Goldstone boson exchange

We now calculate the contribution from the Feynman diagrams (b) and (e) of Fig. 1.3 as both
contributions must be added up in order to drop out the dependence on the gauge parameter ξ.
For the diagram with W gauge boson exchange, the q̄qg vertex function can be written as

ΓµW =
∑

q
′

−ig2
∣∣∣Vqq′

∣∣∣ 2

2

∫
dDk

(2π)D
Πµ

× 1(
q2
2 −m2

q
′

)(
q2
1 −m2

q
′

)(
k2 −m2

W

) , (1.26)

with

Πµ = γβPL

(
/q2 +mq

′

)
γµ
(
/q1 +mq

′

)
γλPL

×
(
gβλ + (ξ − 1)

kβkλ

k2 − ξm2
W

)
, (1.27)

whereas the contribution of the ϕ± Goldstone boson reads

Γµ
ϕ
± =

∑

q
′

ig2
∣∣∣Vqq′

∣∣∣ 2

2mW

∫
dDk

(2π)D
Π
′
µ

× 1(
q2
2 −m2

q
′

)(
q2
1 −m2

q
′

)(
k2 − ξm2

W

) , (1.28)
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with

Π
′
µ =

(
mqPL −mq

′PR

)(
/q2 +mq

′

)
γµ
(
/q1 +mq

′

)

×
(
mqPR −mq

′PL

)
, (1.29)

where PL,R is the chirality projector, q′ stands for the internal quark and Vqq′ is the CKM matrix
element.

Again after four-momentum integration, the gauge parameter drops out and the following
gauge independent contribution to the quark CMDM is obtained:

aWq

(
q2
)

=
∑

q
′

GFm
2
q

∣∣∣Vqq′
∣∣∣ 2

4
√

2π2 FW
qq
′

(
q2
)
, (1.30)

with the dominant term arising from the diagonal CKM matrix element (Vqq ≈ 1). There is no
agreement with the result of [25] as those authors consider that the external and internal quark
masses are degenerate.

Higgs boson exchange

The remaining SM contribution to the quark CMDM arises from the diagram with Higgs boson
exchange, which is gauge independent. The corresponding contribution to the q̄qg vertex function
is given by

Γµh =
ig2m2

q

4m2
W

∫
dDk

(2π)D

(
/q2 +mq

)
γµ
(
/q1 +mq

)
(
q2
2 −m2

q

)(
q2
1 −m2

q

)(
k2 −m2

h

) . (1.31)

The algebra is straightforward and we obtain after four-momentum integration:

ahq

(
q2
)

= −GFm
2
q

4
√

2π2 Fh
q

(
q2
)
, (1.32)

which for q2 = 0 agrees with the results presented in [25].

1.2 Numerical evaluation and discussion

We now turn to the numerical evaluation of the one-loop contribution to the CMDM of quarks.
We first present a numerical estimate of the quark CMDM in the SM, which is aimed to make a
comparison with previous results, which can be useful to settle any ambiguity.

1.2.1 Off-shell CMDM of quarks in the SM

We first analyze the behavior of the parameter µ̂=aq/2 in the SM, which is the one studied by the
experimental collaborations [21]. Although the top quark CMDM is the one mainly studied in
the literature, for the sake of completeness we include in our analysis an estimate for all the SM

9
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quarks. Since the results for the QCD contribution have not sense in perturbative calculations
at q2 = 0, as pointed out above, we study the case q2 6= 0. Anomalous top quark couplings
have been studied at the LHC through tt production [38, 39, 40, 28], moreover, its effects to
the tt cross section have been analyzed in [41, 42]. The transition CMDM could contribute at
the leading order through the diagrams of Fig. 1.4, where the top quark CMDM contributions
are marked by a dot and we include the ggtt interaction arising from Lagrangian (1.1). Since
the outgoing top quarks are on-shell, the gluon four-momentum in the s-channel diagrams obeys
‖q‖ ≥ 2mt, whereas in the t and u channels there are no such kinematical constraint.

Figure 1.4: Feynman diagrams for tt production via the Lagrangian of Fig. 1.1. The dots
correspond to the contributions of the top quark CMDM to the tt production

.

We have implemented the strong coupling constant αs

(
q2
)

as the three loop approximate so-

lution of the renormalization group equation of QCD [43, 44]. We consider gluon four-momentum
transfer in the 30-1000 GeV region, where αs ∼ 0.1, since for ‖q‖ less than around 1 GeV the
theory becomes strongly interacting [45]. In addition, at next-to-leading order QCD calculations,
EW corrections are neglected, so only the pure QCD contribution to the CMDM of quarks would
be relevant.

For the numerical analysis we use the results in terms of Passarino-Veltman scalar functions,
which were evaluated via the LoopTools [46] and Collier [47] packages, though we cross-check
with the results obtained by numerical integration of the Feynman parameter results, which
however shows more numerical instability.

Light quarks CMDM

We show in Fig. 1.5 the behavior of the real Re
[
µ̂q
]

and imaginary Im
[
µ̂q
]

parts of the CMDM
of the light SM quarks as functions of the gluon transfer momentum ‖q‖. We observe that in both
cases the largest estimates correspond to the b quark CMDM, whereas the smallest estimates are
obtained for the u and d quarks. This stems from the fact that the CMDM is proportional to
the quark mass for q2 6= 0. We also note that the real and imaginary parts of µ̂q are about the
same magnitude for all the light quarks. Numerical predictions for the CMDM of light quarks
are shown in Table 1.1 for some selected values of ‖q‖.

We now turn to analyze the behavior of the partial contributions to µ̂q for a light quark.
Thus, by way of illustration, we show in Fig. 1.6 the real and imaginary parts of the partial
contributions to the c quark CMDM. All other light quark’s contributions exhibit a similar
behavior, though there are slight changes for the b quark as explained below. We first note that
the dominant contributions arise from the triple gluon vertex (the so-called QCD2 contribution),
though at high energies the QCD1, γ, Z and W contributions are of similar size. In particular,
the imaginary parts of the EW gauge bosons contributions are slightly larger than the one of
the QCD1 contribution for ‖q‖ & 600 GeV, whereas the real parts of both QCD contributions

10
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Figure 1.5: Real (left plot) and imaginary (right plot) parts of the light quarks CMDM µ̂q as
function of the transfer momentum of the gluon.

dominate in all the studied energy interval. On the other hand, the Higgs boson contributions
are the smallest ones: for the u and d quarks, such contributions are negligibly small, of the
order of 10−20 − 10−21. Note that for ‖q‖ > 30 GeV all the partial contributions to µ̂q develop

an imaginary part as q2 > 4m2, with m the mass of the virtual particles attached to the external
gluon, except for the W contribution to µ̂b, which is purely real for q2 < 4m2

t as long as one
neglects the contributions of the loops with internal u and c quarks.

Figure 1.6: Real (left plot) and imaginary (right plot) parts of the SM one-loop partial contri-
butions to µ̂c as functions of the transfer momentum of the gluon ‖q‖.

Top quark CMDM

We now turn to analyze the behavior of the CMDM of the top quark. We first show in Fig.
1.7 µ̂t as a function of ‖q‖ as well as its partial QCD and EW contributions. We observe that
both the real and imaginary parts are dominated by the QCD contributions, though the real
part of the EW contribution is of comparable size around the threshold ‖q‖ = 2mt, where all the
contributions show a peak due to a flip of sign. Both the QCD and EW contributions decrease as
‖q‖ increases: above the 2mt threshold the real part of the EW contribution becomes negligible,
whereas its imaginary part is about one order of magnitude below the imaginary part of the QCD
contribution for ‖q‖ ∼ 1000 GeV. However, at very large ‖q‖ ( much larger than 1000 GeV) the
imaginary part of the EW contribution becomes dominant since the imaginary part of the QCD
contribution decreases quickly at very high energies.

We now show in Fig. 1.8 the real and imaginary parts of all the partial contributions to µ̂t
as functions of ‖q‖. As far as the real parts are concerned, we observe that at low and high
energies the QCD2 contribution dominates, but around ‖q‖ = 2mt the Z and h contributions
become the dominant ones, which explains the behavior of the EW contribution shown in Fig.

11



CHAPTER 1 CHROMOMAGNETIC DIPOLE MOMENT OF QUARKS IN THE
STANDARD MODEL

Figure 1.7: Real (left plot) and imaginary (right plot) parts of the EW, QCD and total contri-
butions to the top quark CMDM µ̂t as function of the transfer momentum norm of the gluon
‖q‖.

1.7 at ‖q‖ ' 2mt. Nevertheless such contributions are of opposite sign and they tend to cancel
each other out. On the other hand, as for the imaginary contributions, below the threshold
‖q‖ = 2mt all but the QCD2 and W contributions vanish and above this threshold the Z and h
contributions develop imaginary parts of the same order of magnitude than that of the three-gluon
contribution (QCD2), which remains slightly larger as ‖q‖ increases. We can conclude that the
QCD contributions is always dominant, nevertheless the imaginary part of the EW contribution
become comparable to the QCD one at high energies. After the threshold ‖q‖ = 2mt the top
quark CMDM exhibits a peak due to a flip of sign. Such a behavior is not observed however in
the CEDM of light quarks as we are studying energies far from the threshold region.

Figure 1.8: Real (left plot) and imaginary (right plot) parts of the SM one-loop partial contri-
butions to the top quark CMDM µ̂t as functions of the transfer momentum of the gluon ‖q‖.

Finally, we show in Table 1.1 the numerical estimates of µ̂q for all the SM quarks at a
few selected values of the gluon transfer momentum ‖q‖. As expected, the largest estimate
corresponds the top quark CMDM, though the bottom and charm quarks CMDM could also be
non-negligible in some energy regions. The CMDM of all quarks is in general complex, with real
and imaginary parts of comparable size, though the real parts are always slightly larger. We
have compared our numerical results with those reported in [26] for the top quark CMDM at
q2 = ±m2

Z and find a good agreement. In this case the imaginary part of µ̂(q2) arises from the
QCD2 and W exchange contributions, whereas the remaining contributions are purely real as q2

is below the kinematic threshold where an imaginary part is developed.
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Table 1.1: Estimates for the SM contribution to the CMDM µ̂q of the SM quarks for select values
of the gluon transfer momentum ‖q‖.

Quark ‖q‖ = 30 GeV ‖q‖ = mZ ‖q‖ = 500 GeV

d 1.47× 10−8 − i2.96× 10−9 1.44× 10−9 − i2.55× 10−10 4.33× 10−11 − i8.21× 10−12

u 3.47×10−9 − i6.33× 10−10 3.35×10−10 − i5.47× 10−11 9.94×10−12 − i1.75×10−12

s 3.63× 10−6 − i1.17× 10−6 3.8× 10−7 − i1.01× 10−7 1.23× 10−8 − i3.25× 10−9

c 3.08× 10−4 − i2.10× 10−4 3.96× 10−5 − i1.87× 10−5 1.51× 10−6 − i6.07× 10−7

b 1.55× 10−3 − i1.95× 10−3 2.72× 10−4 − i1.96× 10−4 1.24× 10−5 − i6.56× 10−6

t −4.81× 10−2 − i4.69× 10−2 −1.33× 10−2 − i2.66× 10−2 2.24× 10−3 − i5.43× 10−3

Quark ‖q‖ = 800 GeV

d 1.67× 10−11 − i3.42× 10−12

u 3.84× 10−12 − i7.32× 10−13

s 4.88× 10−9 − i1.37× 10−9

c 6.21× 10−7 − i2.53× 10−7

b 5.3× 10−6 − i2.73× 10−6

t 1.36× 10−3 − i2.6× 10−3

1.3 Remarks

In this chapter we have presented a new evaluation of the SM prediction of the CMDM µ̂q of
quarks at the one-loop level, which is aimed to address some inconsistencies appearing in pre-
vious calculations. We considered the most general case with non-zero transfer momentum of
the gluon q2 and the calculation was performed within both a renormalizable linear Rξ gauge
and the BFM for arbitrary gauge parameters. It was found that the off-shell CMDM is gauge
independent, which assures us that it is an observable quantity. For completeness the loop inte-
grals are presented in terms of Feynman parameter integrals, Passarino-Veltman scalar functions
and closed form functions, which are useful to make a cross-check of the numerical results. It is
found that the QCD contribution arising from the Feynman diagram with a three-gluon vertex
has an infrared divergence and it thus not defined at q2 = 0, which is due to the fact that the
static CMDM has not perturbative sense, as it has also been pointed out by the authors of Refs.
[25, 26]. We then perform a numerical analysis and examine the behavior of the CMDM of all
the SM quarks in the region 30 GeV< ‖q‖ < 1000 GeV, where the QCD coupling constant α(q2)
is of the order of 10−1. In this energy region the CMDMs are complex in general, with the
imaginary parts being about the same order of magnitude than the real parts. Furthermore, the
QCD contributions dominate over the EW contributions, which suggests that two-loop contri-
butions can be relevant. On the other hand, the imaginary part of the EW contribution is only
comparable to the QCD contribution at very high energies. Since the CMDM is proportional to
the quark mass, the largest contributions correspond to the top quark CMDM, which is of the
order of 10−2−10−3, with the imaginary part of the EW contributions of the same size than the
QCD contributions around the threshold q2 = 4m2

t .
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Chapter 2

Bounds on the absorptive parts of
the CMDM and CEDM dipole
moments of the top quark from
LHC data

Quite recently, the study of the chromomagnetic dipole moment (CMDM) µ̂t of the top quark has
arisen interest both theoretically and experimentally. In the theoretical side, a new evaluation
of the lowest order contributions to µ̂t within the framework of the standard model (SM) was
presented very recently [48] in order to settle some ambiguities of previous evaluations. Also,
several non SM contributions have been calculated up to the one-loop level in the framework of
extension theories such as two Higgs doublet models (THDM) [15], fourth-generation THDMs
[13], 331 models [49], etc. As far as the SM prediction is concerned, in contrast to what was
claimed before [14], it is now clear that the CMDM is infrared divergent, with the divergence
arising from the non-abelian term of the gluon field tensor [48]. Therefore, the study of the static
CMDM has no sense in perturbative QCD. It was also pointed out [48] that the off-shell CMDM
is finite and gauge independent in the SM, which are necessary conditions for an observable
quantity. On the other hand, the top quark chromoelectric dipole moment (CEDM) d̂t, which is
induced up to the three-loop level in the SM [22] and could give a clear signal of CP violation,
has also been a topic of interest in the literature as it can arise at the one-loop level in several
beyond the SM (BSM) theories [13, 49], thereby opening the possibility of an enhanced value. In
general, both the off-shell CMDM and CEMD can have non-zero imaginary parts, which however
remain almost unexplored.

In the experimental side, the leading order corrections to the cross section of top quark pair
production induced by the top quark CMDM and CEDM have been studied in [50, 42, 41, 51, 52,
53, 54, 40, 55, 56, 57], and the next to leading order corrections have also been calculated more
recently [58, 59, 60]. The CMS collaboration has imposed the following current bounds on the

top quark CMDM and CEDM: −0.014 < µ̂t < 0.004 and −0.020 < d̂t < 0.012 [28], which where
obtained via two opposite sign leptons (e+e−, e±µ∓, µ+µ−) in the final state. Furthermore, the

CMS collaboration also set the limits µ̂t = −0.024+0.013
−0.009(stat)

+0.016
−0.011(syst) and |d̂t| < 0.03 [61],

which were obtained by the analysis of lepton+jets events in the final state. These bounds were
extracted from experimental data by assuming that the top quark CMDM and CEDM are real
quantities. Nevertheless, it is clear that even if we consider the experimental errors, the bounds
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on µ̂t seem to be incompatible. Therefore, a further analysis is in order.

The anomalous ttg interaction can be induced through Lagrangian (1.1) and it also describes
the interaction between an off-shell gluon and two on-shell quarks [29]. Since the CMDM and
CEDM of the top quark are complex in general, they can be written as

µ̂t = Re
[
µ̂t
]

+ iIm
[
µ̂t
]
, (2.1)

d̂t = Re
[
d̂t
]

+ iIm
[
d̂t
]
. (2.2)

As far as the SM predictions are concerned, the real and imaginary parts of the off-shell top quark
CMDM are of the order of 10−2 − 10−3 [48], whereas the predictions for the off-shell CEDM are
not available yet. Nevertheless, in BSM theories both real and imaginary parts of the off-shell
top quark CEDM are of the order of 10−19 [49]. The effects of the absorptive parts of the CMDM
and CEDM at LHC processes were first studied in [40] but to our knowledge there is no update
on such analysis, which we believe is in order given the current experimental bounds on these
observables.

In this chapter we obtain bounds on the absorptive parts of the CMDM and CEDM of the top
quark using the data for top quark pair production at the LHC run 2. Our work is organized as
follows. In Sec. 2.1 we discuss the framework for the study of the CMDM and CEDM absorptive
parts. Section 2.2 is devoted to present a novel calculation of the parton cross-sections of tt̄
production for complex CMDM and CEDM, which to our knowledge has not been reported
before. In Sec. 2.3 a numerical simulation is presented for top quark pair production at the
LHC via MadGraph5, where the effective Lagrangian of Eq. (1.1) was implemented with the
help of the FeynRules package. The results for the tt cross section as a function of the real and
imaginary parts of µ̂t and d̂t are then used to obtain bounds on their absorptive parts. The
possibility that kinematic distributions could be helpful to disentangle the top quark CMDM
and CEDM absorptive parts is examined in Section 2.4. Finally, in Sec. 2.5 we present our
conclusions.

2.1 Remarks on the absorptive parts of the CMDM in the
SM

In the SM, the CMDM of quarks arises at the one-loop level through the Feynman diagrams of
Figs. 1.2 (QCD contribution) and 1.3 (electroweak contribution). The off-shell CMDM µ̂q(q

2)

can develop an absorptive (imaginary) part when the gluon transfer four-momentum q̂ =

√
q2

crosses the threshold such that the virtual particles attached to the gluon are allowed to be pair
produced, namely q̂ ≥ 2m, with m the mass of such particles. This is true for all energy values
of the external gluon in the case of the Feynman diagram (b) of Fig. 1.2, whereas the threshold
is q̂ ≥ 2mq for the Feynman diagrams (a) of Fig. 1.2 as well as diagrams (a) and (c) of Fig. 1.3,
whereas an absorptive part is developed for q̂ ≥ 2mq

′ in the Feynman diagram (b) of Fig. 1.3.
The absorptive contributions to the CMDM can also arise from higher order Feynman diagrams
and can been extracted by the Cutkosky rules [62], which yield the same results obtained via the
usual techniques for Feynman diagram calculation [63].

Therefore, for the top quark CMDM, the contribution from diagram (b) of Fig. 1.3 develops
an absorptive part at q̂ = 2mb, whereas that from diagram (b) of Fig. 1.2 is complex for any q̂
value. The remaining contributions become complex at q̂ = 2mt. Evidently, the corresponding
contributions to the top quark CEDM would also become complex at the same energy thresholds.
It is thus interesting to obtain a bound on the absorptive part of the top quark CMDM consistent
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with the CMS limits. With this aim we have performed a numerical evaluation of the analytical
expressions of Ref. [48] to find the energy interval of the transfer momentum of the gluon such
that the real part of the top quark CMDM predicted by the SM matches with the CMS results
[28, 61]. We obtain that the value Re

[
µ̂t
]

= −0.024 reported in Ref [61] corresponds to the 57
GeV6 q̂ 6 59 GeV interval, with the corresponding absorptive part in the same interval being
Im
[
µ̂t
]
≈ −0.034. On the other hand, if we consider the limits −0.014 < Re

[
µ̂t
]
< 0.004 reported

in Ref. [28] we find that these values are consistent with energies above q̂ = 85 GeV, where the
absorptive part can be one order of magnitud larger than in the previous case: for values around
q̂ = 85 GeV we obtain Im

[
µ̂t
]
≈ −0.028, but at higher energies the corresponding value is of the

order of 10−3 and remains almost constant as the energy increases.

2.2 Contributions of CMDM and CEDM to tt production

Top pair production can receive contributions from the anomalous ttg coupling [42, 41] of Eq.
(1.1) but also from the ttgg vertex arising from the non-abelian part of the gluon field strength
tensor. The corresponding Feynman rules follow straightforwardly and are shown in Fig. 2.1.

−igsT
a
[
γµ + σµν

mt
(iµ̂t − d̂tγ

5)kν
]k

Ga
µ

t

t

g2sfabcT
a σµν

mt
[iµ̂t − d̂tγ

5]

t

t

Gb
ν

Ga
µ

Figure 2.1: Feynman rules for the anomalous t̄tg and t̄tgg couplings arising from Lagrangian
(1.1).

The most recent analyses on top quark production assume that both CMDM and CEDM
are purely real [28, 61]. In this work we are interested in the study of the contributions of the

absorptive parts of these dipole moments. Therefore we consider that both µ̂t and d̂t are complex
and calculate the following parton cross-sections:

σ̂qq ≡ σ(qq → tt),

σ̂gg ≡ σ(gg → tt), (2.3)

which apart from the SM contribution receive a new one from the Feynman diagrams of Fig.
2.2, where the large dot represents the anomalous CMDM and CEDM contributions.
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Figure 2.2: Feynman diagrams for the contribution to the parton cross-sections σ̂qq and σ̂gg at
the leading order. Crossed diagrams are not shown. The large dot represents the anomalous
couplings induced by the CMDM and CEDM. The SM tree-level contribution is obtained after
replacing the anomalous t̄tg coupling by the SM one.

After some algebra we obtain the respective differential cross sections for general complex
CMDM and CEDM:

dσ̂qq̄

dt̂
=
πα2

s

ŝ2

8

9

[
1

2
− v + z + 2Re

[
µ̂t
]

+
(

Re
[
µ̂t
]2

+ Im
[
µ̂t
]2 − Re

[
d̂t
]2 − Im

[
d̂t
]2)

+
(

Re
[
µ̂t
]2

+ Im
[
µ̂t
]2

+ Re
[
d̂t
]2

+ Im
[
d̂t
]2)v

z

]
, (2.4)
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and

dσ̂gg

dt̂
=
πα2

s

ŝ2

1

12

[(4

v
− 9
)(1

2
− v − 2z

(
1− z

v

)
+ 2 Re

[
µ̂t
])

+
1

8vz

[
v
(

55 Re
[
d̂t
]2

+ Re
[
µ̂t
]2

(55− 144z)
)

+ z
(

4 Re
[
d̂t
]2

+ 70 Re
[
µ̂t
]2)

+
1

vz

[
− 16v3

(
4
(

Re
[
µ̂t
]2

Im
[
d̂t
]2 − 4 Re

[
µ̂t
]

Im
[
µ̂t
]

Re
[
d̂t
]

Im
[
d̂t
]

+ Im
[
µ̂t
]2

Re
[
d̂t
]2)

+ 9z
(

Im
[
µ̂t
]2

+ Im
[
d̂t
]2))

+ v2z
(
− 512 Re

[
µ̂t
]

Im
[
µ̂t
]

Re
[
d̂t
]

Im
[
d̂t
]

+ Im
[
d̂t
]2(

16 Re
[
µ̂t
](

15 Re
[
µ̂t
]

+ 7
)

+ 288z + 63
)

+ 3 Im
[
µ̂t
]2(

80 Re
[
d̂t
]2

+ 48z + 21
))

− 2vz2
(

92 Im
[
µ̂t
]

Re
[
d̂t
]

Im
[
d̂t
]

+
(

1− 8 Re
[
d̂t
]2)

Im
[
µ̂t
]2

+ 2 Im
[
d̂t
]2(− Re

[
µ̂t
](

4 Re
[
µ̂t
]

+ 41
)

+ 72z + 17
))

+ 128 Im
[
d̂t
]2
z3
]

+ Re
[
µ̂t
] (

Re
[
µ̂t
]2

+ Im
[
µ̂t
]2

+ Re
[
d̂t
]2)

(
14

z
− 5

2v

)

+

((
Re
[
µ̂t
]2

+ Im
[
µ̂t
]2)2

+ 2
(

Re
[
µ̂t
]2

Re
[
d̂t
]2

+ Im
[
µ̂t
]2

Im
[
d̂t
]2)

+
(

Re
[
d̂t
]2

+ Im
[
d̂t
]2)2

)

×
(
−1

z
+

1

v
+

4v

z2

)]
, (2.5)

where ŝ, t̂ and û are the usual parton Mandelstam variables and we introduced the definitions

z =
m2
t

ŝ
, (2.6)

v =
1

ŝ2 (t̂−m2
t )(û−m2

t ). (2.7)

In the tt center of mass frame, the parameter t, is related to the angle θ between the outgoing
top quark and the momenta of the incoming parton as

m2
t − t =

s

2
(1− β cos θ), (2.8)

with β =
√

1− 4z.

For µ̂t = d̂t = 0 the above cross sections reduce to the known SM results [64] as expected. We
also have verified that in the scenario with purely real CMDM and CEDM, Eq. (2.4) reproduces
the result reported in Ref. [42, 41]. Nevertheless, in the same scenario we do not find agreement
with our result for Eq. (2.5) and the one previously reported [42, 41], which apparently is

incomplete as there is no agreement in the coefficients of µ̂2
t and d̂2

t .

2.3 Bounds on absorptive parts of the CMDM and CEDM
of the top quark

We now turn to constrain the absorptive parts Im
[
µ̂t
]

and Im
[
d̂t
]

via the LHC data on top quark
pair production [28, 65, 61]. We follow a similar approach to that discussed in [54]. We use Monte
Carlo simulation to obtain the theoretical predictions for the leading order contribution to the
σ(pp → tt) cross section. In order to compute the corresponding contributions from the top
quark CMDM and CEDM, we use MadGraph5 [66], where the anomalous interactions of Eq.
(1.1) were implemented with the help of FeynRules [67].
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We will consider the most recent LHC results for top quark pair production at a center-of-
mass energy

√
s =13 TeV. Therefore we use the ATLAS cross section in the lepton plus jets

channel [65]
σExp = (830± 39) pb, (2.9)

whereas for the theoretical SM prediction we use [68]

σTheo = (831.8± 43) pb, (2.10)

which does not include contributions from the CMDM and CEDM of the top quark. In both
cases the errors have been added in quadrature. The ratio between the measured and predicted
cross sections is thus

R =
σExp

σTheo

= 0.99± 0.069. (2.11)

Following Ref. [54], we will interpret the error of Eq. (2.11) as a window to BSM effects in

top quark pair production and use it to set constraints on the absorptive parts of µ̂t and d̂t.
We first set µ̂t = d̂t = 0 and obtain the SM cross section σSM, afterwards we generate the new
physics contribution σNP for non-zero Re

[
µ̂t
]
, whereas all the remaining parameters are set to

zero. This procedure is repeated for each one of the Im
[
µ̂t
]
, Re

[
d̂t
]

and Im
[
d̂t
]

parameters. All
our event samples for the pp → tt cross section are generated at

√
s =14 TeV. We show in Fig.

2.3 the ratio σNP/σSM as a function of the real and absorptive parts of the CMDM (left plot)
and CEDM (right plot), where the MadGraph5 estimated error is included.

Figure 2.3: Ratio R = σNP(pp → t̄t)/σSM(pp → t̄t) as a function of the real (green lines) and
imaginary parts (blue lines) of the CMDM (left plot) and CEDM (right plot) of the top quark
at
√
s = 14 TeV. The bars represent the MadGraph5 estimated errors. The solid lines are the

best fit curves.

To fit the data of Fig. 2.3, we have not considered the interference terms of the real and
absorptive parts of µ̂t and d̂t. Such an approach has been used in the past to study the implica-
tions of the top quark CMDM and CEDM in tt̄ production [54, 57, 58]. Thus, from Eqs. (2.4)
and (2.5) we observe that the ratio R is a polynomial of fourth order in the real and imaginary

parts of µ̂t and d̂t, although only the even powers of Im
[
µ̂t
]
, Re

[
d̂t
]

and Im
[
d̂t
]

are present. The
expression obtained from the fit of Fig. 2.3 reads

R ' 1 + 5.33 Re
[
µ̂t
]

+ 19.14 Re
[
µ̂t
]2

+ 21.98 Re
[
µ̂t
]3

+ 5.78 Re
[
µ̂t
]4

+ 12.35 Im
[
µ̂t
]2

+ 4.38 Im
[
µ̂t
]4

+ 13.79 Re
[
d̂t
]2

+ 5.58 Re
[
d̂t
]4

+ 13.78 Im
[
d̂t
]2

+ 6.15 Im
[
d̂t
]4
. (2.12)
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We observe that the contributions of Im
[
µ̂t
]
, Re

[
d̂t
]

and Im
[
d̂t
]

are rather similar, with the lowest
order coefficients being of similar size, which is actually in accordance with Eq. (2.5). We also
note that the top quark dipole contribution is dominated by Re

[
µ̂t
]
, which enters linearly into

R, whereas the remaining dipole contributions enter quadratically and are thus more suppressed.
The values predicted for the off-shell top quark CMDM are of the order of 10−2 − 10−3 in the
SM [48], whereas the typical values predicted for the CEDM in some BSM theories are of the
order of 10−19− 10−20 [49]. Therefore the effects of their real and absorptive parts on top quark
pair production seems to be too small to be observable at the cross section level.

As already mentioned, constraints on the the top quark CMDM and CEDM have been ob-
tained from the LHC data under the assumption that they are purely real. Hence, to study the
effects of the corresponding absorptive parts we will proceed as follows. We fix the real parts
of the top quark CMDM and CEDM using the CMS limits [28, 61] and we then constrain the

absorptive parts Im
[
µ̂t
]

and Im
[
d̂t
]

via Eqs. (2.12) and (2.11), where the error will be attributed

to the anomalous t̄tg contributions. In other words, we fix Re
[
µ̂t
]

and Re
[
d̂t
]

to their current

constraints and find the allowed area of Im
[
µ̂t
]

and Im
[
d̂t
]

values.

Since the bounds of Ref. [61] are in principle partially excluded by those of Ref. [28], we
consider both bounds in our analysis. We thus assume the following three scenarios:

• Scenario I: we use the lower bounds reported in [28] and set Re
[
µ̂t
]

= −0.014 and Re
[
d̂t
]

=
−0.02.

• Scenario II: we use the upper bounds of [28] and set Re
[
µ̂t
]

= 0.004 and Re
[
d̂t
]

= 0.012.

• Scenario III: we set the real part of µ̂t to the value given in [61] and use the upper bound

for the real part of d̂t: Re
[
µ̂t
]

= −0.024 and Re
[
d̂t
]

= 0.03.

Notice that we do not consider the scenario where Re
[
d̂t
]

is fixed to its lower (negative) bound
[61] as it yields similar bounds to those obtained in scenario III, which stems from the fact that

R is an even function of Re
[
d̂t
]
. We also do not consider other scenarios as they yield bounds

of similar order of magnitude.

The allowed areas in the Im
[
µ̂t
]
− Im

[
d̂t
]

plane at the 95% C.L. are shown in Fig. 2.4 for
the three scenarios discussed above. We observe that the allowed areas are concentric ellipses.
Hence the following bounds are obtained: |Im

[
µ̂t
]
| . 0.127 and |Im

[
d̂t
]
| . 0.12 in scenario I

(blue solid lines); |Im
[
µ̂t
]
| . 0.139 and |Im

[
d̂t
]
| . 0.133 in scenario III (green dashed lines); as

well as |Im
[
µ̂t
]
| . 0.094 and |Im

[
d̂t
]
| . 0.09 the allowed area in scenario II(orange dashed line).

The latter scenario yields actually the intersection area of the three scenarios, which means that
the corresponding bounds are consistent with both CMS limits. Note that the bounds are very
similar for the absorptive parts of the µ̂t and d̂t, both of them being of the order of 10−1− 10−2

at the 95% C.L.

It is worth comparing our bounds with the theory predictions of the SM and some BSM
theories. In particular, for a transfer momentum in the interval 30 GeV 6 s 6 1000 GeV, the
SM prediction for the absorptive part of µ̂t(q

2) can be as large as 10−2 [48], which is close to
our bounds. On the other hand, several BSM theories predict values for the absorptive part of
d̂t(q

2) of the order of 10−19, which is far away from our bound.

We have also made the same analysis but including the interference terms of Eq. (2.5).
Nonetheless, the obtained fit is still consistent with Eq. (2.12) and the bounds are similar to
those of Fig. 2.4. Thus, the interference terms can indeed be neglected as their contribution is
not relevant.
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Figure 2.4: Allowed area at the 95% C.L. for the imaginary parts of the CMDM and CEDM of
the top quark in the three scenarios discussed in the text for the corresponding real parts.
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2.4 Kinematic distributions

The effects of Re
[
µ̂t
]

and Re
[
d̂t
]

on the differential cross section of top quark pair production have
been analyzed in the past as some kinematic distributions can be sensitive to these parameters
[50, 41, 59, 56]. Nevertheless, to our knowledge the effects of the absorptive parts Im

[
µ̂t
]

and

Im
[
d̂t
]

have only been explored in Ref. [40] through the longitudinal t and t polarizations.
Therefore, we will examine the possibility that the differential cross sections for top quark pair
production could be sensitive to the absorptive parts of the top quark CMDM and CEDM. In
order to study such effects, we compare the kinematic distributions in the case where the CMDM
and CEDM are purely real with that in which both dipole moments develop an absorptive part.
We use the CMS constrains on the real parts of the top quark dipole form factors, hence we set
to Re

[
µ̂t
]

= −0.014 and Re
[
d̂t
]

= 0.01. We then consider three cases for the values of Im
[
µ̂t
]

and Im
[
d̂t
]
:

i) Im
[
µ̂t
]

= Im
[
d̂t
]

= 0.01.

ii) Im
[
µ̂t
]

= Im
[
d̂t
]

= 0.05.

iii) Im
[
µ̂t
]

= 0.01 and Im
[
d̂t
]

= −0.01.

The reason why we are considering values of the order of 10−2 is that they are consistent with
the SM prediction for the CMDM and the constraints of Sec. 2.3. Furthermore, while cases i and
ii allow us to explore the possibility that the kinematic distributions can be sensitive to small
changes in the absorptive terms, scenario iii allows us to test the effect of a flip of sign.

For the graphical analysis we use MADANALYSIS 5 [69]. In Figs. 2.5(a) and 2.5(b) we show
the kinematic distributions of the tt invariant mass and the top quark transverse momentum in
the cases discussed above. It is observed that there is no considerable distinction between the
kinematic distributions obtained in the general case with complex top quark dipole form factors
and those obtained in the scenario in which they are purely real. This was also observed when
studying the contributions of the real part of the top quark dipole moments as compared to the
SM leading order contribution [52, 56]. A similar situation occurs for the kinematic distribution
of the rapidity η, which is shown in Fig. 2.5(c).

We have also examined the sensitivity of the forward-backward (FB) asymmetry to the
CMDM and CEDM in top quark pair production at the LHC, which could be possible at the
leading order in some models [70, 52], whereas in the SM there is only a significant deviation
up to next-to-leading order [70]. Unfortunately, Eqs. (2.4) and (2.5) cannot be expreseed as a
linear combination of cos θ via Eq. (2.8). Thus, a deviation to the FB asymmetry at the leading
order is not possible [71]. However, other asymmetries could be sensitive indeed to the CMDM
and CEDM of the top quark, as shown in Ref. [40, 54]. Thus, all the kinematic distributions
studied here show no significant deviation from the SM leading order contribution to top quark
pair production arising from the real and absorptive parts of the top quark dipole form factors.
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Figure 2.5: Invariant mass (a), top quark transverse momentum (b) and rapidity (c) kinematic
distributions for top quark pair production at the LHC at

√
s = 14 TeV in the three scenarios

discussed in the text for the absorptive parts of µ̂t and d̂t.
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2.5 Remarks

The off-shell CMDM and CEDM of quarks have become a topic of interest recently [48]. However,
the study of their absorptive (imaginary) parts remains almost unexplored. In this work we have
obtained bounds on the absorptive parts of the off-shell top quark CMDM and CEDM via the
experimental data of top quark pair production at the LHC, which to our knowledge are the first
limits of this kind. We present explicit expressions for the corresponding differential parton cross-
sections considering complex CMDM and CEDM, which have also been calculated for the first
time. We point out that there is a disagreement between our result for the gg → tt̄ differential
cross section and the expression previously reported in the scenario where only the real part of
the top quark dipole form factors are considered [42, 41]. Our bounds for the absorptive parts
were obtained using the most recent data for the top quark CMDM and CEDM obtained by
the CMS collaboration [28, 61]. It was found that the upper bound on the absorptive parts of
both dipole moments are of the order of 10−1 − 10−2. In particular, values of the order of 10−2

are consistent with all the CMS results. We also note that our bound is consistent with the SM
prediction for the absorptive part of µ̂t, which is of the order of 10−2 − 10−3 [48]. On the other
hand, in some BSM theories the absorptive part of the CEDM could be of the order of 10−19

[49], which seems far from detection in the near future.

We also explored the possibility that several kinematic distributions for top quark pair pro-
duction at the LHC can be sensitive to the absorptive parts of the CMDM and CEDM, but we
find that there are no significant deviation from the scenario where the CMDM and CEDM are
purely real. In fact, even in the case of real CMDM and CEDM, there is no significant deviation
from the leading order SM contribution as discussed previously [52, 56].
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Chapter 3

CMDM and CEDM dipole
moments of the top quark in the
reduced 331 model

In this chapter we are interested in the contributions to the top quark CMDM and CEDM in the
reduced 331 model [72]. The study of elementary particle models based on the SU(3)L ×U(1)N
gauge symmetry dates back to the 1970s, when it was still not clear that Weinberg’s SU(2)L ×
U(1)Y model was the right theory of electroweak interactions [73]. After the discovery of the
Z and W gauge bosons, since the electroweak gauge group is embedded into SU(3)L × U(1)N ,
the so called 331 models [74, 75] became serious candidates to extend the SM and explain some
issues for which it has no answer, such as the flavor problem and a possible explanation for
the large splitting between the mass of the top quark and those of the remaining fermions.
Several realizations of the 331 model have been proposed in the literature, which predict new
fermions, gauge bosons and scalar bosons, so their phenomenologies have been considerably
studied [76, 77, 78, 79, 80, 81, 82, 83].

The minimal 331 model [74, 75] requires a very large scalar sector, which introduces three
scalar triplets to give masses to the new heavy gauge bosons and one scalar sextet to endow the
leptons with small masses. The complexity of this model has lead to the appearance of alternative
331 models aimed to economize the scalar sector. In particular, the reduced 331 model (RM331)
[72] only requires two scalar triplets, thereby being considerably simpler than the minimal version
[84, 85]. In the RM331, the physical scalar states obtained after the symmetry breaking are two
neutral scalar bosons only, with the lightest one being identified with the SM Higgs boson [86],
and a doubly charged one. Unlike other 331 models, no singly charged scalar boson arises in the
RM331 [87, 88, 89]. In the gauge sector, there are one new neutral gauge boson Z ′, a new pair
of singly charged gauge bosons V ±, and a pair of doubly charged gauge bosons U±±. Like other
331 models, the RM331 also predicts three new exotic quarks. The original RM331 is strongly
disfavored by experimental data [90], though it would still be allowed as long as left-handed
quarks are introduced via a particular SU(3)L × U(1)N representation [91, 92], which in fact
would give rise to flavor changing neutral current (FCNC) effects.

The contributions to the electron and muon anomalous MDM have been already studied
in the RM331 [77] within another 331 realization [93]. As for the CMDM of quarks, there is
only a previous calculation in the context of an old version of the 331 model [14], though such
a calculation is limited to the on-shell case. However, since the on-shell CMDM is infrarred
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divergent in the SM [48], a calculation of the off-shell CMDM is mandatory. To our knowledge
there is no calculation of the off-shell CMDM of quarks, let alone their off-shell CEDM, in 331
models. Furthermore, in the model studied in [14], the new contributions only arise in the gauge
sector, whereas in the RM331 there are additional contributions from the neutral scalar bosons,
which are absent in other 331 models.

In this chapter we present a study on the contributions of the RM331 to the off-shell CMDM
and CEDM of the top quark. It is organized as follows. In Section II we present a brief de-
scription of the RM331, with the Feynman rules necessary for our calculation being presented
in Appendix A.2. The analytical calculation of the new contributions to the dipole form factors
of the t̄tg vertex are presented in Sec. III; our results in terms of Feynman parameter integrals
and Passarino-Veltman scalar functions are presented in Appendix A.4. Section IV is devoted
to a review of the current constraints on the parameter space of the model and the numerical
analysis of the off-shell CMDM and CEDM of the top quark. Finally, in Sec. V the conclusions
and outlook are presented.

3.1 Brief outline of the RM331

We will describe briefly the main features of each sector of the RM331, focusing only on those
details relevant to our calculation.

3.1.1 Scalar and gauge boson eigenstates

As far as the scalar sector is concerned, the scalar potential is given by

V (χ, ρ) = µ2
1ρ
†ρ+ µ2

2χ
†χ+ λ1

(
ρ†ρ
)2

+ λ2

(
χ†χ

)2

+ λ3

(
ρ†ρ
)(

χ†χ
)

+ λ4

(
ρ†χ
)(

χ†ρ
)
, (3.1)

where the scalar triplets transform as ρ =
(
ρ+, ρ0, ρ++

)T
∼ (1, 3, 1) and χ =

(
χ−, χ−−, χ0

)T
∼

(1, 3,−1). To induce the spontaneous symmetry breaking (SSB), the neutral scalar bosons ρ0

and χ0 develop non-zero vacuum expectation values (VEVs) under the shifting of the fields as

ρ0, χ0 → 1√
2

(
υρ,χ +Rρ,χ + iIρ,χ

)
, (3.2)

which leads to the following constraints

µ2
1 + λ1υ

2
ρ +

λ3υ
2
χ

2
= 0,

µ2
2 + λ2υ

2
χ +

λ3υ
2
ρ

2
= 0.

The SU(3)C × SU(3)L × U(1)N breaks down into the SM gauge group following the pattern

SU(3)L × U(1)N
〈χ0〉−−−→ SU(2)L × U(1)Y

〈ρ0〉−−→ U(1)EM, (3.3)

where υρ can be identified with the SM Higgs VEV υ. The left-over of SSB are two neutral

scalar bosons and a pair of doubly charged ones h±± as explained below.
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The mass matrix of the neutral scalar bosons in the
(
Rχ, Rρ

)
basis is

m2
0 =

υ2
χ

2

(
2λ2 λ3t

λ3t 2λ1t
2

)
,

where t = υρ/υχ. After diagonalization, the mass eigenstates in the limit υχ � υρ are

h1 = cβRρ − sβRχ, h2 = cβRχ + sβRρ, (3.4)

with masses

m2
h1

=

(
λ1 −

λ2
3

4λ2

)
υ2
ρ, (3.5)

m2
h2

= λ2υ
2
χ +

λ2
3

4λ2

υρ, (3.6)

where λ1, λ2 > 0 and cβ ≡ cosβ ≈ 1−λ2
3υ

2
ρ/(8λ

2
2υ

2
χ). The SM Higgs boson h can be recovered in

the sβ → 0 limit, thus h1 must be identified with the Higgs boson discovered at the LHC. Since

mh ' 125 GeV, from Eq. (3.5) we obtain the relation λ1 − λ2
3/(4λ2) ≈ 0.26 [94]. In the case λ2,

λ2 < 1, and λ3 < λ2 we obtain m2
h1

= λ1υ
2
ρ, which recovers the SM case and thus λ1 ≈ 0.26.

In the gauge sector there are two new singly charged gauge bosons V ±, two doubly charged
gauge bosons U±± and a neutral gauge bosons Z ′. They acquire their masses as follows. The
would-be Goldstone bosons χ± are eaten by the singled charged gauge bosons, whereas a linear
combination of the doubly charged would-be Goldstone bosons ρ±± and χ±± are absorbed by
the doubly charged gauge boson U±±. Also, the orthogonal combination of ρ±± and χ±± gives
rise to a physical doubly charged scalar boson pair h±±. Finally, the would-be Goldstone boson
Iχ becomes the longitudinal components of the Z ′ gauge boson. Thus, the masses of the new
gauge bosons at leading order at υχ are [95]

m2
Z
′ =

g2c2W

3(1− 4s2
W )

υ2
χ, (3.7)

m2

V
± =

g2

4
υ2
χ, (3.8)

m2

U
±± =

g2

4

(
υ2
ρ + υ2

χ

)
. (3.9)

As far as the SM gauge bosons are concerned, the would-be Goldstone bosons ρ± and Iρ
endow with masses the Z and W± gauge bosons, respectively.

3.1.2 Gauge and scalar boson couplings to the top quark

The number of new fermions necessary to fill out the SU(3)L×U(1)N multiplets as well as their
quantum numbers depend on the particular 331 model version. There are no new leptons in the
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RM331, but a new quark is required for each quark triplet. They transform as

QiL =



di
−ui
Ji



L

∼ (3, 3∗,−1/3), i = 1, 2, Q3L =



u3

d3

J3



L

∼ (3, 3,+2/3),

with the numbers between parentheses representing the field transformations under the SU(3)C×
SU(3)L × U(1)N gauge group, whereas J1, J2 and J3 are the new exotic quarks with electric
charges QJ1,2 = −4/3e and QJ3 = 5/3e. Under this representation the theory is anomaly free

[91].

Charged currents

In the quark sector, the charged currents relevant for our calculation are given by the following
Lagrangian

L CC
q =

g√
2
uLV

q
CKMγ

µdLW
+
µ +

g√
2
J3L

γµ (V uL )3a uaLV
+
µ +

g√
2
ulL

(
V u†L

)
li
γµJiLU

++
µ + H.c.,

where the family index a runs over 1, 2 and 3, whereas i and l run over 1 and 2. Also V qCKM =

V u†L V dL stands for the Cabibbo-Kobayashi-Maskawa matrix, with the mixing matrices V uL (V dL )
transforming the left-handed up (down) quarks flavor eigenstates into their mass eigenstates. It
is assumed that the new quarks are given in their diagonal basis. Note that the doubly charged
gauge boson U±± does not couples to the top quark.

FCNC currents

Since the Z ′ gauge boson couplings to the quarks are non-universal, flavor changing neutral
currents (FCNCs) are induced at the tree level. The corresponding Lagrangian for the up quark
sector reads

L FCNC
Z
′ =

g

2cW

√
3(1− 4s2

W )

(
3∑

a=1

(
u′aLγ

µ(1− 2s2
W )u′aL

)
+ u′3Lγ

µ(2s2
W )u′3L

)
Z ′µ, (3.10)

where the up quarks u′ are in the flavor basis. It is evident that the above Lagrangian induces
FCNC at the tree level after the rotation to the mass eigenstate basis.

On the other hand, the interactions between up quarks and the neutral scalar bosons arise
from the lagrangian

LS =

3∑

i,j=1

u′iLΓu1 iju
′
Rjh1 + u′iLΓu2 iju

′
jRh2 + H.c., (3.11)

where u′ is an up quark triplet u′T = (u′, c′, t′) and

Γu1 =
cβ
υρ

mu − sβ
υχ




0 0 0
0 0 0
mu

31 mu
32 mu

33


 ,

30



3.2. CMDM AND CEDM OF THE TOP QUARK IN THE RM331

Γu2 =
sβ
υρ

mu +
cβ
υχ




0 0 0
0 0 0
mu

31 mu
32 mu

33


 ,

with mu being the quark mass matrix in the flavor basis [91]. After rotating to the mass
eigenstate basis, only the terms proportional to mu are diagonalized, whereas the remaining
term gives rise to FCNC couplings, which can be written as

L FCNC
S =

3∑

i,j=1

(
−sβuiLηuijujRh1 + cβuiLη

u
ijujRh2

)
+ H.c., (3.12)

where

ηu = Vu
L




0 0 0
0 0 0
m
u
31

υχ

m
u
32

υχ

m
u
33

υχ


 (Vu

R)
†
.

Through the parametrization given in [96] for the Vu,d
L,R mixing matrices it is possible to obtain

numerical values for the entries of the ηu,d matrix. Under this framework mu
31 = 0, mu

32 = 0,
and mu

33 = mt.

3.2 CMDM and CEDM of the top quark in the RM331

Apart from the pure SM contributions, at the one-loop level there are new contributions to the
CMDM of the top quark arising in both the gauge and scalar sectors of the RM331. The corre-
sponding Feynman diagrams are depicted in Fig. 4.2. In the gauge sector the new contributions
arise from the neutral Z ′ gauge boson, which are induced by both diagonal and non-diagonal
couplings. There are also a new contribution from the singly-charged gauge boson V ±, which
is accompanied by the new exotic quark J3. As already noted, the doubly-charged gauge boson
U±± does not couples to the top quark, thus there is no contribution from this gauge boson to
the top quark CMDM and CEDM. As for the scalar sector, there are new contributions from
the neutral scalar bosons h1 and h2, which in fact are the novel contributions from the RM331
as they are absent in other 331 model versions. The SM-like Higgs boson h1 yields new contri-
butions arising from its FCNC couplings, which are induced at the tree-level, but also from its
diagonal coupling, which has a small deviation from its SM value. As for the new Higgs boson
h2, it also contributes via both diagonal and non-diagonal couplings. We would like to point out
that such scalar contributions are absent in the 331 model studied in Ref. [14], where the on-shell
CMDM of the top quark was calculated. Even more, as long as complex FCNC couplings are
considered, there are non-vanishing contributions to the CEDM. This class of contributions has
also not been studied before in the context of 331 models.
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(a)

u, c, t

Z ′t t

(b)

J3

V −t t

(c)

u, t, c

h0
1, h

0
2t t

Figure 3.1: New one-loop contributions of the RM331 to the CMDM and CEDM of the top
quark in the unitary gauge. In the conventional linear Rξ gauge there are additional Feynman
diagrams where the gauge bosons are replaced by their associated Goldstone bosons.

We are interested in the off-shell CMDM and CEDM of the top quark. Since off-shell Green
functions are not associated with an S-matrix element, they can be plagued by pathologies such
as being gauge non-invariant, gauge dependent, ultraviolet divergent, etc. Along these lines,
the pinch technique (PT) was meant to provide a systematic approach to construct well-behaved
Green functions [32], out of which valid observable quantities can be extracted. It was later found
that there is an equivalence at least at the one-loop level between the results found via the PT and
those obtained through the background field method (BFM) via the Feynman gauge [33]. This
provides a straightforward computational method to obtain gauge independent Green functions.
It is thus necessary to verify whether the RM331 contributions to the CMDM and CEDM of
quarks are gauge independent for q2 6= 0. Nevertheless, we note that from the Feynman diagrams
of Fig. 4.2, the gauge parameter ξ only enters into the amplitudes of the Feynman diagrams (a)
and (b) via the propagators of the gauge bosons and their associated would-be Goldstone bosons.
Those kind of diagrams have an amplitude that shares the same structure to those mediated by
the electroweak gauge bosons Z and W in the SM, which are known to yield a gauge independent
contribution to the CMDM for an off-shell gluon when the contribution of their associated would-
be Goldstone bosons are added up. See for instance Ref. [48], where we calculate the electroweak
contribution to the CMDM of quarks in the conventional linear Rξ gauge and verify that the
gauge parameter ξ drops out. Furthermore, the dipole form factors cannot receive contributions
from self-energy diagrams, which are required to cancel gauge dependent terms appearing in
the monopolar terms via the PT approach. Thus both the CMDM and CEDM must be gauge
independent for an off-shell gluon and thus valid observable quantities.

Below we present the analytical results of our calculation in a model-independent way, out of
which the results for the RM331 and other SM extensions would follow easily. The correspond-
ing coupling constants for the RM331 are presented in Appendix A.2. For the loop integration
we used the Passarino-Veltman reduction method and for completeness our calculation was also
performed by Feynman parametrization via the unitary gauge, which provides alternative ex-
pressions to cross-check the numerical results. The Dirac algebra and the Passarino-Veltman
reduction were done in Mathematica with the help of Feyncalc [35] and Package-X [36].

3.2.1 New gauge boson contributions

We first consider the generic contribution of a new gauge boson V with the following interaction
to the quarks

L V qq
′

=
g

cW
q
(
gV qq

′

V − gV qq
′

A γ5
)
γµq
′V µ + H.c., (3.13)
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where the coupling constants gV qq
′

V,A are taken in general as complex quantities. By hermicity

they should obey gV qq
′

V,A = gV q
′
q∗

V,A .

The above interaction gives rise to a new contribution to the quark CMDM and CEDM via
a Feynman diagram similar to that of Fig. 4.2(a). The corresponding contribution to the quark
CMDM can be written as

µ̂Vq (q2) =
GFm

2
W

2
√

2π2r2
V c

2
W

∑

q
′

∣∣∣gV qq
′

V

∣∣∣
2

V V
qq
′(q2) +

(
gV qq

′

V → gV qq
′

A

m′q → −m′q

)
, (3.14)

where we introduced the auxiliary variable ra = ma/mq and the V V
qq
′(q2) function is presented in

Appendix A.4 in terms of Feynman parameter integrals and Passarino-Veltman scalar functions.
The second term of the right-hand side stands for the first term with the indicated replacements.
As for the contribution to the quark CEDM, it can arise as long as there are flavor changing
complex couplings and is given by

d̂Vq (q2) =
GFm

2
W√

2π2r2
V c

2
W

∑

q
′

Im
(
gV qq

′

V gV qq
′

A

∗)
D̃V
qq
′(q2), (3.15)

where again the DV
qq
′(q2) function is presented in Appendix A.4.

From Eqs. (3.14) y (3.15) we can obtain straightforwardly the contributions to the quark
CMDM and CEDM of the neutral gauge boson Z ′ and the singly charged gauge boson V ± after
replacing the coupling constants and the gauge boson masses.

3.2.2 New scalar boson contributions

Following the same approach as above, we now present the generic contribution to the quark
CMDM and CEDM arising from FCNC mediated by a new scalar boson S, which arise from the
Feynman diagram of Fig 4.2(c). We consider an interaction of the form

L Sqq
′

= −g
2
q
(
GSqq

′

S +GSqq
′

P γ5
)
q′S + H.c. (3.16)

The above scalar interaction leads to the following contribution to the quark CMDM

µ̂Sq (q2) = −GFm
2
W

8
√

2π2

∑

q
′

∣∣∣GSqq
′

P

∣∣∣
2

PS
qq
′(q2) +

(
GSqq

′

P → GSqq
′

S

m′q → −m′q

)
, (3.17)

whereas the corresponding contribution to the quark CEDM is given by

d̂Sq (q2) =
GFm

2
W

4
√

2π2

∑

q
′

Im
(
GSqq

′

S GSqq
′∗

P

)
D̃S
qq
′(q2), (3.18)

where the PS
qq
′(q2) and D̃S

qq
′(q2) functions are presented in Appendix A.4.

From the above expression we can obtain the contribution of the new scalar Higgs boson of
the RM331 as well as the contribution of the SM Higgs boson, which in the RM331 has tree-level
FCNC couplings.
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3.3 Numerical analysis and discussion

We now turn to the numerical analysis. The coupling constants that enter into the Feynman
rules and are necessary to evaluate the CMDM and CEDM of the top quark [c.f. Eqs. (3.13)
through (3.18)] are presented in Tables A.1 and A.2 of Appendix A.2. We note that these
couplings depend on several free parameters, such as the mass parameter mu

33, the VEV υχ, the
parameters of the scalar potential λ2 and λ3, as well as the entries of the matrices Vu

L, KL and
ηu. To obtain an estimate of the contributions of the RM331 to the CMDM and CEDM of the
top quark we need to discuss the most up-to-date constrains on these parameters from current
experimental data.

3.3.1 Constraints on the parameter space

Heavy particle masses

As already mentioned, the mass parameter mu
33 can be identified with the top quark mass [91],

whereas the VEV υχ determines the masses of the heavy gauge bosons and the heavy quark J3.
As for the mass of the new scalar boson mh2

, it is determined by the parameters λ2 and λ3,
along with the VEV υχ, which also determine the mixing angle sβ .

We will first discuss the current indirect constraints on the heavy neutral gauge boson masses.
From the muon g − 2 discrepancy, the following constraint was obtained υχ ≥ 2 TeV [92], from
which bounds on the heavy gauge boson masses follow. Nevertheless, there are also indirect con-

strains obtained through the experimental data on B0−B0
oscillations. The RM331 contribution

to ∆mB arises from FCNC couplings mediated by the Z ′ gauge boson and the h1 and h2 scalar
bosons [91, 95], then using the parametrization of [96], the experimental limit on ∆mB leads to
the following bounds mZ

′ & 3.3 TeV, m
V
± & 0.33 TeV and mh2

& 0.34 TeV [91]. Similar limits

have been imposed using de mass difference of the K0 −K0
and D −D0

systems [95]. On the
other hand, the current experimental bounds on the masses of new neutral and charged heavy
gauge bosons from collider searches are model dependent [94]. At the LHC, the ATLAS and
CMS Collaborations have searched for an extra charged gauge boson W ′ at

√
s = 13 TeV via the

decay modes W ′ → `ν` [97, 98] and W ′ → qq′. The most stringent bounds are obtained for a W ′

gauge boson with SM couplings (sequential SM). The respective lower bounds on mW
′ are 6.0

TeV (5.1 TeV) for the W ′ → eνe (W ′ → µνµ) decay channel, whereas for the decay W ′ → qq′ the
corresponding bound is less stringent, of the order of 4 TeV [99, 100]. As far as an extra neutral
gauge boson Z ′ is concerned, the search at the LHC at

√
s = 13 TeV via its decays into a lepton

pair has been useful to impose the lower limit mZ
′ ≥ 4.5, 5 TeV for a Z ′ gauge boson model

arising in the sequential SM and in an E6-motivated Gran Unification model [101, 102]. Along
these lines, it has been pointed out recently that the LHC might be able to constrain the mass of
the heavy Z ′ boson up to the 5 TeV level in several 331 models [103, 104, 105]. Although these
bounds are model dependent and relies on several assumptions, if we consider the conservative
value of 5 TeV for the gauge boson masses we obtain a lower constraint on υχ of the order of 10
TeV. Thus, we will use this value in our analysis to be consistent with experimental constraints
and limits from FCNC couplings.

As far as direct constraints on the mass of exotic quarks are concerned, the ATLAS and CMS
Collaborations have used the

√
s = 13 TeV data to search for vector-like quarks with electric

charge of 5/3 via its decay into a top quark and a W gauge boson, with the final state consisting
of a single charged lepton (muon or electron), missing transverse momentum, and several jets.
A mass exclusion limit up to 1.6 TeV is obtained depending on the properties of the vector-like
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quark [106, 107, 108]. We will thus use mJ3
= 2 TeV to be consistent with the experimental

bound.

Mixing angle sβ and parameters λ2,3

According to Eq. (3.5) the mass of the SM-like Higgs boson receives new corrections through
the λ2 and λ3 parameters. As discussed above, the SM case is recovered when λ1 ≈ 0.26 and
λ3 < λ2 < 1, thus the new corrections to mh1

must lie within the experimental error of the SM
Higgs boson mass mh = 125.10 ± 0.14 GeV [94]. This allows one to constrain the λ2 and λ3

parameters, which in turn translates into constraints on sβ and mh2
once the υχ value is fixed.

Again we take a conservative approach and only consider the experimental uncertainty in the
Higgs boson mass, whereas theoretical uncertainties from higher order corrections are not taken
into account. We observe in Fig. 3.2 the allowed regions in the planes λ2 vs λ3 and sβ vs mh2

consistent with the experimental error of the Higgs boson mass at 95% C.L. We note that for a
given λ2, λ3 must be about one order of magnitude below. In our calculation we use λ2 = 0.9
and λ3 = 0.06, though there is no great sensitivity of the top quark CMDM and CEDM to mild
changes in the values of these parameters. In addition, we find that values ranging from 0.002
to 0.013 are allowed for sβ provided that υχ ≥ 10 TeV and mh2

' 300 GeV, which is consistent
with recent searches for new neutral scalar bosons at the LHC [94].
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Figure 3.2: Allowed areas in the planes λ3 vs λ2 and sβ vsmh2
in agreement with the experimental

error of the Higgs boson mass mh = 125.10± 0.14 GeV [94] at 95% C.L. We consider λ1 ≈ 0.26
and λ3 < λ2 < 1, which yield the SM limit.

Mixing matrices

As for the mixing matrices, we can obtain the absolute values for the entries of the matrices
Vu
L, KL and ηu. The entries of the last matrix are given in terms of υχ, sβ and the mq

ij matrix
elements and their values are obtained following the parametrization used in [96]. In general KL

and ηu are in terms of the entries of Vu
L and Vu

R, the complex matrices that diagonalize the
mass matrices of up quarks. These matrices can be assumed to be triangular, then using the
experimental data on quark masses and the mixing angles it is possible to obtain values of their
entries [109]. It is also assumed that the only non-negligible mixing is that arising between the
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third and second fermion families. Furthermore, since the CP violation phases are expected to
be very small, we take a conservative approach and assume complex phases of the order of 10−3.

We present in Table 3.1 a summary of the numerical values we will use in our numerical
evaluation.

Table 3.1: Values of the parameters used in our evaluation of the CMDM and CEDM of the top
quark in the RM331. For the entries of the matrices Vu

L, KL and ηu we use the values obtained
in [91] using the parametrization of [96], where the mass parameter mu

33 is identified with the
top quark mass. We use λ2 and λ3 values allowed by the experimental error in the Higgs boson
mass and also assume that the only non-negligible mixing is that arising between the third and
second fermion families.

Parameter Value

|(KL)tc| 6.4× 10−4

|V u33| 1

|ηutc| 6.4× 10−4

|ηuct| 4.62× 10−6

mu
33 mt

υχ 10 TeV

sβ 10−2

mh2
300 GeV

φηutc , φη
u
ct

10−3

3.3.2 Top quark CMDM

As already mentioned, in the RM331 there are new contributions to the off-shell top quark
CMDM µt(q

2) arising from the heavy gauge bosons Z ′ and V ± as well as the neutral scalar
bosons h1 and h2. Below we will use the notation ABC for the contribution of particle A due to
the ABC coupling. Thus, for instance Z ′tc will denote the contribution of the loop with the Z ′

gauge boson due to the Z ′tc coupling. Since we would like to assess the magnitude of the new
physics contributions to µ̂t(q

2), we will extract from our calculation the pure SM contributions.
Thus, apart from the contribution due to the tree-level FCNCs of the SM-like Higgs boson h1,
we only consider the contribution arising from the small deviation of the diagonal coupling h1tt
from the SM htt coupling. This contribution will be denoted by δh1tt.

We will examine the behavior of the CMDM of the top quark as a function of ‖q‖ ≡
√
|q2|,

where q is the gluon four-momentum. In the left plot of Fig. 3.3 we show the real part of the
partial contributions to µ̂t(q

2) as a function of ‖q‖ for the parameter values of Table 3.1, whereas
the real and imaginary parts of the total contribution are shown in the right plot. In general

there is little dependence of Re
[
µ̂t(q

2)
]

on ‖q‖, except for the δh1tt, h2tt and h2tc contributions,

which have a change sign. We also note that the V ±tJ3 contribution is the largest one, whereas
the remaining contributions are negligible, with the h1tc contribution being the smallest one.
Thus the curve for the real part of the total contribution seems to overlap with that of the V ±tJ3
contribution, though the former shows a small peak at ‖q‖ ' 2mt. This can be explained by the
peak appearing in the δh1tt contribution, which can be as large as the V ±tJ3 contribution for

‖q‖ ' 2mt. We conclude that µ̂t(q
2) can have a real part of the order of 10−5.

As far as the imaginary parts of the partial contributions to µ̂t(q
2), they are several orders
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of magnitude smaller than the corresponding real parts. As observed in the right plot of Fig.
3.3, the imaginary part of the total contribution is negligible for ‖q‖ 6 2mt, but increases up to
about 10−6 around ‖q‖ = 400 GeV, where it starts to decrease up to one order of magnitude as
‖q‖ increases up to 1 TeV.

Figure 3.3: Real part of the partial contributions of the RM331 to the top quark CMDM (left

plot) as a function of ‖q‖ ≡
√
|q2| for the parameter values of Table 3.1. The real and imaginary

parts of the total contribution are shown in the right plot.

Analogue plots to those of Fig. 3.3, but now for the behavior of µ̂t(q
2) as a function of υχ

for ‖q‖ = 500 GeV and the parameter values of Table 3.1, are shown in Fig. 3.4. In this case
we observe that the real parts of the partial contributions to µ̂t(q

2) show a variation of about
one order of magnitude when υχ increases from 10 TeV to 20 TeV. As already noted, the V ±tJ3
contribution yields the bulk of the total contribution to µ̂t, whose imaginary part is slightly
larger than its real part. Therefore both real and imaginary contributions of the RM331 to the
top quark CMDM can be as large as 10−5.
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Figure 3.4: The shames as in Fig. 3.3 but for the contributions of the RM331 to the top quark
CMDM as functions of υχ for ‖q‖=500 GeV. For the remaining parameters we use the values of
Table 3.1.

In summary, for υχ > 10 TeV the real part of the the RM331 new contribution to µ̂t(q
2) would

be three orders of magnitude smaller than the real part of the SM electroweak contribution [48],
whereas its imaginary part can be as large than its real part. In general there is no appreciable
variation in the magnitude of µ̂t for mild changes in the parameters of Table 3.1. Although
µ̂t(q

2) can be of similar size than the SM electroweak prediction for υχ ≤ 10 TeV, such values
are disfavored by the current constrains on the heavy gauge bosons masses. Finally, we note that
the RM331 can give a contribution larger than the ones predicted by other extension models
where a new neutral Z gauge boson is predicted [26]. The real and imaginary parts of the top
quark CMDM are of order 10−6 − 10−7 and 10−10 − 10−11 respectively in such models.

3.3.3 Top quark CEDM

A potential new source of CP violation can arise in the RM331 through the FCNC couplings
mediated by the neutral scalar bosons, which are proportional to the entries of the non-symmetric
complex mixing matrix ηu [91], thereby allowing the presence of a non-zero CEDM, which is
absent in other 331 models. Thus, it is a novel prediction of the RM331.
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There are only two partial contributions to the top quark CEDM in the RM331, thus we
only analyze the behavior of the total contribution. We show in Fig. 3.5 the contour lines of the
real part (left plot) and the imaginary part (right plot) of dt(q

2) in the υχ vs ‖q‖ plane for the
parameter values of Table 3.1. We have found that the new scalar boson h2 yields the dominant
contribution to dt(q

2), whose real (imaginary) part can be as large as 10−19 (10−20), whereas
the contribution from the h1 scalar boson is three or more orders of magnitude below. We also
observe that the real part of dt(q

2) decreases as υχ and ‖q‖ increase, while the imaginary part
remains almost constant. For ‖q‖ > 600 GeV, the RM331 contribution to the CEDM of the
top quark is expected to be below the 10−20 level, which seems to be much smaller than the
values predicted in other extension models [26], where the real and imaginary parts are of order
10−7 − 10−8 and 10−12 − 10−13 respectively. In the range 2 TeV6 υχ . 10 TeV our results for

dt(q
2) are enhanced by one order of magnitude, but as already noted, this interval is disfavored

by current constraints.

Figure 3.5: Real part (left plot) and imaginary part (right plot) of the total contribution to the
CEDM of the top quark in the RM331 in the plane υχ vs ‖q‖. We use the parameter values of
Table 3.1.

For comparison, a compilation of the predictions of several extension models of the top quark
CMDM and CEDM for q2 = 0 is presented in Table 3.2. We would like to stress that to our
knowledge there is no previous estimate of the top quark CEDM in 331 models. We also note
that though these values seem to be much larger than the results obtained for q2 6= 0 in the
RM331, the dipole form factors are expected to decrease as q2 increases. Such a behavior is
indeed observed in the SM case [48], where the magnitude of ât decreases as ‖q‖ increases.

3.4 Remarks

We have presented a calculation of the one-loop contributions to the CMDM and CEDM, µ̂t(q
2)

and d̂t(q
2), of the top quark in the framework of the RM331, which is an economic version of

the so-called 331 models with a scalar sector comprised by two scalar triplets only. We have
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Table 3.2: Predictions of the CMDM and CEDM of the top quark in several extension models
at q2 = 0.

Model ât d̂t

SM 10−2 [48]

THDMs 10−3–10−1 [15] 10−5 [110, 15]

4GTHDM 10−2–10−1 [13] 10−5–10−4 [13]

331 10−5 [14]

Technicolor 10−2 [14]

Extra dimensions 10−3 [14]

Little Higgs model 10−6 [17]

MSSM 10−1 [18] 10−5 − 10−4 [111]

Unparticle model 10−2 [19]

Vector-like multiplets 10−4 [20]

considered the general case of an off-shell gluon as it has been pointed out before that the QCD
contribution to µ̂t(q

2) is infrared divergent and the CMDM has no physical meaning for q2 = 0.
We argue that the results are gauge independent for q2 6= 0 and represent valid observable
quantities since the structure of the gauge boson contributions are analogue to those arising in
the SM. To our knowledge, no previous calculations of the off-shell CMDM and CEDM of the
top quark have been presented before in the context of 331 models.

Apart from the usual SM contributions, in the RM331, the CMDM of the top quark receives
new contributions from two new heavy gauge bosons Z ′ and V ± as well as one new neutral
scalar boson h2, along with a new contribution from the neutral scalar boson h1, which must
be identified with the 125 GeV scalar boson detected at the LHC. This model also predicts
tree-level FCNCs mediated by the Z ′ gauge boson and the two neutral scalar bosons h1 and h2,
which at the one-loop level can also give rise to a non-vanishing CEDM provided that there is a
CP -violating phase. The analytical results are presented in terms of both Feynman parameter
integrals and Passarino-Veltman scalar functions, which are useful to cross-check the numerical
results.

We present an analysis of the region of the parameter space of the model consistent with
experimental data and evaluate the CMDM and CEDM of the top quark for parameter values
still allowed. It is found that the new one-loop contributions of the RM331 to the real (imaginary)
part of µ̂t(q

2) are of order of 10−5 (10−6), which are larger than the predictions of other SM
extensions [26], with the dominant contribution arising from the V ± gauge boson, whereas the
remaining contributions are considerably smaller. It is also found that there is little dependence
of µt(q

2) on ‖q‖ in the 30-1000 GeV interval for a mass mV of the order of a few hundreds of
GeV. As far as the CEDM of the top quark is concerned, it is mainly induced by the loop with
h2 exchange and can reach values of the order of 10−19 for realistic values of the CP -violating
phases. Such a contribution is smaller than the ones predicted by other SM extensions [26].
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Chapter 4

Contributions to ZZV
∗

(V = γ, Z, Z
′
) couplings from CP

violating flavor changing
couplings

Trilinear gauge boson couplings (TGBCs) have long been the subject of considerable interest both
theoretically and experimentally. In the experimental area, constraints on the corresponding form
factors were first obtained at the LEP [112, 113, 114] and the Tevatron [115, 116, 117] colliders,
whereas the current bounds were extracted from the LHC data at 8 TeV [118, 119, 120] and
13 TeV [121, 122, 123] by the ATLAS and CMS collaborations. Among TGBCs are of special
interest the ones involving only neutral gauge bosons, namely, the trilinear neutral gauge boson
couplings (TNGBCs) ZZV ∗ and ZγV ∗ (V = Z,γ), which can only arise up to the one-loop
level in renormalizable theories and have been widely studied within the standard model (SM)
and beyond. The SM contributions to TNGBCs were studied in Refs. [124, 125], whereas new
physics contributions have been studied within several extension models, such as the minimal
supersymmetric standard model (MSSM)[124, 125, 126], the CP -violating two-Higgs doublet
model (2HDM) [127, 128, 129], models with axial and vector fermion couplings [127], models
with extended scalar sectors [130], and also via the effective Lagrangian approach [131]. In the
theoretical side, the phenomenology of TNGBCs at particle colliders was widely studied long ago
[132, 133, 134, 135, 136, 137, 126, 138] and also has been of interest lately [139, 140, 141, 142].
Even more, study of the potential effects of TNGBCs at future colliders has been the source of
renewed interest very recently [143, 144, 145, 146, 147]. TNGBCs, which require one off-shell
gauge boson at least to be non-vanishing due to Bose statistics, are induced through dimension-
six and dimension-eight operators [124, 131, 148, 149] and can be parametrized in a model
independent way by two CP -even and two CP -odd form factors. In the SM, only the CP -
conserving form factors arise at the one-loop level of perturbation theory, whereas the CP -
violating ones are absent at this order and require new sources of CP violation [124, 148]. In
the SM, CP violation is generated via the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix,
though the respective amount is not enough to explain the asymmetry between matter and anti-
matter in the universe, i.e. the so-called baryogenesis problem. Therefore, new sources of CP
violation are required, which is in fact one of the three Sakharov’s conditions to explain the baryon
asymmetry of the universe [150]. In this work we are interested in the study of possible CP -
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violating effects in the TNGBCs via tree-level flavor changing neutral currents (FCNCs) mediated
by the Z gauge boson [151], which are forbidden in the SM but can arise in several SM extensions
[152, 153]. The possible effects of Z-mediated FCNC couplings on CP -conserving TNGBCs have
already been studied [124], nevertheless, possible contributions to the CP -violating ones have
not been reported yet to our knowledge. These new contributions are worth studying as they
could shed some light in the path to a more comprehensive SM extension.

Possible evidences of new heavy gauge boson have been searched for at the LHC by the CMS
collaboration [154], which has been useful to set bounds on the masses of new neutral and charged
heavy vector bosons. Such particles are predicted by a plethora of SM extensions with extended
gauge sector, for instance, little Higgs models [155, 156], 331 models [157], left-right symmetric
models [158], etc. Some of these models allow tree-level FCNCs mediated by a new neutral gauge
boson, denoted from now on by Z ′ [159], which means that CP -violating contributions to V ZZ ′∗

couplings (V = γ, Z) are possible. To our knowledge TNGBCs with new neutral bosons have
not received much attention in the literature up to now, though decays of the kind Z ′ → V Z
(V = γ,Z) [160] and Z ′ → γAH [161] were already studied. Here AH stands for a heavy photon.

In this chapter we present a study of the one-loop contributions to the most general TNGBCs
ZZV ∗ (V = γ, Z, Z ′) arising from a generic model allowing tree-level FCNCs mediated by the
SM Z gauge boson and a new heavy neutral gauge boson Z ′. The rest of this presentation is as
follows. In Sec. II we present a short review of the analytical structure of TNGBCs along with
the theoretical framework of the FCNCs Z and Z ′ couplings via a model independent approach.
Section III is devoted to the calculation of the one-loop contributions to the CP -conserving and
CP -violating ZZV ∗ (V = γ, Z, Z ′) couplings, for which we use the Passarino-Veltman reduction
scheme. In Sec. IV we present the numerical analysis and discussion, whereas the conclusions
and outlook are presented in Sec. V.

4.1 Theoretical framework

4.1.1 Trilinear neutral gauge boson couplings ZZV (V = γ, Z, Z
′
)

We now turn to discuss the Lorentz structure of TNGBCs, which are induced by dimension-six
and dimension-eight operators. In this work we only focus on the contribution of dimension-six
operators as it is expected to be the dominant one. In particular, the TNGBC ZZV ∗ (V = γ,
Z) coupling can be parametrized by two form factors:

Γαβµ
ZZV

∗ (p1, p2, q) =
i(q2 −m2

V )

m2
Z

[
fV4

(
qαgµβ + qβgµα

)

− fV5 εµαβρ (p1 − p2)ρ

]
, (4.1)

where we have followed Ref. [124], with the notation for the gauge boson four-momenta being
depicted in Fig. 4.1. From Eq. (4.1) it is evident that when the V ∗ gauge boson becomes on-shell

(q2 = m2
V ), Γαβµ

ZZV
∗ (p1, p2, q) vanishes, which is due to Bose statistics and angular momentum

conservation. The general form of this vertex for three off-shell gauge bosons can be found in
[148, 131]. The form factor fV5 is CP -conserving, whereas fV4 is CP -violating. The former is
the only one induced at the one-loop level in the SM via a fermion loop since W± boson loops
give vanishing contributions [124]. It was found that fV5 decreases quickly as q2 becomes large

[124]. The current bounds on the form factors fV4 and fV5 (V = Z, γ) were obtained by the CMS
collaboration at

√
s = 13 TeV [123]:
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−0.00066 <fZ4 < 0.0006, (4.2)

−0.00055 <fZ5 < 0.00075, (4.3)

−0.00078 <fγ4 < 0.00071, (4.4)

−0.00068 <fγ5 < 0.00075. (4.5)

These constrains are of the order of the SM prediction for the CP -conserving form factors
[124]. Thus, corrections to the form factors fV5 and fV4 (V = γ, Z) from models of new physics
might play an important role.

As far as TNGBCs with new gauge bosons are concerned, they remain almost unexplored.
For our purpose, following Eq. (4.1), we will parametrize the ZZZ ′

∗
coupling as follows

Γαβµ
ZZZ

′∗ (p1, p2, q) =
iq2

m2
Z
′

[
fZ
′

4

(
qαgµβ + qβgµα

)

− fZ
′

5 εµαβρ (p1 − p2)ρ

]
, (4.6)

where we only consider the contributions of the dimension-six operators given in Ref. [148] and
have replaced the electromagnetic Fµν tensor by Z ′µν = ∂µZ

′
ν − ∂νZ ′µ in the operator basis that

induce the ZZγ∗ vertex. We also set the energy scale that corrects the operator dimension to the

new physics scale mZ
′ . Of course, the form factor fZ

′

4 (fZ
′

5 ) is CP violating (CP -conserving).
We also note in Eq. (4.6) that this TNGBC does not vanish for an on-shell Z ′ gauge boson. In
fact, the Z ′ gauge boson can decay into a Z gauge boson pair if kinematically allowed. We will
see below that our calculation is consistent with the Lorentz structure presented in Eq. (4.6).

Vµ(q)

Zα(p1)

Zβ(p2)

= eiΓαβµ
ZZV (p1, p2, q)

Figure 4.1: Nomenclature for the TNGBCs ZZV ∗ (V = γ, Z, Z ′).

4.2 Derivation of the couplings

4.2.1 Vertex ZZZ
∗

The six-dimension Lagrangian that induces the ZZZ∗ can be written as

LZZZ
∗ =

e

m2
Z

[
−fZ4 (∂µZ

µβ)Zα(∂αZβ) + fZ5 (∂σZσµ)Z̃µβZβ

]
, (4.7)

where

Z̃µν =
1

2
εµνσρZ

σρ, Zµν = ∂µZ
ν − ∂νZµ, (4.8)
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then

Z̃µν =
1

2

(
εµνρτ∂

ρZτ − εµνρτ∂τZρ
)

(4.9)

=
1

2

(
εµνρτ∂

ρZτ − εµντρ∂ρZτ
)

=
1

2

(
εµνρτ∂

ρZτ + εµνρτ∂
ρZτ

)

=εµνρτ∂
ρZτ

for on-shell particles the equations of motion are

∂µ∂
µAν −m2Aν = 0, (4.10)

to go to the space of moments for an incoming particle (with four-moment κ) we use

∂ν → iκν , (4.11)

whereas for an outgoing particle we have

∂ν → −iκν , (4.12)

Thus, the equation of motion (for an incoming or outgoing particle) becomes

κ2Aν −m2Aν = 0. (4.13)

We will use the kinematics shown in Fig. an we note that Eq. (4.7) can be written as

LZZZ
∗ =

e

m2
Z

[−fZ4
(
∂µ[∂µZβ − ∂βZµ]

)
Zα∂

α(Zβ) + fZ5 ∂
σ[∂σZµ − ∂µZσ]εµβρι∂ρ(Zι)Zβ ] (4.14)

=
e

m2
Z

[−fZ4 (∂µ∂
µZβ − ∂β∂µZµ)Zα∂

α(Zβ) + fZ5
(
∂τ∂τZµ − ∂µ∂τZτ

)
εµβρι∂ρ(Zι)Zβ ].

Because of Bose statistics we must to consider all the possible combinations between the three
moments and three Z fields. We assign to each field their corresponding moment as: Zµ(p).
Thus, in the space of moments Lagrangian (4.7) is
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LZZZ
∗ =
−ie
m2
Z

[
− fZ4

(
m2
Zq

α{Zβ(p1)Zα(p2)Z∗β(q) (4.15)

+ Zβ(p2)Zα(p1)Z∗β(q)
}
−m2

Z

{
pα2Z

β(p1)Z∗α(q)Zβ(p2)

+ pα1Z
β(p2)Z∗α(q)Zβ(p1)

}
− q2{pα1Zβ∗(q)Zα(p2)Zβ(p1)

+ pα2Z
β∗(q)Zα(p1)Zβ(p2)

}
− pβ1p1µ

{
qαZµ(p1)Zα(p2)Z∗β(q)

− pα2Zµ(p1)Z∗α(q)Zβ(p2)
}
− pβ2p2µ

{
qαZµ(p2)Zα(p1)Z∗β(q)

− pα1Zµ(p2)Z∗α(q)Zβ(p1)
}

+ qβqµ
{
pα1Z

µ∗(q)Zα(p2)Zβ(p1)

+ pα2Z
µ∗(q)Zα(p1)Zβ(p2)

})

+ fZ5 ε
µβρι(m2

Z

{
Zι(p2)Z∗β(q)p2ρ

(
− Zµ(p1) + p1µp

τ
1Zτ (p1)

)

+ Z∗ι (q)Zβ(p2)qρ
(
Zµ(p1)− p1µp

τ
1Zτ (p1)

)

+ Zι(p1)Z∗β(q)p1ρ

(
− Zµ(p2) + p2µp

τ
2Zτ (p2)

)

+ Z∗ι (q)Zβ(p1)qρ
(
Zµ(p2)− p2µp

τ
2Zτ (p2)

)}

+ q2{p1ρZι(p1)Zβ(p2)
(
− Z∗µ(q) + qµq

τZ∗τ (q)
)

+ p2ρZι(p2)Zβ(p1)
(
− Z∗µ(q) + qµq

τZ∗τ (q)
)})]

.

We want to write the fields in the following way: Zα(p1)Zβ(p2)Z∗µ(q), therefore we must to
change indexes and use q = p1 + p2. Thus, our Lagrangian is

LZZZ
∗ =
−ie
m2
Z

Zα(p1)Zβ(p2)Z∗µ(q)
[
− fZ4

(
m2
Z

{
qβgµα + qαgµβ

}

−m2
Zq

µgβα − q2{pβ1gµα + pα2 g
µα}− pµ1pα1 qβ + pβ1p

α
1 p

µ
2

− qαpµ2pβ2 + qµpα2 p
β
2 + qµqαpβ1 + qµqβpα2

)

+ fZ5
(
εµαβρ

{
m2
Z

(
− p2ρ − qα + p1ρ + qα

)

q2(− p1ρ + p2ρ

)}
+m2

Zε
λµρβ(pα1 p1λp2ρ + pα1 p1λqρ

)

+m2
Zε
λµρα(pβ2p2λp1ρ + pβ2p2λp1ρ

)

+ q2ελβρα
(
qµqλp1ρ − qµqλp2ρ

))]
, (4.16)

we consider the transversality conditions

pα1 = 0, pβ2 = 0. (4.17)

In the decay ff → V V the terms qµ give rise to mass terms mf , therefore we can neglect them
as they will be very small at high energies. We do not consider the case of mf = mt, since the
partons are not composed of top quarks

LZZZ
∗ =
−ie
m2
Z

Zα(p1)Zβ(p2)Z∗µ(q)
[
fZ4
(
q2 −m2

Z

){
qβgµα + qαgµβ

}

− fZ5 εµαβρ
(
q2 −m2

Z

){
p1ρ − p2ρ

}]
, (4.18)

if we follow the vertex definition given in Fig. 4.1 ant the convention where the Feynman rules
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are obtained as −iL , we get the vertex

Γαβµ
ZZZ

∗(p1, p2, q) =
i
(
q2 −m2

Z

)

m2
Z

[
fZ4
{
qβgµα + qαgµβ

}
− fZ5 εµαβρ

{
p1ρ − p2ρ

}]
, (4.19)

which actually is the vertex (4.1). The case ZZγ∗ is less difficult to obtain as we only need to
consider the combinations of two Z bosons.

4.2.2 FCNCs mediated by the Z and Z
′

gauge bosons

Beyond the SM, there are some extension theories that allow FCNC couplings mediated by the
Z gauge boson [152, 153]. Such an interaction can be expressed by the following Lagrangian

L = − e

2sW cW
ZµF iγµ

(
giV Z − γ5giAZ

)
Fi

− e

2sW cW
ZµF iγµ

(
gijV Z − γ5gijAZ

)
Fj , (4.20)

where Fi,j are SM fermions in the mass eigenbasis. Here giV Z,AZ are the diagonal SM couplings,

whereas the non-diagonal couplings gijV Z,AZ (i 6= j) will be taken as complex since we are inter-

ested in the CP -violating contribution. The latter must fulfil gij∗V Z,AZ = gjiV Z,AZ because of their
hermiticity. It is also customary to express the Lagrangian of Eq. (4.20) in terms of the left-

and right-handed projectors PL and PR, with the chiral couplings denoted by εZLij ,Rij , which are

given in terms of the vector and vector-axial couplings gijV Z,AZ as follows

gijV Z,AZ =
εZLij ± ε

Z
Rij

2
. (4.21)

Below we will use both the gijV Z,AZ and εZLij ,Rij parametrizations. The former is useful for the
purpose of comparison with previous works, whereas the latter is best suited for our numerical
analysis.

Possible phenomenological implications of FCNC couplings mediated by the Z gauge boson
have been studied within the SM [162, 163, 164, 165], fourth-generation models [166, 162, 163,
167, 168], See-Saw models [169], etc. Such FCNC couplings have been constrained via the b→ s
transition [152, 153], Kaon decays [170, 171], B − B mixing [166], and B0 decays [172, 173].
More, recently constraints on FCNC top quark decays t → qZ were reported by the ATLAS
Collaboration at

√
s = 13 TeV [174].

As for models with FCNC mediated by a new neutral gauge boson, which we generically have
denoted by Z ′, they have been widely studied in the literature [175, 176]. In Table 4.1 we present
a summary of some of the more popular models that predict a new Z ′ gauge boson.

To describe the FCNC Z ′ couplings we follow the formalism presented in [159, 175] and
introduce an effective Lagrangian analogue to that of Eq. (4.20) in terms of the chiral couplings

εZ
′

Lij ,Rij
, where i and j now run over all the SM fermions fSM = νi, `i, ui, di. though there can
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Table 4.1: Models in which there is a new neutral gauge boson with FCNC couplings [175].

New heavy neutral gauge boson Model Gauge group

Zh Sequential Z SUL(2)× UY (1)× U ′(1)
ZLR Left-right symmetric SUL(2)× SUR(2)× UY (1)
Zχ Gran Unification S0(10)→ SU(5)× U(1)
Zψ Superstring-inspired E6 → SO(10)× U(1)

Zη ≡
√

3/8Zχ −
√

5/8Zψ Superstring-inspired E6 → Rank-5 group

also be new hypothetical fermions. We thus write

L FCNC
Z
′ = −gZ′

∑

i=fSM

Z ′µF̄iγ
µ
(
εZ
′

Li
PL + εZ

′

Ri
PR

)
Fi, (4.22)

where Fi is a massive fermion triplet in the flavor basis, FT` = (e, µ, τ), FTd = (d, s, b), and

FTd = (u, c, t), with εZ
′

Li
and εZ

′

Ri
being 3× 3 matrices containing the corresponding Z ′ couplings.

We will focus on the quark up-type sector since we expect that the largest contribution to
TNGBCs arise from the top quark, which will become evident in Sec. 4.3. As it was pointed
out in Ref. [159], we assume that the Z ′ couplings to down-type quarks d, charged leptons ` and

neutrinos ν are flavor-diagonal and family-universal, namely, εZ
′

Li,Ri
= QiL,RI3×3 for i = d, `, ν,

where I3×3 is the identity matrix and QiL,R are the respective chiral charges. As far as the

couplings of the Z ′ gauge boson to up-type quarks are concerned, we assume that they are
family non-universal and are given in the flavor basis as

εZ
′

Lu
= QuL




1 0 0
0 1 0
0 0 x


 , εZ

′

Ru
= QuRI3×3. (4.23)

Thus, non-universal couplings are only induced through left-handed up-type quarks, with x a
parameter that characterizes the size of the FCNCs and will be taken as x . O(1). The chiral
U ′(1) charges of the up-type quarks QuL,R differ in each model as shown in Table 4.2.

Table 4.2: Chiral charges for the models with a new heavy neutral gauge boson of Table 4.1. A
detailed discussion about the determination of these couplings can be found in Ref. [159].

Sequential Z ZL,R Zχ Zψ Zη

QuL 0.3456 -0.08493 −1
2
√

10
1√
24

−2
2
√

15

QuR -0.1544 0.5038 1
2
√

10
−1√
24

2
2
√

15

QdL -0.4228 -0.08493 −1
2
√

10
1√
24

−2
2
√

15

QdR 0.0772 -0.6736 −3
2
√

10
−1√
24

−1
2
√

15

QeL -0.2684 0.2548 3
2
√

10
1√
24

1
2
√

15

QeR 0.2316 -0.3339 1
2
√

10
−1√
24

2
2
√

15

QνL 0.5 0.2548 3
2
√

10
1√
24

1
2
√

15

After rotating to the mass eigenstates, we obtain the left- and right-handed up quark fields
in the mass eigenbasis via the VLu

and VRu
matrices respectively. Thus the up-quark term of
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the Lagrangian of Eq. (4.22) reads

L = −gZ′Z
′
µF̄Mu γµ

(
V†Luε

Z
′

Lu
VLu

PL

+ V†Ruε
Z
′

Ru
VRu

PR

)
FMu , (4.24)

where the superscript M denotes the mass eigenbasis. For simplicity we will drop this superscript
below and assume that we are referring to the fermions in the mass eigenstate basis. In general

Bu
L ≡ V†Luε

Z
′

Lu
VLu

will be non-diagonal. Since no mixing in the down-quark sector is assumed

we will have VCKM = V†LuVLd
= V†Lu [159]. Therefore, the flavor mixing will be determined

by the CKM matrix:

Bu
L ≡ VCKMε

Z
′

Lu
V†CKM

≈




1 (x− 1)VubV
∗
cb (x− 1)VubV

∗
tb

(x− 1)VcbV
∗
ub 1 (x− 1)VcbV

∗
tb

(x− 1)VtbV
∗
ub (x− 1)VtbV

∗
cb x


 , (4.25)

where we have used the unitarity conditions of VCKM . As for the right-handed couplings Bu
R ≡

V†Ruε
Z
′

Ru
VRu

, it is easy to see that they are flavor-diagonal.

The gauge coupling gZ′ is the same as that of the SM for the Z gauge boson in the sequential
Z model, namely, gZ′ = e/(2sW cW ), whereas in the remaining models of Table 4.1, it is given
by

gZ′ =

√
5

3

e

cW
λ1/2
g , (4.26)

where λg ∼ O(1). Below we will assume that λg = 1. Constraints on FCNCs arise from D0−D0

mixing [159, 177], single top-quark production at the LHC [178] and a simple ansatz analysis
[179]. Implications of FCNC of a new neutral gauge boson Z ′ have been studied in leptonic
decays of the Higgs boson and the weak bosons [180], tZ ′ production at the LHC [181], Z ′

decays [182], Bs and Bd decays [183], etc.

4.3 Analytical results

We now turn to present the calculation of the contribution to the TNGBCs ZZV ∗ (V = Z,γ, Z ′)
arising from complex FCNC couplings mediated by the SM Z gauge boson and a new neutral
heavy gauge boson Z ′ as shown in Eqs. (4.20) and (4.24), respectively. This would allow non-
vanishing CP -violating form factors. For our calculation we will assume conserved vector currents
and consider Bose symmetry [124]. This last condition will allows us to obtain all the Feynman
diagrams contributing to the TNGBCs. We will see, however, that we only need to calculate
the three generic Feynman diagrams depicted in Fig. 4.2 since the amplitudes of the additional
diagrams follow easily. For the calculation of the loop amplitudes we use the Passarino-Veltman
reduction scheme with the help of the FeynCalc package [35].

4.3.1 ZZγ
∗

coupling

In this case there are 4 contributing Feynman diagrams, but due to gauge invariance we only
need to calculate the amplitude of diagram 4.2(a) M αβµ

2 since the amplitudes of the remaining
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V ∗
µ (q)

Zα(p1)

Zβ(p2)

mj

mi

mi

(a)

V ∗
µ (q)

Zα(p1)

Zβ(p2)

mi

mj

mi

(b)

V ∗
µ (q)

Zα(p1)

Zβ(p2)

mi

mi

mj

(c)

Figure 4.2: Generic Feynman diagrams required for the contribution of FCNC couplings to
TNGBCs ZZV ∗ and ZγV ∗ (V = Z,γ, Z ′).

diagrams are easily obtained as follows. There is an additional diagram that is obtained after
the exchange fi ↔ fj so its amplitude follows from M αβµ

2 after exchanging the fermion masses

M αβµ
2 (fi ↔ fj). We also need to add a pair of diagrams where the Z gauge bosons are exchanged,

which means that their total amplitude can be obtained from that of the two already described
diagrams after the exchange p1µ ↔ p2ν is done. We note that it is not possible to induce CP
violation in the ZZγ∗ coupling, which indeed was verified in our explicit calculation. Therefore
there are only contributions to the form factor fγ5 , which can be written as

fγ5 = −
∑

i

∑

j 6=i

NiQie
2m2

ZRe
(
gij∗AZg

ij
V Z

)

8π2s2
W c

2
W

(
q2 − 4m2

Z

)2

q2
Rij , (4.27)

where mi, Ni and Qi are the mass, color number and electric charge of the fermion fi. Note
that Qj = Qi since we are considering neutral currents. The analytical expression for Rij is
somewhat cumbersome and is presented in A.4 in terms of Passarino-Veltman scalar functions.
We have verified that Eq. (4.27) reduces to that reported in Ref. [124] for real FCNC couplings
of the Z gauge boson.

Asymptotic behavior

It is straightforward to obtain the high-energy limit q2 � m2
i , m

2
j , m

2
Z

fγ5 ≈ −
∑

i

∑

j 6=i

e2QiNim
2
ZRe

(
gij∗AZg

ij
V Z

)

4π2q2c2W s
2
W

, (4.28)

which agrees up to terms of the order q−2 with the one reported in [124] for the CP -conserving
case (mi = mj), though we must consider a factor of 1/2 as we are counting twice the number
of Feynman diagrams (our results include the contribution of the diagrams with the exchange
fi ↔ fj). It is evident that fγ5 → 0 in the high-energy limit as required by unitarity.

In the scenario where an ultra heavy fermion runs into the loop m2
i � q2, m2

Z , m2
j must be

worked out more carefully as the expansion of the two- and three-point scalar Passarino-Veltman
functions around small mj diverge. This scenario could arise in 331 model [72] or little Higgs
models [156], for instance, where new heavy quarks and neutrinos are predicted.
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4.3.2 ZZZ
∗

coupling

The calculation of this coupling is more intricate than the previous one since there are 36 con-
tributing Feynman diagrams, though we only need to calculate the three generic Feynman dia-
grams of Fig. 4.2, which by Bose symmetry must be complemented with the diagrams obtained
by performing six permutations of four-momenta and Lorentz indices as well as the exchange of
the fermions running into the loops. In this case there are both CP -violating and CP -conserving
form factors. The former is due to the fact that the virtual boson is assumed to have complex
FCNC couplings. As for the CP -conserving form factor fZ5 , it can be written as

fZ5 = −
∑

i

∑

j 6=i

e2Nim
2
Z

16π2c3W s
3
W

(
q2 − 4m2

Z

)

×
{
giAZ

(∣∣∣gijAZ
∣∣∣
2

+
∣∣∣gijV Z

∣∣∣
2
)(

R1ij +R2ij

)
(4.29)

+ 2giV ZRe
(
gij∗AZg

ij
V Z

) (
R1ij −R2ij

)

+ giAZ

[∣∣∣gijAZ
∣∣∣
2

−
∣∣∣gijV Z

∣∣∣
2
]
R3ij + (i↔ j)

}
, (4.30)

where the Rkij (k = 1, 2, 3) functions are presented in A.4 in terms of Passarino-Veltman scalar
functions. This results is in agreement with that reported in Ref. [124] for real FCNC couplings
of the Z gauge boson.

As for the CP -violating form factor fZ4 , it reads

fZ4 = −
∑

i

∑

j 6=i

Nie
2mimjm

2
Z

24π2c3W s
3
W

(
q2 −m2

Z

)(
q2 − 4m2

Z

)
q2

× Im
(
gij∗AZg

ij
V Z

)
giAZSij , (4.31)

where Sij is presented in A.4. It is easy to see that fZ4 vanishes for real couplings, which is
also true if we consider the same fermion running into the loop (i = j). Thus, a non-vanishing

fZ4 requires complex FCNC couplings. Furthermore, we can also see that we need different
complex phases for gijV Z and gijAZ to obtain a non-vanishing CP -violating form factor. Since

fZ4 is proportional to mimj we expect that the main contribution comes from FCNC couplings
associated with the top quark. We would like to stress that the result of Eq. (4.31) has never
been reported in the literature.

Asymptotic behavior

As we did it with the ZZγ∗ vertex, we study the high-energy limit q2 � m2
i , m

2
j , m

2
Z
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fZ5 ≈ −
∑

i

∑

j 6=i

e2Nim
2
Z

8π2q2c3W s
3
W

(
giAZ

(∣∣∣gijAZ
∣∣∣
2

+
∣∣∣gijV Z

∣∣∣
2
)

+ 2giV ZRe
(
gij∗AZg

ij
V Z

))
. (4.32)

Our result for fZ5 also reproduces the one reported in Ref. [124] for the CP -conserving case
(mi = mj), though this time we must consider a factor of 1/6 as we are considering twice the
three kinds of Feynman diagrams of Fig. 4.2 by the exchange mi ↔ mj . In ths case we also
observe that f5 → 0 in the high-energy limit, which is consistent with unitarity. The same is
true for the CP -violating form factor fZ4 , which behaves in the high-energy limit as fZ4 ∼ 1/q4,
since Sij ∼ q2 in this limit.

In the case m2
i � q2, m2

Z , m2
j , both form factors diverge similar as in the case of the ZZγ∗

vertex.

4.3.3 ZZZ
′∗

coupling

For the sake of completeness we now consider a Z ′ gauge boson with complex FCNCs couplings
and calculate the corresponding contributions to the TNGBC ZZZ ′∗. We first present the
diagonal case, where there is no flavor violation. Since mi = mj , there is only one independent
diagram in Fig. 4.2 and we only need to add one extra diagram obtained after the exchange

p1µ ↔ p2ν . After some algebra, the CP -conserving form factor fZ
′

5 reads

fZ
′

5 = −
∑

i

eNim
2
Z
′

16π2c2W s
2
W q

2
(
q2 − 4m2

Z

)
2

×
{
giAZ′

[
(giV Z)2 L1i + (giAZ)2 L2i

]

+ giV Z′ g
i
V Z giAZ L3i

}
, (4.33)

where the Lji (j = 1, 2, 3) functions are presented in A.4. The CP -violating form factor fZ
′

4 is
not induced at the one-loop level in this scenario.

As far as the non-diagonal case with complex FCNCs couplings, it requires more effort. Apart
from the three generic Feynman diagram of Fig. 4.2, we must add those diagrams obtained after
the exchanges p1µ ↔ p2ν and f1 ↔ f2, so there are 12 contributing Feynman diagrams in total.
However, we only need to calculate the amplitudes of the three generic diagrams. In this scenario

both fZ
′

5 and fZ
′

4 form factors are non-vanishing. The CP -conserving form factor can be written
as
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fZ
′

5 = −
∑

i

∑

j 6=i

eNim
2
Z
′

16π2c2W s
2
W q

2
(
q2 − 4m2

Z

)2

×
{

2giAZ

[
Re
(
gijV Zg

ij∗
V Z
′

)
U1ij

+ Re
(
gij
AZ
′g
ij∗
AZ

)
U2ij

]
+ 2giV Z′Re

(
gijV Zg

ij∗
AZ

)
U3ij

+ 2giV Z

[
Re
(
gijV Zg

ij∗
AZ
′

)
U4ij + Re

(
gij
V Z
′g
ij∗
AZ

)
U5ij

]

+ giAZ′
[ ∣∣∣gijAZ

∣∣∣
2

U6ij +
∣∣∣gijV Z

∣∣∣
2

U7ij

]}
, (4.34)

whereas the CP -violating one reads

fZ
′

4 =
∑

i

∑

j 6=i

eNim
2
Z
′

12π2c2W s
2
W q

6
(
q2 − 4m2

Z

)

×
{
giV Z

[
Im
(
gij
V Z
′g
ij∗
V Z

)
T1ij + Im

(
gij
AZ
′g
ij∗
AZ

)
T2ij

]

+ giAZ′Im
(
gijV Zg

ij∗
AZ

)
T3ij

+ giAZ

[
Im
(
gij
AZ
′g
ij∗
V Z

)
T4ij + Im

(
gij
V Z
′g
ij∗
AZ

)
T5ij

]}
, (4.35)

where the Ukij (k = 1 . . . 7) and Tkij (k = 1 . . . 5) functions are presented in A.4. We note that

fZ
′

5 (fZ
′

4 ) depends only on the real (imaginary) part of the combinations of products of the vector
and axial couplings. We also note that it is not necessary that both Z and Z ′ gauge bosons have
simultaneously complex FCNC couplings to induce the CP -violating form factor.

Asymptotic behavior

In the diagonal case the form factor fZ
′

5 can be written in the high-energy limit q2 � m2
i , m

2
j ,

m2
Z as

fZ
′

5 ' −
∑

i

e2m2
Z
′Ni

32π2c3W s
3
W q

2

{
giAZ′

(
(giAZ)2 + (giV Z)2

)

+ 2giAZ giV Z giV Z′
}
, (4.36)
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whereas in the non-diagonal case we obtain

fZ
′

5 ' −
∑

i

∑

j 6=i

e2m2
Z
′Ni

16π2c3W s
3
W q

2

×
{
giAZ′

(∣∣∣gijAZ
∣∣∣
2

+
∣∣∣gijV Z

∣∣∣
2
)

+ 2
[
giAZ

(
Re
(
gij
AZ
′g
ij∗
AZ

)
+ Re

(
gijV Zg

ij∗
V Z
′

))

+ giV Z

(
Re
(
gij
V Z
′g
ij∗
AZ

)
+ Re

(
gijV Zg

ij∗
AZ
′

))

+ giV Z′Re
(
gijV Zg

ij∗
AZ

) ]}
. (4.37)

We note that in both scenarios fZ
′

5 ∼ m2
Z
′/q2, thereby decreasing quickly when q2 > m2

Z
′ .

However this effect is attenuated for q2 . m2
Z
′ due to the mass of the heavy Z ′ boson. We also

note that Eq. (4.37) reduces to Eq. (4.36) except by a factor of 6, which is due to the fact
that the CP -violating form factor receives the contribution of twelve Feynman diagrams in the
diagonal scenario instead of two as in the diagonal case.

On the other hand, the CP -violating form factor fZ
′

4 is of the order of m2
Z
′/q4 in the high

energy limit and decreases quickly as q2 increases. The functions Tkij behave in this limit as

Tkij ∼ q4, therefore the form factor fZ
′

4 as functions of q2 has the form fZ
′

4 ∼ 1/q4, which is
similar to the vertex ZZZ∗ in the high energy limit.

Furthermore, when m2
i � q2, m2

Z , m2
j both form factors also show the same behavior observed

in the case of the vertices ZZγ∗ and ZZZ∗.

4.4 Constraints on FCNC Z couplings

We would like to assess the magnitude of the new contributions to the fV4 and fV5 (V = γ, Z, Z ′)
form factors. It is thus necessary to obtain constraints on the FCNC Z couplings to obtain an
estimate of the numerical values of such form factors. Since we expect that the main contributions
arise from the FCNC couplings of the top quark, we use the current bounds on the branching
ratios of the FCNC decays t→ qZ, where q = c, u [174] to constrain the gtqV Z,AZ couplings.

4.4.1 Constraints on the FCNC Z couplings from t→ qZ decay

A comprehensive compilation of the branching ratios of top FCNC decays within the SM and
several extension models can be found in [165]. In the case of tree-level FCNC Z couplings, the
decay width t→ qZ can be written in terms of the vector and axial couplings for negligible mq

as follows

Γt→Zq =
e2m3

t

64πc2Wm
2
Zs

2
W

(∣∣∣gtqAZ
∣∣∣
2

+
∣∣∣gtqV Z

∣∣∣
2
)

×
(

1− m2
Z

m2
t

)2(
1 + 2

m2
Z

m2
t

)
. (4.38)
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The current upper limits obtained by ATLAS collaboration at
√
s = 13 TeV are: B(t→ uZ) <

1.7 × 10−4 and B(t → cZ) < 2.4 × 10−4 with 95% C.L. [174]. Previous results at
√
s = 7

TeV are also available [184]. The SM contribution to the t → cZ branching ratio is negligible:
B (t→ cZ) ' 10−14 [165]. We thus obtain for the contribution of the FCNC couplings of the Z
gauge boson:

B (t→ qZ) = 0.915699

(∣∣∣gtqAZ
∣∣∣
2

+
∣∣∣gtqV Z

∣∣∣
2
)
, (4.39)

which allows us to obtain the following limits

∣∣∣gtuAZ
∣∣∣
2

+
∣∣∣gtuV Z

∣∣∣
2

< 1.8× 10−4, (4.40)

and ∣∣∣gtcAZ
∣∣∣
2

+
∣∣∣gtcV Z

∣∣∣
2

< 2.6× 10−4. (4.41)

Eqs. (4.40) and (4.41) can also be written in terms of the chiral couplings of Eq. (4.21).

We show in Fig. 4.3 the allowed areas on the
∣∣∣gtqAZ

∣∣∣ vs
∣∣∣gtqV Z

∣∣∣ and |εZRtq | vs |εZLtq | planes. The

blue-solid (green-dashed) line corresponds to the Ztc (Ztu) couplings. We observe that the FCNC

couplings of the Z gauge boson can be as large as 10−1. In fact, if we assume
∣∣∣gtqAZ

∣∣∣ '
∣∣∣gtqV Z

∣∣∣, we

obtain ∣∣∣gtuV Z
∣∣∣ < 0.0096,

∣∣∣gtcV Z
∣∣∣ < 0.011, (4.42)

which in terms of the chiral coupling read

|εZRtu | < 0.013, |εZRtc | < 0.016. (4.43)

Thus, our bounds are of the order of 10−2− 10−3, which are similar to the constraints on FCNC
couplings of down quarks obtained from B and Kaon meson decays. For instance the constraint

on the
∣∣∣gbdV Z

∣∣∣ coupling is at the 10−2 − 10−3 level [152, 153, 173, 166, 170], whereas the
∣∣∣gbsV Z

∣∣∣
coupling is constrained to be below 10−1 [152]. In some extension models these couplings can be
of the order of 10−4 − 10−7 [171, 172].

4.4.2 Constraints on the lepton flavor violating Z couplings from Z →
`i`j

Following the above approach, we now obtain constraints on the lepton flavor violating (LFV)
couplings of the Z gauge boson from the experimental limits on the Z → `±`∓ decays, which have
been obtained by the ATLAS and CMS collaborations: B (Z → eτ) < 5.8×10−5, B (Z → µτ) <
2.4 × 10−5 at

√
s = 14 TeV [185] and B (Z → eµ) < 7.3 × 10−7 − 7.5 × 10−7 at

√
s = 8 TeV

[186, 187]. The decay width Z → `i`j is given by

ΓZ→`i`j =
e2mZ

24πc2W s
2
W

(∣∣∣g`i`jAZ

∣∣∣
2

+
∣∣∣g`i`jV Z

∣∣∣
2
)
, (4.44)

and the corresponding branching ratio is

B
(
Z → `i`j

)
= 0.250277

(∣∣∣g`i`jAZ

∣∣∣
2

+
∣∣∣g`i`jV Z

∣∣∣
2
)
. (4.45)
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Figure 4.3: Allowed area with 95% C.L. in the
∣∣∣gtqAZ

∣∣∣ vs
∣∣∣gtqV Z

∣∣∣ (left) and |εZRtq | vs |εZLtq | (right)

planes from the experimental bounds on t→ Zq decays, for the Ztc and (solid-line boundaries)
and Ztu (dashed-line boundaries) couplings.

If we assume that
∣∣∣g`i`jAZ

∣∣∣ '
∣∣∣g`i`jV Z

∣∣∣, we obtain with 95 % C.L.

|gτµV Z | < 0.0069, |gτeV Z | < 0.01, |gµeV Z | < 0.0012. (4.46)

We note that the constraints on |gτeV Z | and |gµeV Z | are less competitive to those obtained through

the µ → eee and τ− → e−µ+µ− decays [168], which yield |gτeV Z | < 1.28 × 10−3 and |gµeV Z | <
3.05× 10−6. As for the bound on |gτµV Z |, it is of the same order than the one obtained from the

τ− → µ−µ+µ− decay, namely, |gτµV Z | < 1.295× 10−3 [168]. In our analysis below we consider the
most stringent bounds, thus we will use the values reported in Ref. [168].

As far as the LFV Z couplings to neutrinos are concerned, there are no experimental data to
obtain reliable constraints, so to obtain a rough estimate of these contributions we can assume
couplings of the same order of magnitude than those used for the charged leptons. Nevertheless,
the fV4 and fV5 form factors are mainly dominated by the contribution of the heaviest quarks,
whereas the lepton contributions are negligibly.

Finally, in Table 4.3 we summarize the constraints on the FCNC Z gauge boson couplings
that we will use in our numerical analysis, in terms of the corresponding chiral couplings.

Table 4.3: Bounds on the FCNC couplings of the Z gauge boson, with 95 % C.L., from the
current experimental limits on FCNC Z decays. The second row stands for the limit when either
εZRij or εZLij is taken as vanishing and the other one non-vanishing.

tc tu cu didj `i`j νiνj∣∣∣εZLij
∣∣∣ '

∣∣∣εZRij
∣∣∣ 0.016 0.013 10−2 10−2 10−3 10−3

∣∣∣εZLij ,Rij
∣∣∣ 0.032 0.026 10−2 10−2 10−3 10−3
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4.5 Numerical Analysis

We now turn to present the numerical evaluation of the TNGBCs. For the numerical analysis
we evaluate the Passarino-Veltman scalar functions via the LoopTools [46] package and indepen-
dently by the Collier [47] package, which give a good agreement. We first analyze the case of the
ZZV ∗ (V = γ, Z) couplings. As a matter of convenience, we write the complex chiral FCNC Z
couplings as

εZLij ,Rij = εZLij ,Rij + iε̃ZLij ,Rij , (4.47)

where the bar (tilde) denotes the real (imaginary) part of each coupling. The CP -violating phase
can then be written as

arctan
(
φLij ,Rij

)
=
ε̃ZLij ,Rij

εZLij ,Rij
. (4.48)

We thus can write the real and imaginary terms that enter into the fV4 and fV5 (V = γ, Z, Z ′)
form factors [Eqs. (4.27)-(4.31)] as follows

∣∣∣gijV Z,AZ
∣∣∣
2

=
1

4

((
εZLij ± ε

Z
Rij

)2

+
(
ε̃ZLij ± ε̃

Z
Rij

)2
)
, (4.49)

2Re
(
gij∗AZg

ij
V Z

)
=

1

2

((
εZLij

)2

−
(
εZRij

)2

+
(
ε̃ZLij

)2

−
(
ε̃ZRij

)2 )
, (4.50)

2Im
(
gij∗AZg

ij
V Z

)
=
(
εZLij ε̃

Z
Rij
− εZRij ε̃

Z
Lij

)
. (4.51)

Below we will analyze the behavior of the fV4,5 form factors as functions of the εZLij ,Rij and ε̃ZLij ,Rij
parameters as well as the transfer momentum q2 of the V gauge boson.

4.5.1 ZZγ
∗

coupling

It is convenient to assume small phases of the FCNC Z couplings, namely, we consider that the
imaginary parts of the left-handed couplings are smaller than ten percent of their real parts:

φLij '
ε̃ZLij

εZLij
≤ O

(
10−1

)
, (4.52)

whereas for the right-handed couplings we assume by simplicity that φRij = 0 (ε̃ZRij = 0). As far

as the size of the chiral couplings ε̃ZLij ,Rij we consider the bounds shown in Table 4.3 to obtain

an estimate of fγ5 , which is the only non-vanishing ZZγ∗ form factor.

We show the behavior of the FCNC contributions to fγ5 as a function of the photon transfer
momentum q2 in Fig. 4.4, where we only plot the non-negligible imaginary and real parts
arising from each fermion loop as well as their total sum. We find that the only non-negligible
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contributions arise from the up and down quarks, though the former are the only ones yielding
a non-negligible imaginary part, which thus coincides with the total imaginary contribution. We
have considered the parameter values of Table 4.3, but the curves shown in Fig. 4.4 exhibit a
similar behavior for other parameter values: there is a shift upwards (downwards) when the chiral

couplings values increase (decrease) as fγ5 is proportional to Re
(
gij∗AZg

ij
V Z

)
. We then conclude

that the contributions to fγ5 arising from FCNCs Z couplings are expected to be considerably
smaller than the SM contribution, which is of the order of 10−2.

Figure 4.4: Behavior of the FCNC contributions to the fγ5 form factor as a function of the

momentum of the photon for φLij = 0.1, φRij = 0, |εZRij | = 0.9|εZLij | and the |εZLij | values shown

in Table 4.3. Only the non-negligible contributions are shown: up quarks (tc, tu and cu) and
down quarks (bs, bd and sd). The total imaginary contribution coincides with the respective up
quark contribution since the down quark contribution (not shown in the plot) is negligible.

4.5.2 ZZZ
∗

coupling

In this case both fZ4 and fZ5 are non-vanishing. For our analysis we find it convenient to consider
two scenarios:

• Scenario I (Left- and right-handed couplings of similar size): |εZRij | = 0.9|εZLij |, φLij = 0.1,
and φRij = 0.

• Scenario II (Dominating left-handed couplings):

|εZRij | ' 10−1 × |εZLij |, φLij = 0.1, and φRij = 0.

We do not consider the scenario with dominating right-handed couplings since there is no sub-
stantial change in the magnitude of the ZZZ∗ form factors as that observed in Scenario II. We
show in Fig. 4.5 the behavior of the FCNC contributions to fZ5 as a function of the virtual Z
transfer momentum q2 in the two scenarios described above. Again we only show the real and
imaginary parts arising from the up and down quarks along with the total contribution, though
the imaginary part of the down quark contribution is negligible and is not shown in the plots.
We observe that the largest values of fZ5 are of the order of 10−6, which are reached for smaller
q2 but decrease by one order of magnitude as q2 becomes large. Again, the contribution to fZ5
from FCNC Z couplings is smaller than the SM contribution.
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Figure 4.5: Behavior of the FCNC contributions to the fZ5 form factor as a function of the
momentum of the virtual Z gauge boson in the two scenarios discussed in the text. Only the
non-negligible contributions are shown: up quarks (tc, tu and cu) and down quarks (bs, bd and
sd). The total imaginary contributions coincide with the respective up quark contributions since
the down quark contribution (not shown in the plot) is negligible.

We now analyze the fZ4 form factor, which is absent in the SM up to the one-loop level, which
means that any sizeable excess can be attributed to new physics effects. We find that the only
non-negligible contributions to fZ4 arise from the loops induced by the Ztc coupling, with the
remaining up and down quark contributions being several orders of magnitude smaller. We thus
show in the left plot of Fig. 4.6 the Ztc contribution to the fZ4 form factor as a function of the
virtual Z four-momentum, whereas in the right plot we show the Zbs and Zbd contributions.

We have extracted the factor Im
(
gqq
′∗

AZ gqq
′

V Z

)
, so for the Ztc contribution fZ4 is of the order of

|fZ4 | ' |Im
(
gtc∗AZg

tc
V Z

)
| × 10−5, (4.53)

for relatively small ||q|| ∼ 200 GeV, but there is a decrease of up to two orders of magnitude
as ||q|| becomes of the order of a few TeVs. All the remaining contributions are considerably
suppressed.

4.5.3 ZZZ
′∗

coupling

We now turn to the analysis of the CP -conserving fZ
′

5 and the CP -violating fZ
′

4 form factors for
an off-shell Z ′ boson. For the FCNCs couplings mediated by the Z gauge boson we consider the
same scenarios analyzed in the case of the ZZZ∗ vertex. We thus use the constraints presented
in Table 4.3, which were obtained from the data on Zf ifj decays. Furthermore, for the Z ′

couplings we use the interaction of Eq. (4.22), with the values of Table 4.2 for the chiral charges,
along with x = 0.1 and φL′ ij = 0.001. Here x stands for the parameter characterizing the size

of Z ′ FCNC couplings and φL′ ij is the CP -violating phase of the Z ′ couplings to left-handed up
quarks. Since all the models summarized in Table 4.2 give rise to similar results, we will only
present the numerical results for the Zη model.

We first analyze the behavior of the CP -conserving form factor fZ
′

5 in the scenario with

no FCNCs (diagonal case). We show in Fig. 4.7 the behavior of fZ
′

5 as a function of the
heavy Z ′ gauge boson transfer momentum q2 (left plot) and the mZ

′ mass (right plot). We
observe that the dominant contributions arise from the light quarks and leptons, whereas the
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Figure 4.6: Behavior of the fZ4 form factor as a function of the momentum |q| of the virtual Z

gauge boson. We have extracted a factor of Im
(
gtc∗AZg

qq
′

V Z

)
from the respective contribution. All

other contributions not shown in the plots are well below the 10−10 level.

top quark contribution is the smaller one as its coupling with the Z ′ gauge boson is proportional
to the x parameter, which is taken of the order of 10−1. This behavior is also observed in the

CP -conserving ZZZ∗ form factor in the diagonal case [124]. We also note that fZ
′

5 decreases

for increasing transfer momentum |q|, but it increases for large values of mZ
′ . Since fZ

′

5 is
proportional to mZ

′ [see Eq. (4.33)], a similar behavior is expected in the non-diagonal case. In
Fig. 4.8 we present the contour lines of the total real (left plot) and imaginary (right plot) parts

of fZ
′

5 in the |q| vs mZ
′ plane. It is observed that at high energy, both real and imaginary parts

of fZ
′

5 are considerably small, of the order of 10−2 and 10−3, respectively, which is true even if
the mass of the heavy boson is very large. For mZ

′ � 3000 GeV and intermediate values of |q|,
the value of the real part of fZ

′

5 can be of the order of O(1), whereas the imaginary part is of
the order of 10−2.

Figure 4.7: Behavior of the fZ
′

5 form factor as a function of the transfer momentum |q| (left plot)
and the mZ

′ mass (right plot) in the diagonal case .
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Figure 4.8: Contour lines of the fZ
′

5 form factor in the |q| vs mZ
′ plane in the diagonal case.

We now show in Fig. 4.9 the form factor fZ
′

5 as function of the transfer momentum |q| of the
Z ′ gauge boson in the non-diagonal case. For the FCNCs couplings of the Z gauge boson, we
consider both scenario I (left plot) and scenario II (right plot), which were also considered in the
analysis of the ZZZ∗ vertex. As we are assuming only flavor violation in the up quark sector for
the FCNCs mediated by the Z ′ boson, we only plot this class of contributions. As in the analysis
of the ZZZ∗ form factor, we only show the non-negligible contributions, which are those where
the top quark runs into the loops. We observe that in both scenarios the real parts of the Z ′tc
and Z ′tu contributions are of similar size, although the largest contribution is distinct in each
case. We also find that in scenario I the real parts of the Z ′tc and Z ′tu contributions are of the
same sign, but they are of opposite sign in scenario II. Thus, they tend to cancel each other out.
As for the imaginary parts of the partial contributions, they exhibit a similar behavior in both
scenarios, nevertheless there is a peak in the 600 GeV< |q| < 900 GeV region, which is present
in a distinct contribution in each scenario. We also show in Fig 4.10 the contour lines in the |q|
vs mZ

′ plane of the real (left plot) and imaginary (right plot) parts of fZ
′

5 in scenario II, where
it is manifest the cancellation effect between the real parts of the Z ′tc and Z ′tu contributions for

|q| around 900 GeV. In this scenario the form factor fZ
′

5 can be of the order of 10−6, though for
intermediate |q| and large mZ

′ it can reach values one order of magnitude larger. As for scenario

I, the real and imaginary parts of fZ
′

5 are of the order 10−4 in general, but they could be larger
for small energies and an ultra heavy Z ′.

It is also possible to induce the CP -violating form factor fZ
′

4 via FCNC Z and Z ′ couplings.
We find that the only non-negligible contributions arise from the Z ′tc and Z ′tu couplings, though

the dominant contribution to both real and imaginary parts of fZ
′

4 is the Z ′tc one, which is one
order of magnitude larger than the Z ′tu contribution. We present in Fig. 4.11 the form factor

fZ
′

4 as a function of |q|. We observe that the real and imaginary parts behave in a rather similar
way. As was the case for the ZZZ∗ CP -violating form factor, there is no considerable distinction
between the results for scenario I and scenario II of the FCNC Z couplings, thus we only consider

scenario I in our analysis. We also show in Fig. 4.12 the contour lines of the real part of fZ
′

4

in the |q| vs mZ
′ plane. The behavior of the imaginary part is similar as already stated. We
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Figure 4.9: Behavior of the fZ
′

5 form factor in the non-diagonal case as a function of the transfer
momentum |q| of the Z ′ gauge boson.

Figure 4.10: Contour lines in the |q| vs mZ
′ plane of the real and imaginary parts of the fZ

′

5

form factor in the non-diagonal case and scenario II.

note that at high energy fZ
′

4 can be of the order of 10−7 − 10−8, though it can be one order of
magnitude larger at low energy and for an ultra heavy Z ′ gauge boson. In our numerical analysis

we did not extract the complex phases as in the ZZZ∗ case, since the fZ
′

4 factors depends on
five distinct combinations of all of the involved phases [see Eq. (4.35)].

4.6 Remarks

We have presented a calculation of the TNGBCs ZZV ∗ (V = γ, Z, Z ′) in models where FCNCs
couplings mediated by the Z and Z ′ gauge bosons are allowed. These TNGBCs are given in terms
of one CP -conserving form factor fV5 and another CP -violating one fV4 , for which we present
analytical results in terms of Passarino-Veltman scalar functions. Such results reduce to the
contributions with diagonal Z couplings already studied in the literature. To asses the behavior
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Figure 4.11: Behavior of the fZ
′

4 form factor as a function of |q| in the non-diagonal case and
scenario I.

Figure 4.12: Contour lines of the real part of fZ
′

4 in the q vs mZ
′ plane in the non-diagonal case

and scenario I.

of fV4 and fV5 , for the numerical analysis we obtain constraints on the FCNCs couplings of the
Z gauge boson to up quarks, which are the less constrained by experimental data: it is found
that the current constraints on the t→ qZ branching ratios obtained at the LHC translate into

the following constraints on the vector and axial Z couplings
∣∣∣gtuV Z

∣∣∣ < 0.0096 and
∣∣∣gtcV Z

∣∣∣ < 0.011.
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As far as the ZZγ∗ coupling is concerned, it is found that the only non-vanishing form factor
is the CP -conserving one fγ5 , whose real and imaginary parts are of the order of 10−3, with the
dominant contributions arising from the heavier up and down quarks. On the other hand, as
for the ZZZ∗ coupling, both the CP -conserving and the CP violating form factors are non-
vanishing. We consider two scenarios for the FCNC Z couplings (scenario I and scenario II)
and find that the magnitude of the real and imaginary parts of these form factors are of the

order of |fZ5 | ∼ 10−6 and |fZ4 | ∼ |Im
(
gtc∗AZg

tc
V Z

)
|×10−5, with the dominant contributions arising

from the non-diagonal top quark couplings. Our estimates for the FCNC contributions to the
CP -conserving fγ5 and fZ5 form factors are smaller than the prediction of the SM, whereas the

fZ4 form factor is not induced in the SM up to the one loop level.

We also consider the case of a new heavy neutral Z ′ gauge boson with FCNCs and obtain the
TNGBC ZZZ ′

∗
, for which we present analytical results in the case of both diagonal and non-

diagonal Z ′ couplings in terms of Passarino-Veltman scalar functions. In the diagonal case we find

the following numerical estimate for the CP -conserving fZ
′

5 form factor, which is the only non-

vanishing, |RefZ
′

5 | ∼ 10−1 − 10−2 and |ImfZ
′

5 | ∼ 10−2 − 10−3, with the dominant contributions
arising from the light quarks and leptons. In the non-diagonal case we also consider two scenarios
for the FCNC couplings of the Z gauge boson (scenario I and scenario II). It is found that both

the real and imaginary parts of fZ
′

5 are of the order of 10−4 in scenario I, whereas in scenario

II |RefZ
′

5 | ∼ 10−6 and |ImfZ
′

5 | ∼ 10−5. In general, in the non-diagonal case the magnitude

of both real and imaginary parts of the fZ
′

5 form factor are one order of magnitude larger for
moderate energies and an ultra heavy Z ′ gauge boson than for high energies, with the dominant
contributions arising from the Z ′tu and Z ′tc couplings. The real (imaginary) part of the non-

diagonal contributions to fZ
′

5 are at least two (one) orders of magnitude smaller than the real
(imaginary) parts of the diagonal contributions.

As far as the CP -violating form factor fZ
′

4 is concerned, we obtain similar estimates for its
real and imaginary parts, of the order of 10−7 − 10−8 in both scenarios of the FCNC couplings
of the Z gauge boson. In closing we would like to stress that FCNC couplings can also yield CP
violation in the TNGBCs of a new neutral gauge boson, which may be on interest.
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Apenddix A

Appendix

A.1 Analytic results for the loop functions

We now present the results for the loop functions appearing in the contributions to the CMDM of
quarks discussed in Sec. 1.1 in term of Feynman parameter integrals, Passarino-Veltman scalar
functions, and closed form functions. For sake of completeness we also include the results for
q2 = 0.

A.1.1 Feynman parameter integrals

We note that this calculation was done via the unitary gauge as the result are gauge independent,
which was explicitly verified via the Passarino-Veltman reduction scheme. Therefore, in the EW
sector we only computed by this method the Feynman diagrams (a) through (c) of Fig. 1.3.

We introduce the definition ra,b = ma/mb and present the loop functions for the QCD
contributions to the CMDM of quarks. Feynman diagram 1.2(a) yields the loop function [Eq.
(1.11)]:

FQCD1
q

(
q2
)

= m2
q

∫ 1

0

∫ 1−u

0

(u− 1)u

m2
q(u− 1)2 + q2v(u+ v − 1)

dvdu, (A.1)

whereas Feynman diagram 1.2(b) gives [Eq. (1.16)]:

FQCD2
q

(
q2
)

= m2
q

∫ 1

0

∫ 1−u

0

(u− 1)u

m2
qu

2 − q2v(1− u− v)
dvdu, (A.2)

which for q2 = 0 reduces to

FQCD2
q (0) =

∫ 1

0

(1− u)2

u
du. (A.3)

As far as the EW contributions to the CMDM of quarks are concerned, the Feynman diagram
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with photon exchange of Fig. 1.3(a) gives [Eq. (1.19)]:

FA
q

(
q2
)

= m2
q

∫ 1

0

∫ 1−u

0

(u− 1)u

m2
q(u− 1)2 + q2v(u+ v − 1)

dvdu, (A.4)

whereas the Z boson exchange diagram gives [Eq. (1.25)]

A Z
q

(
q2
)

=

∫ 1

0

∫ 1−u

0

dudv

∆Z

(
(3u−1)∆Z log

(
∆Z

µ2

)
+2
(
m2
q(u− 1)3 − 2m2

Zu
)

+2q2uv(u+v−1)

)
,

(A.5)
and

V Z
q

(
q2
)

= −
∫ 1

0

∫ 1−u

0

dudv

∆Z

m2
Z(u− 1)u, (A.6)

where ∆Z = m2
q(u− 1)2 +m2

Zu+ q2v(u+ v− 1) and µ is the scale of dimensional regularization,
which cancels out after integration.

For q2 = 0, the last two loop functions give:

A Z
q (0) =

∫ 1

0

du
u
(

2u2 + r2
Z,q(u− 4)(u− 1)

)

r2
Z.q(u− 1)− u2 , (A.7)

and

V Z
q (0) =

∫ 1

0

du
gqV

2
r2
Z,q(u− 1)u2

r2
Z.q(u− 1)− u2 . (A.8)

As for the W boson exchange contribution of diagram 1.3(b), it is given by [Eq. (1.30)]:

FW
qq
′

(
q2
)

=

∫ 1

0

∫ 1−u

0

dudv

∆W

(
− (1− 3u) log

(
∆W

µ2

)
∆W − 2m2

q
′(u− 1)2 + u

(
2m2

q(u− 1)2

−m2
W (u+ 3) + 2q2v(u+ y − 1)

)
)
, (A.9)

with the following result for q2 = 0:

FW
qq
′(0) =

∫ 1

0

u
[
u
(

(u− 1) + r2
q
′
,q(u+ 1)

)
+ 2r2

W,q(u− 2)(u− 1)
]

r2
W,q(u− 1)− u

(
(u− 1) + r2

q
′
,q

) du, (A.10)

where ∆W = u
(
m2
q(u− 1) +m2

W

)
−m2

q
′(u − 1) + q2v(u + v − 1). Again this calculation was

done via the unitary gauge.

Finally, for the Higgs contribution [Eq. (1.32)] we obtain:

Fh
q

(
q2
)

= m2
q

∫ 1

0

∫ 1−u

0

(u2 − 1)

m2
q(u− 1)2 + um2

h + q2v(u+ v − 1)
dvdu, (A.11)

which for q2 = 0 reduces to

Fh
q (0) = −

∫ 1

0

du
(1 + u)(1− u)2

(1− u)2 + ur2
h,q

. (A.12)
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A.1.2 Passarino-Veltman results

We now present the above results in terms of Passarino-Veltman scalar integrals, where we use
the standard notation for the two- and three-point scalar functions. Our calculation was done
via a renormalizable linear Rξ gauge and the BFM to verify that the dependence on the ξ gauge
parameter drops out. The loop functions are thus gauge independent and read

FQCD1
q

(
q2
)

=
m2
q

η2(‖q‖,mq)

{
B0(0;mq,mq)−B0

(
q2;mq,mq

)
+ 2
}
, (A.13)

where we define η(x, y) =

√
x2 − 4y2. Also

FQCD2
q

(
q2
)

=
m2
q

η4(‖q‖,mq)

{(
8m2

q + q2
)(

B0(0;mq,mq)−B0

(
q2; 0, 0

))

− 6m2
q

(
q2C0

(
m2
q,m

2
q, q

2; 0,mq, 0
)
− 4
)}

, (A.14)

FQCD2
q (0) =

1

2

{
B0(0;mq,mq) + 3

}
, (A.15)

FA
q

(
q2
)

=
m2
q

η2(‖q‖,mq)

{
B0

(
0;mq,mq

)
−B0

(
q2;mq,mq

)
+ 2
}
, (A.16)

A Z
q

(
q2
)

=
m2
Z

m2
qη

4(‖q‖,mq)

{(
q2
(
m2
Z − 8m2

q

)
+ 10m2

q

(
2m2

q −m2
Z

))
B0

(
m2
q;mq,mZ

)

+
m2
q

m2
Z

(
q2
(

9m2
Z − 2m2

q

)
+
(

8m4
q − 24m2

qm
2
Z + 6m4

Z

))
B0

(
q2;mq,mq

)

+

(
2m2

q +m2
Z

)
η2(‖q‖,mq)

m2
Z

(
m2
qB0(0;mq,mq)−m2

ZB0(0;mZ ,mZ)
)

+ 2
(

2q2
(

3m2
Z − 7m2

q

)
+ 2q4 + 3

(
8m4

q − 6m2
qm

2
Z +m4

Z

))
m2
qC0

(
m2
q,m

2
q, q

2;mq,mZ ,mq

)

+
(4m4

q −m4
Z)η2(‖q‖,mq)

m2
Z

}
, (A.17)

V Z
q

(
q2
)

=
m2
Z

m2
qη

4(‖q‖,mq)

{(
q2
(
m2
Z − 2m2

q

)
+ 2m2

q

(
4m2

q − 5m2
Z

))
B0

(
m2
q;mq,mZ

)

+m2
q

(
2
(

3m2
Z − 2m2

q

)
+ q2

)
B0

(
q2;mq,mq

)
+ η2(‖q‖,mq)

(
m2
qB0(0;mq,mq)−m2

ZB0(0;mZ ,mZ)
)

+
(

4q2 + 2
(

3m2
Z − 8m2

q

))
m2
qm

2
ZC0

(
m2
q,m

2
q, q

2;mq,mZ ,mq

)
+ (2m2

q −m2
Z)η2(‖q‖,mq)

}
,

(A.18)
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A Z
q (0) =

m2
Z

8m4
q

{(
10m2

q − 5m2
Z

)
B0

(
m2
q;mq,mZ

)
+
(

3m2
Z − 14m2

q

)
B0(0;mq,mq)

+ 2
(

2m2
q +m2

Z

)
B0(0;mZ ,mZ) + 3

(
m4
Z − 6m2

qm
2
Z + 8m4

q

)
C0

(
m2
q,m

2
q, 0;mq,mZ ,mq

)

+
2

m2
Z

(
m4
Z − 4m4

q

)}
, (A.19)

V Z
q (0) =

m2
Z

8m4
q

{(
4m2

q − 5m2
Z

)
B0

(
m2
q;mq,mZ

)
+
(

3m2
Z − 4m2

q

)
B0(0;mq,mq)

+ 2m2
ZB0(0;mZ ,mZ) +

(
3m2

Z − 8m2
q

)
m2
ZC0

(
m2
q,m

2
q, 0;mq,mZ ,mq

)
+ 2

(
m2
Z − 2m2

q

)}
,

(A.20)

FW
qq
′
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q2
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qη
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q
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A.1.3 Closed form results

We also present the explicit solutions for the two-point scalar functions in terms of closed form

functions. Below C0
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2
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)
stands for a three-point Passarino-Veltman scalar

function.
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A.2 Feynman rules

We now present in Tables A.1 and A.2 the coupling constants that enter into the Feynman rules
[91, 95, 77] that follow from Eqs. (3.13) and (3.16) and are necessary for the evaluation of the
CMDM and CEDM of the top quark in the RM331.

Table A.1: Coupling constants for the interactions between gauge bosons and quarks in the
RM331. We follow the notation of Lagrangian (3.13). Here (KL)tq are entries of the complex
mixing matrix KL, where the subscript q runs over u and c. This matrix is given in terms of the
unitary complex matrix Vu

L that diagonalizes the mass matrix of up quarks, and can be written
as (KL)tq = (V uL )∗tq(V

u
L )qt. Here hW = 1− 4s2

W .

Coupling gV qq
′

V gV qq
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A

Z ′tt 1−2s
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√
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√

12hW

Ztq s
2
W√

12hW
(KL)tq

s
2
W√

12hW
(KL)tq

V −tJ3

√
2cW (V uL )33

√
2cW (V uL )33

Table A.2: Coupling constants for the interactions between scalar bosons and quarks necessary
for the evaluation of the one-loop contributions to the CMDM and CEDM in the RM331. We
follow the notation of Lagrangian (3.16). Here (ηu)tq are entries of the complex mixing matrix
ηu, where the subscript q runs over u and c. This matrix is given in terms of the unitary
complex matrices Vu

L and Vd
L that diagonalize the mass matrix of up quarks, and can be written

as (ηu)tq = (V uL )qq(V
u
R )∗tq and (ηu)∗qt = (V uL )∗tq(V

u
R )qq since the matrix ηu is not symmetric.

GSqq
′

S GSqq
′

P

h1tt
mt
mW

(
cβ − υρ

υχ
sβ

)
-

h1tq − sβυρm33

υχmW
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(
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)

A.3 Analytical results for the loop integrals

In this appendix we present the loop integrals appearing in Eqs. (3.14), (3.15), (3.17), and (3.18)
in terms of Feynman parameter integrals and Passarino-Veltman scalar functions both for non-
zero and zero q2. We have verified that all the ultraviolet divergences cancel out. Furthermore,
contrary to the QCD contribution, all the contribution of the RM331 are finite for q2 = 0.

A.3.1 Feynman parameter integrals

The V V
qq
′(q2) function of Eq. (3.14) can be written as
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As far as the D̃V
qq
′(q2) function of Eq. (3.15) is concerned, it is given by
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which leads to
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The PS
qq
′(q2) function of Eq. (3.17) is
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which for q2 = simplifies to
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Finally, the loop function of Eq. (3.18) reads
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which yields
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A.3.2 Passarino-Veltman results

We now present the results for the loop functions in terms of Passarino-Veltman scalar functions,
which can be numerically evaluated by either LoopTools [46] or Collier [47], which allows one to
cross-check the results. We introduce the following notation for the two- and three-point scalar
functions in the customary notation used in the literature:
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2
a), (A.45)
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for a = V, S, q′ and b = V, S. We also define δb = 1− rb and χb = 1 + rb.

For non-zero q2, the loop functions of Eqs. (3.14) and (3.15) are given by
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and
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(A.50)

As far as the results for q2 = 0 are concerned, they read

V V
qq
′(0) =

1

r2
V − χ2

q
′

[
8r6
V − 4

(
rq′
(

3rq′ + 2
)

+ 2
)
r4
V + 2

(
rq′
(
rq′
(

2rq′ + 7
)

+ 4
)
− 5
)
r2
V

+ 2
(
r2
q
′ − 1

)
2
(

2rq′χq′ + 1
)
−
(

4δ2
q
′rq′χ

3
q
′ + 4rq′χ

2
q
′r2
V − 4

(
rq′
(

3rq′ + 2
)

+ 3
)
r4
V + 8r6

V

)
Bq′V

−
(

4δq′rq′χ
2
q
′r2
V + 4

(
rq′
(
rq′ + 2

)
+ 3
)
r4
V − 8r6

V

)
BV + 4rq′

(
δ2
q
′χ3
q
′ + rq′χ

2
q
′r2
V − 2rq′r

4
V

)
Bq′
]
,

(A.51)
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and
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The loop functions of Eqs. (3.17) and (3.18) are given by
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and
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For q2 = 0 we obtain
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and
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A.3.3 Two-point scalar functions

In closing we present the closed form solutions for the two-point Passarino-Veltman scalar func-
tions appearing in the calculation. The three-point scalar functions are too lengthy to be shown
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here.
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where λ(x, y, z) = x2 + y2 + z2 − 2(xy − xz − yz). The scale µ and the pole ε of dimensional
regularization cancel out in the final result.
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A.4 Analytical form of the TNGBCs ZZV ∗ (V = γ, Z, Z′)

In this appendix we present the analytical expressions for the loop functions appearing in the
contributions to the TNGBCs ZZV ∗ (V = γ, Z, Z ′) arising from the FCNC couplings mediated
by the Z gauge boson and a new heavy neutral gauge boson Z ′. For the calculation we use the
Passarino-Veltman reduction scheme.

A.4.1 Passarino-Veltman results

ZZγ∗ coupling

There are only contribution to the fγ5 form factor, which is given in Eq. (4.27), where Rij reads
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Z
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, (A.60)

where we have introduced the shorthand notation

Bij(c
2) = B0
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2
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2
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)
, (A.61)

with B0 and C0 being the usual two- and three-point Passarino-Veltman scalar functions. It is
useful observe the following symmetry relations

Bij(c
2) = Bji(c

2),
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(
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)
,
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(
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)
. (A.62)

In Eq. (A.60) it is evident that ultraviolet divergences cancel out. We have also verified that
Rij vanishes for an on-shell photon.

ZZZ∗ coupling

There are contributions to both the CP -conserving form factor fZ5 and the CP -violating one
fZ4 . They are given in Eqs. (4.31) and (4.29), with the Rkij , and Sij functions given in terms of
Passarino-Veltman scalar functions as follows
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ZZZ
′∗ coupling

The contributions to the fZ
′

5 and fZ
′

4 form factors are given in Eqs. (4.33)-(4.35), with the Li
Tkij and Ukij functions given as follows
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U2ij = U1ij(mj → −mj), (A.71)
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U5ij = U4ij(mj → −mj), (A.74)
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and

U7ij = U6ij(mj → −mj). (A.76)
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T2ij = T1ij(mj → −mj), (A.78)
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T5ij = T4ij(mj → −mj), (A.81)

A.4.2 Closed form results

We now present the closed form of the TGNBCs presented above. We only expand the two-
point scalar functions in terms of transcendental functions as the three-point functions are too
cumbersome to be expanded. We first introduce the following auxiliary functions:
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ZZγ∗ coupling

The Rij function of Eq.(4.27) can be written as follows
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ZZZ∗ coupling

The Rkij and Sij functions of Eqs. (4.31) and (4.29) read
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and
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ZZZ′∗ coupling

Finally, the Li Tkij and Ukij functions of Eqs. (4.33)-(4.35) are given as follows
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U2ij = U1ij(mj → −mj), (A.95)
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U5ij = U4ij(mj → −mj), (A.99)
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U7ij = U6ij(mj → −mj), (A.101)
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T2ij = T1ij(mj → −mj), (A.103)
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and

T5ij = T4ij(mj → −mj), (A.106)
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[13] A.I. Hernández-Juárez, A. Moyotl, and G. Tavares-Velasco. Chromomagnetic and chromo-
electric dipole moments of the top quark in the fourth-generation THDM. Phys. Rev. D,
98(3):035040, 2018.

89



BIBLIOGRAPHY

[14] R. Martinez, M. A. Perez, and N. Poveda. Chromomagnetic Dipole Moment of the Top
Quark Revisited. Eur. Phys. J. C, 53:221–230, 2008.

[15] R. Gaitan, E.A. Garces, J. H. Montes de Oca, and R. Martinez. Top quark Chromoelectric
and Chromomagnetic Dipole Moments in a Two Higgs Doublet Model with CP violation.
Phys. Rev. D, 92(9):094025, 2015.

[16] Qing-Hong Cao, Chuan-Ren Chen, F. Larios, and C. P. Yuan. Anomalous gtt couplings in
the Littlest Higgs Model with T-parity. Phys. Rev. D, 79:015004, 2009.

[17] Li Ding and Chong-Xing Yue. Top quark chromomagnetic dipole moment in the littlest
Higgs model with T-parity. Commun. Theor. Phys., 50:441–444, 2008.

[18] Amin Aboubrahim, Tarek Ibrahim, Pran Nath, and Anas Zorik. Chromoelectric Dipole
Moments of Quarks in MSSM Extensions. Phys. Rev. D, 92(3):035013, 2015.

[19] R. Martinez, M. A. Perez, and O. A. Sampayo. Constraints on unparticle physics from the
gt t̄ anomalous coupling. Int. J. Mod. Phys. A, 25:1061–1067, 2010.

[20] Tarek Ibrahim and Pran Nath. The Chromoelectric Dipole Moment of the Top Quark in
Models with Vector Like Multiplets. Phys. Rev. D, 84:015003, 2011.

[21] V. Khachatryan et al. Measurements of t t-bar spin correlations and top quark polarization
using dilepton final states in pp collisions at sqrt(s) = 8 TeV. Phys. Rev., D93(5):052007,
2016.

[22] Andrzej Czarnecki and Bernd Krause. Neutron electric dipole moment in the standard
model: Valence quark contributions. Phys. Rev. Lett., 78:4339–4342, 1997.

[23] I. B. Khriplovich. Quark Electric Dipole Moment and Induced θ Term in the Kobayashi-
Maskawa Model. Phys. Lett. B, 173:193–196, 1986.

[24] E. P. Shabalin. Electric Dipole Moment of Quark in a Gauge Theory with Left-Handed
Currents. Sov. J. Nucl. Phys., 28:75, 1978.

[25] Ishita Dutta Choudhury and Amitabha Lahiri. Anomalous chromomagnetic moment of
quarks. Mod. Phys. Lett. A, 30(23):1550113, 2015.
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[48] A. I. Hernández-Juárez, A. Moyotl, and G. Tavares-Velasco. New estimate of the chromo-
magnetic dipole moment of quarks in the standard model. Eur. Phys. J. Plus, 136(2):262,
2021.
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