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 Introduction 2.7.1

Wake potentials and beam coupling impedances can be calculated analytically only if 
the structures are fairly simple and an appropriate coordinate system can be attached. In 
practice this is often not the case and one has to rely on numerical techniques. Although the 
term beam coupling impedance was introduced first in the Frequency Domain (FD) by 
Vaccaro [1] in 1966, first numerical wake field computations were performed in the Time 
Domain (TD) by Balakin et al. [2] in 1978, and Weiland [3] in 1980. Nowadays, TD 
methods on structured meshes are the most common way to determine beam coupling 
impedances; they are available in many commercial and non-commercial codes. 

Explicit TD methods require only matrix-vector multiplications for time stepping, which 
makes them computationally efficient. Usually they are based on Finite Differences Time 
Domain (FDTD [4]) or Finite Integration Technique (FIT [5]), which result in a coinciding 
space discretization on a Cartesian mesh. However, in general, mesh and method are 
independent. For example FIT or the Finite Element Method (FEM) can be applied on 
tetrahedral, hexahedral, or even mixed meshes.  

In explicit TD simulations stability requires fulfilling the Courant Friedrichs Lewy 
(CFL) condition [6]. This makes them well suited for wave-propagation dominated 
problems but not well suited for structure-dominated problems, particularly at Low 
Frequency (LF). The small time step, which is tied to the space step by the CFL condition 
leads to a massive oversampling of an LF wave. Moreover, sub-relativistic beams and 
dispersive materials are difficult to treat in TD. 

In these rather exotic cases, it makes sense to compute the beam coupling impedance 
directly in FD. Such computations are somewhat oriented on analytical methods [7], but 
generalized to arbitrary geometries by discretization methods as FIT or FEM. The current 
status of FD methods, however, is not as advanced as for TD methods. In particular, there is 
no high performance tool to compute beam coupling impedance in FD for three-dimensional 
structures. 

In this paper, we will first discuss relevant assumptions and requirements for the 
computation of wake potentials and impedances in TD and FD. Then we give an overview 
of methods and codes. In the end, we give two examples; one is a three-dimensional RF-
finger bellow structure planned to be used in the LHC which we address in TD and the other 
is a scenario for FCC-hh beam pipe addressed by a two-dimensional FD approach.   

 Definitions and Assumptions for the Computation of Wakefields and 2.7.2
Impedances 

The definition of wake potentials decouples the electromagnetical and the mechanical 
problems in beam dynamics by making the two assumptions: 
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- Rigid beam approximation: all particles move through the structure with constant 
velocity, 

- Kick approximation: the force continuously acting on the trailing charge is 
lumped to a single kick (instantaneous change of momentum) after the passage 
through the structure. 

 
The three-dimensional wake function is generally defined as (see e.g. [8])  
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where 21 , rr  are the transverse coordinates of the leading and trailing charge, respectively. 

Equation 1 fulfills the Panofsky-Wenzel (PW) theorem [9] as ,0),,(' 21 =×∇ srrW  where the 
relative gradient is T

syx ),,(' 22 −∂∂∂=∇ . A supplement to the PW theorem is the fact that the 
longitudinal wake function is a harmonic function of the transverse coordinates in the ultra-
relativistic limit. This is the basis of several methods to modify the wake integration contour 
[10,11]. Among the most famous ones are the indirect test beam method [12] and the 
indirect interfaces [13] method. An approach to avoid lengthy wake integration for 
evanescent waveguide modes in the beam pipe after a cavity is presented in [14]. Finally, 
generalized methods for arbitrary structures are discussed in an abstract mathematical 
framework in [15]. 

The improper integral (1) exists only if the assumed infinite beam pipe connections do 
not cause any wakefields, i.e. the following conditions have to be fulfilled: 
 

- smooth pipe (no geometric wake fields), 
- perfectly conducting pipe (no resistive wake fields), 
- ultra-relativistic beam (no space-charge wake fields).  

 
Note that the last two requirements can be relaxed by taking into account a pipe stub 
impedance per unit length. However inserting a nonrelativistic beam into a 3D structure is 
involved and requires a numerical Lorentz transformation [16]. 

The wake potential is connected to the wake function by convolution with the bunch 
profile (line density )(sλ ),   
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Due to the minimal duration–bandwidth product, a Gaussian bunch 
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is usually employed for the excitation. Fourier transform over s = vt-z leads to 
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Note that the excitation bunch length ss  in a TD simulation does not necessarily 
correspond to the true bunch length in the operated accelerator, but rather to the frequency 
of interest. The point charge impedance is recovered by applying the convolution theorem 
as  
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For ultra-relativistic beams the dipolar and quadrupolar transverse impedances can be 
obtained by displacing the source bunch or the wake integration line, respectively. If the 
displacement is small, the impedance scales linearly with it and thus one defines a 
transverse dipolar or quadrupolar impedance in units of Ohms/m, which is obtained from 
the wake potential in the same way as the longitudinal impedance. 

The beam coupling impedance can also be defined directly in FD by the power loss 
integral of a beam with finite transverse size as  
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where EJ ,  are the beam current density and the electric field spectral densities, 
respectively. The dipolar transverse impedance can be obtained accordingly by using a 
dipolar excitation current density and the PW theorem. Note that the representation of the 
impedance by a volume integral over the longitudinal electric field and the current density is 
particularly convenient for the computation on a mesh since discretization noise is averaged 
out. Moreover, it allows for consistent computation of the space charge impedance in the 
case of v < c [17].  

 Time Domain Simulation Tools and Methods 2.7.3

Computational loads in wake field computation can be heavy, thus parallel codes lead to 
a significant progress. Nowadays, more than 1e9 mesh cells are easily handled in parallel 
codes on cluster computers, while on a single machine the limit is at about 1e7 to 1e8. 
Moreover, an important recent improvement was the introduction of boundary conformal 
meshing, increasing the convergence order and avoiding extremely fine meshes to 
approximate the geometry accurately.   

For the computation of short range wakes, it is advantageous to use a moving window, i.e. 
a mesh which moves along with the bunch and re-discretizes the geometry in every time 
step. The moving mesh approach was first introduced by Bane and Weiland [18] and is 
nowadays implemented in many codes such as PBCI [19] or GdfidL [20]. For long-range 
wakes, however, where the desired wake length is much longer than the structure, the 
moving mesh is rather inappropriate, since the entire wake length needs to be meshed.  

Another important property for short-range wake computation in TD is the suppression 
of numerical dispersion in direction of beam propagation. This can be achieved by e.g. 
longitudinal-transversal-splitting [19] or TE-TM-splitting [21]. An overview of different TD 
codes can be found in [22], where these properties are discussed in more detail.  

 Flexible RF-Finger Structures 2.7.4

We investigate the structure shown in Fig. 1, which is designed to serve as a shielding for 
the LHC triplet bellows in point 1 and point 5. The fingers are made from a single copper 
beryllium sheet of 0.1 mm thickness. In total, it is considered to have 32 such structures in 
the LHC [23]. The beam coupling impedance is computed using the commercial CST 
Particle Studio (PS) [24] wake field solver and the PBCI code. The latter is a dedicated 
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dispersion free, moving window, parallel wake field solver developed at TEMF, TU 
Darmstadt. Recently, also conformal meshing was added to PBCI. 
 

 
Figure 1: RF-Finger and bellow structure. 

 
Since the structure is symmetric with respect to both the x-z and y-z planes, only one 

quarter of the geometry needs to be modeled when the beam is on axis (see Fig. 2) and only 
half needs to be modeled for dipolar excitation. When wakefield integration by means of 
indirect interfaces (see also [13]) is applied, the beam pipe stubs can be chosen to be very 
short, which reduces the number of cells in the structured mesh significantly. Wave guide 
port boundaries taking into account at least 50 modes guarantee that the reflections at the 
beam entry and exit are small. The excitation is applied as a Gaussian bunch with 12=ss
mm.  

The simulated wake potential is displayed in Fig. 3, where the different parameters for 
the PBCI runs are given in Table 1. Figure 4 shows the real and imaginary parts of the 
impedance obtained by CST PS, where long wake lengths can be easily realized. Finally, 
Fig. 5 shows a comparison of CST and PBCI impedance magnitude, also for the structure 
fingers closed, such that only a bellow structure remains. This can be simulated much easier, 
and the results show good agreement with the simulation of the original structure. From this, 
one can conclude that the structure works as it should, i.e. shielding the beam from the 
outside in the frequency range of the beam spectrum. The expected cutoff at which 
significant field transmission occurs is at f=c/2d=60GHz, where d=2.5mm is the gap 
between two fingers. Finally, Fig. 6 shows the transverse impedance that also behaves 
almost identically in both the finger and closed cases. 
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Figure 2: Boundary and symmetry conditions. 

 
Figure 3: Longitudinal wake potential. 

 
Table 1: Parameters of PBCI simulation runs. 

 
 
 
 
 
We interpret the impedance curves in Figs. 5 and 6 as follows: the first resonance at 
5.1 GHz (3.6 GHz for the dipolar impedance) corresponds to a cavity mode. In the absence 
of losses its quality factor tends to infinity. In the simulations the height of the peak is 

 #cells Wake length Processes 
PBCI1 8.6e7 3.2m 83 
PBCI2 5e8 6.4m 332 
PBCI3 1e9 12.8m 162 
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limited by the finite wake length and thus increases with increasing wake length. The 
second peak at 7.8 GHz (6.3 GHz for the dipolar impedance) is independent of the wake 
length. This is a broadband resonance caused by leaky cavity modes, i.e. cavity modes, 
which decay due to losses through the pipe. The small peak at 2.28 GHz (1.73 GHz for the 
dipolar impedance) corresponds to the cutoff of the first TM (TE) waveguide mode. 

 
Figure 4: Real and imaginary part for different wake lengths. 

 
Figure 5: Comparison of PBCI and CST, also for the closed structure. 
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Figure 6: Dipolar transverse impedance magnitude. 

 Frequency Domain Solver Example 2.7.5

In FD, there is no direct advantage from the FIT diagonal material matrices, which favors 
the FEM on an unstructured mesh. However, in practice FIT is also used, since the 
structured mesh makes the implementation of Floquet boundary conditions simple [25]. 
Particularly in the absence of bulk materials, the Boundary Element Method (BEM) is also 
an attractive option in FD [26, 27]. The beam velocity and dispersive material data are just 
parameters in FD that can in principle be chosen arbitrarily. However, such parameters 
influence the condition number of the system matrix, which becomes an issue when a large 
System of Linear Equations (SLE) has to be solved for each frequency point. 

We address an example for the FCC-hh [28] design study, i.e. a beam pipe design 
proposal (see Fig. 7), with the FEM code BeamImpedance2D [17]. The code solves the curl-
curl equation 

JiEE ωεωµ −=−×∇×∇ − 21  

for the electric field  32: CRE → , subject to the beam current density J  as the excitation. 

Note that E  and J  are not free of divergence due to the beam’s charge. The permeability 
and permittivity are allowed to be complex, i.e. conductive, polarization and magnetization 
losses are taken care of. For the solution of the system Nedelec finite elements are used. 
Since those are (at lowest order) not capable of modelling the divergence of E , a Helmholtz 
split needs to be performed to calculate the (quasi) static fields from a complex potential 
separately (see [17]). Furthermore, the code allows using a Surface Impedance Boundary 
Condition (SIBC) to avoid meshing the extremely small skin depth at high frequency.  
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Figure 7: Proposed FCC beam pipe design (R. Kersevan) and GMSH mesh (T. Egenolf). 

 

Figure 7 shows the proposed FCC-hh beam pipe design, where the green color indicates 
vacuum domains. The inner surface of the beam screen is covered by a copper layer of 
thickness 80 µm. In order to avoid meshing the material behind the copper, a two-layer 
surface impedance is used [29]. Figure 8 shows the transverse impedance of the structure, 
together with analytical results by ReWall [30] for circular pipes with the 

 
Figure 8: Transverse impedance of the FCC pipe. 
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the smaller and larger semi-axis radii 12mm and 18mm. As expected, the impedance curves 
for the real structure are between the two analytical curves and the horizontal is smaller than 
the vertical impedance due to the larger distance to the wall. The bump of the imaginary part 
at high frequency is a numerical artifact, due to improper cancelation of the electric and 
magnetic parts of the space charge impedance at the extremely high gamma=50000. At low 
frequency the discrepancies between the analytical and numerical results are due to different 
modelling of the structure. In ReWall the titanium behind the copper is considered with its 
thickness of 2mm and vacuum behind. The SIBC for BeamImpedance2D assumes infinite 
thickness of the titanium. However, this modeling discrepancy matters only for extremely 
low frequencies below 100Hz. 
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