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Abstract

We introduce a model-independent anomaly search approach for detection of
new physics signals in high-energy physics and study three different variants of
this approach. All these methods are based on multivariate probability density
estimation under the assumption of a fairly accurate background Monte Carlo
(MC) model. Demonstrations using CDF MC samples for WH Higgs show that
anomaly search is able to find the new physics signal without prior knowledge
of its signature. As such, these methods are robust against inaccuracies in the
signal MC. Comparison to a model-dependent Neural Network classifier (NN)
shows that for a foreseen signal anomaly search and NN produce comparable
results. On the other hand, in the case of an unexpected signal, NN fails to
correctly identify the signal while anomaly search does not suffer from such a
limitation.
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1 Introduction

One of the main objectives of high energy physics is the search for new physics signals.
Traditionally, searches for such signals are conducted with model-dependent classifica-
tion methods, such as neural networks (NN). These methods rely greatly on training
samples from Monte Carlo (MC) generators to distinguish the desired signal from the
background. The obvious drawback of this approach is that it becomes useless if one
does not know what to look for, or in the case that the MC generators do not model
the signal events accurately.

To overcome these problems, we propose using model-independent multivariate ma-
chine learning methods for searching anomalies in the particle collision data. These
anomaly search methods are based on probability density estimation under the as-
sumption that there exists a fairly accurate representation for the background, i.e.,
the detector response to a sample containing no signal events. In most cases, the
background would be defined using MC although in some situations it might be pos-
sible to use real measurements as well. The anomalies found should be investigated
further in order to determine whether they result from (i) deficiency or inaccuracy in
the background MC generator, (ii) a detector defect or a lack of understanding of the
detector, or (iii) a previously unknown physics process. The advantage of this kind of
an approach is that we are independent from the distribution of the anomalous events.
Furthermore, in the case of a well-understood detector and background, anomaly search
is insensitive to uncertainties in the MC models for the new physics signals.

Such model-independent approaches have previously been used at some experi-
ments. In CMS, for example, an algorithm called Model Unspecific Search in CMS
(MUSiC) [1] scans the measured data for deviations from the MC expectation. The
algorithm does this by looking at single variable at a time as a results of which one
may end up missing the dependency structures (i.e., correlations) in the data. Similar
algorithms, namely Vista and Sleuth [2], have been devised at the Tevatron with the
same limitations. On the contrary, the multivariate methods studied here inherently
take correlations into account in the multi-dimensional input space.

Outside physics, anomaly detection has been successfully applied to the credit card
fraud detection [3]. This problem is similar to searches for new physics as one would
like to detect unforeseen anomalous credit card usage among a large background of
proper transactions. Analogously, in high-energy physics, one would like to identify
new signals among a background of well-known old physics.

This paper is organized as follows. In Section 2, we present the basic ideas behind
density estimation based anomaly search and present two different approaches for lo-
cating the signal. Section 3 describes the technical details of the algorithms. We first
present principal component analysis as a means to reduce the dimensionality of the
data space followed by a description of the density estimation methods employed in
this work. We demonstrate the feasibility of the anomaly search approach using CDF
MC samples for WH Higgs in Section 4 and end with discussion and conclusions in
Section 5 and 6.
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2 Anomaly Search with Density Estimation

The task of an anomaly search is to find differences between the measured data and the
expected background. The traditional approach in anomaly detection is to estimate
only the background distribution and then classify an incoming event as anomalous if
it is located in an area of low probability density of the background distribution. This
approach, however, becomes useless if the anomalous signal lies among the background.

When the signal is among the background, an event-by-event classification is usu-
ally difficult. Nevertheless, one can detect changes in the distribution of the data;
there is more events in the signal region than one would expect according to the back-
ground distribution. To analyze the changes in the distribution of the data, we utilize
density estimation techniques to model the background distribution (pB) from the MC
generated events and the actual distribution (pM) from the measured data. Then we
compare these two distributions to identify the signal distribution pS which represents
the unexpected data.

The measured data distribution pM is assumed to be a linear combination of the
background and the signal

pM(x) = (1− λ)pB(x) + λpS(x), (1)

where λ is proportional to the cross section of the signal. We further assume that pB,
which is estimated from the MC, is accurate and thus the deviations from the MC are
represented by pS.

For an event-by-event classification a discriminant function D is needed. We choose
the probability of event x to belong to signal as the discriminant

D(x) =
λpS(x)

(1− λ)pB(x) + λpS(x)
. (2)

The decision rule for selecting events is as follows

D(x) =

{
D(x) ≥ T ⇒ x accepted,
D(x) < T ⇒ x rejected,

(3)

where T is a constant threshold which can be used to control the sensitivity of the
classifier. As extreme cases, if T = 0 all events are accepted, and if T = 1 all events
are rejected.

We propose two different approaches for revealing the signal distribution, namely
(i) fixed background model and (ii) background subtraction. The first and a common
step for both approaches is background modeling. After estimating the background
distribution pB(x), fixed background model tries to find the signal distribution pS(x)
that in combination with the background model pM(x) gives the maximum likelihood
for the signal and background data (signal+background). In background subtraction
the second step is to estimate the signal+background distribution after which the two
distributions can be subtracted resulting in a candidate for the discriminant function.
The two approaches are described in more detail below.
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2.1 Fixed Background Model

An underlying assumption in fixed background modeling is that one has a relatively
representative MC sample for the background. In terms of particle physics this usually
corresponds to a precise MC model. Figure 1a illustrates a one dimensional background
sample and a maximum likelihood Gaussian distribution pB(x) estimated using the
sample.

After modeling the background distribution one starts estimating the measured data
model pM(x) (see equation (1)) in such a way that the shape of the background distri-
bution pB(x) is fixed while the other parameters in pM(x) (i.e., λ and the parameters of
pS(x)) are varied. The lines in the bottom of Figure 1b illustrate a signal+background
sample where the longer lines correspond to a weak signal. Here, the signal model
pS(x) is a one dimensional Gaussian with parameters µ and σ. Hence, one is opti-
mizing the values of λ, µ and σ to give the maximum likelihood for the measured
signal+background data. The resulting distribution pM(x) is shown with a solid line
in Figure 1b.
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Figure 1: An illustration of the fixed background model in a one dimensional space.
Figures show (a) the background sample (lines at the bottom) and an estimated distri-
bution for the sample, and (b) the signal+background sample (longer lines at the bot-
tom denote the anomalous signal) and an estimated signal distribution pS(x) (dashed
line). The resulting distribution for the measured data pM(x) is show with a solid line
in (b).

2.2 Background Subtraction

Background subtraction is based on calculating the difference of the background and
the measured distributions. This has been done for one dimensional data using his-
tograms as density estimators in [4]. The term background subtraction is also used
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in vision systems research where the problem is to detect moving objects from static
cameras [5, 6]. This problem has many similarities to that of finding new physics sig-
nals. However, the difference is that vision systems research deals with a time series
of consecutive images of the same object and therefore the methods used are usually
somewhat different.

We conduct the background subtraction by solving pS from equation (1)

pS(x) =
pM(x)− (1− λ)pB(x)

λ
. (4)

This result implies that we need to have an estimate for the cross section λ in order
to estimate the signal distribution pS. Nevertheless, if we only want to do an event-
by-event classification, it turns out that a prior knowledge of the cross section is not
necessarily needed. Substituting pS from equation (4) into equation (2) we obtain the
decision rule

D(x) = 1− (1− λ)
pB(x)

pM(x)
> T, (5)

where D(x) is again the discriminant function and T the classification threshold. After
rearrangements we get

pB(x)

pM(x)
<
T − 1

1− λ
= Tfinal. (6)

This means that λ can be treated as a part of the threshold Tfinal and is therefore
discarded from the decision rule.

3 Methodological background

Our data-driven techniques use multivariate probability density functions (PDF) to
summarize the data. When new measurements are collected, their similarity with the
known background distribution can be both quantitatively and qualitatively evaluated.
A limitation of this approach is that one has to rely on the background predictions made
by the MC generators.

If the dimensionality of the data increases, the number of events required for an
accurate density estimation grows exponentially. This is known as the curse of dimen-
sionality [7]. In the following subsections, we will describe a dimensionality reduction
method for dealing with the curse of dimensionality. Then we will shortly introduce
some advanced density estimation techniques that produce continuous probability dis-
tributions.

3.1 Dimensionality Reduction with Principal Component
Analysis (PCA)

To tackle the curse of dimensionality, we conduct a dimensionality reduction using
principal component analysis (PCA). In dimensionality reduction, the task is to find
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a mapping from the original D-dimensional space to a d-dimensional subspace where
d < D. The mapping is such that a minimum amount of information is lost. In addition
to dimensionality reduction, PCA is widely used for other applications such as feature
extraction, lossy data compression and data visualization [8].

Probably the most commonly used definition of PCA is the maximum variance for-
mulation [9] according to which PCA is an orthogonal projection of the data onto a
lower dimensional linear space, principal subspace, in which the variance of the data
is maximized, that is, the maximum amount of information is preserved. The opti-
mal projection onto the d-dimensional subspace is such that we choose d eigenvectors
u1, . . . ,ud of the data covariance matrix S = 1

N

∑N
n=1(xn− x̄)(xn− x̄)T corresponding

to the d largest eigenvalues λ1, . . . , λd. Now, a linear transformation of a data vector
xn onto the principal subspace defined by the d eigenvectors is simply the product

zn = UT(xn − x̄), (7)

where zn are called the z-scores for the data vector and the d columns of U are the
d leading unit eigenvectors of S. A detailed description and derivation of PCA can be
found, e.g., in [8, 10].

3.2 Parametric Density Estimation

3.2.1 Mixture of Multivariate Gaussian Distributions

The objective of probabilistic modeling is to approximate the data set with some known
probability distribution. In other words, the modeling task is to estimate an unknown
probability distribution based on a finite number of observations. The underlying as-
sumption is that the data is drawn from some unknown but well-defined distribution
and the task is to estimate the parameters of the distribution. That is why these meth-
ods are sometimes called parametric methods. The advantage of this approach is that
the model can be defined with a small number of parameters, e.g., mean and covari-
ance matrix in the case of a Gaussian distribution. The parameters of the distribution
are estimated from the data using maximum likelihood (ML) estimation, i.e., we select
such a model that it maximizes the likelihood of the data.

Finite mixtures of distributions are a flexible method for modeling complex distri-
butions [11]. The idea of a mixture model is that its components can represent different
parts of the true distribution, which would be difficult or impossible to estimate by a
single parametric distribution. In this work, we use mixtures of multivariate Gaussian
distributions [10] or shortly mixtures of Gaussians (MoG) to represent the distribution
of the measurements from particle collisions.

After the dimension reduction (see Chapter 3.1) the particle collision events can be
represented by d-dimensional vectors x, where d is the dimensionality of the subspace.
For a single multivariate Gaussian distribution, the PDF value of the observed vector
x is

p(x|θ) =
1

(2π)d/2|Σ|1/2
exp
(
−1

2
(x− µ)′Σ−1(x− µ)

)
= N (x|µ,Σ). (8)
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Now, the finite mixture of multivariate Gaussian distributions is defined by

p(x|Θ) =
J∑

j=1

πjN (x|µj,Σj), (9)

where πj are mixture proportions (or mixing coefficients) such that πj ≥ 0 and
∑J

j=1 πj =

1 and Θ = {J, {πj,µj,Σj}Jj=1} represents the parameters of the mixture model with J
components.

3.2.2 Expectation-Maximization (EM) Algorithm with Fixed Background

In this section, we outline how to use the expectation-maximization (EM) algorithm
to estimate models of the form (1) when the shape of the background distribution is
fixed. Let us first consider the case of fitting a MoG model with J components to
the background sample with N observations xn, n = 1 . . . N . The log-likelihood of the
parameters {πj,µj,Σj}Jj=1 can be written as

l =
N∑

n=1

log

(
J∑

j=1

πjN (xn|µj,Σj)

)
. (10)

Here we have assumed that the collision events are independent and identically dis-
tributed (i.i.d.). The ML estimates of the parameters can be obtained by maximizing
(10) which is carried out by using the EM algorithm [12, 13]. The detailed derivation
of the EM algorithm for the MoG model can be found in [10]. Next, we show the
update equations of the parameters. In the expectation step (E-step), the posterior
probabilities

p(j|xn,Θ
k) =

πk
jN (xn|µk

j ,Σ
k
j )∑J

j′=1 π
k
j′N (xn|µk

j′Σ
k
j′)

= p(znj = 1|xn) ≡ γ(znj) (11)

are calculated. Here, Θk contains the parameter estimates at the iteration k and zn
is a J-dimensional binary variable having 1-of-J representation in which a particular
element znj is equal to 1 and all other elements are equal to 0. The vector zn can be
interpreted as an explicit latent variable describing which component of the mixture
model generates the sample n. Equation (11) gives the posterior probability that data
point xn is generated by the jth component. In the maximization step (M-step), the
parameter values are updated according to following equations

πk+1
j =

1

N

N∑
n=1

γ(znj), (12)

µk+1
j =

∑N
n=1 γ(znj)xn∑N
n=1 γ(znj)

, (13)

Σk+1
j =

∑N
n=1 γ(znj)(xn − µk+1

j )(xn − µk+1
j )T∑N

n=1 γ(znj)
(14)
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It has been shown, that each iteration of the EM algorithm increases the log-
likelihood of the data until a local maximum of the likelihood is found [13].

Secondly, after estimating the distribution of the background sample, we utilize
the EM algorithm to search any unmodeled anomalies in the collision data. Now, the
first term, pB(x) in equation (1) is fixed and both λ and the parameters of pS(x) are
optimized to maximize the log-likelihood of the data. Here, pS(x) can be either a single
Gaussian or a MoG. We can now write equation (1) as follows

pM(x) = (1− λ)pB(x) + λ

J+Q∑
q=J+1

π̃qN (x|µq,Σq)

= πBpB(x) +

J+Q∑
q=J+1

πqN (x|µq,Σq) (15)

where the latter term is another MoG with Q components representing the anomalous
signal and πB = πJ+Q+1 is the mixture proportion of the background mixture model

pB(x). The mixture proportions of this MoG satisfy
∑J+Q+1

q=J+1 πq = 1,
∑J+Q

q=J+1 πq =∑J+Q
q=J+1 λπ̃q = λ and πB = 1− λ.
By straightforward analogy to standard EM, the update equations of the EM algo-

rithm in the case of model (15) are as follows. In the E-step we update the posterior
probabilities of the background model and the components of the signal MoG as follows

p(B|xn,Θ
k) =

πk
BpB(x)

πk
BpB(x) +

∑J+Q
q′=J+1 π

k
q′N (x|µk

q′ ,Σ
k
q′)

= p(znB = 1|xn) ≡ γ(znB), (16)

p(q|xn,Θ
k) =

πk
qN (xn|µk

q ,Σ
k
q)

πk
BpB(x) +

∑J+Q
q′=J+1 π

k
q′N (x|µk

q′ ,Σ
k
q′)

= p(znq = 1|xn) ≡ γ(znq). (17)

In the first equation, znB = 1 denotes that the nth data vector was generated by
the background model pB(x). In the second equation q = J + 1, . . . , J + Q. The
corresponding M-step updates the means and covariance matrices of the signal MoG
together with mixture proportions of the background model (πB) and the signal MoG
components with the following equations

πk+1
q =

1

N

N∑
n=1

γ(znq), q = J + 1, . . . , J +Q+ 1, (18)

µk+1
q =

∑N
n=1 γ(znq)xn∑N
n=1 γ(znq)

, q = J + 1, . . . , J +Q, (19)

Σk+1
q =

∑N
n=1 γ(znq)(xn − µk+1

j )(xn − µk+1
j )T∑N

n=1 γ(znq)
, q = J + 1, . . . , J +Q. (20)
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background model pB(x) with J components︷ ︸︸ ︷
π1 · · · πJ

N (µ1,Σ1) · · · N (µJ ,ΣJ)
⇓

πB
pB(x)

signal model pS(x) with Q components︷ ︸︸ ︷
πJ+1 · · · πJ+Q

N (µJ+1,ΣJ+1) · · · N (µJ+Q,ΣJ+Q)

︸ ︷︷ ︸
anomaly detection model pM(x) with J + Q components

Figure 2: Illustration of the anomaly detection model proposed. Background model
pB(x) and signal model pS(x) are mixtures of Gaussians with J and Q components,
respectively. The background model is combined with the signal model with an addi-
tional mixture proportion πB.

Figure 2 illustrates the anomaly detection model and its components. We pro-
pose calling the ML procedure described above Expectation-Maximization with fixed
background or fixed background EM in short.

3.3 Non-Parametric Density Estimation

The most common density estimator used in high-energy physics is the histogram which
is an example of a non-parametric density estimator. The histogram divides the data
space into bins of fixed size. Smoothness of the histogram can be controlled by varying
the bin width. In addition to the bin width, one has to also define the origin of the
bins.

Because of their simplicity, histograms are usually good for visualization purposes—
especially if the data is univariate. Drawbacks of the histogram are that it does not
produce continuous probability density functions and the choice of the bin width can
affect the results [14]. Furthermore, the histogram becomes inefficient for higher di-
mensional data.

Kernel density estimation (KDE) methods are another type of non-parametric den-
sity estimators. The basic idea of KDE is to place a “bump”, for example a Gaussian,
on each data point. These bumps are summed up and scaled so that they form a
continuous and normalized PDF. Formally, the kernel density estimator is defined by

p(x) =
1

N

N∑
n=1

K(x− xn), (21)

where xn iterates the events used for the density estimation and K is a kernel function.
In the case of the Gaussian kernel for multivariate data, K is defined by

K(x) =
1

(2π)d/2|Σ|1/2
exp
(
−1

2
x′Σ−1x

)
, (22)
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where d is the dimensionality of the data and Σ is the covariance matrix. The selection
of Σ controls the smoothness of the density estimate, cf. the number of bins in the
histogram. Several methods for selecting the covariance matrix have been developed,
see e.g. [15].

The advantage of KDE is that it is able to capture distributions of very complex
shapes if large enough training sample is provided. The trade-off, on the other hand,
is that KDE becomes computationally expensive when the number of events increases.

4 Demonstration: Higgs Detection

In this section we compare the different anomaly search methods using using CDF
MC events for WH Higgs. Here, the task is to correctly classify any given event as
background or Higgs signal. As an optimal, gold standard classifier we use a neural
network trained with “the correct“ Higgs signal, i.e., the NN was trained and tested
using Higgs MC with same mass mH. Since the Higgs signal is among the background,
any reasonable decision boundary yields background rejection less than 1.

4.1 Description of MC samples

We demonstrate our methods using CDF Higgs MC which consists of background and
MC generated qq̄ → WH events. The background sample used to train the background
models contains both MC and real data and includes 3406 events. The measured sample
(signal+background) consist of 400 Higgs and 3406 background events resulting in a
sample containing 10.5 % of signal. It has to be emphasized that this is not a realistic
Higgs analysis as our signal/background ratio (i.e., cross section of Higgs signal) is not
consistent with the actual Higgs cross section. Instead, the motivation of this study is
to merely demonstrate our methods in preparation for a more realistic analysis.

The signal is generated with the Higgs masses mH = 100, 115, 135, 150 GeV repre-
senting uncertainty about the signature of the signal one is looking for. All the events
are required to be tagged for two secondary vertices and each event is characterized by
8 variables. We use the same 7 variables used in the CDF Bayesian Neural Networks
Higgs study [16] for double tagged events. In addition, we use KIT, a neural network
b tagger variable from [17].

4.2 Dimensionality Reduction

Before doing the dimensionality reduction we normalize the samples. Since PCA is
sensitive to outliers [18], we use logarithmic normalization

xi = sgn(xi) log(1 + |xi|) (23)

where the sign of the measurements is preserved.
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After normalization, we conduct a dimensionality reduction from eight dimensions
into two dimensions using PCA. The principal subspace is calculated using the back-
ground sample only. In the projection, 52 % of the information in the background
sample is preserved. Figure 3a shows the proportion of the variance explained as a func-
tion of number of eigenvectors included in the projection (i.e., number of dimensions
in the projection). The scree graph in Figure 3b shows the plot of the corresponding
eigenvalues.
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Figure 3: (a) The proportion of variance explained as a function of the number of
eigenvectors in the PCA projection for the background sample. (b) Scree graph for the
background sample.

4.3 Fixed Background Model Results

4.3.1 Modeling the Background Signal with a MoG

In order to select a suitable number of components for modeling the background distri-
bution, we performed 5-fold cross-validation procedure which allows us to select optimal
model complexity to adequately model the data while avoiding overfitting. In cross-
validation the sample was divided into five equal-sized parts and each of these parts
was used as a validation set in turn, i.e., log-likelihood of the data vectors in validation
set was calculated with a model trained using the other four parts of the sample. Each
fold of the cross-validation was performed 10 times resulting 50 log-likelihood values
for each model with unique number of components. We ran the whole procedure for
models with number of component distributions J ranging from 1 to 15. In all, 750
mixture models were trained.

Figure 4a shows the results of the cross-validation procedure. Out of the 50 log-
likelihoods per mixture model, the mean and the interquartile borders for each J are
calculated. The mean of the log-likelihood for the training sample is a monotonically

12



2 4 6 8 10 12 14
−9500

−9480

−9460

−9440

−9420

−9400

−9380

−9360

−9340

−9320

−9300

−9280

Number of Components in the model J

L
o

g
−

lik
e

lih
o

o
d

(a) Background

 

 

Training data

Evaluation data × 4

2 4 6 8 10 12 14
−1.06

−1.055

−1.05

−1.045

−1.04

−1.035

x 10
4

Number of Components in the model J

L
o

g
−

lik
e

lih
o

o
d

(b) Signal+background

 

 

Training data

Evaluation data × 4

Figure 4: The log-likelihoods for different training and evaluation sets for (a) the
background sample and (b) the signal+background sample (mH = 150 GeV) as a
function of the number of mixture components J . The training and evaluation sample
log-likelihoods are marked with solid lines (evaluation likelihood is multiplied by four
to fit in the plot with the training likelihood) and the interquartile ranges for the 50
evaluation runs are drawn with dash-dotted lines.

increasing curve with growing J (increasing model complexity). As the training set
was four times larger evaluation likelihoods are multiplied by four to make them fit in
the same plot with the training likelihoods. The best model can be chosen based on
the mean of the evaluation likelihoods. The model that gives the highest likelihood
for the evaluation sample is a model with five component distributions (J = 5). As
one trains a model with more than five components the training likelihood is increased
but the model has overlearned the sample since the evaluation likelihood is decreasing.
Model with five components can also be motivated from the parsimony point of view:
a simpler model is preferred over the more complex one.

Figure 5a shows an example of the background model with five Gaussian compo-
nents. The events are plotted in the two-dimensional principal subspace and the solid
lines show contours of the PDF estimated using the background sample.

4.3.2 Modeling the Higgs Signal with a MoG

We analyzed the signal+background sample using the same cross-validation procedure
explained in the previous subsection. Figure 4b shows that mixing signal with the back-
ground makes the sample more complex: the optimal number of components for model-
ing the signal+background sample is seven. Comparing this to the background model,
the number of additional components needed to model the signal+background sample
is two. Thus, we chose to use two Gaussian components for the signal model pS(x).

We trained a model for the signal+background sample with mH = 150 GeV Higgs

13
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(b) Background+signal data and estimated signal PDF

 

 

Background

Signal

Figure 5: An illustration of the fixed background EM: a projection of (a) the back-
ground and (b) the signal+background (mH = 150 GeV) samples into the two-
dimensional principal subspace defined by the background sample. The solid lines
show contours from the estimated PDFs for (a) the background and (b) the signal.
The estimation is done using the fixed background EM procedure.

using the fixed background EM procedure as described in Section 3.2.2. The resulting
signal distribution pS(x) with two signal components and the Higgs events projected
to the two-dimensional principal subspace are shown in Figure 5b.

4.3.3 Using the Model for Anomaly Search

With the fixed background model, the classification can be performed using equations
(2) and (3). Figure 7 shows the receiver operating characteristic (ROC) curves for the
classifiers with different Higgs masses. These models were trained using five background
and two signal components. The curves are obtained using various values for the
threshold T and show the background rejection rate (i.e., the proportion of background
events correctly rejected) as a function of the signal efficiency (i.e., the proportion of
events correctly identified as signal). From the ROC curves, one can see that regardless
of the mass of the Higgs the anomaly search method is able to identify the signal with
a good efficiency.

We justify our model selection procedure in an indirect way by integrating the
ROC curves of classifiers with different background and signal models to get a single
performance measure for each model. In general, one is not able to perform such a
model selection in a model-independent training scheme. Figure 6a illustrates the mean
magnitudes of 10 ROC curve integrals for different models. From the figure, it can be
seen that a large group of models less complex than the optimal model suggested by
the cross-validation procedure give almost equal results. For example, by choosing a
model with one signal and three background components one can obtain almost optimal
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Figure 6: The integrals of the ROC curves for different anomaly search models with
3406 background events and 400 mH = 150 GeV Higgs events. The shade of the cells
in the arrays show the mean magnitudes of 10 integrals for different models generated
with (a) the fixed background EM and (b) the MoG background subtraction methods.
Notice the different scales on the two figures.

classification results, i.e., the ROC curves that an optimal neural network obtains (see
Figure 10b). Further comments on model selection can be found in Section 5.

An additional advantage of using fixed background EM is that the signal model
weight λ is proportional to the cross section of the signal. Table 1 shows estimated
values for λ with models trained using different Higgs masses. Table shows that the
method gives estimates for λ which are very close to the real proportion of the signal,
λreal = 0.105.

Higgs mass mH (GeV) λ

150 0.122
135 0.118
115 0.121
100 0.106

Table 1: The estimated values for λ with models trained using different Higgs masses
mH. The values for λ are mean values from ten different models, although there was no
deviation between the models using the same mass. The real proportion of the signal
in the sample was λreal = 0.105.
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(a) Fixed Background EM
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(b) Background subtraction with MoGs
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Figure 7: The ROC curves for (a) the fixed background EM and (b) MoG subtraction
methods. The plots show the background rejection rate (i.e., the proportion of back-
ground events correctly rejected) for different Higgs masses mH as a function of the
signal efficiency (i.e., the proportion of events correctly identified as signal).

4.4 Background Subtraction Results

4.4.1 Subtraction of Two MoG Models

We use MoGs for modeling the background and signal+background samples and calcu-
late a discriminant function D(x) according to equation 6. The resulting background
PDF and discriminant function are illustrated in Figure 8. For the model selection,
similar techniques as described in the previous sections and discussed in Section 5 can
be applied here, as well.

Figure 6b illustrates the mean magnitudes of 10 ROC curve integrals for different
MoG subtraction models. From the figure, it can be seen that there is a fair amount
of models that give almost similar results. Figure 7b shows ROC curves for a MoG
subtraction model with five background and five signal+background components. In
general, the MoG subtraction method gains slightly worse results compared to the fixed
background EM method.

4.4.2 Subtraction of Two Kernel Density Estimates

Instead of using MoGs for modeling the probability distribution, we also experimented
with using kernel density estimation for modeling the background and signal+background
samples. Figure 9a shows the estimated background PDF. In Figure 9b contours from
the positive areas of the discriminant function D(x) are shown.

At this stage of work, we have not applied any automatic methods for finding the
kernel covariance matrix Σ. Instead, we performed a search over the parameter space
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(b) Background+signal data and discriminant function
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Figure 8: An illustration of background subtraction using MoG models: a projection
of (a) the background and (b) the signal+background (mH = 150 GeV) samples into
the two-dimensional principal subspace defined by the background sample. The solid
lines of (a) show contours from the estimated PDF for the background and the solid
lines of (b) show contours from the positive areas of the discriminant function D(x).
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(b) Background+signal data and discriminant function
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Figure 9: An illustration of background subtraction using kernel density estimation:
a projection of (a) the background and (b) the signal+background (mH = 150 GeV)
samples into the two-dimensional principal subspace defined by the background sample.
The solid lines of (a) show contours from the estimated PDF for the background and
the solid lines of (b) show contours from the positive areas of the discriminant function
D(x).
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Figure 10: The ROC curves for (a) the kernel density estimation and (b) the neural
network. The neural network was trained using the mH = 150 GeV Higgs signal. The
plots show the background rejection rate (i.e., the proportion of background events
correctly rejected) for different Higgs masses mH as a function of the signal efficiency
(i.e., the proportion of events correctly identified as signal).

optimizing the integral of the ROC curve to determine the maximal performance of
KDE subtraction. Furthermore, we used the same Σ for both the background and the
signal+background distributions and assumed spherical kernels, i.e., Σ = σI. Based
on the search, we chose Σ = 0.6I. Figure 10a shows the ROC curves of the KDE
experiments. The figure shows that, in the case of an optimal Σ, KDE is able to
provide classification results comparable to NNs of Figure 10b.

4.5 Comparison to Neural Networks

In order to compare anomaly search to more traditional model-dependent classification
methods, an MLP neural network was trained using the mH = 150 GeV Higgs signal
as the training sample. In contrast to the anomaly search experiments, the neural
network was trained using the signal-to-background ratio of 1:1.

Figure 10b shows that the neural network classifier is able to produce good signal
efficiency and background rejection provided that the real mass of the Higgs is indeed
150 GeV. If it, however, turns out that the mass is different from this, the performance
of the classifier degrades as the training signature is different from the actual signal
signature. Comparing the mH = 100 GeV curves in Figure 10b and for example
Figure 7a shows that in the case of an unexpected signal, anomaly search is able to
correctly locate the signal while a model-dependent NN gives suboptimal performance.
The neural network is hence only able to reliably identify the signal when its training
sample is in good agreement with the true signal.
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5 Discussion and Future Work

Anomaly search was demonstrated in this work using Higgs MC with a non-physical
cross section for the signal. The signal had to be amplified because of a limited number
of background events available. In the near future, we hope to be able to conduct a
similar analysis using a more realistic physics scenario involving for example SUSY
or other exotic physics processes. For this kind of analysis, the model independent
approach is likely to provide a clear advantage over traditional methods which depend
heavily on the possibly inaccurate MC model used. Also, in the first stages of commis-
sioning a new detector, such an approach could be used to study detector defects and
gain a better understanding of the experiment.

Until now, we have only considered the ROC curves to evaluate the performance
of the proposed methods. In addition, it would be important to be able to measure
the significance of the signal found by the anomaly search. This could perhaps be
achieved by considering distributions of the discriminant function values D(x). We
are also investigating other methods besides EM for PDF estimation with the MoG
model. One possibility is to use Bayesian methods based on Markov Chain Monte
Carlo integration or variational approximations [10].

Using PCA for the dimensionality reduction is not a trouble-free solution. Firstly,
one has to decide which sample is used to define the principal subspace. If the subspace
is spanned by the first n principal components of the background sample only (as we
do in our experiments), there is a risk of losing all the important variance in the signal,
as it cannot be guaranteed that the signal has variance in the same directions as the
background sample. Secondly, the mapping to a principal subspace might be such
that it maps a well separated signal onto the background, thus only complicating the
anomaly search problem. It is left for future work to investigate possibilities of using
adaptive PCA methods (i.e., online PCA), independent component analysis [19] or
canonical correlation analysis [20] for the dimensionality reduction.

selection decided to components) for values for Finally, we make a brief comparison
between the different methods studied here. The advantages of the fixed background
EM method are (i) its lowest computational cost, (ii) large group of well performing
models, which makes model selection easier, and (iii) its ability to estimate the cross-
section of the signal. Moreover, the method is completely probabilistic, i.e., the results
given by the model have a direct probabilistic interpretation. It should be noted,
however, that fixed background EM can only handle an excess of data while background
subtraction is able to handle deficits as well. Despite this, based on the reasons above,
the fixed background EM method looks the most promising from the anomaly search
point of view.

6 Conclusions

The goal of this work was to show that density estimation based anomaly search is
able to identify new physics signals provided that there exists an accurate representa-
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tion for the background. The feasibility of the proposed methods was demonstrated
using CDF MC for WH Higgs. In particular, it was shown that the methods can be
employed without a Monte Carlo representation for the signal. Thus, the methods
are robust against uncertainties in the Monte Carlo generators or parameters of the
physical models behind the generators.

Three different variants of the anomaly search approach were studied, namely fixed
background EM and both a parametric and a non-parametric version of background
subtraction. Out of these methods, fixed background EM turned out to give the best
classification performance for a wide range of models while at the same time being
computationally the least expensive solution. This method was also able to give fairly
accurate estimates for the proportion of signal in the measured data, hence resulting
in an estimate for the signal cross section. However, all the methods studied obtained
results close to the gold standard given by neural networks in the case of a foreseen
signal. For an unexpected signal, is was shown that anomaly search is able to find the
signal even in situations where the model-dependent classifiers might fail badly.

We believe that analysis of exotic physics signals such as SUSY would greatly benefit
from the proposed anomaly search approach. Hence, we are at the moment trying to
identify suitable physics processes for demonstrating the applicability of the approach
in a more realistic physics analysis scenario.
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