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1. THE DISTURBED BETATRON FUNCTION

As the beam passes through the arcs, the gradient it encounters at each
magnet differs from the design value. This deviation may be in part random and
in part systematic. In this note we make estimates of the effects to be expected

from both kinds of errors.

Since large changes in § will not be tolerated in any case, we can use an
approximation that is valid for deviations 63 which are small relative to B itself.
We define g to be the relative deviation, namely g = 68 /B. It is shown in Courant
and Snyderm that so long as g is small, it satisfies a differential equation which
is particularly simple if we use the betatron phase ¢ = J ds/p as our independent

longitudinal coordinate. Writing ¢ for dg/d¢, the equation for g is
§+4g = —2B26K (1)

where (,(¢) is the unperturbed function and 6K (4) is the perturbation of the

focussing function K at the longitudinal position s(4).

2. EFFECTS OF RANDOM GRADIENT ERRORS

We make now an estimate of the perturbed betatron function produced by
randomly occuring gradient errors. To do this we will assume that the effect of a
gradient error in each magnet can be approximated by an impulse error occuring

in the center of the magnet.
Ve

Suppose then that we have an impulse perturbation of strength § K A¢ located
at some betatron phase ¢;. It will produce a small disturbance Ag with an
oscillation at twice the betatron frequency and with some amplitude, say AA;,

namely
Ag = AA;sin2 (¢ — ¢:); (¢ > ¢i)- (2)
The initial slope Ag of this oscillation is just 2A; which must, by Eq. (1), be
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equal to —32ﬂ§ SKAQ.

[N Ggi(d) = 204; = 262 6K A. (3)

We can use the impulse approximation so long as the extent A¢ of the per-
turbation is less than about 1. If A¢ is larger, we can replace §,A¢ by an integral
that gives the Fourier component of the perturbation at twice the betatron fre-
quency. And because of the symmetry of the variation of 8 with respect to the
magnet centers, we can place the effective impulse at the center of each magnet.

For each magnet, then, we get an induced oscillation with amplitude AA;
AA,‘ = q,;& K,' (4)

where ¢; is the effective value of (82A¢) for the i—th magnet and 6K; is the

focussing error of that magnet.

Consider now the value of g at the end of the arcs. Under the assumption of
small errors, it will be the sum of the contribution from each magnet in the arc.

Namely
N
gL =Y AA;sin(pr — ¢5) (5)
1=1
where ¢r, is the (undisturbed) betatron phase at the exit of the arc. Let’s now
assume that all focussing magnets are equivalent and give an r.m.s. contribution

AAp, and similarly for the defocussing magnets, for which we have an r.m.s.

contribution AAp ”

The contributions of separate magnets combine as the squares. The contri-

bution of each focussing magnet is
(AA%sin? Ad)p = AAL(sin?Ad)p (6)

where A¢ is the phase change from each magnet to the exit. And similarly for

the defocussing magnets. It turns out that the average of sin?A¢ for both F and
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D magnets is just 1/2. (This average actually applies %o one achromat.) Let N
be the total number of magnets (N/2 of each type). Then the mean square g at

the exit is

N

(3) = 7 (A4% + A4b). @

To get AAr and AAp we need to know the expected § K and the value of
g = PB2A¢ for each class of magnet. From the SLC Design Handbook,”™ the
amplitude function of two cells of the arc lattice is reproduced in Fig. 1. The
phase advance as function of distance is shown in Fig. 2. Notice that the phase
advance in the focus magnet is different from that of a defocus magnet. To
evaluate g it is more convenient to work with amplitude function as a function
of phase advance ¢ which is shown in Fig. 3. Using the beta—function shown in

Fig. 3, we find that

qrF = 18.6m2; qp = 2.42m?

So it is clear that gradient errors in the focussing magnet are by far the most

important for horizontal f—function.

One of us has estimated the construction errors to be expected in the arc
magnet.'! (See CN-313). It turns out that the random gradient errors expected
from magnet construction errors, after shuffling and alignment offset, are likely to
be smaller than the expected gradient errors introduced by the distortion of the
central orbit of the beam. If we assume the usual alignment tolerance of 100um,
and the usual orbit correction scheme, we know that the orbit will have a random
offset in the magnets of about 150pm." ' Such displacements translate to r.fm.s.

focussing errors of
§Kp=15x10"3m"%  6Kp=2.4x10"*m™%

Using these values we find that

6 rms
0=/ (o)) = L2 = 035 ®)



The expected error in final 8 due to random gradient errors is about 35%.

Focussing errors will also produce an error in the derivative of 8. Since the
disturbed g is a free oscillation at twice the betatron frequency but with unknown

phase, we expect that

Grms = 2Grms, (9)

which translates to

! 6 Brms / p
6Prms = 2 8 1+ 2/27 (10)

If we choose the exit point to have the design 8’ = 0, the 64’ from the errors
is just twice the relative error in 3, or about 0.7. This is to be compared with a
typical #' in the arcs of about 5. The tilt of the ellipse is, however, not negligible.
For 8’ = 0.7 the correlation coefficient r = 0.33.

We have considered so far only the perturbations to the horizontal beta func-
tion. The analysis of the effects of perturbation in the vertical focussing strength
is essentially identical. And indeed the expected random gradient errors are also

the same, so the final results above apply equally to the vertical beta.

We should remark that the changes in both vertical and horizontal focussing
are caused by the same magnet displacement and so are highly correlated. It turns
out, however, that 63, is not strongly correlated to 6§y, because 6; has a strong
sensitivity to displacements of the focussing magnets and a weak dependence of

the position of the defocussing magnets, while the reverse is true for 6By.



3. THE EFFECTS OF SYSTEMATIC
GRADIENT ERRORS IN THE ARCS

If the sources of gradient error are known and static in time, their effect on
the amplitude function 8 can be studied by solving equation (1). In case the
source of perturbation is periodic, and small, the superposition principle holds,
then the perturbing term can be Fourier decomposed and the problem can be

solved for each harmonic component of the perturbation.

In the arc design there are two possible sources of such systematic errors.
One is the systematic error in field strength of focus magnet to that of defocus
magnet. The second one is the strength variation due to the discontinuity of the
synchrotron radiation correction tapers. The effects of those systematic errors
will be investigated after brief description of the solution of Eq (1) to a sinusoidal

perturbation.

3A. Response of a Periodic Transport System to a Sinusoidal Pertur-

bation

Recall that the equation of motion of the relative variation ¢ is given by
Eq. (1),

d2

d¢

where the period in angle ¢ is chosen in such a way that one period in

2 + 4g - —2ﬂ05K (1)

#(0 — 2) corresponds to one betatron oscillation. For Fourier decomposition of
a systematic error, we will introduce a new independent variable ¢ one perlod of
which corresponds to the fundamental period of the perturbation. The perlod of
perturbation, for the two examples mentioned above, is one achromat; therefore
we choose the period of the new independent variable ¢ to be 0 — 27 in one
achromat. Because there are three betatron oscillation in one achromat, the tune

in Eq. (1) should be three, i.e. v = 3. The equation of motion now becomes

P9 4ty = —22B26K = F() (12)
e g= ; :



and the relationship between ¢ and ¢ is

$=vy (12)

Since the perturbing term is a periodic function of 4, it can be Fourier decom-

posed to give

F(y) = —20°05 6K ()

A
=70+Zn:Ancosn¢ +zﬂ:BnSinn¢

where
2T
An:j—r/F(qS) cosnypdiyp, n=0,1,2,... (14)
0
and
2
B, =%/F(¢)) sinnydy n=1,2,... (15)
0

Because of the linearization approximation introduced in section 2, the problem
. becomes linear and the response will be the superposition of responses to each

harmonic component.

We are interested in the variation of the amplitude function § in a peri(}dic
transport system when the beam are perfectly matched at the entrance. In other

words; the equation satisfies
g(0)=0, ¢'(0)=0 (16)

The solutions of Eq. (1) under single sinusoidal forcing term satisfying the initial

condition (16) are summarized in Table 1.
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Table 1: Solution of Eq (11) and (16)

Case F () Solution g(t)
1 A5 Ao (1~ cos2uy) (17)
2 f(‘; ‘;Zsz’f)p P (cosnp — con2u) (18)
3 “(1; CZOSZ':)/’ %1/; sin 2t (19)
4 ﬁ;‘ 2“2’;? Ef—j—nf (sinng — & sin2vy)  (20)
5 1(3;: S:inzr:f B (L sin2v — 3 cos2v) (21)

If the perturbing frequency n is different from the natural frequency 2v, the
solution is simply an oscillatory function. However if n = 2v, it satisfies the
resonant condition, there the amplitude will grow linearly with time and will be
modulated by a sinusoidal function of phase. Therefore the resonant situation
is the most dangerous one and any systematic error rich in second harmonic of

P
betatron frequency should be avoided!

3B. Difference of Gradient Strength Between Focus and Defocus Mag-

nets

The first example we consider for the arc is the possible gradient strength
difference between focus and defocus magnets caused by possible calibration error

of the measurement coil. The uncertainty in the calibration is about 2 x 1072,
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Although this is a small number, the purpose of this calculation is to see whether

there is any danger of exciting the second harmonic resonance.

Assuming that the gradient strength of the focus magnet is stronger than
that of the defocusing magnet by a constant amount AK and that the gradient
strength of the defocus magnets is set at the correct value, then the perturbing

function is

F($) = - 27B3(W) AK  at F

In order to do Fourier decomposition of Eq. (22) in one achromat we have to know
B(%) as function of ¢. This can be obtained from Fig. 3. Given the relationship
between ¢ and v from Eq. (14), the ¥-integration for the Fourier decomposition

can be expressed in ¢-integration. For example,

An =% / F(%) cos nipdyp 3
i .
(23)
2wy
1 ¢ (d¢
= / F(¢) cos n_ (7)
0

The result of the calculation is summarized in Table 2.



Table 2. Fourier Coefficients of F()

A} 3.1x10% | —2.63 | —2.50 | —2.10 | —2.25 | —1.72

B} 0 0.68 1.38 1.99 3.59 5.44

n 6 7 8 9 10

Ar| —0.26 1.54 | 5.88 | 14.3 2.42 x 108

B} 4.86 7.60 | 12.1 | 16.8 1.70 x 10°

* In Unit of 1077

Except for n = 0 and n = 10, the coefficients are all very small and con-
sequently the effect on amplitude function 8 are negligible. When n = 10, the
coefficients are much larger because the amplitude function has an intrinsic pe-
riod of 10 within one achromat. From Eq. (18) the maximum effect on g in the

arc (for n = 10) is

0.242 x2

~~ 467) = =~
g( = 46m) = 25

8 x 1073 (24)

which is small enough not to cause worry. It is also easy to check that the

variation of 8 is neglible when n = 0. 7

In case n = 6, the resonant build—up can take place. At the end of arc,
the phase v goes through 23 periods and is very close to 46m. Therefore, the

dominating term is the last term in Eq (21) which gives,

o AR 486
g(¢ = 46m) = TE x 107" (46m) (25)

~0.59 x 107°
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It is also a very small number. The conclusion is that a systematic error in

gradient strength of 2 x 1072 would not hurt the amplitude function.

3C. EFFECT OF DISCONTINUITY OF SYNCHROTRON RADI-
ATION TAPER

When the electrons (or positrons) pass through the arc, they lose energy
through synchrotron radiation. If we want the final energy of the beam to be 50
GeV at collision point, their energy at the end of Linac should be 51.42 GeV.
Such energy loss corresponds to 2.84% change of particle energy through one of
the arcs which can not be accommodated by the optical bandpass of the arcs.
The plan is to set the main power supply to the arc magnet system at 50.71 GeV
and further correct the excitation by adjusting the trim windings on an achromat
by achromat basis. Because there are 23 achromats in the arc, the resolution of

the excitation of each achromat is then

AE 1.42

1
—_ — = 0.0012 26
E 50.71 X 23 0 (26)

Which means that the magnitude of gradient perturbation will be

AK =0.0012- K =5 x 107*m™? (27)

s

If the trim supply is set to the correct energy at the entrance of the achromat,
the excitation will be 0.12% higher at the end of the achromat. From inspection
it is easy to see that this arrangement results in a large DC component of the
perturbation. To minimize this DC component, the magnet excitation should be
set to correct value at the middle of one achromat, then the exciting term to the

gradient perturbation can be expressed as
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Fy) = ~2283(0) [ x 07 2] (25)

where L is the length of one achromat and s is the distance from the beginning
of the achromat. The result of Fourier decomposition of Eq. (29) is summarized

in Table 3.

Table 3. Fourier Coefficients of F(v)

n 0 1 2 3 4 5
A, | —0.002 | —0.006 | —0.006 | —0.0065 | —0.0069 | —1.72
By, 0.0 —0.043 | —0.020 | —0.008 | —0.0047 | 5.44
n 6 7 8 9 10

A, | 0.0075 | —0.0085 | —0.011 | —0.017 0.089

By | —0.0016 0.002 0.008 0.023 0.033

Although the maximum amplitude of the gradient error is 1.2 X 1073, not any
larger than the assumed systematic error, these errors are much richer in Fourier
components. All the components, except n = 6, contribute little to the growth

of 8. In case n = 6, the growth at the end of arc can be calculated from Eq. (19)

giving
. _AB _0.0075
g(yp = 46m) = 5 L (467) (29)

=~ 0.092

This is about a 10% blow-up of the amplitude function at the end of the arc.
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Compared to random gradient errors discussed in section 1, the effect of system-
atic errors is not as serious. If the systematic and random gradient errors are
both present in a system, the random effect should be calculated with respect
to the perturbed solution with systematic errors. In other words, the total per-
turbation should add algebraically. Therefore, for the arc the total effects due
to both random and systematic gradient errors could be 45%. It is advisable to
introduce gradient corrections at suitable locations in the arc to minimize the

growth of the amplitude function.

Results of simulations which model gradient errors due to random misalign-

ment of magnets as well as DC offsets of BPM yield similiar results on /-

distortions."
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