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Abstract. We explore U(1)Le−Lµ gauge extension of the Standard model with
particle content enlarged by three neutral fermions, of which the lightest one
contributes to dark matter content of the Universe. The scalar sector is enriched
with a scalar leptoquark doublet to investigate flavor anomalies in B-meson sec-
tor, an additional inert scalar doublet to realize neutrino mass at one loop and
a scalar singlet to spontaneously break the new U(1). We discuss dark mat-
ter relic density and direct detection cross section in scalar and gauge portals.
New physics contribution for transition comes from penguin diagrams with Z′,
leptquark and new fermions. We analyze the constraints on the model param-
eters from the established observables such as P′5, Br(B → (K(∗), ϕ)µµ), and
Br(Bs → µµ) processes. Utilizing the permissible parameter space consistent
with both flavor and dark sectors, we discuss the impact on various observables
such as branching ratio and Lepton polarisation asymmetry of theΛb → Λ

∗ℓ+ℓ−

decay channel.

1 Introduction

The exploration of physics beyond the Standard Model (SM) through the study of B meson
decays has drawn considerable interest in recent years and is poised to remain a dynamic
area of research. By carefully examining various B decays, we may uncover compelling
evidence of new physics (NP) originating from the B sector. At the Large Hadron Collider
(LHC) at CERN, particularly through the LHCb experiment, and in parallel with the Belle
II experiment at KEK, researchers gain vital insights into the behavior of b quark decays.
Semileptonic B meson decays, especially those involving flavor-changing neutral currents
(b → s) and charged currents (b → c/u), offer a critical avenue for probing NP beyond the
SM.

While several anomalies have been detected in these decay channels, none of the current
measurements have yet reached the level of statistical significance needed to conclusively
establish the presence of NP. However, with the planned upgrades to the LHC, which promise
larger data samples and enhanced precision, it is expected that systematic uncertainties in
existing measurements will be significantly reduced, potentially providing clearer evidence.
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Among the most compelling observables in b → sℓℓ transitions, which are central to the
search for NP, are the lepton flavor universality (LFU) violating ratios RK and RK∗ , defined as

RK(∗) =
B(B→ K(∗)µµ)
B(B→ K(∗)ee)

. (1)

Recent updates from LHCb [1, 2] have affirmed that the measured values of certain ob-
servables align well with their Standard Model (SM) predictions, typically of order unity.
Nonetheless, several other observables within the b → sℓℓ transitions, such as the well-
known P′5 observable and the branching fractions of various decay modes, exhibit deviations
from SM predictions by a few sigma. Specifically, the LHCb [3, 4] and ATLAS [5] collab-
orations have reported a 3.3σ deviation in the measurement of P′5 from the SM expectation.
The branching ratio for the Bs → ϕ µ−µ+ decay mode shows a 3.3σ discrepancy [6, 7] in the
q2 range of [1.1, 6.0] GeV2. Additionally, the measurements of RK0

S
and RK∗+ [8] diverge from

their SM predictions by 1.4σ and 1.5σ, respectively. These findings suggest that the possibil-
ity of New Physics (NP) in the flavor-changing neutral current (FCNC) mediated transitions
b→ sℓℓ cannot yet be ruled out.

In response to the b → sℓℓ anomalies, we propose an extension of the Standard Model
(SM) gauge group, S U(3)C × S U(2)L ×U(1)Y , by incorporating a local U(1)Le−Lµ symmetry.
This framework, due to its simplicity, presents a compelling avenue for investigating the phe-
nomenology of dark matter, neutrinos, and the observed flavor anomalies. The introduction
of color triplet particles offers a promising strategy for probing the flavor sector while also
establishing a potential link to the dark sector. In this scenario, leptoquarks (LQs) are particu-
larly advantageous as they address flavor anomalies and act as mediators between the visible
and dark sectors. Previous studies have explored these motivations extensively [9–11]. The
Z′ gauge boson arising from the extended U(1) symmetry and the scalar leptoquark (SLQ)
are central to resolving issues within the flavor sector. Here, we aim to determine whether
the observed anomalies in rare leptonic and semileptonic decays, specifically those involving
b→ sℓ+ℓ− transitions, can be explained within this framework. Our study will emphasize the
model’s implications for both dark matter and the flavor sectors, with a particular focus on
the decay channels Λb → Λ

∗ℓ+ℓ−. Numerous studies have previously examined these decay
processes [12–16].

The paper is structured as follows. We describe the particle content, relevant Lagrangian
and interaction terms, pattern of symmetry breaking in section-II. We derive the mass eigen-
states of the new fermions and the scalar spectrum in section-III. Section-IV contains the
constraint on the new parameters obtained from the existing anomalies in the flavor sector
mediating b → sµ+µ− transitions. We then investigate the impact of additional U(1)Le−Lµ
gauge symmetry on the Λb → Λ

∗ℓ+ℓ− decay observables in section-V. We summarize our
findings in Section-VI.

2 Theoretical Framework

2.1 The Model

We investigate the well-established anomaly-free U(1)Le−Lµ extension of the Standard Model,
incorporating three additional neutral fermions Ne,Nµ,Nτ with Le−Lµ charges of +1, −1, and
0, respectively. To spontaneously break the local U(1)Le−Lµ gauge symmetry, we introduce
a scalar singlet ϕ2 with a charge of +2 under the new U(1). The model also includes an
inert doublet η and a scalar leptoquark R̃2(3, 2, 1/6), assigned Le − Lµ charges of +1 and +2,
respectively. An additional Z2 symmetry is imposed, under which all new fermions, as well
as η and the leptoquark, are odd, while the remaining fields are even. The particle content
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Field S U(3)C × S U(2)L × U(1)Y U(1)Le−LµZ2

Fermions QL ≡ (u, d)T
L (3, 2, 1/6) 0 +

uR (3, 1, 2/3) 0 +

dR (3, 1,−1/3) 0 +

ℓαL ≡ (να, α)L, α = e, µ, τ (1, 2,−1/2) 1,−1, 0 +
ℓR ≡ αR, α = e, µ, τ (1, 1,−1) 1,−1, 0 +

Ne,Nµ,Nτ (1, 1, 0) 1,−1, 0 −
Scalars H (1, 2, 1/2) 0 +

η (1, 2, 1/2) 0 −

ϕ2 (1, 1, 0) 2 +

R̃2 (3, 2, 1/6) 1 −

Table 1. Fields and their charges of the proposed U(1)Le−Lµ model.

and their associated charges are summarized in Table 1. The Lagrangian of the present model
can be written as

L f = −
1
2

MττNc
τNτ −

(
fe
2

Nc
e Neϕ

†

2 +
fµ
2

Nc
µNµϕ2 + h.c.

)
−

1
2

Meµ(Nc
e Nµ + Nc

µNe)

−
∑

l=e,µ,τ

(
Yll(ℓL)lη̃NlR + h.c.

)
−

(
yqRN QLR̃2NµR + h.c.

)
,

LG− f =
(
−geµeγµe + geµµγ

µµ − geµνeγ
µ(1 − γ5)νe + geµνµγ

µ(1 − γ5)νµ
)

Z′µ

−geµNeZ′µγ
µγ5Ne + geµNµZ′µγ

µγ5Nµ,

LS =

∣∣∣∣∣∣
(
i∂µ −

g

2
τa ·Wa

µ −
g′

6
Bµ + geµZ′µ

)
R̃2

∣∣∣∣∣∣2 + ∣∣∣∣(i∂µ − 2geµZ′µ
)
ϕ2

∣∣∣∣2
+

∣∣∣∣∣∣
(
i∂µ −

g

2
τa ·Wa

µ −
g′

2
Bµ

)
η

∣∣∣∣∣∣2 − V(H, R̃2, η, ϕ2). (2)

The fermion and scalar mass matrices take the form

MN =

 1
√

2
fev2 Meµ

Meµ
1
√

2
fµv2

 , MS =

(
2λHv

2 λH2vv2
λH2vv2 2λ2v

2
2

)
. (3)

One can diagonalize the above mass matrices by UT
δ(ζ)MN(S )Uδ(ζ) = diag [MN1(H1),MN2(H2)],

where

Uθ =

(
cos θ sin θ
− sin θ cos θ

)
, (4)

with ζ = 1
2 tan−1

 λH2vv2

λ2v
2
2 − λHv2

 and δ = 1
2 tan−1

 2Meµ

( fµ − fe)(v2/
√

2)

. We denote the scalar

mass eigenstates as H1 and H2, with H1 is assumed to be observed Higgs at LHC with MH1 =

125.09 GeV and v = 246 GeV. We indicate N1 and N2 coming from the mass matrix MN to be
the fermion mass eigenstates, with the lightest one (N1) as the probable dark matter candidate
in the present work.
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2.2 General Effective Hamiltonian

The most general effective Hamiltonian mediating the b→ sl+l− transition is given by [17]

Heff = −
4GF
√

2
VtbV∗ts

[ 6∑
i=1

Ci(µ)Oi +
∑

i=9,10

(
Ci(µ)Oi +C′i (µ)O′i

)]
, (5)

where GF is the Fermi constant, VtbV∗ts denote the CKM matrix elements, Ci’s stand for the
Wilson coefficients evaluated at the renormalized scale µ = mb [18] and the values are listed
in Table 2 .

C1 C2 C3 C4 C5 C6 Ceff
7 Ceff

8 C9 C10

−3.001 1.008 −0.0047 −0.0827 0.0003 0.0009 −0.2969 −0.1642 4.2607 −4.2453

Table 2. The SM Wilson coefficients computed at the scale µ = 4.6 GeV [18].

Here Oi’s represent dimension-six operators responsible for leptonic/semileptonic pro-
cesses, given as

O(′)
9 =

αem

4π
(s̄γµPL(R)b)(l̄γµl) , O(′)

10 =
αem

4π
(s̄γµPL(R)b)(l̄γµγ5l) , (6)

where, αem is the fine-structure constant, PL,R = (1 ∓ γ5)/2 are the chiral operators.
The one-loop diagrams contributing non-zero values to the rare b → sll processes can arise
through the exchange of Z′,H1,2 particles, forming penguin diagrams with the scalar lepto-
quark R̃−1/3

2 and N1,2 particles within the loop, as depicted in Fig. 1.

R̃
−1/3
2

b s

N1,2 N1,2

Z′

µ µ

1

N1,2

b s

R̃
−1/3
2 R̃

−1/3
2

Z,Z′, γ

µ µ

1

Figure 1. Allowed penguin diagrams illustrating the b→ sµµ transition in the model.

In the presence of Z′ exchanging one loop diagram, the The new Wilson coefficient is
given as,

CNP
9 = −

1
4π

√
2

4GFm2
Z′

1
αem

y2
qRNg

2
eµ

VtbV∗ts
R(a, b). (7)

Here R(a, b) is the loop function with a(b) =
m2

N1(2)

m2
LQ

where a =
m2

N1
m2

LQ
and b =

m2
N2

m2
LQ

.
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3 Constraints on new Physics couplings

In this section, our objective is to constrain the model parameters associated with LQ and Z′

couplings such as (geµ vs. mZ′ ) and (ymN vs. mN) by analyzing the Br(B → Kµµ), Br(B →
K∗µµ), Br(Bs → ϕµµ) decay modes, along with the measurement of the well-known P′5
observable in B → K∗µµ process, which involves b → sℓℓ transitions. This is depicted in
Fig. 2.
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Figure 2. Allowed penguin diagrams illustrating the b→ sµµ transition in the model.
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Figure 3. Branching ratio and the Polarisation asymmetry of Λb → Λ
∗(1520)µ+µ− process
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4 Analysis of Λb → Λ
∗(→ pK)ℓ+ℓ− Process

From the four-fold differential decay distribution [19], the differential branching ratio dB/dq2

and the lepton forward-backward asymmetry Al
FB(q2) are defined as

dB
dq2 =

1
3

[
K1cc + 2K1ss + 2K2cc + 4K2ss + 2K3ss

]
,

Aℓ
FB =

3(K1c + 2K2c)

2
[
K1cc + 2K1ss + 2K2cc + 4K2ss + 2K3ss

] . (8)

• Branching ratio: The presence of NP coupling reduces the branching ratio. However, in
the low q2 region, it becomes consistent with the SM contribution.

• Lepton-Polarisation asymmetry: We do not observe any new physics signatures despite
the presence of NP coefficients.

5 Conclusion

• We have investigated U(1)Le−Lµ extension of SM for a correlative study of dark matter and
flavor anomalies.

• With three heavy neutral fermions, R̃2(3, 2, 1/6) scalar leptoquark and a U(1) associated
Z′, the model can provide new physics contribution to b→ s transition (penguin loop).

• We have studied the Λb → Λ
∗(→ pK)µµ process pertaining to b→ sµµ transition.

• The differential branching ratio deviates, and also quite distinguishable from the SM con-
tributions.
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