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Abstract
We give an evaluation for the stuffle-regularised t∗,V ({2}a, 1, {2}b) as a polynomial
in single-zeta values, log(2) and V . We then apply this to establish some linear inde-
pendence results of certain sets of motivic multiple t values. In particular, we prove
the elements of Saha’s conjectural basis are linearly independent, on the motivic level,
and that the (suitably regularised) elements tm({1, 2}×) form a basis for both the
(extended) motivic MtV’s and the alternating MZV’s.
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1 Introduction

The multiple zeta value (MZV) with indices k1, . . . , kd ∈ Z≥1, and kd ≥ 2 for
convergence reasons, is defined by

ζ(k1, . . . , kd) :=
∑

0<n1<···<nd

1

nk11 · · · nkdd
.

As is common, we call d the depth of the MZV and k1+· · ·+kd theweight. Although
the cases of depth d = 1, 2 were already studied by Euler, the research into the case
of general depth d only started in the early 1990s with work of Hoffman [14] and
Zagier [26], with many theorems and identities being proven and many conjectures
formulated since then. These values have also earned a prominent place in high energy
physics, as part of the calculation (in special cases) of Feynman integrals and scattering
amplitudes (see [3] as a starting point).

In [16], Hoffman studied the multiple t values (MtV’s) defined by restricting to
MZV-like sums with odd denominators,

t(k1, . . . , kd) =
∑

0<n1<···<nd

1

(2n1 − 1)k1 · · · (2nd − 1)kd
,

with again ki ∈ Z≥1 and kd > 1 for convergence, and the same notion of weight and
depth. (Be aware that Hoffman uses the other convention on MZV’s, with summation
indices given by n1 > · · · > nd > 0, which has the effect of reversing argument
strings.) Therein Hoffman compared and contrasted the algebraic and combinatorial
properties of MtV’s and MZV’s, establishing that MtV’s have many similarities with
MZV’s, but some distinct differences of there own. (In particular, both MtV’s and
MZV’s have a stuffle-product, and symmetric sum formulae [16, Section 3]. MZV’s
admit a duality relation such as ζ(1, 2) = ζ(3), but MtV’s appear to have no such
identities: already [16, Appendix A] shows that t(3) and t(1, 2) are unrelated. How-
ever MtV’s conjecturally admit a derivation [16, Conjecture 2.1] which is realised
in Appendix A therein as a formal differentiation with respect to log(2). We refer
to Remark5.10 below for an interpretation and explanation of this derivation as the
action of D1 on the motivic level.)

By writing

t(k1, . . . , kd) :=
∑

0<n1<···<nd

(1 − (−1)n1)

2 nk11
· · · (1 − (−1)nd )

2 nkdd
,
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Onmotivic MtV’s and Saha’s basis 1997

one obtains a formula (cf. [16, Corollary 4.1]) for the MtV’s in terms of so-called
alternating MZV’s. Namely

t(k1, . . . , kd) = 1

2d
∑

εi∈{±1}
ε1 · · · εdζ

(

ε1, . . . , εd

k1, . . . , kd

)

, (1)

where

ζ

(

ε1, . . . , εd

k1, . . . , kd

)

:=
∑

0<n1<···<nd

ε
n1
1 · · · εndd
nk11 · · · nkdd

is the alternating MZV with signs εi and arguments ki (also called the coloured MZV
of level N = 2; level here referring to the order of the roots of unity involved). Often,
if all εi ∈ {±1}, one denotes arguments ki which have associated sign εi = −1 by
ki . There are notions of regularisation which we cover more fully in Section 2, which
allow the divergent MZV’s and MtV’s to be assigned consistent finite values.

Our first main result, in Section 3, gives an evaluation for the stuffle-regularised
multiple t value t∗,V ({2}a, 1, {2}b), analogous to the evaluation for ζ({2}a, 3, {2}b)
established by Zagier [27], and the evaluation for t({2}a, 3, {2}b) established by
Murakami [22], both of which were used to establish the linear independence and
basis properties of certain motivic MZV’s and MtV’s respectively ([4] in the zeta-
value case, and [22] for the t-value case).

Theorem 1.1 (Theorem3.3 below)The following evaluation holds for any a, b ∈ Z≥0,
for t∗,V the stuffle-regularised MtV’s with t∗,V (1) = V .

t∗,V ({2}a, 1, {2}b) =

−
a+b
∑

r=1

(−1)r2−2r
[(

2r

2a

)

+ 22r

22r − 1

(

2r

2b

)]

ζ(2r + 1)t({2}a+b−r )

+ δa=0 log(2)t({2}b) + δb=0(V − log(2))t({2}a) ,

where we write {k}n =
n

︷ ︸︸ ︷

k, . . . , k for the argument k repeated n times, and δ• is the
Kronecker delta symbol, equal to 1 if the condition • holds, and 0 otherwise.

Because a subset of the MtV’s which appear in this evaluation series are divergent, we
must understand the asymptotics of certain 3F2 hypergeometric series (and thus the
4F3 series from which they originate), via results from the Evans–Stanton/Ramanujan
asymptotic [8], in order to extract the evaluation with a generating series approach.
By extracting the special case a = 0, b = n of Theorem1.1 in Section 3.3, we also
answer a question posed in [6].

We then utilise the arithmetic properties of the coefficients to establish some linear
independence properties of certain sets ofmotivicMtV’s. In Section 4we state themain
definitions, properties and theorems pertaining to the framework of motivic MZV’s.
One can often think of the motivic MZV’s and MtV’s as some algebraically defined
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1998 S. Charlton

‘formal’ analogue to their analytic counterparts, which have more rigid structure and
better properties. Conjecturally themotivic versions reflect all of the relations between
the real-valued versions, but they certainly do not introduce new relations. In Section 5
we discuss the regularised distribution relations, and extend the formulae given by
Murakami [22] for Dr , to allmotivicMtV’s. In Section 6we use this to lift Theorem1.1
to a motivic version.

Then in Section 7, we establish that the elements conjectured by Saha [25] to be a
basis of (convergent)MtV’s are, at least, linearly independent. This establishes a lower
bound of FN on the dimension of the space of (convergent) motivic MtV’s of weight
N , where Fn = Fn−1 + Fn−2 is the n-th Fibonacci number, with F1 = 1, F2 = 1.

Theorem 1.2 (Corollary7.15 below) Let

S = {tm(k1, . . . , kr−1, kr + 1) | ki ∈ {1, 2} }

be the set of elements in Saha’s basis conjecture. Then the elements of S are linearly
independent.

For example, this establishes that tm(1, 2) and tm(3) are linearly independent inweight
3, as are tm(1, 1, 2), tm(2, 2) and tm(1, 3) in weight 4.

Finally in Section 8 we introduce the Hoffman t one-two elements—those
MtV’s with arguments exactly 1 or 2—in analogy with the Hoffman elements
ζ(k1, . . . , kr ), ki ∈ {2, 3} for classical MZV’s. We show the one-two elements form
a basis of both (extended) motivic MtV’s and alternating motivic MZV’s, under a
certain shuffle regularisation and certain stuffle regularisation.

Theorem 1.3 (Corollary8.19, and Corollary8.26, below) Let

H• = {tm,•(k1, . . . , kr ) | ki ∈ {1, 2} }

be theHoffman one-two elements, for • = ∗ or • = �, where the shuffle regularisation
arises from ζm,�(1) = 0 and the stuffle regularisation has tm,∗(1) = λ logm(2), λ of
the form 2a+1

b ∈ Q with a, b ∈ Z. (In particular, λ = 1
2 , 1 are allowed.) Then the

elements in H are linearly independent, and span the space of both (extended) motivic
MtV’s and motivic alternating MZV’s.

As a corollary, we see the space of alternating MZV’s of weight N (under shuffle-
regularisation with ζ�,0(1) = 0 or stuffle-regularisation with ζ ∗,0(1) = 0 and
extended MtV’s (under shuffle-regularisation induced by ζ�,0(1) = 0, or stuffle-
regularisation with t∗,V (1) = V for V = λ log(2), λ = 2a+1

b ∈ Q, a, b ∈ Z)
coincide. In particular they have dimension FN+1. We also indicate how badly this
can fail for certain ‘singular’ regularisation parameters in Section 8.2.

We also include some further examples of the motivic Galois descent (to motivic
MZV’s) for tm(k1, . . . , kd) for particular families which include arguments ki = 1.
For example, in Proposition5.12 we show

tm({2}a, 1, {2}b, 3, {2}c),
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Onmotivic MtV’s and Saha’s basis 1999

is a linear combinationofmotivicMZV’swhenevera ≥ 1.This shows thatMurakami’s
motivic Galois descent of tm(k1, . . . , kd), all ki ≥ 2 [22, Theorem 8] is not exhaustive,
and raises the question of more generally characterising when such a motivic MtV can
be written as a linear combination of motivic MZV’s.

2 Relating regularisations of multiple zeta values and
multiple t values

In this section we recall, compare and contrast the different notions of regularisation
which apply to MtV’s. In particular, we need to understand how the stuffle regularisa-
tion of t values with t∗,V (1) = V relates to the regularisation of t values induced by
the stuffle regularisation of the underlying zeta values at ζ ∗,U (1) = U , or the shuffle
regularisation of the zeta values with ζ�,W (1) = W .

2.1 Stuffle and stuffle regularisation for MZV’s andMtV’s

As already noted in the introduction, MZV’s andMtV’s are only defined when the last
argument kd ≥ 2, otherwise the series is divergent. However, one can use the stuffle
product structure to give a consistent definition to anyMZVorMtVwith trailing 1’s, in
terms of a single parameter assigned to ζ(1) := ζ ∗,U (1) = U or t(1) := t∗,V (1) = V
respectively. Alternatively one can utilise the iterated integral representation to define
a(nother) regularisation. We briefly recall the details here, see [18] for full details in
the case of classical MZV’s and the extension presented in [28, §13.3] for the case of
cyclotomic MZV’s. (See also §6 and the rest of [17] for the general background on
quasi-shuffle algebras, and their applications to multiple zeta values.)

Stuffle-regularisation of MZV’s and MtV’s: Define the alphabet

Z = {zk,ε | k ≥ 1, ε ∈ {±1}},

with the letter product zk,ε � z�,η = zk+�,εη on QZ . On A1∗ := Q〈Z〉, the Q-vector
space of words over the alphabet Z , the �-product induces a stuffle-product ∗ given
by

(zk,εw1) ∗ (z�,ηw2) = zk,ε(w1 ∗ z�,ηw2) + z�,η(zk,εw1 ∗ w2) + (zk,ε � z�,η)(w1 ∗ w2)

= zk,ε(w1 ∗ z�,ηw2) + z�,η(zk,εw1 ∗ w2) + zk+�,εη(w1 ∗ w2) .

On the subspace A0∗ of convergent words (also called ‘admissible’), namely those
words which do not end in z1,1, the map

ζ : (A0∗, ∗) → R

zk1,ε1 · · · zkd ,εd 	→ ζ

(

ε1, . . . , εd

k1, . . . , kd

)
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2000 S. Charlton

is an algebra homomorphism. This is because ∗ corresponds to the multiplication
of (alternating) MZV’s as series, given by interleaving the summation indices with
equality allowed. For example (recall ki means the sign εi = −1 is associated to ki ),

ζ(k1, k2)ζ(�1) =
∑

0<n1<n2

∑

0<m1

(−1)k1

nk11 nk22
· (−1)�1

m�1
1

=
(

∑

0<n1<n2<m1

+
∑

0<n1<m1<n2

+
∑

0<m1<n1<n2

+
∑

0<n1<n2=m1

+
∑

0<n1=m1<n2

)

(−1)k1

nk11 nk22
· (−1)�1

m�1
1

= ζ(k1, k2, �1) + ζ(k1, �1, k2) + ζ(�1, k1, k2)

+ ζ(k1, k2 + �1) + ζ(k1 + �1, k2) ,

which corresponds to the computing zk1,−1 zk2,1 ∗ z�1,−1.
It is then a standard result [15, 23] that Q〈Z〉 ∼= A0∗[z1,1] (with the product given

by ∗). This is proven by recursion, as

wzn1,1 − 1

n
(wzn−1

1,1 ∗ z1,1) (2)

is a sum of words ending in strictly fewer z1,1 letters. Finally the map ζ : (A0∗, ∗) → R

can be extended uniquely to an algebra morphism

ζ ∗,U : Q〈Z〉 ∼= A0∗[z1,1] → R[U ]

by the sending z1,1 	→ U . This enables us to define the stuffle-regularised MZV’s as
follows.

Definition 2.1 (Stuffle-regularisedMZV’s) The stuffle-regularisation of the alternating
MZV is defined by

ζ ∗,U
(

ε1, . . . , εd

k1, . . . , kd

)

:= ζ ∗,U (zk1,ε1 · · · zkd ,εd ).

With a �= 1, we can for example compute—using the recursion from (2) as the key
step—that,

ζ ∗,U (a, 1) = ζ ∗,U (a)ζ ∗,U (1) − ζ ∗,U (1, a) − ζ ∗,U (a + 1)

= ζ(a)U − ζ(1, a) − ζ(a + 1)
(3)
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Onmotivic MtV’s and Saha’s basis 2001

Then

ζ ∗,U (a, 1, 1)

= 1
2ζ

∗,U (a, 1)ζ ∗,U (1) − ζ ∗,U (1, a, 1) − ζ ∗,U (a, 2) − ζ ∗,U (a + 1, 1)

= 1
2U

2ζ(a) −Uζ(a + 1) −Uζ(1, a) + 1
2ζ(a + 2)

+ ζ(1, a + 1) + 1
2ζ(2, a) − 1

2ζ(a, 2) + ζ(1, 1, a).

(4)

Similarly the map

t : (A0∗, ∗) → R

zk1,ε1 · · · zkd ,εd 	→ t

(

ε1, . . . , εd

k1, . . . , kd

)

is an algebra homomorphism, which can be extend to t∗,V : (A0∗, ∗) → R[V ] by
sending z1,1 	→ V . (Here we have implicitly introduced alternating MtV’s,

t

(

ε1, . . . , εd

k1, . . . , kd

)

:=
∑

0<n1<···<nd

ε
n1
1 · · · εndd

(2n1 − 1)k1 · · · (2nd − 1)kd
,

although we are still only interested in the case where all εi = 1.) From this we define
the stuffle-regularised MtV’s as follows.

Definition 2.2 (Stuffle-regularised MtV’s) The stuffle-regularised MtV is defined by

t∗,V (k1, . . . , kd) := t∗,V (zk1,1 · · · zkd ,1).

Then one immediately has that the same formulae as in (3) and (4) holdwith ζ replaced
by t and U by V .

Natural choices for ζ ∗,U (1) and t∗,V (1); extended MtV’s: Although we are now
free to choose any value we like for ζ ∗,U (1) = U or t∗,V (1) = V , some choices are
more natural or convenient than others.

As shown in the proof of Theorem 1 [18], the classical asymptotic

ζ tr
M (1) :=

∑

0<n<M

1

n
= log(M) + γ + O(M−1),

(here γ = 0.577 . . . is the Euler–Mascheroni constant) implies the so-called truncated
MZV has the following asymptotic

ζ tr
M (k1, . . . , kd) :=

∑

0<n1<···<nd<M

1

nk11 · · · nkdd
= Zk1,...,kd (log(M) + γ ) + O(M−1 logJ M),
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2002 S. Charlton

for some J , as M → ∞, where Zk1,...,kd (T ) = ζ ∗,T (k1, . . . , kd) ∈ R[T ] is some
polynomial. Then one can naturally look at the constant term of this polynomial, to
‘renormalise’ and ‘remove’ the log(M)dependence. This corresponds to taking T = 0,
so we can naturally assign U = ζ ∗,U (1) = 0 in the above stuffle-regularisation of
MZV’s.

Applying the same prescription to the truncated MtV’s gives

t trM (1) :=
∑

0≤n<M

1

2n + 1
=

∑

1≤n<2M

1

n
−

∑

1≤n<M

1

2n

=
(

log(2M) + γ + O
(

(2M)−1)
)

− 1

2

(

log(M) + γ + O
(

M−1)
)

= log(2) + 1

2

(

log(M) + γ
)+ O

(

M−1) .

This suggests that one should naturally define

V = t∗,V (1) = log(2), (5)

by taking the constant term of the above, when viewed as a polynomial in log(M)+γ .

Since the space of weight 1 MtV’s t(k1, . . . , kd)with k1+· · ·+kd = 1 and kd > 1
is 0 dimensional, we already see that defining t∗,V (1) = log(2) extends the space of
MtV’s. We make the following definition, for clarity, with regard to convergent and
regularised MtV’s.

Definition 2.3 (Convergent and extended MtV’s) A multiple t value t(k1, . . . , kd) is
called

(i) convergent if kd ≥ 2, and
(ii) extended if kd ≥ 1

The space of convergent MtV’s refers the space generated by all MtV’s t(k1, . . . , kd)
which have kd ≥ 2, whereas the space of extended MtV’s denotes that generated by
all MtV’s t(k1, . . . , kd) allowing kd > 1 or kd = 1, under some particular (specified)
regularisation.

Shuffle regularisation of MZV’s: Likewise, it is well known how to write MZV’s
(or more generally multiple polylogarithms) as iterated integrals. Namely

ζ

(

ε1, . . . , εd

k1, . . . , kd

)

= (−1)d I (0; η1, {0}k1−1, η2, {0}k2−1, . . . , ηd , {0}kd−1; 1) (6)

where the notation {k}n =
n

︷ ︸︸ ︷

k, . . . , k denotes k repeated n times, ηi = ∏d
j=i ε

−1
j , and

I (x0; x1, . . . , xN ; xN+1) :=
∫

x0<s1<···<sN<xn+1

ω(x1; s1) ∧ · · · ∧ ω(xN ; sN ), (7)
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Onmotivic MtV’s and Saha’s basis 2003

is the iterated integral of the family of differential forms ω(x; s) = ds
s−x . Note that

this integral only converges when x0 �= x1 and xN �= xN+1.
Integrals of this form multiply by the shuffle product, which corresponding to

interleaving the integration indices, although here equality of indices gives sets of
measure zero, and so no contribution to the result. For example

ζ(2)ζ(2) = I (0; 1, 0; 1)I (0; 1, 0; 1)
=
∫

0<s1<s2<1

ds1
s1 − 1

∧ ds2
s2

∫

0<s3<s4<1

ds3
s3 − 1

∧ ds4
s4

=
∫

0<s1<s2<r1<r2

ds1
s1 − 1

∧ ds2
s2

∧ dr1
r1 − 1

∧ dr2
r2

+
∫

0<s1<r1<s2<r2

ds1
s1 − 1

∧ dr1
r1 − 1

∧ ds2
s2

∧ dr2
r2

+ 4 more terms

= ζ(2, 2) + ζ(1, 3) + 4 more terms

= 2ζ(2, 2) + 4ζ(1, 3)

Introduce the alphabet Y = {e0, e1, e−1}, with letter product ei � e j = 0 on QY .
OnB1

� = Q〈Y 〉, the �-product induces the shuffle product�, given by

(eiw1)� (e jw2) = ei (w1 � e jw2) + e2(eiw1 � w2) + (ei � e j )(w1 � w2)

= ei (w1 � e jw2) + e j (eiw1 � w2) .

On the subspaceB0
� of convergent words, namely those which do not start in e0, and

do not end in e1, the map

ζ : (B0
�,�) → R

eη1e
n1−1
0 · · · eηd e

nd−1
0 	→ ζ

(

η2/η1,η3/η2,...,1/ηd
n1 , n2 ,..., nd

)

= (−1)d I (0; eη1 , {e0}n1−1, . . . , eηd , {e0}nd−1; 1) ,

is an algebra homomorphism, as � encodes the product of iterated integrals, as
explained above. (Note: the sign 1/ηd appearing in the last ζ argument involves the 1
from the upper bound of integration.)

It is again a standard result [15, 23], provable by recursion, thatB1
�

∼= B0
�[e0, e1]

(with the product given by�). One simply notices that

en0w − 1

n
e0 � (en−1

0 w), and wen1 − 1

n
(wen−1

1 )� e1, (8)

are a sum of words which start with strictly fewer e0 letters, and a sum of words which
end with strictly fewer e1 letters, respectively. Finally, the map ζ : (B0

�,�) → R can
be extended uniquely to an algebra morphism

ζ�,W1,W2 : Q〈Y 〉 ∼= B0
�[e0, e1] 	→ R[W1,W2],
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by sending e1 	→ W1, e0 	→ W2. We can therefore define the shuffle regularised
MZV’s (with leading 0’s) as follows.

Definition 2.4 (Shuffle-regularised MZV’s) The shuffle-regularisation of the alternat-
ing MZV with � leading 0’s is defined by

ζ
�,W1,W2
�

(

ε1, . . . , εd

k1, . . . , kd

)

:= ζ�,W1,W2(e�
0eη1e

k1−1
0 · · · eηd e

kd−1
0 ),

with ηi = ∏d
j=i ε

−1
j . As with the usual convention for alternating MZV’s, one may

write ki to denote εi = −1, and suppress ε1, . . . , εd from the notation of ζ
�,W1,W2
� .

We will typically be interested in either the case where � = 0, in which case the
dependence onW2 drops out, or in the casewhere � ≥ 0, andwewill setW1 = W2 = 0,
to agreewith the period of the correspondingmotivicMZV(seeSection 4below).More
generally, from the duality of multiple zeta values (which arises from the functoriality
of iterated integrals under si 	→ 1 − si , along with path reversal) the one can argue
informally that, since

ζ0(1) = −I (0; 1; 1) si 	→1−si= −I (1; 0; 0) reverse= I (0; 0; 1) = ζ1(∅),

it makes sense to impose thatW1 = ζ
�,W1,W2
0 (1) andW2 = ζ

�,W1,W2
1 (∅) are equal in

the shuffle-regularisation. (This informal calculation is made precise by considering
the asymptotic expansion of

∫ 1−ε

ε
dt
t−1 = − ∫ 1−ε

ε
dt
t−0 , as a polynomial in log ε, as

ε → 0, cf. [12, §2.9] or [9, §3.6.5–3.6.6].)
We therefore refine the definition of the shuffle-regularised MZV’s as follows.

Definition 2.5 (Shuffle-regularised MZV’s, refined) The shuffle-regularisation of the
alternating MZV with � leading 0’s is defined by

ζ
�,W
�

(

ε1, . . . , εd

k1, . . . , kd

)

:= ζ�,W ,W (e�
0eη1e

k1−1
0 · · · eηd e

kd−1
0 ),

with ηi = ∏d
j=i ε

−1
j . As with the usual convention for alternating MZV’s, one may

write ki to denote εi = −1, and suppress ε1, . . . , εd from the notation of ζ
�,W
� .

For example, we compute—using the recursions in (8) as the key step—the follow-
ing shuffle-regularised MZV’s,

ζ�,W (2, 1, 1) = 1

2
W 2ζ(2) − 2Wζ(1, 2) + 3ζ(1, 1, 2) ,

ζ
�,W1,W2
1 (2, 1, 1) = 1

2
ζ(2)W2W

2
1 − W 2

1 ζ(3) − 2W1W2ζ(1, 2)

+ 4W1ζ(1, 3) + W1ζ(2, 2) + 3W2ζ(1, 1, 2)

− 6ζ(1, 1, 3) − 2ζ(1, 2, 2) − ζ(2, 1, 2) ,
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and by taking W1 = W2 = W ,

ζ
�,W
1 (2, 1, 1) = 1

2
ζ(2)W 3 − W 2ζ(3) − 2W 2ζ(1, 2) + 4Wζ(1, 3) + Wζ(2, 2)

+ 3Wζ(1, 1, 2) − 6ζ(1, 1, 3) − 2ζ(1, 2, 2) − ζ(2, 1, 2) .

We already remark here that ζ�,W (k) and ζ ∗,U (k) are not the same even forW = U ,
but they are closely related, as we recall in Lemma2.16 below.

In the caseW = 0, one has the following explicit formula to unshuffle and regularise
the initial 0’s. (Compare property I2 in Section 2.4 of [4])

Lemma 2.6 (Unshuffling of initial 0’s) For any � ≥ 0, any k = (k1, . . . , kd) ∈ Z
d≥1

and any signs εi , we have

ζ
�,0
�

(

ε

k

)

= (−1)�
∑

i1+···+id=�

(

k1 + i1 − 1

i1

)

· · ·
(

kd + id − 1

id

)

× ζ�,0
(

ε

k1 + i1, . . . , kd + id

)

. (9)

Proof This is a straightforward proof by induction on �, the case � = 0 is clearly true.
So take � > 0, and assume the statement holds for �−1. InB0

�, with ηi = ∏d
j=i ε

−1
j ,

we compute the following product

e�
0eη1e

k1−1
0 · · · eηd e

kd−1
0 − 1

�
e0 � e�−1

0 eη1e
k1−1
0 · · · eηd e

kd−1
0

= −
∑d

j=1

k j
�

· e�−1
0 eη1e

k1−1
0 · · · eη j e

(k j−1)+1
0 · · · eηd e

kd−1
0

Applying ζ�,0 gives

ζ
�,0
�

(

ε

k1, . . . , kd

)

= −
d
∑

j=1

k j
�

ζ
�,0
�−1

(

ε

k1, . . . , k j + 1, . . . , kd

)

,

since ζ
�,0
1 (∅) = ζ�,0(e0) = 0. After substituting in (9) in the case � − 1, and

simplifying, we obtain the result in the case �. This completes the induction, and the
lemma holds. ��

Shuffle-regularisation ofMtV’s: In contrast to MZV’s, the integral representation of
MtV’s does not endow them with a nice shuffle-product structure. For example, one
sees that in depth 1, we have

t(2) = −
∫

0<s1<s2<1

ds1
s21 − 1

∧ ds2
s2

,
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whereas in depth 2

t(2, 2) =
∫

0<s1<s2<s3<s4<1

ds1
s21 − 1

∧ ds2
s2

∧ s3ds3
s23 − 1

∧ ds4
s4

.

In particular, the first differential form is of a unique type, and any further forms
corresponding to higher depth and more arguments have an extra si in the numerator,
i.e.

sidsi
s2i − 1

versus
ds1

s21 − 1
.

Therefore, after taking the shuffle product (valid for iterated integrals of any families
of differential forms) of two copies this representation of t(2), one has to disentangle
cases the forms when

ds j
s2j − 1

appears after the first position, and when

s1ds1
s21 − 1

appears in the first position.
To cut to the point: we shall take the expression for t in terms of ζ from (1), and use

this as the basis for defining the shuffle-regularised version of t by shuffle-regularising
the MZV’s therein.

Definition 2.7 (Shuffle-regularised MtV’s) The shuffle-regularisation of the MtV is
defined by

t�,W (k1, . . . , kd) := 1

2d
∑

εi∈{±1}
ε1 · · · εdζ�,W

(

ε1, . . . , εd

k1, . . . , kd

)

. (10)

2.2 Compatibility of the t and zeta stuffle-regularisations

Motivated by the above definition of t�,W (k1, . . . , kd) in (10), we can likewise intro-
duce a regularised version of the MtV’s given by stuffle-regularising the underlying
MZV’s

Definition 2.8 (Zeta-stuffle-regularised MtV’s) The stuffle-regularisation of the MtV
given by stuffle-regularising the underlying MZV expression is defined by

tζ,W (k1, . . . , kd) := 1

2d
∑

εi∈{±1}
ε1 · · · εdζ ∗,W

(

ε1, . . . , εd

k1, . . . , kd

)

. (11)
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The natural question is how tζ,W and t∗,V are related? Firstly, we note that the stuffle
product of t values and of the underlying zeta values is compatible in a precise sense.
To make this statement formal, we must first recall and introduce some additional
algebraic notation.

Recall the algebraic setup from earlier: A1∗ := Q〈zk,ε | k ≥ 1, ε ∈ {±1}〉, with the
stuffle product given by

(zk,εw1) ∗ (z�,ηw2) =
zk,ε(w1 ∗ z�,ηw2) + z�,η(zk,εw1 ∗ w2) + zk+�,εη(w1 ∗ w2).

The map ζ : A0∗ → R from convergent words (those not ending in z1,1) is an algebra
homomorphism. Introduce the alphabet C = {ck,p | k ≥ 1, p ∈ {0, 1}}, with letter
product on QC given by

ck,p � c�,q = δp=qck+�,p.

This induces the stuffle product

(ck,pw1) ∗t (c�,qw2)

= ck,p(w1 ∗t c�,qw2) + c�,q(ck,pw1 ∗t w2) + δp=qck+�,p(w1 ∗t w2),

on C1∗ := Q〈C〉. On the convergent words C0∗, i.e. those not ending in c1,0 or c1,1, the
map

t : (C0∗, ∗t ) → R

ck1,p1 · · · ckd ,pd 	→
∑

0<n1<···<nd
n j≡p j (mod 2)

1

nk11 · · · nkdd
,

is an algebra homomorphism; the stuffle product ∗t encodes the multiplication of such
series, as interleaved indices can only be equal in the case they satisfy the same parity
constraint (whence the term δp=q in ∗t ).

Note that with all pi = 1, t(ck1,1 · · · ckd ,1) = t(k1, . . . , kd) is the MtV we are
interested in. Whereas, with pi = 1, i odd, pi = 0, i even, the map t(ck1,p1 · · · ckd ,pd )

produces the multiple (capital) T values (MTV’s) in the sense of Kaneko-Tsumura
[19, 20].

Define a Q-linear map

σ : C1∗ → A1∗

ck1,p1 · · · ckd ,pd 	→ 1

2d
∑

ε j∈{±1}
ε
p1
1 · · · ε pd

d · zk1,ε1 · · · zkd ,εd .

Then immediately we have that t = ζ ◦ σ on C0∗. This is just the generalisation of
(1) to odd or even summation indices, where this parity can be forced by inserting the
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factor

1 − (−1)ni

2
or

1 + (−1)ni

2
,

respectively.

Lemma 2.9 The map σ : C1∗ → A1∗ is an isomorphism (of vector spaces).

Proof Fix d, and k1, . . . , kd . Then σ maps words of the form ck1,p1 · · · ckd ,pd to (sums
of) words of the form zk1,ε1 · · · zkd ,εd . In this basis of the subspace and image, with
(p1, . . . , pd) and (ε1, . . . , εd) ordered lexicographically, σ is described by the 2d ×2d

matrix

Md :=
(

ε
p1
1 · · · ε pd

d

)

(p1,...,pd )∈{0,1}d ,(ε1,...,εd )∈{±1}d .

By the lexicographic ordering of (p1, . . . , pd) and (ε1, . . . , εd), we can write

Md =
(

10 · Md−1 11 · Md−1

(−1)0 · Md−1 (−1)1 · Md−1

)

=
(

Md−1 Md−1
Md−1 −Md−1

)

as a recursively defined block Vandermonde matrix, with

M0 =
(

1
)

, M1 =
(

1 1
1 −1

)

.

By the properties of block determinants, we see by induction that det(Md) =
det(−2M2

d−1) = (−2)2
d−1

det(Md−1)
2 = (−2)d2

d−1
, which is in particular non-

zero. Hence σ is invertible on this subspace, and by the block diagonal nature of σ in
general, it is an isomorphism in general. ��
Lemma 2.10 The stuffle product of MtV’s and the stuffle product of MZV’s are com-
patible in the following sense. For any w1, w2 ∈ C1∗

σ(w1 ∗t w2) = σ(w1) ∗ σ(w2)

That is to say, σ is an algebra (iso)morphism.

Proof We prove thus by induction on the length ofw1 plusw2. Forw1 = 1, the empty
word, then both sides are just σ(w2 ∗t 1) = σ(w2) = σ(w2)∗1, likewise forw2 = 1.
Now assuming both w1 = ck,pw′

1, w2 = c�,qw
′
2 �= 1, we compute (using linearity of

σ ),

σ((ck,pw
′
1) ∗t (c�,qw

′
2))

= σ
(

ck,p(w
′
1 ∗t c�,qw

′
2) + c�,q(ck,pw

′
1 ∗t w′

2) + δp=qck+�,p(w
′
1 ∗t w′

2)
)

= σ
(

ck,p(w
′
1 ∗t c�,qw

′
2)
)+ σ

(

c�,q(ck,pw
′
1 ∗t w′

2)
)+ δp=qσ

(

ck+�,p(w
′
1 ∗t w′

2)
)

.
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Now observe that directly from the definition

σ(ck,pw
′
1) = 1

2

∑

ε∈{±1}
ε pzk,εσ (w′

1).

So using this (twice), and the induction assumption,

σ((ck,pw
′
1) ∗t (c�,qw

′
2))

= 1

2

∑

ε∈{±1}

{

ε pzk,εσ
(

w′
1 ∗t c�,qw

′
2

)+ εq z�,εσ
(

ck,pw
′
1 ∗t w′

2

)

+ δp=qε
pzk+�,εσ

(

w′
1 ∗t w′

2

)

}

.

= 1

2

∑

ε∈{±1}

{

ε pzk,ε
(

σ(w′
1) ∗ σ(c�,qw

′
2)
)+ εq z�,ε

(

σ(ck,pw
′
1) ∗ σ(w′

2)
)

+ δp=qε
pzk+�,ε

(

σ(w′
1) ∗ σ(w′

2)
)

}

.

= 1

4

∑

ε,η∈{±1}

{

ε pzk,ε
(

σ(w′
1) ∗ (ηq z�,ησ (w′

2)
))+ ηq z�,η

((

ε pzk,εσ (w′
1)
) ∗ σ(w′

2)
)

}

+ 1

2

∑

ε∈{±1}
δp=qε

pzk+�,ε

(

σ(w′
1) ∗ σ(w′

2)
)

.

By the recursion for ∗, with zk,ε � z�,η = zk+�,εη, this can be rewritten as

= 1

4

∑

ε,η∈{±1}

(

ε pzk,εσ (w′
1)
) ∗ (ηq z�,ησ (w′

2)
)

−1

4

∑

ε,η∈{±1}
ε pηq zk+�,εη

(

σ(w′
1) ∗ σ(w′

2)
)

(12)

+1

2

∑

ε∈{±1}
δp=qε

pzk+�,ε

(

σ(w′
1) ∗ σ(w′

2)
)

.

In the third summand, put ε = ηε̂, with ε̂ ∈ {±1}. Then εη = ε̂η2 = ε̂, and
∑

η∈{±1} ηp+q = 2δp=q , so

1

4

∑

ε,η∈{±1}
ε pηq zk+�,εη

(

σ(w′
1) ∗ σ(w′

2)
)

= 1

4

∑

ε̂,η∈{±1}
ε̂ pηp+q zk+�,ε̂

(

σ(w′
1) ∗ σ(w′

2)
)

= 1

2

∑

ε∈{±1}
δp=qε

pzk+�,ε

(

σ(w′
1) ∗ σ(w′

2)
)
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This shows that the last two terms in (12) cancel, from which we obtain

σ((ck,pw
′
1) ∗t (c�,qw

′
2)) = 1

4

∑

ε,η∈{±1}

(

ε pzk,εσ (w′
1)
) ∗ (ηq z�,ησ (w′

2)
)

= σ(ck,pw
′
1) ∗ σ(c�,qw

′
2),

which completes the proof by induction. ��
Corollary 2.11 The stuffle product of MtV agrees with the stuffle product of the under-
lying MZV’s of each factor.

Proof Using t = ζ ◦σ , and the algebra isomorphism property of σ above, this follows
directly:

t(w1 ∗t w2) = t
(

σ−1(σ (w1) ∗ σ(w2))
) = ζ(σ (w1) ∗ σ(w2)). ��

Corollary 2.12 It holds that

t∗,V = tζ,2V−log(2).

That is the stuffle regularisation of MtV’s with parameter t∗,V (1) = V corresponds
to stuffle regularisation of the underlying MZV’s with parameter ζ ∗,W (1) = W, for
W = 2V − log(2).

Proof Since the stuffle products are compatible, both t∗,V and tζ,W are lifts of the

algebra homomorphism t from the algebra A
0
∗ of convergent (or ‘admissible’) words

(those not ending in z1) ofQ〈zk | k ≥ 1〉 to the algebraA1
∗ := Q〈zk | k ≥ 1〉 ∼= A

0
∗[z1]

of all words. (We do not want to invoke alternating MtV’s here.) Their value on z1
determine them completely, and so we obtain agreement when

V = t∗,V (1) = tζ,W (1) = 1

2
(ζ ∗,W (1) − ζ(1)) = 1

2
(W + log(2)).

Hence the relation W = 2V − log(2) follows. ��
In some sense, thismeans themost natural regularisation formultiple t values, when

defined formally as a sum of alternating MZV’s via (1), has t∗,V (1) = 1
2 log(2). We

already saw in (5) above that t∗,V (1) = log(2) is another very natural regularisation
for MtV’s, and so these will be the two cases of most interest.

2.3 Relations between regularisations of alternatingMZV’s

We establish (or recall) some relationships between regularisations with different
parameters, and between the shuffle and stuffle regularisations of alternatingMZV’s,
which will be useful when applied to MtV’s. In all of the lemmas that follow in this
section, let k = (k1, . . . , kd) be an index with barred entries, such that kd �= 1.
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Lemma 2.13 The stuffle regularisations with parameter ζ ∗,T (1) = T and ζ ∗,S(1) = S
are related as follows,

ζ ∗,T (k, {1}α) =
α
∑

i=0

ζ ∗,S(k, {1}α−i )
(T − S)i

i ! .

Proof We actually prove a stronger statement, which claims that this regularisation
formula holds for MZV’s at arbitrary roots of unity. Consider the alphabet Ẑ =
{zn,θ | n ≥ 1 ∈ Z, θ ∈ C, |θ | = 1}, with letter product zn,θ � zm,φ = zn+m,θφ

on QẐ , and the induced stuffle product on Q〈Ẑ〉 given by

(zn,θw) ∗ (zm,φv) = (zn,θ � zm,φ)(w ∗ v) + zn,θ (w ∗ zm,φv) + zm,φ(zn,θw ∗ v)

= zn+m,θφ(w ∗ v) + zn,θ (w ∗ zm,φv) + zm,φ(zn,θw ∗ v) .

Then ∗ describes the product of multiple zeta values (at arbitrary roots of unity) under

the map zn1,θ1 · · · znd ,θd 	→ ζ
(

θ1,...,θd
n1,...,nd

)

. By expanding out with the stuffle product

we see the following. For any convergent word w0 = w′
0zn,θ with (n, θ) �= (1, 1),

α
∑

i=0

(−1)i

i ! z∗i1,1 ∗ (w0z
α−i
1,1 )

is a sum of purely convergent words; there is a pairwise cancellation of any words
ending in z1,1. On the other hand, this expression is a stuffle-polynomial in z1,1,
whose constant term is the word w0zα1,1. In the regularisation where z1,1 	→ 0, only
the constant term of this polynomial is left, and we see

reg∗
0(w0z

α
1,1) =

α
∑

i=0

(−1)i

i ! z∗i1,1 ∗ w0z
α−i
1,1 .

(Here reg∗
T denotes the isomorphism Q〈Ẑ〉 ∼= Q〈Ẑ〉0[T ] obtained from Q〈Ẑ〉 ∼=

Q〈Ẑ〉0[z1,1], withQ〈Ẑ〉0 the convergent words (not ending in z1,1), by sending z1,1 	→
T , so ζ ∗,T = ζ ◦reg∗

T .) By substituting the above expression for the case reg
∗
0(w0z

α−i
1,1 )

into the following, and switching the order of summation, we see

α
∑

i=0

1

i ! reg
∗
0(w0z

α−i
1,1 ) ∗ z∗i1,1 = w0z

α
1,1.

Since the left hand side is now a polynomial in z1,1 with convergent coefficients (by
virtue of being a regularised expression already), we can apply ζT ,reg = ζ ◦ reg∗

T , to
obtain

ζ ∗,T
(

φ, {1}α
n, {1}α

)

=
α
∑

i=0

ζ ∗,0

(

φ, {1}α−i

n, {1}α−i

)

T i

i ! ,
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where the letters in w0 = zn1,φ1 · · · znd ,φd induce the arguments n with signs φ in
the MZV’s. (Note that this formula is already established for classical MZV’s in [18,
Proposition 10, Equation (5.10), and Corollary 5].)

Now multiply both sides of the preceding equation by uα and sum on α to obtain

∞
∑

α=0

ζ ∗,T
(

φ, {1}α
n, {1}α

)

uα =
∞
∑

α=0

α
∑

i=0

ζ ∗,0

(

φ, {1}α−i

n, {1}α−i

)

uαT i

i !

=
∞
∑

α=0

ζ ∗,0
(

φ, {1}α
n, {1}α

)

uα ·
∞
∑

i=0

ui T i

i !

=
∞
∑

α=0

ζ ∗,0
(

φ, {1}α
n, {1}α

)

uα · exp(Tu).

From this we see

∞
∑

α=0

ζ ∗,T
(

φ, {1}α
n, {1}α

)

uα · exp(−Tu)

is independent of T , so by equating the T and the S regularisation we obtain

∞
∑

α=0

ζ ∗,T
(

φ, {1}α
n, {1}α

)

uα =
∞
∑

α=0

ζ ∗,S
(

φ, {1}α
n, {1}α

)

uα · exp((T − S)u).

Comparing the coefficient of uα establishes the claim for MZV’s at arbitrary roots of
unit; when φ ∈ {±1}, one reduces to the case of alternating MZV’s as stated in the
lemma. ��

Lemma 2.14 The shuffle regularisations with parameter ζ ∗,T (1) = T and ζ ∗,S(1) =
S are related as follows,

ζ�,T (k, {1}α) =
α
∑

i=0

ζ�,S(k, {1}α−i )
(T − S)i

i ! .

Proof The proof of this is analogous to the above proof for the stuffle regularisation
(and is also shown in the case of MZV’s at arbitrary roots of unity). Namely consider
the alphabet Ŷ = {e0}∪{eη | η ∈ C, |η| = 1}. Then under the induced shuffle product

(eaw)� (ebv) = ea(w� ebv) + ea(ebw� v)

the algebra Q〈Ŷ 〉 encodes the shuffle product of MZV’s (at arbitrary roots of unity)
under the map
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ek0eη1e
n1−1
0 · · · eηd e

nd−1
0 	→ ζk

(

η2/η1, η3/η2, . . . , 1/ηd
n1 , n2 , . . . , nd

)

= (−1)d I (0; {e0}k, eη1 , {e0}n1−1, . . . , eηd , {e0}nd−1; 1),

(where the 1 in 1/ηd in the last sign comes from the upper bound of the integral).
For any convergent word w0 = eaw′

0eb with ea �= e0 and eb �= e1,

α
∑

i=0

(−1)i

i ! e�i
1 � (w0e

α−i
1 ).

is a sum of purely convergent words; there is a pairwise cancellation of any words
ending in e1. On the other hand, this expression is a shuffle-polynomial in e1, whose
constant term is the word w0eα

1 . In the regularisation where e1 	→ 0, only the constant
term of this polynomial is left, and we see

reg�0 (w0e
α
1 ) =

α
∑

i=0

(−1)i

i ! e�i
1 � w0e

α−i
1 .

(Here reg�T denotes the isomorphism Q〈Ŷ 〉 ∼= Q〈Ŷ 〉0[T ], with Q〈Ŷ 〉0 the admissible
words (those not ending in e1), obtained fromQ〈Ŷ 〉0 ∼= Q〈Ŷ 〉0[e1]by sending e1 	→ T ,
so ζ�,T = ζ ◦ reg�T .) By substituting the above expression for the case reg�0 w0e

α−i
1

into the following, and switching the order of summation, we see

α
∑

i=0

1

i ! reg
�

0 (w0e
α−i
1 )� e�i

1 = w0e
α
1 .

Since the left hand side is now a polynomial in e1 with convergent coefficients (by
virtue of being a regularised expression already), we can apply the regularisation map
with e1 	→ T to obtain (in zeta notation already)

ζ�,T
(

φ, {1}α
n, {1}α

)

=
α
∑

i=0

ζ�,0

(

φ, {1}α−i

n, {1}α−i

)

T i

i ! ,

where the letters in w0 = eη1e
n1−1
0 · · · eηd e

nd−1
0 induce the arguments n with signs φ

in the MZV’s. (Note that this formula is already established for classical MZV’s in
[18, Proposition 10, Equation (5.9), and Corollary 5].)

Now multiplying both sides of the preceding equation by uα , and summing on α

to form the generating series shows that

∞
∑

α=0

ζ�,T
(

φ, {1}α
n, {1}α

)

uα · exp(−Tu)

is independent of T , so by equating the T and the S regularisation we obtain the
claim. ��
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The following is first proven in [18] for classical MZV’s. It is convenient however
to recall the details for application to later lemmas; moreover we need a version which
holds also for alternating MZV’s [28, Theorem 13.3.9].

Definition 2.15 (Linear map ρ) Define an R linear map ρ : R[T ] → R[T ] by

ρ(eTu) = exp

( ∞
∑

n=2

(−1)n

n
ζ(n)un

)

eTu, |u| < 1.

So ρ(1) = 1, ρ(T ) = T , ρ(T 2) = T 2 + ζ(2) and ρ(T 3) = T 3 + 3ζ(2)T − 2ζ(3)
are the initial few values.

Then the map ρ gives us the translation between shuffle and stuffle regularisation,
as follows.

Lemma 2.16 (Theorem 1, [18], generalised in Theorem 13.3.9, [28]) For any index
m = (m1, . . . ,md), where md = 1 is permitted, and the entries may be barred, the
shuffle regularisation with parameter ζ�,T (1) = T and the stuffle regularisation with
the same parameter ζ ∗,T (1) = T are related as follows.

ζ�,T (m) = ρ
(

ζ ∗,T (m)
)

.

At this point it is instructive to notice that

exp

( ∞
∑

n=2

(−1)n

n
ζ(n)un

)

=
(

1 +
∞
∑

n=1

ζ ∗,0({1}n)un
)−1

.

This can be seen via Corollary 2 in [18], or rather via Corollary 1 upon applying the
regularisation-evaluation map ζ ∗,0 = ζ ◦ reg∗

0 (or Z ◦ reg∗
0 in the notation of [18]).

Directly, one sees that the regularisation has parameter ζ ∗,0(1) = 0 since the ζ(1) term
on the left hand side is not present, and so has been regularised to 0. More generally,
applying ζ ∗,T = ζ ◦ reg∗

T one has:

exp

(

−Tu +
∞
∑

n=2

(−1)n

n
ζ(n)un

)

=
(

1 +
∞
∑

n=1

ζ ∗,T ({1}n)un
)−1

.

Lemma 2.17 The stuffle regularisation with parameter ζ ∗,T (1) = T may be expressed
via the shuffle regularisation with parameter ζ�,0(1) = 0 and the ‘periodic’ MZV
ζ ∗,T ({1}i ), as follows. For any indexk = (k1, . . . , kd)with barred entries and kd �= 1,

ζ ∗,T (k, {1}α) =
α
∑

i=0

ζ�,0(k, {1}α−i )ζ ∗,T ({1}i )
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Proof We apply Lemma2.13 in the case S = 0 to write

ζ ∗,T (k, {1}α) =
α
∑

i=0

ζ ∗,0(k, {1}α−i )
T i

i ! .

Note now ζ ∗,0(k, {1}α−i ) is a combination of convergent MZV’s (after being regu-
larised with parameter ζ ∗,0(1) = 0). Since ρ is R-linear, application of ρ to convert

to the shuffle product only applies to the T i

i ! part of the summand. That is to say, we
have

ζ�,T (k, {1}α) = ρ
(

ζ ∗,T (k, {1}α)
) =

α
∑

i=0

ζ ∗,0(k, {1}α−i )ρ
(T i

i !
)

Multiply both sides by uα , and sum on α to form the generating series

∞
∑

α=0

ζ�,T (k, {1}α)uα =
∞
∑

α=0

α
∑

i=0

ζ ∗,0(k, {1}α−i )ρ
(T i

i !
)

uα.

Interchange the summation order, then set α → α + i

=
∞
∑

i=0

∞
∑

α=i

ζ ∗,0(k, {1}α−i )ρ
(T i

i !
)

uα =
∞
∑

i=0

∞
∑

α=0

ζ ∗,0(k, {1}α)ρ
(T i

i !
)

ui+α

=
∞
∑

α=0

ζ ∗,0(k, {1}α)uα ·
∞
∑

i=0

ρ
(T i

i !
)

ui .

One sees that the sum involving ρ is simply ρ(eTu), which may be replaced by the
expression in Definition2.15, to give

=
∞
∑

α=0

ζ ∗,0(k, {1}α)uα · exp
( ∞
∑

n=2

(−1)n

n
ζ(n)un

)

eTu

We therefore have

∞
∑

α=0

ζ�,T (k, {1}α)uα · e−Tu · exp
(

Tu −
∞
∑

n=2

(−1)n

n
ζ(n)un

)

=
∞
∑

α=0

ζ ∗,0(k, {1}α)uα · eTu .
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By Lemma2.14 and Lemma2.13, respectively

∞
∑

α=0

ζ�,T (k, {1}α)uα · e−Tu =
∞
∑

α=0

ζ�,0(k, {1}α)uα, and

∞
∑

α=0

ζ ∗,0(k, {1}α)uα · eTu =
∞
∑

α=0

ζ ∗,T (k, {1}α)uα .

Finally, it follows from the observation above that

exp

(

Tu −
∞
∑

n=2

(−1)n

n
ζ(n)un

)

= 1 +
∞
∑

n=1

ζ ∗,T ({1}n)un .

Making these substitutions, and extracting the coefficient of uα establishes the
claim. ��

2.4 Relating stuffle and shuffle regularisedMtV’s

Finally, we give a concrete and explicit relationship between the stuffle and shuffle
regularised MtV’s for an arbitrary choice of parameters.

Proposition 2.18 Let k = (k1, . . . , kd) unbarred, such that kd �= 1. Then the stuffle
regularisation of MtV’s at parameter t∗,V and the shuffle regularisation t�,0 induced
by the representation of MtV’s as alternating MZV’s, with ζ�,0(1) = 0, are related
as follows.

t∗,V (k, {1}α) =
α
∑

i=0

t�,0(k, {1}α−i ) · 1

2i
ζ ∗,2V−log(2)({1}i ). (13)

Proof This is clearly true when α = 0, and no regularisation is necessary, so we
assume α > 0. Now apply the expression for t in terms of alternating MZV’s in (1),
and Corollary2.12 to write

t∗,V (k, {1}α) = 1

2d+α

∑

ε=(ε1,...,εd ),
εk ,δ1,...,δα∈{±1}

ε1 · · · εd · δ1 · · · δαζ ∗,2V−log(2)
(

ε, δ1, . . . , δα

k, 1, . . . , 1

)

.

For notation simplicity, we shall always write ε = (ε1, . . . , εd), and drop the explicit
reference to ∈ {±1} from the summation; this should be taken as implied for whatever
selection of signs we specify in the sum. Now gather the terms in this sum by the
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number of trailing δi = 1 signs. One has

= 1

2d+α

α
∑

j=0

∑

ε,
δ1,...,δα−1− j ,

δα− j=−1

ε1 · · · εd · δ1 · · · δα− jζ
∗,2V−log(2)

(

ε, δ1, . . . , δα− j , {1} j
k, 1, . . . , 1, {1} j

)

.

Application of Lemma2.17 allows us to convert the ζ ∗,T regularisation to ζ�,0 cor-
rected by ζ ∗,T ({1}n), which gives

= 1

2d+α

α
∑

j=0

∑

ε,
δ1,...,δα−1− j ,

δα− j=−1

ε1 · · · εd · δ1 · · · δα− j

j
∑

i=0

ζ�,0
(

ε, δ1, . . . , δα− j , {1} j−i

k, 1, . . . , 1, {1} j−i

)

×ζ ∗,2V−log(2)({1}i )

Moving the sum over i outside the sum over signs (of which it is independent), and
then interchanging the j and i summation order gives

= 1

2d+α

α
∑

i=0

α
∑

j=i

∑

ε,
δ1,...,δα−1− j ,

δα− j=−1

ε1 · · · εd · δ1 · · · δα− j · ζ�,0
(

ε, δ1, . . . , δα− j , {1} j−i

k, 1, . . . , 1, {1} j−i

)

× ζ ∗,2V−log(2)({1}i )

= 1

2d+α

α
∑

i=0

α−i
∑

j=0

∑

ε,
δ1,...,δα−i−1− j ,

δα−i− j=−1

ε1 · · · εd · δ1 · · · δα−i− j · ζ�,0
(

ε, δ1, . . . , δα−i− j , {1} j
k, 1, . . . , 1, {1} j

)

× ζ ∗,2V−log(2)({1}i )

One now recognises that the sum over j and the sum over signs with δα−i− j = −1 is
just the expression for the sum over all signs, gathered by the number of trailing 1’s.
So we can rewrite this to be

= 1

2d+α

α
∑

i=0

∑

ε,
δ1,...,δα−i

ε1 · · · εd · δ1 · · · δα−i · ζ�,0
(

ε, δ1, . . . , δα−i

k, 1, . . . , 1

)

×ζ ∗,2V−log(2)({1}i )

Lastly, we recognise the sum over signs to be 2d+α−i t�,0(k, {1}α−i ), so after mak-
ing this replacement, and cancelling the powers of 2, we obtain the claim in the
proposition. ��
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3 Evaluation of the stuffle-regualrised t∗,V ({2}a, 1, {2}b)
In this section we prove the following evaluation for the stuffle-regularised
t∗,V ({2}a, 1, {2}b), with t∗,V (1) = V . Namely

t∗,V ({2}a, 1, {2}b) =

−
a+b
∑

r=1

(−1)r2−2r
[(

2r

2a

)

+ 22r

22r − 1

(

2r

2b

)]

ζ(2r + 1)t({2}a+b−r )

+ δa=0 log(2)t({2}b) + δb=0(V − log(2))t({2}a), (14)

where δ• is the Kronecker delta symbol, equal to 1 if the condition • holds, and 0
otherwise. One can write this very explicitly, if desired, as a polynomial in single zeta
values, and powers of π , using the following evaluation from [16]:

t({2}a) = π2a

22a(2a)! , (15)

and the evaluation ζ(2r + 1) = −(1 − 2−2r )ζ(2r + 1), for r > 0. (Note ζ(1) =
− log(2), while ζ(1) is divergent and must be regularised to make sense.)

In order to prove this identity, we first convert it to a generating series identity. For
this purpose introduce the following functions.

Definition 3.1 (Functions A(z), B(z)) For |z| < 1, define the A(z) and B(z) via the
following power series

A(z) :=
∞
∑

r=1

ζ(2r + 1)z2r ,

B(z) :=
∞
∑

r=1

(1 − 2−2r )ζ(2r + 1)z2r =
∞
∑

r=1

−ζ(2r + 1)z2r .

Remark 3.2 The functions A(z) and B(z) are the same as defined inZagier’s evaluation
of ζ({2}a, 3, {2}b) in [27], and Murakami’s evaluation of t({2}a, 3, {2}b) in [22]. It is
noted in the proof of Proposition 2 in [27] that they can be expressed via the digamma
function ψ(x) = d

dx log�(x) = �′(x)
�(x) , as follows:

A(z) = ψ(1) − 1
2 (ψ(1 + z) + ψ(1 − z)) , B(z) = A(z) − A( z2 ) .

In this form the functions A(z) and B(z) analytically continue to the whole complex
plane, with simple poles at z ∈ Z\{0}.

It is a routine manner to sum (a tweaked version of) the generating series of the
right-hand side to see the claim is equivalent to the following Theorem. For details
of such summation techniques, we refer to the corresponding evaluations in both [27,
proof of Proposition 2] and [22, proof of Proposition 13].

123



Onmotivic MtV’s and Saha’s basis 2019

Theorem 3.3 The following generating series evaluation holds for the stuffle-
regularised t∗,V , with t∗,V (1) = V ,

∑

a,b≥0

(−1)a+bt∗,V ({2}a, 1, {2}b) · (2x)2a(2y)2b

= 1

2
cos(πx)(A(x − y) + A(x + y) + 2(V − log(2)))

+ 1

2
cos(π y)(B(x − y) + B(x + y) + 2 log(2)) ,

where

A(z) = ψ(1) − 1
2 (ψ(1 + z) + ψ(1 − z)) =

∞
∑

r=1

ζ(2r + 1)z2r ,

B(z) = A(z) − A( z2 ) =
∞
∑

r=1

(1 − 2−2r )ζ(2r + 1)z2r =
∞
∑

r=1

−ζ(2r + 1)z2r .

3.1 Proof of Theorem 3.3

Firstly, recall that the pFp−1 hypergeometric function is defined as

pFp−1

[

a1, . . . , ap
b1, . . . , bp−1

; x
]

:=
∞
∑

m=0

{a1}m · · · {ap}m
{b1}m · · · {bp−1}m

xm

m! ,

where {a}m = a(a+1) · · · (a+m−1) is the ascending Pochhammer symbol. Asymp-
totic and transformation properties of the 4F3 and 3F2 will play a key role in the proof
of our generating series evaluation.

In order to prove this theorem, we utilise a multiple t-polylogarithm type function,
defined as follows.

Definition 3.4 (Multiple t-polylogarithm) For a choice of indices s1, . . . , sd ∈ Z≥0,
the Ti functions is defined by

Tis1,...,sd (x1, . . . , xd) :=
∑

0<n1<···<nd

x2n1−1
1 · · · x2nd−1

d

(2n1 − 1)s1 · · · (2nd − 1)sd
,

which converges when |x1 · · · xi | < 1, for i = 1, . . . , d.

Remark 3.5 Closely related functions, at least for depth d = 1 and weight 2, are
already studied in Lewin’s book [21] under the names ‘the inverse tangent integral’
(Chapter 2 of [21])

˜Ti2(x) = Im Li2(ix) =
∞
∑

n=1

(−1)n+1x2n−1

(2n − 1)2
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and ‘Legendre’s chi-function’ (Section 1.8 of [21])

χ2(x) =
∞
∑

n=1

x2n−1

(2n − 1)2
= 1

2
Li2(x) − 1

2
Li2(−x).

Lewin actually uses the notation Ti for his function, but I write ˜Ti here to avoid
confusion with the function introduced above. Moreover, the notation χ2 is Lewin’s
choice, supplanting the too general notation φ originally used by Legendre.

Recently, Rudenko [24, Section 5.5] has also introduced essentially the same
functions, and established [24, Lemma 5.18] a coproduct property of Ti which is
consistent with the coaction formula (Proposition5.7 below) of the MtV’s. Rudenko’s
formulation occurs in the Lie coalgebra of multiple polylogarithms, wherein one is
free to ignore product terms and certain weight 1 terms; for the special case where
x1 = · · · = xd = 1 one obtains MtV’s, and the formula in Proposition5.7 refines the
coproduct of the corresponding MtV’s.

The function Ti fromDefinition3.4 is related to the classicalmultiple polylogarithm
functions Lis′1,...,s′d in an analogous way to how the multiple t-value t(s1, . . . , sd) is
related to the classical multiple zeta values ζ(s′

1, . . . , s
′
d) in (1). An explicit formula

can be given, exactly as for t values, by inserting a factor 1
2 (1 − (−1)ni ) into the

numerator for i = 1, . . . , d, which allows one to extend the range of summation of the
denominators and exponents from just odd integers, to all positive integers. Namely

Tis1,...,sd (x1, . . . , xd) =
∑

0<n1<···<nd

x2n1−1
1 · · · x2nd−1

d

(2n1 − 1)s1 · · · (2nd − 1)sd

=
∑

0<n1<···<nd

(1 − (−1)n1) · · · (1 − (−1)nd )

2d
xn11 · · · xndd
ns11 · · · nsdd

= 1

2d
∑

ε1,...,εd∈{±1}
ε1 · · · εd Lis1,...,sd (ε1x1, . . . , εd xd) .

We note also that when sd > 1, the special value Tis1,...,sd (1, . . . , 1) = t(s1, . . . , sd) is
exactly the multiple t value of the given indices, as in this case the MtV is convergent.
We find, however, that

Ti1(z) =
∞
∑

n1=1

z2n1−1

2n1 − 1
= tanh−1(z),

so in particular limz→1− Ti1(z) = ∞.
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Now, let us turn out attention to

Ti{2}a ,1,{2}b ({1}a, z, {1}b)

=
∑

0<n1<···<na<r
<m1<···<mb

1

(2n1 − 1)2 · · · (2na − 1)2
· z2r−1

2r − 1
· 1

(2m1 − 1)2 · · · (2mb − 1)2
.

We will establish that a certain limit involving a similar generating series of these
Ti{2}a ,1,{2}b -polylogs can be used to give the desired generating series of t∗,V=0 values.
We find

∑

a,b≥0

(−1)a+b Ti{2}a ,1,{2}b ({1}a, z, {1}b) · (2x)2a(2y)2b

=
∞
∑

r=1

∏

�<r

(

1 − 4x2

(2� − 1)2

)

· z2r−1

2r − 1
·
∏

k>r

(

1 − 4y2

(2k − 1)2

)

= cos(π y)
∞
∑

r=1

∏

�<r

(

1 − 4x2

(2� − 1)2

)

· z2r−1

2r − 1
·
∏

k≤r

(

1 − 4y2

(2k − 1)2

)−1

= z cos(π y)

1 − 4y2
· 4F3

[

1, 3
2 ,

1
2 − x, 1

2 + x
1
2 ,

3
2 − y, 3

2 + y
; z2
]

. (16)

One checks directly that the summand above is expressible in the required form for
the 4F3 hypergeometric function.

Now the divergent part (as z → 1−) of this generating series arises from

∑

a≥0

(−1)a Ti{2}a ,1({1}a, z) · (2x)2a .

We notice here that by stuffle-regularising,

Ti{2}a ,1({1}a, z) = t({2}a)Ti1(z) −
a−1
∑

i=0

Ti{2}i ,1,{2}a−i ({1}i , z, {1}a−i )

−
a−1
∑

i=0

Ti{2}i ,3,{2}a−1−i ({1}i , z, {1}a−1−i ).

(17)

So one can write that

∑

a≥0

(−1)a Ti{2}a ,1({1}a, z) · (2x)2a = tanh−1(z) cos(πx) + f (x, z)
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where

f (x, z) = −
∞
∑

a=0

(−1)a
( a−1
∑

i=0

Ti{2}i ,1,{2}a−i ({1}i , z, {1}a−i )

+
a−1
∑

i=0

Ti{2}i ,3,{2}a−1−i ({1}i , z, {1}a−1−i )

)

· (2x)2a .

(Note that cos(πx) arises as the generating series of t({2}a), after incorporating the
normalisation factors (−1)a and (2x)2a above. Namely

∞
∑

a=0

(−1)at({2}a) · (2x)2a =
∞
∑

a=0

(−1)a
π2a

22a(2a)! · (2x)2a = cos(πx),

wherein we have substituted the evaluation of t({2}a) from [16], given in (15) above.)
We see that at z = 1,

a−1
∑

i=0

Ti{2}i ,1,{2}a−i ({1}a+1) +
a−1
∑

i=0

Ti{2}i ,3,{2}a−1−i ({1}a)

=
a−1
∑

i=0

t({2}i , 1, {2}a−i ) +
a−1
∑

i=0

t({2}i , 3, {2}a−1−i )

= t∗,V=0(1)t({2}a) − t∗,V=0({2}a, 1)
= −t∗,V=0({2}a, 1) .

So that f (x, 1) (or at least the limit limz→1− thereof) satisfies

f (x, 1) =
∞
∑

a=0

(−1)at∗,V=0({2}a, 1) · (2x)2a .

Now subtract (17) from (16), and take the limit limz→1− . From this we see that the
generating series of stuffle-regularised (at V = 0) MtV’s is obtained by computation
of the following limit

∑

a,b≥0

(−1)a+bt∗,V=0({2}a, 1, {2}b) · (2x)2a(2y)2b

= lim
z→1−

z cos(π y)

1 − 4y2
· 4F3

[

1, 3
2 ,

1
2 − x, 1

2 + x
1
2 ,

3
2 − y, 3

2 + y
; z2
]

− tanh−1(z) cos(πx) . (18)

We now apply some transformation properties of 4F3 in order to reduce this to a
combination of 3F2 functions, whose asymptotic behaviour is established by [8]. First
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make use of the contiguous function relation

b · 4F3
[

a, b + 1, c, d

p, q, r
; z
]

− a · 4F3
[

a + 1, b, c, d

p, q, r
; z
]

+ (a − b) · 4F3
[

a, b, c, d

p, q, r
; z
]

= 0

in the case (a, b, c, d) = (1, 1
2 ,

1
2 − x, 1

2 + x), (p, q, r) = ( 12 ,
3
2 − y, 3

2 + y), to obtain
the following reduction of our 4F3 to a combination of 3F2’s. We find

4F3

[

1, 3
2 ,

1
2 − x, 1

2 + x
1
2 ,

3
2 − y, 3

2 + y
; z2
]

= 2 · 3F2
[

2, 1
2 − x, 1

2 + x
3
2 − y, 3

2 + y
; z2
]

− 3F2

[

1, 1
2 − x, 1

2 + x
3
2 − y, 3

2 + y
; z2
]

(19)

The second term is convergent at z = 1, and can be evaluated via Whipple’s theorem
(see Section 3.4 in [1]) to give (after some simplification with the reflection formula
of the �-function) that

3F2

[

1, 1
2 − x, 1

2 + x
3
2 − y, 3

2 + y
; 1
]

= (1 − 2y)(1 + 2y)

2(x − y)(x + y)
sec(π y) sin

(

π
2 (x − y)

)

sin
(

π
2 (x + y)

)

= − 1 − 4y2

cos(π y)

cos(πx) − cos(π y)

4(x2 − y2)
.

To deal with the first term, we need to recall the Evans-Stanton/Ramanujan asymptotic
for 0-balanced 3F2 hypergeometric functions.

Theorem 3.6 (Evans–Stanton 1984 [8], Ramanujan) If a+b+c = d+e, andRe(c) >

0, then as u → 1−,

�(a)�(b)�(c)

�(d)�(e)
· 3F2

[

a, b, c

d, e
; u
]

= − log(1 − u) + L + O((1 − u) log(1 − u)),

where

L = −2γ − �′(a)

�(a)
− �′(b)

�(b)
+

∞
∑

k=1

{d − c}k {e − c}k
{a}k {b}k k .

Here γ ≈ 0.577 . . . is the Euler–Mascheroni constant, and {x}k =
x(x + 1) · · · (x + k − 1) is the ascending Pochhammer symbol.

If we apply this asymptotic (with c = 2, and a, b = 1
2 ± x , via the symmetry of

3F2 in its upper arguments) to the first term on the right hand side of (19), and recall
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ψ(x) = d
dx log�(x) = �′(x)

�(x) , we obtain the asymptotic formula

4

1−4y2
cos(π y)

cos(πx)
3F2

[

2, 1
2−x, 1

2+x
3
2−y, 3

2+y
; z2
]

= − log(1−z2)−2γ−ψ( 12−x)−ψ( 12+x)

+
∞
∑

k=1

{− 1
2 − y

}

k

{− 1
2 + y

}

k

k
{ 1
2 − x

}

k

{ 1
2 + x

}

k

+ O((1 − z2) log(1 − z2)) .

We also note

4A(2x) − 2A(x) = −4 log(2) − 2γ − ψ( 12 − x) − ψ( 12 + x),

so that the digamma combination above can be rewritten via the function A defined
earlier. Applying these results to (18), we find

RHS (18) = cos(πx) − cos(π y)

4(x2 − y2)
+ 1

2
cos(πx)

·
(

4A(2x) − 2A(x) + 2 log(2) +
∞
∑

k=1

{− 1
2 − y

}

k

{− 1
2 + y

}

k

k
{ 1
2 − x

}

k

{ 1
2 + x

}

k

)

.

We note next that

∞
∑

k=1

{− 1
2 − y

}

k

{− 1
2 + y

}

k

k
{ 1
2 − x

}

k

{ 1
2 + x

}

k

= d

dZ

∣

∣

∣

Z=0
3F2

[− 1
2 − y, − 1

2 + y, Z
1
2 − x, 1

2 + x
; 1
]

.

Compare Proposition 1 in [27] for a similar summation, which we will in fact reduce
this to. Using the contiguous function relation

(a − b)p · 3F2
[

a, b, c

p, q
; z
]

− b(a − p) · 3F2
[

a, 1 + b, c

1 + p, q
; z
]

+ a(b − p) · 3F2
[

1 + a, b, c

1 + p, q
; z
]

= 0

in the case (a, b, c) = (− 1
2 − y,− 1

2 + y, Z), (p, q) = ( 12 − x, 1
2 + x), we find (note

the sign of y is different in various places in the coefficient of each 3F2 on the right
hand side) that

123



Onmotivic MtV’s and Saha’s basis 2025

3F2

[− 1
2 − y, − 1

2 + y, Z
1
2 − x, 1

2 + x
; 1
]

= − (1 − x + y)(1 − 2y)

2y(1 − 2x)
3F2

[ −( 12 + y
)

, 1
2 + y, Z

1 − (x − 1
2

)

, 1 + (x − 1
2

) ; 1
]

+ (1 − x − y)(1 + 2y)

2y(1 − 2x)
3F2

[ −(− 1
2 + y

)

, − 1
2 + y, Z

1 − (x − 1
2

)

, 1 + (x − 1
2

) ; 1
]

, (20)

and the same expression upon replacing 3F2 with d
dZ

∣

∣

Z=03F2 on both sides. Both
hypergeometric functions derivatives are now of the form

d

dZ

∣

∣

∣

Z=0
3F2

[ −X , X , Z

1 − Y , 1 + Y
; 1
]

= [

A(X + Y ) + A(X − Y ) − 2A(Y )
]

− sin(πX)

sin(πY )

[

B(X + Y ) − B(X − Y )
]

,

the evaluation of which here follows as essentially the punchline to Section 4 of
Zagier’s evaluation of ζ({2}a, 3, {2}b) in [27] after combining the results of Sections
2 and 3 therein. (Namely the equality of F(x, y) = ̂F(x, y) established in the proof
Theorem 1 in [27], plus the expressions in Propositions 1 and 2 of [27], gives the
above evaluation.)

Substituting this evaluation into d
dZ

∣

∣

Z=0 of (20), and substituting the resulting Poch-
hammer sum evaluation into the 4F3 limit produces an elementary expression for the
generating series of (−1)a+bt∗,V=0({2}a, 1, {2}b) in terms of A, B, sine and cosine.

This elementary generating series expression can be simplified as follows. Firstly,
apply the digamma duplication relation

ψ
(

z + 1
2

) = −ψ(z) + 2ψ(2z) − 2 log(2),

to obtain that

A
(− 1

2 + x
) = 1

2x−1 − A(x) + 2A(2x) + 2 log(2);

use this to eliminate A(− 1
2 + x) from the resulting expression in favour of

2A(2x) − A(x). Then use the digamma functional equation

ψ(z + 1) = ψ(z) + 1
z ,

to obtain (along with duplication in the case of B), that

A(x + 1) = A(x) − 1
2(1−x) − 1

2x , B(x + 1) = − 1
2x(x+1) − 2 log(2) − B(x).

Use these to replace B(1− x + y), B(−1+ x + y), A(1− x + y), A(−1+ x + y) by
−B(−x + y),−B(x + y), A(−x + y), A(x + y), respectively. Since both A(x) and
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B(x) are even functions, the expression now simplifies directly, and one readily finds

∑

a,b≥0

(−1)a+bt∗,V=0({2}a, 1, {2}b) · (2x)2a(2y)2b

= 1

2
cos(πx)(A(x − y) + A(x + y) − 2 log(2))

+1

2
cos(π y)(B(x − y) + B(x + y) + 2 log(2)). (21)

The generating series for the general regularisation is recovered upon noting that

t∗,V ({2}a, 1) = V t({2}a) + t∗,V=0({2}a, 1),

i.e. the constant term in the regularisation polynomial is the regularisation at parameter
V = 0. Since

∑

a≥0

(−1)aV t({2}a) · (2x)2a = V cos(πx),

as already noted above without the V , this gives the necessary correction term to add
to the right hand side of (21) to find the generating series for the general regularisation.
Doing so gives the equality stated in Theorem3.3, and so completes the proof. ��

3.2 Evaluation of shuffle-regularised t���,W({2}a, 1, {2}b)

Although the shuffle regularisation t�,0, arising from ζ�,0(1) = 0 is most important,
we can in fact compute the regularisation for any t�,W arising from ζ�,W (1) = W
with equal ease. Clearly, if b > 0

t�,W ({2}a, 1, {2}b) = t({2}a, 1, {2}b),

as no regularisation is necessary. However when b = 0 we compute via (1)—with the
convention that ε = (ε1, . . . , εa) and the sum over ε, δ implies all choice of signs in
{±1}—that

t�,W ({2}a, 1) = 1

2a+1

∑

ε,δ

ε1 · · · εa · δ · ζ�,W
(

ε, δ

{2}a, 1
)

Since the alternating MZV ends with at most a single entry 1 (with sign 1), we
know from Lemma2.16 that the shuffle and the stuffle regularisation in this case are
exactly equal. This is because the R-linear map ρ from Definition2.15 appearing in
Lemma2.16 has ρ(1) = 1 and ρ(T ) = T , so leaves a linear regularisation polynomial
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unchanged. Hence

= 1

2a+1

∑

ε,δ

ε1 · · · εa · δ · ζ ∗,W
(

ε, δ

{2}a, 1
)

= t∗, 12 (W+log(2))({2}a, 1).

Recall from Corollary2.12: the stuffle regularisation of t∗,V (1) = V corresponds to
the stuffle regularisation of ζ ∗,U (1) = U where U = 2V − log(2), hence the change
in regularisation parameter in the last line.

This amounts to saying the shuffle regularised version t�,W of the generating series
inTheorem3.3 is obtained simply by changing the regularisation parameter on theRHS
to 1

2 (W + log(2)). Hence we have the following proposition.

Proposition 3.7 The following generating series evaluation holds for the shuffle-
regularised t�,W , induced by ζ�,W (1) = W,

∑

a,b≥0

(−1)a+bt�,W ({2}a, 1, {2}b) · (2x)2a(2y)2b

= 1

2
cos(πx)(A(x − y) + A(x + y) + (W − log(2)))

+ 1

2
cos(π y)(B(x − y) + B(x + y) + 2 log(2)) ,

where

A(z) = ψ(1) − 1
2 (ψ(1 + z) + ψ(1 − z)) =

∞
∑

r=1

ζ(2r + 1)z2r ,

B(z) = A(z) − A( z2 ) =
∞
∑

r=1

(1 − 2−2r )ζ(2r + 1)z2r =
∞
∑

r=1

−ζ(2r + 1)z2r .

From this follows an explicit evaluation, analogous to (14), by replacing V with
1
2 (W + log(2)) therein:

t�,W ({2}a, 1, {2}b)

= −
a+b
∑

r=1

(−1)r2−2r
[(

2r

2a

)

+ 22r

22r − 1

(

2r

2b

)]

ζ(2r + 1)t({2}a+b−r )

+ δa=0 · log(2)t({2}b) + δb=0 · 1
2
(W − log(2))t({2}a), (22)

where δ• is the Kronecker delta symbol, equal to 1 if the condition • holds, and 0
otherwise.

123



2028 S. Charlton

3.3 Evaluation of t(1, {2}n)

In order to answer a question posed in [6], we turn to the special case of t(1, {2}n),
for n ≥ 1. Here we extract from (14), the following evaluation for t(1, {2}n), where
n ≥ 1

t(1, {2}n) =

−
n
∑

r=1

(−1)r2−2r
[

1 + 22r

22r − 1

(

2r

2n

)]

ζ(2r + 1)t({2}n−r ) + log(2)t({2}n).

Since
(2r
2n

) = 0 for r < n, and
(2r
2n

) = 1 for r = n, this can be written as

= log(2)t({2}n) −
n−1
∑

r=1

(−1)r2−2rζ(2r + 1)t({2}n−r )

− (−1)n2−2n
[

1 + 22n

22n − 1

]

ζ(2n + 1).

Now the first term can be incorporated as the r = 0 term of the sum, giving

= −
n−1
∑

r=0

(−1)r2−2rζ(2r + 1)t({2}n−r ) − (−1)n2−2n
[

1 + 22n

22n − 1

]

ζ(2n + 1)

Now substitute in the evaluation of t({2}a) = π2a

22a(2a)! from (15), and convert the last
term to a classical (non-alternating) MZV, to obtain

= 1

22n

( n−1
∑

r=0

(−1)r (−ζ(2r + 1))
π2(n−r)

(2(n − r))! + (−1)n2
(

1 − 2−2n−1)ζ(2n + 1)

)

This confirms Conjecture 4.5 on the evaluation of t(1, {2}n) stated in [6] (be aware,
the opposite MZV/MtV convention is used therein). The authors of [6] also write the
Dirichlet eta function η(m) = (1−21−m)ζ(m), with η(1) = log(2), in place of−ζ(m)

used herein.

4 Motivic framework

In this section we briefly recall the setup of motivic iterated integrals framework intro-
duced by Brown [4, 5] (extending that of Goncharov [12, 13]). We define the motivic
(alternating)MZV’s and the motivicMtV’s; we introduce the necessary combinatorial
operations and fundamental properties of these objects which will play a key role from
Section 6 onwards.
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4.1 Goncharov’s motivic iterated integrals

In [13], Goncharov upgraded the iterated integrals I (x0; x1, . . . , xN ; xN+1), xi ∈ Q

(see (7) above for the definition), to framed mixed Tate motives, in order to define
motivic iterated integrals

I u(x0; x1, . . . , xN ; xN+1)

living in a graded (by the weight N ) connected Hopf algebra A = A•(Q). The Hopf
algebra A is the ring of regular functions on the unipotent part of the motivic Galois
group. In [13], they are denoted by IM , but when incorporated into Brown’s motivic
framework, they are better denoted by I u for the unipotent part. (The component
consisting of weight N integrals is denoted AN .)

The motivic iterated integrals satisfy relations of a ‘geometric’ origin, arising from
change of variables in an iterated integral, the results of Stoke’s theorem, or from the
linearity of domain and integrand. The coproduct � on this Hopf algebra is computed
via Theorem 1.2 in [13] as

�I u(x0; x1, . . . , xN ; xN+1) =
∑

0=i0<i1<···
<ik<ik+1=N+1

I u(x0; xi1 , . . . , xik ; xN+1) ⊗
k
∏

p=0

I u(xi p ; xi p+1, . . . , xi p+1−1; xi p+1).

In this Hopf algebra, the motivic version of ζ u(2) = −I u(0; 1, 0; 1) = 0, or more
fundamentally, the Lefschetz motive L

u, a motivic version of iπ , vanishes so that
(iπ)u = L

u = 0.

4.2 Brown’sA-comodule of motivic iterated integrals

The motivic iterated integrals Im(x0; x1, . . . , xN ; xN+1) in the sense of Brown [4, 5]
are elements of the weight-gradedA-comoduleH of regular functions on the torsor of
tensor isomorphisms between Betti and de Rham realisations. (The weight N graded
component ofH is denotedHN . These integrals do depend implicitly on a path γ from
x0 to xN+1, but for our purposes typically x0, xN+1 ∈ {0, 1}, and then the canonical
straight line path dch : [0, 1] → [0, 1] , t 	→ t is sufficient.)

This comodule is endowed with a coaction� : H → A⊗Hwhich, as noted in [5],
is given by the same formula as Goncharov’s coproduct, transposed to this setting, i.e.

�Im(x0; x1, . . . , xN ; xN+1) = (23)

∑

0=i0<i1<···
<ik<ik+1=N+1

k
∏

p=0

I u(xi p ; xi p+1, . . . , xi p+1−1; xi p+1) ⊗ Im(x0; xi1 , . . . , xik ; xN+1).
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(We have switched the order of the factors for later convenience.) We will mainly
use the derivation operations Dr defined as a linearised, weight-graded part of the
coaction (see Section 4.4 below), but it will be useful to keep in mind from where
these operations originate, particularly when considering how they act on primitive
elements.

In Brown’s setting ζm(2) = −Im(0; 1, 0; 1) �= 0, and therefore much more infor-
mation about motivic iterated integrals is retained. In particular, the coaction can fix
identities up to primitive elements (namely motivic MZV’s of depth 1, at some root of

unity ζm
(

exp(2π ia/b)
n

)

). More concretely the coaction can be used to fix the coefficient

of product terms involving ζ(2n), in contrast to the coproduct above. (One can think
of Goncharov’s motivic iterated integrals asH/ζm(2)H, wherein ζm(2) is killed.)

One has a well-defined Q-algebra homomorphism per, called the period map,

per : H → C

Im(x0; x1, . . . , xN ; xN+1) 	→ I�,0(x0; x1, . . . , xN ; xN+1) ,

which means that the classical iterated integrals satisfy all motivically true relations.
Conjecturally, the space of motivic iterated integrals is isomorphic to the space of clas-
sical iterated integrals. This conjecture is a special case of the Grothendieck period
conjecture, which posits that the period map per (in the most general setting) is injec-
tive, so that all relations are motivic (‘geometric’) in origin, i.e. there are no ‘spurious’
or ‘coincidental’ relations on the level of numbers.

We briefly recall some main relations satisfied by the motivic iterated integrals.

(i) Unit: Im(x0; x1) = 1 in weight 0,
(ii) Trivial integration: Im(x0; x1, . . . , xN ; xN+1) = 0 if x0 = xN+1 and N ≥ 1,
(iii) Path composition: for any y ∈ Q,

Im(x0; x1, . . . , xN ; xN+1) =
N
∑

i=0

Im(x0; x1, . . . , xi ; y)Im(y; xi+1, . . . , xN ; xN+1)

(iv) Path reversal: Im(x0; x1, . . . , xN ; xN+1) = (−1)N Im(xN+1; xN , . . . , x1; x0)
(v) Homothety: if x0 �= x1, and xN �= xN+1, then for any α ∈ Q,

Im(x0; x1, . . . , xN ; xN+1) = Im(α · x0;α · x1, . . . , α · xN ;α · xN+1)

Tangential base-points: In the cases where x0 = x1 or xN = xN+1 the motivic
iterated integrals depends even on the tangential base-points of the path from x0 to
xN+1.

More formally, for this process, we replace 0 and 1 with a tangential base-points−→
1 0 and

−→−11 which denote the tangent vector
−→
1 at the point 0, and

−→−1 at the point
1, respectively, which are the tangent vectors for the straight line path dch : [0, 1] →
[0, 1]. The details of iterated integrals with tangential base points (and the motivic
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versions thereof) can be found in [9, Section 3.7, Section 4.5]. The notation with
tangential base-points is helpful to identify when certain transformations and relations
are invalid in the case of regularised integrals.

One can use the shuffle product to write any

Im(x0; {x0}a, x1, . . . , xN , {xN+1}b; xN+1)

as a polynomial in Im(x0; x0; xN+1),Im(x0; xN+1; xN+1) and integrals of the
form Im(x0; x1, . . . , xN ; xN+1), x1 �= x0, xN �= xN+1 (in a similar manner
to (8)). Then the calculation Im(a; b; c) = logm(b − c) − logm(b − a), with
logm(0) := 0 (cf. [13, Equation 6] and thereafter) allows one to understand
Im(x0; {x0}a, x1, . . . , xN , {xN+1}b; xN+1) in general.

For the case x0 = 0, x1 = 1, we find Im(0; 0; 1) = Im(0; 1; 1) = 0, so
that per Im(0; x1, . . . , xn; 1) is the shuffle-regularised version I�,0(0; x1, . . . , xn; 1),
(with I�,0 defined analogously to ζ�,0 in Section 2.1, extending I as a shuffle-
homomorphism to all divergentwords, and sending e0, e1 	→ 0, to give I�,0(0; 0; 1) =
I�,0(0; 1; 1) = 0).

The homothety property fails for Im(x0; x1, . . . , xN , xN+1) if x0 = x1 or if xN =
xN+1, because in this case the integral depends on the vector of the tangential base-
points at x0 or xN+1, which are changed when we scale by xi 	→ xiα. This point is
glossed over in [10, Section 2.3], [11, Section 2.2] and in [22, Section 2]. However,
whenever the homothety property is applied in [22], one only needs it to hold modulo
products and ζ u(2), i.e. in the Lie coalgebraL = A>0/A>0 ·A>0 which we introduce
momentarily (in Section 4.4 below). This version of homothety does hold in general
for xi ∈ {0,±1}, and so Murakami’s conclusions are valid; see Remark5.8 below for
more explicit details.

4.3 Motivic multiple zeta values andmotivic multiple t values

For � ∈ Z≥0, any index k = (k1, . . . , kd) with ki ∈ Z≥1 and any choice of signs
εi ∈ {±1}, we define the (alternating) motivic multiple zeta values by

ζm
�

(

ε1, . . . , εd

k1, . . . , kd

)

:= (−1)d Im(0; {0}�, η1, {0}k1−1, η2, {0}k2−1, . . . , ηd , {0}kd−1; 1),

where {k}n =
n

︷ ︸︸ ︷

k, . . . , k denotes the argument k repeated n times, and ηi = ∏d
j=i ε

−1
j .

This arises by transposing (6) to themotivic world, as a definition, and extending to the
case of leading 0’s (which as already indicated in the tangential base-point discussion
above) amounts to an analogue of shuffle-regularisation with ζm(1) = 0, as explained
in Section 2.1 for ζ�,0.

When � > 0, this integral is computed in the same manner as described in
Section 2.1, in particular via (9) in Lemma2.6 to express ζm

� in terms of ζm
0 = ζm.

We have a further property
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(vi) Unshuffling of 0’s:

ζm
�

(

ε1, . . . , εd

k1, . . . , kd

)

= (−1)�
∑

i1+···+id=�

(

k1 + i1 − 1

i1

)

· · ·
(

kd + id − 1

id

)

· ζm
0

(

ε1, . . . , εd

k1 + i1, . . . , kd + id

)

.

When � = 0, we can write ζm instead of ζm
0 . When all signs εi = 1, we can write

ζm
�

(

1, . . . , 1

k1, . . . , kd

)

=: ζm
� (k1, . . . , kd),

and will refer to this as a (non-alternating) motivic MZV. As shorthand notation, we
also write ki to denote the argument ki which has associated sign εi = −1, and write
ζm with only one row of arguments.

It is convenient to give notation to the space of all motivic MZV’s and all motivic
alternating MZV’s, within the space of all motivic iterated integrals.

Definition 4.1 (Space of (alternating) motivic MZV’s) LetH(1) be theQ-vector space
generated by all (non-alternating) motivic MZV’s. Likewise, letH(2) be theQ-vector
space generated by all alternating motivic MZV’s. Moreover, write H(1)

N , or H(2)
N for

the space of weight N (non-alternating) motivic MZV’s, and weight N alternating
motivic MZV’s respectively.

We then define the motivic multiple t values, using (1) as follows.

Definition 4.2 (Motivic multiple t value) For any index k = (k1, . . . , kd), ki ∈ Z≥1,
the motivic multiple t value tm(k1, . . . , kd) is defined by

tm(k1, . . . , kd) := 1

2d
∑

εi∈{±1}
ε1 · · · εd ζm

(

ε1, . . . , εd

k1, . . . , kd

)

.

It will often be convenient to work with the following rescaled version

˜t m(k1, . . . , kd) := 2|k|−d
∑

εi∈{±1}
ε1 · · · εd ζm

(

ε1, . . . , εd

k1, . . . , kd

)

,

where |k| = k1 + · · · + kd denotes the weight of the index k.

We call a motivic MtV tm(k1, . . . , kd) or ˜t
m
(k1, . . . , kd)

(i) a convergent motivic MtV if kd ≥ 2, and
(ii) an extended motivic MtV if kd ≥ 1.

By view of (1) and (10), we see that the image of tm(k1, . . . , kd) under the period
map,

per(tm(k1, . . . , kd)) = t�,0(k1, . . . , kd),
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gives the shuffle-regularised multiple t value t�,0(k1, . . . , kd) arising from the shuffle
regularisation with parameter ζ�,0(1) = 0. Under the period map, the convergent
motivic MtV’s give convergent MtV’s in the sense of Definition2.3, and in particular
correspond to convergent series. Likewise the extended motivic MtV’s correspond to
extendedMtV’s in the sense of Definition2.3, and require regularisation to be defined.

4.4 Derivations Dr, and the kernel of D<N

Finally, we turn to one of the most useful features of the motivic MZV’s, the combi-
natorial operations Dr arising from the coaction, which allow us to recursively find
and verify identities.

Recall the coaction � : H → A ⊗Q H defined in (23). We wish to consider a
linearised version of this, which is computationally less complex to calculate, but
still very rich in information. By the earlier remark, we have that A = H/Hζm(2).
Moreover, introduce the linearised quotient of A—which then has the structure of a
Lie coalgebra—defined by

L = A>0/A>0 · A>0.

Here A>0 denotes the elements of weight >0, and A>0 · A>0 is then the non-trivial
products in A. Likewise LN denotes the weight N graded component of L. Denote
by I l and ζ l, the image of Im and ζm respectively, in L.

Definition 4.3 (Derivation Dr ) For any r ≥ 1, define the derivation

Dr : H → Lr ⊗Q H

as the composition of � − (1 ⊗ id) with πr ⊗ id, where πr is the projection A →
L → Lr , to the weight r graded component Lr ⊂ L.

Essentially Dr is given by the terms in � which have weight r in the left hand
factor, and are irreducible. Therefore, one has the following explicit and combinatorial
formula to compute Dr ,

Dr
(

Im(x0; x1, . . . , xN ; xN+1)
) =

N−r
∑

p=0

I l(xp; xp+1, . . . , xp+r ; xp+r+1) ⊗ Im(x0; x1, . . . , xp, xp+r+1, . . . , xN ; xN+1)

Often, the following mnemonic picture is used to describe this formula.
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x0

xp = x1

x2

x3
x4

x5 x6
x7 = xp+r+1

x8

x9

x10

The terms in Dr correspond to segments cut out of the semicircular polygon with
vertices labelled by the integral parameters x0, x1, . . . , xN , xN+1. (In this picture,
N = 9, r = 5, p = 1.) Each term corresponds to a particular segment which cuts
off a small polygon with r interior points. The small polygon (x1, x2, . . . , x7) above
gives the left hand factor I l(x1; x2, . . . , x6; x7) in the formula, while themain polygon,
containing the integration endpoints x0 and xN+1 = x10 gives rise to the right hand
factor Im(x0; x1 , x7, x8, x9; x10), by deleting the interior points from the segment.

The following theorems illustrate the power and information contained in these
operations. For N ≥ 1, write

D<N =
⊕

1≤2r+1≤N
D2r+1

as the overall combination of all (relevant) derivations in weight < N . (Note that
D1 ≡ 0 on H(1)

N , so its inclusion will not change the statement of Brown’s Theorem
appreciably. However, D1 is important for Glanois’ Theorem below.)

Theorem 4.4 (Brown, Theorem 3.3 [4]) The kernel of D<N on motivic MZV’s is 1
dimensional in weight N , and spanned by ζm(N ),

ker D<N ∩ H(1)
N = ζm(N )Q.

This (often) allows one to recursively lift identities of real MZV’s to motivic MZV’s,
by recursively verifying D<N vanishes, and using the numerical identity to fix the
final unknown coefficient of ζm(N ) via the period map.

This was extended by Glanois [10, 11] to the case of alternating motivic MZV’s
(and motivic MZV’s at higher roots of unity).

Theorem 4.5 (Glanois, Corollary 2.4.5 [10], Theorem 2.2 [11]) The kernel of D<N

on alternating motivic MZV’s is 1 dimensional in weight N , and spanned by ζm(N ),

ker D<N ∩ H(2)
N = ζm(N )Q.

This again (often) allows one to recursively lift identities of real alternating MZV’s
to alternating motivic MZV’s, by recursively verifying D<N vanishes, and using the
numerical identity to fix the final unknown coefficient of ζm(N ) via the period map.

For N > 1, one can take ζm(N ) instead as the generator, however, for N = 1, one
must take ζm(1) = − logm(2), as ζm(1) = 0.
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Remark 4.6 The analogous result for higher roots of unity is not true, as further

primitive elements come into play. For example ζm(N ) and ζm
(

exp(2π i/3)
N

)

are both

primitive for �, and therefore vanish under all derivations Dr . However, (after appli-
cation of the period map, to take real and imaginary parts), one sees they are linearly
independent. Therefore the kernel of D<N on motivic MZV’s at 3rd roots of unity
is (at least) two dimensional. Glanois gives such characterisations in more cases in
Corollary 2.4.5 [10].

Finally, Glanois also studied when alternating motivic MZV’s Galois descend to
be(come) linear combinations of (non-alternating) motivic MZV’s. The following
Theorem gives a criterion to check this recursively using Dr .

Theorem 4.7 (Glanois, [10, Corollary 5.1.3], [11, Corollary 2.4]) Let Z ∈ H(2) be
a motivic alternating MZV. Then Z ∈ H(1), i.e. Z is a linear combination of (non-
alternating) motivic MZV’s, if and only if

(i) D1(Z) = 0, and
(ii) D2r+1Z ∈ L(1)

2r+1 ⊗ H(1) for all r ≥ 1 ,

where L(1)
2r+1 is the subspace of L generated by all (non-alternating) motivic MZV’s

of weigh 2r + 1.

5 Regularised distribution relations, and the derivationsDr

In [22], Murakami calculated the derivations Dr on motivic MtV’s of the form
tm(k1, . . . , kd) with each ki > 1. The case where some ki = 1 was not treated,
as the distribution relations used in the proof would not hold exactly. For the pur-
poses of treating the more general case, we need to consider the case of regularised
distribution relations, and verify them on the motivic level.

5.1 Classic andmotivic regularised distribution relations

The (convergent) distribution relation of ‘level N = 2’ states that if kd > 1, the
following holds

2k1+···+kd−d
∑

ε1,...,εd∈{±1}
ζ

(

ε1, . . . , εd

k1, . . . , kd

)

= ζ(k1, . . . , kd), (24)

This immediately follows from a corresponding distribution relation formultiple poly-
logarithms which holds on the power-series level

2k1+···+kd−d
∑

ε1,...,εd∈{±1}
Lik1,...,kd (ε1x1, . . . , εd xd) = Lik1,...,kd (x

2
1 , . . . , x

2
d ),

by setting xi = 1. The distribution relations are known to be motivic, and Murakami
indeed even verified this again to be the case in Proposition 10 of [22], at least when
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all ki > 1. Geometrically, they follow by taking the pullback under s 	→ s2 (for level
N = 2), and analogously in general. For example

∑

ε1,ε2∈{±1}
ζ

(

ε1, ε2

a, b

)

=

I (0; 1, {0}a−1, 1, {0}b−1; 1) + I (0; 1, {0}a−1,−1, {0}b−1; 1)
+ I (0; −1, {0}a−1, 1, {0}b−1; 1) + I (0; −1, {0}a−1,−1, {0}b−1; 1).

where as always ai within the bounds of the integral represents the form ds
s−ai

, as in
(7) above. By linearity of integration, the forms can be combined as

ds

s − 1
+ ds

s + 1
= 2sds

s2 − 1
,

and so we can write the combination of integrals as

=
∫

0<s1<···<sa+b<1

2s1ds1
s21 − 1

∧
a − 1 terms

︷ ︸︸ ︷

ds2
s2

∧ · · · ∧ dsa
sa

∧2sa+1dsa+1

s2a+1 − 1
∧

b − 1 terms
︷ ︸︸ ︷

dsa+2

sa+2
∧ · · · ∧ dsa+b

sa+b
,

Now set yi = s2i , for which the bounds 0 < s1 < · · · < sa+b < 1 become 0 < y1 <

· · · < ya+b < 1, and the forms become

dyi
2yi

= dsi
si

dyi
yi − 1

= 2sidsi
s2i − 1

.

This means the integral is equal to

=
∫

0<y1<···<ya+b<1

dy1
y1 − 1

∧
a − 1 terms

︷ ︸︸ ︷

dy2
2y2

∧ · · · ∧ dya
2ya

∧ dya+1

ya+1 − 1
∧

b − 1 terms
︷ ︸︸ ︷

dya+2

2ya+2
∧ · · · ∧ dya+b

2ya+b

= 1

2a+b−2 ζ(a, b)

Therefore (modulo some formalities to translate this carefully), they indeed have a
geometric (‘motivic’) origin.

On the level of real numbers we claim the following regularised version of the
distribution relations of level N = 2 holds. (A regularised version of the distribution
relations is discussed in general in [28, Section 13.3.4], alternatively one can under-
stand this via the asymptotic expansion discussed in [12, Proposition 2.19 and Lemma
2.21].)
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Proposition 5.1 For k = (k1, . . . , kd), with kd �= 1 an index, and any α ≥ 0, the
following regularised version of the distribution relation holds

2k1+···+kd−d
∑

ε=(ε1,...,εd )
δ=(δ1,...,δα)
εi ,δ j∈{±1}

ζ�,W
(

ε, δ

k, {1}α
)

− ζ�,W (k, {1}α)

=
α
∑

h=1

ζ�,W (k, {1}α−h)
(−log(2))h

h! .

Remark 5.2 Firstly, note that the power of 2 is still given by weight minus depth; the
additional α many 1’s increase both weight and depth by α, which cancels. Also by the
change of regularisation formula from Lemma2.14, with S = W , T = W − log(2),
we can in fact rewrite the identity as

2k1+···+kd−d
∑

ε=(ε1,...,εd )
δ=(δ1,...,δα)
εi ,δ j∈{±1}

ζ�,W
(

ε, δ

k, {1}α
)

= ζ�,W−log(2)(k, {1}α).

Proof of Proposition 5.1 Recall the algebraic setup as in Section 2.1, with the alphabet
Y = {e0, e1, e−1}, letter product ei � e j = 0, and the induced shuffle product eiw1�

e jw2 = ei (w1� e jw2) + e j (eiw1�w2) onB1
� = Q〈Y 〉. On the convergent words

B0
� (those not starting e0 and not ending e1), the map

ζ : (B0
�,�) → R

eη1e
n1−1
0 · · · eηd e

nd−1
0 	→ ζ

(

η2/η1,η3/η2,...,1/ηd
n1 , n2 ,..., nd

)

= (−1)d I (0; eη1 , {e0}n1−1, . . . , eηd , {e0}nd−1; 1) ,

where η j = ∏d
i= j ε

−1
i , is an algebra homomorphism. It extends uniquely to a homo-

morphism ζ�,W : (B0
�[e1],�) → R[W ], by requiring e1 	→ W . Like beforeB0

�[e1]
is isomorphic to the space of words not starting e0. (This ζ�,W agrees with Defini-
tion2.5, as no word starts in e0.)

Consider now

w = cek1−1
0 · · · cekd−1

0 cα,

where c = λe−1 + μe1 is an arbitrary linear combination of letters e−1, e1. By the
same argument as in Lemma2.14, along with the linearity of�, we see that

α
∑

h=0

(

cek1−1
0 · · · cekd−1

0 cα−h)
�

(−1)hc�h

h! =: f (c) (25)
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is a sum of words which do not end in c, as there is a pairwise cancellation when
applying the recursive definition of �. Moreover f (c) is a sum of words of weight
k1 + · · · + kd + α and with d + α many c’s in each word. Applying the convergent
distribution relation shows that

ζ�,W (2k1+···+kd+α−(d+α) f (e−1 + e1) − f (e1)
) = 0, (26)

since when expanded out all words have depth d + α, i.e. d + α many non-e0 entries,
and f (e−1 + e1) sums over all choices of signs c = e±1 independently (both in
B1
� and in the MZV’s after applying ζ�,W as the correspondence (η1, . . . , ηd) ↔

(ε1, . . . , εd) = (η2/η1, η3/η2, . . . , 1/ηd) is a bijection and maps {±1}d to {±1}d ).
Hence expanding out each f in (26) via (25), we obtain

2k1+···+kd+α−(d+α)
α
∑

h=0

∑

ε=(ε1,...,εd )
δ=(δ1,...,δα−h)

εi ,δ j∈{±1}

ζ�,W
(

ε, δ

k, {1}α−h

)

(−W + log(2))h

h!

=
α
∑

h=0

ζ�,W (k, {1}α−h)
(−W )h

h! .

Taking the generating series
∑∞

α=0 • Xα of both sides of this gives

2k1+···+kd−d
∞
∑

α=0

(

∑

ε=(ε1,...,εd )
δ=(δ1,...,δα)
εi ,δ j∈{±1}

ζ�,W
(

ε, δ

k, {1}α
))

Xα · exp((−W + log(2))h)

=
∞
∑

α=0

ζ�,W (k, {1}α) · exp(−Wh) .

Moving all of the exponentials to the right-hand side, and extracting the coefficient of
Xα gives the claimed identity. ��

In particular, the weight w > 1 distribution relations holds modulo products,
whether or not regularisation is necessary. In the case of weight 1 however, we find

20
(

ζ�,W
(

1

1

)

+ ζ�,W
(−1

1

))

− ζ�,W (1) = − log(2),

which is non-zero modulo products (at least assuming the usual conjectures), as this
is a logarithm (i.e. weight 1). More precisely, on the motivic level, the weight 1
distribution identity (with W = 0) is clearly satisfied, and then logl(2) (the motivic
logarithm logm(2) modulo products) does not vanish, as it lives in a the weight 1
component.

We now specialise to the case W = 0, in line with the usual prescription via the
tangential base-points of the straight line path γ : [0, 1] → [0, 1], γ (t) = t . In this
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prescription: ζ�,0(1) = ζ
�,0
1 (∅) = 0. Using this, we can extend Proposition5.1 to

the case of ζ
�,0
� (k, {1}α), wherein the integral representation starts with a string {0}�

of � many 0’s.

Corollary 5.3 For k = (k1, . . . , kd), with kd �= 1 an index, any α ≥ 0, and any � ≥ 0,
the following regularised version of the distribution relation holds

2k1+···+kd+�−d
∑

ε=(ε1,...,εd )
δ=(δ1,...,δα)
εi ,δ j∈{±1}

ζ
�,0
�

(

ε, δ

k, {1}α
)

− ζ
�,0
� (k, {1}α)

=
α
∑

i=1

ζ
�,0
� (k, {1}α−i )

(− log(2))i

i !

Proof In the caseα = 0, applying the unshuffling of starting 0’s from (9) in Lemma2.6
shows that

ζ
�,0
�

(

ε

k

)

= (−1)�
∑

i1+···+id=�

(

k1 + i1 − 1

i1

)

· · ·
(

kd + id − 1

id

)

×ζ

(

ε

k1 + i1, . . . , kd + id

)

.

This reduces ζ� to convergent zetas on the right hands side, to which the distribution
relation applies exactly. So after summing over all choices of signs, and applying the
usual distribution relation, one finds

∑

ε=(ε1,...,εd )
εi∈{±1}

ζ
�,0
�

(

ε

k

)

= 2k1+···+kd+�−d(−1)d
∑

i1+···+id=�

(

k1 + i1 − 1

i1

)

· · ·
(

nd + id − 1

id

)

× ζ

( {1}d
k1 + i1, . . . , kd + id

)

= 2k1+···+kd+�−dζ
�,0
� (k) ,

where the last equality arises by applying the unshuffling process again. The case with
trailing 1’s follows by applying the proof of Proposition5.1 again, mutatis mutandis,
with the word w = e�

0ce
k1−1
0 · · · cekd−1

0 . ��
Remark 5.4 In principle, one can also give a version of the unshuffling identity (9) in
Lemma2.6 which holds for different regularisation parameters, and so one can extend
Corollary5.3 to the general regularisation parameter (even taking different regulari-
sations with ζ�,W ,W ′

(1) = W and ζ
�,W ,W ′
1 (∅) = W ′), by tracking and incorporating

the product terms involving W and W ′.
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The proofs of Proposition5.1 and Corollary5.3 proceeded purely by using the
shuffle product of iterated integrals and the non-regularised distribution relations, so
the result holds true on the motivic level as well, as both ingredients are already known
to be motivic. So as a result, we obtain the following corollaries.

Corollary 5.5 For k = (k1, . . . , kd), with kd �= 1 an index, any α ≥ 0, and any � ≥ 0
the following regularised version of the distribution relation holds for motivic multiple
zeta values.

2k1+···+kd+�−d
∑

ε=(ε1,...,εd )
δ=(δ1,...,δα)
εi ,δ j∈{±1}

ζm
�

(

ε, δ

k, {1}α
)

− ζm
� (k, {1}α)

=
α
∑

i=1

ζm
� (k, {1}α−i )

(−logm(2))i

i ! .

Corollary 5.6 For k = (k1, . . . , kd), with kd �= 1 an index, any α ≥ 0, and any � ≥ 0,
the following regularised version of the distribution relation holds for motivic multiple
zeta values of weight w > 1 or � > 0 modulo products

2k1+···+kd+�−d
∑

ε=(ε1,...,εd )
δ=(δ1,...,δα)
εi ,δ j∈{±1}

ζ l
�

(

ε, δ

k, {1}α
)

= ζ l
�(k, {1}α) .

In the case of weight 1 and � = 0, the distribution relation modulo products has an
extra − logl(2) correction, namely

ζ l(1) + ζ l(1) = ζ l(1) − logl(2).

5.2 Derivations on ˜t
m
(k1, . . . , kd)

Now that we have the motivic version of the distribution relations for arbitrary argu-
ments, wemay directly generaliseMurakami’s computation of Dr given in Proposition
11 of [22].

Proposition 5.7 (Generalisation of Proposition 11, [22]) Let k = (k1, . . . , kd) ∈
(Z≥1)

d be an index. Write ki, j = (ki , . . . , k j ) for a subindex of k and |(a1, . . . , ar )|
= a1 + · · · + ar for the total (weight) of an index. Then the derivation Dr , r odd, is
computed as follows

Dr
(

˜t m(k1, . . . , kd)
) =

∑

1≤ j≤d

δ|k1, j |=r˜t
l
(k1, . . . , k j ) ⊗˜t m(k j+1, . . . , kd) (27)
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+
∑

1≤i< j≤d

δ|ki+1, j |≤r<|ki, j |−1
(

ζ l
r−|ki+1, j |(ki+1, . . . , k j ) − δr=1 log

l(2)
)

⊗˜t m(k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd) (28)

−
∑

1≤i< j≤d

δ|ki, j−1|≤r<|ki, j |−1
(

ζ l
r−|ki, j−1|(k j−1, . . . , ki ) − δr=1 log

l(2)
)

⊗˜t m(k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd) (29)

Proof The proof of this proposition works in precisely the same way as Murakami’s
proof of the special case,where each ki ≥ 2, given in [22, Proposition 11]. In particular,
the terms arise from the following cuts on the integral defining ˜t m

(−1)d2d−k1−···−kd
˜t m(k1, . . . , kd)

=
∑

ηi∈{±1}
η1 I

m(0; η1, {0}k1−1, η2, {0}k2−1, . . . , ηd , {0}kd−1; 1).

The correspondence in particular is as follows

Im( 0 ; η1 , 0, . . . , 0, ηi , 0 , . . . , 0 , . . . , 0 , ηi+1, . . . , η j , 0 , . . . , 0 , . . . , 0 , η j+1 . . . ) .

(28)

(27)

(29)

(
∑=0)

The only difference from Murakami’s proof [22, Proposition 11, proof] comes when
computing D1, wherein terms (28) and (29) are simplified using the regularised dis-
tribution relation, and so pick up an extra − logl(2) in weight 1. ��
Remark 5.8 We should note here, again, that the motivic iterated integrals
Im(a0; a1, . . . , an; an+1) satisfy the homothety

Im(λa0; λa1, . . . , λan; λan+1) = Im(a0; a1, . . . , an; an+1),

if a0 �= a1 and an �= an+1. However, if one of these is actually an equality, the integral
depend on the tangential base-points of the path, and the homothety can actually
change these, so the equality does not in general hold. Viz:

Im(
−→
1 0; 0, 1;−1) = Im(

−→
1 0; 0;−1)Im(

−→
1 0; 1;−1) − Im(

−→
1 0; 1, 0;−1)

= (iπ)m logm(2) + ζm(2)

Im(
−→
1 0; 0,−1; 1) = Im(

−→
1 0; 0; 1)Im(

−→
1 0;−1; 1) − Im(

−→
1 0;−1, 0; 1)

= 0 · logm(2) + ζm(2) ,

where
−→
1 0 denotes the tangential base-point at 0 with tangent vector in the direction−→

1 . So there is a difference of (iπ)m logm(2) between the homotheties. However, one
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can say that in general (for ai ∈ {0,±1}), with weight w > 1, that

I l(λa0; λa1, . . . , λan; λan+1) = I l(a0; a1, . . . , an; an+1).

In weight 1, homotheties by λ (with |λ| = 1) will rotate the tangential base-
point, and so contribute some rational times (iπ)l = 0 (already (iπ)u = 0, even
before killing products) by considering the decomposition of paths I l(

−→
λ 0; 0; a) =

I l(
−→
λ 0; 0;−→

1 0) + I l(
−→
1 0; 0; a). So the homothety property still holds.

This property is applied in various places in Murakami’s proof of Proposition 11
(and some earlier results upon which it is dependent). But in every case, it is applied
to the I l part of the coaction, and so is valid.

We nowmake some observations which simplify the calculation of Dr when r = 1.
Note that Dr , for r > 1 is computed with exactly the same formula as Murakami
[22, Proposition 11], we have merely extended the range of validity to all (shuffle
regularised) multiple t values. So let us focus on the case D1.

Proposition 5.9 (Calculation of D1) Let k = (k1, . . . , kd) ∈ (Z≥1)
d be an index.

Then

D1˜t
m
(k1, . . . , kd) = δk1=1 · 2 logl(2) ⊗˜t m(k2, . . . , kd)

−δkd=1 log
l(2) ⊗˜t m(k1, . . . , kd−1).

That is D1 acts by deconcatenation of trailing 1’s and of leading 1’s (with coefficient
2).

Proof Assuming r = 1, we consider how terms (28) and (29) can contribute. For
(28), the delta condition requires |ki+1, j | ≤ 1 < |ki, j | − 1. The first condition
forces i + 1 = j , and ki+1 = 1, so ki, j = (α, 1), for some α > 1. One has that
|ki, j | − r = α + 1 − 1 = α. In this case, we contribute

(ζ0(1) − logl(2)) ⊗˜t m(k1,i−1, α,k j+1,d),

which can be seen as deleting the 1 following α = ki in ki, j = (α, 1).
Likewise, for (29), the delta condition requires |ki, j−1| ≤ 1 < |ki, j | − 1. The first

condition forces i = j − 1, and ki = 1, so ki, j = (1, α), for some α > 1. One has
that |ki, j | − r = α + 1 − 1 = α. In this case, we contribute

−(ζ0(1) − logl(2)) ⊗˜t m(k1,i−1, α,k j+1,d),

which can be seen as deleting the 1 proceeding α = ki+1 in ki, j = (1, α).
This means that for any subindex (α, {1}n, β), α, β > 1 appearing in k, the term

from deleting the 1 after α cancels with the term from deleting the 1 before β. The
only terms which can survive this process are of the form ({1}n, β) at the start of k,
and (α, {1}) at the end of k. Combined with the pre-existing deconcatenation term
(27), we obtain the claimed expression. ��
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Remark 5.10 (Hoffman’s derivation with respect to log(2)) In [16, Conjecture 2.1],
Hoffman conjectures that the algebra of MtV’s admits a derivation d which acts on
t(k1, . . . , kd) by

dt(k1, . . . , kd) =
{

t(k2, . . . , kd) if k1 = 1

0 otherwise.

If k = (k1, . . . , kd), with kd �= 1, so that ˜t m(k) is a convergent motivic MtV, one
obtains the formula

D1˜t
m
(k) = δk1=1 log

l(2) ⊗˜t m(k2, . . . , kd).

Since D1 acts as derivation in the sense

D1(XY ) = (1 ⊗ X)D1Y + (1 ⊗ Y )D1X ,

after projecting logl(2) 	→ 1 we see that Hoffman’s conjectural derivation is nothing
but the action of D1 on the motivic MtV’s, in the convergent case.

Moreover, one also notes that for �1, . . . � f , n ∈ Z, n ≥ 2, we have

D1ζ
m(�1, . . . , � f , n) = 0.

This is because the strings {0, 1,−1}, {0,−1, 1}, {−1, 1, 0}, {1,−1, 0} do not occur in
the integral representation of the MZV. These strings lead to logl(2) factors, whereas
I l(1; 0;−1) = I l(−1; 0; 1) = 0. The algebra basis of the MZV Data Mine [2]
exclusively invokes alternating MZV’s of the form

ζ(�1, . . . , � f , n),

with �i , n odd. So one sees that Hoffman’s claim, with regard to the action of d as
differentiation wrt log(2) on the formulae in Appendix A of [16] is generally valid,
for this specific choice of basis.

For example, the following identity is verified by the Data Mine, and so actually
holds on the motivic level

tm(1, 3, 2) = − 2

21
tm(6) − 3

196
tm(3)3 − 1

2
tm(2)ζm(1, 3) + 1

4
ζm(1, 5)

− 1

2
tm(5) logm(2) + 4

7
tm(2)tm(3) logm(2) .

Application of D1 (after scaling to write it via ˜t , so Proposition5.9 can be applied,
and rescaling afterwards) leads to

logl(2) ⊗ tm(3, 2) = logl(2) ⊗
(

− 1

2
tm(5) + 4

7
tm(2)tm(3)

)

,
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or equivalently

tm(3, 2) = −1

2
tm(5) + 4

7
tm(2)tm(3),

as expected from Hoffman’s claim.

Remark 5.11 The formula for D1˜t
m in Proposition5.9 shows immediately that the

convergent˜t m(1,k) cannot be a motivic MZV, as D1˜t
m
(1,k) = logl(2)⊗˜t m(k) �=

0. On the other hand, this gives us a place and means to search for other Galois descent
candidates.

Proposition 5.12 Let a, b, c, n ∈ Z≥0, such that a ≥ 1 and n ≥ 1. Then the motivic
multiple t value

τ = ˜t m({2}a, 1, {2}b, 2n + 1, {2}c)

is always a (linear combination of) motivic MZV’s.

Proof From the above remark, we know D1τ = 0. We must only check the second
part of Glanois’s motivic Galois descent criterion from Theorem4.7, namely that
D2r+1τ ∈ L(1)

2r+1 ⊗ H(1), i.e. the parts of the coaction are already motivic MZV’s.
We first note that the deconcatenation term (27) takes the form

˜t l({2}a, 1, {2}r−a) ⊗˜t m({2}b−(r−a), 2n + 1, {2}c)

The left hand factor is (modulo products!) a motivicMZV by Theorem6.1 below. (The
terms logm(2) only appear as products in weight > 1, so vanish when we project to
L.) The right hand factor is a motivic MZV by Theorem 8 in [22]; therein Murakami
showed that whenever k ∈ (Z≥2)

d is an index with all entries≥ 2, then˜t m(k) ∈ H(1)

is a motivic MZV.
Then for the terms (28) and (29), one only needs to consider the right hand factor,

as the left hand one is already an MZV. One can also assume ki, j does not contain 1,
for if it does contain 1, then the condition r < |ki, j | − 1 means that |ki, j | − r > 1,
so that the subindex we removed is replaced with ≥ 2. Hence by Theorem 8 [22] is
already a motivic MZV. More generally, we note that in (28) by subtracting the delta
condition from |ki, j |, one has

ki ≥ |ki, j | − r > 1

So the replacement value |ki, j | − r for the entire subindex ki, j is between 2 and ki ,
the left endpoint. Likewise in (29), the replacement is between 2 and k j , the right
endpoint.

We have the following subindices which exhaust all remaining possible cases. The
subindex D here may start or end at 2n + 1,.
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˜t m( 2 , . . . , 2 , 1 , 2 , . . . , 2 , 2n + 1 , 2 , . . . , 2 ) .

A B C

D

We already note though that A, B and C cannot in fact contribute. The replacement
value ki = k j = 2 = |ki, j | − r > 1 must be 2. But this implies ki, j = r + 2 is odd.
So we are left with the case D, and for the same reason the replacement must be even
in this case, namely:

Subindex ki, j |ki, j | − r ˜t m(k1,i−1, |k|i, j − r ,k j+1,d)

D ({2}α, 2n + 1, {2}β) 2 ˜t m({2}a, 1, {2}γ , 2, {2}δ)

Since this MtV is of the form˜t m({2}a, 1, {2}b) with a, b > 0, it is a motivic multiple
zeta value via Theorem6.1 below. ��

It would be interesting to see how far this proof can be generalised, and whether
one can give some complete combinatorial criterion for when ˜t m(k) descends to a
motivic MZV. Certainly other families of motivic MtV’s which descend seem to exist.
A promising candidate is as follows: let a, n ∈ Z≥1, and k, � be indices containing
only even entries. Then it appears that the followingMtV, a generalisation of the above,
is also a motivic multiple zeta value.

˜t m({2}a, 1,k, 2n + 1, �)
?∈ H(1).

There are also indices with multiple 1’s that Galois descend, such as

˜t m({2, 1, 3}2) ∈ H(1),

although this pattern does not seem to continue. Once can check (via the MZV Data
Mine [2]) that D7˜t

m
({2, 1, 3}3) /∈ L(1)

7 ⊗ H(1)
11 .

6 Lift to amotivic ˜t
m
({2}a, 1, {2}b) evaluation

The aim of this section is to first lift the evaluation for t�,W=0({2}a, 1, {2}b) given
in Proposition3.7 (more precisely, the explicit version given in (22) thereafter) to an
identity amongst motivic multiple t values.

The shuffle version, with regularisation parameterW = 0 is the key identity for the
rest of this work, since the motivicMZV’s are naturally and almost-always regularised
in thismanner.Moreover, via Proposition2.18,we can express the stuffle regularisation
at arbitrary parameters t∗,V (1) = V via the shuffle regularised version at t�,W=0. This
will be used to sidestep later the issue of how to take the motivic stuffle regularisation.
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Theorem 6.1 The following motivic identity holds for all a, b ≥ 0

˜t m({2}a, 1, {2}b)

=
a+b
∑

r=1

(−1)r+1 · 2
[(

2r

2a

)

+ 22r

22r − 1

(

2r

2b

)]

ζm(2r + 1)˜t m({2}a+b−r )

+ δa=02 · logm(2)˜t m({2}b) − δb=0 log
m(2)˜t m({2}a), (30)

Before we begin, it will be useful for later purposes to recall the motivic identity
proven in [22] for˜t m({2}a, 3, {2}b). This also gives us an opportunity to compare and
contrast the two evaluations, which in the MZV case would be equal by duality.

Theorem 6.2 (Murakami, [22, Theorem 22]) The following motivic identity holds for
all a, b ≥ 0

˜t m({2}a, 3, {2}b) =
a+b+1
∑

r=1

(−1)r+1 · 2
[(

2r

2a + 1

)

+ (1 − 2−2r )

(

2r

2b + 1

)]

ζm(2r + 1) ·˜t m({2}a+b+1−r )

(31)

6.1 Proof of Theorem 6.1

After application of the period map, the identity in the theorem reduces to (22a+2b+1

times) the identity in (22), with W = 0. Therefore we only need to verify that

D2r+1
(

LHS (30)
)− D2r+1

(

RHS (30)
) = 0

This will show that the purported identity lies in the kernel of D<N , N = 2a+2b+1.
Hence byGlanois’s Theorem (Theorem4.5) it holds up to an additive constant cζm(N ),
and application of the period map shows that c = 0. This will verify that the identity
holds on the motivic level, as claimed.

Write

La,b = ˜t m({2}a, 1, {2}b)

Ra,b = −
a+b
∑

r=1

(−1)r · 2
[(

2r

2a

)

+ 22r

22r − 1

(

2r

2b

)]

ζm(2r + 1)˜t m({2}a+b−r )

+ δa=02 · logm(2)˜t m({2}b) − δb=0 log
m(2)˜t m({2}a) ,

for the left and right hand side of the purported identity. In order to check

D2r+1
(

La,b)− D2r+1
(

Ra,b) = 0,

we proceed inductively on a + b.
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In the case a = b = 0, we immediately find

L0,0 = ˜t m(1) = ζm(1) − ζm(1) = logm(2) = R0,0

So we may take a + b > 0.

Lemma 6.3 The following expression for D2r+1La,b holds for any a, b ≥ 0, and
0 ≤ r ≤ a + b,

D2r+1L
a,b = D2r+1˜t

m
({2}a, 1, {2}b) = π(̂ξ ra,b) ⊗˜t m({2}a+b−r ),

where π : H(2) → L(2) denotes the projection, and̂ξ ra,b is given by (the sums running
over all indices α, β ≥ 0 satisfying α + β = r )

̂ξ ra,b = δr=0δa=0 log
m(2) − δr=0δb=0 log

m(2) + δa≤r˜t
m
({2}a, 1, {2}r−a)

+
∑

α≤a−1
β≤b

ζm
0 ({2}α, 1, {2}β) −

∑

α≤a
β≤b−1

ζm
0 ({2}β, 1, {2}α) ,

Proof This is a direct, if somewhat tedious, calculation which follows from Proposi-
tion5.7. ��

Now introduce the following notation from [4]

Ar
a,b =

(

2r

2a + 2

)

, Br
a,b = (1 − 2−2r )

(

2r

2b + 1

)

,

and recall one of the main results proved therein.

Theorem 6.4 (Brown [4, Theorem 4.3]) For all a, b ≥, the following identity amongst
motivic MZV’s holds

ζm({2}a, 3, {2}b)

=
a+b+1
∑

r=1

2 · (−1)r−1 · (−Ar
a,b + Br

a,b

)

ζm(2r + 1)ζm({2}a+b+1−r ).

We therefore have for α ≥ 0, β > 0 that

ζ l
0({2}α, 1, {2}β) = ζ l

0({2}β−1, 3, {2}α)

= 2(−1)α+β
(

Aα+β
β−1,α − Bα+β

β−1,α

)

ζ l(2α + 2β + 1),

ζ l
0({2}α, 1) = ζ l

1({2}α) = 2(−1)αζ l(2α + 1). (32)

The first follows by duality and extracting the coefficient of ζm(2a + 2b + 3) in
Theorem6.4. The second follows by shuffle regularising, or from the stuffle product,
as shown in Lemma 3.8 [4].

By the induction assumption, we are also granted ˜t l(1) = logl(2), and that for
0 < a′ + b′ < a + b we have
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˜t l({2}a′
, 1, {2}b′

) =
2(−1)1+a′+b′

[(

2a′ + 2b′

2a′

)

+ 22(a
′+b′)

22(a′+b′) − 1

(

2a′ + 2b′

2b′

)]

ζ l(2a′ + 2b′ + 1). (33)

Case D1: We check explicitly and directly the case r = 0, because it can have a
distinctly different form, on account of the δr=0 logl(2) terms. Explicitly we find (also
directly from Proposition5.9)

̂ξ0a,b = δa=0 log
m(2) − δb=0 log

m(2) + δa≤0˜t
m
({2}a, 1, {2}−a)

+
∑

α≤a−1
β≤b

α+β=0

ζm
0 ({2}α, 1, {2}β) −

∑

α≤a
β≤b−1
α+β=0

ζm
0 ({2}β, 1, {2}α)

= δa=0 log
m(2) − δb=0 log

m(2) + δa≤0˜t
m
({2}0, 1, {2}0)

+ ζm
0 ({2}0, 1, {2}0) − ζm

0 ({2}0, 1, {2}0)
= δa=02 · logm(2) − δb=0 log

m(2)

So that since D1 = D2·0+1 with r = 0, we have

D1L
a,b = (

δa=02 · logm(2) − δb=0 log
m(2)

)⊗˜t m({2}a+b).

Whereas, directly from Ra,b, we can compute the following. We make use of some
simple properties of D2r+1, such as the derivation and that ζm(N ) and ζm(N ) are
primitive for the coaction, viz.: �ζm(N ) = 1 ⊗ ζm(N ) + ζ l(N ) ⊗ 1. Overall this
means

D2r+1XY = (1 ⊗ Y )D2r+1X + (1 ⊗ X)D2r+1Y ,

D2r+1ζ
m(N ) =

{

0 , if 2r + 1 �= N

ζ l(N ) , if 2r + 1 = N ,

the latter also for N replaced by N , in particular also for ζm(1) = − logm(2). Applying
these to the computation of D1Ra,b gives the following

D1R
a,b =

−
a+b
∑

r ′=1

(−1)r
′
2

[(

2r ′

2a

)

+ 22r
′

22r ′ − 1

(

2r ′

2b

)]

(

(1 ⊗ ζm(2r ′ + 1))

=0
︷ ︸︸ ︷

D1˜t
m
({2}a+b−r ′

)

+ D1ζ
m(2r ′ + 1)

︸ ︷︷ ︸

=δ2r ′+1=1

(1 ⊗˜t m({2}a+b−r ′
))
)

+ δa=02 ·
(

D1 log
m(2)(1 ⊗˜t m({2}b) + (1 ⊗ logm(2)) D1˜t

m
({2}b)

︸ ︷︷ ︸

=0

)

− δb=0

(

D1 log
m(2)(1 ⊗˜t m({2}a)) + (1 ⊗ logm(2)) (D1˜t

m
({2}a))

︸ ︷︷ ︸

=0

)

,
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So all terms vanish apart from the two terms involving D1 logm(2), which leads to

D1R
a,b = δa=02 · logl(2) ⊗˜t m({2}b) − δb=0 log

l(2) ⊗˜t m({2}a)
= (

δa=02 · logl(2) − δb=0 log
l(2)

)⊗˜t m({2}a+b) .

The last simplification holds because Ra,b has total weight 2a + 2b + 1, so the right
hand tensor factor of D1 must haveweight 2a+2b, irrespective of checking the various
cases of the Kronecker delta conditions.

In particular, we have that D1La,b = D1Ra,b in this case.

Case r > 0: Now we turn to the case r > 0, which will have no extra logl(2)
contribution. We find it helpful to separate out the terms where β = 0 or β > 0 in the
sum involving ζ l

0({2}α, 1, {2}β), and similarly for the one involving ζ l
0({2}β, 1, {2}α).

This is on account of the different form of the coefficient of ζ l(2r + 1) therein might
take. We have that

̂ξ ra,b =
δa≤r˜t

m
({2}a, 1, {2}r−a) +

∑

α≤a−1
1≤β≤b

ζm
0 ({2}α, 1, {2}β) −

∑

1≤α≤a
β≤b−1

ζm
0 ({2}β, 1, {2}α)

+
∑

α≤a−1
β=0

ζm
0 ({2}α, 1, {2}β) −

∑

α=0
β≤b−1

ζm
0 ({2}β, 1, {2}α)

Since we sum over α + β = r , the last two summations resolve to a Kronecker delta
condition, namely δr≤a−1 and δr≤b−1 respectively. Making the substitutions for the
various ζ l

0 using (32) and for ˜t l from (33) by induction, we find

π(̂ξ ra,b) =

δa≤r2 · (−1)r+1
((

2r

2a

)

+ 22r

22r − 1

(

2r

2r − 2a

))

ζ l(2r + 1)

+
{

∑

α≤a−1
1≤β≤b

2(−1)r
(

Ar
β−1,α − Br

β−1,α

)−
∑

1≤α≤a
β≤b−1

2(−1)r
(

Ar
α−1,β − Br

α−1,β

)

+ δr≤a−12(−1)r − δr≤b−12(−1)r
}

ζ l(2r + 1)

If we make the change of variables β = β ′ + 1, in the first sum, and α = α′ + 1
in the second sum, then the (implicit) summation range α + β = r is converted to
α+β ′+1 = r and α′+1+β = r respectively. (We shall write this explicitly from now
on.) Doing so, and simplifying the expression coming from ˜t l with ζm(2r + 1) =
−(1 − 2−2r )ζm(2r + 1), gives
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π(̂ξra,b) = 2(−1)r
{

δa≤r
(

2 − 2−2r )
(

2r

2a

)

+ δr≤a−1 − δr≤b−1

+
∑

α≤a−1 ,β≤b−1
α+β=r−1

(

Arβ,α − Br
β,α

)−
∑

α≤a−1 ,β≤b−1
α+β=r−1

(

Arα,β − Br
α,β

)

}

ζ l(2r+1)

Now we may apply the following Lemma

Lemma 6.5 (Brown, [4, Lemma 4.2]) For any a, b ≥ 0, and 1 ≤ r ≤ a + b + 1 we
have

∑

α<a,β≤b
α+β+1=r

Ar
α,β −

∑

α≤a ,β<b
α+β+1=r

Aβ,α + δb≥r − δa≥r = 0, and

∑

α≤a ,β≤b
α+β+1=r

Br
α,β −

∑

α≤a ,β<b
α+β+1=r

Bβ,α = Br
a,b.

In the case a − 1, b− 1, we may apply the lemma when r ≤ (a − 1) + (b− 1) + 1
= a + b − 1. But we are computing D2r+1 with 3 ≤ 2r + 1 < 2a + 2b + 1, i.e.
3 ≤ 2r + 1 ≤ 2a + 2b − 1 or equivalently 1 ≤ r ≤ a + b − 1. Application of this
lemma (taking care with the range of summation indices, some are < while others are
≤) gives

π(̂ξ ra,b)

= 2(−1)r
{

δa≤r · (2 − 2−2r )
(

2r

2a

)

+ δr≤a−1 − δr≤b−1 − δa≤r A
r
a−1,r−a

+ δb≤r A
r
b−1,r−b −

∑

α<a−1
β≤b−1

α+β=r−1

Ar
α,β +

∑

α≤a−1
β<b−1

α+β=r−1

Ar
β,α

− δb≤r B
r
b−1,r−b +

∑

α≤a−1
β≤b−1

α+β=r−1

Br
α,β −

∑

α≤a−1
β<b−1

α+β=r−1

Br
β,α

}

ζ l(2r + 1)

= 2(−1)r
{

δa≤r · (2 − 2−2r )
(

2r

2a

)

+ δr≤a−1 − δr≤b−1

− δa≤r A
r
a−1,r−a + δb≤r A

r
b−1,r−b + δb−1≥r − δa−1≥r

− δb≤r B
r
b−1,r−b + Br

a−1,b−1

}

ζ l(2r + 1)

= 2(−1)r
{

δa≤r · (2 − 2−2r )
(

2r

2a

)

− δa≤r A
r
a−1,r−a + δb≤r A

r
b−1,r−b

− δb≤r B
r
b−1,r−b + Br

a−1,b−1

}

ζ l(2r + 1)
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Wenowmake a number of straight forward simplifications.Namely, Ar
a,b only depends

on a, r , and Br
a,b only depends on b, r . Moreover since r ≥ 1, if a ≥ r or a < 0, then

already Ar
a,b = 0, likewise if b ≥ r or b < 0 then Br

a,b = 0. So we find

π(̂ξra,b) = 2(−1)r
{

(

2 − 2−2r )
(

2r

2a

)

− Ara−1,b−1 + Arb−1,a−1

− Br
b−1,r−b + Br

a−1,b−1

}

ζ l(2r + 1)

Note that −Br
b−1,r−b + Br

a−1,b−1 = 0 just by their definitions, so overall we obtain

π(̂ξ ra,b) = 2(−1)r
{

(

1 − 2−2r )
(

2r

2a

)

+
(

2r

2b

)}

ζ l(2r + 1)

Therefore

D2r+1L
a,b = π(̂ξ ra,b) ⊗˜t m({2}a+b−r )

= 2(−1)r
{

(

1 − 2−2r )
(

2r

2a

)

+
(

2r

2b

)}

ζ l(2r + 1) ⊗˜t m({2}a+b−1)

gives us the derivation of the left hand side of (30), for r > 0.
On the other hand, a direct computation of D2r+1Ra,b gives us that

D2a+1R
a,b = (−1)r+1 · 2

[(

2r

2a

)

+ 22r

22r − 1

(

2r

2b

)]

ζ l(2r + 1) ⊗˜t m({2}a+b−r )

= 2(−1)r
[

(1 − 2−2r )

(

2r

2a

)

+
(

2r

2b

)]

ζ l(2r + 1) ⊗˜t m({2}a+b−r )

is the derivation of the right hand side of (30), for r > 0.

Conclusion: We have shown that D2r+1La,b − Ra,b = 0 for 0 ≤ r ≤ a + b − 1,
hence La,b − Ra,b ∈ ker D<N . Therefore by Glanois’s theorem, we know that

La,b − Ra,b = cζm(2a + 2b + 1),

for some c ∈ Q. Then by applying the period map, we reduce to the numerically valid
identity in Proposition3.7 (with W = 0), and hence see that c = 0. Therefore the
identity La,b = Ra,b is true on the motivic level, and this complete the proof. ��

7 Independence of Saha’s elements

We now turn to the first application of this motivic identity. We show that the elements
that Saha conjectured [25] to be a basis for convergent MtV’s are, at least, linearly
independent.

We recall briefly Saha’s conjecture.
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Conjecture 7.1 (Saha, [25]) Let

BS := {t(k1, . . . , km−1, km + 1) | ki ∈ {1, 2}}.

Then BS is a basis for convergent MtV’s. Moreover, the weight w component of BS is

BS
w = {t(k1, . . . , km−1, km + 1) | ki ∈ {1, 2}, k1 + · · · + km = w − 1},

which has cardinality #BS
N = FN , for N > 1. Here Fn = Fn−1 + Fn−2 is the n-th

Fibonacci number, with F1 = F2 = 1.

We note that the arguments of such MtV’s can be written as an arbitrary word in
1’s and 2’s, followed by either a 2 or a 3. We can therefore schematically describe the
set of arguments as follows

w ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3),

where ⊕ denotes concatenation of words.

Definition 7.2 (Saha filtration) For, w ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3), we define the
level of w to be deg1 w + deg3 w, i.e. the total number of 1’s and 3’s in the word. We
define Q-subspace of H(2), and the level ≤ � piece of the level filtration by

HS := 〈tm(w) | w ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3)〉Q ,

S�HS := 〈tm(w) | w ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3), s.t. deg1 w + deg3 w ≤ �〉Q
The associated graded to this filtration is then given by

grS� HS := S�HS/S�−1HS .

Example 7.3 The level≤ 1 part of this filtration is generated by the following elements

S1HS = 〈tm({2}a, 1, {2}b), tm({2}c, 3), tm({2}d) | a, c, d ≥ 0, b ≥ 1〉Q,

whereas the level ≤ 0 part of this filtration is generated by

S0HS = 〈tm({2}d) | d ≥ 0〉Q.

Lemma 7.4 The Saha-level is motivic. More precisely, the following holds for all
r ′ ≥ 0

D2r ′+1S�HS ⊆ L(2)
2r+1 ⊗Q S�−1HS .

Proof Let r ≥ 0 be odd, and k = (k1, . . . , kd) ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3) with
level �. We consider how to compute Dr˜t

m
(k1, . . . , kd) via Proposition5.7.
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Firstly, if the deconcatenation term (27)˜t m(k1, . . . , k j ) ⊗˜t m(k j+1, . . . , kd) con-
tributes, then the string (k1, . . . , k j ) of odd weight must contain a 1 or a 3. Hence the
level of (k j+1, . . . , kd) is reduced.

Now, if the term (28) contributes, we must satisfy the conditions |ki+1, j | ≤ r <

|ki, j | − 1. This means that ki ≥ |ki, j | − r > 1, so that ki, j − r = 2, 3. The case
|ki, j | = 3 could occurs if ki = 3, and this can only occur if ki = kd with kd = 3, so
that i = j . But this is excluded from the sum, so |ki, j | − r = 2. Since r is odd, this
implies |ki, j | is also odd, and so the subindex must contain (at least) one 1 or 3. This
is replaced by a 2, and so the level is reduced.

Likewise, if (29) contributes, we must have |ki, j−1| ≤ r < |ki, j | − 1. This means
k j ≥ |ki, j | − r > 1, so that |ki, j | − r = 2, 3. The case |ki, j | − r = 2 is analogous
to the previous: |ki, j | is odd, so contains at least one 1 or 3. This is replaced by a 2
and so the level is reduced. Now, though, |ki, j | − r = 3 occurs if j = d and kd = 3.
But we see that |ki, j | must be even, and already contains a three (from k j = kd = 3).
Therefore it must also contain at least one 1. Since a 3 and a 1 are replaced with a
single 3, at the end of the string as j = d, the element again is a Saha element, and of
lower level. ��

From this lemma, we obtain a level-graded derivation

grS� D2r+1 : grS� HS → L2r+1 ⊗Q grS�−1HS

Moreover we claim, this map lands in the subspace of L2r+1 generated by the single
zeta element ζ l(2r + 1).

Lemma 7.5 For � ≥ 1, r ′ ≥ 0, the level-graded derivation grS� D2r ′+1 satisfies

grS� D2r ′+1
(

grS� HS) ⊆ ζ l(2r ′ + 1)Q ⊗Q grS�−1HS .

Proof Let r ≥ 1 be odd, and k = (k1, . . . , kd) ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3) with
level �. We consider how to compute Dr˜t

m
(k1, . . . , kd) via Proposition5.7, and more

carefully track the contributions when we take elements of level �−1 in the right hand
tensor factor. For r = 1, this is clear: H(2)

1 = 〈logm(2)〉Q = 〈ζm(1)〉Q, as weight 1
motivic alternating MZV’s are spanned by logm(2). So the L-factor of D1 can only
be a multiple of ζ l(1), for dimensional reasons. So we can assume r > 1

With (27), the deconcatenation term ˜t l(k1, . . . , k j ) ⊗ ˜t m(k j+1, . . . , kd), we see
that for k j+1,d to have level � − 1, a single 1 or 3 must have been removed. Therefore

if k1, j = ({2}a, 1, {2}b), we know via Theorem6.1, that ˜t l(k1, j ) ∈ ζ l(2r + 1)Q.
Likewise, if k1, j = ({2}a, 3) (for if it contains a 3, it must be that j = d, and kd = 3.),

one has from Murakami’s evaluation in Theorem6.2, that ˜t l(k1, j ) ∈ ζ l(2r + 1)Q =
ζ l(2r + 1)Q.

Then we turn to the contribution from (28), and recall the considerations in the
proof of Lemma7.4. Namely, |ki, j | − r = 2, ki = 2, which forces certain behaviour
onto ki, j . If |ki, j | − r = 2, then ki, j must contain an odd number of 1’s and 3’s. But
for level-grading reasons, it actually must contain exactly one such, which if it were
a 3, must appear in the last position. We have the following cases.
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|ki, j | − r ki, j Contribution to Dr

2 (2, {2}a, 1, {2}b) ζ l
2−2({2}a, 1, {2}b) ⊗˜t m(k1,i−1, 2,k j+1,d)

2 (2, {2}a, 3) ζ l
2−2({2}a, 3) ⊗˜t m(k1,i−1, 2,k j+1,d)

In either case, we see via Theorem6.4, or rather (32) thereafter, that each ζ l
α(ki+1, j ) ∈

ζ l(2r + 1)Q.
Likewise, from (29), we have |ki, j | − r = 2, 3. If |ki, j | − r = 2, then k j = 2, 3

and |ki, j | contains an odd number of 1’s and 3’s. In the level-graded, it therefore must
contain exactly one 1 or one three (where a 3 would appear at the end). Otherwise
|ki, j | − r = 3, so k j = 3, and |ki, j | contains an even number of 1’s and 3’s. As it
already must contain a 3 at the end (since k j = 3 and so j = d), it must also contain
1 somewhere else.

Be aware that we must reverse ki, j when inserting it into ζ l in term (29). We have
the following cases.

|ki, j | − r ki, j Contribution to Dr

2 ({2}a, 1, {2}b, 2) − ζ l
2−2({2}b, 1, {2}a) ⊗˜t m(k1,i−1, 2,k j+1,d)

2 ({2}a, 3) −ζ l
3−2({2}a) ⊗˜t m(k1,i−1, 2,k j+1,d)

3 ({2}a, 1, {2}b, 3) −ζ l
3−3({2}b, 1, {2}a) ⊗˜t m(k1,i−1, 3)

Once again, we see via Theorem6.4, or rather (32) thereafter, that in every case the
term ζ l

α(k j−1,i ) ∈ ζ l(2r + 1)Q. ��
We now look at the action of these derivations on elements of a given level, and

package them together into the following linear map.

Definition 7.6 For all N , � ≥ 1, let ∂ S
N ,� be the linear map

∂ S
N ,� : grS� HS

N →
⊕

1≤2r+1≤N

grS�−1HS
N−2r−1,

defined by first applying
⊕

1≤2r+1≤N grS� D2r+1
∣

∣

grS� HS
N
, and then sending all

logm(2) 	→ 1
2 , ζ

l(2r + 1) 	→ 22r−1, r > 0 to by the projection

π̃2r+1 : Qζ l(2r + 1) → Q
{

logl(2) 	→ 1
2 , if r = 0 ,

ζ l(2r + 1) 	→ 22r−1 , if r > 0

The goal is to show that themaps ∂ S
N ,� are injective for � ≥ 1. Then by recursion, we

will establish the elements of level � are linearly independent (otherwise ∂ S
N ,� would

construct a non-trivial relation of strictly smaller level).

Definition 7.7 (Matrix basis) Let �, N ≥ 1, with N ≡ � (mod 2). Define the follow-
ing sets
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BS,N ,� := {w ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3) | deg1 w + deg3 w = �, |w| = N }
B ′
S,N ,� := {w ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3) | deg1 w + deg3 w = �−1, |w| < N }

In the case � = 1, the set B ′
S,N ,� also includes the empty word (of weight 0 and level

0). Sort both sides in reverse colexicographic order (i.e. reading right to left, and the
largest first), with 3 < 1 < 2. In this ordering, all terms ending with a 3 will appear
last.

A counting argument shows that #BS,N ,� = #B ′
S,N ,� for all such choices of �, N .

These basis elements will be used to define the matrix form of the linear map ∂ S
N ,�,

and the claim of injectivity corresponds to non-zero determinant.

Example 7.8 For N = 8, � = 2, we have

BS,N ,� = {11222 , 12122 , 21122 , 12212 , 21212 , 22112 , 1223 , 2123 , 2213},
B ′
S,N ,� = {1222 , 2122 , 122 , 2212 , 212 , 12 , 223 , 23 , 3}.

Definition 7.9 (Matrix of ∂ S
N ,�) For � ≥ 1, N ≥ 1, with N ≡ � (mod 2), let

MS,N ,� := (

f w
w′
)

w∈BS,N ,�,w
′∈B′

S,N ,�

be the matrix of ∂ S
N ,� with respect to the bases BS,N ,� and B ′

S,N ,�. Here f ′w
w denotes

the coefficient of˜t m(w′) in ∂ S
N ,�
˜t m(w), and in the matrixw corresponds to rows, and

w′ to columns.

It will be helpful to introduce some notation to talk more directly about there
coefficients of ζ l(2r + 1) in various identities.

Definition 7.10 Write c2a32b , c2a1, d2a12b , d2a32b to be the coefficient such that

ζ l({2}a, 3, {2}b) = ζ l({2}b, 1, {2}a+1) = c2a32bζ
l(2a + 2b + 3)

ζ l({2}a, 1) = ζ l
1({2}a) = c2a1ζ

l(2a + 1)

˜t l({2}a, 1, {2}b) = d2a12bζ
l(2a + 2b + 1)

˜t l({2}a, 3, {2}b) = d2a32bζ
l(2a + 2b + 3) .

Moreover note that d1 = 2 so that ˜t l(1) = d1 · 1
2 log

l(2). From the computations in
Theorem6.4 and (32) thereafter, and from Theorem6.1 and Theorem6.2, we have the
following explicit formulae.

c2a32b = 2(−1)a+b
(

−
(

2a + 2b + 2

2a + 2

)

+ (1 − 2−2a−2b−2)

(

2a + 2b + 2

2b + 1

))

c1 = 0

c2a1 = 2(−1)a
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d2a12b = 2(−1)a+b
(

(1 − 2−2a−2b)

(

2a + 2b

2a

)

+
(

2a + 2b

2b

))

= 4(−1)a+b(1 − 2−2a−2b−1)

(

2a + 2b

2a

)

d2a32b = 2(−1)a+b
((

2a + 2b + 2

2a + 1

)

+ (1 − 2−2a−2b−2)

(

2a + 2b + 2

2b + 1

))

= 4(−1)a+b(1 − 2−2a−2b−3)

(

2a + 2b + 2

2a + 1

)

Example 7.11 For N = 8, � = 2, the matrix MS,8,2 is as follows; the first row and
column label the elements of B ′

S,8,2 and BS,8,2 respectively.

1222 2122 122 2212 212 12 223 23 3

11222 1 0 −2c21 0 0 −8c221 0 0 0
12122 0 1 2d12−2c21 0 0 8c23−8c32 0 0 0
21122 0 0 2d21 0 −2c21 0 0 0 0
12212 0 0 2c21 1 2d12−2c21 −8c23+8c32+8d122 0 0 0
21212 0 0 0 0 2d21 8d212 0 0 0
22112 0 0 0 0 2c21 8d221 0 0 0
1223 0 0 2c3−2c21 0 0 8c23−8c221 1 2d12−2c21 8d122−8c221
2123 0 0 0 0 2c3−2c21 0 0 2d21−2c21 8d212−8c32
2213 0 0 0 0 0 0 0 2c21−2c3 8d221−8c23

The entries 1 in the matrix arise from both the deconcatenation term 2˜t l(1) which
appears in D1 as per Proposition5.9. With the projection logl(2) → 1

2 , this combina-
tion gives 1 above.

After substituting the values for c• and d• using the formulae above, we obtain the
matrix

1222 2122 122 2212 212 12 223 23 3

11222 1 0 4 0 0 −16 0 0 0
12122 0 1 −3 0 0 −80 0 0 0
21122 0 0 −7 0 4 0 0 0 0
12212 0 0 −4 1 −3 111 0 0 0
21212 0 0 0 0 −7 186 0 0 0
22112 0 0 0 0 −4 31 0 0 0
1223 0 0 6 0 0 −60 1 −3 15
2123 0 0 0 0 6 0 0 −3 150
2213 0 0 0 0 0 0 0 −6 75

We notice already that the matrix has odd entries on the diagonal, and all entries below
the diagonal are even. Therefore the matrix is upper triangle modulo 2 with 1’s on the
whole diagonal. So it has determinant ≡1 (mod 2) and is invertible. We aim to show
this is a general phenomenon for level � > 1. In fact, we shall show that modulo 2,
∂ S
N ,� acts by deconcatenation, so that the only entries d• occur above (or rather right)

of the main diagonal inclusive.

Remark 7.12 In the case of level � = 1, the matrix actually has even determinant, and
so the above considerations would fail. However, we will show that the evenness of the
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determinant arises exactly from the single even entry in the last row. This single entry,
is the deconcatenation term from ∂ S

N ,1˜t
m
({2}a, 3) = d2a3∅, and so by expanding

about the last row, we would reduce to d2a3 times a determinant which is invertible
modulo 2, at least once we prove this previous claim.

Lemma 7.13 Let � > 1 and w ∈ BS,N ,�. Then every coefficient of˜t
m
(u), u ∈ B ′

S,N ,�

in

∂ S
N ,�
˜t m(w) −

∑

w=uv
deg3 u+deg1 u=1

2|u|−2du˜t
m
(v),

is an even integer.

Proof Letk ∈ ({1, 2}×⊕2)∪({1, 2}×⊕3), with � = deg1 k+deg3 k.We consider how
to compute gr� Dr˜t

m
(k) via Proposition5.7 and the simplification in Proposition5.9

for D1. For r = 1, we immediately find

gr� D1˜t
m
(k) = π̃1(2 log

l(2))δk1=1˜t
m
(k2, . . . , kd)

= δk1=12
−1d1˜t

m
(k2, . . . , kd)

Now if we assume r > 1, we have

gr� Dr
(

˜t m(k1, . . . , kd)
) =

∑

1≤ j≤d

δ|k1, j |=r π̃r
(

˜t l(k1, . . . , k j )
) ·˜t m(k j+1, . . . , kd) (34)

+
∑

1≤i< j≤d

δ|ki+1, j |≤r<|ki, j |−1π̃r
(

ζ l
r−|ki+1, j |(ki+1, . . . , k j )

)

·˜t m(k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd) (35)

−
∑

1≤i< j≤d

δ|ki, j−1|≤r<|ki, j |−1π̃r
(

ζ l
r−|ki, j−1|(k j−1, . . . , ki )

)

·˜t m(k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd) (36)

We note that since � > 1, gr� D|k|˜t m(k) = π̃|k|
(

˜t m(k)
)

˜t m(∅) = 0, since ∅—the
empty word—has level 0 < � − 1. (For this, consider how to compute D2r+1 via the
graded parts of the coaction �(x) = 1⊗ x + x ⊗ 1+ �′(x); the part with full weight
in the left hand factor is then clearly x ⊗ 1.) This means the deconcatenation part in
(34) can never involve ˜t l(. . . , 3), so must be of the form π̃2r+1

(

˜t l({2}a, 1, {2}b)) =
22a+2b−1d2a12b .

Now consider (35). According to the table of cases in Lemma7.5, we have the
following contributions.

|ki, j | − r ki, j Contribution to gr� Dr

2, b = 0 (2, {2}a, 1, {2}b) 22a−1c2a1˜t
m
(k1,i−1, 2,k j+1,d)

2, b > 0 (2, {2}a, 1, {2}b) 22a+2b−1c2b−132a˜t
m
(k1,i−1, 2,k j+1,d)

2 (2, {2}a, 3) 22a+1c2a3˜t
m
(k1,i−1, 2,k j+1,d)
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Likewise for (36), we have the following contributions.

|ki, j | − r ki, j Contribution to gr� Dr

2, a = 0 ({2}a, 1, {2}b, 2) − 22b−1c2b1˜t
m
(k1,i−1, 2,k j+1,d)

2, a > 0 ({2}a, 1, {2}b, 2) −22a+2b−1c2a−132b˜t
m
(k1,i−1, 2,k j+1,d)

2 ({2}a, 3) −22a−1c2a1˜t
m
(k1,i−1, 2,k j+1,d)

3, a = 0 ({2}a, 1, {2}b, 3) −22b−1c2b1˜t
m
(k1,i−1, 3)

3, a > 0 ({2}a, 1, {2}b, 3) −22a+2b−1c2a−132b˜t
m
(k1,i−1, 3)

The key points to observe now are that

22a−1c2a1 =
{

0 a = 0

22a(−1)a a > 0
(37)

22a+2b+1c2a32b =
(−1)a+b

(

−22a+2b+2
(

2a + 2b + 2

2a + 2

)

+ (22a+2b+2 − 1)

(

2a + 2b + 2

2b + 1

))

, (38)

hence both coefficients are always even integers, and so ≡ 0 (mod 2). For c2a32b it
follows by writing

(2a+2b+2
2b+1

) = 2(a+b+1)
2a+1

(2a+2b+1
2b+1

)

. Compare Corollary 4.4 [4] for a
more precise statement about ν2(c2a32b), the 2-adic valuation thereof, which was one
of the key lemmas in Brown’s proof of the linear independence of ζm({2, 3}×).

Since all terms arising from ζ l have even coefficient in gr� Dr , we see that the only
remaining terms arise from the deconcatenation part, and so the lemma follows. ��
Theorem 7.14 For N , � ≥ 1, the matrix MS,N ,� is invertible.

Proof We proceed in a similar way as to the proofs by Murakami [22, Theorem 36],
and Brown [4, Corollary 6.2].

We assume initially that � > 1, so that d2a3 does not appear as an entry. For � > 1,
consider the map

B ′
S,N ,l → BS,N ,�

u 	→ 2r1u ,

where r is the unique integer such that |2r1u| = N . This map is a bijection, and
preserves the ordering of both B ′

S,N ,� and BS,N ,�. That is to say, u < v if and only if

2r1u < 2r
′
1v, which holds as we are in the reverse colexicographic (reading right to

left, largest first) order with 3 < 1 < 2. The diagonal entries of MS,N ,� are of the
form f 2

r1u
u = 22a−1d2a1 + 2n, nZ. Moreover, the only other non-even entries in the

column indexed by u ∈ B ′
S,N ,� occur for rows indexed byw = 2a12bu, however since

2r1u < 2a12bu, these occur above the diagonal. These entries are also integral since

22a+2b−1d2a12b = (−1)a+b22a+2b+1(1 − 2−2a−2b−1)

(

2a + 2b

2a

)

= (−1)a+b(22a+2b+1 − 1)

(

2a + 2b

2a

)

.
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We finally note that

22a−1d2a1 = (−1)a(22a+1 − 1) ≡ 1 (mod 2),

so that f 2
r1u

u ≡ 1 (mod 2). This means the matrix is integral, and modulo 2 it reduces
to an upper triangle matrix with leading diagonal equal to 1. Hence MS,N ,� has deter-
minant ≡ 1 (mod 2), and so is invertible.

When � = 1, we note that all of the previous steps apply for all words w = 2a12b,
b ≥ 0 indexing the rows. However, we obtain as the last row corresponding to the
word w = 2a3, the row vector

(0, . . . , 0, 22a+1d2a3).

since one must deconcatenate the entire word to reduce the level by 1. Expand the
determinant out about the last row, and we reduce to the submatrix involving words
w = 2a12b, b > 0 indexing the rows, and 2a , a > 0 indexing the columns. This
submatrix is integral, and modulo 2 it is upper triangle with 1’s on the diagonal. Hence
has non-zero determinant. Since

22a+1d2a3 = 22a+3(−1)a(1 − 2−2a−3)

(

2a + 2

2a + 1

)

= (−1)a(22a+3 − 1)(2a + 2)

�= 0

the determinant of MS,N ,� is still non-zero, and so MS,N ,� is also invertible when
� = 1. ��
Corollary 7.15 The Saha elements

{˜t m(k1, . . . , kd−1, kd + 1) | ki ∈ {1, 2}}

are linearly independent.

Proof Weproceed by induction on the level, as in [4, Theorem 7.4], [22, Corollary 38].
The elements of level � = 0 are of the form˜t m({2}n), which are linearly independent
because weight is a grading onH(2). Now suppose the elements

{˜t m(w) | w ∈ ({1, 2}× ⊕ 2) ∪ ({1, 2}× ⊕ 3), deg1 w + degw 3 ≤ � − 1},

of level ≤ � − 1 are linearly independent. Since weight is a grading onH(2), any non-
trivial linear relation between elements of level � can be assumed as homogeneous of
some weight N . By Theorem7.14, the map ∂ S

N ,� is injective as the matrix of the map is

invertible. Application of ∂N ,�
S to a non-trivial linear relation between level � elements

produces a non-trivial linear relation of strictly smaller level, which does not exist by
the induction assumption. So the elements of level � are also linearly independent,
which completes the proof by induction. ��
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Corollary 7.16 The space T conv
N of convergent motivic MtV’s has dimension ≥ FN in

weight N > 1; here Fn = Fn−1+Fn−2 are the Fibonacci numbers, with F1 = F2 = 1.

Remark 7.17 For strictly convergent motivic MtV’s, we do not appear yet to have the
correct upper bound to show the Saha elements are a basis. The motivic MtV’s fit into
the following inclusions

H(1)
N ⊆ T conv

N ⊆ T ext
N ⊆ H(2)

N ,

where T conv
N denotes the space of convergent motivic MtV’s (with last argument

≥ 2) of weight N , and T ext
N denotes the space of all shuffle regularised motivic

MtV’s of weight N . (The first inclusion follows from Murakami’s motivic Galois
[22, Theorem 8] descent showing ˜t m(k1, . . . , kd) ∈ H(1), whenever all ki ≥ 2. The
upper bound of dimQH(2)

N ≤ FN+1 (established in [7]) only gives us the bound that
FN ≤ dimQ T conv

N ≤ FN+1. Below in Corollary8.20, we will show however that
T ext = H(2) using the independence of the Hoffman one-two elements.

8 The Hoffman one-two elements as a basis

We now turn to the second application of the motivic identity. We show that the ele-
ments whose arguments consist of only 1’s and 2’s are linearly independent as motivic
MtV’s (analogous toHoffman’s conjectured (motivically true) basis ofMZV’s as those
with arguments 2’s and 3’s). Dimension counting then shows that the elements—FN+1
many in weight N—must be a basis for motivicMtV’s and alternatingmotivicMZV’s,
as these spaces have known dimensions ≤ FN+1.

Definition 8.1 (Hoffman t filtration) For, w ∈ {1, 2}×, we define the level of w to be
deg1 w, i.e. the total number of 1 in the word. We define Q-subspace ofH(2), and the
level ≤ � piece of the level filtration by

HH := 〈tm(w) | w ∈ {1, 2}×〉Q ,

H�HH := 〈tm(w) | w ∈ {1, 2}× , s.t. deg1 w ≤ �〉Q.

The associated graded to this filtration is then given by

grH� HH := H�HH/H�−1HH .

Example 8.2 The level≤ 1 part of this filtration is generated by the following elements

H1HH = 〈tm({2}a, 1, {2}b), tm({2}c) | a, b, c ≥ 0〉Q,

whereas the level ≤ 0 part of this filtration is generated by

H0HH = 〈tm({2}c) | c ≥ 0〉Q.
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Lemma 8.3 The Hoffman-level is motivic. More precisely, the following holds for all
r ′ ≥ 0,

D2r ′+1H�HH ⊆ L(2)
2r+1 ⊗Q H�−1HH .

Proof The proof is essentially the same as for Lemma7.4, except the caseski, j −r = 3
cannot occur, since every argument ki ≤ 2. ��

From this lemma, we obtain a level-graded derivation

grH� D2r+1 : grH� HH → L2r+1 ⊗Q grH�−1HH .

Moreover we claim, this map lands in the subspace of L2r+1 generated by the single
zeta element ζ l(2r + 1).

Lemma 8.4 For � ≥ 1, r ′ ≥ 0, the level-graded derivation grH� D2r ′+1 satisfies

grH� D2r ′+1
(

grH� HH ) ⊆ ζ l(2r ′ + 1)Q ⊗Q grH�−1HH .

Proof With r = 0, the claim is clear as L(2)
1 is generated by logl(2). So let r ≥ 0

be odd, and k = (k1, . . . , kd) ∈ {1, 2}× with level �. We consider how to com-
pute Dr˜t

m
(k1, . . . , kd) via Proposition5.7, and more carefully track the contributions

when we take elements of level � − 1 in the right hand tensor factor.
With (27), the deconcatenation term ˜t l(k1, . . . , k j ) ⊗ ˜t m(k j+1, . . . , kd), we see

that for k j+1,d to have level � − 1, a single 1 must have been removed. Therefore if

k1, j = ({2}a, 1, {2}b), we know via Theorem6.1, that ˜t l(k1, j ) ∈ ζ l(2r + 1)Q.

Then we turn to the contribution from (28), and recall the considerations in the
proof of Lemma8.3. Namely, |ki, j | − r = 2, ki = 2, which forces certain behaviour
onto ki, j . If |ki, j |−r = 2, then ki, j must contain an odd number of 1’s. But for level-
grading reasons, it actually must contain exactly one such.We have the following case.

|ki, j | − r ki, j Contribution to Dr

2 (2, {2}a, 1, {2}b) ζ l
2−2({2}a, 1, {2}b) ⊗˜t m(k1,i−1, 2,k j+1,d)

So via (32), we have ζ l
α(ki+1, j ) ∈ ζ l(2r + 1)Q.

Likewise, from (29), we have |ki, j | − r = 2, with k j = 2 so |ki, j | contains an odd
number of 1’s. In the level-graded, it therefore must contain exactly one 1. Be aware
that we must reverse ki, j when inserting it into ζ l in term (29). We have the following
case.

|ki, j | − r ki, j Contribution to Dr

2 ({2}a, 1, {2}b, 2) − ζ l
2−2({2}b, 1, {2}a) ⊗˜t m(k1,i−1, 2,k j+1,d)

Once again, the term ζ l
α(k j−1,i ) ∈ ζ l(2r + 1)Q via (32). ��
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We now look at the action of these derivations on elements of a given level, and
package them together into the following linear map.

Definition 8.5 For all N , � ≥ 1, let ∂H
N ,� be the linear map

∂H
N ,� : grH� HH

N →
⊕

1≤2r+1≤N

grH�−1HH
N−2r−1,

defined by first applying
⊕

1≤2r+1≤N grH� D2r+1
∣

∣

grH� HH
N
, and then sending all

logl(2) 	→ 1
2 , ζ

l(2r + 1) 	→ 22r−1, r > 0 to by the projection

π̃2r+1 : Qζ l(2r + 1) → Q
{

logm(2) 	→ 1
2 , if r = 0 ,

ζ l(2r + 1) 	→ 22r−1 , if r > 0.

The goal is to show that themaps ∂H
N ,� are injective for � ≥ 1. Then by recursion, we

will establish the elements of level � are linearly independent (otherwise ∂H
N ,� would

construct a non-trivial relation of strictly smaller level).

Definition 8.6 (Matrix basis) Let �, N ≥ 1, with N ≡ � (mod 2). Define the follow-
ing sets

BH ,N ,� := {w ∈ {1, 2}× | deg1 w = �, |w| = N },
B ′
H ,N ,� := {w ∈ {1, 2}× | deg1 w = � − 1, |w| < N }.

In the case � = 1, the set B ′
H ,N ,� also includes the empty word (of weight 0 and level

0). Sort both sides in reverse colexicographic order (i.e. reading right to left, largest
first), with 1 < 2.

A counting argument shows that #BH ,N ,� = #B ′
H ,N ,� for all such choices of �, N .

These basis elements will be used to define the matrix form of the linear map ∂H
N ,�,

and the claim of injectivity corresponds to non-zero determinant.

Example 8.7 For N = 8, � = 2, we have

BH ,N ,� = {11222 , 12122 , 21122 , 12212 , 21212 ,

22112 , 12221 , 21221 , 22121 , 22211},
B ′
H ,N ,� = {1222 , 2122 , 122 , 2212 , 212 , 12 , 2221 , 221 , 21, 1}.

Definition 8.8 (Matrix of ∂H
N ,�) For � ≥ 1, N ≥ 1, with N ≡ � (mod 2), let

MH ,N ,� := (

f w
w′
)

w∈BH ,N ,�,w
′∈B′

H ,N ,�

be the matrix of ∂H
N ,� with respect to the bases BH ,N ,� and B ′

H ,N ,�. Here f ′w
w denotes

the coefficient of˜t m(w′) in ∂H
N ,�
˜t m(w), and in the matrixw corresponds to rows, and

w′ to columns.
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Example 8.9 For N = 8, � = 2, the matrix MH ,8,2 is as follows; the first row and
column label the elements of B ′

H ,8,2 and BH ,8,2 respectively.

1222 2122 122 2212 212 12 2221 221 21 1

11222 1 0 −2c21 0 0 −8c221 0 0 0 0
12122 0 1 2d12−2c21 0 0 8c23−8c32 0 0 0 0
21122 0 0 2d21 0 −2c21 0 0 0 0 0
12212 0 0 2c21 1 2d12−2c21 −8c23 + 8c32+8d122 0 0 0 0
21212 0 0 0 0 2d21 8d212 0 0 0 0
22112 0 0 0 0 2c21 8d221 0 0 0 0

12221 − 1
2 0 2c21 0 0 8c221 1 2d12−2c21 8d122−8c221 32d1222

21221 0 − 1
2 0 0 2c21 0 0 2d21−2c21 8c23−8c32+8d212 32d2122

22121 0 0 0 − 1
2 0 0 0 2c21 −8c23+8c32+8d221 32d2212

22211 0 0 0 0 0 0 − 1
2 2c21 8c221 32d2221

The entries 1 in the matrix arise from both the deconcatenation term 2˜t l(1) removing
a leading 1 which appears in D1 as per Proposition5.9, the entries − 1

2 correspond to

the deconcatenation term −˜t l(1) removing a trailing 1 which appear in D1. With the
projection logl(2) → 1

2 , these combinations give 1 and − 1
2 respectively.

After substituting the values for c• and d• using the formulae above, we obtain the
matrix

1222 2122 122 2212 212 12 2221 221 21 1

11222 1 0 4 0 0 −16 0 0 0 0
12122 0 1 −3 0 0 −80 0 0 0 0
21122 0 0 −7 0 4 0 0 0 0 0
12212 0 0 −4 1 −3 111 0 0 0 0
21212 0 0 0 0 −7 186 0 0 0 0
22112 0 0 0 0 −4 31 0 0 0 0

12221 − 1
2 0 −4 0 0 16 1 −3 15 −127

21221 0 − 1
2 0 0 −4 0 0 −3 106 −1905

22121 0 0 0 − 1
2 0 0 0 −4 111 −1905

22211 0 0 0 0 0 0 − 1
2 −4 16 −127

Wenotice already that thematrix is block lower triangular; the blocks correspond to the
number of trailing ones in the quotients, which is also the number of trailing 1’s when
deconcatenating themaximal string2a1 from the start of the basiswords.Eachdiagonal
block except the last (i.e. here only the first, but in general all further intermediate ones
too) is upper triangular modulo 2, so has determinant �= 0. Expanding the determinant
of the last block about its first column produces two matrices with integer entries,
which are equivalent to triangular matrices mod 2, so the first block has determinant
odd
2 . Overall the full matrix has the same property: the determinant is in 1

2 + Z.
We aim to show this is a general phenomenon for level � ≥ 1. In fact, we shall show

that ∂H
N ,� never increases the number of trailing 1’s, explaining the block triangular

appearance; moreover, for a fixed number of trailing 1’s we show that ∂H
N ,� acts by

deconcatenation, modulo 2, explaining the upper triangular appearance of each block.
(Special care must be given for the first row, where an extra − 1

2 is produced.)

We introduce a partition of the basis set B ′
H ,N ,� by the number of trailing 1’s.
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Definition 8.10 (Trailing 1’s) Write

T ′
α,N ,� := {w′ ∈ B ′

H ,N ,� | w′ has exactly α trailing 1’s}.

More precisely, one can define “exactly α trailing 1’s” as a word of the form 1α or
w21α , where w ∈ {1, 2}×, to obtain

T ′
α,N ,� = B ′

S,N ,� ∩
(

{1α} ∪ {w21α | w ∈ {1 2}×}
)

.

We note that T ′
α,N ,� = ∅ if α ≥ � as a word of level < � cannot contain � trailing

1’s. Whereas T ′
�−1,N ,� = {2 1

2 (N−�)1�−1, . . . , 21�−1, 1�−1}. So we certainly have as a
disjoint union that

B ′
S,N ,� =

⋃

0≤α,N ,�

T ′
α,N ,�.

Now consider the bijection

φ : B ′
S,N ,� → BH ,N ,�

u 	→ 2a1u ,

where a is the unique value such that 2a1u has weight N . We pull back the partition
T ′

α,N ,� to define

Tα,N ,� = {w ∈ B ′
H ,N ,� | φ−1(w) ∈ T ′

α,N ,�}.

Note that the inverse φ−1(w) is obtained by taking the suffice when deconcatenating
w after the first 1.

Lemma 8.11 For w ∈ BH ,N ,�, with w �= 2
1
2 (N−�)1� then the following holds. The

word w has α trailing 1’s if and only if

w ∈ Tα,N ,�.

However, the word w = 2
1
2 (N−�)1� lies in T�−1,N ,�.

Proof Firstly, we check the case w = 2
1
2 (N−�)1�. Deconcatenating at the first 1 tells

us that φ(w) = 1�−1 which has exactly �−1 trailing 1’s. Sow ∈ T�−1,N ,� as claimed.
Now take any other word v of level �. It cannot have 1� trailing 1’s, so is of

necessarily of the form v′21α , with α < �, for some v′ ∈ {1, 2}×, where deg1 v′ ≥
� − α ≥ 1. This means the first 1 in v occurs somewhere in v′. Deconcatenating after
this, gives a suffice of the form v′′21α , so that φ(v) ∈ T ′

α,N ,�, meaning v ∈ Tα,N ,� as
claimed.

Conversely, given v ∈ Tα,N ,�, we know that φ−1(v) ∈ T ′
α,N ,�, so that φ−1(v) =

v′21α or φ−1(v) = 1α , with α = � − 1. The former case leads to v = 2a1v′21α
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which ends in exactly α trailing 1’s. The latter case leads to v = 2
1
2 (N−�)1�, which we

already excluded. ��
Now we claim that the map ∂H

N ,� never increases the number of trailing 1’s.

Lemma 8.12 For all words w ∈ Tα,N ,�, the image under ∂H
N ,� satisfies

∂H
N ,�w =

∑

w′∈Tβ,N ,�

β≤α

f w
w′˜t m(w′).

That is to say, ∂H
N ,�w only involves words with ≤ α trailing 1’s.

Proof By Lemma8.11, we know that the set Tα,N ,� is characterised as the words
w ∈ BN ,� ending with α many trailing 1’s, except that when α = � − 1, where also

include the word 2
1
2 (N−�)1� ∈ T�−1,N ,�. (Note that since T ′

�,N ,� = ∅, the set T�,N ,�

would also be empty.)

Purely for level-filtration reasons (see Lemma8.3), the word w = 2
1
2 (N−�)1� must

map to a sum of words with < � trailing 1’s. We may therefore assume α ≤ � − 1,
and w ∈ Tα,N ,� genuinely ends in 1α .

We consider the terms which arise in ∂H
N ,�
˜t m(w) via the cases in Lemma8.4 for

gr� D2r ′+1˜t
m
(w), with w viewed as a tuple. Take the deconcatenation term

˜t m(k1, j ) ⊗˜t m(k j+1,d).

Since k j+1,d is a suffix of k it clearly has ≤ α trailing 1’s. (Either the cut k1, j ends
before the first trailing 1, in which case we have exactly as many trailing 1’s. Or
the cut ends after this point, and we have even reduced the number of trailing 1’s as
k j+1,d = ({1}β) with β < α).

On the other hand, if r = 1, and we take the deconcatenation term

δkd=1˜t
l
(1) ⊗˜t m(k1, . . . , kd−1)

which occurs in D1, thenwe have certainly removed a trailing 1 if this term is non-zero.
Now consider the cases as is the tables in Lemma8.4, which come from replacing

a subindex ki, j by |ki, j | − r . In both cases we see the replacement is by a 2. So if
ki, j ends before the trailing 1’s, we do not increase their number. Otherwise ki, j ends
within the string of trailing 1’s, and some set 1β , β > 0 of them are replaced by a 2,
leaving strictly fewer trailing 1’s, namely 1α−β .

The block (lower) triangularity corresponds to the ordering, wherein we have the
reverse colexicographic order (reading right to left, largest first), with 1 < 2. So
1γ > w021α > w′

021
β , for any β < α ≤ γ . ��

This lemma has established that the matrix MH ,N ,� of ∂H
N ,� is block (lower) trian-

gular, and that the diagonal blocks are square. (We constructed Tα,N ,� as the preimage

123



2066 S. Charlton

of T ′
α,N ,� under a bijection of the bases.) We therefore reduction the question of injec-

tivity of ∂H
N ,�, equivalently the determinant of MH ,N ,� being non-zero, to a question

of understanding the determinants of these diagonal blocks.

Definition 8.13 For � ≥ 1, N ≥ 1, α ≤ � − 1, with N ≡ � (mod 2), let

Mα,H ,N ,� := (

f w
w′
)

w∈Tα,N ,�,w
′∈T ′

α,N ,�

be the diagonal block of MH ,N ,� corresponding to α trailing 1’s (after deconcatenating
2a1 for Tα,N ,�, or immediately for T ′

α,N ,�).

Lemma 8.14 For α < � − 1, the restriction of ∂N ,� to Tα,N ,�, and projected to the
T ′

α,N ,� satisfies the following. For w ∈ Tα,N ,�, the coefficient of every word ˜t m(u)

with u ∈ T ′
α,N ,�, in

∂H
N ,�
˜t m(w) −

∑

w=uv
deg1 u=1

2|u|−2du˜t
m
(v)

is an even integer.

Proof Since α < �−1 we knoww �= 2
1
2 (N−�)1�, so we do not have to worry about the

deconcatenation term ˜t m(k1, . . . , kd−1) contributing: it has strictly fewer than � − 1
trailing 1’s.

The terms in

∑

w=uv
deg1 u=1

2|u|−2du˜t
m
(v)

are the deconcatenation terms from Lemma8.4, after using π̃|u| = π̃2a+2b+1 to project
the factor ˜t l(u) = ˜t l({2}a, 1, {2}b) = duζ l(2a + 2b + 1).

The remaining terms (whether or not they have fewer trailing 1’s), arise from the
the (28) and (29) terms (or rather their images in grH� D2r+1). They are categorised by
the cases listed in Lemma8.4, namely

|ki, j | − r ki, j Contribution to Dr

2 (2, {2}a, 1, {2}b) ζ l
2−2({2}a, 1, {2}b) ⊗˜t m(k1,i−1, 2,k j+1,d)

2 ({2}a, 1, {2}b, 2) −ζ l
2−2({2}b, 1, {2}a) ⊗˜t m(k1,i−1, 2,k j+1,d)

In each case, the coefficient of˜t m(v) after projecting via π̃2r+1 has one of the following
forms (depending on whether b = 0 or b > 0 in case 1, likewise case 2)
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22a−1c2a1 =
{

0 a = 0

22a(−1)a a > 0

22a+2b+1c2a32b =
(−1)a+b

(

−22a+2b+2
(

2a + 2b + 2

2a + 2

)

+ (22a+2b+2 − 1)

(

2a + 2b + 2

2b + 1

))

.

This is exactly the same claim as in (37) and (38), so as before these coefficients are
indeed even integers. ��

In the same manner as Theorem7.14, it follows that the diagonal block Mα,H ,N ,�

corresponding to Tα,N ,� and T ′
α,N ,� is invertible, for α < � − 1.

Proposition 8.15 Thediagonal block Mα,H ,N ,� is invertible forα < �−1, in particular
it has non-zero determinant.

Proof Recall the bijection φ between the bases, sending u ∈ B ′
H ,N ,� to 2a1u, for the

unique a such that 2a1u has weight N . This map defined the set Tα,N ,� as the preimage
of T ′

α,N ,�.
By the previous result, Lemma8.14, we know that Mα,H ,N ,� is upper triangular

modulo 2, the terms above the diagonal arising from the deconcatenation terms. That
is to say: the diagonal entries of Mα,H ,N ,� are of the form f 2

r1u
u = 22a−1d2a1 + 2n,

n ∈ Z. The only other non-even entries in the column indexed by u ∈ B ′
α,H ,N ,� occur

for rows indexed by w = 2a12bu, however since 2r1u < 2a12bu, these occur above
the diagonal.

As the diagonal terms are given by

22a−1d2a1 = (−1)a(22a+1 − 1) ≡ 1 (mod 2),

we see that f 2
r1u

u ≡ 1 (mod 2). Therefore Mα,H ,N ,� is upper triangular, modulo
2, and has 1’s on the diagonal. It therefore has determinant ≡ 1 (mod 2), and so
Mα,H ,N ,� has non-zero determinant. ��

We now turn to the case α = � − 1. In this case the following modification of
Lemma8.14 holds.

Lemma 8.16 For α = � − 1, the restriction of ∂N ,� to Tα,N ,�, and projected to the
T ′

α,N ,� satisfies the following. For w ∈ Tα,N ,�, the coefficient of every word ˜t m(u)

with u ∈ T ′
α,N ,�, in

∂H
N ,�
˜t m(w) −

∑

w=uv
deg1 u=1

2|u|−2du˜t
m
(v) + 1

2
˜t m(2

1
2 (N−�)1�−1)

is an even integer.
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Proof The proof of Lemma8.14 goes through unchanged, except that we must also

consider the case w �= 2
1
2 (N−�)1�. Even for this, the argument about the deconcate-

nation (27) and other terms in Lemma,8.4 goes through unchanged.
The only additional termwemust consider is the term arising from deconcatenating

a trailing 1, namely − logl(1) ⊗˜t m(k1, . . . , kd−1) which appears in Proposition5.9.
This is the additional term above, and so the proof is complete. ��

We note now that this additional term occurs in the first column, last row of the
matrixMα,H ,N ,� because theword indexing the column is 2

1
2 (N−�)1�−1 > · · · 21�−1 >

1�−1 while the word indexing the row is 2
1
2 (N−�)1� < w21�−1, for any w.

Finally we can show that the diagonal block M�−1,H ,N ,� is also invertible, or equiv-
alently has non-zero determinant.

Proposition 8.17 Thediagonal block Mα,H ,N ,� is invertible forα = �−1, in particular
it has non-zero determinant.

Proof The above observation tells us that the first column of the matrix Mα,H ,N ,�,
α = �−1, consists of a single entry 1

2 at the bottom, a single entry 1
2d1 = 1 at the top,

and (potentially) a number of even entries. However, since this column is indexed by

2
1
2 (N−�)1�−1, this column corresponds to the computation of gr� D1. Therefore there

are no other entries in this column since ζ l
0(1) = 0. Now expand out the determinant

about this column.
Theminor A1,1 corresponding to the (1, 1) entry ofMα,H ,N ,� is again an upper trian-

gular matrix modulo 2, as it arises from deleting the first row and column of Mα,H ,N ,�.
That matrix is itself integral and upper triangular modulo 2, after removing the entry
− 1

2 in the first column (compare the argument in Lemma8.14 and Lemma8.16). So
as entry − 1

2 plays no role in the (1, 1) cofactor, the integrality and upper triangu-
larity modulo 2 holds. Likewise the diagonal entries are equal to 1, and so we find
C1,1 = det A1,1 ≡ 1 (mod 2). This means C1,1 = 2x + 1 ∈ Z is an odd integer.

The minor A1, 12 (N−�)+1 corresponding to the bottom entry of the first column,
is given by the an explicit formula modulo 2. We note the rows are indexed by

2a−112
1
2 (N−�)+1−a1�−1, for 1 ≤ a ≤ 1

2 (N − �), so that 2
1
2 (N−�)1� is avoided. Like-

wise the columns are indexed by 2
1
2 (N−�)−c1�−1, for 1 ≤ c ≤ 1

2 (N − �), so that

2
1
2 (N−�)1�−1 is avoided. This means that modulo 2, the minor is given by

(

A1, 12 (N−�)+1

)
1
2 (N−�)

a,c=1 = 22c−1d2a−112c+1−a

= (−1)c(22c+1 − 1)

(

2c

2a − 2

)

≡
(

2c

2a − 2

)

(mod 2).

We notice the following: when a = c + 1,

(

2c

2a − 2

)

= 1
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so the minor has 1’s on the subdiagonal. When a = 1

(

2c

2a − 2

)

= 1,

so the minor has 1’s in the first row. Summing down each column we note that

1
2 (N−�)
∑

a=2

(

2c

2a − 2

)

=
{

22c−1 − 1 1 ≤ c < 1
2 (N − �)

22c−1 − 2 c = 1
2 (N − �),

since in the latter case the term
(2c
2c

)

on the subdiagonal is not part of the matrix. This
means that if we subtract the sum of the remaining rows of theminor from the first row,
we obtain a single 1 in the final column. This establishes that the modulo 2 the minor is
equivalent a permutation of an upper triangular matrix with 1’s on the diagonal (move
the last column to the start). Hence C1, 12 (N−�)+1 = det(A1, 12 (N−�)+1) ≡ 1 (mod 2),
and since A1, 12 (N−�)+1 actually has integer entries, we haveC1, 12 (N−�)+1 = 2y+1 ∈ Z

is an odd integer.
Finally, we assemble the determinant of Mα,H ,N ,� to be

(−1)1+1 · C1,1 + (−1)(
1
2 (N−�)+1)+1C1, 12 (N−�)+1

= (2x + 1) + 1

2
(2y + 1)

= (2x + y + 1) + 1

2
.

In particular it is in 1
2 + Z, and so cannot be 0. ��

From these two propositions follows immediately the invertibility of the whole
matrix MH ,N ,�.

Corollary 8.18 The matrix MH ,N ,� is invertible.

Proof The matrix MH ,N ,� is block upper triangular by Lemma8.12 and the discussion
thereafter. The diagonal blocks are invertible square matrices by Proposition8.15 and
Proposition8.17, hence MH ,N ,� itself is invertible. ��
Corollary 8.19 The Hoffman one-two elements

{˜t m(k1, . . . , kd) | ki ∈ {1, 2}}

are linearly independent.

Proof Weproceed by induction on the level, as in [4, Theorem 7.4], [22, Corollary 38].
The elements of level � = 0 are of the form˜t m({2}n), which are linearly independent
because weight is a grading onH(2). Now suppose the elements

{˜t m(w) | w ∈ {1, 2}×, deg1 w ≤ � − 1},
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of level ≤ � − 1 are linearly independent. Since weight is a grading onH(2), any non-
trivial linear relation between elements of level � can be assumed as homogeneous of
someweight N . By Corollary8.18, the map ∂H

N ,� is injective as the matrix of the map is

invertible. Application of ∂N ,�
H to a non-trivial linear relation between level � elements

produces a non-trivial linear relation of strictly smaller level, which does not exist by
the induction assumption. So the elements of level � are also linearly independent,
which completes the proof by induction. ��

Corollary 8.20 The elements

{˜t m(w) | w ∈ {1, 2}×},

form a basis for the space of:

(i) motivic extended shuffle-regularised multiple t values,
(ii) alternating (shuffle-regularised) motivic multiple zeta values

In particular these spaces agree, and extended shuffle-regularised motivic multiple t
values have dimension FN+1 in weight N , where Fk = Fk−1+Fk−2 with F1 = F2 = 1
is the sequence of Fibonacci numbers.

Proof From their definition as sums of alternating motivic MZV’s, we know the fol-
lowing inclusion holds

T ext
N ⊂ H(2)

N ,

where T ext
N denote the space of all shuffle-regularised motivic MtV’s of weight N .

However the upper bound dimQH(2) ≤ FN+1 is established in [7] (in fact already
=), and the lower bound FN+1 ≤ T ext

N from the explicit collection of independent
elements shows that all of these inclusions are equalities and the dimensions is exactly
FN+1 in weight N . ��

8.1 Stuffle regularised Hoffman one-two elements

We now wish to extend the independence result on the Hoffman one-two elements
from the case of shuffle regularised MtV’s to the more natural case of stuffle regu-
larised MtV’s. On the motivic level, we shall do this by viewing Proposition2.18 as a
definition.

Definition 8.21 (Motivic ˜t m,∗,V ) Let k = (k1, . . . , kd), such that kd �= 1. Then the
stuffle regularised motivic MtV with ˜t m,∗,V

(1) = 2V ∈ H(2) is defined by

˜t m,∗,V
(k, {1}α) :=

α
∑

i=0

˜t m(k, {1}α−i ) · ζm,∗,2V−logm(2)({1}i ), (39)
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where ζm,∗,U ({1}i ) is given by the coefficient of ui in

exp
(

Uu −
∞
∑

n=2

(−1)n

n
ζm(n)un

)

.

Regardless then of the technicalities of defining a stuffle-regularisation on the
motivic level, one knows that

per˜t m,∗,V
(k, {1}α) = ˜t ∗,V

(k, {1}α).

In particular

per˜t m,∗,V
(1) = ˜t ∗,V

(1) + ζ ∗,2V−log(2)(1) = log(2) + (2V − log(2))

= 2V = 2t V ,∗(1) = ˜t V ,∗
(1) ,

as per the definition of˜t . So˜t m,∗,V corresponds to the regularisation of t∗,V (1) = V .
Therefore any linear independence and basis results will successfully translate over to
the classical real valued versions as spanning set results, alongwith whatever identities
we establish motivically.

Naturally the question of how to compute D2r+1˜t
m,∗,V

(k, {1}α) now arises, but
for this we appeal again to the derivation property of D2r+1, namely

D2r+1(XY ) = (1 ⊗ Y )D2r+1X + (1 ⊗ X)D2r+1Y .

We first give a lemma about the action of D2r+1 on ζm,∗,U ({1}i ).
Lemma 8.22 The action of D2r+1 on ζm,∗,U ({1}i ), with U ∈ H(2), is given by

D2r+1ζ
m,∗,U ({1}i ) =

{

ζ l,∗,U ({1}2r+1) ⊗ ζm,∗,U ({1}i−(2r+1)) if i ≥ 2r + 1,

0 otherwise.

Proof The case 2r + 1 > i is clear, as in this case there can be no (non-zero) weight
i − (2r + 1) factor in the right hand factor of D2r+1. So we assume 2r + 1 ≤ i .

We know that D2r+1ζ
m(s) = δs=2r+1ζ

l(2r + 1) ⊗ 1 since ζm(s) is primitive for
the coaction �. More generally, if ki �= 2r + 1, for any 1 ≤ i ≤ n, then

D2r+1ζ
m(2r + 1)�ζm(k1) · · · ζm(kn)

= ζ l(2r + 1) ⊗ �ζm(2r + 1)�−1ζm(k1) · · · ζm(kn) .

So, when acting on a polynomial p(ζm(2r+1), ζm(k1), . . . , ζm(kn)) in singlemotivic
zeta values, the right hand tensor factor is (formally) the derivative of p(ζm(2r +
1), ζm(k1), . . . ,
ζm(kn)) with respect ζm(2r + 1), and the left hand tensor factor is simply ζ l(2r + 1).
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More rigorously, the right hand factor of action of D2r+1 mimics the action of d
dz2r+1

on the polynomial p(z2r+1, zk1 , . . . , zkn ), under the correspondence ζm(m) ↔ zm . So
we are justified now in proceeding via this formal derivativewith respect to ζm(2r+1).

If 2r + 1 > 1, applying this formal differentiation operation to

∞
∑

i=0

ζm,∗,U ({1}i )ui = exp
(

Uu −
∞
∑

n=2

(−1)n

n
ζm(n)un

)

, (40)

viewed as a generating series, leads to the following (extending D2r+1 by linearity to
the coefficients of a power series):

D2r+1

∞
∑

i=0

ζm,∗,U ({1}i )ui

= ζ l(2r + 1) ⊗ d

dζm(2r + 1)
exp

(

Uu −
∞
∑

n=2

(−1)n

n
ζm(n)un

)

= ζ l(2r + 1) ⊗ (−1)2r

2r + 1
u2r+1 exp

(

Uu −
∞
∑

n=2

(−1)n

n
ζm(n)un

)

So by comparing the coefficient of ui on both sides, we obtain

D2r+1ζ
m,∗,U ({1}i ) = 1

2r + 1
ζ l(2r + 1) ⊗ ζm,∗,U ({1}i−(2r+1)).

It remains to note that

ζ l,∗,U ({1}2r+1) = 1

2r + 1
ζ l(2r + 1),

by extracting the irreducible contribution in (40).
The corresponding result holds for 2r + 1 = 1, mutatis mutandis, by the view

that ζm,∗,U (1) = U ∈ H(2). So in particular ζm,∗,U (1) is some rational multiple
λζm(1) of ζm(1) = − logm(2), and so primitive for the coaction. Namely D1U =
D1λ logm(2) = λ(logl(2) ⊗ 1) = (U )l. Likewise, ζ l,∗,U (1) = (U )l, so the left hand
tensor factor is also just ζ l,∗,U (1) in this case. ��

Then we compute the derivation D2r+1 on the stuffle-regularised motivic MtV’s
as follows. We claim it is given by the essentially same formula as in Proposition5.7,
with˜t • replaced by˜t •,∗,V , and a (potential) additional term deconcatenating 1’s from
the end.

Proposition 8.23 (Derivation Dr on ˜t m,∗,V ) Let k = (k1, . . . , kd) ∈ (Z≥1)
d be an

index. Write ki, j = (ki , . . . , k j ) for a subindex of k and |(a1, . . . , ar )| = a1+· · ·+ar
for the total (weight) of an index. Then the derivation Dr , r odd, is computed on the
stuffle regularised ˜t m,∗,V as follows
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Dr
(

˜t m,∗,V (k1, . . . , kd )
) =

∑

1≤ j≤d

δ|k1, j |=r˜t
l(k1, . . . , k j ) ⊗˜t m,∗,V (k j+1, . . . , kd ) (41)

+
∑

1≤i< j≤d

δ|ki+1, j |≤r<|ki, j |−1
(

ζ lr−|ki+1, j |(ki+1, . . . , k j ) − δr=1 log
l(2)

)

⊗˜t m,∗,V (k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd ) (42)

−
∑

1≤i< j≤d

δ|ki, j−1|≤r<|ki, j |−1
(

ζ lr−|ki, j−1|(k j−1, . . . , ki ) − δr=1 log
l(2)

)

⊗˜t m,∗,V (k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd ) (43)

+ δ(kd−r ,...,kd )=(1,...,1) · ζ l,∗,2V−logm(2)({1}r ) ⊗˜t m,∗,V (k1, . . . , kd−r ) (44)

Proof We treat this based on the number of trailing 1’s in the k. Write k =
(k1, . . . , kd−α, {1}α), with kd−α �= 1, and apply the derivation property to

Dr˜t
m,∗,V

(k1, . . . , kd−α, {1}α)

=
α
∑

�=0

Dr˜t
m
(k1, . . . , kd−α, {1}α−�) · ζm,∗,2V−logm(2)({1}�)

=
α
∑

�=0

{

(

1 ⊗ ζm,∗,2V−logm(2)({1}�)) · Dr˜t
m
(k1, . . . , kd−α, {1}α−�)

+ (1⊗˜t m(k1, . . . , kd−α, {1}α−�)
) · Drζ

m,∗,2V−logm(2)({1}�)
}

.

We compute the second term of the sum to be

(1 ⊗˜t m(k1, . . . , kd−α, {1}α−�)) · Dr ζ
m,∗,2V−logm(2)({1}�)

= (

1 ⊗˜t m(k1, . . . , kd−α, {1}α−�)
)

· (δr≤�ζ
m,∗,2V−logm(2)({1}r ) ⊗ ζm,∗,2V−logm(2)({1}�−r )

)

= ζm,∗,2V−logm(2)({1}r )
⊗ (

δr≤�˜t
m
(k1, . . . , kd−α, {1}α−�)ζm,∗,2V−logm(2)({1}�−r )

)

.

The sum
∑α

�=0 then restricts to
∑α

�=r because of the Kronecker delta, so we find

α
∑

�=0

(1 ⊗˜t m(k1, . . . , kd−α, {1}α−�)) · Drζ
m,∗,2V−logm(2)({1}�)

)

= ζm,∗,2V−logm(2)({1}r ) ⊗
α
∑

�=r

˜t m(k1, . . . , kd−α, {1}α−�)ζm,∗,2V−logm(2)({1}�−r )
)

= δr≤αζm,∗,2V−logm(2)({1}r ) ⊗˜t m,V ,∗
(k1, . . . , kd−α, {1}α−r )
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This gives the last term (44).
Now consider the first term of the sum.We need to apply the previous formula from

Proposition5.7 for Dr˜t
m
(k1, . . . , kd−α, {1}α). We obtain

α
∑

�=0

(

1 ⊗ ζm,∗,2V−logm(2)({1}�)) · Dr˜t
m(k1, . . . , kd−α, {1}α−�) = (45)

α
∑

�=0

{

∑

1≤ j≤d−�

δ|k1, j |=r˜t
l(k1, . . . , k j ) ⊗˜t m(k j+1, . . . , kd−�)ζ

m,∗,2V−logm(2)({1}�)

+
∑

1≤i< j≤d−�

δ|ki+1, j |≤r<|ki, j |−1
(

ζ lr−|ki+1, j |(ki+1, . . . , k j ) − δr=1 log
l(2)

)

⊗˜t m(k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd−�)ζ
m,∗,2V−logm(2)({1}�)

−
∑

1≤i< j≤d−�

δ|ki, j−1|≤r<|ki, j |−1
(

ζ lr−|ki, j−1|(k j−1, . . . , ki ) − δr=1 log
l(2)

)

⊗˜t m(k1, . . . , ki−1, |ki, j | − r , k j+1, . . . , kd−�)ζ
m,∗,2V−logm(2)({1}�)

}

The sum over � and over i < j (respectively j) interchange as follows

α
∑

�=0

∑

1≤i< j≤d−�

=
∑

1≤i< j≤d

min(α,d− j)
∑

�=0

,

α
∑

�=0

∑

1≤ j≤d−�

=
∑

1≤ j≤d

min(α,d− j)
∑

�=0

.

We than note that the upper bound of the �-summation is given exactly by the total
number of trailing 1’s contained across the ˜t m and ζm,∗,2V−logm(2) arguments. No
further 1’s can be introduced, as |ki, j | − r > 1 which follows immediately from
the inequality r < |ki, j | − 1 in the Kronecker deltas. Then if, for example, j =
d − α, then k j+1 = 1 while k j = kd−α �= 1, so the subindex (k j+1, . . . , kd−�) =
(kd−α+1, . . . , kd−�) consists of α−�many 1’s. And indeed α−� from˜t m and � from
ζm,∗,2V−logm(2) give α overall, equal to min(α, d− j) = α. Whereas if j = d−α+1,
we already remove the first 1 = k j from the subindex, leaving α − 1 − � many 1’s in
˜t m and α − 1 overall, agreeing with min(α, d − j) = α − 1.

This means that after summing over � we obtain the corresponding ˜t m,∗,V value
in each case, namely

min(α,d− j)
∑

�=0

˜t m(k j+1, . . . , kd−�)ζ
m,∗,2V−logm(2)({1}�) = ˜t m,∗,V

(k j+1, . . . , kd−�),

and likewise for the other terms, as per Definition8.21. The sum over � only affects
the right hand tensor factors, as the left hand ones are independent of �, so we readily
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obtain the remaining terms (41), (42) and (43) from the three summands in (45). This
completes the proof. ��

Now fix V = λ logm(2), λ ∈ Q. One can then proceed in the same way as
Lemma8.3 and Lemma8.4 to conclude that the Hoffman-stuffle filtration

HH ,∗ := 〈tm,∗,λ logm(2)(w) | w ∈ {1, 2}×〉Q
H�,∗HH ,∗ := 〈tm,∗,λ logm(2)(w) | w ∈ {1, 2}× , s.t. deg1 w ≤ �〉Q .

is motivic, of a particular form. Namely

grH ,∗
� D2r ′+1(gr

H ,∗
� HH ,∗) ⊆ ζ l(2r ′ + 1)Q ⊗Q grH ,∗

�−1 H
H ,∗.

In particular: terms (41),(42),(43) give exactly the same contributions as previously,
except for replacing ˜t m with ˜t m,∗,V in the right hand tensor factor. Finally

ζ l,∗,2V−logm(2)({1}2r ′+1) =
{

(2λ − 1) logl(2) if 2r ′ + 1 = 1
1

2r ′+1ζ
l(2r ′ + 1) if 2r ′ + 1 > 1,

and the right hand factor δ(kd−r ,...,kd )=(1,...,1)˜t
m,∗,V

(k1, . . . , kd−r ) is obtained by
removing 2r ′ + 1 ones from the end of the t value. So the contribution from (44)
lands in the space ζ l(2r ′ + 1)Q⊗Q grH ,∗

�−1 HH ,∗. In fact, if 2r ′ + 1 > 1, we remove at

least 3 ones, and so reduce the level by 3, which vanishes in grH ,∗
�−1 HH ,∗. Whereas, if

2r ′ + 1 = 1, this term contributes

δkd=1(2λ − 1) logl(2) ⊗˜t m,∗,V
(k1, . . . , kd−1).

Note also, this is the only place the regularisation parameter λ enters the calculation.
In particular, the additional δkd=1(2λ−1)π̃1

(

logl(2)
) ·˜t m,∗,V

(k1, . . . , kd−1) term
combines with the original term

−δkd=1π̃1
(

logl(2)
)

˜t m,∗,V
(k1, . . . , kd−1)

coming from deconcatenating at the end. (This arises in (43); by the same argument
as in Proposition5.9, one knows that only the two extremal terms, removing initial or
terminal 1’s, actually contribute to D1.) One then introduces the linear map ∂

H ,∗
N ,� as

∂
H ,∗
N ,� : grH ,∗

� HH ,∗
N →

⊕

1≤2r+1≤N

grH ,∗
�−1 H

H ,∗
N−2r−1,

by first applying
⊕

1≤2r+1≤N grH ,∗
� D2r+1

∣

∣

grH ,∗
� HH ,∗

N
, then projecting ζ l(2r ′ + 1) ,

logl(2) to Q via π̃2r ′+1 as in Definition8.5.
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Then define the matrix MH ,∗,N ,� as the matrix of ∂
H ,∗
N ,� as in Definition8.8, with

respect to the bases BH ,N ,�, B ′
H ,N ,� given in Definition8.6, after replacing ˜t m with

˜t m,∗,V .
Now, one notes that the to compute the matrix MH ,∗,N ,� one replaces each term− 1

2
in the matrix MH ,N ,� arising from π̃1

(

logl(2)
) = 1

2 by the coefficient
1
2 (λ−1)− 1

2 =
λ − 1.

Example 8.24 For N = 8, � = 2, the matrix MH ,∗,8,2 is as follows; the first row and
column label the elements of B ′

H ,8,2 and BH ,8,2 respectively.

1222 2122 122 2212 212 12 2221 221 21 1

11222 1 0 −2c21 0 0 −8c221 0 0 0 0
12122 0 1 2d12−2c21 0 0 8c23−8c32 0 0 0 0
21122 0 0 2d21 0 −2c21 0 0 0 0 0
12212 0 0 2c21 1 2d12−2c21 −8c23 + 8c32+8d122 0 0 0 0
21212 0 0 0 0 2d21 8d212 0 0 0 0
22112 0 0 0 0 2c21 8d221 0 0 0 0

12221 λ−1 0 2c21 0 0 8c221 1 2d12−2c21 8d122−8c221 32d1222
21221 0 λ−1 0 0 2c21 0 0 2d21−2c21 8c23−8c32+8d212 32d2122
22121 0 0 0 λ−1 0 0 0 2c21 −8c23+8c32+8d221 32d2212
22211 0 0 0 0 0 0 λ−1 2c21 8c221 32d2221

We note now that when λ = 1
2 , the matrices MH ,∗,N ,� and MH ,N ,� are identical,

and therefore the stuffle-regularised matrix is also invertible. Moreover, when λ = 1
the last diagonal block (corresponding to the original block M�−1,H ,N ,� ending in
� − 1 trailing 1’s) is now upper triangular modulo 2 (compare Lemma8.16), and so
also again establishes that MH ,∗,N ,� is an invertible matrix. More generally we have
the following.

Proposition 8.25 Suppose λ has the form 2a+1
b ∈ Q, with a, b ∈ Z. Then the matrix

MH ,∗,N ,� is invertible.

Proof The previous result Lemma8.12 carries through to show the matrix is block
triangular. The result Lemma8.14 also carries over to show the diagonal blocks cor-
responding to < � − 1 trailing 1’s are upper triangular modulo 2, and are therefore
invertible. The proof of Lemma8.16 is adapted to show that the determinant of the
last block has the form

(2x + 1) + (λ − 1)(2y + 1),

with x, y ∈ Z. For λ of the above form, this is

2(x − y) + (2a + 1)(2y + 1)

b
,

which cannot be 0, as the numerator of the fraction is odd. ��
The proofs of Corollary8.19 and Corollary8.20 now directly generalise to this case,

giving
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Corollary 8.26 Let V = λ logm(2), with λ = 2a+1
b ∈ Q and a, b ∈ Z. Then the

elements

{˜t m,∗,V
(w) | w ∈ {1, 2}×},

are linearly independent. Moreover, they form a basis for the space of:

(i) motivic extended stuffle-regularised multiple t values with ˜t m,∗,V
(1) = 2V ,

(i′) motivic extended shuffle-regularised multiple t values,
(ii) alternating (shuffle-regularised) motivic multiple zeta values

In particular all of these spaces agree, and extended stuffle-regularised motivic mul-
tiple t values with ˜t m,∗,V

(1) = 2V have dimension FN+1 in weight N , where
Fk = Fk−1 + Fk−2 with F0 = F1 = 1 is the sequence of Fibonacci numbers.

8.2 Singular regularisation parameters

The proof of Proposition8.25 breaks down irrevocably in certain cases, in a way that
is unavoidable. For example, for N = 8, � = 2 as above, one can see that λ = 242

91
leads to determinant 0 in the last diagonal block. This corresponds to the a linear
dependence between regularised elements of level � ≤ 2 in weight 8.

For V = 242
91 log(2), one has the following identity between stuffle-regularised

MtV’s (and a corresponding identity of stuffle-regularised motivic MtV’s), as verified
via the Data Mine [2]

t∗,V (2, 2, 2, 1, 1) =
345998
24843 t

∗,V (2, 2, 2, 2)

− 22801
8281 t

∗,V (1, 1, 2, 2, 2) − 11023
8281 t

∗,V (1, 2, 1, 2, 2) + 1661
1183 t

∗,V (1, 2, 2, 1, 2)

− 22801
8281 t

∗,V (2, 1, 1, 2, 2) − 919
637 t

∗,V (2, 1, 2, 1, 2) − 17257
8281 t

∗,V (2, 2, 1, 1, 2)

+ 151
91 t

∗,V (1, 2, 2, 2, 1) + 73
91 t

∗,V (2, 1, 2, 2, 1) − 11
13 t

∗,V (2, 2, 1, 2, 1) .

Such a regularisation parameter should be termed singular, as the matrix of ∂
H ,∗
N ,�

is singular. The following V = λ logm(2) are singular regularisation parameters, first
appearing at the indicated weight.

N 1 3 5 7 9 11 13 15 17

λ 0 2 28
11

242
91

64472
23479

712586
252913

8156772916
2873825507

1002618956134
348754372637

6597362406922672
2270331930729959

A (potential) new parameter λ appears in level 1, odd weight, corresponding to last
diagonal block with 0 trailing 1’s, and a reduction of

˜t m,∗,V
({2}n, 1) =

n+1
∑

i=0

ci˜t
m
({2}i , 1, {2}n−i ),

for some ci ∈ Q. In weight 2N + 1 this reduction can also be obtained more directly
from the identity in Theorem6.1, when written in matrix form with rows indexed by
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ci and columns by ζm(2r ′ + 1)˜t m({2}N−r ), which essentially encodes (the last block
of) such MH ,∗,2N+1,�=1.

Once such a parameter appears, it renders nonsensical the matrices MH ,∗,N ,� of
higher weight in that level, as the basis of lower level elements B ′

H ,N ,� is no longer
linearly independent. One can strip trailing 1’s from the last diagonal block, without
changing the combinatorial of the matrix entries, to see that every singular regulari-
sation parameter arises from the level 1 relation.

The sequence (λi )
∞
i=1 of singular regularisation parameters appears to satisfy a

number of properties. We end with the following conjecture.

Conjecture 8.27 The sequence (λi )
∞
i=1 = (0, 2, 28

11 ,
242
91 , 64472

23479 , . . .) of singular regu-
larisation parameters satisfies the following:

(i) the sequence is increasing λi+1 > λi ,
(ii) the sequence is bounded λi < 3, for all i ,
(iii) the sequence has limit limi→∞ λi = 3.
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