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Abstract

We give an evaluation for the stuffle-regularised r*V ({2}¢, 1, {2}?) as a polynomial
in single-zeta values, log(2) and V. We then apply this to establish some linear inde-
pendence results of certain sets of motivic multiple ¢ values. In particular, we prove
the elements of Saha’s conjectural basis are linearly independent, on the motivic level,
and that the (suitably regularised) elements ™ ({1, 2}*) form a basis for both the
(extended) motivic MtV’s and the alternating MZV’s.
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1 Introduction

The multiple zeta value (MZV) with indices ki, ..., kg € Z>1, and kg > 2 for
convergence reasons, is defined by

1
(i k)= Y

O<nj<--<ng "1 g

As is common, we call d the depth of the MZV and k| + - - - + k4 the weight. Although
the cases of depth d = 1, 2 were already studied by Euler, the research into the case
of general depth d only started in the early 1990s with work of Hoffman [14] and
Zagier [26], with many theorems and identities being proven and many conjectures
formulated since then. These values have also earned a prominent place in high energy
physics, as part of the calculation (in special cases) of Feynman integrals and scattering
amplitudes (see [3] as a starting point).

In [16], Hoffman studied the multiple t values (MtV’s) defined by restricting to
MZV-like sums with odd denominators,

1
t(kl,...,kd): Z (an_l)kl.,_(znd_l)kd’

O<nyp<--<ng

with again k; € Z>1 and k; > 1 for convergence, and the same notion of weight and
depth. (Be aware that Hoffman uses the other convention on MZV’s, with summation
indices given by n; > --- > ng > 0, which has the effect of reversing argument
strings.) Therein Hoffman compared and contrasted the algebraic and combinatorial
properties of MtV’s and MZV’s, establishing that MtV’s have many similarities with
MZV’s, but some distinct differences of there own. (In particular, both MtV’s and
MZV’s have a stuffle-product, and symmetric sum formulae [16, Section 3]. MZV’s
admit a duality relation such as ¢(1,2) = ¢(3), but MtV’s appear to have no such
identities: already [16, Appendix A] shows that 7(3) and #(1, 2) are unrelated. How-
ever MtV’s conjecturally admit a derivation [16, Conjecture 2.1] which is realised
in Appendix A therein as a formal differentiation with respect to log(2). We refer
to Remark 5.10 below for an interpretation and explanation of this derivation as the
action of D1 on the motivic level.)
By writing

T— (=) (1= (1)
k= Y LD A= CU)

ki ka
2n 2ny

O<ni<--<ng
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On motivic MtV’s and Saha'’s basis 1997

one obtains a formula (cf. [16, Corollary 4.1]) for the MtV’s in terms of so-called
alternating MZV’s. Namely

1 El, ..., &4
tkr, ..., kg) = = , 1
(ki D =55 D E1eat (kl,...,k) ey

gie{x1}

where

(81,...,8d>_ Z 8'1“...32:1

‘ ki ka O<ni<--<ng n’]‘l nZd

is the alternating MZV with signs &; and arguments k; (also called the coloured MZV
of level N = 2; level here referring to the order of the roots of unity involved). Often,
if all &; € {£1}, one denotes arguments k; which have associated sign ¢; = —1 by
k;. There are notions of regularisation which we cover more fully in Section 2, which
allow the divergent MZV’s and MtV’s to be assigned consistent finite values.

Our first main result, in Section 3, gives an evaluation for the stuffle-regularised
multiple ¢ value r*" ({2}9, 1, (215, analogous to the evaluation for ¢ ({2}, 3, 215
established by Zagier [27], and the evaluation for #({2}¢, 3, {2)%) established by
Murakami [22], both of which were used to establish the linear independence and
basis properties of certain motivic MZV’s and MtV’s respectively ([4] in the zeta-
value case, and [22] for the ¢-value case).

Theorem 1.1 (Theorem 3.3 below) The following evaluation holds forany a, b € Z=>,
for t%V the stuffle-regularised MtV’s with t*V (1) = V.

V{21, (2" =
a+b 2
_ 1\ —2r 2r 2 2r A L1 a+b—r
§< )2 [(Za)+—22,_1(%)};(%“):({2} )
+8a=0log()1({2}") + 8p=0(V — log())t({2}) ,

n

. ,—/\ﬁ . .
where we write {k}" = k, ...,k for the argument k repeated n times, and 8, is the
Kronecker delta symbol, equal to 1 if the condition e holds, and 0 otherwise.

Because a subset of the MtV’s which appear in this evaluation series are divergent, we
must understand the asymptotics of certain 3 > hypergeometric series (and thus the
4 F3 series from which they originate), via results from the Evans—Stanton/Ramanujan
asymptotic [8], in order to extract the evaluation with a generating series approach.
By extracting the special case @ = 0, b = n of Theorem 1.1 in Section 3.3, we also
answer a question posed in [6].

We then utilise the arithmetic properties of the coefficients to establish some linear
independence properties of certain sets of motivic MtV’s. In Section 4 we state the main
definitions, properties and theorems pertaining to the framework of motivic MZV’s.
One can often think of the motivic MZV’s and MtV’s as some algebraically defined
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1998 S. Charlton

‘formal’ analogue to their analytic counterparts, which have more rigid structure and
better properties. Conjecturally the motivic versions reflect all of the relations between
the real-valued versions, but they certainly do not introduce new relations. In Section 5
we discuss the regularised distribution relations, and extend the formulae given by
Murakami [22] for D, to all motivic MtV’s. In Section 6 we use this to lift Theorem 1.1
to a motivic version.

Then in Section 7, we establish that the elements conjectured by Saha [25] to be a
basis of (convergent) MtV’s are, at least, linearly independent. This establishes a lower
bound of F on the dimension of the space of (convergent) motivic MtV’s of weight
N, where F,, = F,_1 + F,_» is the n-th Fibonacci number, with F; =1, F, = 1.

Theorem 1.2 (Corollary 7.15 below) Let
S={t"ky,....k—1,k,+1) | k; € {1,2}}

be the set of elements in Saha’s basis conjecture. Then the elements of S are linearly
independent.

For example, this establishes that t™ (1, 2) and ™ (3) are linearly independent in weight
3,as are t™(1, 1, 2), t™(2, 2) and t™(1, 3) in weight 4.

Finally in Section 8 we introduce the Hoffman ¢ one-two elements—those
MtV’s with arguments exactly 1 or 2—in analogy with the Hoffman elements
c(ky, ..., k), ki € {2, 3} for classical MZV’s. We show the one-two elements form
a basis of both (extended) motivic MtV’s and alternating motivic MZV’s, under a
certain shuffle regularisation and certain stuffle regularisation.

Theorem 1.3 (Corollary 8.19, and Corollary 8.26, below) Let
H® = (1™, ..., k) | ki €{1,2}}

be the Hoffiman one-two elements, for @« = x or e = LI, where the shuffle regularisation
arises from L™ (1) = 0 and the stuffle regularisation has t™*(1) = L 1log™(2), A of
the form Z“b—H € Q with a,b € Z. (In particular, . = %, 1 are allowed.) Then the
elements in H are linearly independent, and span the space of both (extended) motivic

MtV’s and motivic alternating MZV'’s.

As a corollary, we see the space of alternating MZV’s of weight N (under shuffle-
regularisation with 901 = 0 or stuffle-regularisation with c*9(1) = 0 and
extended MtV’s (under shuffle-regularisation induced by cH0(1) = 0, or stuffle-
regularisation with V(1) = V for V = Alog(2), A = % € Q a,b € 7Z)
coincide. In particular they have dimension Fy 1. We also indicate how badly this
can fail for certain ‘singular’ regularisation parameters in Section 8.2.

We also include some further examples of the motivic Galois descent (to motivic
MZV’s) for t™(ky, . .., kg) for particular families which include arguments k; = 1.
For example, in Proposition 5.12 we show

™2}, 1, {2)%, 3, {29,
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On motivic MtV’s and Saha'’s basis 1999

is alinear combination of motivic MZV’s whenevera > 1. This shows that Murakami’s
motivic Galois descent of r™(kq, ..., kg), all k; > 2[22, Theorem 8] is not exhaustive,
and raises the question of more generally characterising when such a motivic MtV can
be written as a linear combination of motivic MZV’s.

2 Relating regularisations of multiple zeta values and
multiple t values

In this section we recall, compare and contrast the different notions of regularisation
which apply to MtV’s. In particular, we need to understand how the stuffle regularisa-
tion of ¢ values with Y (1) = V relates to the regularisation of ¢ values induced by
the stuffle regularisation of the underlying zeta values at ¢*Y (1) = U, or the shuffle
regularisation of the zeta values with ¢ LWy =w.

2.1 Stuffle and stuffle regularisation for MZV’s and MtV'’s

As already noted in the introduction, MZV’s and MtV’s are only defined when the last
argument k; > 2, otherwise the series is divergent. However, one can use the stuffle
product structure to give a consistent definition to any MZV or MtV with trailing 1’s, in
terms of a single parameter assigned to ¢(1) := ¢*Y (1) = U ort(1) := 1%V (1) = V
respectively. Alternatively one can utilise the iterated integral representation to define
a(nother) regularisation. We briefly recall the details here, see [18] for full details in
the case of classical MZV’s and the extension presented in [28, §13.3] for the case of
cyclotomic MZV’s. (See also §6 and the rest of [17] for the general background on
quasi-shuffle algebras, and their applications to multiple zeta values.)

Stuffle-regularisation of MZV’s and MtV’s: Define the alphabet

Z =A{zke |k =1,¢€{£l}},
with the letter product zx . © 2¢; = Zk4e,en on QZ. On Qli = Q(Z), the Q-vector
space of words over the alphabet Z, the ¢-product induces a stuffle-product *x given

by

(Zk,ew1) * (zg qw2) = Zg e (W1 * 2 yW2) + 2¢, 5 (Zk, e W1 * W2) + (Zk e © 2, ) (W] * W2)
= 2k, e (W1 * Z¢g yw2) + 20, (ke W * W2) + Zpyg,en(Wy * w2) .

On the subspace ng of convergent words (also called ‘admissible’), namely those
words which do not end in z; 1, the map

C:(Q[Q,*)—)R

El1,...,&4
Zki,er " Zhaea T € k; ky
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2000 S. Charlton

is an algebra homomorphism. This is because * corresponds to the multiplication
of (alternating) MZV’s as series, given by interleaving the summation indices with
equality allowed. For example (recall k; means the sign &; = —1 is associated to k;),

_ _ (=4 (=n~
(i k)e@ = 3 Y
0<nj<ny 0<m; 1 2 my

(Y ¥+ ¥

O<ni<npy<m; O<ni<mi<ny O<mi<ni<np

=Dk (=D
+ Z + Z )kl ky

9]
O<ni<ny=m; O<ni=m|<ny 1 m

= ¢(ki, k2, 0) + ¢ ki, €1, ko) + S (€1, ki, ko)
+ ¢kt ko 4+ €1) 4+ ¢(ky + €1, ka)

which corresponds to the computing zx,,—1 Zk,,1 * Z¢,,—1-
It is then a standard result [15, 23] that Q(Z) = ng[z 1,1] (with the product given
by ). This is proven by recursion, as

Lo -1
wz | — = (w2} *21,1) )
1wy

is a sum of words ending in strictly fewer z; 1 letters. Finally the map ¢ : (th, ¥) > R
can be extended uniquely to an algebra morphism

U Q(z) = 20z1.1]1 — R[U]

by the sending z1,; +— U. This enables us to define the stuffle-regularised MZV’s as
follows.

Definition 2.1 (Stuffle-regularised MZV’s) The stuffle-regularisation of the alternating
MZV is defined by

% U E1,...,&4 . *,U
¢ =< (Zkl,sl T de,{;‘d)'
ki,..., kg

With a # 1, we can for example compute—using the recursion from (2) as the key
step—that,

Y, ) =¢*Yae*V ) -¢*Y,a) —¢*Y@+1)

3)
=¢@U -t a) =@+ 1)
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On motivic MtV’s and Saha'’s basis 2001

Then
%Y, 1,1)
=1*Y@ eV -V da, ) - ¢V @ 2) - Y@+ 1.1)
=1U%(a) - Uta+1) = Ug(l,a) + 1¢(a +2)
+e(a+ D)+ 3¢02,0) - $2(a,2) +¢(1, 1, a).

“

Similarly the map
t: (ng, *) —> R

E1,...,&4
Zhy,er " Tha,eq T L ky ky
e

is an algebra homomorphism, which can be extend to V. (ng, x) — R[V] by
sending 71,1 — V. (Here we have implicitly introduced alternating MtV'’s,

¢ Ely...,8&d o Z 8?1...€Zd
ki,.... kg ’ d(2n1—l)k1~-~(2nd—l)kd7

O<ny<---<n

although we are still only interested in the case where all ¢; = 1.) From this we define
the stuffle-regularised MtV’s as follows.

Definition 2.2 (Stuffle-regularised MtV’s) The stuffle-regularised MtV is defined by
Yk ka) =Y @ k)

Then one immediately has that the same formulae as in (3) and (4) hold with ¢ replaced
byt and U by V.

Natural choices for ¢V (1) and 1*V (1); extended MtV’s: Although we are now
free to choose any value we like for £*Y (1) = U or t*V (1) = V, some choices are
more natural or convenient than others.

As shown in the proof of Theorem 1 [18], the classical asymptotic

1
i)=Y, —=log(M)+y +0M™,
O<n<M

(here y = 0.577...1s the Euler-Mascheroni constant) implies the so-called truncated
MZV has the following asymptotic

1
Cky, .o kg) = Z ——

O<nj<--<ng<M M1 """ Tg

i, (log(M) +y) + O(M~ " log’ M),

.....
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2002 S. Charlton

for some J, as M — oo, where Zy,  ,(T) = ;**T(kl, ..., kq) € R[T] is some
polynomial. Then one can naturally look at the constant term of this polynomial, to
‘renormalise’ and ‘remove’ the log(M ) dependence. This corresponds to taking 7 = 0,
so we can naturally assign U = ¢*Y (1) = 0 in the above stuffle-regularisation of
MZV’s.

Applying the same prescription to the truncated MtV’s gives

1 1 1
G0= 3 s T

O0<n<M 1<n<2M 1<n<M

- (log(ZM) ty+ 0((2M)—1)) - %<log(M) +y+ o(M—l))

1 —1
= log(2) + E(log(M) +y)+o(Mm).
This suggests that one should naturally define
V=Y (1) = log(2), ®)

by taking the constant term of the above, when viewed as a polynomial in log(M) + y.

Since the space of weight 1 MtV’s ¢(ky, ..., kg) withk; +---+kg = land kg > 1
is 0 dimensional, we already see that defining r*" (1) = log(2) extends the space of
MtV’s. We make the following definition, for clarity, with regard to convergent and
regularised MtV’s.

Definition 2.3 (Convergent and extended MtV’s) A multiple ¢ value t(ky, ..., kg) is
called

(i) convergent if kg > 2, and
(i) extended if kg > 1

The space of convergent MtV’s refers the space generated by all MtV’s ¢ (ky, ..., kg)
which have k; > 2, whereas the space of extended MtV’s denotes that generated by
all MtV’s t(ky, ..., kg) allowing kg > 1 or k; = 1, under some particular (specified)
regularisation.

Shuffle regularisation of MZV’s: Likewise, it is well known how to write MZV’s
(or more generally multiple polylogarithms) as iterated integrals. Namely

¢ (‘”’ ' ""”) = (=D4T; 91, (O a0 g OF ) (6)

ki,.... kg
n
. — ) d 1
where the notation {k}" =k, ..., k denotes k repeated n times, n; = [ =i € and
I(x0; X1, ..., XN; XN£1) :=/ (x5 s1) A ANwo(xn;sy), (1)
XQ<S] <-<SN <Xp+1
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On motivic MtV’s and Saha'’s basis 2003

is the iterated integral of the family of differential forms w(x; s) = 45 Note that

this integral only converges when xg # x1 and xy # Xn+1. o

Integrals of this form multiply by the shuffle product, which corresponding to
interleaving the integration indices, although here equality of indices gives sets of
measure zero, and so no contribution to the result. For example

$(2)¢(2) =1(0; 1,0, DI(0; 1,0: 1)

ds; dsy ds3 dsy
= AN — AN —
O<si<sp<1 S1 — 1 82 JO<sz<sy<1 S3 — 1 S4

dsg dsy dry drp
= AN — A N —
O<sy<sy<ri<rp S1 — 1 52 r = r
ds; dry ds; drp
+ AN —— A — A — + 4 more terms
O<sy<ri<sp<ry S1 — 1 rp—1 52 rn

={(2,2) +¢(1, 3) + 4 more terms
=2¢(2,2)+4¢(1,3)

Introduce the alphabet Y = {eg, e1, e_1}, with letter product ¢; ¢ ¢; = 0 on QY.
On ‘BL = Q(Y), the ¢-product induces the shuffle product L, given by

(ejwy) W (ejwy) = e;(wy Wejwy) + ex(e;wy W wy) + (¢ ©ej)(wy LW wy)
=¢;(wq LW ejwz) + ej(e,-wl W wy) .

On the subspace ‘BEU of convergent words, namely those which do not start in eg, and
do not end in e, the map

’: (%&,LLI)—)R

ny—1 ng—1 m/nn3/n2,-1/na
en € e, l—>§(nl Ty ny

= (=D1O; ey {eo}" ™' egy feo) T D),
is an algebra homomorphism, as LI encodes the product of iterated integrals, as
explained above. (Note: the sign 1/n, appearing in the last ¢ argument involves the 1
from the upper bound of integration.)

It is again a standard result [15, 23], provable by recursion, that %L = %Om[eo, e1]
(with the product given by LU). One simply notices that

1 _ 1 N
e(')’w—;eou_l(eg 'w), and we'f—;(we? Ywey, (8)

are a sum of words which start with strictly fewer e letters, and a sum of words which
end with strictly fewer e letters, respectively. Finally, the map ¢ : (%BJ, W) — Rcan
be extended uniquely to an algebra morphism

¢ WWa qr) = B9 [eo, e1] > R[Wy, Wal,
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2004 S. Charlton

by sending e; — Wi, e¢g > W,. We can therefore define the shuffle regularised
MZV’s (with leading 0’s) as follows.

Definition 2.4 (Shuffle-regularised MZV’s) The shuffle-regularisation of the alternat-
ing MZV with £ leading 0’s is defined by

W, Wi, Wa (€155 &d Wi, W ki—1 ka—1

e <k1 kd) R e e e’ ),
with n; = ]_[jl ; ] . As with the usual convention for alternating MZV’s, one may
write k; to denote ¢; = —1, and suppress &1, . .., &4 from the notation of ¢, WL Wi W2

We will typically be interested in either the case where £ = 0, in which case the
dependence on W, drops out, or in the case where £ > 0, and we will set W1 = W, = 0,
to agree with the period of the corresponding motivic MZV (see Section 4 below). More
generally, from the duality of multiple zeta values (which arises from the functoriality
of iterated integrals under s; — 1 — s;, along with path reversal) the one can argue
informally that, since

Si> 1 —Si reverse

So(1) =—-1(0:1; 1) —1(1;0;0) 1(0; 0; 1) = £1(9),

it makes sense to impose that W, = {5“ W2 (1) and W, = {fu W2 g3y are equal in
the shuffle-regularisation. (This informal calculation is made precise by considering

the asymptotic expansion of [, e d’ =—/, - d’ , as a polynomial in loge, as
e — 0,cf. [12, §2.9] or [9, §3.6.5— 366])
We therefore refine the definition of the shuffle-regularised MZV’s as follows.

Definition 2.5 (Shuffle-regularised MZV’s, refined) The shuffle-regularisation of the
alternating MZV with £ leading 0’s is defined by

ww (€5 8d ) WW.W L, ki— kg—1
S <k1 kd) =¢ (epemey —-enaey’ )
with n; = ]_[‘j ; j . As with the usual convention for alternating MZV’s, one may
write k; to denote &; = —1, and suppress €1, . . ., &g from the notation of Q

For example, we compute—using the recursions in (8) as the key step—the follow-
ing shuffle-regularised MZV’s,

Ve L = %W2§(2) —2We¢(,2)+3¢(1,1,2),

1
oMM = 5;<2>W2W% — W (3) —2W1Wat(1,2)

+4Wi¢(1,3) + Wi¢(2,2) +3Wa¢ (1, 1,2)
—-6¢(1,1,3)—2¢(1,2,2) —¢(2,1,2),
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On motivic MtV’s and Saha'’s basis 2005

and by taking W1 = W, = W,

21,1 = %;(2)W3 — W2 (3) —2W22(1,2) + 4We(1,3) + WE(2,2)
+3We1,1,2) —60(1,1,3) —2¢(1,2,2) —£(2,1,2).

We already remark here that """ (k) and ¢*Y (k) are not the same even for W = U,
but they are closely related, as we recall in Lemma2.16 below.

Inthe case W = 0, one has the following explicit formula to unshuffle and regularise
the initial 0’s. (Compare property 12 in Section 2.4 of [4])

Lemma 2.6 (Unshuffling of initial 0’s) For any € > 0, any kK = (k1, ..., kg) € Z‘él
and any signs g;, we have

w,o [ & ¢ ki+ip—1 kg+ig—1
: —(—1
e <K>().Z( i iq
i1 +tig=t
X ”J’O( £ ) 9
¢ ki+iy, ... kqg+ig ©

Proof This is a straightforward proof by induction on £, the case £ = 0 is clearly true.
So take £ > 0, and assume the statement holds for £ — 1. In %SJ, with n; = ]_[d P

j=ivj o
we compute the following product

V4 k1—1 kq—1 1 -1 ki—1 kqg—1
epen €y cen € — geo ey ep e C g€l

d k; o
_ J —1 ki—1 (kj—D+1 ka—1
—_2 :/.:17'60 emé€ " €n; T ena€

Applying "0 gives

since ;“lu"’o(@) = ;“J’O(eo) = 0. After substituting in (9) in the case £ — 1, and
simplifying, we obtain the result in the case €. This completes the induction, and the
lemma holds. O

Shuffle-regularisation of MtV’s: In contrast to MZV’s, the integral representation of
MtV’s does not endow them with a nice shuffle-product structure. For example, one
sees that in depth 1, we have

d d
;(2)=_/ 182
0

<sy<so<l1 512_ 1 52
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2006 S. Charlton

whereas in depth 2

12, 2)=/ i ds2 Sfd” A 354
0

2
<sp<sy<sz<sa<l S| — 1 52 3 — 1 54

In particular, the first differential form is of a unique type, and any further forms
corresponding to higher depth and more arguments have an extra s; in the numerator,
i.e.

sids; dsq

) VErsus

st —1 s%—l'

Therefore, after taking the shuffle product (valid for iterated integrals of any families
of differential forms) of two copies this representation of 7(2), one has to disentangle
cases the forms when

de

2 _
85 1

appears after the first position, and when

s1dsg

2
st—1

appears in the first position.

To cut to the point: we shall take the expression for ¢ in terms of ¢ from (1), and use
this as the basis for defining the shuffle-regularised version of 7 by shuffle-regularising
the MZV’s therein.

Definition 2.7 (Shuffle-regularised MtV’s) The shuffle-regularisation of the MtV is
defined by

€1,...,€
MW ks k) = = Z € - <k: kj)' (10)

gie{£1}

2.2 Compatibility of the t and zeta stuffle-regularisations

Motivated by the above definition of 7" Wi(ki, ..., kg)in (10), we can likewise intro-
duce a regularised version of the MtV’s given by stuffle-regularising the underlying
MZV’s

Definition 2.8 (Zeta-stuffle-regularised MtV’s) The stuffle-regularisation of the MtV
given by stuffle-regularising the underlying MZV expression is defined by

E1y..., &4
Wk, .. kg Z ey - (lq kd>' (11)

gie{x1}
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The natural question is how #¢*" and t*" are related? Firstly, we note that the stuffle
product of ¢ values and of the underlying zeta values is compatible in a precise sense.
To make this statement formal, we must first recall and introduce some additional
algebraic notation.

Recall the algebraic setup from earlier: Qll = Q(zke | k> 1, e € {£1}), with the
stuffle product given by

(zZk,ew1) * (2o yw2) =

Zhk,e (W1 * Z¢,W2) + 20,5 (Zh,e W1 * W2) + Zkye,en(W1 * w2).

The map ¢: th — R from convergent words (those not ending in z 1) is an algebra
homomorphism. Introduce the alphabet C = {cx , | k > 1, p € {0, 1}}, with letter
product on QC given by

Che,p ©Cp,q = 8p=qu+Z’p.

This induces the stuffle product

(ck,pw1) *¢ (ce,qw2)

= ¢k, p(W1 *¢ co.qw2) + co g (Cr, pw1 % W2) + 8p—g Chye, p (W1 X W2),

on Ql := Q(C). On the convergent words Qg, i.e. those not ending in ¢ g or ¢y 1, the
map

t: (Qﬁg,*,) —-R

1
ChipyChapa P D ki ka
O<ni<-<ng ™M1 " Mg
nj=pj (mod 2)

is an algebra homomorphism; the stuffle product *, encodes the multiplication of such
series, as interleaved indices can only be equal in the case they satisfy the same parity
constraint (whence the term §,—; in *;).

Note that with all p; = 1, t(ck;,1--cry,1) = t(ky, ..., kq) is the MtV we are
interested in. Whereas, with p; = 1,i odd, p; = 0, i even, the map 7 (cx,,p; - * * Cky. pg)
produces the multiple (capital) T values (MTV’s) in the sense of Kaneko-Tsumura
[19, 20].

Define a Q-linear map

o: ¢l - ol
1

1 Pa
Cki,p1 " Cka,pa 77 54 Z €1 1&g " Zhkyer Zkgea -
£jel£1}

Then immediately we have that = ¢ o o on ng. This is just the generalisation of
(1) to odd or even summation indices, where this parity can be forced by inserting the
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factor

1 — (=1 1+ (="
or ,
2 2

respectively.
Lemma 2.9 The map o : Cl — Q[l is an isomorphism (of vector spaces).

Proof Fixd,and ki, ..., kq. Then o maps words of the form c, p, - - - ¢k, p, t0 (SUmMS
of) words of the form zj, ¢, - - - Zk;,,- In this basis of the subspace and image, with
(p1, ..., pa)and (e1, ..., g4) ordered lexicographically, o is described by the 2¢ x 2¢
matrix

— P1 Pd
Md.—<81 o--ed) J .
(P15, pa) {0,134, (e1,...,60) €{Z1}

By the lexicographic ordering of (py, ..., pg) and (¢1, ..., &), We can write
Mo — 19 My 1My _ (Maot Mgy
CTNED Mg (D Mgy ) T \Maor =M

as a recursively defined block Vandermonde matrix, with

Mo = (1), My = (} _11>

By the properties of block determinants, we see by induction that det(My) =
det(—2M3 ) = (22! det(My_1)* = (=2)42"" \yhich is in particular non-
zero. Hence o is invertible on this subspace, and by the block diagonal nature of ¢ in
general, it is an isomorphism in general. O

Lemma 2.10 The stuffle product of MtV’s and the stuffle product of MZV’s are com-
patible in the following sense. For any wy, wy € @i

o(w * wy) = o(wy) * o (wy)

That is to say, o is an algebra (iso)morphism.

Proof We prove thus by induction on the length of w; plus wy. For w; = 1, the empty
word, then both sides are just o (w; *; 1) = o (w3) = o (wy) * 1, likewise for wy = 1.
Now assuming both wy = ¢ ,w], wy = cg qw5 # 1, we compute (using linearity of
O)’

o ((ck, pw)) *; (Co,qw5))
= G(Ck,p(w/l Kt CoqW)) + Ceq(Ck, pw) *r W) + 8pmgChre, p (W *; w/z))

= o (cx,p(w] * Cg,qwé)) + G(Cg,q(ck,pw’l * wh)) + 8p=q0 (ke p(W] #r w))).
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Now observe that directly from the definition

1
o (ck,pw)) = 3 Z &Pz .0 (w)).
ee{£l}

So using this (twice), and the induction assumption,

o ((ck, pwy) #¢ (co,qw)))

1
== E {8pzk,eo(w’1 * Co,qWh) + €920 00 (ck, pw] * W)
+1
ee(£1} + 8pg & zkr0,00 (W] *; w/z)} .
1
= E {epzk,s(a(w/l) % 0 (Coqwh)) + &92¢0.6 (0 (cr, pw)) * o (wh))

Tl
eetEl + 8p=qe” 2kt e (0 (w]) % G(w/z))} :

Z [Ska,s(O‘(w/l) x (%2090 (W5))) + 09z, ((67 28,60 (W))) * a(u/z))}
enel£l)

1
+ 3 Z 8p=q€” 2kt0.6 (0 (W) x o (w))) .
ee{£1}

SN

By the recursion for *, with z ¢ ¢ 2,y = Zk+¢,ey» this can be rewritten as

1
=7 2 (Mmoo ) = (12000 W)

e,ne{£l}

1
—7 2 e ke (o)) x o (w))) (12)

e,ne{£1}

1
+§ Z 8p=q & zkt0,6 (0 (W) * o (w5)).
celxl)

In the third summand, put ¢ = né, with & € {£1}. Then en = &n> = &, and
Dpeny 17 = 28p=g. 0

1
= Y el zrgpen(ow)) x o (wh))
e,ne{£l}

1
=1 2 Mz W) ko)

& ne{£l1}

1
=5 D Sp=qe s (0w 0 (w))
ee{+£l}
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This shows that the last two terms in (12) cancel, from which we obtain

1
o ((ck, pw)) * (cr,qw5)) =3 > (P ko)) * (n%zem0 (wh))
e.nel£l)

= o (ck,pw}) * o (coqwh),
which completes the proof by induction. O

Corollary 2.11 The stuffle product of MtV agrees with the stuffle product of the under-
lying MZV’s of each factor.

Proof Usingt = ¢ oo, and the algebra isomorphism property of o above, this follows
directly:

twy % wp) = (o~ (o (wy) * o (w2))) = £(o(wy) * o (w2)). O

Corollary 2.12 It holds that

t*,V — t;,ZV—log(Z).

That is the stuffle regularisation of MtV’s with parameter t*V (1) = V corresponds
to stuffle regularisation of the underlying MZV’s with parameter ¢*W (1) = W, for
W =2V —log(2).

Proof Since the stuffle products are compatible, both t*V and W are lifts of the

algebra homomorphism ¢ from the algebra ﬁg of convergent (or ‘admissible’) words

(those notending in z1) of Q(zx | kK > 1) to the algebraﬁi =Qz k=1 = ﬁg[zl]
of all words. (We do not want to invoke alternating MtV’s here.) Their value on z;
determine them completely, and so we obtain agreement when

1 _ 1
V=r*Y1)=5Y(1) = 5(@*”0) = ¢(D) = (W +log(2).

Hence the relation W = 2V — log(2) follows. O

In some sense, this means the most natural regularisation for multiple ¢ values, when
defined formally as a sum of alternating MZV’s via (1), has t*V (1) = 1 log(2). We
already saw in (5) above that Y (1) = log(2) is another very natural regularisation
for MtV’s, and so these will be the two cases of most interest.

2.3 Relations between regularisations of alternating MZV’s

We establish (or recall) some relationships between regularisations with different
parameters, and between the shuffle and stuffle regularisations of alternating MZV’s,
which will be useful when applied to MtV’s. In all of the lemmas that follow in this
section, let kK = (k1, ..., kg) be an index with barred entries, such that kg # 1.
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Lemma 2.13 The stuffle regularisations with parameter t*7 (1) = T and ¢*5(1) = S
are related as follows,

T — Sl
T (1) = 3 6 e, (1) H

i=0

Proof We actually prove a stronger statement, which claims that this regularisation
formula holds for MZV’s at arbitrary roots of unity. Consider the alphabet Z =
{zno | n =1 € Z,0 € C, 10| = 1}, with letter product 2,0 © Zm,¢ = Zntm,06
on QZ, and the induced stuffle product on Q(Z) given by

(Zn,ew) * (Zm,(bv) = (Zn,0 <& Zm,q))(w * V) + Zn,@(w * Zm,¢v) + Zm,d)(zn,@w * V)
= Zntm, 00 (W * V) + 2,0 (W * Zip ¢ V) + Zim, ¢ (Zn,o W * V) .

Then * describes the product of multiple zeta values (at arbitrary roots of unity) under
the map zn,.0, -+ 2ng.0, F> ¢ (fiz‘l’i) By expanding out with the stuffle product

we see the following. For any convergent word wo = wyz,,6 With (n, 0) # (1, 1),

Z(_l)zll*(WOle)

i=0

is a sum of purely convergent words; there is a pairwise cancellation of any words
ending in z1 1. On the other hand, this expression is a stuffle-polynomial in zj 1,
whose constant term is the word woz‘f"l. In the regularisation where z; 1 — 0, only
the constant term of this polynomial is left, and we see

-,
reg;) ¥ = .
go(wozy ) = Z l. Zl 1% WOy
i=0
(HeAre reg}. denotes tPe isomorphism (@(2) = Q(Z)O[T] obtained from Q(Z) =
Q(Z)O[z] 1], with Q(Z)O the convergent words (notending in z; 1), by sending z1,1 +—

?", soc*T =¢ o reg;.) By §ub§tituting the above expression for the case reg;; (woz‘lxj’)
into the following, and switching the order of summation, we see

o

1
Z—rego(woz1 1 )*z] 1= wozl 1
i=0

Since the left hand side is now a polynomial in z;,; with convergent coefficients (by
virtue of being a regularised expression already), we can apply {7 g = ¢ o regy, to

obtain
w1 (O 1Y) o (O T
¢ <u,{1}">_i§§ (g,{l}a—i i’
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where the letters in wo = zu,¢; - - Zny,¢y iNduce the arguments n with signs ¢ in
the MZV’s. (Note that this formula is already established for classical MZV’s in 18,
Proposition 10, Equation (5.10), and Corollary 5].)

Now multiply both sides of the preceding equation by #“ and sum on « to obtain

o T @{1}“) oo (& 00 e
0;){ (g,{l}“ ‘;); (_,{1}%) i!
& o6 . T
=2 ¢ <n ma)” 2

a=0 =’ i=0

[ee) (1
S T

From this we see
> (9’ ) > u - exp(~Tu)
= n, {1}*

is independent of 7', so by equating the 7" and the S regularisation we obtain
o
*, T ¢ {1}0{ _ *,5 Q’{]}Ot
Zg ( e ) = 2 g ) e (T = S0

Comparing the coefficient of u® establishes the claim for MZV’s at arbitrary roots of
unit; when Q € {x1}, one reduces to the case of alternating MZV’s as stated in the
lemma. O

Lemma 2.14 The shuffle regularisations with parameter {7 (1) = T and £*5(1) =
S are related as follows,

T — Sl
¢ (K, (1) )—Z;M(k e l>( )

i=0

Proof The proof of this is analogous to the above proof for the stuffle regularisation
(and is also shown in the case of MZV’s at arbitrary roots of unity). Namely consider
the alphabet Y = {eg}U{e, | n € C, |n| = 1}. Then under the induced shuffle product

(eqw) W (epv) = eq(w W epv) + eq4(epw LU v)

the algebra (@()A’) encodes the shuffle product of MZV’s (at arbitrary roots of unity)
under the map
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K on-1 ng—1 n2/n1,1m3/M2, -+, 1/na
€pen €y cr e eng€n = Ck " s ny
= (=D?1(0: {eo}, en,. feo} . ..., eng. {eo} 75 1),

(where the 1 in 1/54 in the last sign comes from the upper bound of the integral).
For any convergent word wy = e, w(’)eb with e, # eg and ep # e,

o i

Z ( i:) e (woe‘f_i).
i=0 :

is a sum of purely convergent words; there is a pairwise cancellation of any words

ending in ej. On the other hand, this expression is a shuffle-polynomial in e;, whose

constant term is the word woe{ . In the regularisation where e| > 0, only the constant

term of this polynomial is left, and we see

(=D" _i
—e” Wwgel ™!

o

regy (woef) = Z

i=0

A

(Here reg denotes the isomorphism Q(¥) = QE(Y)O[T],Awith Q(Y)° the admissible
words (those notending in e ), obtained from Q(Y Y0 2= QY)Oes] bysendinge; — T,
so ¢ T = ¢ oreg}.) By substituting the above expression for the case regy’ woe§ ™

into the following, and switching the order of summation, we see

o

1 » ‘
Z I regy’ (woe{ ") LW el = woef.
i=0

Since the left hand side is now a polynomial in e; with convergent coefficients (by
virtue of being a regularised expression already), we can apply the regularisation map
with e; +— T to obtain (in zeta notation already)

T (@ {1}“> _ Z o (& {1}“:f T
n (1) "= \n e )
where the letters in wo = ey, egl_l sl eg"fl induce the arguments n with signs ¢
in the MZV’s. (Note that this formula is already established for classical MZV’s in
[18, Proposition 10, Equation (5.9), and Corollary 5].)

Now multiplying both sides of the preceding equation by #*, and summing on «
to form the generating series shows that

) e
ZELU’T (% ili“) u® - exp(=Tu)
a=0 =

is independent of T, so by equating the T and the S regularisation we obtain the
claim. O
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The following is first proven in [18] for classical MZV’s. It is convenient however
to recall the details for application to later lemmas; moreover we need a version which
holds also for alternating MZV’s [28, Theorem 13.3.9].

Definition 2.15 (Linear map p) Define an R linear map p: R[T] — R[T]b

e ¢]

Tuy __ (=" n\ Tu
p(e )—exp(z . c(n)u )e , lul < 1.

n=2

Sop(1) =1,p(T) =T, p(T?) = T* +¢(2) and p(T?) = T3 +3:(2)T — 2¢(3)
are the initial few values.

Then the map p gives us the translation between shuffle and stuffle regularisation,
as follows.

Lemma 2.16 (Theorem 1, [18], generalised in Theorem 13.3.9, [28]) For any index
m = (mi,...,mg), where mg = 1 is permitted, and the entries may be barred, the
shuffle regularisation with parameter ¢ ™7 (1) = T and the stuffle regularisation with
the same parameter {*T (1) = T are related as follows.

¢ ) = p(¢*" (m).

At this point it is instructive to notice that

e ¢]

1y 0 -1
exp(Z( n) ¢(n)u"> R (1+Zz*’°({1}")u"> :

n=2 n=1

This can be seen via Corollary 2 in [18], or rather via Corollary 1 upon applying the
regularisation-evaluation map ¢*° = ¢ o reg; (or Z o regj in the notation of [18]).
Directly, one sees that the regularisation has parameter ¢ * 0 (1) = Osince the (1) term
on the left hand side is not present, and so has been regularised to 0. More generally,
applying ¢*7 = ¢ o reg}. one has:

00 —1
exp( Tu+z ;(n)u ) = (1 +Z§*’T({l}”)u”> .
n=1

Lemma 2.17 The stuffle regularisation with parameter ¢** (1) = T may be expressed
via the shuffle regularisation with parameter ¢ W.0(1) = 0 and the ‘periodic’ MZV
T (1)), as follows. For any indexk = (ki . . ., kg) with barred entries and kg # 1,

Tk, (1)) = ¢ 0%k, (1) DT (1))

i=0
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Proof We apply Lemma2.13 in the case S = 0 to write

*, ay - *,0 oa—i Ti
T (1)) = Y0k (1) —

i=0

Note now ¢*°(k, {1}*~%) is a combination of convergent MZV’s (after being regu-
larised with parameter £*°(1) = 0). Since ,0 is R-linear, application of p to convert

to the shuffle product only applies to the r part of the summand. That is to say, we
have

o . T,'
¢ s (1) = p(¢°7 s, (1) = Y0 00, (1% Do ()

i=0

Multiply both sides by u*, and sum on « to form the generating series

STk (1 = 303 o0k, {1}“*">p(f—,l)u°‘
a=0 a=0i=0 :

Interchange the summation order, then set « — o + i

ii 0k, {1}a)p(T’) i+a

=) 3k (T )ue
¢k, (1))u” - ip(%)u

i=0

P”18 I

S
Il
=}

One sees that the sum involving p is simply p(e”*), which may be replaced by the
expression in Definition?2.15, to give

— = *,0 ay,, o - (=D" n\ Tu
=D 0 (1))u CXP(Z : nu)e

a=0 n=2

We therefore have

Z é-U_I,T(K, {]}a)u(x . e*Tu - exp (Tbt _ Z (_ )n é‘( ) n)
a=0 n=2

=Y "0 {1*)u”

a=0
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By Lemma?2.14 and Lemma2.13, respectively

DT A1 e =Y " 0k, {1))u, and
a=0 a=0
D00, (1u® e =y et T (k, {11)u”
a=0 a=0

Finally, it follows from the observation above that

exp <Tu — Z (_ ) c(myu” ) =1 +Z§*’T({1}")u"

n=2 n=1

Making these substitutions, and extracting the coefficient of u® establishes the
claim. O

2.4 Relating stuffle and shuffle regularised MtV’s

Finally, we give a concrete and explicit relationship between the stuffle and shuffle
regularised MtV’s for an arbitrary choice of parameters.

Proposition 2.18 Let k = (ki, ..., kg) unbarred, such that kg # 1. Then the stuffle
regularisation of MtV’s at parameter t*" and the shuffle regularisation t"° induced
by the representation of MtV’s as alternating MZV’s, with £0(1) = 0, are related
as follows.

i=0

Proof This is clearly true when & = 0, and no regularisation is necessary, so we
assume « > 0. Now apply the expression for ¢ in terms of alternating MZV’s in (1),
and Corollary 2.12 to write

1 _ Q,SI,...,S
t*‘v(l_(, {1}0!) = SiTa Z g1 &4 81 ~-'5ag*’2" ]02(2)< K. 1oz>'

e=(&1,..-.84),
6,81, 00 €{E1}

For notation simplicity, we shall always write ¢ = (g1, ..., &4), and drop the explicit
reference to € {41} from the summation; this should be taken as implied for whatever
selection of signs we specify in the sum. Now gather the terms in this sum by the
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number of trailing §; = 1 signs. One has

S €,81, ) Su_j, (1}
= = E1 &7 +01++0p_;: %,2V—log(2) [ & “1> s Qa—j» : ‘
2"*“;) EZ Lerfd O Oanyl K1,...,1,(1)

811"”50[*1*]‘7

Sq—j=—1

Application of Lemma2.17 allows us to convert the ¢*7 regularisation to ¢ cor-
rected by ¢*7 ({1}""), which gives

1 o J €,80,...,00—j {1}j_i
_ P NI S el I A
2d+a/§0 eZ €1 &4 01 o /;;5 ( kK, 1,...,1, {1}~

8],...,50(—1—], 2 1 2 i
r xg"2V 1R (1))

Moving the sum over i outside the sum over signs (of which it is independent), and
then interchanging the j and i summation order gives

LYy w0 5,51,...,50(,]-,{1}1'4
i AR el K 1. 1 (1)

i=0 j=i e,

51,...,(§a_1__/, .
o x g2V sy
| e 00 (& 81,y aimj (1Y
:_2d+a_2(;_2 SZ 81~..€d~81.~8a7i7j~§ ’ ( K,l,,l,{l}j )
= 1_51, Bamic1oj i
Sa_,‘_j:—] X g*,ZV—log(Z)({l}z)
One now recognises that the sum over j and the sum over signs with §o_;_; = —1is

just the expression for the sum over all signs, gathered by the number of trailing 1’s.
So we can rewrite this to be

1 - ) g»alv-"9aa—i
ng ; €1 8081 Bqi- ™ (151,...,1

1S
X ;*,ZV—IOg(Z) ({1}!)

Lastly, we recognise the sum over signs to be pdta—igh0k (13¢50 after mak-
ing this replacement, and cancelling the powers of 2, we obtain the claim in the
proposition. O
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3 Evaluation of the stuffle-regualrised t*'V ({2}, 1, {2}®)

In this section we prove the following evaluation for the stuffle-regularised
=V ({2)2, 1, {2}?), with r*V (1) = V. Namely

Y {2), 1L, 2)0) =

S ()4 2 () e
p 2a) 27 —1\2b
+ 8a=010g()1 ({2}") + 80 (V — log(2))t({2}). (14)

where §, is the Kronecker delta symbol, equal to 1 if the condition e holds, and 0
otherwise. One can write this very explicitly, if desired, as a polynomial in single zeta
values, and powers of 7, using the following evaluation from [16]:

n2a

({2} = W ,

(15)
and the evaluation £ (2r + 1) = —(1 —272)¢(2r + 1), for r > 0. (Note ¢(I) =
—log(2), while ¢ (1) is divergent and must be regularised to make sense.)

In order to prove this identity, we first convert it to a generating series identity. For
this purpose introduce the following functions.

Definition 3.1 (Functions A(z), B(z)) For |z| < 1, define the A(z) and B(z) via the
following power series

A(2) =) ¢ @r+ 12,

r=1

B(z):=) (1=2"")¢@r+ 1) = —¢@r+ D7 .

r=1 r=1

Remark 3.2 The functions A(z) and B(z) are the same as defined in Zagier’s evaluation
of £({2}2, 3, {2}?) in [27], and Murakami’s evaluation of 7({2}¢, 3, {2}?) in [22]. It is
noted in the proof of Proposition 2 in [27] that they can be expressed via the digamma

function ¥ (x) = L log M'(x) = L&)

=4 TG a8 follows:

AR =y — 301+ +v(1—2), B =AR) —AGZ).

In this form the functions A(z) and B(z) analytically continue to the whole complex
plane, with simple poles at z € Z\{0}.

It is a routine manner to sum (a tweaked version of) the generating series of the
right-hand side to see the claim is equivalent to the following Theorem. For details
of such summation techniques, we refer to the corresponding evaluations in both [27,
proof of Proposition 2] and [22, proof of Proposition 13].
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Theorem 3.3 The following generating series evaluation holds for the stuffle-
regularised t*V, with t*V (1) = V,

DDV Ay 1L 21 - 20 2y

a,b>0

= %cos(nx)(A(x -y +AKx+y)+2(V —1log2)))
+ %cos(ny)(B(x —y)+ B(x +y)+2log(2)),

where

A@ =y —§A+2)+ v —2) =Y ¢@r+ 1",

r=1

B() =A@ —AG) =) (1-27)¢@r + D =) —t@r+ D

r=1 r=1
3.1 Proof of Theorem 3.3

Firstly, recall that the , F),_; hypergeometric function is defined as

o
a, ..., a {ar} - Aaptm x™
pr—1[ ! ;x} = TS e
by, ..., by b1}y - {bp—1}m m!

m=0

where {a},, = a(a+1) - - - (a+m—1) is the ascending Pochhammer symbol. Asymp-
totic and transformation properties of the 4 F3 and 3 F, will play a key role in the proof
of our generating series evaluation.

In order to prove this theorem, we utilise a multiple ¢-polylogarithm type function,
defined as follows.

Definition 3.4 (Multiple t-polylogarithm) For a choice of indices si, ..., ss € Z>o,
the Ti functions is defined by

2n1—1 2n4—1
m—1_ 2na

i . X Xy
Tls1 ...... S d(xla”-axd) = Z (2n1—1)“-"(2nd—1)54’
d

O<ni<---<n

which converges when |x; ---x;| < I, fori =1,...,d.

Remark 3.5 Closely related functions, at least for depth 4 = 1 and weight 2, are
already studied in Lewin’s book [21] under the names ‘the inverse tangent integral’
(Chapter 2 of [21])

o
Tip(x) = Im Lip(ix) = » |
n=1

(_1)n+1x2n—1
2n —1)?

@ Springer



2020 S. Charlton

and ‘Legendre’s chi-function’ (Section 1.8 of [21])

o0 x2n—1 1 1
x2(x) = Z 1)y = ELIZ(X) - ELIZ(—X)

n=1

Lewin actually uses the notation Ti for his function, but I write Ti here to avoid
confusion with the function introduced above. Moreover, the notation x; is Lewin’s
choice, supplanting the too general notation ¢ originally used by Legendre.

Recently, Rudenko [24, Section 5.5] has also introduced essentially the same
functions, and established [24, Lemma 5.18] a coproduct property of Ti which is
consistent with the coaction formula (Proposition 5.7 below) of the MtV’s. Rudenko’s
formulation occurs in the Lie coalgebra of multiple polylogarithms, wherein one is
free to ignore product terms and certain weight 1 terms; for the special case where
X1 =--+- = xq = | one obtains MtV’s, and the formula in Proposition 5.7 refines the
coproduct of the corresponding MtV’s.

The function Ti from Definition 3.4 is related to the classical multiple polylogarithm
functions Lisi ..... s in an analogous way to how the multiple ¢-value #(sq, ..., s4) is
related to the classical multiple zeta values {(si, el séi) in (1). An explicit formula
can be given, exactly as for ¢ values, by inserting a factor %(1 — (=D™) into the
numerator fori = 1, ..., d, which allows one to extend the range of summation of the

denominators and exponents from just odd integers, to all positive integers. Namely

2n1—1 x2n,1—1

. _ xl “ .. d
Tlsl ’’’’ Sd(xl’ s Xa) = Z Qny — 151+ 2ng — 1)%
d

O<ni<---<n

.y dmenmedoendte

- d S1 Sd
2 ny-eeny

O<ny<--<ng

1 .
== > ereqlig gy@x, ..., Eaxa) .

We note also that when sy > 1, the special value Tiy, |, (1, ..., 1) =1(s1,...,5q) s
exactly the multiple 7 value of the given indices, as in this case the MtV is convergent.
We find, however, that

S Z2n1—l
Ti1(z) = Z 2ny — 1 = tanh™' (),

ni=1

so in particular lim,_, - Tij(z) = oo.
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Now, let us turn out attention to

T 1 p ({1}, 2, (11)
B Z 1 Zerl 1
o Cni—D2---Q2ng—12 2r—1 Q@m;—1D2---Qmp —1)2°

O<ny<--<ng<r
<miy<--<myp

We will establish that a certain limit involving a similar generating series of these
. . . . . V=0

"\1;1]{2}1; 1 ld{z}b -polylogs can be used to give the desired generating series of t* values.
e fin

> =D Ty o (1, 2 {11) - 22) 2 2y)%

a,b>0
2r—1 4 2
Z;E< (2@—1)9'21-1'5(“@)
:COS(”);E( 1)2>'2Zr2r—11 'E(l_%yl

(16)

_ zcos(my) 1 3, %—X, %—i—x. )
T ol

One checks directly that the summand above is expressible in the required form for
the 4 F3 hypergeometric function.
Now the divergent part (as z — 17) of this generating series arises from

D =D Tipgye 1 (134, 2) - 20

a>0

We notice here that by stuffle-regularising,

a—1
Ti{2}a,1({1}“, 7) = l({Z}“)Til(Z) - ZTi{Z}i,l,{Z}a*i ({1}1" z, {l}aii)
a—1 =0 (17)
=Y Tipy g e (11, 2, (1717,
i=0

So one can write that

D (=1 Tiggga 1 ({1}, 2) - (2)** = tanh ™" (2) cos(x) + f(x, 2)

a>0
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where
[e9) a—1 ) )
59 = = S (112, (17
a=0 i=0
+ D Tippy 3, ppe-- (1 2. {1}a11)> @0
i=0

(Note that cos(mx) arises as the generating series of #({2}%), after incorporating the
normalisation factors (—1)% and (2x)2“ above. Namely

o] S 2a
> (=D - @0 = (-1 (20 = cos(r),
s 22a(2q)!

a=0

wherein we have substituted the evaluation of ¢ ({2}¢) from [16], given in (15) above.)
We see thatat z =1,

a—1 a—l
Y Tigy e (LD + Y Ty 5 e (1))
i=0 i=0
a—1 . . a1 ‘ |
= ZI({Z}’, L2} ")+ Zt({Q}l’ 3, {21911
i=0 i=0

= VM) - V=@
=—V=0(2}, 1).

So that f(x, 1) (or at least the limit lim,_, ;- thereof) satisfies
o0
[ =) (=D, 1) - 20
a=0
Now subtract (17) from (16), and take the limit lim,_, ;-. From this we see that the

generating series of stuffle-regularised (at V = 0) MrV’s is obtained by computation
of the following limit

D= e VE02)9 1, 2)0) - @20 @)

a,b>0
L3, —x, Lgx
— lim 200 g b2 277 2 Ztanh ! (z) cos(rx) . (18)
2 1 3 3
—>1- 1 -4y 3 5 =Y, 5T

We now apply some transformation properties of 4 F3 in order to reduce this to a
combination of 3 F, functions, whose asymptotic behaviour is established by [8]. First
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make use of the contiguous function relation

a, b+1, ¢, d a+1, b, ¢, d
b-4F3[ ;z}—a~4F3[ ; ]

4
p.q,r P, 49, 7T
a, b, c, d
+(a—0b) 4F3 , 02 =0

3 3

inthe case (a, b, c,d) = (1, 3, S —x, 3 +x), (p.g.r) = (3,3 =y, 3 +), to obtain

the following reduction of our 4 F3 to a combination of 3 >’s. We find

3 1 1
F 17 bR E_-xa §+-x 2
413 1 3 3 e
3 5—Y, 5+

2, 4 —x, T4 1,4 —x, L4x
=23k 37 TG 2| —sk| L TR 2 a9
5=y, 5ty 3=, 3ty

The second term is convergent at z = 1, and can be evaluated via Whipple’s theorem
(see Section 3.4 in [1]) to give (after some simplification with the reflection formula
of the I'-function) that
L4 —x L4x =2y +2y)
s 7 [) y y . g H s

3F ;1| = ——————=sec(mwy)sin (5 (x — y))sin (5 (x + y)
[ =y 3+ 2(x = y)(x +y) (3 Jsin (5 )
1-— 4y2 cos(mrx) — cos(my)

T ocos(my) 42 —y?)

To deal with the first term, we need to recall the Evans-Stanton/Ramanujan asymptotic
for 0-balanced 3 F, hypergeometric functions.

Theorem 3.6 (Evans—Stanton 1984 [8], Ramanujan) Ifa+b+c = d +e, andRe(c) >

0, thenasu — 17,

T@rere -3F2[“’ b, C;u:| = —log(1 — u) + L + O((1 — u) log(1 — u)),

'd)I'(e) d, e
where
L2y - (@) T'(b) i {d —chife—ch
F@ T &= {ahiblk
Here y =~ 0577... is the Euler-Mascheroni constant, and {x};, =

x(x+1)---(x + k — 1) is the ascending Pochhammer symbol.

If we apply this asymptotic (with ¢ = 2, and a, b = % =+ x, via the symmetry of
3F> in its upper arguments) to the first term on the right hand side of (19), and recall
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Y(x) = d T logM'(x) = r( x) , we obtain the asymptotic formula

3l
1—4y2 cos(mx) %—y, %-{-y

=— log<1—z2>—2y—w(%—x)—w<%+x)

4 2, 4—x, i+x
cos(my) P |: 5 3 ;Zz

1
~1+
+Z i 0((1 — ) log(1 — 2%)).

% x}k {% +x}k
We also note
44(2x) = 2A(x) = —4log(2) = 2y =Y (3 —x) = ¥ (5 +x),

so that the digamma combination above can be rewritten via the function A defined
earlier. Applying these results to (18), we find

RHS (18) = COS(Z(X)Z__COS)(” ) 1 3 cos()

<4A(2x) 2A(x) +21log(2) +Z

k=1 k{%—x k{%+x}k

We note next that

— {_%_yk{_%+y}k d —%—y, —%+y,Z
Z | =—| 3P ;1.
; -

Compare Proposition 1 in [27] for a similar summation, which we will in fact reduce
this to. Using the contiguous function relation

a, b, ¢ a, 1+b, c
(a—b)P'3F2[ ;Z:|—b(a—P)'3F2|: 'z}
P, q l+p, g
1 b,
+a, c i|_0

b— -3 F
+a( P)32[H_

in the case (a, b, ¢) = (—% -y, —% +v,2),(p,q) = (% —Xx, % + x), we find (note
the sign of y is different in various places in the coefficient of each 3 F, on the right
hand side) that
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I I
5=y —3+ty. Z
sh| 7 z ;1
Jox +4x

(1—x +y)(1=2y) ~(3+). b+ z
- 3k i1
2y(1 — 2x) )

A—x—na+2y) [ —(=3+y). =3+ Z
2y(1—2x) 2 )

. . . d
and the same expression upon rf.:placmg 3F> with ﬁ| 7z
hypergeometric functions derivatives are now of the form

_o3F2 on both sides. Both

d‘ nl XX Z =[AX +Y) + AX — ¥) = 24(")]
dzlz=o* -y, 14y |7

— Si,n(—NX)[B(X +Y)-B(X-Y)],
sin(zwY)

the evaluation of which here follows as essentially the punchline to Section 4 of
Zagier’s evaluation of ¢ ({2}%, 3, {2}?) in [27] after combining the results of Sections
2 and 3 therein. (Namely the equality of F(x,y) = F (x, ) established in the proof
Theorem 1 in [27], plus the expressions in Propositions 1 and 2 of [27], gives the
above evaluation.)

Substituting this evaluation into % | 7—o 0f (20), and substituting the resulting Poch-
hammer sum evaluation into the 4 F3 limit produces an elementary expression for the
generating series of (—1)“+bt*’V:0({2}“, 1, {2}b) in terms of A, B, sine and cosine.

This elementary generating series expression can be simplified as follows. Firstly,
apply the digamma duplication relation

V(z 4+ 1) = v @ +2¢22) — 210g(2),
to obtain that

A(—3 +x) = 55 — A(x) + 2A(2x) + 2log(2);

use this to eliminate A —% + x) from the resulting expression in favour of
2A(2x) — A(x). Then use the digamma functional equation

Y+ D)=y +1,
to obtain (along with duplication in the case of B), that
Ax+1) = A(X) = 5755 — A Bx+1) = _m —2log(2) — B(x).

Use these to replace B(1 —x +y), B(—1+x+4+y),A(l —x+y), A(—1 +x+y) by
—B(—x+y),—-Bx+y), A(—x +y), A(x + y), respectively. Since both A(x) and

@ Springer



2026 S. Charlton

B(x) are even functions, the expression now simplifies directly, and one readily finds
(=T V=02) 1, 2)) - @0 2P
a,b>0

1
=3 cos(mx)(A(x —y) + A(x +y) — 21og(2))

1
+5 cos(my)(Bx —y) + B(x +y) + 210g(2)). 2n
The generating series for the general regularisation is recovered upon noting that
Y 2) D = Ve + V(@) D,

i.e. the constant term in the regularisation polynomial is the regularisation at parameter
V = 0. Since

D =DV - (260> = V cos(rx),

a>0

as already noted above without the V, this gives the necessary correction term to add
to the right hand side of (21) to find the generating series for the general regularisation.
Doing so gives the equality stated in Theorem 3.3, and so completes the proof. O

3.2 Evaluation of shuffle-regularised % ({2}7, 1, {2}%)
Although the shuffle regularisation r'*-9, arising from ¢">0(1) = 0 is most important,
we can in fact compute the regularisation for any "% arising from ¢*>W (1) = W
with equal ease. Clearly, if b > 0

V29, 1,210 = 124, 1, 230,

as no regularisation is necessary. However when b = 0 we compute via (1)—with the
convention that ¢ = (¢y, ..., &) and the sum over &, § implies all choice of signs in
{£1}—that

1 o)
tuJ,W 2a’1 — .S L, W <&,
(2%, D SaiT ;8 €1 €a-8-¢ <{2}“, 1)

Since the alternating MZV ends with at most a single entry 1 (with sign 1), we
know from Lemma?2.16 that the shuffle and the stuffle regularisation in this case are
exactly equal. This is because the R-linear map p from Definition2.15 appearing in
Lemma2.16 has p(1) = 1 and p(T) = T, so leaves a linear regularisation polynomial
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unchanged. Hence

1 * W &9
= g L8 <{2}u,1)

— t*,%(W'HOg(Z))({z}a’ 1)

Recall from Corollary 2.12: the stuffle regularisation of *-¥ (1) = V corresponds to
the stuffle regularisation of ¢*Y (1) = U where U = 2V — log(2), hence the change
in regularisation parameter in the last line.

This amounts to saying the shuffle regularised version "W of the generating series
in Theorem 3.3 is obtained simply by changing the regularisation parameter on the RHS
to %(W + log(2)). Hence we have the following proposition.

Proposition 3.7 The following generating series evaluation holds for the shuffle-
regularised t"V  induced by ¢V (1) = W,

DD ) 1 21 - 260 2y)*
a,b>0

= % cos(x)(A(x — y) + A(x +y) + (W —log(2)))

+ %cos(ny)(B(x —y)+ B(x +y)+2log(2)),

where

A@Q=v() = 3@+ +¥(1—2) =) ¢@r+ D,

r=1

B()=A@) —AG) =Y (1-27)¢@r + D =Y —¢@r + D

r=1 r=1

From this follows an explicit evaluation, analogous to (14), by replacing V with
%(W + log(2)) therein:

V231,230
AL 2r
= — _1\'H—2r 2r 2— 2r b
= ;( D2 |:<2a> + 2 1 (2b>]§(2r FDr({2) )
1
+ 8a=0 10221 ({2}") + 8p=0 - 5 (W — log@)r ({2}, 22)

where §, is the Kronecker delta symbol, equal to 1 if the condition e holds, and 0
otherwise.
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3.3 Evaluation of t(1, {2}")

In order to answer a question posed in [6], we turn to the special case of 7(1, {2}"),
for n > 1. Here we extract from (14), the following evaluation for #(1, {2}""), where
n>1

(1, {2}") =
n 2r
- Z<—1)r2*2’[1 + 22,2 . (irﬂ;(zr F 2" + log@r((2)").
— n

r=1

Since @;) =0forr <n,and (%;) = 1 for r = n, this can be written as

n—1
= log(2)({2}") = Y (=127 ¥ ¢2r + Dr({2}"™")
r=1
2n

-2

:|§(2n +1).

Now the first term can be incorporated as the » = 0 term of the sum, giving

3 2n
=~ 2D D@ - <—1)"2_2"[1 + 223—_1]4(2,1—+1>
r=0

Now substitute in the evaluation of ¢({2}%) = #22(;), from (15), and convert the last

term to a classical (non-alternating) MZYV, to obtain

n—1 2(n—r)

L I e PN ey VAP N Py
_22’1(;( D ( §(2r+1))(2(n_r))!+( 1) 2(1 2 )§(2n+1)>

This confirms Conjecture 4.5 on the evaluation of #(1, {2}"") stated in [6] (be aware,
the opposite MZV/MtV convention is used therein). The authors of [6] also write the
Dirichlet eta function n(m) = (1 —21_m)§(m), with (1) = log(2), in place of —¢ ()
used herein.

4 Motivic framework

In this section we briefly recall the setup of motivic iterated integrals framework intro-
duced by Brown [4, 5] (extending that of Goncharov [12, 13]). We define the motivic
(alternating) MZV’s and the motivic MtV’s; we introduce the necessary combinatorial
operations and fundamental properties of these objects which will play a key role from
Section 6 onwards.
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4.1 Goncharov’s motivic iterated integrals

In [13], Goncharov upgraded the iterated integrals I (xo; X1, ..., XN; XN+1), Xi € @
(see (7) above for the definition), to framed mixed Tate motives, in order to define
motivic iterated integrals

TH(X05 X1y + v oy XNS XNF1)

living in a graded (by the weight N) connected Hopf algebra A = A,(Q). The Hopf
algebra A is the ring of regular functions on the unipotent part of the motivic Galois
group. In [13], they are denoted by [ “  but when incorporated into Brown’s motivic
framework, they are better denoted by I for the unipotent part. (The component
consisting of weight N integrals is denoted Ay .)

The motivic iterated integrals satisfy relations of a ‘geometric’ origin, arising from
change of variables in an iterated integral, the results of Stoke’s theorem, or from the
linearity of domain and integrand. The coproduct A on this Hopf algebra is computed
via Theorem 1.2 in [13] as

u . .
ATH(X0; X1, -+ vy XN5 XNH1) =
k
u . . u . .
Z TP (X035 Xy o ooy Xig s XN41) © l_[ TR0, 5 Xy ey X =15 Xipy )
O=ig<iy<-- p=0

<ig<ik+1=N+1

In this Hopf algebra, the motivic version of ¢*(2) = —I*(0; 1, 0; 1) = 0, or more
fundamentally, the Lefschetz motive IL¥, a motivic version of iz, vanishes so that
im)* =L*=0.

4.2 Brown’s A-comodule of motivic iterated integrals

The motivic iterated integrals 1™ (xg; x1, ..., Xxy; Xy+1) in the sense of Brown [4, 5]
are elements of the weight-graded .4-comodule H of regular functions on the torsor of
tensor isomorphisms between Betti and de Rham realisations. (The weight N graded
component of H is denoted H . These integrals do depend implicitly on a path y from
X0 to xy+1, but for our purposes typically xo, xy+1 € {0, 1}, and then the canonical
straight line path dch: [0, 1] — [0, 1], ¢ — ¢ is sufficient.)

This comodule is endowed with a coaction A: H — A ® H which, as noted in [5],
is given by the same formula as Goncharov’s coproduct, transposed to this setting, i.e.

AT™(X0; X1, .., XNS XN1) = (23)
k
Z 1_[ TH (X5 XLy s Xip =15 Xip ) @ T™ (X035 Xiys o vy Xigs XN41)-
O=ip<ii<-- p=0

<ig<ig+1=N+1
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(We have switched the order of the factors for later convenience.) We will mainly
use the derivation operations D, defined as a linearised, weight-graded part of the
coaction (see Section 4.4 below), but it will be useful to keep in mind from where
these operations originate, particularly when considering how they act on primitive
elements.

In Brown’s setting ¢™(2) = —I™(0; 1, 0; 1) # 0, and therefore much more infor-
mation about motivic iterated integrals is retained. In particular, the coaction can fix
identities up to primitive elements (namely motivic MZV’s of depth 1, at some root of

unity ™ (exP(ZZ ia/b) ) ). More concretely the coaction can be used to fix the coefficient
of product terms involving ¢ (2n), in contrast to the coproduct above. (One can think

of Goncharov’s motivic iterated integrals as H/¢™(2)H, wherein ¢™(2) is killed.)
One has a well-defined Q-algebra homomorphism per, called the period map,

per: H— C

. . w,0 . .
I™(x0; X1, ., xN; xva1) = I (x0s X1, -0, XN XNa)

which means that the classical iterated integrals satisfy all motivically true relations.
Conjecturally, the space of motivic iterated integrals is isomorphic to the space of clas-
sical iterated integrals. This conjecture is a special case of the Grothendieck period
conjecture, which posits that the period map per (in the most general setting) is injec-
tive, so that all relations are motivic (‘geometric’) in origin, i.e. there are no ‘spurious’
or ‘coincidental’ relations on the level of numbers.

We briefly recall some main relations satisfied by the motivic iterated integrals.

(1) Unit: I™(xp; x1) = 1 in weight 0,

(i1) Trivial integration: 1™ (xo; x1, ooy XN xN+1) =0ifxg = xy+1and N > 1,
(iii) Path composition: for any y € Q,

I™(X05 X1, -y XN XN41) =

N
D I oixn X D™ Xig s XN XN )
-0

(iv) Path reversal: I™(xo; X1, ..., XN; XN+1) = (—1)N1m(xN+1_; XN, ..., X1} X0)
(v) Homothety: if xo # x1, and xy 7# xn+1, then for any o € Q,

m . . m . .
I (x0; X1, -, XN xN41) =T (00 - X050 - X1, .00, 00 XN O - XN41)

Tangential base-points: In the cases where xo = x| or xy = xy+1 the motivic
iterated integrals depends even on the tangential base-points of the path from xg to
XN+1-

More formally, for this process, we replace 0 and 1 with a tangential base-points
_1>0 and —1 1 which denote the tangent vector T at the point 0, and 71 at the point
1, respectively, which are the tangent vectors for the straight line path dch: [0, 1] —
[0, 1]. The details of iterated integrals with tangential base points (and the motivic
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versions thereof) can be found in [9, Section 3.7, Section 4.5]. The notation with
tangential base-points is helpful to identify when certain transformations and relations
are invalid in the case of regularised integrals.

One can use the shuffle product to write any

. b.
I™(x0; {x0}*, X1, .., xn, {xn+1}75 XN 41)

as a polynomial in I™(xg; xo; xy+1),/™(x0; Xy+1; Xy+1) and integrals of the

form I™(xg; x1,...,XN; XN+1), X1 # X0,XN # Xn41 (in a similar manner
to (8)). Then the calculation I™(a; b;c) = log™(b — ¢) — log™(b — a), with
log™(0) := 0 (cf. [13, Equation 6] and thereafter) allows one to understand
I™(x0; {x0}%, X1, .- ., XN, {Xn4+1}7; Xn41) in general.

For the case x9 = 0,x; = 1, we find I™(0;0;1) = I™(©;1;1) = 0, so
that per I™(0; x1, ..., x,; 1) is the shuffle-regularised version I“J’O(O; X1y ooy Xps 1),

(with 10 defined analogously to ¢"° in Section 2.1, extending I as a shuffle-
homomorphism to all divergent words, and sending eg, e; > 0,to give I'"*0(0; 0; 1) =
1%0: 1; 1) = 0).

The homothety property fails for 7™ (xg; x1, ..., xn, Xy+1) if xo = x] orif xy =
XN+1, because in this case the integral depends on the vector of the tangential base-
points at xo or xy41, which are changed when we scale by x; — x;«. This point is
glossed over in [10, Section 2.3], [11, Section 2.2] and in [22, Section 2]. However,
whenever the homothety property is applied in [22], one only needs it to hold modulo
products and ¢*(2), i.e. in the Lie coalgebra £ = A. /A~ - .A- which we introduce
momentarily (in Section 4.4 below). This version of homothety does hold in general
for x; € {0, £1}, and so Murakami’s conclusions are valid; see Remark 5.8 below for
more explicit details.

4.3 Motivic multiple zeta values and motivic multiple t values

For £ € Zxg, any index k = (k1, ..., kq) with k; € Z>; and any choice of signs
g; € {1}, we define the (alternating) motivic multiple zeta values by

E1,...,&4 _ _ —
o (k1 kd) = (= 1)AI™(0; {0}, 1, {0171 o, {OY2 L g, (0T ),

n

d 8-_1

—_———
where {k}" =k, ..., k denotes the argument k repeated n times, and n; = [] =i €]
This arises by transposing (6) to the motivic world, as a definition, and extending to the
case of leading 0’s (which as already indicated in the tangential base-point discussion
above) amounts to an analogue of shuffle-regularisation with ¢™(1) = 0, as explained
in Section 2.1 for 0.
When ¢ > 0, this integral is computed in the same manner as described in
Section 2.1, in particular via (9) in Lemma2.6 to express ¢;" in terms of ' = ¢™.

We have a further property
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(vi) Unshuffling of 0’s:
m[€l---58d
g (k],...,kd>
ki +ip—1 kg +iqg—1 1, ..., 84
= (-1)f Z( . )( . )w( . )
. . i id ki+i1, ..., kq +ig
iy +etig=t

When £ = 0, we can write ™ instead of ;6“. When all signs ¢; = 1, we can write

1,...,1
m B =M™k, ..., k),
9] <k1,...,kd> & (ky d)

and will refer to this as a (non-alternating) motivic MZV. As shorthand notation, we
also write k; to denote the argument k; which has associated sign &; = —1, and write
¢™ with only one row of arguments.

It is convenient to give notation to the space of all motivic MZV’s and all motivic
alternating MZV’s, within the space of all motivic iterated integrals.

Definition 4.1 (Space of (alternating) motivic MZV’s) Let H) be the Q-vector space
generated by all (non-alternating) motivic MZV’s. Likewise, let H® be the Q-vector
space generated by all alternating motivic MZV’s. Moreover, write HE\}), or Hﬁ) for
the space of weight N (non-alternating) motivic MZV’s, and weight N alternating
motivic MZV’s respectively.

We then define the motivic multiple ¢ values, using (1) as follows.

Definition 4.2 (Motivic multiple t value) For any index k = (k1, ..., kq), ki € Z>1,

the motivic multiple t value t™(ky, . .., kg) is defined by
1 811 ""8d
1 kiy . ka) = g Z 81"'8d§m< )
2 eed) ki,..., kg

It will often be convenient to work with the following rescaled version

Ty k) = 2l Z e1eg ™ (81,...,84)’

sie@l) ki,....kaq

where |k| = k1 + - - - + kg denotes the weight of the index k.

We call a motivic MtV ™ (ky, ..., kg) or T™(ky, ..., kg)

(i) a convergent motivic MtV if ky > 2, and
(i1) an extended motivic MtV if kg > 1.

By view of (1) and (10), we see that the image of t™(ky, ..., kg) under the period
map,

per(t™(ki, ..., kqg)) = t2Oky, ..., ko),
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gives the shuffle-regularised multiple ¢ value 0 (ky, . .., k;) arising from the shuffle
regularisation with parameter ¢"%(1) = 0. Under the period map, the convergent
motivic MtV’s give convergent MtV’s in the sense of Definition 2.3, and in particular
correspond to convergent series. Likewise the extended motivic MtV’s correspond to
extended MtV’s in the sense of Definition 2.3, and require regularisation to be defined.

4.4 Derivations D, and the kernel of D_y

Finally, we turn to one of the most useful features of the motivic MZV’s, the combi-
natorial operations D, arising from the coaction, which allow us to recursively find
and verify identities.

Recall the coaction A: H — A ®q H defined in (23). We wish to consider a
linearised version of this, which is computationally less complex to calculate, but
still very rich in information. By the earlier remark, we have that A = H/H¢™(2).
Moreover, introduce the linearised quotient of .[A—which then has the structure of a
Lie coalgebra—defined by

L=A.0/As0- Aso.

Here A ¢ denotes the elements of weight >0, and A.¢ - A. ¢ is then the non-trivial
products in A. Likewise Ly denotes the weight N graded component of £. Denote
by 7' and ¢!, the image of ™ and ¢™ respectively, in L.

Definition 4.3 (Derivation D,) For any r > 1, define the derivation

D H— L ®H

as the composition of A — (1 ® id) with 7, ® id, where 7, is the projection A —
L — L,, to the weight r graded component £, C L.

Essentially D, is given by the terms in A which have weight r in the left hand
factor, and are irreducible. Therefore, one has the following explicit and combinatorial
formula to compute D,

Dy (I™(x0; X1, ..., XN3 XN4+1)) =
N—r
[ . . . .
Z I (x[h Xp+ls - Xptrs xp+r+l) ® Im(XO» X1y eees Xps Xptr41s -+ -5 XN; XN+1)
p=0

Often, the following mnemonic picture is used to describe this formula.
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The terms in D, correspond to segments cut out of the semicircular polygon with
vertices labelled by the integral parameters xg, X1, ..., Xy, xny+1. (In this picture,
N =9,r =5, p = 1.) Each term corresponds to a particular segment which cuts
off a small polygon with r interior points. The small polygon (x1, x3, ..., x7) above
gives the left hand factor 7 [(xl ; X2, ..., X6; x7) in the formula, while the main polygon,
containing the integration endpoints xog and xy4+1 = xj¢ gives rise to the right hand
factor I™(xg; x1 , x7, X8, X9; X10), by deleting the interior points from the segment.

The following theorems illustrate the power and information contained in these
operations. For N > 1, write

D :@ D
<N 1<2r+1<N 2r+1

as the overall combination of all (relevant) derivations in weight < N. (Note that

Dy =0on H;}), so its inclusion will not change the statement of Brown’s Theorem
appreciably. However, D1 is important for Glanois’ Theorem below.)

Theorem 4.4 (Brown, Theorem 3.3 [4]) The kernel of Dy on motivic MZV’s is 1
dimensional in weight N, and spanned by {™(N),

ker D_y NHY = ¢™(N)Q.

This (often) allows one to recursively lift identities of real MZV’s to motivic MZV’s,
by recursively verifying Dy vanishes, and using the numerical identity to fix the
final unknown coefficient of ¢™(N) via the period map.

This was extended by Glanois [10, 11] to the case of alternating motivic MZV’s
(and motivic MZV’s at higher roots of unity).

Theorem 4.5 (Glanois, Corollary 2.4.5 [10], Theorem 2.2 [11]) The kernel of D_<N
on alternating motivic MZV’s is 1 dimensional in weight N, and spanned by {™(N),

ker Doy N Hg) =™(N)Q.

This again (often) allows one to recursively lift identities of real alternating MZV’s
to alternating motivic MZV’s, by recursively verifying Dy vanishes, and using the
numerical identity to fix the final unknown coefficient of ¢™(N) via the period map.

For N > 1, one can take ¢™(N) instead as the generator, however, for N = 1, one
must take £™(1) = —log™(2), as £™(1) = 0.
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Remark 4.6 The analogous result for higher roots of unity is not true, as further
primitive elements come into play. For example ¢™(N) and ¢™ (eXp(%ﬁ/ 3)) are both
primitive for A, and therefore vanish under all derivations D,. However, (after appli-
cation of the period map, to take real and imaginary parts), one sees they are linearly
independent. Therefore the kernel of D_y on motivic MZV’s at 3rd roots of unity

is (at least) two dimensional. Glanois gives such characterisations in more cases in
Corollary 2.4.5 [10].

Finally, Glanois also studied when alternating motivic MZV’s Galois descend to
be(come) linear combinations of (non-alternating) motivic MZV’s. The following
Theorem gives a criterion to check this recursively using D;..

Theorem 4.7 (Glanois, [10, Corollary 5.1.3], [11, Corollary 2.4]) Let 3 € H® be
a motivic alternating MZV. Then 3 € H(l), i.e. 3 is a linear combination of (non-
alternating) motivic MZV's, if and only if

() D1(3) =0, and

(i) Dorp13 € LY, @ HY forallr > 1,

where Eélr)Jr | is the subspace of L generated by all (non-alternating) motivic MZV’s
of weigh 2r + 1.

5 Regularised distribution relations, and the derivations D,

In [22], Murakami calculated the derivations D, on motivic MtV’s of the form
t™(ky, ..., kg) with each k; > 1. The case where some k; = 1 was not treated,
as the distribution relations used in the proof would not hold exactly. For the pur-

poses of treating the more general case, we need to consider the case of regularised
distribution relations, and verify them on the motivic level.

5.1 Classic and motivic regularised distribution relations

The (convergent) distribution relation of ‘level N = 2’ states that if kg > 1, the
following holds

kit tki—d Z e <Iii”ij) =k, ... ka), (24)

This immediately follows from a corresponding distribution relation for multiple poly-
logarithms which holds on the power-series level

Ky 4rtka—d : ~ 2 2
VAR > Lik.kg(e1x1, .. £axg) = Lig, .y (7. ... x]),

by setting x; = 1. The distribution relations are known to be motivic, and Murakami
indeed even verified this again to be the case in Proposition 10 of [22], at least when
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all k; > 1. Geometrically, they follow by taking the pullback under s — s2 (for level
N = 2), and analogously in general. For example

€1, &2
x (V)=
e1,62€{x1} ’

10: 1, {017 1401 1) + 1(0; 1, {031, =1, {0} 1 1)
+1(0; =1, {0} 1, 1, {0} D+ 1(0; =1, {0}, =1, {0}*~ L5 1).

where as always a; within the bounds of the integral represents the form sta -, as in
(7) above. By linearity of integration, the forms can be combined as
ds n ds 2sds
s—1 s+1 s$2-1
and so we can write the combination of integrals as
a — 1 terms b — 1 terms
—
2s1ds;  dso ds, 2sgr1dsge1 dsgao dsgap
= 3 _/\.../\_a/\ aZ+ a+/\ at Ao A a+’
s;—1 s Sa Sy — 1 Sa+2 Sa+b

O<sy<---<Sgqp<l1

Now set y; = sl.z, for which the bounds 0 < 51 < -+ < §44» < 1 become 0 < y; <
- < Ya4b < 1, and the forms become

dyl' o dSi dy,' _ 2s,-dsl-

2vi s oyi—1  s2—1

1

This means the integral is equal to

a — 1 terms b — 1 terms
—
d d d d d d
— / n o2 Da  Datt | Datr o Datb
y—1 2w 2Ya  Ya+1— 1  2ya42 2Ya+b
0<yi<-<yasp<l
= samp2t@?b)

Therefore (modulo some formalities to translate this carefully), they indeed have a
geometric (‘motivic’) origin.

On the level of real numbers we claim the following regularised version of the
distribution relations of level N = 2 holds. (A regularised version of the distribution
relations is discussed in general in [28, Section 13.3.4], alternatively one can under-
stand this via the asymptotic expansion discussed in [ 12, Proposition 2.19 and Lemma
2.211)
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Proposition 5.1 For k = (ki1, ..., kq), with kg # 1 an index, and any o > 0, the
following regularised version of the distribution relation holds

)
2k1+...+kd_d L, w €, 0 _ Lu,Wk la
(}j (g ) o
=(€1,..- €4

€
8=(31.....8¢)
Gi,SjE{il}

o - h
= ZCM’W(K, {1}“—h)m'

P h!

Remark 5.2 Firstly, note that the power of 2 is still given by weight minus depth; the
additional ¢ many 1’s increase both weight and depth by «, which cancels. Also by the
change of regularisation formula from Lemma?2.14, with S = W, T = W — log(2),
we can in fact rewrite the identity as

)
ki tkg—d ww (& 9 = (W Wlog@ (i ey,
¢ Ky ) =6 (k. {1})
€=(€1,...,€4)
§=(51,...,3a)
€,0je{xl}

Proof of Proposition 5.1 Recall the algebraic setup as in Section 2.1, with the alphabet
Y = {eg, e1, e_1}, letter product ¢; ¢ e; = 0, and the induced shuffle product e; wy LU

ejwy = ¢;j(wy LW ejwy) +ej(e;wy L wy) on %&U = Q(Y). On the convergent words
‘BEU (those not starting ep and not ending e;), the map

;:(%BJ,LU)—)R

ni—1 ng—1 m/m.n3/n2,.1/na
€n1€p T ena€g Hg(nl 7 nq

d -1 -1
= (=DL(0; ep,, {eo}" 7, ..., enys {0} 75 D),
where ; = ]_[f‘l= i€ ! isan algebra homomorphism. It extends uniquely to a homo-
morphism ¢V : (‘B&[el ], W) — R[W], by requiring e; — W. Like before %&[el]
is isomorphic to the space of words not starting e. (This £">" agrees with Defini-
tion 2.5, as no word starts in eq.)
Consider now
w= celgl_1 e cegrlca,

where ¢ = Ae_1 + e is an arbitrary linear combination of letters e_1, e1. By the
same argument as in Lemma2.14, along with the linearity of LLI, we see that

[ _1\h LWk
Z (ce](;]*1 . ~ce]6d_lc°‘7h) L % =: f(c) (25)

h=0
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is a sum of words which do not end in c, as there is a pairwise cancellation when
applying the recursive definition of LLJ. Moreover f(c) is a sum of words of weight
ki + -+ 4+ kg + o« and with d 4+ « many c’s in each word. Applying the convergent
distribution relation shows that

é.u_l,W(2k1+-~-+k4+ot—(d+ot)f(e_l +ep) — f(el)) =0, (26)

since when expanded out all words have depth d + «, i.e. d + o many non-eq entries,

and f(e—; + e1) sums over all choices of signs ¢ = ey independently (both in

‘BEU and in the MZV’s after applying "% as the correspondence (11, ..., nq4) <

(&1, ...,eq) = (m2/n1, 13/M2, - .., 1/n4) is a bijection and maps {£1}¢ to {1}7 ).
Hence expanding out each f in (26) via (25), we obtain

h
kit tkg+a—(d+a) Z Z ww (€ 8 (=W +log(2))
? ¢ (k, {1}°‘h> h!
h=0 e=(e1,....€q) =

@ h

h=0

Taking the generating series .., ® X% of both sides of this gives

Z g W <i é} ))X"‘ -exp((—W +log(2))h)

A1
€=(€1,....€q)
é_(al )
€.0; e{il}

=Y "Wk, (1)) - exp(~Wh).

Moving all of the exponentials to the right-hand side, and extracting the coefficient of
X“ gives the claimed identity. O

In particular, the weight w > 1 distribution relations holds modulo products,
whether or not regularisation is necessary. In the case of weight 1 however, we find

20(4”(1) + ;M’W(_f)) = Y1) = ~log(2),

which is non-zero modulo products (at least assuming the usual conjectures), as this
is a logarithm (i.e. weight 1). More precisely, on the motivic level, the weight 1
distribution identity (with W = 0) is clearly satisfied, and then log[(Z) (the motivic
logarithm log™(2) modulo products) does not vanish, as it lives in a the weight 1
component.

We now specialise to the case W = 0, in line with the usual prescription via the
tangential base-points of the straight line path y: [0, 1] — [0, 1], y(t) = t. In this
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prescription: ¢0(1) = g“fJ ’0((()) = 0. Using this, we can extend Proposition5.1 to

the case of QLU’O(K, {1}%), wherein the integral representation starts with a string {0}¢
of £ many 0’s.

Corollary 5.3 Fork = (ky, ..., kg), withkg # 1 an index, any @ > 0, and any £ > 0,
the following regularised version of the distribution relation holds

okt +e—d Z gﬁm")( g ) Q “k. (1))

1 o
€=(€1,....,€q) k. {1)
8=(1,....64)
éi,5j€{:|:l}

log(2))!
—Zf (e S 1oE)

Proof Inthe case o = 0, applying the unshuffling of starting 0’s from (9) in Lemma 2.6
shows that

wo (&Y _ ¢ ki +i;—1 kg +ig—1
& (15)—(1),2, ( i ) ( iq )

i1+-tig=t
€
x¢ . .-
(k1+ll,.-.,kd+ld>

This reduces ¢, to convergent zetas on the right hands side, to which the distribution
relation applies exactly. So after summing over all choices of signs, and applying the
usual distribution relation, one finds

e=(&1,....&q) -
ere(+1)
Ky +ip — 1 g — 1
— phitetkate—d (_1yd Z (1+.l1 >“.<nd+.ld >
. . 131 14
i1+-+ig=~
ld
el
ki+it, ... kg +ig

— 2k1+"~+kd+ifdé.;_l,0(K) ’

where the last equality arises by applying the unshuffling process again. The case with
trailing 1’s follows by applying the proof of Proposition5.1 again, mutatis mutandis,

with the word w = egcel(;l*l . ~ce](§d_l. O

Remark 5.4 In principle, one can also give a version of the unshuffling identity (9) in
Lemma 2.6 which holds for different regularisation parameters, and so one can extend
Corollary 5.3 to the general regularisation parameter (even taking different regulari-
sations with £*"-"' (1) = W and {ILU’W’W/ (#) = W), by tracking and incorporating
the product terms involving W and W’.

@ Springer



2040 S. Charlton

The proofs of Proposition5.1 and Corollary 5.3 proceeded purely by using the
shuffle product of iterated integrals and the non-regularised distribution relations, so
the result holds true on the motivic level as well, as both ingredients are already known
to be motivic. So as a result, we obtain the following corollaries.

Corollary 5.5 Fork = (ky, ..., kg), with kg # 1 an index, any @ > 0, and any £ > 0

the following regularised version of the distribution relation holds for motivic multiple
zeta values.

ek g (€2 ) gracie

g=(€1 ,,,,, Ed) k, {1}
=(81,.--,0)
e, 8 cl+1)
log™(2))!
— ZQ (k, {1}~ I)M

i=1

Corollary 5.6 Fork = (ky,...,kq), withkg # 1 an index, any a > 0, and any £ > 0,
the following regularised version of the distribution relation holds for motivic multiple
zeta values of weight w > 1 or £ > 0 modulo products

€=(€1,....€q)
8=(31,...,8¢)
€,0j€{xl}

In the case of weight 1 and € = 0, the distribution relation modulo products has an
extra —log'(2) correction, namely

')+ =¢') — log(2).

5.2 Derivations on ?m(k1 yoooskg)

Now that we have the motivic version of the distribution relations for arbitrary argu-
ments, we may directly generalise Murakami’s computation of D, given in Proposition
11 of [22].

Proposition 5.7 (Generalisation of Proposition 11, [22]) Let k = (ky,...,kq) €
(Zzl)d be an index. Write l_(l-’j = (ki, ..., kj) for a subindex of K and |(a, ..., a)|
= aj + - - - + a, for the total (weight) of an index. Then the derivation D,, r odd, is
computed as follows

D (T™ ki, ... kg)) =

> 8|51_j|:,?[(k1,...,kj)®Tm(kj+1,...,kd) 27)
1<j=d
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+ D0 Szt -1 (G kit k) = 8z log' )
1<i<j=<d

QT (ki, ... ki, K | =7 kg1, ... ka) (28)

- Z Sk, ;_y<r<lk; ;|1 (Cr[_|kl._,._l|(kj71, oo ki) — 8= 10g[(2))
I<i<j=<d )

®@ 7Tkt o kit K 5l =1k, ka) 29)

Proof The proof of this proposition works in precisely the same way as Murakami’s
proof of the special case, where each k; > 2, givenin [22, Proposition 11]. In particular,
the terms arise from the following cuts on the integral defining 7™
(DDA TR T N ey k)
= > md™0m, 0¥, (0¥ g fOY .
ni€{£1}
The correspondence in particular is as follows

@7

|
(28) |
™o 1,0, 0.m 0, .., 0, 0 migr, 00,0, ...,0‘,nj+1 ).
| 29 |
|
(X=0)

The only difference from Murakami’s proof [22, Proposition 11, proof] comes when
computing Dj, wherein terms (28) and (29) are simplified using the regularised dis-
tribution relation, and so pick up an extra — log'(2) in weight 1. O

Remark 5.8 We should note here, again, that the motivic iterated integrals
I™(ag; ay, ..., ay; a,+1) satisfy the homothety

I™(Aap; Aay, ..., Aap; Aapg1) = 1™ (aos ai, . .., an; Ang1),

ifap # a1 and a,, # a,+1. However, if one of these is actually an equality, the integral
depend on the tangential base-points of the path, and the homothety can actually
change these, so the equality does not in general hold. Viz:

I™(T 030, 1;=1) = I™(T ;0 =DI™(T g3 15 —=1) = I™(T 03 1,0, —1)
= (i)™ log™(2) + ¢™(2)

I™(T;0, =15 1) = I™(T 03 0; DI™(T o3 =15 1) — I™(T 0 —1,0; 1)
=0-1og™(2) +¢"(2).,

where 1 o denotes the tangential base-point at 0 with tangent vector in the direction
1 . So there is a difference of (i)™ log™(2) between the homotheties. However, one
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can say that in general (for a; € {0, £1}), with weight w > 1, that

I'(ag; ray, . .., han; Aayy1) = [Yao; ar, . . ., an; any1).
In weight 1, homotheties by A (with |[A|] = 1) will rotate the tangential base-
point, and so contribute some rational times (i)' = 0 (already (i7)* = 0, even

before killing products) by considering the decomposition of paths / [(70; 0;a) =
I[(Yo; 0; _1)0) + I[(_l)o; 0; a). So the homothety property still holds.

This property is applied in various places in Murakami’s proof of Proposition 11
(and some earlier results upon which it is dependent). But in every case, it is applied
to the 1" part of the coaction, and so is valid.

We now make some observations which simplify the calculation of D, whenr = 1.
Note that D,, for r > 1 is computed with exactly the same formula as Murakami
[22, Proposition 11], we have merely extended the range of validity to all (shuffle
regularised) multiple ¢ values. So let us focus on the case Dj.

Proposition 5.9 (Calculation of D) Let k = (ki,...,kq) € (Z> D4 be an index.
Then

DiT™(ky, ... kg) = 8,=1 - 210g' Q) ® T™(ka, ..., kq)
—8kg=1 log[(2) ® ?m(kl, o kaZ).

That is Dy acts by deconcatenation of trailing 1’s and of leading 1’s (with coefficient
2).

Proof Assuming r = 1, we consider how terms (28) and (29) can contribute. For
(28), the delta condition requires |K; il =1 < |k; ;I — 1. The first condition
forcesi +1 = j,and k;,| = 1, so g,.,j = (a, 1), for some o > 1. One has that
|l§l-,j| —r =oa+ 1 — 1= «. In this case, we contribute

(Zo(1) —1og'2) @ 7™y ;1. . Ky ),

which can be seen as deleting the 1 following o = k; ink; ji= (a, 1).

Likewise, for (29), the delta condition requires |l§i’j_1| <1l <|k; j| — 1. The first
condition forces i = j — 1, and k; = 1, so Ki,j = (1, @), for some @ > 1. One has
that |Ki’j| —r =a+ 1 —1 = «. In this case, we contribute

—(Go(1) —1og'2) @ 7™k ;_y. . ki ),

which can be seen as deleting the 1 proceeding o = k11 ink; ; = (1, @).

This means that for any subindex («, {1}", B), @, B > 1 appearing in k, the term
from deleting the 1 after « cancels with the term from deleting the 1 before 8. The
only terms which can survive this process are of the form ({1}", §) at the start of k,
and (a, {1}) at the end of k. Combined with the pre-existing deconcatenation term
(27), we obtain the claimed expression. O
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Remark 5.10 (Hoffman’s derivation with respect to log(2)) In [16, Conjecture 2.1],
Hoffman conjectures that the algebra of MtV’s admits a derivation d which acts on
t(ki, ..., kaq) by

tky, ... k ifk; =1
dihy, .. kgy = | 2o k0 it =
0 otherwise.
Ifk = (ki,..., kg), with kg # 1, so that 7m@) is a convergent motivic MtV, one

obtains the formula
D1 T™(k) = 8,1 10g'(2) @ T™(ka, ... .., ka).
Since D acts as derivation in the sense
DIXY)=(1QX)D1Y +(1QY)DX,
after projecting log'(2) — 1 we see that Hoffman’s conjectural derivation is nothing

but the action of D on the motivic MtV’s, in the convergent case.
Moreover, one also notes that for £, ...£7,n € Z,n > 2, we have

D]{m(ﬂ],...,ﬁf,ﬁ) =0.

This is because the strings {0, 1, —1}, {0, —1, 1}, {—1, 1, 0}, {1, —1, 0} do not occur in
the integral representation of the MZV. These strings lead to log'(2) factors, whereas
1'(1;0; —=1) = I'(—1;0;1) = 0. The algebra basis of the MZV Data Mine [2]
exclusively invokes alternating MZV’s of the form

¢y, ..., Lp, 1),

with £;, n odd. So one sees that Hoffman’s claim, with regard to the action of d as
differentiation wrt log(2) on the formulae in Appendix A of [16] is generally valid,
for this specific choice of basis.

For example, the following identity is verified by the Data Mine, and so actually
holds on the motivic level

M™(1,3,2) = — 3:‘“(6) - iz‘“(3)3 - lz‘“(z) (] §)+l ™(1,5)
T 01 196 2 e 4§ ’
1 4
— ztm(s) log™(2) + 7‘“(2)&(3) log™(2) .

Application of D (after scaling to write it via 7, so Proposition 5.9 can be applied,
and rescaling afterwards) leads to

1 4
log'2) ® 1™(3,2) =log'2) ® (— Et‘“(5) + 7t‘“(z)tm(3)),
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or equivalently
t (3,2)=—§t (5)+7t @173,

as expected from Hoffman’s claim.

Remark 5.11 The formula for D; 7™ in Proposition5.9 shows immediately that the
convergent 7™ (1, k) cannot be a motivic MZV, as D1 7™ (1, k) = log'(2) ® T™ (k) #
0. On the other hand, this gives us a place and means to search for other Galois descent
candidates.

Proposition 5.12 Let a, b, c,n € Zxo, such that a > 1 and n > 1. Then the motivic
multiple t value

T =772}, 1, {2}, 2n + 1, {2}

is always a (linear combination of) motivic MZV's.

Proof From the above remark, we know D17 = 0. We must only check the second

part of Glanois’s motivic Galois descent criterion from Theorem4.7, namely that

Doyq17T € /3(21)+1 @ HWD, ie. the parts of the coaction are already motivic MZV’s.
We first note that the deconcatenation term (27) takes the form

T LY T2 Y, 20 + 1, {2)9)

The left hand factor is (modulo products!) a motivic MZV by Theorem 6.1 below. (The
terms log™(2) only appear as products in weight > 1, so vanish when we project to
L.) The right hand factor is a motivic MZV by Theorem 8 in [22]; therein Murakami
showed that wheneverk € (Zzz)d is an index with all entries > 2, then 7 " (k) € HD
is a motivic MZV.

Then for the terms (28) and (29), one only needs to consider the right hand factor,
as the left hand one is already an MZV. One can also assume k; ; does not contain 1,
for if it does contain 1, then the condition r < |K; j| — 1 means that [K; j| —r>1,
so that the subindex we removed is replaced with > 2. Hence by Theorem 8 [22] is
already a motivic MZV. More generally, we note that in (28) by subtracting the delta
condition from [Kk; jl, one has

ki2|5i,j|_r>1

So the replacement value |k; ;| — r for the entire subindex k; ; is between 2 and k;,
the left endpoint. Likewise in (29), the replacement is between 2 and k;, the right
endpoint.

We have the following subindices which exhaust all remaining possible cases. The
subindex D here may start or end at 2n + 1,.
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We already note though that A, B and C cannot in fact contribute. The replacement
value k; = k; =2 = [k; jl—r > 1 mustbe 2. Butthlslmphesk =r + 2 is odd.
So we are left with the case D, and for the same reason the replacement must be even
in this case, namely:

Subindex ‘ k; ; ‘ k; ;I —r ‘ Ty K =7 K )

D | @uam+,28 | 2 | TR 12,2, 20)

Since this MtV is of the form 7‘“({2}“, 1, {Z}b) with a, b > 0, itis a motivic multiple
zeta value via Theorem 6.1 below. O

It would be interesting to see how far this proof can be generalised, and whether
one can give some complete combinatorial criterion for when 7™ (k) descends to a
motivic MZV. Certainly other families of motivic MtV’s which descend seem to exist.
A promising candidate is as follows: let a, n € Z>1, and k, £ be indices containing
only even entries. Then it appears that the following MtV, a generalisation of the above,
is also a motivic multiple zeta value.

~ ?
™({2)%, 1,k 2n + 1,8 € HD.
There are also indices with multiple 1’s that Galois descend, such as
7"({2,1,31%) e HD,

although this pattern does not seem to continue. Once can check (via the MZV Data
Mine [2]) that D;7™({2, 1,3}%) ¢ £ @ ).

6 Lift to a motivic ?m({Z}", 1, {2}°) evaluation

The aim of this section is to first lift the evaluation for r*"W=0({2}¢, 1, {2}?) given
in Proposition 3.7 (more precisely, the explicit version given in (22) thereafter) to an
identity amongst motivic multiple ¢ values.

The shuffle version, with regularisation parameter W = 0 is the key identity for the
rest of this work, since the motivic MZV’s are naturally and almost-always regularised
in this manner. Moreover, via Proposition 2.18, we can express the stuffle regularisation
at arbitrary parameters t* (1) = V via the shuffle regularised version at #">>"=0_ This
will be used to sidestep later the issue of how to take the motivic stuffle regularisation.

@ Springer



2046 S. Charlton

Theorem 6.1 The following motivic identity holds for all a, b > 0
211217
a+b 2r
2r 2 2r I
— -1 r+1_2 = m2 ITm 2a+b7r
rg( ) [<2a>+22,_1<2b>]; Qr+ 7™ ({21
+84=02 - log™ () 7™ ({2}) — 8p=0 log™ (2) 7™ ({2}, (30)

Before we begin, it will be useful for later purposes to recall the motivic identity
proven in [22] for 7™ ({2}¢, 3, {2}?). This also gives us an opportunity to compare and
contrast the two evaluations, which in the MZV case would be equal by duality.

Theorem 6.2 (Murakami, [22, Theorem 22]) The following motivic identity holds for
alla,b >0

(21,3, 200 =
a+b+1

1y 2r _n2r 2r m L Fm a+b+1-r
Y (=D 2[<2a+1)+(1 2 )<2b+1)}{ @r+1)- 172} )

r=1

(3D

6.1 Proof of Theorem 6.1

After application of the period map, the identity in the theorem reduces to (2241201
times) the identity in (22), with W = 0. Therefore we only need to verify that

D41 (LHS (30)) — D241 (RHS (30)) =0
This will show that the purported identity lies in the kernel of Dy, N = 2a +2b + ! 1.
Hence by Glanois’s Theorem (Theorem4.5) it holds up to an additive constant ¢ ™ (N),
and application of the period map shows that ¢ = 0. This will verify that the identity
holds on the motivic level, as claimed.

Write

L% =7™((2)%, 1, {2}%)

ath 2r 2 (or R
Ra,b= _ _1r2 = m2 1?m 2()+b7}‘
,;( ) [(2a>+22,_1<2b)}: Qr+DT™ ({21
+ 8402 - 1og™ (2)T™({2}") — 8p=0 log™ () T™({2}*) ,
for the left and right hand side of the purported identity. In order to check
D41 (L") = Doy (R*?) =0,

we proceed inductively on a + b.
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In the case a = b = 0, we immediately find
LY =T7"(1) =¢™(1) — ¢"(1) = log™(2) = R®?

So we may take a + b > 0.
Lemma 6.3 The following expression for Dy, 41 L% holds for any a,b > 0, and
0<r<a+hb,

D1 L = Do T™((2)%, 1, (2)") = 7(E] ) ® T™ (2T,

where 7 : H® — L@ denotes the projection, and ’é\; 5 IS given by (the sums running
over all indices «, B > O satisfyinga + B =1)
= 8,084 10g™(2) — 8,2085=0 10g™(2) + 8a, T™({2)4, 1, {2} %)
+ ) L) - Y gt L e,

a<a—1 o=a

B=<b p<b—1
Proof This is a direct, if somewhat tedious, calculation which follows from Proposi-
tion5.7. |

Now introduce the following notation from [4]

r — 2r r _(l 2727’) 2r
ab = \pq4+2) "t 2+1)

and recall one of the main results proved therein.

Theorem 6.4 (Brown [4, Theorem 4.3]) For all a, b >, the following identity amongst
motivic MZV’s holds

™ ({2),3, (21"
a+b+1
= Z 2 (=17 (<AL, + B )™ @ 4 D™ (23T,
r=1

We therefore have for « > 0, 8 > 0 that

21, 1, 218 = g2y, 3, (21
= 2(—1)"P (A5, - BET ) Qe+ 28+ 1),

U2y, 1) = ¢l d2)*) = 2(=1)%¢'Qa + 1). (32)

The first follows by duality and extracting the coefficient of {™(2a + 2b + 3) in
Theorem 6.4. The second follows by shuffle regularising, or from the stuffle product,
as shown in Lemma 3.8 [4].

By the induction assumption, we are also granted ?[(1) = log[(2), and that for
0<d +b <a+bwehave
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7211, 2)") =

oy [ (2a + 20 P2 CR LN D) AN i —
I+a'+b [
2= [( 2 )+m( 2 )}€<2a’+2b’+1)' (33)

Case D;: We check explicitly and directly the case r = 0, because it can have a
distinctly different form, on account of the 8,—g log'(2) terms. Explicitly we find (also
directly from Proposition 5.9)

gz?,b = 84=010g™(2) — 8p=0log™(2) + a=07 " ({2}%, 1, {2}79)
+ ) g L) - Y0 @ 1,21

a<a—1 a=a
B<b p<b-1
a+p=0 a+p=0

= 84=010g™(2) — 8p—0 log™(2) + 84<0 7™ ({2}, 1. 2}°)
+ 020 11210 — ¢ (21,1, 219
= 8402 - 10g™(2) — 8p—0 log™(2)
So that since D1 = D».g4+1 with r = 0, we have
DiL*" = (84=02 - log™(2) — 8p—0 log™(2)) ® T™({2}**?).

Whereas, directly from R%?, we can compute the following. We make use of some
simple properties of D»,41, such as the derivation and that ¢™(N) and ¢™(N) are
primitive for the coaction, viz.: AC™(N) = 1 ® ¢™(N) + ¢'(N) ® 1. Overall this
means

Dy 1 XY =(1QY)Dyr1 X + (1 ® X)Dory1 Y,

0, if2r +1#N

Doy 1 E™(N) =
2r+14 7 (V) {g[(zv), if2r +1=N,

the latter also for N replaced by N, in particular also for ™ (1) = — log™(2). Applying
these to the computation of D R*? gives the following

D|R* =
=0
> 12 <2r/) R <2r/> (1 ® "G Dy
—2(— [ 20 ) T (5 }( ® L™ @r + 1) Dy T (2
+ DI F (1@ T2} )
— ————
=08/ 41=1
+ 84=02 - (D] log™(2)(1 ® PR R log™(2)) D17m({2}b))
=0
— dp=o(D1 1og" (1 ® T™([2)) + (1 @ 10g™ () (K1 T™(12))) ).
=0

@ Springer



On motivic MtV’s and Saha'’s basis 2049

So all terms vanish apart from the two terms involving D log™(2), which leads to

D1R"" = 8,02 - 10g'(2) ® T™({2}") — 8p=0l0g'(2) ® T™({2}9)
= (84202 - log'(2) — 8p=0log'(2)) ® 7™ ({2}*T).

The last simplification holds because R has total weight 2a + 2b + 1, so the right
hand tensor factor of D must have weight 2a +2b, irrespective of checking the various
cases of the Kronecker delta conditions.

In particular, we have that D L%Y = D; R%? in this case.

Case r > 0: Now we turn to the case r > 0, which will have no extra log[(2)
contribution. We find it helpful to separate out the terms where § = 0 or 8 > 0 in the
sum involving ¢} ({2}%, 1, {2}#), and similarly for the one involving ¢} ({2}#, 1, {2}%).
This is on account of the different form of the coefficient of ¢ [(2r + 1) therein might
take. We have that

o~

Eip =
Sar T2 L2+ Y (2, 1,121 = ) (2,1, 12))
1Zh< e
+ )0 @ L) - YT A, 1L k)
afsiBl 552

Since we sum over « + 8 = r, the last two summations resolve to a Kronecker delta
condition, namely §,<,—1 and §,<p—1 respectively. Making the substitutions for the
various g“(g using (32) and for 7' from (33) by induction, we find

ﬂ(?,;,b) =

5<2-(—1)f+1(<2r)+L< 2r ));‘(2r+1)
a=r 2a 22r — 1\2r —2a

+{ D 2D (A= By ig) = D 21 (AL 5= By p)

a<a—1 1<a<a
1<B=b p=<b—1

+8rzar2(=1) — srsb_lz(—n’}c[(zr +1)

If we make the change of variables 8 = B’ + 1, in the first sum, and @ = o’ + 1
in the second sum, then the (implicit) summation range o + 8 = r is converted to
a+p +1 =randa’+ 1+ = rrespectively. (We shall write this explicitly from now
on.) Doing so, and simplifying the expression coming from 7" with MQ2r+1) =
—(1 =272)¢™(2r + 1), gives
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—2r 2r
w&) ) = 2(=1)"{8a<r (2 -2 )2a +8r<a—1— Sr<p_1

+ D) (A= Bhd)— X (Az,ﬂ—B;,,g)};‘@rH)

a<a—1,8<b—1 a<a—1,8<b—1
a+p=r—1 a+p=r—1

Now we may apply the following Lemma

Lemma 6.5 (Brown, [4, Lemma 4.2]) Forany a,b > 0,and 1 <r <a+b+ 1 we
have

Y ALg— Y. Apa+Shzr—84>r =0, and

a<a,B<b a<a,B<b
a+p+1=r a+B+1=r
r __ pr
Z Ba,ﬂ - Z B,B,oz - Ba,b
a<a,B<b a<a,B<b
a+p+1=r a+pB+1=r

Inthe case a — 1, b — 1, we may apply the lemma whenr < (a— 1)+ b —1)+1
= a + b — 1. But we are computing D41 with3 < 2r +1 < 2a +2b + 1, i.e.
3<2r+1<2a+2b—1orequivalently 1 <r < a+ b — 1. Application of this
lemma (taking care with the range of summation indices, some are < while others are
<) gives

7, ;)
r —2r 2r r
=2(-D 5a§r . (2 -2 ) 2a + 8r§a—l - 8r§b—l - (SafrAa_],r_a
+ 8b<rAp_t b — Z Agpt Z Ao
a<a— a<a—1
B<b— 1 B<b—1
a+p=r—1 a+p=r—1
—8p<rBp_y,p t Z B, p— Z Bg,a}fl(% +1
a<a—1 a<a—1
B=<b—1 B<b—1
a+p=r—1 a+p=r—1

2r
= 2(_1)r{805r ' (2 - 272r) <2a> + ‘Srfa—l - 5rfb—l

— SHSVAZ—I,r—a + 8b§rAZ_1,,«_b + (Sb—er - Sa—lzr
—8b=rBl_y ,_p+ By poy }C[(Zr + 1

2r
= 2(—1)r{5a5r (2- 22r)<2a> —Sa<rAy_1p—a +Ob<rAp_1

= Sb<rBy_ 1,y + Bo_1p-1 }5[(2” +1D
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We now make a number of straight forward simplifications. Namely, A7, , only depends
ona,r,and Bg,b only depends on b, r. Moreover since » > 1,ifa > r ora < 0, then
already Az’b =0, likewise if b > r or b < 0 then BZ’b = 0. So we find

_ 2r
7@, ,) = 2(_1)r{ (2-2 2r)<2a) — Ay 1t Ap_1 a1

=By, p+ By poi }4[(2’ +1)

Note that —Bg_l’r_b + B;_Lb_l = 0 just by their definitions, so overall we obtain

e r —2r 2r 2r I
w@p =20 0-2)(3)+ () feer e

Therefore
Doy LY = @& ) @ T (2}

= 2(—1>”{(1 - 2‘”)(52) + (Z)}g‘@r 1)@ Tm((2yet

gives us the derivation of the left hand side of (30), for r > 0.
On the other hand, a direct computation of Dy, 4 Ra:D gives us that

2 22r 2 ~
D1 R = (—1y+ . 2[(22) * ﬁ(zz:)};[(zr DTN

A1\ _n—2r 2r 2r [ ~m a+b—r
=2(=1 [(1 2 )(Za) + <2b)}§ Qr+1)® 17 ({2} )

is the derivation of the right hand side of (30), for r > 0.
Conclusion: We have shown that Do, L%? — R4’ = 0for0O <r <a+b—1,
hence L%? — R%P ¢ ker D _ . Therefore by Glanois’s theorem, we know that

L% — R*Y = cr™(2a +2b + 1),

for some ¢ € Q. Then by applying the period map, we reduce to the numerically valid
identity in Proposition3.7 (with W = 0), and hence see that ¢ = 0. Therefore the
identity L*? = R%? is true on the motivic level, and this complete the proof. O

7 Independence of Saha’s elements

We now turn to the first application of this motivic identity. We show that the elements
that Saha conjectured [25] to be a basis for convergent MtV’s are, at least, linearly
independent.

We recall briefly Saha’s conjecture.
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Conjecture 7.1 (Saha, [25]) Let
BS = {tki, ... .km—1,km 4+ 1) | ki € {1,2}}.
Then B is a basis for convergent MtV'’s. Moreover, the weight w component of BS is
BS ={ttky,....ckmt. b+ 1) L ki € (L2 k1 + - 4k = w — 1},

which has cardinality #BS, = Fy, for N > 1. Here F,, = F,_1 + F,—> is the n-th
Fibonacci number, with F1 = F, = 1.

We note that the arguments of such MtV’s can be written as an arbitrary word in
1’s and 2’s, followed by either a 2 or a 3. We can therefore schematically describe the
set of arguments as follows

we {1,2Y*®2)uU 1,2} @ 3),
where @ denotes concatenation of words.
Definition 7.2 (Saha filtration) For, w € ({1,2}* ®2) U ({1, 2}* & 3), we define the

level of w to be deg; w 4 deg; w, i.e. the total number of 1’s and 3’s in the word. We
define Q-subspace of H?, and the level < ¢ piece of the level filtration by

HS = (™ (w) |we (1,2 ®2)U{1,2}* ®3))g,
SeHS = (™ (w) | w e (1,2} ®2) U ({1,2}* @3), s.t. deg; w +degyw < €)g

The associated graded to this filtration is then given by
gy HS = Sy H5 /S H5.
Example 7.3 Thelevel < 1 part of this filtration is generated by the following elements
SIHS = (™(2)%, 1 {2)), " (2}, 3, 1" (12} | a, e.d = 0,6 = 1)q,
whereas the level < 0 part of this filtration is generated by
SoH® = (™ ({2}%) | d = 0)q.

Lemma 7.4 The Saha-level is motivic. More precisely, the following holds for all
r>0

Doy 1 SPHS € L5, @ S-S,

Proof Letr > Obe odd, andk = (ky,...,kq) € ({1,2}* ®2) U ({1, 2}* & 3) with
level £. We consider how to compute D, Tk, ..., kg) via Proposition5.7.

@ Springer



On motivic MtV’s and Saha'’s basis 2053

Firstly, if the deconcatenation term (27) 7™ (k1, ..., k;) ® 7" (kj41, .. ., kq) con-
tributes, then the string (k1, ..., k;) of odd weight must contain a 1 or a 3. Hence the
level of (kjy1, ..., kq) is reduced.

Now, if the term (28) contributes, we must satisfy the conditions [K; | j| <r<
|l§',f| — 1. This means that k; > |l§l~’j| —r > 1, so that l_(i,j —r = 2,3. The case
|l§i, j| = 3 could occurs if k; = 3, and this can only occur if k; = kg with kg = 3, so
that i = j. But this is excluded from the sum, so |l§i’j| — r = 2. Since r is odd, this
implies [K; ;| is also odd, and so the subindex must contain (at least) one 1 or 3. This
is replaced by a 2, and so the level is reduced.

Likewise, if (29) contributes, we must have |l_(i’j_1| <r< |l§l~’j| — 1. This means
kj > |k; ;| —r > 1,sothat [k; ;| —r = 2, 3. The case |k; ;| —r = 2 is analogous
to the previous: |K; ;| is 0odd, so contains at least one 1 or 3. This is replaced by a 2
and so the level is reduced. Now, though, [K; j| —r =3occursif j =d and kg = 3.
But we see that |K; j| must be even, and already contains a three (from k; = kg = 3).
Therefore it must also contain at least one 1. Since a 3 and a 1 are replaced with a
single 3, at the end of the string as j = d, the element again is a Saha element, and of
lower level. O

From this lemma, we obtain a level-graded derivation
gty Dory1: gty HS — Lop1 ®g gry_ HY

Moreover we claim, this map lands in the subspace of £2,41 generated by the single
zeta element £'2r + 1).

Lemma7.5 For ¢ > 1,r" > 0, the level-graded derivation grf Dy, satisfies
gr2g Dyryg (grf HS) C C[(Zr’ +1DHQ®g grg_l HS.

Proof Letr > 1beodd, and k = (ky,...,kg) € ({1,2}* ®2) U ({1, 2}* & 3) with
level £. We consider how to compute D,?m(kl , ..., kq) via Proposition 5.7, and more
carefully track the contributions when we take elements of level £ — 1 in the right hand
tensor factor. For r = 1, this is clear: ng) = (log"(2))g = (Cm(T))Q, as weight 1
motivic alternating MZV’s are spanned by log™(2). So the L-factor of Dy can only
be a multiple of ¢ L(1), for dimensional reasons. So we can assume r > 1

With (27), the deconcatenation term 7 '(ki, ..., ki) ® T™(kjt1, ..., ka), we see
thatfork; ., ; tohavelevel £ — 1, a single 1 or 3 must have been removed. Therefore
ifk, ; = ({2)4, 1, {2}%), we know via Theorem6.1, that ?[(lél,j) e '@r+DQ.
Likewise, iflﬁl,j = ({2}¢, 3) (forif it contains a 3, it must be that j = d, and kg = 3.),
one has from Murakami’s evaluation in Theorem 6.2, that 7[@“) e'er+1HQ=
£'2r + HQ.

Then we turn to the contribution from (28), and recall the considerations in the
proof of Lemma7.4. Namely, |ki,j| —r =2, k; =2, which forces certain behaviour
ontok; ;. If |k; ;| —r =2, then k; ; must contain an odd number of 1’s and 3’s. But
for level-grading reasons, it actually must contain exactly one such, which if it were
a 3, must appear in the last position. We have the following cases.
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k; ;| —r ‘ k; ; ‘ Contribution to D,
2 Q21 127 | 02 L2 @ Tk ;1. 2.k )
2 (2,{2)%,3) G2 @ T Ky 1. 2. K 1 )

In either case, we see via Theorem 6.4, or rather (32) thereafter, that each ¢ (k; +1,j) €
¢'er+ DHQ.

Likewise, from (29), we have |ki,j| —r=2,3.1f |g,,j| —r =2,thenk; =2,3
and |Kk; 1 contains an odd number of 1’s and 3’s. In the level-graded, it therefore must
contain exactly one 1 or one three (where a 3 would appear at the end). Otherwise
Ik; ;| —r = 3,s0k; =3, and [K; ;| contains an even number of 1’s and 3’s. As it
already must contain a 3 at the end (smce kj =3 and so j = d), it must also contain
1 somewhere else.

Be aware that we must reverse k; ; when inserting it into ¢"in term (29). We have
the following cases.

k; ;| —r k; ; Contribution to D;
2 (214, 1,4212,2) | =42 1L, (21 @ Ty ;1. 2. K41 0)
2 ({2}, 3) —0 (2@ T™ k1. 2.k 4)
3 (214, 1, {2}, 3) 4 52 L {21 ® T (K, ;_1.3)
Once again we see via Theorem 6.4, or rather (32) thereafter, that in every case the
term;a(k/ ll)eg' 2r + DQ. O

We now look at the action of these derivations on elements of a given level, and
package them together into the following linear map.

Definition 7.6 Forall N, £ > 1, let 815/,( be the linear map

S . oS48 S 48
Oy,e: gy Hy — @ g1 Hy_or—1s
1<2r+1<N
defined by first applying Py -y &} Dzr‘H‘grs'HS’ and then sending all
- - t°*N

log™(2) > 4, ¢'@2r + 1) = 271 r > 0 to by the projection

Fort1: Q'2r+1) > Q
log(2)r—>—, ifr =0,
2@r+ 1D =221 ifr>0

The goal is to show that the maps 8;\?, , are injective for £ > 1. Then by recursion, we

will establish the elements of level ¢ are linearly independent (otherwise 9 Zf, . would
construct a non-trivial relation of strictly smaller level).

Definition 7.7 (Matrix basis) Let £, N > 1, with N = £ (mod 2). Define the follow-
ing sets
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Bsne:={we (1,2} ®2)U ({1,2}* ®3) | deg; w +degzw = ¢, |w| = N}

Bsyoi=1{we{1,2)* ®2)U({l,2}* ®3) | deg; w +degz w = £—1, [w| < N}
In the case £ = 1, the set B’S’ w.¢ also includes the empty word (of weight 0 and level
0). Sort both sides in reverse colexicographic order (i.e. reading right to left, and the

largest first), with 3 < 1 < 2. In this ordering, all terms ending with a 3 will appear
last.

A counting argument shows that #Bs y ¢ = #B/S’ ¢ for all such choices of £, N.

These basis elements will be used to define the matrix form of the linear map alf, 0
and the claim of injectivity corresponds to non-zero determinant.

Example 7.8 For N = 8, £ = 2, we have

Bs n ={11222,12122,21122,12212,21212, 22112, 1223, 2123, 2213},
B:S‘,N,K ={1222,2122,122,2212,212,12,223,23, 3}.

Definition 7.9 (Matrix of 83 ,) For € > 1, N > 1, with N = ¢ (mod 2), let

— w
MS'N’Z T (fw/)weBS.N,lvw/GB_/g_Nl

be the matrix of 8;5, ¢ With respect to the bases Bg, y ¢ and By , ,. Here f;" denotes

the coefficient of 7™ (w’) in 3 If, e7m(w), and in the matrix w corresponds to rows, and
w’ to columns.

It will be helpful to introduce some notation to talk more directly about there
coefficients of £'(2r + 1) in various identities.

Definition 7.10 Write c5azp5, €241, dpaqop, drazyp to be the coefficient such that

c'(2)9,3, 129 = ' (27, 1, (201 = couam ' (2a 4+ 2b + 3)
{2 D) = ¢{(2)) = 218’ a + 1)

7211, (21) = dyay ' (2a + 20+ 1)

{21, 3, (2)") = dyusyr¢'Qa +2b +3) .

Moreover note that d; = 2 so that 7[(1) =d - %log[(Z). From the computations in
Theorem 6.4 and (32) thereafter, and from Theorem 6.1 and Theorem 6.2, we have the
following explicit formulae.

2a +2b+2 2a +2b+2
# — 2 _1 a+b _ 1 _ 2—2a—2b—2
Couzpr = 2(-1) ( < 2a +2 >+( AT

c1=0
coap = 2(—1)*
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dzalzb — 2(_1)a+h ((1 _ 2—2&—2]7)(

— 4(_1)a+b(l _ 22a2b1)<

— 4(_1)a+b(1 _ 2—2(1—217—3)(

2a + 1

2a
2a + 2b
2a

2a + Zb)

2a +2b+2
2a + 1

i

2 2b+2
d2n32b = 2(—l)d+b<< a + + ) + (l - 2—2(1—2b—2)<

)

2a + 2b
2b

)

2b+1

2a+2b+2>>

Example7.11 For N = 8, ¢ = 2, the matrix Mg g is as follows; the first row and
column label the elements of B/S’&2 and Bg g 2 respectively.

|| 12222122 122 |2212] 212 | 12 [223] 23 | 3
m22] 1 0 —2cz) 0 0 —8cx 0 0 0
12122 || 0 1 |2dip—2cu| O 0 8c23—8c3 0 0 0
21122 0 | © 24y 0 —2cx1 0 0 0
12212 0 0 2¢o1 1 2d12—2c21 | —8c23+8¢32+8d122 0 0 0
21212 0 | © 0 0 24y 8212 0 0 0
22112 0 0 0 0 26‘21 8d221 0 0 0
1222 | 0 | 0 | 2c3-2c | O 0 8c23—8c 1 | 2d1p—2¢cy1 | 8dima—8cai
2123 | 0 | © 0 0 | 2c3-2cy 0 0 | 2dy—2c21 | 8da1a—8cn
2213 0 0 0 0 0 0 0 2C2] —203 8d221 —8(‘23

The entries 1 in the matrix arise from both the deconcatenation term 27[(1) which
appears in D; as per Proposition 5.9. With the projection log'(2) — %, this combina-
tion gives 1 above.

After substituting the values for ¢, and d, using the formulae above, we obtain the

matrix
H 1222 \ 2122 \ 122 \ 2212 \ 212 \ 12 \ 223 \ 23 \ 3
11222 1 0 4 0 0| —-16| 0 0 0
12122 0 1 -3 0 0| -8 | O 0 0
21122 0 0 -7 0 4 0 0 0 0
12212 0 0 —4 1 -3 | 111 0 0 0
21212 0 0 0 0 -7 | 186 0 0 0
22112 0 0 0 0 —4 | 31 0 0 0
1223 0 0 6 0 0 | —60 1 -3 15
2123 0 0 0 0 6 0 0 | =3 | 150
2213 0 0 0 0 0 0 0O |-6|175

We notice already that the matrix has odd entries on the diagonal, and all entries below
the diagonal are even. Therefore the matrix is upper triangle modulo 2 with 1’s on the
whole diagonal. So it has determinant =1 (mod 2) and is invertible. We aim to show
this is a general phenomenon for level £ > 1. In fact, we shall show that modulo 2,
a ifl ¢ acts by deconcatenation, so that the only entries d, occur above (or rather right)
of the main diagonal inclusive.

Remark 7.12 In the case of level £ = 1, the matrix actually has even determinant, and
so the above considerations would fail. However, we will show that the evenness of the
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determinant arises exactly from the single even entry in the last row. This single entry,
is the deconcatenation term from Bf,!l?m({Z}”, 3) = dre30, and so by expanding
about the last row, we would reduce to dya3 times a determinant which is invertible
modulo 2, at least once we prove this previous claim.

Lemma7.13 Let £ > 1 and w € Bs_y.¢. Then every coefficient of T™(u), u € Bg,N,e
in
iy T™(w) — > 2T, ),

w=uv
degs u+degy u=1

is an even integer.

Proof Letk € ({1, 2} @2)U({1, 2}*@3), with £ = deg; k+deg; k. We consider how
to compute gr, D, 7" (k) via Proposition 5.7 and the simplification in Proposition 5.9
for Dj. For r = 1, we immediately find

gr, D1 T™(K) = 71 (21og' ()84, =1 7™ k2, - - . , ka)
=8=12'd1 T (ka, ..., kq)

Now if we assume r > 1, we have

gr, D, (7m(k1 ey kd)) =
DD A CA (SRR 35) R A (TR RN 7) (34)

1<j=d
~ (o
+ Z 6|g,.+1,j|5r<|g,.~j|—1ﬂr((r_\&.“j\(kiﬂ,---,kj))

I<i<j=d ~
1<j 'tm(kl,.-~yki—17|Ki,j|_r’kj+l"“’kd) (35)

~ [
- Z 8|g,,_,_,|5r<|g,.,j|—17fr(é“,,\ki’jfl\(kj—l,-..,ki))
I<i<j=<d ~
! STk ki K =k k) (36)

We note that since £ > 1, gry D7 " (k) = Tk (77 (&) 7" (@) = 0, since §—the
empty word—has level 0 < £ — 1. (For this, consider how to compute Dy, via the
graded parts of the coaction A(x) = 1 ® x +x ® 1 + A’(x); the part with full weight
in the left hand factor is then clearly x ® 1.) This means the deconcatenation part in
(34) can never involve 7 (..., 3), so must be of the form 72,41 (7(({2}“, 1, {2}9) =
22a+2b—1 d2a 12b-

Now consider (35). According to the table of cases in Lemma7.5, we have the
following contributions.

k; ;1 —r k; ; Contribution to gr, D,
29 b = O (2’ {2}(17 1’ {2}2) , 2;;1_116'20]?‘“(&1’[-7] , 2, l—(j+1,d)
— ~m
2,b>0 | 220 1,{207) | 257 eppigpa 17 (s 2, Ky )
2 2.{2)%.3) 220t us T™ Iy 11, 2, K4y )
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Likewise for (36), we have the following contributions.

K;. j| —r k; j Contribution to gr, D,
2,a=0 | ({2} 1,{2}*,2) — 22 e Ty 10 2. K4 )
2’ a>0 ({Z}a’ 1’ {Z}b, 2) _22a+2b—1C2a_132b?m(kl’i_l, 2, l—(j-‘rl,d)
2 ({24, 3) =227 era TRy ;15 2, Ky 1 )
3,a=0 | ({2}, 1,{2)",3) 22V Ty 5y, 3)
3,a>0 | ({212, 1,{2)%,3) =222t e 1 T™ (K 1. 3)
The key points to observe now are that
_ 0 a=0
27l =10, (37)
279(=1D% a>0
92a+2b+1 Couzop =
(_1)a+b _22a+2b+2 261 + 2b + 2 + (22a+2b+2 _ 1) 261 + 2b + 2 (38)
2a +2 2b+1 ’

hence both coefficients are always even integers, and so = 0 (mod 2). For cyagys it
follows by writing (Za;[—ifl-i— 2) = M%f_’fl) (2“2'2%:’1"’ l). Compare Corollary 4.4 [4] for a
more precise statement about v (cpa3,5), the 2-adic valuation thereof, which was one
of the key lemmas in Brown’s proof of the linear independence of ™ ({2, 3}*).
Since all terms arising from ¢ have even coefficient in gr, D,, we see that the only

remaining terms arise from the deconcatenation part, and so the lemma follows. O
Theorem 7.14 For N, £ > 1, the matrix Mg x ¢ is invertible.

Proof We proceed in a similar way as to the proofs by Murakami [22, Theorem 36],
and Brown [4, Corollary 6.2].

We assume initially that £ > 1, so that d»«3 does not appear as an entry. For £ > 1,
consider the map

/
BS,N,[ — Bs ¢

ur>2"1u,

where r is the unique integer such that [2"1u| = N. This map is a bijection, and
preserves the ordering of both Bg’ ~.¢ and Bs y ¢. Thatis to say, u < v if and only if
2"1u < 2" 1v, which holds as we are in the reverse colexicographic (reading right to
left, largest first) order with 3 < 1 < 2. The diagonal entries of Mg x ¢ are of the
form fuzrl" = 22“_1d2a1 + 2n, nZ. Moreover, the only other non-even entries in the
column indexed by u € B g w.¢ occur for rows indexed by w = 2¢ 12bu, however since
2" lu < 2%12%u, these occur above the diagonal. These entries are also integral since

2a +2b
22a+2h—1d . — _1 a+b220+2b+1 1 _ 2—2&—2])—1
harpp = (=1) ( ) 2
— (_1)a+b(22a+2h+1 _ 1)(261;‘ 2b> .
a
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We finally note that
220 ey = (—=1D)*2**T — 1) =1 (mod 2),

so that fuzr 1 =1 (mod 2). This means the matrix is integral, and modulo 2 it reduces
to an upper triangle matrix with leading diagonal equal to 1. Hence Mg y , has deter-
minant = 1 (mod 2), and so is invertible.

When £ = 1, we note that all of the previous steps apply for all words w = 2912?,
b > 0 indexing the rows. However, we obtain as the last row corresponding to the
word w = 243, the row vector

©,...,0,2%  ds).

since one must deconcatenate the entire word to reduce the level by 1. Expand the
determinant out about the last row, and we reduce to the submatrix involving words
w =212 b > 0 indexing the rows, and 2%, @ > 0 indexing the columns. This
submatrix is integral, and modulo 2 it is upper triangle with 1’s on the diagonal. Hence
has non-zero determinant. Since

2a + 2
22a+ld an — 22a+3 _1 a 1 _ 2—2a—3
2a3 (=D%( ) 2+ 1

= (=% ~1)(2a +2)
#0

the determinant of Mg y ¢ is still non-zero, and so Mg y ¢ is also invertible when
£=1. O

Corollary 7.15 The Saha elements
(1™, .. ka—1 ka + 1) | ki € {1,2}}

are linearly independent.

Proof We proceed by induction on the level, as in [4, Theorem 7.4], [22, Corollary 38].
The elements of level £ = 0 are of the form 7 ™ ({2}""), which are linearly independent
because weight is a grading on H®. Now suppose the elements

(T™w) | w e {1,2)* ®2) U ({1,2)* ®3), deg; w + deg, 3 < £ — 1},

of level < ¢ — 1 are linearly independent. Since weight is a grading on HP, any non-
trivial linear relation between elements of level £ can be assumed as homogeneous of
some weight N. By Theorem 7.14, the map o ;f, ¢ isinjective as the matrix of the map is

invertible. Application of Z)év’e to a non-trivial linear relation between level £ elements
produces a non-trivial linear relation of strictly smaller level, which does not exist by
the induction assumption. So the elements of level £ are also linearly independent,
which completes the proof by induction. O
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Corollary 7.16 The space T\°™ of convergent motivic MtV’s has dimension > Fy in
weight N > 1; here F,, = F,_1+ F,,_3 are the Fibonacci numbers, with F1 = F, = 1.

Remark 7.17 For strictly convergent motivic MtV’s, we do not appear yet to have the
correct upper bound to show the Saha elements are a basis. The motivic MtV’s fit into
the following inclusions

HE\;) g T]{:]ODV g T]\C,Xt g H;\%),

where 7y°" denotes the space of convergent motivic MtV’s (with last argument
> 2) of weight N, and T3*' denotes the space of all shuffle regularised motivic
MtV’s of weight N. (The first inclusion follows from Murakami’s motivic Galois
[22, Theorem 8] descent showing Ty, ... kg) € HD, whenever all ki > 2. The
upper bound of dimg Hﬁ) < Fn41 (established in [7]) only gives us the bound that
Fy < dimg 7y°™ < Fn41. Below in Corollary 8.20, we will show however that
T = H® ysing the independence of the Hoffman one-two elements.

8 The Hoffman one-two elements as a basis

We now turn to the second application of the motivic identity. We show that the ele-
ments whose arguments consist of only 1’s and 2’s are linearly independent as motivic
MtV’s (analogous to Hoffman’s conjectured (motivically true) basis of MZV’s as those
with arguments 2’s and 3’s). Dimension counting then shows that the elements—Fy
many in weight N—must be a basis for motivic MtV’s and alternating motivic MZV’s,
as these spaces have known dimensions < Fy1.

Definition 8.1 (Hoffman t filtration) For, w € {1, 2}*, we define the level of w to be
deg; w, i.e. the total number of 1 in the word. We define Q-subspace of HP, and the
level < ¢ piece of the level filtration by

HT = (1™(w) | w € {1,2}%)q.
HeHY = ((™(w) | w e (1,2}, st deg; w < £)q.

The associated graded to this filtration is then given by
et 17 = HHY JH - HE
Example 8.2 Thelevel < 1 part of this filtration is generated by the following elements
R = (™ (2), 1, (2)9). 1™ (2)9) | a. b, ¢ = 0)g,
whereas the level < 0 part of this filtration is generated by

HoH™ = (™({2)) | ¢ > 0)q.
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Lemma 8.3 The Hoffiman-level is motivic. More precisely, the following holds for all
r'>0,

2
D2r/+1H@HH < E;r)—i-l 40 Hl_lHH'

Proof The proofis essentially the same as for Lemma 7.4, except the cases k;. j—r=3
cannot occur, since every argument k; < 2.

From this lemma, we obtain a level-graded derivation
grfl Doy grf HH Lor+1 ®Q grﬁl HH.

Moreover we claim, this map lands in the subspace of £1,41 generated by the single
zeta element £'2r + 1).

Lemma 8.4 For{ > 1,r > 0, the level-graded derivation grf Dy, 141 satisfies
gry’ Dy (gry H) € &' @7+ DQ @ erf’ 1.

Proof With r = 0, the claim is clear as £§2) is generated by log'(2). So let r > 0
be odd, and Kk = (ki,...,kqs) € {1,2}* with level £. We consider how to com-

pute D, 7™ (ky, ..., ky) via Proposition 5.7, and more carefully track the contributions
when we take elements of level £ — 1 in the right hand tensor factor.
With (27), the deconcatenation term 7[(k1, k) ® Tm(ijr], ..., kg), we see

that for K, 4 to have level £ — 1, a single 1 must have been removed. Therefore if
k= ({2)°.1, {2}?), we know via Theorem 6.1, that 7[(151’]-) e'@r+1Q.

Then we turn to the contribution from (28), and recall the considerations in the
proof of Lemma8.3. Namely, |K; j| —r = 2, ki = 2, which forces certain behaviour
ontok; ;. If |k; ;| —r =2, thenk; ; must contain an odd number of 1’s. But for level-
grading reasons, it actually must contain exactly one such. We have the following case.

k; ;I —r ‘ k; ; ‘ Contribution to D,

2 e | gL L 20 e TR 2. k0
So via (32), we have ¢y (k;,; ;) € 'Qr + DQ.

Likewise, from (29), we have |l_(l-’j| —r =2,withk; =2so0 |§i,j| contains an odd
number of 1’s. In the level-graded, it therefore must contain exactly one 1. Be aware
that we must reverse k; ; when inserting it into ¢"in term (29). We have the following
case.

Ik ;| —r ‘ k; ; ‘ Contribution to D,
> @R | S L@, 29 @ TNy 2.k )
Once again, the term Co[z(l_{jfl,i) e '@r + 1)Q via (32). o
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We now look at the action of these derivations on elements of a given level, and
package them together into the following linear map.

Definition 8.5 For all N, £ > 1, let aﬁj be the linear map

H . _ Ha/H H 4 /H
Oy,e: gy Hy — @ g Hy_or—1>
1<2r+1<N

defined by first applying @ o, -y grf’ DZ’“’grf’ pir> and then sending all

log'(2) = 4, ¢'@2r + 1) = 2% 71 r > 0 to by the projection

T QC'Qr+1) —> Q
log™(2) > %, ifr=0,
2@r+1) 271 ifr>o.

The goal is to show that the maps 9 If,[ ¢ areinjective for £ > 1. Then by recursion, we

will establish the elements of level £ are linearly independent (otherwise 9 1{}' , would
construct a non-trivial relation of strictly smaller level).

Definition 8.6 (Matrix basis) Let £, N > 1, with N = £ (mod 2). Define the follow-
ing sets

B ne:={w e {1,2}* | degy w = ¢, |w| = N},

By vy i={we{l,2) |degyw=¢—1,|w| < N}
In the case ¢ = 1, the set B’H’ ¢ lso includes the empty word (of weight 0 and level

0). Sort both sides in reverse colexicographic order (i.e. reading right to left, largest
first), with 1 < 2.

A counting argument shows that #By y ¢ = #B;f, ¢ for all such choices of £, N.

These basis elements will be used to define the matrix form of the linear map 9 Z{f o
and the claim of injectivity corresponds to non-zero determinant.

Example 8.7 For N = 8, £ = 2, we have

By ny = {11222,12122,21122, 12212, 21212,
22112,12221, 21221, 22121, 22211},
B}J,N,Z ={1222,2122,122,2212,212,12,2221,221,21, 1}.

Definition 8.8 (Matrix of 8/ ) For £ > 1, N > 1, with N = ¢ (mod 2), let

Mune = (fy)

u)EB’H_Nl,u)’EB;_LN.Z

be the matrix of 8]{{ ¢ with respect to the bases By, n,¢ and B}_I’ Nt Here f," denotes
the coefficient of 7™ (w’) in 3 1{}’ ot ™ (w), and in the matrix w corresponds to rows, and
w’ to columns.
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Example 8.9 For N = 8,¢ = 2, the matrix My g7 is as follows; the first row and
column label the elements of B}-I,&z and By g2 respectively.

|[12222122| 122 |2212] 212 | 12 |[2221] 221 | 21 | 1
11222 1 0 —2021 0 0 —8cm1 0 0 0 0
12122 0 1 |2d12—2c21| O 0 8c23—8c3n 0 0 0 0
21122 0 | 0 24y 0 | —2cx 0 0 0 0 0
12212 0 | © 2e21 1 |2d12—2¢c21| —8c23 + 8c3+8d1n|| O 0 0 0
212121 0 | © 0 0 24y 812 0 0 0 0
22112( 0 | © 0 0 2cy1 821 0 0 0 0
2t -1 o 2e21 0 0 8ca1 1 [2dn—2c21|  8dip—8c1  [32d1om
21221 0 7% 0 0 2¢o1 0 0 |2d21—2c¢21| 8c23—8c32+8da12 |32d2122
2121 0 | © 0 -1 0 0 0 2en1 | —8caa+8can+8dan | 32dn12
222110 0 | 0 0 0 0 0 -1 2en 8c1 32dy21

The entries 1 in the matrix arise from both the deconcatenation term 27[(1) removing
aleading 1 which appears in D as per Proposition 5.9, the entries —% correspond to

the deconcatenation term —?[(1) removing a trailing 1 which appear in D. With the
projection log'(2) — %, these combinations give 1 and —% respectively.

After substituting the values for ¢, and d, using the formulae above, we obtain the
matrix

| 1222]2122] 122 [2212] 212 | 12 |[[2221] 221 | 21 | 1
m22ff 1 o[ 4]0]o0f[-16][0]o0T]oO0 0
12122 0 | 1 | =3 0 | 0 |=8 0| 0| O 0
211220 0 | O | =7 | 0 | 4 | 0 0] 010 0
122121 0 | O | =4 | 1 | =3[ 11| 0| 0 | 0 0
21212 0 | O | O | O | =7 |18 || O | O [ O 0
22112 0 | 0 | 0 | O | -4 31 | 0|00 0
21 =S o[ -4 oo 16 t]-=3]15]-127
212211 0 | =3 0 | O | -4 0O 0 | =3 | 106 | —1905
22121 0 | O | O | =3 0 | O 0 | —4 | 111 | —1905
22211 0 | O | O | O | O | O |[—%| 4|16 | —127

We notice already that the matrix is block lower triangular; the blocks correspond to the
number of trailing ones in the quotients, which is also the number of trailing 1’s when
deconcatenating the maximal string 2¢ 1 from the start of the basis words. Each diagonal
block except the last (i.e. here only the first, but in general all further intermediate ones
too) is upper triangular modulo 2, so has determinant # 0. Expanding the determinant
of the last block about its first column produces two matrices with integer entries,
which are equivalent to triangular matrices mod 2, so the first block has determinant
%. Overall the full matrix has the same property: the determinant is in % + Z.

We aim to show this is a general phenomenon for level £ > 1. In fact, we shall show

that 81{}' , never increases the number of trailing 1’s, explaining the block triangular

appearance; moreover, for a fixed number of trailing 1’s we show that 85 ¢ acts by

deconcatenation, modulo 2, explaining the upper triangular appearance of each block.
(Special care must be given for the first row, where an extra —% is produced.)

We introduce a partition of the basis set B}, , , by the number of trailing 1’s.
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Definition 8.10 (Trailing 1’s) Write

Ty n.:={w € By y, | w has exactly « trailing 1’s}.

More precisely, one can define “exactly « trailing 1’s” as a word of the form 1¢ or
w21%, where w € {1, 2}*, to obtain

Tyne = Bse N (171U w21 | w e (12)).

We note that T, , , = @ if @ > £ as a word of level < £ cannot contain ¢ trailing

1’s. Whereas Té_l Ne= {2%('\/’6)13’1, L2180 16’1}. So we certainly have as a
disjoint union that

/ _ ’
Bsye= U Tiwe
0<a,N.,t

Now consider the bijection

Y
¢: Bgn¢—> BH.N.

u+— 2%1u,

where a is the unique value such that 24 1u has weight N. We pull back the partition
T, v, to define

Tane={w € Byl ¢~ (w) e Ty N

Note that the inverse ¢~ ! (w) is obtained by taking the suffice when deconcatenating
w after the first 1.

Lemma8.11 For w € By y.¢ with w # 22N=91 then the following holds. The
word w has « trailing 1’s if and only if

weTlyng.

However, the word w = 2%(1\'_@)1( liesin Ty—1 N
Proof Firstly, we check the case w = 23 (N=O 1L, Deconcatenating at the first 1 tells
us that ¢ (w) = 14~ which has exactly £ — 1 trailing I’s. So w € Ty—1, v ¢ as claimed.
Now take any other word v of level £. It cannot have 1¢ trailing 1’s, so is of
necessarily of the form v'21%, with & < £, for some v’ € {1, 2}*, where deg; v’ >
¢ —a > 1. This means the first 1 in v occurs somewhere in v’. Deconcatenating after
this, gives a suffice of the form v”/21¢, so that ¢ (v) € To;,N,Z’ meaning v € Ty n ¢ as
claimed.
Conversely, given v € T, y ¢, we know that ¢_1(v) € T;’N’e, so that ¢_1(v) =

v'21% or ¢~ (v) = 1%, with « = ¢ — 1. The former case leads to v = 2¢1v/'21¢
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which ends in exactly « trailing 1’s. The latter case leads to v = 23(N=0 1¢, which we

already excluded. O

Now we claim that the map 0 ,{,1 ¢ never increases the number of trailing 1’s.

Lemma8.12 For all words w € Ty N ¢, the image under 81{',12 satisfies

H ~m 4
Maw= > fuimw).
w/ETlg,N.[
B=a

That is to say, 0 /f,l (W only involves words with < « trailing I’s.

Proof By Lemmag8.11, we know that the set Ty n ¢ is characterised as the words
w € By ¢ ending with o many trailing 1’s, except that when o« = £ — 1, where also
include the word 22(V=01¢

would also be empty.)

€ Ty—1,n.¢- (Note that since TZ/,N.Z = 0, the set Ty N ¢
Purely for level-filtration reasons (see Lemma 8.3), the word w = 2%(1\' ~O1¢ must
map to a sum of words with < £ trailing 1’s. We may therefore assume o« < ¢ — 1,
and w € T, n ¢ genuinely ends in 1%.

We consider the terms which arise in 81{,1’ e?‘“(w) via the cases in Lemma 8.4 for
g, Doy T™(w), with w viewed as a tuple. Take the deconcatenation term

Tm(lﬁl,]‘) ® 7m(lﬁj+1,d)'

Since K | 4 is a suffix of K it clearly has < « trailing 1’s. (Either the cut k, ; ends
before the first trailing 1, in which case we have exactly as many trailing 1’s. Or
the cut ends after this point, and we have even reduced the number of trailing 1’s as
Ky g ={1}F) with 8 < o).

On the other hand, if » = 1, and we take the deconcatenation term

Syt T () @ T™(ky, ... ka—1)

which occurs in D1, then we have certainly removed a trailing 1 if this term is non-zero.

Now consider the cases as is the tables in Lemma 8.4, which come from replacing
a subindex k; j by [K;, j| — r. In both cases we see the replacement is by a 2. So if
k; ; ends before the trailing 1’s, we do not increase their number. Otherwise K; ; ends
within the string of trailing 1’s, and some set 1%, 8 > 0 of them are replaced by a 2,
leaving strictly fewer trailing 1’s, namely 1977,

The block (lower) triangularity corresponds to the ordering, wherein we have the
reverse colexicographic order (reading right to left, largest first), with 1 < 2. So
17 > wo21% > w621ﬁ,f0r any B <a <. O

This lemma has established that the matrix Mg n ¢ of 81{}( ¢ 1s block (lower) trian-
gular, and that the diagonal blocks are square. (We constructed Ty n ¢ as the preimage
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of T, ,, , under a bijection of the bases.) We therefore reduction the question of injec-

tivity of 9 1{',1 ¢» €quivalently the determinant of Mg, y ¢ being non-zero, to a question
of understanding the determinants of these diagonal blocks.

Definition8.13 For ¢ > I, N > 1, < £ — 1, with N = ¢ (mod 2), let

Mo u e = (f2)

wETwNv[’w/ETaZ,N,(

be the diagonal block of My x ¢ corresponding to « trailing 1’s (after deconcatenating
241 for Ty, n,¢, or immediately for T, » ,).

Lemma8.14 For a < £ — 1, the restriction of dN ¢ to Ty N.¢, and projected to the
ToZ,N,/é satisfies the following. For w € Ty n .4, the coefficient of every word T (u)

‘ , .
withu € Ta’N,Z, in

oM T w) = Y 2724, T w)
wW=uv
deg u=1

is an even integer.

Proof Since o < £—1 we know w # 23(N=0) 1¢, so we do not have to worry about the

deconcatenation term 7 ™ (kq, ..., kg_1) contributing: it has strictly fewer than £ — 1
trailing 1’s.
The terms in

Z 2M=24 T™(v)

w=uv
deg; u=1

are the deconcatenation terms from Lemma 8.4, after using 5?|,,| = Tha12p11 to project
the factor 7'(u) = 7'({2)9, 1, {2}%) = du¢'(2a + 2b + 1).

The remaining terms (whether or not they have fewer trailing 1°s), arise from the
the (28) and (29) terms (or rather their images in grf Dy, 1). They are categorised by
the cases listed in Lemma 8.4, namely

k; ;| —r ‘ k; ; ‘ Contribution to D,
2 22012 | g2 L") © Ty 2.k 11.0)
2 (2}, 1,{22.2) | = {2 L2} @ T™(ky ;1. 2. K41 )

In each case, the coefficient of 7 ™ (v) after projecting via 7>, 1 has one of the following
forms (depending on whether b = 0 or b > 0 in case 1, likewise case 2)
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0 =0
22100y = , a
274(=1D% a>0

22a+2b+1

Ca3nb =

(—1)a+h( —p2a+2b+2 2a +2b+2 4 Q2242 _ 2a+2b+2 '
2a +2 2b + 1

This is exactly the same claim as in (37) and (38), so as before these coefficients are
indeed even integers. O

In the same manner as Theorem 7.14, it follows that the diagonal block My, g n.¢
corresponding to 7y, n ¢ and TO/[ N is invertible, fora < £ — 1.

Proposition 8.15 The diagonal block My g n.¢ is invertible fora < £—1, in particular
it has non-zero determinant.

Proof Recall the bijection ¢ between the bases, sending u € B’H‘ A 2%1u, for the
unique a such that 2% 1u has weight N. This map defined the set 7y ¢ as the preimage
of Ty n ¢-

By the previous result, LemmaS8.14, we know that M, g n ¢ is upper triangular
modulo 2, the terms above the diagonal arising from the deconcatenation terms. That
is to say: the diagonal entries of My g v ¢ are of the form fum” = 22— 0, + 2n,

n € Z. The only other non-even entries in the column indexed by u € B], , , , occur

for rows indexed by w = 2¢ 12bu, however since 2" 1u < 2912%u, these occur above
the diagonal.
As the diagonal terms are given by

22 ey = (=D*Q*H — 1) =1 (mod 2),

we see that f2'* = 1 (mod 2). Therefore My p y. is upper triangular, modulo
2, and has 1’s on the diagonal. It therefore has determinant = 1 (mod 2), and so
My 1 n.¢ has non-zero determinant. O

We now turn to the case @ = £ — 1. In this case the following modification of
Lemma8.14 holds.

Lemma8.16 For a = ¢ — 1, the restriction of oy ¢ to Ty N ¢, and projected to the

T(;’ n.¢ satisfies the following. For w € Ty n 4, the coefficient of every word T™(u)
withu € T), \ ,, in

7 ~ 1~
o) - YD 2T + ST
W=UV
degl u=1

is an even integer.
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Proof The proof of Lemmas8.14 goes through unchanged, except that we must also
consider the case w # 23(N=01¢ Eyen for this, the argument about the deconcate-
nation (27) and other terms in Lemma,8.4 goes through unchanged.

The only additional term we must consider is the term arising from deconcatenating
a trailing 1, namely — log'(1) ® 7™ (ky, ..., kq_1) which appears in Proposition 5.9.
This is the additional term above, and so the proof is complete. O

We note now that this additional term occurs in the first column, last row of the
matrix My, ;7. y.¢ because the word indexing the column is 22 (V=0 1¢=1 = ... 2161 5
1= while the word indexing the row is 23(N=O1¢ o w214~ for any w.

Finally we can show that the diagonal block M;_1 u,n,¢ is also invertible, or equiv-

alently has non-zero determinant.

Proposition 8.17 The diagonal block My g n.¢ is invertible fora = £—1, in particular
it has non-zero determinant.

Proof The above observation tells us that the first column of the matrix M, g v ¢,
o = £ — 1, consists of a single entry % at the bottom, a single entry %dl = 1 at the top,
and (potentially) a number of even entries. However, since this column is indexed by
23(N=0) 1¢=1, this column corresponds to the computation of gr, D;. Therefore there
are no other entries in this column since g“(g(l) = 0. Now expand out the determinant
about this column.

The minor Aj | corresponding to the (1, 1) entry of My g n ¢ is again an upper trian-
gular matrix modulo 2, as it arises from deleting the first row and column of My g n ¢.
That matrix is itself integral and upper triangular modulo 2, after removing the entry
—% in the first column (compare the argument in Lemma8.14 and Lemma8.16). So
as entry —% plays no role in the (1, 1) cofactor, the integrality and upper triangu-
larity modulo 2 holds. Likewise the diagonal entries are equal to 1, and so we find
Ci,1 =detA;; =1 (mod 2). This means C1,1 = 2x + 1 € Z is an odd integer.

The minor A L(N—0)+1 corresponding to the bottom entry of the first column,
is given by the an explicit formula modulo 2. We note the rows are indexed by
20-1123(N=O+1=ayt=1 for | < g < L(N = ¢), so that 22 V=91 i avoided. Like-
wise the columns are indexed by 2%(1\”@"'1@’1, forl <c¢ < %(N — {), so that

23(N=016-1 i5 avoided. This means that modulo 2, the minor is given by

1
T(N=0 _ j2c—1
(Al,%(Nf/é)+l)a,c:1 =27 a1t

— (_1\C(n2c+1 _ 2c
= (-1°@ 1)(2a_2)

2c
= (Za B 2) (mod 2).

We notice the following: whena = ¢ + 1,

2c
=1
2a — 2
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so the minor has 1’s on the subdiagonal. When a = 1

2c
=1,
(Za - 2>

so the minor has 1’s in the first row. Summing down each column we note that

1
2(N=0)
ZZ ( 2¢ )_ {226—1—1 l<c<liv—o
_ - 2c—1 _ _ 1 _
= 2a — 2 2 2 c=5(N-0),
since in the latter case the term (gz) on the subdiagonal is not part of the matrix. This
means that if we subtract the sum of the remaining rows of the minor from the first row,
we obtain a single 1 in the final column. This establishes that the modulo 2 the minor is
equivalent a permutation of an upper triangular matrix with 1’s on the diagonal (move
the last column to the start). Hence Cl,%(N—E)—H = det(Al’%(N_l)H) =1 (mod 2),
andsince A L(N—0)41 actually has integer entries, we have C LN—0 41 = 2y+1eZ
is an odd integer.
Finally, we assemble the determinant of My, f v ¢ to be

Lv—
(D Cp 4 (—DGW @+1)+1C1’%(N%)+1

:(2x+1)+%(2y+1)

1
=Qx+y+D+3.

In particular it is in % + Z, and so cannot be 0. O

From these two propositions follows immediately the invertibility of the whole
matrix My y¢.

Corollary 8.18 The matrix My n ¢ is invertible.

Proof The matrix My n ¢ is block upper triangular by Lemma 8.12 and the discussion
thereafter. The diagonal blocks are invertible square matrices by Proposition 8.15 and
Proposition8.17, hence My n ¢ itself is invertible. O

Corollary 8.19 The Hoffinan one-two elements
(T, k) K € {1,2})

are linearly independent.

Proof We proceed by induction on the level, as in [4, Theorem 7.4], [22, Corollary 38].
The elements of level £ = 0 are of the form 7 ™ ({2}""), which are linearly independent
because weight is a grading on H?). Now suppose the elements

(F™w) | w e {1,2}, deg; w < € — 1},
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of level < £ — 1 are linearly independent. Since weight is a grading on H?, any non-
trivial linear relation between elements of level £ can be assumed as homogeneous of
some weight N. By Corollary 8.18, the map 9 1{? ¢ 1s injective as the matrix of the map is

invertible. Application of 85 * to a non-trivial linear relation between level £ elements
produces a non-trivial linear relation of strictly smaller level, which does not exist by
the induction assumption. So the elements of level £ are also linearly independent,
which completes the proof by induction. O

Corollary 8.20 The elements
{T"w) | w e {1,2)"},

form a basis for the space of:

(1) motivic extended shuffle-regularised multiple t values,
(1) alternating (shuffle-regularised) motivic multiple zeta values

In particular these spaces agree, and extended shuffle-regularised motivic multiple t
values have dimension Fy 1 inweight N, where Fy = Fy_1+Fr_owithF1 = Fp = 1
is the sequence of Fibonacci numbers.

Proof From their definition as sums of alternating motivic MZV’s, we know the fol-
lowing inclusion holds

v C Hﬁ),

where T3 denote the space of all shuffle-regularised motivic MtV’s of weight N.
However the upper bound dimg HP < Fy, is established in [7] (in fact already
=), and the lower bound Fy4; < ’TJS’“ from the explicit collection of independent
elements shows that all of these inclusions are equalities and the dimensions is exactly
Fy41 in weight N. O

8.1 Stuffle regularised Hoffman one-two elements

We now wish to extend the independence result on the Hoffman one-two elements
from the case of shuffle regularised MtV’s to the more natural case of stuffle regu-
larised MtV’s. On the motivic level, we shall do this by viewing Proposition2.18 as a
definition.

Definition 8.21 (Motivic Tm’*‘v) Letk = (ki, ..., kq), such that k; # 1. Then the
stuffle regularised motivic MtV with 7™*V (1) = 2V € H® is defined by

7m‘*,\/(l& {1}01) = Z?m(k’ {1}01*1') . é-m,*,zvflogm(Z)({l}i)’ (39)
i=0

@ Springer



On motivic MtV’s and Saha'’s basis 2071

where ¢™*Y ({1}/) is given by the coefficient of u’ in

exp (Uu — i (—nl)” {m(n)u").

n=2

Regardless then of the technicalities of defining a stuffle-regularisation on the
motivic level, one knows that

~

per 7™V (k, {1}%) = 7V (k, {1}%).

In particular

per 7™V (1) = 7%V (1) + ¢*2V 15 (1) = 1og(2) + 2V — log(2))
=2v=22"*1)=7"*1),

as per the definition of 7. So 7™*" corresponds to the regularisation of Y (1) = V.
Therefore any linear independence and basis results will successfully translate over to
the classical real valued versions as spanning set results, along with whatever identities
we establish motivically.

Naturally the question of how to compute Dy, 1?’“’*"/(&, {1}*) now arises, but

for this we appeal again to the derivation property of Dy, 41, namely
Dy 1(XY)=(1QY)D2yr 11 X+ (1 ® X)D2pp1Y.

We first give a lemma about the action of D, 1 on ¢™*Y ({1}1).

Lemma 8.22 The action of Dy, 41 on ¢™*Y ({1}), with U € HP, is given by

Dy ey = | €T @Y TR iz o,
™ 0 otherwise.

Proof The case 2r 4+ 1 > i is clear, as in this case there can be no (non-zero) weight
i — (2r 4 1) factor in the right hand factor of Dy, 1. So we assume 2r 4+ 1 < i.

We know that Do, 1™(s) = 850,412 2r + 1) ® 1 since ¢™(s) is primitive for
the coaction A. More generally, if k; # 2r 4+ 1, forany 1 <i < n, then

Do 1™ 2r + D™ k) - - ¢ (k)
='Qr+ D™ + DT k) - g™ k)
So, when acting on a polynomial p(¢™(2r+1), ™ (ky), . .., {™(ky,)) in single motivic

zeta values, the right hand tensor factor is (formally) the derivative of p(¢™(Q2r +

1, ¢™ky), ...,
¢™(ky)) with respect £™(2r + 1), and the left hand tensor factor is simply ¢'(2r + 1).
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More rigorously, the right hand factor of action of Dy, mimics the action of deci-H
on the polynomial p(z2,41, 2k, - - - » 2k, ), under the correspondence £ ™ (m) <> z,,,. So
we are justified now in proceeding via this formal derivative with respect to £ ™ (2r +1).

If 2r + 1 > 1, applying this formal differentiation operation to

S eV = exp (v 32 S, (40)
i=0 n=2

viewed as a generating series, leads to the following (extending Dy, by linearity to
the coefficients of a power series):

Dar1 ) ¢™ =Y (1))’

i=0
_ d e D
=Q2r+1H)® a2+ ) exp (Uu nZ:; " M (n)u )
R (_1)2r 2r+1 _ - (_l)n m n
_§(2r+1)®—2r+1u exp(Uu Z—n " (n)u )

n=2

So by comparing the coefficient of u’ on both sides, we obtain

. 1 )
Dy g™*Y (1)) = 2r—+1g‘(2r + 1)@ ™ Y1y,

It remains to note that

1
¢ = S—eter+

by extracting the irreducible contribution in (40).
The corresponding result holds for 2r + 1 = 1, mutatis mutandis, by the view
that ¢™*Y (1) = U € H®. So in particular z™*Y (1) is some rational multiple

rc™(1) of ¢™(1) = —1log™(2), and so primitive for the coaction. Namely D1U =
Dirlog™(2) = A(log'(2) ® 1) = (U)". Likewise, ¢"*Y (1) = (U)", so the left hand
tensor factor is also just £"*Y (1) in this case. O

Then we compute the derivation Dj,4 on the stuffle-regularised motivic MtV’s
as follows. We claim it is given by the essentially same formula as in Proposition 5.7,
with 7°® replaced by 7 ** Y anda (potential) additional term deconcatenating 1’s from
the end.

Proposition 8.23 (Derivation D, on 7™*V) Let k = (ki, ..., kq) € (Z=1)? be an
index. Writeki,j = (ki, ..., k;j) forasubindex ofk and|(ay, ...,a;)| = a1 +---+a,
for the total (weight) of an index. Then the derivation D,, r odd, is computed on the
stuffle regularised 7Y follows
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Dy (T™*V (ky, ... ka)) =

Z S\Kl,ﬂ:V?[(kl’ con k) ® 7m’*’v(kj+1, ceoy kg) 41
1<j=d

[ [
+ Z 5|g,.+w|5r<|gi,j|—1((r,|ki+l‘j|(ki+1 ,,,,, kj) — 8,=110g'(2))

I<i<j=<d ~ Vv
QT™*V(ky, ..., kit |k 1 —rkjpr, ..., ka) - (42)
- Z ‘Slki,j—l|§r<lki,_/l—l(§r[—lki j—l|(kj—1 ----- ki) = 8r—1log'(2))
I<i<j<d . v
Tk, ki Iy =K1, ka)  (43)
N S(kd_r’_“’kd):(l,___,l) . C[,*,ZV—logm(Z)({l}r) ® ?m’*’v(k], ey kdfr) (44)

Proof We treat this based on the number of trailing 1’s in the k. Write k =
ki, ..., kg—g, {1}%), with ky_q # 1, and apply the derivation property to

D T™ VY (ks . ki {1)%)

o
=Y DA ki (177 g (1)
£=0

Il
M=

[(1@ ™2V @ (1)) D, ™k, ks (117

iL
(=}

+(1QT™ ke, ki (11770) - D2V @ 1y |
We compute the second term of the sum to be
(1@ T™(ki, .. ka—as {1179 - Dyg™*2V O (1))
=(1®T™ ki, .... kaa: {1}*79)

. (5r§[§-m,*’2V—10gm(2)({1}r) ® {m’*'ZV_IOgm(Z)({l}K_r))
— é.m,*,ZVflog‘“(Z)({l}r)

® (8r=eT™ k1, ... kg, (1}2~Hgm* 2V " @ ((1}77)) |

The sum ) ;_, then restricts to ) ;_, because of the Kronecker delta, so we find

D AT (K s Kimas (11°7) - D™ 2V "D (1))
=0

o
= (VTR @ Y Tk, - kias (1) (1))
l=r

= 8r2at™ O () @ Tk ko (1177
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This gives the last term (44).
Now consider the first term of the sum. We need to apply the previous formula from

Proposition 5.7 for D T™ky, ... ki_q, {1}%). We obtain
o
Y (1@ ™2Vt D (1yh) D TN Ky kg (110 = (45)
£=0
o
> { > 8|51‘j|:,7[(k1, e kD) @ T™ g1y s kg ™2V TIE D) (1))
=0 " 1<j<d—¢

[ [
+ Z 8|K,‘+1,_/|§”<|K,‘,_/\—1(§r—|ki+]'j|(ki+1’ cees k]) - ‘Sr=1 1Og (2))
I<i<j<d—¢
~ _ m
®T™ (k... ki1, K ;| —r k1. ... kgp)g ™2V T8 @ (136

Yo Oyt -1 (G Kt k) = 8= og!(2)
I<i<j<d—¢

i,j—1

®T™ky. ... kim1. K j| =7 Kjy1. ... kg_g)g™*2V o8 (2>({1}‘f)}

The sum over £ and over i < j (respectively j) interchange as follows

=0 1<i<j<d—t I<i<j<d =0
min(o,d—

izzz

t=01<j<d—t 1<j<d =0

We than note that the upper bound of the £-summation is given exactly by the total
number of trailing 1’s contained across the 7™ and ¢™*2V~10¢"@ arguments. No
further 1’s can be introduced, as [k; jI — r > 1 which follows immediately from
the inequality » < [k; ;| — 1 in the Kronecker deltas. Then if, for example, j =
d —a,then kj | = 1 while k; = kg # 1, so the subindex (kji1,...,kg—¢) =
(kg—g+1, - - - » kg—¢) consists of « — £ many 1’s. And indeed o — £ from 7™ and ¢ from
;m’*’zv’logm(z) give « overall, equal to min(«, d — j) = o. Whereasif j =d —a+1,
we already remove the first 1 = k; from the subindex, leaving @ — 1 — £ many 1’s in
™ and o — 1 overall, agreeing with min(et, d — j) = o — 1.

This means that after summing over £ we obtain the corresponding 7™V value

in each case, namely

min(«,d—j)
3 TRyt kg™ RO = T (L k),

£=0

and likewise for the other terms, as per Definition 8.21. The sum over £ only affects
the right hand tensor factors, as the left hand ones are independent of £, so we readily
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obtain the remaining terms (41), (42) and (43) from the three summands in (45). This
completes the proof. O

Now fix V = Alog™(2), » € Q. One can then proceed in the same way as
Lemma 8.3 and Lemma 8.4 to conclude that the Hoffman-stuffle filtration

H* = (A D () | w e {1,2))g
Hy JH o= ™20 D () | w e (1,2}, s.t. degy w < £)g.

is motivic, of a particular form. Namely
er]* Doy (g HT) € ¢ QT F DQ @g gy H .

In particular: terms (41),(42),(43) give exactly the same contributions as previously,
except for replacing 7™ with 7™*" in the right hand tensor factor. Finally

pLs2Vlog @) (1|21 _ {m —Dlog'@) if2r+1=1

'@+ if2 1> 1,

and the right hand factor Su, .. . k)=, 1)?m’*’v(k1, ..., kq_,) is obtained by

removing 2r’ + 1 ones from the end of the ¢ value. So the contribution from (44)
lands in the space §[(2r’ + 1DQ®g grfff HH* In fact, if 2/ + 1 > 1, we remove at

least 3 ones, and so reduce the level by 3, which vanishes in grf_”f HH =, Whereas, if
2r" 4+ 1 = 1, this term contributes

8iy=121 — D1og' @) ® 7™V (k1. ... ka-1).
Note also, this is the only place the regularisation parameter A enters the calculation.
In particular, the additional §x,—1 (21 — D7 (log'(2)) - Ty kgoy) term
combines with the original term
— 8k, =171 (log' @) 7™V (ky, .. ka-1)
coming from deconcatenating at the end. (This arises in (43); by the same argument

as in Proposition 5.9, one knows that only the two extremal terms, removing initial or
terminal 1’s, actually contribute to Dj.) One then introduces the linear map 9 1{? Z as

H,x H.,x 9 (H H.,x 5 H
Iy gy Hy — @ gy Moy
1<2r+1<N

by first applying Dy, 11<n ngH’* Doy i1 |grf’* plns then projecting ¢'(2r’ + 1),
log'(2) to Q via 7,741 as in Definition 8.5.
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Then define the matrix My « n ¢ as the matrix of 85 2‘ as in Definition 8.8, with

respect to the bases By, v ¢, B}, y , given in Definition 8.6, after replacing T™ with

7m,*,v'

Now, one notes that the to compute the matrix M g . n ¢ one replaces each term —%
in the matrix My n ¢ arising from 7} ( log[(Z)) = % by the coefficient %(A -1 - % =
A—1.

Example 8.24 For N = 8, ¢ = 2, the matrix My 4 g2 is as follows; the first row and
column label the elements of B},’ g2 and By g o respectively.

[[1222]2122] 122 [2212] 212 | 12 [[2221] 221 | 21 1
11222 1 0 —2c2) 0 0 —8c221 0 0 0 0
12122 0 1 2d12—2021 0 0 8()23—8(‘32 0 0 0 0
21122 0 0 2d> 0 —2cy1 0 0 0 0 0
12212 0 0 2¢71 1 |2d12—2¢21| —8c23 + 8c32+8d122|| O 0 0 0
21212 0 0 0 0 2d> 8dr12 0 0 0 0
22112 0 0 0 0 2¢)1 8dn1 0 0 0 0
12221 r—1 0 2021 0 0 80221 1 2d12—2€2] 8d122—8£‘221 32d1222
21221 0 | A—1 0 0 2¢1 0 0 |2da1—2c21 | 8ca3—8c30+8d212 |32da122
22121 0 0 0 r—1 0 0 0 2¢21 —8¢23+8c32+8dn21 | 32d2212
22211 0 0 0 0 0 0 r—1 2¢71 8¢t 32d>01

We note now that when A = %, the matrices My . n.¢ and My y ¢ are identical,

and therefore the stuffle-regularised matrix is also invertible. Moreover, when A = 1
the last diagonal block (corresponding to the original block My_1 g v, ending in
£ — 1 trailing 1’s) is now upper triangular modulo 2 (compare Lemma8.16), and so
also again establishes that My , y ¢ is an invertible matrix. More generally we have
the following.

Proposition 8.25 Suppose A has the form 2"b—+1 € Q, with a, b € Z. Then the matrix
My « N, is invertible.

Proof The previous result Lemma8.12 carries through to show the matrix is block
triangular. The result Lemma 8.14 also carries over to show the diagonal blocks cor-
responding to < £ — 1 trailing 1’s are upper triangular modulo 2, and are therefore
invertible. The proof of Lemmag8.16 is adapted to show that the determinant of the
last block has the form

Cx+D+A-DR2y+ D),

with x, y € Z. For A of the above form, this is

2 — )+ Qa + 1)b(2y +0

which cannot be 0, as the numerator of the fraction is odd. O
The proofs of Corollary 8.19 and Corollary 8.20 now directly generalise to this case,

giving
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Corollary 8.26 Let V = Alog™(2), with » = . ¢ Q and a,b € Z. Then the
elements

(7™ w) | we {1,2)},

are linearly independent. Moreover, they form a basis for the space of:

(i) motivic extended stuffle-regularised multiple t values with Tm’*‘v(l) =2V,
(i") motivic extended shuffle-regularised multiple t values,
(ii) alternating (shuffle-regularised) motivic multiple zeta values

In particular all of these spaces agree, and extended stuffle-regularised motivic mul-
tiple t values with T™%" (1) = 2V have dimension Fyy in weight N, where
Fr = Fr—1 + Fx—p with Fy = F| = 1 is the sequence of Fibonacci numbers.

8.2 Singular regularisation parameters

The proof of Proposition 8.25 breaks down irrevocably in certain cases, in a way that
is unavoidable. For example, for N = §, £ = 2 as above, one can see that A = %
leads to determinant O in the last diagonal block. This corresponds to the a linear
dependence between regularised elements of level £ < 2 in weight 8.

For V = % log(2), one has the following identity between stuffle-regularised
MtV’s (and a corresponding identity of stuffle-regularised motivic MtV’s), as verified

via the Data Mine [2]

™V2,2,2,1,1) =
345998t*,V(2 2.2 2)

24843

22801 ,*,V 11023 %,V 1661 .,V

— 22800 V(1,1,2,2,2) — W08 pV(1,2,1,2,2) + 1681V (1,2,2,1,2)
- 2LV, 1,1,2,2) - 23rV(2,1,2,1,2) - HBIV(2,2,1,1,2)

+orV(1,2,2,2, D+ V2, 1,2,2, ) - 30V2,2,1,2, D).

Such a regularisation parameter should be termed singular, as the matrix of 9 1’;2‘
is singular. The following V = A log™(2) are singular regularisation parameters, first
appearing at the indicated weight.

N‘l 35 7 9 11 13 15 17

Al0 2 28 242 64472 712586 8156772916 1002618956134  6597362406922672
11 91 23479 252913 2873825507 348754372637 2270331930729959

A (potential) new parameter A appears in level 1, odd weight, corresponding to last
diagonal block with O trailing 1’s, and a reduction of

n+1
Y ) =) a TN L2,

i=0

for some ¢; € Q. In weight 2N + 1 this reduction can also be obtained more directly
from the identity in Theorem 6.1, when written in matrix form with rows indexed by
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¢; and columns by £™(2r' + 1)7™({2}V="), which essentially encodes (the last block
of) such My «2n+1,0=1-

Once such a parameter appears, it renders nonsensical the matrices My . n.¢ of
higher weight in that level, as the basis of lower level elements B/, H.N.¢ 1s no longer
linearly independent. One can strip trailing 1’s from the last dlagonal block, without
changing the combinatorial of the matrix entries, to see that every singular regulari-
sation parameter arises from the level 1 relation.

The sequence (;){2, of singular regularisation parameters appears to satisfy a
number of properties. We end with the following conjecture.

Conjecture 8.27 The sequence (ki);?il = (0, 2, %, 294—]2, %, ...) of singular regu-
larisation parameters satisfies the following:

(i) the sequence is increasing Aj+1 > Aj,
(ii) the sequence is bounded A; < 3, for all i,
(iii) the sequence has limit lim;_, s, X; = 3.
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