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Abstract In this study, we propose an interacting model to
explain the physical mechanism of the late time transition
from matter-dominated era to the dark energy-dominated
era of the Universe evolution and to obtain a scale factor
a(t) representing two eras together. In the present model,
we consider a minimal coupling of two scalar fields which
correspond to the dark matter and dark energy interacting
through a potential based on the FLRW framework. Analyt-
ical solution of this model leads to a new scale factor a(t) in
the hybrid form a(t) = a0(t/t0)αeht/t0 . This peculiar result
reveals that the scale factor behaving as a(t) ∝ (t/t0)α in
the range t/t0 ≤ tc corresponds to the matter-dominated era
while a(t) ∝ exp(ht/t0) in the range t/t0 > tc accounts for
the dark energy-dominated era, respectively. Surprisingly, we
explore that the transition from the power-law to the exponen-
tial expansion appears at the crossover time t0 ≈ 9.8 Gyear.
We attain that the presented model leads to precisely cor-
rect results so that the crossover time t0 and α are completely
consistent with the exact solution of the FLRW and re-scaled
Hubble parameter H0 lies within the observed limits given by
Planck, CMB and SNIa data (or other combinations), which
lead to consistent cosmological quantities such as the dimen-
sionless Hubble parameter h, deceleration parameter q, jerk
parameter j and EoS parameter w. We also discuss time
dependent behavior of the dark energy and dark matter to
show their roles on the time evolution of the universe. Addi-
tionally, we observe that all main results completely depend
on the structure of the interaction potential when the param-
eter values are tuned to satisfy the zero energy condition.
Finally, we conclude that interactions in the dark sector may
play an important role on the time evolution and provides a
mechanism to explain the late time transition of the Universe.

a e-mail: ekrem.aydiner@istanbul.edu.tr (corresponding author)

1 Introduction

Observations of Type Ia Supernova (SNIa) show that the
expansion of Universe is accelerating faster than expected
[1,2]. These observational evidences clearly indicate that
Universe evolves from the matter-dominated to an acceler-
ated expansion era. After this pioneering discovery, it has
been suggested that dark energy (DE) which behaves like the
opposite of gravity and has repulsive pressure is the source
of this accelerated expansion of the universe and this phe-
nomenon is called the late time transition of the universe
evolution. At this point, two problems appear: The first prob-
lem is what is the cause or the physical mechanism of this
transition? The second important problem is, can we express
both the matter-dominant and dark-energy-dominant periods
with a single scale factor? These are very important problems
of the cosmology. In this study, we will focus on these two
important problems of the cosmology.

Late time transition: The late time transition problem is
one of the important problems of cosmology that has not
been fully resolved yet. After observing that the universe is
expanding at an accelerated rate, the existence of dark energy
has been held responsible as the source of this expansion
and many interesting DE models have been proposed in the
literature such as quintessence [3], phantom [4], k-essence
[5], tachyon [6], Chaplygin gas [7], holographic dark energy
[8]. Although these models are the leading candidates for
explaining the physical origin of the dark energy, they are
far from explaining the physical mechanism of the late time
transition. In fact, is this transition caused by the existence of
dark energy? Even if dark energy can be considered to be the
cause of late time exponential expansion of the Universe, the
existence of dark energy alone does not seem to be sufficient
to explain this transition. The other point is rather distinct
from the first one where the key question is: Can we describe
this critical transition as a phase transition or a catastrophic
transition? If we view the problem in terms of the statistical
mechanics of phase transitions, we can not say that it is a first
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or second-order phase transition. The turnover in the evolu-
tion process favors a catastrophic jump rather than a phase
transition (Please see [9] for the catastrophic transitions). It
is clear that the problem is more sophisticated, and requires
an elaborate approach. Therefore, we may need new players
to enlarge this discussion.

Hybrid scale factor: It is well-known that the evolution
of Universe can be represented by the scale factor a(t).
Indeed, after early time inflation [10,11] the scale factor
takes the functional form of a(t) ∝ t1/2 and a(t) ∝ t2/3

for the radiation-dominated and the matter-dominated era,
respectively. However, the dark energy era is represented by
a(t) ∝ exp(H0t) where H0 is the Hubble parameter. In theo-
retical studies, scale factors that explain these periods one by
one have been suggested. However, a model representing all
or at least two of these phases with a single scale factor has
not yet been proposed. Furthermore, to the best of our knowl-
edge, so far, a model that represents the matter-dominant
period and the dark-energy-dominant period together with
a single or hybrid scale factor has not yet been obtained,
although numerous models have been proposed to explain
this phenomenon, for instance, in Refs. [12–22]. Therefore,
this theoretical problem deserves attention.

To summarize, so far, no model study has been conducted
to explain the transition from the matter-dominant period
to the dark-energy-dominant period with transition time in
the cosmic time-line and to show that this transition will
be represented by a single scale factor. Therefore, without
understanding this critical transition problems, it seems to
be unlikely to proceed toward a comprehensive theory of
cosmology. Based on these motivations, in this study, we
will focus on the late time transition of Universe and pro-
pose a new model to solve these challenging problems of the
cosmology.

To solve these problems, one can consider that the pos-
sible candidates are baryonic or non-baryonic dark matter
(DM) and dark energy. Indeed, it was recently suggested that
dark energy could be dynamic, evolving with time [23–26].
Clearly, one can state that a single fluid with a constant cannot
give rise to a realistic cosmic history. Therefore, the realis-
tic Universe model should be dominated by more ingredi-
ents, which can be defined by different EoS parameters [27].
Indeed, it is shown in the literature that the interacting mod-
els have potential to solve many problems of the cosmology.
For example, many interacting models have been used to
solve the singularity and cosmic coincidence problems [28–
51]. More recently, a different interaction model has been
introduced by Aydiner in Ref. [52]. In his study, it has been
shown that the interaction between matter, dark matter and
dark energy has led to the chaotic evolution of the Universe.
It was seen that this model combined the big-bang model and
the oscillatory Universe models, as well as had the potential

to solve many fundamental problems of cosmology such as
singularity, the future of the Universe, the formation of the
galaxies and large-scale organization of the Universe. How-
ever, the late time transition was not specifically discussed
by Aydiner in Ref. [52] and in the others [28–51].

These studies provide a possible solution to explain the
mechanism of the late time transition of the Universe based
on interactions between dark energy and dark matter. There-
fore, our aim in this study is to discuss the late time transi-
tion of the Universe based on the interaction of dark matter
and dark energy. Here, for simplicity, we define these com-
ponents as the two different scalar fields in the theoretical
framework of the FLRW metric. We consider the interaction
between them and generalize the model based on the motiva-
tion in Ref. [53]. In their study, Dereli and Tucker describe
classical models of gravitation interacting with scalar fields
whose solutions involve degenerate metrics. They show that
some of these solutions exhibit transitions from a Euclidean
domain to a Lorentzian space-time corresponding to a spa-
tially flat FLRW cosmology. Inspired from this study, here,
we generalized this method to two interacting scalar field
model which corresponds to the dark matter and dark energy
interaction in a flat FLRW cosmology. We assume that the
two scalar fields interact with a potential based on two oscil-
lator and two anti-oscillator to satisfy the Hamiltonian zero
energy condition and Einstein field equations.

Here solving Einstein field equations we analytically
obtain a hybrid scale factor as a(t) = a0(t/t0)αeht/t0 which
represents both the matter dominated era and dark energy
era. We show that time crossover appear around tc ≈ 9.8
Gyear, which indicates transition time from the matter dom-
inated era to the dark energy era. We find the parameter α

is equal to 2/3 and the Hubble parameter which is around
H0 = 69.5 and H0 = 73.5 km s−1Mpc−1 depends on param-
eters of the interacting potential. Additionally, we compute
the other cosmological parameters such as dimensionless
Hubble h, dimensionless decelerationq, dimensionless equa-
tion of states (EoS) w and dimensionless jerk parameters j
for this model. We show that our theoretical results are con-
sistent with previous theoretical results [54,55] and all cos-
mological observations such as CMB with Planck [56–58],
CMB without Planck [59–61], No CMB, with BBN [62–
64], Cepheids-SNIa [65–74], and other combinations given
in Ref. [75] (and references therein).

The outline of the paper is organized as follows. In Sect. 2,
we present the two-scalar cosmology model with Lagrangian
in the FLRW framework. In Sect. 3, we define an interaction
potential and analytically obtain an hybrid scale factor a(t)
from the Lagrangian solutions. In Sect. 4, we numerically
analyze the scale factor a(t) and we show that presence of the
transition matter dominated era to the dark energy dominated
era. In Sect. 5, we numerically obtain the other cosmologi-
cal quantities and discuss their time-dependent characteristic
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behaviors. In Sect. 6, we discuss the limit behaviours of all
quantities. In Sect. 7, we discuss the time dependent behavior
of the dark energy and dark matter. Finally, we present the
conclusion and important remarks of this study in the last
section.

2 Interaction between DM and DE

In this study, we propose that DM and DE can be represented
by two different scalar fields for instance φ and σ , and they
interacts with a potential. In this case, the action of minimally
coupled scalar gravity for two-scalar fields is described by

S =
∫

d4x
√−g

×
[
R

2κ
+ 1

2
(∂μφ∂μφ + ∂μσ∂μσ) − V (φ, σ )

]
, (1)

where φ, σ : R4 → R are scalar-valued C∞ fields, V is the
potential expressed as a function of the scalar fields, R is the
Ricci scalar, and κ = 8πG/c4 is a constant that we use the
geometric unit system, i.e. κ = 1. Scalar fields are defined
on a manifold with metric γab(φ, σ ) and action is invariant
under the symmetries of the scalar fields.

Consider the FLRW metric expressing a homogeneous
isotropic space-time metric given by

ds2 = hμν dxμdxν, (2)

with the metric hμν = diag(−1, a(t)I3), I3 = diag(1, 1, 1)

is 3 × 3 identity matrix, a(t) : R → R is a differentiable
function which is known as time-dependent scale factor. The
Ricci scalar equipped with this space-time (2) is specified by

R = 6

(
ä

a
+ ȧ2

a2

)
(3)

where the dot denotes the derivative with respect to time.
Now, the point-like Lagrangian for DM and DE interaction
can be written as follow

L = −3aȧ2 + a3

2

(
φ̇2 + σ̇ 2

)
− a3V (φ, σ ) . (4)

At this point, we can obtain analytical solution using the
Lagrangian (4).

3 Analytical results

One can easily reveal the set of equations of motion by means
of the dynamical variables {a, φ, σ } for the Lagrangian (4).
These are obtained as

2
ä

a
+ ȧ2

a2 + 1

2
(φ̇2 + σ̇ 2) − V (φ, σ ) = 0, (5a)

φ̈ + 3
ȧ

a
φ̇ + ∂V (φ, σ )

∂φ
= 0, (5b)

σ̈ + 3
ȧ

a
σ̇ + ∂V (φ, σ )

∂σ
= 0. (5c)

Notice that once we impose the zero energy condition, the
remaining equation necessary for this theory is obtained as
follows

− 3
ȧ2

a2 + 1

2

(
φ̇2 + σ̇ 2

)
+ V (φ, σ ) = 0. (6)

To solve the equations of motion in Eqs. (5) and (6) we need
to determine an appropriate potential which correspond to
the two oscillators and two anti-oscillators. In our study, we
focus our attention on a specific potential characterized by

2α2(X2
1 − X2

2 + Y 2
1 − Y 2

2 )V (φ, σ )

= A1X
2
1 + A2X

2
2 + B1Y

2
1 + B2Y

2
2

+2k1X1Y2 − 2k2X2Y1 (7)

where A j , Bj and k j ( j = 1, 2) are interaction parameters.
Based on our experiences we know that this potential lin-

earizes the field equations to get the precise solutions. How-
ever, in order to see that this potential gives rise to the phys-
ically meaningful and stable solutions, we have to check the
potential surface. Therefore, inspired by the mechanical anal-
ogy, we introduce the following transformations

X1 = a3/2 cosh(αφ), (8a)

X2 = a3/2 sinh(αφ), (8b)

Y1 = a3/2 cosh(ασ), (8c)

Y2 = a3/2 sinh(ασ), (8d)

where φ, σ ∈ [−∞,∞] and a : R → R
+. By using these

transformations, we can write the potential V (φ, σ ) which
explicitly depends on the scalar fields φ and σ as

V (φ, σ ) = 1

2α2 [A1 cosh2 (αφ) + A2 sinh2 (αφ)

+B1 cosh2 (ασ) + B2 sinh2 (ασ)

+k1 cosh (αφ) sinh (ασ)

−k2 cosh (ασ) sinh (αφ)] (9)

where the parameters are given for θ = π/4 and ψ = π/4
as

A1 = �1 cos2 θ + �4 sin2 θ, (10a)

A2 = �2 cos2 ψ + �3 sin2 ψ, (10b)

B1 = �2 sin2 θ + �3 cos2 θ, (10c)

B2 = �1 sin2 θ + �4 cos2 θ, (10d)

k1 = (�1 − �4) sin θ cos2 θ, (10e)

k2 = (�2 − �3) sin ψ cos2 ψ, (10f)

where �i (i = 1, .., 4) are also interaction constants.
Employing the coordinate transformation to Eq. (6) we can
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Fig. 1 The potential surface of V as a function of field variables φ and
σ . We set values as A1 = B2 = 1.005, A2 = B1 = 2.005, k = 0.005

write the Hamiltonian constraint in the form

Ẋ2
1 − Ẋ2

2 + Ẏ 2
1 − Ẏ 2

2 − A1X
2
1 − A2X

2
2 − B1Y

2
1 − B2Y

2
2

−2k1X1Y2 + 2k2X2Y1 = 0. (11)

From this equation, we find relation between parameters
as A1 	= ±B2, A3 	= ±B1, A1 + A2 = B1 + B2,
k1 = −1/2(A1 + B2) and k2 = −1/2(A2 + B1). These
relations satisfy Hamiltonian constraint equations.

On the other hand, here, for the sake of simplicity and
analyse of the minima of the potential, we set k1 = −k2 = k.
Then, the potential becomes

V (φ, σ ) = 1

2α2

[
δ1 + δ2 sinh2 (αφ) + δ3 sinh2 (ασ)

+2k sinh [α(σ − φ)]] (12)

where δ1 = (A1 + B1), δ2 = (A1 + A2), δ3 = (B1 + B2)

and α2 = 3/4. Furthermore, the potential V (φ, σ ) should
have natural identifications for small φ and σ . Therefore,
we realize that the coefficients of φ2/2 and σ 2/2 terms can
be identified by the positive-valued mass terms m2

φ and m2
σ

respectively, and V (0, 0) by the cosmological constant �.
Potential can be expanded Taylor series up to the order of
fifth terms as follows

V (φ, σ ) = 1

2α2 (A1 + B1) + k

α
(σ − φ) + 1

2
(A1 + A2)φ

2

+1

2
(B1 + B2)σ

2 + kα

2
(φ2σ − σ 2φ)

+kα

6
(σ 3 − φ3) + kα3

12
(σ 3φ2 − σ 2φ3)

+O6(φ, σ ), (13)

where O6 denotes the sixth and higher-order terms. We real-
ize that this potential involves the associated potential terms
in the catastrophic theory for small field variables.

In view of these results, the potential surface correspond-
ing to V governed by the field variables φ and σ is displayed
in Fig. 1. It is obvious that the potential surface has a global
minimum in the limit of k → 0 and ∇V (0, 0) → 0. This
minima guarantees that the solutions in Eq. (14) are stable.

The stable solutions arise around the minimal potential.
These stable solutions also give rise to the stable cosmolog-

ical solutions. Therefore, we see that in the limit of k → 0,
we get ∇V (0, 0) → 0 for the appropriate parameter values.
Based on this idea, the cosmological constant and the mass
parameters of the scalar fields are obtained respectively as,

� := V (0, 0) = 2

3
(A1 + B1), (14a)

m2
φ := ∂2

φV (0, 0) = (A1 + A2), (14b)

m2
σ := ∂2

σV (0, 0) = (B1 + B2). (14c)

Using the expression in (7) and the transformations in (8),
new Lagrangian can be written as

L = Ẋ2
1 − Ẋ2

2 + Ẏ 2
1 − Ẏ 2

2 + A1X
2
1 + A2X

2
2

+B1Y
2
1 + B2Y

2
2 + 2k1X1Y2 − 2k2X2Y1. (15)

Thus, by linearization, instead of non-linear field equations
in (5), four linear field equations are obtained as follows

Ẍ1 = A1X1 + k1Y2, (16a)

Ẍ2 = −A2X2 + k2Y1, (16b)

Ÿ1 = B1Y1 − k2X2, (16c)

Ÿ2 = −B2Y2 − k1X1 . (16d)

These equations can be expressed in a more compact form
with the identification

ξ =

⎛
⎜⎜⎝

X1

X2

Y1

Y2

⎞
⎟⎟⎠ (17)

such that (16) amounts to the following equation

ξ̈ = M ξ, (18)

where M is the matrix obtained from the coefficients of
field equations in (16). To find an appropriate solution of
the Eq. (18), we first find out the eigenvalues and eigen-
vectors which are obtained by the characteristic equation
det(M − λI) = 0. Thus, corresponding eigenvalues are
attained as follows

λ1,2 = 1

2

[
A1 − B2 ±

√
(A1 + B2)2 − 4k2

1

]
, (19a)

λ3,4 = 1

2

[
−A2 + B1 ±

√
(A2 + B1)2 − 4k2

2

]
, (19b)

where we denote the distinct eigenvalues by means of
“±” sign elements. The corresponding eigenvectors can be
obtained accordingly

S1(λi ) = B2 +
4∑

i=1

λi − k1, (20a)

S2(λi ) = B1 −
4∑

i=1

λi + k2, (20b)
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S3(λi ) = A2 +
4∑

i=1

λi + k2, (20c)

S4(λi ) = A1 −
4∑

i=1

λi − k1 . (20d)

As a result, eigenvalues in Eq. (19) and eigenvectors in
Eq. (20) give rise to the exact solutions of the field equations,
which take the following form in components

ξi =
∑
i, j

Si (λ j )(α j + β j ), (21)

where α j = m je
√

λ j t , β j = n j e
−√

λ j t , m j and n j are con-
stants and i, j = 1, 2, 3, 4. It is to be not that here t is assumed
as dimensionless parameter.

In view of these findings, we now return to our main dis-
cussion to find the solutions of cosmological quantities. At
this point, we can give solutions to cosmological quantities
for the Lagrangian in Eq. (4) with two scalar fields. In fact,
the basic cosmological parameter is the scale factor a(t) that
is completely independent of position or direction and tells
us how the expansion or contraction of the Universe depends
on the cosmic time. We can present the scalar factor a(t) in
terms of the new coordinate variables as

a(t) =
[

1

2
(ξ2

1 − ξ2
2 + ξ2

3 − ξ2
4 )

] 1
3

. (22)

On the other hand, the scalar fields φ and σ that appear in
the Lagrangian which represent dark matter and dark energy,
respectively, are given in the form:

φ(t) = 1

α
tanh−1

(
ξ2

ξ1

)
, σ (t) = 1

α
tanh−1

(ξ4

ξ3

)
. (23)

Other cosmological parameters such as dimensionless Hub-
ble h, deceleration q and jerk j parameters can be expressed
in terms of a, ȧ, ä and

...
a as follows

H := ȧ

a
, q := − ä

aH2 , j :=
...
a

aH3 . (24)

These parameters can be determined from Taylor’s expan-
sion of the scale factor a(t). Here, by definition, the Hubble
parameter H tells us the cosmic time-dependent expansion
rate of the Universe, the Deceleration parameter q tells us
the change in the expansion rate of the Universe and the Jerk
parameter j tells us the change in the acceleration or decel-
eration of the Universe. Additionally, the effective equation
of state (EoS) parameter is given in terms of the effective
pressure pef f and effective density ρe f f as follows

we f f = pef f
ρe f f

, (25)

where the pressure is given by the expression pef f = 1
2 φ̇2 +

1
2 σ̇ 2 − V (φ, σ ), whereas the density is provided by ρe f f =
1
2 φ̇2 + 1

2 σ̇ 2 + V (φ, σ ).

4 Numerical results of the scale factor

We solve field equations in Eq. (16) and analytically obtain
the scale factor a(t) in Eq. (22). Now, we give the numerical
result of the scale factor in Fig. 2 for relatively weak and
relatively strong interactions. In this numerical solutions, we
set parameters arbitrarily as �1 = 0.05, �2 = 2.5, �3 =
0.5, �4 = 2.05, A1 = A4 = 1.05, A2 = A3 = 1.5, k1 =
−1.0, k2 = 1.0 for the red circle line; �1 = 0.1, �2 = 2.6,
�3 = 0.6, �4 = 2.2, A1 = A4 = 1.15, A2 = A3 = 1.6,
k1 = −1.05, k2 = 1.0 for the green star line, where here
and in what follows, these parameters are selected such that
minimal and stable potential together with minimal/maximal
interactions for small/large k values are guaranteed.

The numerical solution of the dimensionless scale factor in
Eq. (22) versus scaled axes t/t0 is given in Fig. 2a. However,
the dimensionless scale factor is provided by log-log and
semi-log scale in Fig. 2b and (c), respectively. When we fit
the data of the dimensionless scale factor in Fig. 2a we see
that our data give a hybrid relation as

a(t) =
[

1

2
(ξ2

1 − ξ2
2 + ξ2

1 − ξ2
2 )

] 1
3 = a0

(
t

t0

)α

e
h t
t0 . (26)

where little h is the dimensionless Hubble parameter [55,
76,77] and t0 is a constant. It first time, we precisely obtain
a hybrid scale factor by using an interacting model. This is
very interesting and amazing result. We show that an scale
factor cover, at the same time, the power-law and exponential
behavior without using any approximation or ansatz. Further-
more, this result provide that our model can explain the time
evolution of the matter dominate era and dark energy dom-
inated era. On the other hand, to obtain detail results and to
determine parameter of the scale factor in Eq. (26) we plot
log-log and semi-log of this quantity in n Fig. 2b, c. It can be
observed from the log-log plot in Fig. 2b that the scale factor
increases by a power-law up to a crossover time tc point. On
the other hand, above this critical point, it increases expo-
nentially as seen in Fig. 2c. This crossover point indicates
the transition from power-law expansion to the exponentially
expanding era of the Universe. This extraordinarily important
and surprising result solves the late-time transition problem
which is one of the most important problems of cosmology.
Our numerical results clearly show that the transition in the
scale factor a(t) can be represented by

a(t) ∝
{

(t/t0)α for t/t0 ≤ tc,
eh(t/t0) for t/t0 > tc,

(27)
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Fig. 2 In a, the scale factor a(t) with respect to the cosmic time
is given. Here we set the parameter values �1 = 0.05, �2 = 2.5,
�3 = 0.5, �4 = 2.05, A1 = A4 = 1.05, A2 = A3 = 1.5, k1 = −1.0,
k2 = 1.0 for the red circle line; �1 = 0.1, �2 = 2.6, �3 = 0.6,

�4 = 2.2, A1 = A4 = 1.15, A2 = A3 = 1.6, k1 = −1.05, k2 = 1.0
for the green star line. In b, scale factor in Log-Log scale is given. In
(c), scale factor a(t) in semi-log plot is displayed. Here tc value is given
by Eq. (28)

where tc is also dimensionless parameter. We will discuss the
tc below.

We numerically solved Eq. (22) for various interacting
parameters, and, interestingly we found power-law exponent
as α = 2/3 which is consistent with the Einstein–de Sitter
solution of the Friedman equations for the matter dominated
era. It is very consistent with the theoretical solutions [54].
This result denotes that matter dominated era evaluates with
time (t/t0)2/3 for the t ≤ tc. On the other hand, we solved
Eq. (22) for various interacting parameters, and we find that
time the second term dominates the solution of scale factor
a(t) for the t/t0 > tc as seen from Fig. 2c. For example, for
different two data set we plot the Fig. 2 and, in our analy-
ses, surprisingly, we find that the dimensionless scale fac-
tor takes value between h = 0.695 and h = 0.735 around
depend on interactions parameters. It is know that the time
dependent Hubble parameter is defined as H0 = 100h km
s−1Mpc−1 [55,76,77]. According this definition the time-
dependent Hubble parameters correspond to H0 = 69.5 and
H0 = 73.5 km s−1Mpc−1 for h = 0.695 and h = 0.735,
respectively. These theoretical results are completely agree
with the observational results CMB with Planck [56–58],
CMB without Planck [59–61], No CMB, with BBN [62–
64], and Cepheids-SNIa [65–74]. It is assume that the current
value in the late time inflation phase is about H0 = 70.88
km s−1Mpc−1 due to Planck and SNIa observations. In the
numerical procedure, we used arbitrary parameter values and
we see that choosing different parameter values does not
change the character of the solution in Eq. (26). However, we
see that choosing arbitrary parameters change, particularly,
the slope of Fig. 2b, c. According to our findings, we show
that we can explain the late time crossover from power-law
to exponential expansion of the Universe by using the FLRW
model including DM and DE interactions. Furthermore, we

explicitly obtain a real scale factor involving power and expo-
nential terms in a single formula from the model. We report
these results for the first time by using a model-dependent
study.

In this section, finally, we discuss the tc and t0. The
crossover time tc can be approximately estimated from
Fig. 2b, c as between 1.3 and 1.5. However, we know that
the crossover time is equal to tc = t/t0 and which can be
precisely obtained by using the relation t2/3

c = ehtc . Thus, tc
can be determined by the following equation

ln tc
tc

= 3h

2
. (28)

For the dimensionless Hubble parameter h � 0.7 and t � 14
Gyear this relation gives tc � 1.428 Gyear which provides
that the value of the t0 is t0 = 1/H0 = 9.8 Gyear which refers
to Einsetin–de Sitter solution [54] (See also Eq. (6.33) in
Ref. [55]. This is another very important result of the model.
Thus, the model we propose also predicts the transition from
matter dominated era to the dark energy era perfectly with
full precision.

5 Numerical results of other kinematic parameters

In this section, we numerically obtain the dimensionless
kinetic parameters such as Hubble parameter h, the deceler-
ation parameter q, The jerk parameter j and the EoS param-
eter for relatively weak and relatively strong interactions. All
of these parameters can be obtained from the scale factor a
we obtained. In these numerical solutions, we set parameters
arbitrarily as �1 = 0.05, �2 = 2.5, �3 = 0.5, �4 = 2.05,
A1 = A4 = 1.05, A2 = A3 = 1.5, k1 = −1.0, k2 = 1.0
for the red circle line; �1 = 0.1, �2 = 2.6, �3 = 0.6,
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Fig. 3 In a, the dimensionless Hubble parameter h with respect to
cosmic time is given. Here we set the parameter values �1 = 0.05,
�2 = 2.5, �3 = 0.5, �4 = 2.05, A1 = A4 = 1.05, A2 = A3 = 1.5,
k1 = −1.0, k2 = 1.0 for the red circle line; �1 = 0.1, �2 = 2.6,

�3 = 0.6, �4 = 2.2, A1 = A4 = 1.15, A2 = A3 = 1.6, k1 = −1.05,
k2 = 1.0 for the green star line. In b, Hubble parameter h in Log-Log
scale is displayed. In c, dimensionless Hubble parameter h in semi-log
plot is shown

�4 = 2.2, A1 = A4 = 1.15, A2 = A3 = 1.6, k1 = −1.05,
k2 = 1.0 for the green star line in all figures below. Here,
our aim is to show the detail analysing of the characterising
behaviour of these quantities and to provide that results of
the model are consistent with the observational data.

5.1 The dimensionless Hubble parameter h

The Hubble parameter is given by the ratio of the rate of
change of the scale factor to the current value of the scale fac-
tor a, which reflects the characteristic rate of the expansion of
the Universe. The Hubble parameter can be obtained by using
observational data, which depends on the red-shift. It takes
different values for the radiation-dominated era, the matter-
dominated era and late time inflation. In our case, Hub-
ble parameter is obtained from the model. The time depen-
dence of the dimensionless Hubble parameter for the present
model is provided in Fig. 3. The time-dependent behavior of
the dimensionless Hubble parameter is displayed in Fig. 3a.
However, the Hubble parameter is given by log-log and semi-
log scales in Fig. 3b, c, respectively.

It is to be noticed that the Hubble parameter has an
anomaly depending on the scale factor a. It starts from a
maximum value and rapidly drops to a minimum value, and
then reaches up to a maximum value with time. This min-
ima corresponds to the critical transition time tc observed in
scale factor behavior. Clearly, we expect the dramatic change
of the Hubble parameter in the case of the phase-like catas-
trophic transition from matter dominate era to dark energy
dominate era. However, this minima additionally emphasizes
that before the catastrophic transition, there occurs a short
deceleration in the expansion of the Universe. This is a very
interesting point from which its physical meaning and mech-
anism can be discussed profoundly. In order to see some more

details of the evolution of the dimensionless Hubble param-
eter, one can analyze the Fig. 3b, c further. In Fig. 3b, it is
seen that the Hubble parameter decreases as h ∝ (t/t0)−α̃

up to the critical time point tc. On the other hand, above tc,
it increases exponentially as h ∝ eα̃′(t/t0) and it reaches up
to a constant value, as observed, for relatively weak and rel-
atively strong interactions, where α̃, and α̃′ denote arbitrary
constant parameters. The constant value of the dimensionless
Hubble parameter h for our interaction parameter set refers
to H0 = 69.5 and H0 = 73.5 km s−1Mpc−1 for h = 0.695
and h = 0.735, respectively as seen in Fig. 3. This numerical
solution shows the characteristic behaviour of the dimension-
less Hubble parameter h, at the same time it provides that our
model produce quite consistent result with observational data
for the different cosmological eras of the Universe. Further-
more, it denotes the presence of the an anomaly at around the
transition from the matter dominated era to the dark energy
dominated era.

5.2 The dimensionless deceleration parameter q

The deceleration parameter q in cosmology is a dimension-
less measure of the cosmic acceleration of the expansion of
space in a FLRW Universe. In general, q takes a negative
sign and varies with the cosmic time, except in a few spe-
cial cosmological models. Except in the speculative case of
phantom energy, all postulated forms of mass-energy yield a
deceleration parameter q ≥ −1. On the other hand, for any
non-phantom Universe, there must be a decreasing Hubble
parameter, except in the case of the distant future of a �CDM
model, where q goes to −1 from above and the Hubble
parameter gets asymptote to a constant value of H0 � √

�/3.
In our case, the deceleration parameter is obtained from the
model itself. The time dependence of the deceleration param-
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Fig. 4 The deceleration parameter q with respect to cosmic time is
displayed. Here we set the parameter values �1 = 0.05, �2 = 2.5,
�3 = 0.5, �4 = 2.05, A1 = A4 = 1.05, A2 = A3 = 1.5, k1 = −1.0,
k2 = 1.0 for the red circle line; �1 = 0.1, �2 = 2.6, �3 = 0.6,

�4 = 2.2, A1 = A4 = 1.15, A2 = A3 = 1.6, k1 = −1.05, k2 = 1.0
for the green star line. In b, deceleration parameter q in Log-Log scale
is shown. In c, deceleration parameter q in semi-log plot is provided

eter for the present model is shown in Fig. 4. The time depen-
dent behavior of the deceleration parameter is indicated in
Fig. 4a. However, the deceleration parameter is given by log-
log and semi-log scale in Fig. 4b, c, respectively. We note
that log-log and semi-log figures are plotted for the absolute
value of the deceleration parameter after first peaks fc to
yield the slope of the curves. Therefore, in Fig. 4b, c, curves
occur inversely.

As can be clearly seen that the sign of the phase-like tran-
sition also appears at the critical crossover time values tc in
Fig. 4a. The deceleration parameter for the early time takes
a positive value and rapidly drops to a minimum value at
located tc as seen from Fig. 4a. In order to see some details
of the time evolution of the deceleration parameter, one can
see the Fig. 4b, c. In Fig. 4b, it is seen that the Hubble param-
eter decreases as q ∝ (t/t0)−β̃ up to a critical time point
tc. On the other hand, after tc, it increases exponentially as
h ∝ eβ̃ ′(t/t0) as seen in Fig. 4c and it reaches up to a con-
stant value −1 with time for relatively weak and relatively
strong interactions where β̃, and β̃ ′ denote arbitrary constant
parameters.

5.3 The dimensionless jerk parameter j

In cosmology, the dimensionless jerk parameter j corre-
sponds to the acceleration changes of expansion with respect
to time. It is a very useful parameter to reveal the hidden
transitions between phases of different cosmic accelerations.
This parameter is defined as the dimensionless third deriva-
tive of the scale factor with respect to cosmic time. To confirm
the presence of such a jump in the evolution of the expan-
sion of the Universe, we carry out the presence of the phase-
like catastrophic transition for our non-linear interacting two
scalar fields model.

The time dependence of the jerk parameter for the present
model is displayed in Fig. 5. The time-dependent behavior
of the jerk parameter is shown in Fig. 5a. However, the jerk
parameter is given by log-log and semi-log scale in Fig. 5b, c,
respectively. Notice that the peaks appear at critical crossover
times. These cusps strongly indicate a transition in the time
evolution of the scale factor a. In order to see some detailed
time evolution of the jerk parameter around tc, we give a
log-log plot of the jerk parameter, as seen in Fig. 5b. One
can observe from this figure that the jerk parameter increases
with a power-law exponent j ∝ (t/t0)−γ̃ up to critical time
point tc and it decays with j ∝ (t/t0)−γ̃ ′

where γ , and γ̃ ′
denote arbitrary constant parameters. Finally, after a local
minimum value, by decreasing a very weak exponential with
time, this parameter reaches up a constant value j → 1 as
well in the �CDM model as seen Fig. 5c.

5.4 The dimensionless EoS parameter w

Finally, we study the EoS parameter w as a kinematic vari-
able. The equation of state of a perfect fluid is characterized
by a dimensionless number w, which is equal to the ratio
of its pressure p to its energy density ρ. The equation of
state may be used in FLRW equations to describe the evo-
lution of an isotropic Universe filled with a perfect fluid.
Cosmic inflation and the accelerated expansion of the Uni-
verse can be characterized by the equation of state of dark
energy and it takes different values for different cosmic eras.
In the simplest case, the equation of state of the cosmological
constant is w = −1. In this case, the scale factor is given by
a(t) ∼ exp(H0t). On the other hand, the EoS parameter can
be used to distinguish the phantom and non-phantom dynam-
ics of the Universe. The EoS parameters for the phantom and
non-phantom cases are, respectively, given as w < −1 and
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Fig. 5 The jerk parameter j with respect to cosmic time. Here we set
the parameter values �1 = 0.05, �2 = 2.5, �3 = 0.5, �4 = 2.05,
A1 = A4 = 1.05, A2 = A3 = 1.5, k1 = −1.0, k2 = 1.0 for the red cir-
cle line; �1 = 0.1, �2 = 2.6, �3 = 0.6, �4 = 2.2, A1 = A4 = 1.15,

A2 = A3 = 1.6, k1 = −1.05, k2 = 1.0 for the green star line. In b,
jerk parameter j in Log-Log scale is provided. In c, jerk parameter j in
semi-log plot is shown

w ≥ −1. Additionally, the EoS parameter takes w ≈ 0 in
the matter dominant phase, while it takes w = 1/3 in the
radiation dominant phase.

The time-dependent behavior of the EoS parameter is
given in Fig. 6a. However, the EoS parameter is given by log-
log and semi-log scale in Fig. 6b, c, respectively. We note that
log-log and semi-log figures are plotted for the absolute value
of the EoS parameter after first peaks fc to obtain the slope
of curves. Therefore in Fig. 6b, c, curves are given inversely.

The EoS curves also reflect the transition in scale fac-
tor a(t) around tc in Fig. 6a. In addition to the deceleration
parameter q, the EoS parameter w also has the first initial
peak which indicates a sudden acceleration in the time evo-
lution of expansion of the Universe. EoS parameter decays
with time according to a power-law w ∝ (t/t0)−η̃ up to criti-
cal time point tc as seen in Fig. 6b. Finally, after a local mini-
mum value, as seen in Fig. 6c it again exponentially increases
as w ∝ eη̃′(t/t0) up to a current constant value w = −1 of
the �CDM model, as seen in Fig. 6a where η̃, and η̃′ denote
arbitrary constant parameters.

In summary, all figures in presented study are plotted by
using parameters which satisfy the Hamiltonian constraints
present zero energy condition. Obtained numerical results are
consistent with observational cosmology and strongly pro-
vides our interacting model explain some outstanding prob-
lem of the physical cosmology.

6 The cosmological parameters in the limiting cases

We obtained the scale factor in terms of equations of motion
by solving the FLRW equation with two scalar fields, and
then we plotted both the scale factor and other quantities by
solving numerically. We see that scale factor can be given in

the single formula by

a(t) = a0(t/t0)
2/3eh(t/t0), (29)

where a0 is the normalization constant. Now we can derive
other quantities due to scale factor a. The cosmological
parameters including Hubble parameter, deceleration, jerk
and EoS parameter are respectively given by

h = ȧ

a
= 2

3
(t/t0)

−1 + h0, (30a)

q = − ä

ah2 = −1 + 6

(2 + 3ht/t0)2 , (30b)

j =
...
a

ah3 = 1 + 36

(2 + 3ht/t0)3 + 18

(2 + 3ht/t0)2 , (30c)

w = −1

3
− 2aä

3ȧ2 = −1 + 4

(2 + 3ht/t0)2 . (30d)

where h0 is a constant. It is clear that one obviously obtains
power-law and exponential law expansion from Eq. (29) in
the limiting cases. Accordingly, for t/t0 → 0, i.e. t/t0 ≤ tc,
the cosmological parameters approximate to the following:

a = a0(t/t0)
2/3, h ∼ 2

3
(t/t0)

−1,

q ∼ 1/2, j ∼ 1 w ∼ 0 . (31)

Similarly, the exponential term dominates at late times, such
that in the limit t/t0 → ∞, i.e. t/t0 > tc, we have

a = a0e
ht/t0 , h → h0, q → −1, j → 1, w → −1 (32)

Notice that our results are consistent with the theoretical pre-
dictions and observational data in the limiting cases.
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Fig. 6 The EoS parameter w(t) with respect to cosmic time. Here we
set the parameter values �1 = 0.05, �2 = 2.5, �3 = 0.5, �4 = 2.05,
A1 = A4 = 1.05, A2 = A3 = 1.5, k1 = −1.0, k2 = 1.0 for the red cir-
cle line; �1 = 0.1, �2 = 2.6, �3 = 0.6, �4 = 2.2, A1 = A4 = 1.15,

A2 = A3 = 1.6, k1 = −1.05, k2 = 1.0 for the green star line is given.
In b, EoS parameter w in Log-Log scale. In c, EoS parameter w in
semi-log plot is shown

7 Discussion

It is known that the scalar field cosmology has an important
place in the literature [20,78–80]. Inspired by this motiva-
tion, in this study, we intend to study the transition from the
matter-dominant to the dark energy dominant era based on
the interaction of two scalar fields. We show above that our
obtained results are in agreement with cosmological observa-
tions. However, it should be noted that, initially, the intrinsic
properties of the scalar fields are not defined in the model.
In this section, to see which of these scalar fields would act
as dark matter and which would act as dark energy, we plot-
ted the behavior of both fields in Fig. 7 for the parameter
values �1 = 0.05, �2 = 2.5, �3 = 0.5, �4 = 2.05,
A1 = A4 = 1.05, A2 = A3 = 1.5, k1 = −1.0, k2 = 1.0.
The dominant effect of φ(t) is clearly seen in Fig. 7. There-
fore, we interpreted that the scalar fields φ(t) and σ(t) cor-
respond to the dark energy and dark matter, respectively. We
also see that, in the present study, the characteristic behavior
of φ(t) and σ(t) do not change for the different parameters.

Note that, all the interesting results in the present work
appear due to the behavior of these scalar fields. As can be
seen from Fig. 7, there is an abnormal increase in dark energy
at tc = 1.428 (around 9.8 Gyear) where a peak occurs, which
indicates presence of a phase like transition. It can be con-
cluded that this dramatic changes in the dark energy governs
the transition from the matter dominated to dark energy dom-
inant era. This critical jump in the dark energy may probably
appear due to the catastrophic nature of the interaction poten-
tial. This result implies that the dark energy plays a major role
in the dynamics of the universe depending on the interaction
potential.

Furthermore, as can be seen from Fig. 7 that both scalar
fields start from a finite but nonzero value and behave dif-

Fig. 7 Time dependent behavior of the scalar fields. Scalar field φ(t)
and σ(t) corresponds to the dark energy and dark matter, respectively.
Here we set the parameter values �1 = 0.05, �2 = 2.5, �3 = 0.5,
�4 = 2.05, A1 = A4 = 1.05, A2 = A3 = 1.5, k1 = −1.0, k2 = 1.0

ferently with time. They reach different saturate values in
the late universe period (and in the future). This clearly indi-
cates that dark energy will play a more dominant role in the
late time era of the universe. At the same, time, these results
support that both scalar fields play an important role in the
beginning. We know from the literature that many models
based on dark energy have been proposed to explain early
inflation of the universe. These models successfully explain
the early dynamics [78]. Our findings are also consistent with
the theoretical predictions of the other models [78].

In principle, the scalar fields can be written in terms of
each other [20,78–80]. This method has been used in some
models such as �CDM, the generalized Chaplygin gas, inter-
acting and phantom models [78]. It would also be interesting
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to use this approach. However, in the present work, we con-
sider both fields together and we restricted ourselves to study
the transition from the matter-dominant to the dark energy-
dominated era.

Finally we note that, in order to get a better picture about
early and future time dynamics of the universe, the present
model should be extended to the multiple (at least three)
scalar fields. Additionally, some open problems in the present
work such as the energy densities, phase space analysis of the
interacting potential, multiple scalar fields model and inves-
tigation of the early universe period and the transition from
radiation to the matter-dominated era need to be the further
study.

8 Conclusion

In the present work, we introduce a cosmology model to
explain the physical mechanism of the transition from the
matter-dominated to dark energy-dominated era and to find
a hybrid scale factor that covers both periods. Therefore, we
consider an interacting Lagrangian where two scalar fields
correspond to the dark matter and dark energy interaction
in the framework of the FLRW metric. We assume that two
scalar fields interact with a potential which is determined by
two oscillators and two anti-oscillators.

We analytically solve the field equations in the FLRW
framework for this model and obtain an exact form of the
scale factor. We numerically analyze the scale factor and
give in Fig. 2. We show that our numerical result produces a
hybrid scale factor incorporating the power and exponential
terms as a(t) = a0(t/t0)αeht/t0 . This main and significant
result clearly denotes that there is a crossover at tc. Below
t/t0 ≤ tc, the evolution of the Universe is dominated by
the matter with a scale factor a(t) ∝ (t/t0)α , on the other
hand, above t/t0 > tc, the evolution is dominated by the dark
energy with a scale factor a(t) ∝ exp(ht/t0).

Furthermore, surprisingly, we find that the scale factor
behaves as a(t) ∝ (t/t0)2/3 below t/t0 ≤ tc, and as
a(t) ∝ eh(t/t0) within the interval of around H0 = 69.5 and
H0 = 73.5 km s−1Mpc−1, which shows the dependence on
the weak and strong interactions between dark components
above t/t0 > tc, respectively. The exponent α = 2/3 and
transition point t0 � 9.8 Gyear in cosmic time are completely
consistent with exact solutions of the FLRW and observa-
tions [55]. It is very consistent with the theoretical solutions
[54] and time-dependent Hubble parameter H0 takes value in
the observable intervals given by CMB with Planck [56–58],
CMB without Planck [59–61], No CMB, with BBN [62–64],
Cepheids-SNIa [65–74], TRGB-SNIa [81–86], Masers [87],
Tully–Fisher Relation [88,89], Surface Brightness Fluctua-
tions [90], Lensing related, mass model-dependent [91–98],

Optimistic average [99] and Ultra conservative, no Cepheids,
no lensing [100] (for more references please see Ref. [75]).

Additionally, we numerically obtain other dimensionless
quantities such as little Hubble h, deceleration q, jerk param-
eter j and EoS w by using scale factor a(t) in Figs. 3, 4, 5 and
6, respectively. These parameters reflect different aspects of
all information on the scale factor since they are obtained
depending on the scale factor and/or its derivatives. Indeed,
as one can notice from the relevant descriptions of figures
leading to the crossover, late time transition from power-law
to the exponential one is obtained. All obtained numerical
results are consistent with the observational data and theo-
retical studies.

One can see that the presented model yields very com-
patible results with the cosmological observations and theo-
retical expectations. We remark that the choice for the val-
ues of free parameters of the potential which involves the
catastrophic-like terms do not destroy the characteristic of
the solutions since we adjust the parameter values to satisfy
the zero energy condition. We see that the results are only
dependent on the potential structure and they do not vary
considerably when the parameters are changed. This small
change could be safely ignored because they arise due to
small variations of the zero energy conditions.

In summary, our results clearly show: (i) the late time
transition can be modeled using an interacting cosmology
model, (ii) a hybrid scale factor can be analytically obtained
from this model, (iii) the model precisely predicts the time
dependence of the evolution for the matter and dark energy
dominated eras, (iv) the model approximately predicts time
crossover point in the cosmic time-line between two different
cosmological eras, (v) dark energy plays dominant role on
the time evolution of the universe. These outstanding findings
clearly imply that the interactions in the dark sector can play
an important role in understanding of the time evolution of
the Universe and other problems of the physical cosmology.

Finally, with this study we conclude that interacting cos-
mology models have the potential to solve the problems of
physical cosmology such as singularity, cosmic coincidence,
time evolution of the universe, future and end of the universe,
and so on [29–52]. Therefore, we state that the interacting
cosmology models deserve more attention for further stud-
ies since they can be generalized to many linear or non-linear
interacting components. With this motivation, we believe that
the method presented in this study provides a good mathe-
matical tool to study Chaotic Universe Theory [52] to obtain
metric-dependent solutions and discuss the open problems
mentioned above. This is an issue that we will deal with in
the future.
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