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Cosmic ray intensity variation has become a classic heliospheric physics problem that can be
addressed through space radiation models. In this scenario, the HELMobp-4 model is a more-than-
good compromise between the need for a comprehensive theory of particle propagation and an
easy-to-use numerical model capable of assessing the solar modulation contribution in various
heliospheric scenarios. The HELMob-4 model can assess and forecast the long-term variations
of the galactic cosmic ray (GCR) ion spectra making it suitable also for space mission radiation
hardness mitigation studies. In the model, a Monte Carlo approach is used to solve the Parker
transport equation to evaluate the effect of the solar modulation on the local interstellar spectra of
GCRs during high and low solar activity periods, as well as at different distances from the sun and
outside the ecliptic plane. In this work, we present the updated parametrization of the HELMop-4
model, focusing on the descending phase of the solar cycle 24, employing a data-driven approach
using the latest high-precision data from AMS-02. We will also present how the broader space
community could benefit from the model using dedicated web tools.
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1. Introduction

In the space radiation environment, Galactic Cosmic Rays (GCRs) are particularly hazardous
to electronic components because their high energies make them extremely penetrating, with a high
rate of energy deposition. This makes GCRs an important contributor, for example, to single-event
effects (SEE) especially in deep space. Therefore, planning future missions are required to rely on a
good description and forecast of the GCR component in order to correctly assess the radiation risk.

The joint effort from GALPROP and HELMob-4 provides a complete cross-tuned model
framework that is validated using state-of-art GCR measurements in space, e.g., from AMS-02
[1] and Voyagers [2]. The GALPROP-HELMob-4 framework [3, 4] derived the Local Interstellar
Spectra (LISs) for particles with the atomic number Z < 28 [5-10]. In this way, the Model showed
a better capability of reproducing high-precision data with respect to other solar modulation models
commonly employed by the space community [11]. HELMob-4 includes a forecasting tool that is
able to predict the GCR fluence for future space missions with uncertainty of ~5-15% up to 11 years
[12]. More recently, the HELMon-4 algorithm has been ported to GPU architecture using the CUDA
programming language, thus achieving significant speedup without losing in precision compared
to the CPU implementation [13, 14]. Finally, the model is available through an easy-to-use web
interface on its website! and is embedded in the so-called SR-NIEL framework?.

2. GCR fluences with HELMob-4

The determination of the total GCR fluence faced by a probe in deep space has to take into
account the different physical processes that are involved in the particle’s propagation from the
source (i.e., in the galaxy) to the inner heliosphere. These effects are related to the level of solar
activity intensity, and the solar magnetic field polarity, and are energy- and charge-sign-dependent.
The global effect is the reduction of the particle fluence at lower energies that additionally depends
on the Sun’s distance and helio-latitude. All these processes are included in the HELMobp-4 model:
a Monte Carlo code, based on the Parker Equation, that is currently capable to reproduce the
observed modulated spectra since solar cycle 22 [3—10, 15-19] with and accuracy of the level of
actual experimental uncertainties (i.e. few percent for AMS-02 integrated spectra). The details of
the model are described in [18, 19].

The heliosphere in HELMob-4 has a complex structure, based on hydro-dynamical considera-
tions, providing the long-term variation of the distance to the termination shock and the heliopause
as a function of time, generally consistent® with observations by deep-space spacecraft [19]. Fur-
thermore, as discussed in [18], the diffusion parameter K sets the normalization of the parallel
component of the symmetric part of the diffusion tensor. In HELMob-4 it varies with time through a
practical relationship as a function of the monthly smoothed sunspot numbers (SSN) which has been
updated including data up to the end of 2022 (see Table 1 in [21]), using the procedure discussed

Thttps://www.helmod.org/

2https://www.sr-niel.org/

3Recently, the observation of the heliopause position provided by Voyager 2 showed that the spacecraft is at present
in the very local interstellar medium [20]. Therefore, a practical correction has been implemented to keep the Voyager 2
trajectory outside the heliopause from the crossing point up to the current date. This correction is approximately within
one standard deviation with respect to the averaged heliopause predicted by the model.
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Figure 1: The estimated diffusion parameter Ky for the ascending (upper row) and descending (lower row)
phases of the solar activity for the positive polarity periods. On the left panels, the blue (orange) points
represent the K values before (after) 2017 as a function of SSN; the continuous black lines are the fit results
with the error band (dashed lines). The right panels show the distribution of the residuals.

in Section 2.1 of [15]. As shown in Fig. 1 the so-obtained relationship shows an overall agreement
with K values.

As reported in [18], the magnetic drift is suppressed during high-activity periods at rigidities
below few GV through a time-dependent suppression factor related to solar activity as discussed
in [22]. In order to match the latest AMS-02 proton and electron data in the positive polarity
minimum, drift term is suppressed at high energy (above 10—15 GV) by means of a logistic function
where the plateau at higher rigidities is a function of the tilt angle, assuming positive values lower
than 1.

3. Comparison with observations

The Model has been tuned using proton and electron data, along more than two solar cycles,
both at 1 AU and larger distances from the Sun, up to the border of the heliosphere, as well as outside
the ecliptic plane. The same parametrization has been then applied to all GCR ions.

In Fig. 2 the available data sets from BESS [23], SOHO/EPHIN [24], PAMELA [25-28], and
the monthly means of the AMS-02 daily fluxes [29-31] for proton, helium nuclei, and electron
GCR are reported. The period covers more than the last two solar cycles up to the end of 2022.
In particular, the AMS-02 data include the descending phase to the minimum of the solar cycle 24
with a positive polarity which has been observed for the first time with such high accuracy.

The Model already showed to be able to reproduce the latitudinal gradient observed by the
Ulysses spacecraft outside the ecliptic plane [15] and the radial gradient measured by Voyager 1
and Voyager 2 probes inside the heliosphere [18].
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Figure 2: HELMob-4 solutions at ~2 GV (solid lines) for protons (top panel), helium nuclei (central panel),
and electrons (bottom panel). Line colors indicate the simulations for different data sets within their own
period and cadence: cyan for the yearly SOHO/EPHIN data, blue (red) for the monthly PAMELA (AMS-02)
data. In the same plot, measured fluxes from EPHIN, BESS, PAMELA, and AMS-02 are reported.

4. Transfer orbit fluence calculator

When space probes travel in deep space to their target, they follow a transfer orbit to move the
spacecraft from one stable orbit to another. During the time spent on the transfer orbit, the spacecraft
experiences exposure to the GCR fluence without the natural shield due to the geomagnetic field.
Thus, the full amount of solar-modulated spectra interacts directly with the probe components.
HeLMob-4 could provide a precise estimation for the space radiation environment due to GCR that
resides both along the transfer orbit and at the target-specific celestial body.

In Fig. 3 we reported the case of the Cassini transfer orbit. The differential intensity (top panel)
shows a decrease as long as the space probe travels into deep space during the rising phase of solar
activity. The GCR intensity observed by the probe can be therefore ascribed to a combination
of solar activity and solar distance that cannot be easily disentangled. The GCR fluence (middle
panel of Fig. 3), obtained by integrating the flux from 10 MeV to 30 GeV, can be calculated by
means of dedicated numerical simulations that must be evaluated for each Carrington rotation at
the corresponding spacecraft average position. In order to provide a reliable tool (within the model
uncertainties), that can make these simulations accessible even for non-expert users, we implemented
a web-based transfer orbit fluence calculator available at https://www.helmod.org/. This tool
interpolates the GCR fluence using pre-calculated simulations at selected solar distances allowing
for a fast response. This approach relies on the assumption [32] that, on the orbital plane, the radial

G, -Ar

profile of GCR intensity can be described as J, = Jg - e where Jg, is the GCR intensity at

spacecraft distance, Jg is the GCR intensity at reference distance, Ar is the radial distance from


https://www.helmod.org/

Predicting GCR with HELMop-4 Boschini et al.

_ T T T T | | T
T 500 .
<
%
o 400 —
I
w0
§, 300 -
=
E 200+ Proton GCR: 10.387 MeV/n —
] l l l ] ] ]
I | | | | | I
5000} -
T 4000} -
IS
G
— 3000 -1
]
S
o 2000 -
S
(=
1000 -
] l l l l l ]
I |
_. 1.5F -1
2 sof -
[ .
2.5[ | C?ssini Triansfer Olrbit 7]

I
1998 1999 2000 2001 2002 2003 2004

Figure 3: Top panel: computed proton differential intensity at 10 MeV along the Cassini transfer orbit.
Middle Panel: computed proton fluence integrated from 10 MeV to 30 GeV. Bottom panel: radial distance
of the Cassini transfer orbit.

spacecraft and the reference distance where Jg is evaluated, and, finally, G, is the radial gradient
computed between two reference solar distances.

A systematic comparison of fluences calculated within the mission time using dedicated sim-
ulations at the proper orbital distance and the web-based calculator has been carried on over six
transfer orbits namely: Cassini, Juno, Mars Express, Mars Science Laboratory, Rosetta, and the
SpaceX-Roadster. These missions are representative of the possible transfer orbits for exploration
purposes in the inner part of the heliosphere, with different duration, covering different solar activity
periods and final target distances. Averaging over all the tested transfer orbits we found that the two
methods have a relative difference of 0.14+0-34

031 Jo, where errors are evaluated considering the 68%
C.L. interval.

5. Conclusion

In this work, we presented the updated parametrization of the HELMob-4 model during the
descending phase of the solar cycle 24, regarding both the diffusion coefficient and the drift



Predicting GCR with HELMop-4 Boschini et al.

modelization, employing a data-driven approach. In this way, we were able to improve the agreement
with the latest high-precision data from AMS-02. The HELMob-4 model, embedded in the so-called
SR-NIEL framework, provided with a precise forecast tool and the transfer orbit fluence calculator,
is aiming to support the space community with the most advanced and accurately predicted GCR
fluences for precisely assessing the occurrence of SEEs during long-duration deep-space missions.
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