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ABSTRACT

Context. The existence of planes of satellite galaxies has been identified as a long-standing challenge to ΛCDM cosmology because
satellite systems in cosmological simulations that are as extremely flattened and as strongly kinematically correlated as the observed
structures are rare.
Aims. We investigate a recently proposed new metric for measuring the overall degree of planarity of a satellite system that was used
to claim consistency between the Milky Way satellite plane and ΛCDM.
Methods. We studied the behavior of the planarity metric under several features of anisotropy that are present in ΛCDM satellite
systems but are not related to satellite planes. Specifically, we considered the impact of oblate or prolate distributions, the number of
satellites, the clustering of satellites, and radial and asymmetric distributions (lopsidedness). We also investigated whether the metric
is independent of the orientation of the studied satellite system.
Results. We find that all of these features of anisotropy lead to the metric to infer an increased degree of planarity, even though
none of them has any direct relation to satellite planes. The metric is also highly sensitive to the orientation of the studied system (or
chosen coordinate system): There is almost no correlation between the reported degrees of planarity of the metric for identical random
systems rotated by 90◦.
Conclusions. Our results demonstrate that the new proposed metric is not suited for measuring the overall planarity in satellite
systems. Consequently, no consistency of the observed Milky Way satellite plane with ΛCDM can be inferred using this metric.
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1. Introduction

Observational evidence for the presence of planes of satellite
galaxies that likely co-orbit has been demonstrated for numerous
systems (see Pawlowski 2018 for a review). Well-studied cases
include the Milky Way (Kroupa et al. 2005; Pawlowski et al.
2012; Taibi et al. 2024), M31 (Ibata et al. 2013; Sohn et al.
2020), Centaurus A (Tully et al. 2015; Müller et al. 2018;
Kanehisa et al. 2023), and NGC4490 (Karachentsev & Kroupa
2024). For these observed systems, analogs with similar degrees
of spatial flattening and kinematic coherence are rare in
ΛCDM simulations (Ibata et al. 2014; Pawlowski & McGaugh
2014; Forero-Romero & Arias 2018; Pawlowski et al. 2019;
Müller et al. 2021; Pawlowski & Tony Sohn 2021; Samuel et al.
2021; Pawlowski et al. 2024; Seo et al. 2024).

Other observed host galaxies also show some signs of
possible planarity1 or kinematic coherence in their associated
satellites, but the degree of their difference with cosmological
expectations is less well established (e.g., Chiboucas et al. 2013;

? Corresponding author; mpawlowski@aip.de
1 In the following, we use the term “planarity” with quotes
when it refers to the measure of the specific metric proposed in
Uzeirbegovic et al. (2024), while the term without quotes is used when
we refer to the general concept of planar arrangements.

Paudel et al. 2021; Martínez-Delgado et al. 2021; Müller et al.
2024; Mutlu-Pakdil et al. 2024; Martinez-Delgado et al. 2024).

Spatial flattening is commonly measured as the major-to-
minor axis ratio in 2D, or the absolute root-mean-square plane
height in 3D. The kinematic coherence is either measured as the
dispersion of orbital poles when the 3D velocities are known
from proper motions, or as 2D line-of-sight velocity trends for
more distant systems. In the presence of well-established meth-
ods that are used widely by many different teams, the introduc-
tion of new metrics for measuring satellite planes (Shao et al.
2019; Förster et al. 2022; Seo et al. 2024) can hinder compara-
bility. When a novel tool is also only applied to a new simulation,
it prevents us from assessing whether an apparent consistency
between the observation and simulation arises because the latter
is more successful in reproducing the observed system than pre-
vious simulations, or if it is due to shortcomings of the new met-
ric (which often affect these proposed new analysis tools; see,
e.g., Pawlowski et al. 2014, 2015, 2017a; Pawlowski & Kroupa
2020).

We therefore need to ensure that the tools we apply are suit-
able and have been demonstrated to reliably measure what we
wish them to measure. A good tool needs to have both a high
sensitivity and a high specificity. The former implies that the tool
can accurately diagnose a property present in the data (e.g., the
presence of planes in the distribution of satellite galaxies), while
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the latter requires that the tool does not return false-positive
diagnoses in the absence of the condition being tested for (e.g.,
reporting high degrees of planarity for systems without intrinsic
planes).

Uzeirbegovic et al. (2024) have recently proposed yet
another new tool that is aimed at measuring the overall “pla-
narity” present in a system of satellite galaxies. The metric
intends to measure with a single value the overall degree of pla-
narity in a distribution. Their new tool does return high degrees
of “planarity” not only for the distribution of Milky Way satellite
galaxies, but also for a range of satellite systems extracted from
the NewHorizon cosmological simulation (Dubois et al. 2021).
Uzeirbegovic et al. (2024) interpreted this as demonstrating con-
sistency between ΛCDM expectations and the observed system
and its satellite plane.

By generating one mock satellite system in which satel-
lite subsamples are confined to three planes, Uzeirbegovic et al.
(2024) demonstrated the tool’s sensitivity to the presence of pla-
nar distributions. However, reverse tests investigating the speci-
ficity were not presented. It is thus unclear whether the proposed
tool is a suitable metric for reliably measuring “planarity”, or if
it might instead be affected by other influences, such as different
types of deviations of the satellite systems from isotropy.

In the following, we investigate the metric and its response
to several types of phase-space correlations present in satellite
galaxy systems, both observed in the Universe and extracted
from ΛCDM simulations. We show that the proposed metric
lacks specificity, since it is sensitive to other anisotropies (oblate
or prolate distributions, clustering, and lopsidedness) that are
independent of the presence of planar arrangements. This result
is contrary to its intended purpose. We also demonstrate that the
degree of “planarity” it returns is affected by the orientation of
its coordinate system relative to the studied satellite distribution.
We refrain from commenting on the application of the metric
on velocity vectors because the following investigations of posi-
tions alone already disqualify it from further use. However, we
note that the procedure employed by Uzeirbegovic et al. (2024)
to sample from the measurement uncertainties of observed satel-
lite galaxy positions and velocities, namely sampling them in 6D
Cartesian coordinates independently, ignores the strong correla-
tions between them and results in nonphysical satellite phase-
space positions (see Appendix A).

We note that Uzeirbegovic et al. (2024) required each host
to contain more than 30 satellites with stellar masses >105 M�,
while considering hosts with a stellar mass >1010 M�. Given that
for the Milky Way we know of only 15 satellites that exceed this
stellar mass (Pace 2024), it appears plausible that many simu-
lated hosts might be more massive than the Milky Way. Because
no information on the host mass distributions or the number of
satellites per host is provided in Uzeirbegovic et al. (2024), we
cannot make definitive statements on this issue, however.

2. Investigating the “planarity” metric

The metric proposed by Uzeirbegovic et al. (2024) constructs the
cross-products of all possible combinations of satellite galaxy
position vectors2. It thus collects all plane normal vectors defined
by any combination of two satellites and the center of the coor-
dinate system, which is chosen as the host galaxy position.

2 In this regard, it is similar to the three- and four-galaxies normal
methods of Conn et al. (2013) and Pawlowski et al. (2013), who used
these as a discovery tool for identifying possible subsample satellite
planes.

These normal vectors are expressed in spherical coordinates
and were binned in m bins in azimuth and inclination. The result-
ing 2D histogram of normal-vector counts per bin was summa-
rized by calculating the Gini coefficient of all bin values. The
same was done for 1000 random mock systems, with positions
drawn from an isotropic distribution. For a given satellite system
under study, its degree of “planarity” is reported as the quantile
value of its Gini coefficient relative to the distribution of Gini
coefficients of these random systems. Uzeirbegovic et al. (2024)
reported that the Milky Way system and most of the simulated
satellite systems return very high quantiles, which they inter-
preted as consistency between the observed satellite plane and
ΛCDM.

The reliance on a spherical coordinate system that is binned
in angles implies a special direction in the analysis: the pole of
this coordinate system. The orientation of this direction must not
affect the output of the metric. After all, the presence of planes in
a system needs to be measured independently of the orientation
under which the system is studied.

Furthermore, different types of phase-space correlations
beyond planes are present in observed satellite systems and in
those obtained from cosmological simulations (for a review, see
Pawlowski 2021). A metric for measuring planarity therefore
needs to demonstrate that it does, in fact, measure planarity, and
not, for example, just a general deviation from isotropy. This
requires testing whether the metric is affected by other phase-
space correlations that are independent of the issue of satellite
planes.

Since no such tests were presented by Uzeirbegovic et al.
(2024), we set out to do this with a number of toy-model sys-
tems. For this purpose, we used the code made publicly available
by the authors3. We note that while Uzeirbegovic et al. (2024)
described that the spherical coordinates were scaled to ensure
that all bins had an equal area, no such scaling is apparent in the
provided code. Since we thus cannot be sure which procedure
was applied, we used the provided code by default, but we repeat
our analysis in Appendix B after implementing such a scaling.
Our main conclusions apply to either case.

Unless stated otherwise, we followed their fiducial choices:
m = 25 bins per angular dimension, and 1000 isotropic realiza-
tions relative to which the quantile of a given system is obtained.
We base our comparisons on mock systems with Nsat = 40 satel-
lites, comparable to the number of Milky Way satellites consid-
ered in the original study and to their requirement that simulated
systems contain Nsat > 30 satellites.

2.1. Effect of orientation or the coordinate system

An essential quality of any suitable metric for measuring the pla-
narity of a satellite system is that it needs to be independent of
the overall orientation of the system under study, or of the cho-
sen coordinate system. The metric relies on a 2D histogram of
the spherical coordinates of pairwise cross-products of vectors.
The statistics of the bin counts, that is, how much they devi-
ate from a distribution expected for random systems, is used to
quantify the degree of “planarity”. However, a histogram in two
spherical coordinates implies a tighter sampling in azimuth for
regions closer to the poles, and it suggests that the orientation of
the system might affect the resulting “planarity” measure.

3 Link provided in their paper (last accessed by us on December
12, 2024): https://emiruz.com/vpos, which forwards to https:
//github.com/emiruz/planarity/
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Fig. 1. Quantiles for 1000 random isotropic distributions in two orien-
tations rotated by 90◦. No strong correlation is apparent, indicating that
the output of the proposed ”planarity” metric is sensitive to the orienta-
tion of the satellite system under study.

We have tested this concern by investigating 1000 ran-
dom satellite systems, generated in the same way as by
Uzeirbegovic et al. (2024), by drawing from a homogeneously
filled unit sphere. This resulted in an isotropic distribution of
positions around the origin. For each system, we measured the
quantile. As expected, random systems resulted in an overall flat
quantile distribution. We then rotated the distributions by 90◦
around the y-axis, such that the former x-axis lay along the new
z-axis direction, and vice versa. This preserved the mutual dis-
tributions of the satellites, and only their orientation relative to
the z-axis defining the orientation of the histogram was different.
We repeated the analysis and again determined the quantiles.

Our results are shown in Fig. 1. The quantiles measured in
the two orientations vary strongly, with almost no apparent cor-
relation. This was confirmed by tests for the linear and rank cor-
relation: the Pearson correlation coefficient is r = 0.352, and the
Spearman correlation coefficient is ρ = 0.351. A robust metric
independent of orientation results in identical quantiles for these
rotated systems. The “planarity” metric does not. This already
shows that the metric is not suitable for studying the flattening
of a satellite system. We have uncovered more issues, however.

2.2. Effect of the halo shape

It is well established that dark matter halos in ΛCDM, as well
as their associated subhalo and thus satellite galaxy systems,
are intrinsically triaxial (Bailin & Steinmetz 2005; Allgood et al.
2006; Wang et al. 2008; Vega-Ferrero et al. 2017). This overall
shape does not imply that they contain planes of satellite galax-
ies, however. Even though an overall oblate system might be
considered to be somewhat plane-like and thus can plausibly
be expected to yield a stronger degree of inferred planarity, this
is not the result of substantial subsample planes as supposedly
tested for by the metric. It is thus necessary to test whether the
metric is sensitive to the overall shape of the studied systems.

We generated isotropic systems following the fiducial
method, but rescaled their x-axis coordinates by multiplying
them with a factor q. This produced flattened, oblate distribu-
tions for q < 1.0 and stretched, prolate distributions for q > 1.0.
We applied the “planarity” metric again in two orientations, with
its pole along the z- and the x-axis, respectively. The resulting
quantile distributions for 1000 systems generated for each con-
sidered q = [0.5, 0.67, 1.0, 1.5, 2.0] are illustrated in the mid-
dle column of Fig. 2 for our fiducial Nsat = 40. Here, q = 1.0

corresponds to the fiducial, spherical case of Uzeirbegovic et al.
(2024).

Our tests showed that prolate distributions result in some
deviation in the quantile distribution from isotropy when the
direction of stretching and the orientation of the metric pole are
perpendicular. Strongly prolate distributions (q = 2) are biased
to higher quantile values. Oblate distributions, in contrast, dis-
play a more extreme effect and result in a strongly increased
number of high-quantile systems. This shows that the proposed
‘planarity’ metric is highly sensitive to the overall shape of the
distribution, even in the absence of underlying embedded satel-
lite planes.

Depending on the orientation, however, the metric also dis-
plays counterintuitive behavior: When the metric pole aligns
with the x-axis (lower panel in Fig. 2), that is, along the direc-
tion in which the system is flattened or stretched, then the metric
infers a decreased degree of planarity for oblate systems. Their
quantile distribution becomes heavily skewed to lower values.
The metric appears to infer nonplanarity when the flattening
happens to be oriented perpendicular to the poles of the cho-
sen coordinate system. Prolate distributions whose major axis
aligns with the pole, in contrast, return very high inferred degrees
of planarity because of the strong bias toward large quantiles.
Thus, the overall shape of the satellite distribution has a major
effect on the quantile returned by the “planarity” metric, which
can result in high quantiles even for systems without intrinsic
satellite planes. This feature of the metric overestimates the fre-
quency of “planar” systems in cosmological simulations.

2.3. Effect of the number of satellites

Uzeirbegovic et al. (2024) did not require that the number of
satellites in the Milky Way sample was matched by its sim-
ulated analogs, but only that these analogs had >30 satellites.
While the metric determines the quantile of a given system rela-
tive to a sample of isotropic mock systems of the same number,
the “planarity” of a system remains sensitive to the number of
satellites considered. Any metric that refers to the likelihood that
a given configuration appears among its isotropic counterparts
needs to account for the fact that given some degree of under-
lying anisotropy from which the system of interest is drawn,
a larger population of satellites will result in a reduced impact
of sampling variance and thus a lower likelihood to occur in
isotropy.

We tested this by varying the number of satellites drawn
from otherwise identical flattened and stretched distributions (as
in Sect. 2.2). The results are also shown in Fig. 2 for Nsat =
[20, 40, 50]. We identify a strong dependence on the number of
satellites, with the same degree of underlying ob- or prolateness
resulting in stronger effects on the quantile distribution for sys-
tems of larger Nsat. This hinders comparability across different
sample sizes, such as between the observed Milky Way satellites
and simulated systems.

2.4. Effect of the satellite clustering

Galaxies in ΛCDM cluster hierarchically (White & Rees 1978;
White & Frenk 1991). We therefore expect that at least
some satellite galaxies have another dwarf companion nearby,
be it a current or former satellite (Wheeler et al. 2015;
Erkal & Belokurov 2020; Patel et al. 2020; Pawlowski et al.
2022; Müller et al. 2023; Vasiliev 2024), a pair of dwarfs (Evslin
2014; Fattahi et al. 2013; Crnojević et al. 2014; Besla et al.
2018; Chamberlain et al. 2024; Pawlowski et al. 2024), or as
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Fig. 2. Distribution of quantiles for systems with different degrees of flattening (q < 1.0, oblate) or elongation (q > 1.0, prolate) along the x-axis.
From left to right, the number of satellites per system is 20, 40, and 50, respectively. The upper panels orient the metric pole along the z-axis, and
the lower panels orient it along the x-axis.
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Fig. 3. Distribution of quantiles for isotropic distributions with different
fractions of paired satellites. Even a mild degree of clustering results in
a substantial increase in the high-quantile results.

part of an infalling group (Wang et al. 2013; Wetzel et al. 2015;
Júlio et al. 2024).

This clustering is independent of the presence of satellite
planes. It is thus important to test whether satellite clustering
affects the inferred planarity. We built a toy model to test this by
generating an isotropic system as in the fiducial case, but now
each generated satellite had a chance fpair to have a second satel-
lite nearby. For each generated satellite, we drew a random num-
ber from a uniform distribution between zero and one. When this
was smaller than the probability fpair, then it was a primary of a
pair, and we added a secondary satellite nearby. We chose the
position of the secondary as an offset from the position of the
primary from a flat distribution in all three Cartesian directions,
restricted to a maximum range of 10% of the total extent of the
system (0.1 for the adopted unit sphere). We stopped the process
when, counting primaries and secondaries alike, the total number
of requested satellites was reached.

We generated 1000 such systems per fpair =
[0.0, 0.1, 0.25, 0.5, 0.75], applied the “planarity” metric, and
recorded the resulting quantiles. Figure 3 visualizes the results.
Even a mild degree of clustering (one in ten primary satellites
was assigned a secondary) leads to a substantial increase in the
number of high-quantile cases. Clustering in a galaxy system,
a natural occurrence in the hierarchical formation scenario of
the ΛCDM model, thus also introduces a strong bias to infer
higher degrees of “planarity” with the proposed metric, even in
the absence of an underlying satellite plane.

2.5. Effect of an asymmetry or a lopsidedness

Observed and simulated systems both show radial distributions
with higher satellite densities in the inner than the outer regions
(Macciò et al. 2010; Kelley et al. 2019; Samuel et al. 2020). In
addition, satellite systems show asymmetries, most prominently,
an overall lopsidedness with more satellites on one side of their
host than the other (Conn et al. 2013; Libeskind et al. 2016;
Brainerd & Samuels 2020; Savino et al. 2022; Heesters et al.
2024). Similar features are present in satellite systems in cosmo-
logical simulations (Pawlowski et al. 2017b; Wang et al. 2021;
Samuels & Brainerd 2023; Liu et al. 2024). This lopsidedness
does not constitute a plane-like satellite distribution, and thus,
a metric of planarity should not be sensitive to overall asymme-
tries or shifts in the satellite distributions.

To test this, we set up model satellite distributions offset
from the host and with different radial distributions, as shown
in the left panel of Fig. C.1. The fiducial radial distribution of
Uzeirbegovic et al. (2024) (dotted black line) assumed a uni-
form spatial density and resulted in considerably more strongly
spread-out satellite distributions than the observed Milky Way
system (green line; data from Li et al. 2021 normalized to the
most distant considered satellite Leo I).
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We generated different distributions by drawing the radial
distance of each model satellite from a flat distribution in r′ =
[0, 1], and we then assigned it a radius r = r′a, with an expo-
nent of a between a = 0.5 (the fiducial radial distribution of
Uzeirbegovic et al. 2024), to a = 4 (a highly concentrated dis-
tribution). These systems were set up isotropically and were
shifted by 10% of their maximum extent along the x-axis (0.1
for the adopted unit sphere). To make them align better with
the observed Milky Way satellite system, we rejected satellites
within the inner 5% of radius, which would be close to or within
the Galactic disk.

The middle and right panels of Fig. C.1 show the resulting
quantile distributions. When the metric pole points along the z-
axis (perpendicular to the offset), no impact on the quantiles is
apparent. However, when the pole aligns with the direction of
the offset (the x-axis), then the quantiles are biased to higher val-
ues. This effect is stronger for more highly concentrated distribu-
tions. Thus, a small asymmetric offset in the satellites and a real-
istic radially concentrated satellite distribution (natural occur-
rences in ΛCDM independent of satellite planes) also bias to
high inferred quantiles and can thus lead to an incorrect infer-
ence of a higher degree of planarity when employing this metric.

3. Conclusions

We have investigated the behavior and properties of the
new “planarity” metric proposed by Uzeirbegovic et al. (2024),
which they used to claim consistency between the Milky Way
plane of satellite galaxies and ΛCDM simulations. We found that
the results of the metric are sensitive to the chosen orientation of
its spherical coordinate system: The resulting quantile values of
mock systems rotated by 90◦ show almost no correlation. This
property alone makes it an inadequate tool for measuring, infer-
ring, or comparing satellite galaxy systems.

Furthermore, we tested the metric response to other types
of phase-space correlation present in satellite galaxy systems.
We found that the overall deviation of the shape from spheric-
ity, satellite clustering, and lopsided satellite distributions can
all result in the proposed “planarity” metric returning high quan-
tile values for mock systems. These features of the metric devel-
oped by Uzeirbegovic et al. (2024) will overestimate the inferred
occurrence of planes in cosmological simulations. Since all of
these effects are present in ΛCDM satellite systems but are inde-
pendent of the presence of satellite planes, the metric cannot be
used to infer the consistency of the Milky Way satellite plane
with ΛCDM.

Taken together, we find the proposed “planarity” metric to
be unreliable because it is sensitive to the satellite system ori-
entation, and it is biased to return inflated degrees of apparent
“planarity” in the presence of other types of phase-space cor-
relations. This results in a lack of specificity. It is thus over-
all inadequate for studying the problem of planes of satellite
galaxies.
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Appendix A: Error treatment

In analyzing the observed Milky Way system of satellite galax-
ies, Uzeirbegovic et al. (2024) employed a Monte Carlo sam-
pling scheme to account for measurement errors. From the
measured positions, distances, line-of-sight velocities, and
proper motions and their errors, the resulting 6D Cartesian coor-
dinates of the satellite galaxies and their spread due to measure-
ment errors have been obtained. Uzeirbegovic et al. (2024) then
sample from these distributions, drawing from each Cartesian
coordinate independently.

This neglects the presence of strong correlations in the possi-
ble positions and velocities of a satellite galaxy, which generally
do not align with the axes of the Galactic Cartesian coordinate
system. Sampling the Cartesian coordinates independently thus
results in incorrect realizations which are physically impossible
given the measured constraints on the observed satellite galaxies.

We demonstrated this by following the same procedure. We
generate Monte Carlo realizations of a given satellite galaxy by
drawing from its position, distance, line-of-sight velocity, and
proper motion errors (for simplicity assumed to be normal dis-
tributed), using data from Battaglia et al. (2022). These realiza-
tions are then converted to Galactic Cartesian coordinates. We
measure the median position and standard deviation in each of
these coordinates. These are then used as input for a second
round of Monte Carlo realizations, where we now follow the pro-
cedure used by Uzeirbegovic et al. (2024) and treat each Carte-
sian coordinate independently. The result is a sample of real-
izations in Cartesian space, which we convert back to spherical
Galactic coordinates. In other words, for each realization we cal-
culate the resulting position, distance, line-of-sight velocity, and
proper motion.
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Fig. A.1. Distributions of line-of-sight velocities from Monte Carlo
sampling for the two Milky Way satellite galaxies Crater II (left panel)
and Leo V (right panel). The red bands give the range from sampling
the measured line-of-sight velocities. The black histograms show the
resulting line-of-sight velocities if errors are sampled in 6D Cartesian
coordinates independently, ignoring their mutual correlations.

If the procedure were correct, the resulting Galactic coordi-
nates and their spread should match with the measurement con-
straints. In Fig. A.1, we use observationally well constrained
line-of-sight velocities (errors typically do not exceed a few
km/s) to demonstrate that this is not the case. The plots demon-
strate the impact of incorrectly sampling measurement errors in
the phase-space coordinates of Milky Way satellite galaxies. The
red bands give the measured line-of-sight velocities to a satellite
galaxy, their widths indicate the maximum extent from our origi-
nal round of Monte Carlo samplings. The black histogram shows
the resulting line-of-sight velocity after converting the second
round of Monte Carlo sampling back to Galactic coordinates.
Clearly the realizations sampled from the Cartesian distributions
without considering their inherent correlations result in nonphys-
ical phase-space positions.

Specifically, the upper panel in Fig. A.1 shows the results
for Crater II, a satellite galaxy with relatively well constrained
proper motions. Even in this case the incorrect sampling results
in line-of-sight velocities deviating substantially from the actu-
ally measured value by tens of km/s. The situation is much worse
for satellites with only poorly constrained proper motions (of
which there are many), as demonstrated in the lower panel using
Leo V as an example. In this case, the incorrect error sampling
results in an extremely wide spread of line-of-sight velocities,
some offset by hundreds of km/s from the actual measured value.

Appendix B: Scaled metric with equal-area bins
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Fig. B.1. Quantiles for 1000 random isotropic distributions in two ori-
entations, like Fig. 1 but now with bins of equal area.

We here summarize our results after ensuring that the bins of
the underlying 2D histograms in the metric’s spherical coordi-
nates are of equal areas. To do this, we scale the original inclina-
tion angles β (that runs from 0 to π) to a new β′ = 0.5 π (1−cos β).
This ensures that the histograms have the same axis ranges as
shown in Uzeirbegovic et al. (2024). We emphasize that even
with equal areas, the shapes of the bins differ, with the bins closer
to the poles being more elongated than those close to the equator
of the coordinate system. This suggests that the scaled metric’s
results remain sensitive to the orientation under which a satellite
system is studied.

Figure B.1 shows the test on the effect of orientation, and
confirms that an effect remains even for the scaled metric. The
scaling improves the situation somewhat, with more of a corre-
lation apparent between the rotated test systems. However, there
is still substantial scatter in the inferred degree planarity for dif-
ferent orientations, making the metric unreliable.

Figure B.2 repeats the test for prolate and oblate distribu-
tions. With the scaled metric the overall effect remains present,
and in fact both prolate and oblate distributions now result in
inferring increased degrees of planarity irrespective of the ori-
entation. There does, however, remain some dependence on the
orientation as can be seen be the lines for q = 0.5 and 2.0, as
well as q = 0.67 and 1.5 effectively swapping placed between
the upper and lower panels.

Figure B.2 also shows that also in case of the scaled met-
ric, the number of satellites in a system has an influence on the
inferred degree of “planarity” if the systems are drawn from pro-
or oblate distributions.

The scaled metric also returns increased degrees of “pla-
narity” if satellite galaxies show clustering modeled as satellite
pairs, similar but slightly more so than in the non-scaled case.

Figure B.4 shows that also in case of the scaled metric, the
presence of a lopsided satellite distribution biases towards higher
inferred degrees of “planarity”, and that also in this case the
effect is stronger for more radially concentrated distributions.
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Fig. B.2. Distribution of quantiles in the scaled metric for systems with different degrees of flattening (q < 1.0, oblate) or elongation (q > 1.0,
prolate) along the x-axis, and effect of the number of satellites on the inferred planarity of a distribution with intrinsic pro- or oblateness, using the
scaled metric.
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Fig. B.3. Distribution of quantiles in the scaled metric for isotropic dis-
tributions with different fractions of paired satellites.
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Fig. B.4. Effect of radial distribution and lopsidedness on the inferred
planarity of a satellite system using the scaled metric.

Furthermore, contrary to the non-scaled metric, the effect is now
present in both considered orientations.

Appendix C: Radial distribution and lopsidedness
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Fig. C.1. Effect of radial distribution and lopsidedness on the inferred
planarity of a satellite system. The left panel plots the cumulative radial
distribution of mock satellite systems (green: observed MW; black:
fiducial distribution of Uzeirbegovic et al. 2024). The middle (right)
panel shows the quantile distribution when the metric’s pole aligns with
the z(x)-axis and thus perpendicular to (along) the offset.
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