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Background
In the presence of an external magnetic field, fermions
acquire a magnetic moment
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2𝑚
 𝑠

where 𝑔 is the gyromagnetic ratio, 𝑄 the electric charge,
and  𝑠 is the fermion’s spin vector. The anomalous part 𝑎
of the magnetic moment is defined via the deviation of
the gyromagnetic ratio: 𝑔 = 2(1 + 𝑎).
The Fermilab E989 Muon g-2 experiment aims to
measure 𝑎μ to a precision of 0.14 ppm1. The experiment
stores muons inside a weak focusing ring, where a
magnetic field and electrostatic quadrupoles (ESQs)
provide inward radial and vertical focusing respectively.
The magnetic field intensity corresponds to storing
muons on the design radius (7.112 m) with a design
momentum of 3.094 GeV/c. 𝑎μ depends on the muon spin
precession frequency ω𝑎 about the muon momentum,
which is sensitive to the above fields. Due to a beam
momentum spread of 0.1%, ω𝑎 must be adjusted for the
effect of a radial electric field. The correction relies on the
equilibrium muon revolution frequency distribution,
extracted via a modified Fourier analysis of the so-called
fast rotation signal (FRS). The method was developed for
E821 at BNL2, but we independently re-derive several
key results, as well as explore the numerical extension of
the method, and compare simulation results to data from
the recent commissioning run.
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contribution
 The FRS describes the beam intensity as seen by a

detector at a fixed location in the ring. For a
longitudinally point-like beam with momentum spread
𝜌 ∆ , the FRS is given by
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𝑡0 is the time when the center of mass of the beam
first passes the detector. The muon revolution
frequency distribution is given by the Fourier transform
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Longitudinal Bunch Profiles
 Given a longitudinal profile 𝜉 𝑡 , the FRS is expressed

from the convolution: 𝑆(𝑡) = 2𝜋𝜉(𝑡) ∗ 𝑆0(𝑡).
 By the convolution theorem  𝑆 ω = 2𝜋  𝜉(𝜔) 𝑆0(𝜔).

A non-even 𝜉(𝑡) yields an imaginary  𝑆 ω and thus an
imaginary correction to ω𝑎.

 Redefine 𝑡0 → 𝑡0 + 𝑥0 where 𝑥0 is the root of
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and ξ−, ξ+ the domain of ξ.
 Use of 𝑡0

′ = 𝑡0 + 𝑥0 and 𝜉′ 𝑡 = 𝜉(𝑡 + 𝑥0) for the Fourier
analysis, yields the correct  𝑆 ω .

Corrections to the Fourier Transform
 Beam detection at time 𝑡𝑠 > 𝑡0 yields an incomplete

frequency spectrum  𝑆1 𝜔 , requiring an approximation
for
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 If 𝑡𝑠 − 𝑡0 is sufficiently small, the Fourier uncertainty
principle (∆𝜔∆𝑡~2𝜋 ) implies that  𝑆1 𝜔 will have a
spread comparable to  𝑆 ω , retaining the same
information as the latter. Using the inverse Fourier
transform and  𝑆1 𝜔 , ∆ ω may be approximated as:
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where 𝜔−, 𝜔+ corresponds to the range of revolution
frequencies allowed in the vacuum chamber.

The Numerical Extension
 Discrete Fourier transforms (DFTs) used on discrete

data
 FRS properties require the first entry of the DFT to

correspond to a bin with 𝑡0 as its midpoint.
 The data analysis framework ROOT (version 6.06)

performs the DFT using the built-in FFTW C library.

Figure 1. Depiction of a 
muon beam debunching
with time due to its 
momentum spread. The 
short bunch is for 𝑡 ≈ 𝑡0, 
and the longer bunch for 
𝑡 ≫ 𝑡0.

Figure 2. Left, FRS for a point-like beam (longitudinally and 
transversally) with 0.112% momentum. Right, the corresponding 
Fourier transform.

Simulation vs. Real Data
 Simulation conducted using the BMAD subroutine

library; actual data acquired from scintillating-fiber beam
monitor 2 in commissioning run #1835

 Predominantly protons in the fill

 The peaks obtained from simulation and real data
feature a mismatch of ~757 kHz.

Future Work
 Studies on how muon losses and coherent betatron

oscillations impact the frequency distribution.
 Most FRS data will come from calorimeter stations;

must explore the analysis using calorimeter stations.
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Figure 4. The FRS from BMAD.

Figure 6. DFT 
of simulation.

Figure 5. The FRS from real data. The beam was injected at 
~32 μs. The noise at 47 μs is due to the ESQs gaining higher 
voltage. The baseline undershoot is a detector effect.

Figure 7. DFT 
of real data.

Figure 3. Comparison of the exact and approximated ∆ ω
for the beam described in Figure 2. Their spreads are 
0.0100987 and 0.0100985 MHz respectively. 
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