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Abstract: It is a generalized belief that there are no thermal phase transitions in short
range 1D quantum systems. However, the only known case for which this is rigorously
proven is for the particular case of finite range translationally invariant interactions.
The proof was obtained by Araki in his seminal paper of 1969 as a consequence of
pioneering locality estimates for the time-evolution operator that allowed him to prove
its analyticity on the whole complex plane, when applied to a local observable. However,
as for now there is no mathematical proof of the absence of 1D thermal phase transitions
if one allows exponential tails in the interactions. In this work we extend Araki’s result
to include exponential (or faster) tails. Our main result is the analyticity of the time-
evolution operator applied on a local observable on a suitable strip around the real line.
As a consequence we obtain that thermal states in 1D exhibit exponential decay of
correlations above a threshold temperature that decays to zero with the exponent of the
interaction decay, recovering Araki’s result as a particular case. Our result however still
leaves open the possibility of 1D thermal short range phase transitions. We conclude
with an application of our result to the spectral gap problem for Projected Entangled
Pair States (PEPS) on 2D lattices, via the holographic duality due to Cirac et al.

1. Introduction

Lieb—Robinson bounds [28] are described as a non-relativistic counterpart to the finite-
speed limit for the propagation of signals or perturbations in certain quantum systems.
They formally establish that the dynamical evolution of a local observable under a lo-
cal Hamiltonian has an approximately bounded support that grows linearly in the time
variable and its velocity depends on the interaction and the underlying metric struc-
ture. For the last 15 years, these locality bounds have been sharpened and extended,
motivated by a wide range of applications including the existence of dynamics in the
thermodynamic limit [8,33], simulation of (real-time) evolution with local Hamiltoni-
ans [15], and mainly to study features of ground states of local Hamiltonians, namely
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multi-dimensional Lieb—Schultz—Mattis theorems [16], exponential clustering property
[20,34], area laws [18] or classification of phases [5], to name a few; see [19,35-37]
and references therein.

Lieb—Robinson type estimates for complex time evolution have been also investi-
gated, see e.g. the works of Robinson [41] and Araki [1] both for finite-range inter-
actions. The latter applies to one-dimensional spin systems and establishes that the
infinite-volume time evolution operator applied to a local observable is analytic in the
time variable on the whole complex plane, and the support of the evolved observable
is approximately bounded but grows exponentially in the modulus of the complex time
variable. These estimates become particularly useful when combined with Araki—Dyson
expansionals [2] to deal with local perturbations of equilibrium states. Applications to
one-dimensional spin systems include the absence of phase transition at every tem-
perature for translationally invariant and finite range interactions [1], large deviations
principles [27,38,39], central limit theorems [31,32] and approximation of Gibbs states
by MPOs [25]; see also [8,44].

In this article, we aim to extend Araki’s result to a wider class of interactions.

In Sect. 2 we recall more recent versions of Robinson’s locality estimates for complex-
time evolution [8,41,44] that apply to general lattices and interactions providing a disk
around the origin where locality estimates hold. This turns out to be basically optimal
for Z8 with g > 2 as shown by Bouch [6], but contrasts with Araki’s result [1] in
one-dimensional systems. To overcome this, we next provide a version in terms of the
energy interaction across surfaces (Theorem 2.2), that applied to the case of bounded
interactions in 1D leads to the main result of the paper (Theorem 2.3). In particular,
for finite range interactions we recover Araki’s result, and for interactions that decay
exponentially fast we get locality and analyticity on a disk around the origin whose
radius scales with the exponent of the decay. We finish the section by showing that in
combination with the usual Lieb—Robinson bounds, the previous locality estimates can
be extended to a horizontal strip around the real axis of width equal to the diameter of
the disk (Theorem 2.4 and Corollary 2.5).

To motivate these results, we illustrate two applications. The first one is to extend
Araki’s result on equilibrium states by showing that, under translational invariance, the
infinite volume Gibbs state has exponential decay of correlations for every temperature
greater than the inverse of the width of the aforementioned strip. In Sect. 3 we introduce
and present an auxiliary result on expansionals, and in Sect. 4 we detail the argument
for the absence of phase transition along the lines of [1,14,30].

The second application, and actually main motivation of this work, deals with the
spectral gap problem for parent Hamiltonians of Projected Entangled Pair States (PEPS).
In the recent article [22] the authors have proved that for PEPS in 2D, if the boundary
states on rectangles correspond to Gibbs states whose Hamiltonians feature nice locality
properties, then the parent Hamiltonian of the PEPS is gapped. Their proof requires that
the boundary Hamiltonians are finite range, leaving open the case of interactions with
exponential decay, that seems to concur better with numerical simulations in certain
models [9]; as well as faster-than-exponential decay, that has been observed in the PEPS
representation of thermal states in quantum double models [29]. In Sect. 5 we extend the
result from to [22] to the faster-than-exponential case, and partially to the exponential
case (namely, if the exponent of the interaction decay is large enough).

1.1. Notation and terminology. Let us recall the standard notation on quantum spin
systems over a countable and locally finite metric space (V, dist), although we will
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usually consider only the g-dimensional lattice Z# or the periodic lattice Z, for some
g € N endowed with the graph distance. At each site x € V let us consider a local
finite-dimensional Hilbert space H, = C4, so for each finite subset X C V we have the
corresponding Hilbert space Hy := ®,cxHy and algebra of observables Ax = B(Hx),
that is, the space of bounded and linear operators on Hy. The assignment XmapstoAx
is actually monotonic, in the sense that for two finite sets X C ¥ C V we can identify
through a canonical linear isometry

Ay > Ay =Ax @ Ay\x, 0r— 0® L.

With this identification we have a directed set (Ax)x whose direct limit is the so-
called algebra of local observables A;,c. In particular, since the above inclusions are
isometries, Aj, is endowed with a natural norm becoming a normed x-algebra contain-
ing each Ay isometrically. The completion of .4;,., denoted Ay, or simply A, is the
C*-algebra of observables. For a (maybe infinite) subset A C V we denote by A, the
closed subspace generated by all Ay with X C A finite, and say that Q € A has support
in Aif Q € Ax.

Let us denote the partial trace over a finite subset A by Trp : Ay —> Ay and its
normalized version as trp = Try /d!*!. The tracial state over .A will be simply denoted
as tr.

Let ® be a local interaction on the system, namely a map which associates to each
(non-empty) finite subset X C V an element ®x = @; € Ayx. We denote for each
n>0

Q, := sup Z PxIl,

xeV Xox s.t.
diam(X)>n

where diam(X) denotes the diameter of X. We will assume that 2 is finite, condition
sometimes referred as ® being a bounded interaction. The sequence (£2;), iS non-
increasing and quantifies the decay of the interactions between sites. We say that ® has
finite range if there is r > 0 such that 2, = 0 whenever n > r, or that ® has exponential
decay if there exists A > 0 such that

1D =) Qe < oo.

n>0

For each finite subset A C V we define the Hamiltonian

Hyp = Z dy.

XCA
The corresponding time-evolution operator in the complex variable s € C is then given
by
Iy, (Q) =T3(0) = eSHr Qe SHA foreach Q € A, (1)

or equivalently, through the Dyson series

- om

Q) =>" %&’}A(Q), 2)
m=0
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where §y, (Q) := i[Ha, Q]isthe commutator operator. Notice that this series converges
absolutely whenever A is finite. When considering the time evolution operator on the
whole system (whenever it can be defined) we will simply write I'* or I', .

For the one-dimensional lattice Z, given j € Z let us denote by 7; the lattice translation
homomorphism on Ay, defined for each O € M;(C) by

T Q(k) — Q(,i+k)’

where Q%) € Ay, is the element that coincides with Q on site k and with the identity
on the rest. We say that the interaction ® is translationally invariant if for every finite
subset X C Z and every j € Z

‘[j (DX =¢j+X~

This nomenclature also applies to the one-sided version Ay = A[1,o0). In this setup, for
each Q € Ay, m € N and real number x > 1 define

Q1 == inf{l|Q — Qull: Qn € ApLui},
QM x == 1Q1+ Y 101 x"

n=m
The vector subspace of Ay given by

An(x) :=={0 € An: [IIQlll1x < o0}

turns out to be a Banach space when endowed with any of the norms |||-||[,,, -
We will denote Ny := N U {0}. Foreachn € Nand @ = (a1, ..., a,) € Njj let us
write |o| == a1 + - - + ap.

2. Analytic Lieb—Robinson Bounds

Let us consider a quantum spin system over Z$ and a local interaction ® with exponential
decay. Given a local observable A with support in a finite set Ay C Z8, we intend to
compare the norm of the difference between I'},(A) and I'} (A) on two larger sets
A’ D A D Ag, in order to analyze the region and rate of convergence of the sequence
of operators s Fj\n (A) where A, is an increasing and absorbing sequence of subsets
of Z8.

For real values, it is well-known that the (global) real-time evolution operator '’ is
well-defined for every + € R and that the sequence of automorphisms R 3 7 > T’}
indexed on all finite subsets A C Z8 satisfies, for every quasi-local observable A, that

li I, (A)—-T'A)] =0 3

Jim T, (4) =T ()] 3)

uniformly for 7 in compact intervals, see e.g. [8]. Indeed, Lieb—Robinson bounds [28]

can be applied to show that there are constants C, u, v > 0, independent of A, such that
ITH (A) = TR (A < ClIA[ [ Ag| et mrdist RoZAM),

see [33, Theorem 2.2] and [8, Theorem 6.2.11]. These results implicitly use that the maps
I, are norm-preserving as ¢ is real, so they cannot be applied to the complex-valued
case.
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However other arguments do not explicitly use this fact, leading to results also for
complex values. This is the case of the proof of Robinson [41] for interactions such that
®x = 0 whenever | X]| is larger than a prefixed value. This was later extended to a setting
in which interactions ® x decay exponentially fast with the cardinal or the diameter of X
in works of Ruelle [44, Lemma 7.6.1 and Theorem 7.6.2] and Bratteli and Robinson [8,
Theorem 6.2.4]. In the latter, it is shown that in the case of a general lattice Z& and
interactions ® satisfying

[0l ==Y e (sup Y @) < o0

n>0 YELE  xsy
| X |=n+1

for some A > 0, then the (global) time evolution operator s — ['*(Q) is analytic and
quasi-local (with exponential tails) on the disk

< —2 4)
20"

The advantage of this result is that it applies to lattices of arbitrary dimensions. Intuitively,

one might expect that the size of the region of analyticity grows with A, maybe approach-

ing the whole complex plane as A tends to infinity. However, even if ||<I>||§\1) < oo for

every A > 0, the lower estimate
6 r_
@l = Qo+ (" — 1)

yields that

A < A
< .
2 ||¢||§1) T 2Qo +2(e* — 1)Q

|z]

Thus, the radius is uniformly bounded on A unless €21 = 0, that is, unless there are no
interactions between different sites.

In the case of Z8 with g > 2, this feature can be considered tight, since according
to [6] we cannot expect convergence in the whole complex plane, not even for g = 2
and translation invariant nearest neighbor interactions. However, in the case of Z we
should expect a stronger result, since Araki [1] proved analyticity and quasi-locality on
the whole complex plane in case of finite-range interactions.

Theorem 2.1 (Informal). Let @ be an interaction on a quantum spin system over 7, such
that | ®|,. < oo for some A > 0. Then, for every local observable A the map s +— '’ (A)
is well-defined, analytic and quasi-local (with exponential tails) on the disk

A
|Z| < m (5)

Let us stress again a main difference with respect to other estimates such as (4):
here the bound grows to infinity with A, and allows to deduce analyticity on the whole
complex plane if interactions decay faster than any exponential, recovering in particular
Araki’s result for finite-range interactions. Combining this result with the ordinary Lieb—
Robinson bounds one can moreover extend this result to the whole strip |Im(s)| <
A/ (4€2), see Corollary 2.5.
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2.1. Energy across surface. The next locality estimates involve properties of the energy
interaction across surfaces, see [8, pp. 249-251]. Notice that the statement does not
depend on the metric distance, so it may be applicable to a wider variety of situations.

Theorem 2.2. Let us consider a quantum spin system over ) with bounded interaction
®, and fix an increasing sequence (/) ,>0 of finite subsets of V. For each 0 < j < k
let us denote

WG k= Y lexll, WG = Y @x].
XNAj#0 and XNA;#9
XN(AR\Ak—1)#0

Then, for every local observable A € A with support in Ay and every ) < £ < L

L
TS, (I < Al Y H IR wies)), 6)
k=0
L
IT%, (A) = T3, (A < 1Al Y 21w s)), (7

k=0+1
where we are denoting for each x > 0

o0

Wi =1 wi@=Y Y [IWG-8)| 5 k=,

n=1 \0=po<--<Bp=k j=1

Remark that W,j‘(x) is actually a finite sum over 1 < n < k, since for n > k the
corresponding summand is zero (empty).

Proof. Let us assume that ||A|| = 1. We are going to prove first that (7) holds for
consecutive regions Ay and Ax_;. We make use of the estimate
o s
1P, (A) = T (I < D7 =187, () =85, (A ®)

m=1

We must then find good estimates of the summands in the right-hand side of (8). The
argument is split into several stages.

Step I: Let us denote for every m € N
U = 81, (A), um = 8, (A =85, (A) (k> 0).

Then, for every k > 0

k—1
1
UMY =8, U Sy~ U™, ©)
i=0
where for k = 0 the finite series on the right-hand side of (9) is equal to zero. To prove
this statement, note that fixed m > 1 and k > 0 we can decompose

k

_ (m)
8, (A) = 2(; um.
1=
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Applying the operator § i A, OD both sides and using that § g A;—Ha;
we get that

L = 0Ha, = 0m,,

k

k
1 § : (m) E : (m)
8m+ (4) = 0 8HAi (uim )+ ya I‘SHA,- _HAj*I (uim )
i= Jj=i+

- Z(SHA (u‘”’))+2 Z 81, —ta, , U™

i=0 j=i+l
k j—1
= ZSHA u(’"))+ZZSHA —Ha;_ U(m))
j=1i=0
k Jj—1
=3 {oun, @™+ Y b0y, &™)
j=0 i=0

Using this identity, we can immediately check that

k—1
8m+1(A) - 5’;’,:1171(A) = Suy, U+ Sy, U™,
i=0

which finishes the proof of the statement.

Step II: Define for every m > 1 and k > 0 the non-negative number

d(m, k) := > [[W1.ap. (10)

O=ap<--<apy=k j=1
Then, we have
™) < 27 p(m, k). (11)

To prove this statement, let us first note that if 0 < j < k and B is an observable with
support in A j, then

18m,, (B = Z I$ox (B < 2(IBIl W(j, j) (12)
XﬁAj;é@
and
185~y (B < 3 l8ax (Bl < 2Bl W(j. k.
XCAg s.t. (13)

XZAr—1 and XNA j )

We are going to use these inequalities to show by induction on m > 1 that (11) holds
for every k > 0. The case m = 1 follows taking j = 0 and B = A in (12) and (13).
Fixed m > 1 and assuming that formula (11) holds for this m and every k > 0, we can
apply the recursive formula (9) from Step I to get that for every k > 0

k—1
1
A" DN < 18y, @+ N8k, — by, U]
i=0
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k—1
20U N Wk k) + > 21U | W, k)
i=0

IA

IA

k
2" "G (m, i) Wi, k)
i=0
= 2"l g(m+1,k).
This finishes the proof of the statement.

Step III: We are going to upper bound ¢ (m, k) by a more manageable expression using
that for every j > 0

WG, )< Y0 Y Iexl < 1A Q.

XeAj X>x
Indeed, for k = 0 we immediately get that
¢(m,0) = (W(0,0)" < (RolAoD™. (14)

In the case k > 1, we first rearrange the sum by gathering those terms corresponding to
sequences 0 = g < --- < o, = k that have the same range, namely

m m
pm k=3 Y > [TW@-1.ap.
n=1 0=fy<-<fp=k O=ap<-=<ap=k j=I
{0, ..., am}={o;-... Bn}

Then, we upper bound each factor W(a 1, o;) with a; 1 = a; by 0| A| using the

aforementioned inequality. Note that fixed 0 = B9 < --- < B, = k, the number of
sequences 0 = a9 < --- < &, = k such that {«g, ..., on} = {Bo, ..., Bn} coincides
with the number of subsets with cardinality »n of {1, ..., m}. Thus,

m

¢lm, k) <Y > TIwei-8) szg"‘"mkv"—"(’Z). (15)

n=1 \0=pp<--<B,=k j=1
Step IV: Applying estimates (11) and (15) to (8), we conclude

ITS, (A) — T4 (A

o (2ls)" + " m
=Xl X IIve-ue 9’6""|Akl”""< )
m=t " a2t \opo<ospu=k j=1 n

Z S [Tw sy | AT @l

—n)! |
ILn=1 \0=Bg<--<Pp=k j=I (m l’l) n.

@lsp" Z 1—[ W(B,_1. ) Z Qo A2

n! m —n)!
1 0=po<--<Pun=k j=1 ( )

Mz i ME%

IA

n
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= 210 37 QLL'D" > [Tw®i-1.8)

n=1 ) 0=pBo<--<Bp=k j=1
— 2151901 Ak] W,:((2|S|)

As a consequence, for every 0 < £ < L we can use a telescopic sum to estimate

L L
IT%, (A) = T3, (A < Y IT, (A =Ty, (Al < Y Il wrs)).
k=0+1 k=0+1

To prove (6), observe that by (14) and (11) we have

105, (A < Z' e < Z( BDP 1ol = 261l w2y ).

m=0 m=0

Hence, for every L > 0 we can use a telescopic sum to get

L L
TS, (A< T8, (A + Y ITS, (A) = T, (A < Y W10l wie2)s)).
k=1 k=0

This finishes the proof of the theorem. O

The previous result is not suitable for Z& with g > 2. Indeed, consider a quantum spin
system over Z2, an observable A supported at the origin, the sequence A, = [—n, n]?
and some nearest neighbour interaction with W(j, j + 1) > ¢ > 0 for every j > 0 and
some & > 0. Then, W/ (2|s]) > (2e|s¥/ k! and e?!sIS0lAkl — e2|“|90(2k+1)2, so the series
in (7) cannot converge as L tends to infinity unless s is equal to zero.

2.2. One-dimensional lattice. We are going to particularize Theorem 2.2 to the one-
dimensional lattice Z. The natural supporting sets to consider here are intervals J =
[a, b]. We denote Jy := [a —k, b+k] for every k € N, so that | Jy\Jx—1| < 2. Following
the notation of the aforementioned theorem,

W(j, k) <2 forevery0 < j <k.
This immediately yields the following main result.

Theorem 2.3. Let us consider a quantum spin system over Z, with bounded interaction
® and let A € A be a local observable with support in an interval J. Then, for every
0<f¢<Landeverys € C

L

TS, (A) = T3, (A) ]| < [[A]l 28I90T 3 disiok o a)s)), (16)
k=C+1
L

TS, (A < [ A] 19T N Asl90k gx 4s)), (17)

k=0



938 D. Pérez-Garcia, A. Pérez-Hernandez

where we are denoting for each x > 0

k n

Qi) = 1, sz;’;(x):Z( 3 ]_[Qaj));—': (18)

n=1 a@eN' j=1
o=k

Notice that the Qj(x)’s are actually the coefficients in the power series expansion of

o o
D>z +—> exp |:x Zszkzk} =Y Qi) (19)
k=1 k=0

In the rest of the section, we shed more light on the bounds in the previous theorem
by particularizing them to interactions with finite range and exponential decay. Next,
we reformulate the usual Lieb—Robinson bounds for real time evolution in terms of
the sequence €2, to compare it with the previous result, and finally present a combined
locality estimate for real and imaginary time evolution.

2.2.1. Finite-range interactions Assume that there exists » > 2 such that Q; = 0 if
k > r and let us estimate €; (x). Note that if « € N" satisfies || = k > rnthena; > r
for some j, and so g, - ... 2, = 0. Hence we can restrict the range of » in formula
(18) to

n

Q;’(‘(x) = Z ( Z l_[ Qaj)):l_’: < Z (xgljg’e)n

k/r<n<k aeN" j=I1 ’ k/r<n<k
la|=k

where in the last inequality we have used that Q; < Q¢ and that the number of elements

o € N with |a| = k is (ﬁj) Z( ) < (k—e) < (re)" whenever k < rn. Thus, we can
estimate in (16)

L L
(xQore) ook xQore)"
Yo=Y Y ew LW s 5 ag e
- |
n>L/r n<k<rn n

k={+1 k=0+1 k/r<n <k
n
- Z o xQonr (¥E20re) (x2re) Z (.XQ()VZEI-HCQOr)nl
- ol n!
n>tl/r n>L/r
£/r]+1
(x90r2el+x90r)[ /rl
=

2 14+xQor
exp (xQor e 0 ) (/r+ D)

This estimate shows that for every observable A with support in a compact interval
J, the sequence of maps s +— I'} (A) converges superexponentially fast as £ tends to
infinity on every bounded subset of the complex plane. Indeed, the asymptotic order of
convergence coincides with the one provided by Araki in [1, Theorem 4.2].
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2.2.2. Exponentially decaying interactions Let us assume that our interaction has ex-
ponential decay ||®||, < oo for some A > 0. Then, using (19) we deduce that every

A
0 <x < Q_O
L L
Z er()k QZ(-X) S e(xQ()f)»)@ Z e)\.kQZ(‘x) S e(xQ()f)\)Z eXH@H)L' (20)
k=0+1 k=0+1

Combining this estimate with Theorem 2.3 we conclude that for every local observable
A with support in an interval J and every s € C with |s| < 4%0

”FSJL (A) — FZ Al A 21812011 H4lsIP 13 6(4\S|90—)\)5’ (1)

Iy, (Al

IA

A 218182011 LAl (22)

A

As a consequence, the sequence s +— Fj{ (A) converges as £ tends to infinite on every

compact subset of the open disk centered at the origin and radius A /(4€2¢) exponentially
fast, leading to the statement of Theorem 2.1.

2.2.3. Lieb—Robinson bounds Let us illustrate how the Lieb—Robinson bounds for real
time evolution can be reformulated in terms of the sequence ;. They are significantly
better than the complex time version from Theorem 2.3.

Theorem 2.4. Let us consider a quantum spin system over 7 with local bounded inter-
action ® and let A be a local observable with support in a finite set Ao C Z. Then, for
every ) < ¢ < L and every t € R we have

1T, (A) = Ty, (Al < Al [Aol 0 > Qr(dle)).
k>0+1

where we are denoting Ay := {x € Z: dist(x, Ag) < £}.

Proof. Let us recall that by [33, Section 2.1], for every finite subset A C Z, every local
observable B with supportin a set®8 C Z and every t € R

2 k
1T (A, BII < A1 1B] Z( D o,

where ag = 1 and for each k > 1

DDEEED DI ﬁ”‘blel,

X1NAo#£D XoNX1#£D XiNXp_1#9 j=1
X NSB AP

where the sum is extended over subsets X; C A. Combining this with the following
inequality (see e.g. [33, Section 2.2])

Il

Ir, -t W= Y / I, (A), @]l du.
XNASAH
XCAL
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we can estimate

(II)k

ITy, (A) = T, (DI < [IA] Z br, (23)

where

be= ) Y > Yo lox . 10x]

X1NAo#£D XoNX1#£0 X 1NXk—2#0 XiNXk—1#£9

XkﬂA;f#@
=2 W D YR YO S [ 3 I I 3
Jo€AQ ji,.jk—1€Z jreAG Xi13jo.j1 Xk 2 Jjk—1:Jk
=<

> > D Qjijol e Q]

JOEAQ Jjisesji—1€L  jrEA]

<2l D QuyQy

aeN{g lor|>¢
k k- (k
< 2K Aol Z( Yo, -...-Qaj)Qo (%),
J
= aeN/, |a|>L
Arguing now as in Step IV of the proof of Theorem 2.2, we conclude the result O

Finally, we present a locality estimate which combines the complex time version with
the Lieb—Robinson bounds.

Corollary 2.5. Let us consider a quantum spin system over Z with interaction ® having
exponential decay || ®||,, < oo for some A > 0. Then, for every local observable A with
support in an interval J, every 1 < £ < L and every complex number s =t +if € C
we have

Hl—n}L (A) — F‘}[ A < 2J]| SIIIPIL L2181 71 g ,(41B1S20—2) L£/2]

In particular, the time evolution operator s —> T'S(A) is well-defined and quasilocal
on the strip {s € C: |Im(s)| < A/(40)}.

Proof. Let us assume that ||A] = 1 and fix j := [£/2]. Then,

Iy, (A) = T3, (Al
=|r, F;ﬂL (A) — r’JLFiJf(A) +T r"ﬂ, (A)—T l"”g(A) +T rlﬂ(A) - rgzrj’j(A)n
= I ) =T @+ I, - )r’ﬂ(mn +Irf ) = @
The first and third summands can be bounded using (21) as
||1'* (A) rif (A)|| + ||F (A) ’J/f (A < 2 2IB1S20l1J1 LBl ,(4181S20—2))
The second summand can be estimated using Theorem 2.4 and (22),

I, = TIITP A = DT (A)1;le1%0 =Dt IRl
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IA

PIBIROLTT HBL 1PN | .| H1R0 (== A1l 11

< ST BRI (g | 71y o

where in the last inequality we have used that £ — j > j by definition. Combining these
estimates we conclude the result. m|

3. Local Perturbations and Expansionals

In perturbation theory we study for a given Hamiltonian H the effect of introducing a
weak physical perturbance in the form of a new Hamiltonian U, namely H + U. It is
then useful to relate e~ and e~7*Y) through identities of the form

e—(H+U) — Ee_H ET

for some suitable observable E featuring the locality properties U. Following Araki’s
approach (see [1, p. 135] or [2]) we take E = E,(U/2, H/2) where

E,(U; H) := ¢~ HtU)H

0 1 ﬂmfl . .
= 1+Z(—1)m/0 dpi /O dBn TP y... TP W),  (4)
m=1

and its inverse

E/(U; H) := e MU

00 1 ,Bm—l . .
=1+ Z/O dﬂl...[O dBn TH @) ... T U). (25)
m=1

These identities are consequence of Duhamel’s formula and allow us to apply the locality
results on imaginary time evolution from the previous sections to obtain the following
result.

Theorem 3.1. Let us consider a quantum spin system on Z with bounded interaction ®.
Forevery B > 0,a € Z and p > 0 let us define

Eﬂ — e_ﬁH[afp.a+l+p] eﬁH[ufp.a]‘HSH[aH.a+l+p]
ap - .

Then, forevery0 < p < gq

1 p+1
IEL,I < exp | 5 D ket ™PhQiap) |,
k=1
1 q+1 1 q+1
1ES , — ES Il < 3 > ke P Qrap) | exp 3 > ke P Qrap)
k=p+2 k=1

Moreover, the same inequalities hold if we replace ||E5,p|| and ||Ef‘p — Ef,qH with
ICES )11l and | (EL, )" — (EL )| respectively.
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We can assume that § = 1 by absorbing 8 in the interaction, since if we define
@’y = By for every finite X C Z the interaction &’ satisfies for every k > 0

Q}( =B and Q;c*(x) = Qi (Bx).
Denote J :=[a,a + 1]. Foreach p > 0,let J,, :==[a — p,a+ 1+ p]and
U]p = Z CDx.
XCJp s.t. XN[a—p,al#9
and XN[a+1,a+1+p]#0
With the notation of (24) and (25),
E, ,=E(U,:H;) . (E, )" =E(U,;: Hy,). (26)

The strategy of the proof is then clear.

Lemma 3.2. With the previous notation, for every 0 < p <gq

1 p+l
sup [T, WU < 5 Y ke Qi) 27)
[s|<1 P 2 k=1
1 q+1
sup [T, (Us,) =Ty, Wil < 5 37 ke i), (28)
lsl=1 k=p+2

Proof. Let us start with the following observation: for each m > 1

k

qn
Y@=t Y (Y 2,2
i=1,k>0 j>lk>1n=1 geN" "
J+k=m J+k=m loe|=k

n

m—1
4
<t 3 (Y R Q) %%(4),

n=1 geN+l

|la|=m
so that foreach 0 < n| < n»
. 1
Yo MU Q@) < i > metmr ). (29)
ji=1,k>0 ni<m=n;

n1<j+k<nz

Let us define U := Uy, and U; := Ujj — U]j71 for j > 1. Note that U; which has
support in J; and satisfies the bound

U < 2€2j41. (30)
Having (29) and (30) in mind, we get by Theorem 2.3 that for |s| < 1

P P pP—J
1T, Wil < DI, Wl < D 10100 [ 7 A0 o4
j=0 j=0 k=0
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p p—i
ZZQJA_I e4Q()(j+1) Z e4on 92(4)

<
j=0 k=0
p+l
<= Z m M Q% (4),

To prove the second bound, we can decompose

q
1T, (Us,) = Ty, Wil < Y T, W)
j=p+l

p
+ )0y, W) =Ty, WU)I.
~

We can now bound each term separately making use of Theorem 2.3,

P q9=J
an U =Ty, WPl < Y-Sl [ Y0 e epe
=0 k=p—j+1
P _ q=J
S Ze4ﬂo(j+l)2§2j+1 Z 6490]( Qz(“')
j=0 k=p—j+1
1 g+l
<3 > metmr 4
m=p+2
and
q q q9-—Jj
3 29Q0J; 490k
D Iy, @pl < Y %Vl | e i@
j=p+l1 j=p+l1 k=0
q q=J
E Z e4Q()(j+1)2Qj+1 490k QZ(4)
j=p+l k=0
1 g+l
<3 > metmr 4).
m=p+2
Combining both inequalities we conclude the result. O

Proof of Theorem 3.1. We just explain the argument for E }4 p since it is analogous for
the inverse. Using (26) for E ; » and applying (27) to each factor of (25)

oo p+l " p+1

1 1
1 4Q0k 4Q0k
I ED 3 D ket Qi) — = Zke ok Qx(4)

m=0 k=1 k 1
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On the other hand, notice that for every 0 < 8y, ..., B < 1 we have applying (27) and
(28) that

H]‘[r W) - ]_[r (U

m k—1
= 3 TTITH, il - U0y, o) =T, Wil - H ITH, W)l
k=1 j=1 j=k+1
1 g+l ]q+l m—1
<=m |3 > ket b Q4 3 > ke Qr4)
k=p+2 k=1

Hence

|| a,p - a’q” — - Sup
m!
m>1

H’[F W) - HF )

Slgl ----- ﬁm<1
1 g+1 q+1
<5 k22ke490’< Q) | exp Zkemokﬁ %)
=p

|

The above estimates can be extended to the case in which the interval where the
expansional is supported is not split in a symmetric way, as we show in the next result
which will be useful in the next section.

Corollary 3.3. In the conditions of the previous theorem, for each B > 0,a € Z and
P, q > 0 let us define

Egp g = e*ﬁH[u—p.aH-*-q]eﬁH[a—p,a]+5H[u+l,a+l+q].
Then,
1 o
1EE , I ICEE , )7 < exp (5 D ket 9,’:(4ﬁ)>, 31)
k=1

andifq’ > q >0

o o
1
e ., Ef,pyq,ll < | D ke*PEQrEp) | exp (5 PR Tamlic 92(4,3))
k=q+2 k=1
(32)
—-1_ B
)T (E], )

In the previous estimate we can replace || Ef,p,q |l with || (Eﬂ

t

“P‘I p.p

Proof. To check (31), let us consider a new interaction & defined by ) x = Oy for
each X C [a — p,a+1+ p'] and ®x = 0 otherwise. We can then rewrite the given
expansional in terms of this new interaction as

Equ = Ef,M’M where M = max {p, g}.
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Since the constants of decay of @ are bounded by those of ®, namely Q < Q% and
Q*(x) < Q(x), we can apply Theorem 3.1 to conclude the result.

Let us now prove (32) using a similar strategy. We will distinguish two cases.

Case I: if ¢ > p, then we define a new interaction ® by ®x = ®x for each
X Cla—p,a+1+g]and CIDX = 0 otherwise. Since

B _EB B _7h
Eapq anq and Eapq an/q,,

we can argue as above and apply Theorem 3.1 to get the desired bounds.

Case 2: if ¢ < p we are going to split

N <IEE,, - I +IEE, ., —ED I

”E’ll’q apq ”‘1‘1 a.p.q’

To upper bound the first summand, we consider a new interaction ® with y = Oy
whenever X C [a — p,a + 1+ ¢q] and Py = 0 otherwise, which satisfies

Ef, ,=Ef, , and Ef = quq,

and for the second summand we define another interaction ® as x = ®x whenever
X Cla— p,a+1+¢q’']and ®x = 0 otherwise, which satisfies

Efq = Ef’q’q and Equ = EfM v Where M =max{p,q'}.
Thus,
B
”Eapq apq||<”Eapp aqq||+||anq EMM”
and applying Theorem 3.1 to both summands we conclude the result. |

4. Phase Transitions and Thermal States

Broadly speaking, phase transitions are singularities in correlation and thermodynamic
functions of the temperature or the interactions in the thermodynamic limit. It is folklore
that there is no thermal phase transition in one-dimension. To be more formal, let us
restrict to interactions @ on the one-dimensional lattice Z. For each interval [a, b] C Z
the local Gibbs state on [a, b] at inverse temperature 3 is defined as

tr(e PHiar1 Q)

[a,b] —
O =

Qe Ayz.

For general C*-dynamical systems, equilibrium states at inverse temperature 8 are de-
fined in terms of the KMS condition and may feature subtle issues such as non-existence
and non-uniqueness. Indeed, the existence and uniqueness of these KMS states is a fea-
ture of the absence of phase transition. These properties are satisfied in our setting for
rather general conditions on the interaction, see [7]. In classical systems this is a result
by Ruelle [43], while in quantum systems there are uniqueness results by Araki [3] and
Kishimoto [23] (see also [8, Section 6.2.5]) that apply to interactions with uniformly
bounded surface energies and, in particular, to bounded interactions ® on Z. They yield
that for every 8 > 0 the following limit exists

¢p(Q) = lim_¢""(Q). Qe A

b—o0
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and defines the unique equilibrium state at inverse temperature .
Another feature of phase transitions is the clustering property of ¢ g, namely the decay
of the correlation function

Corrg(Q1, 02) = (0102) — 0p(Q1)ep(Q2).

in terms of the distance that separates the support of the observables Q1 and Q5. That
these correlations decay exponentially fast can be proven for rather general graphs at
sufficiently high temperatures (small §) under suitable conditions on the interactions by
means of cluster expansion techniques, see e.g. Kliesch et al. [24] in the finite range
case, or the more recent result by Kuwahara et al. [26] for the decay of the conditional
mutual information even under long-range interactions. Similar ideas have been also
applied to prove analyticity of thermodynamic and correlation functions at high enough
temperatures, see [11, Chapter III].

For low temperatures, it seems however that the typical arguments rely on the transfer
operator method. The idea is to construct for the given interaction ® an operator £®
on the space of observables. If ® decays sufficiently fast, then £ has “nice” spectral
properties in the spirit of Perron—Frobenius theorem, that in turn yield “nice” properties
for our thermodynamic and correlation functions, see [4,30,45].

In classical lattice systems, this approach was exploited by Ruelle [43] to show that,
under suitable polynomial decay assumptions on the interaction, correlations decay
exponentially fast at every temperature. Moreover, Araki [1] showed that the pressure
and correlation functions depend analytically on the temperature and the interaction
if the latter decay exponentially fast, see also [45]. This result was later improved by
Dobrushin [10] to more general interactions. Remark that there are examples of two-
body interactions with polynomial decay in one-dimension featuring phase transition,
see Dyson [12]. We refer to [11] and references therein for further information.

In quantum lattice systems, however, it seems that the only known result for low
temperatures is due to Araki [1] for finite range interactions. Using the locality estimates
from previous sections we extend Araki’s result in the following form.

Theorem 4.1. Let us consider a quantum spin system over 7. and a translationally in-
variant interaction ® with exponential decay ||P||;, < oo for some A > 0. Then, for
each B € (0, ZLQO) there exist C, § > 0 satisfying:

(i) For every a,b € Z with a < b and every Q € Aqp]

l0p(Q) — g ")) < cet.

(ii) For every x € Zand k € N, if Q1 € A(—oo,x] and Q2 € Afx+k,o0) then

l9p(Q102) — ¢95(Q1) ¢p(Q2)| =< Ce*.
In other words, ¢g has exponential decay of correlations.

Let us stress that a main feature of the given threshold 2%0 is that it grows to infin-
ity as A grows to infinity. Thus, in particular, if the interactions decay faster than any
exponential then correlations decay exponentially fast for all temperatures. This should
be compared with other high-temperature estimates for exponentially-decaying interac-
tions. For instance, Frohlich and Uelstchi [13] consider a local interaction ® on Z8 and
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a nonnegative function b(X) over the finite subsets of Z&, and prove that if ¢ > 0 and
B > 0 satisfy

3
B sup > [ Dy e2XHP0 < g,

x€Zs X>x

then we have exponential decay of correlations at (inverse) temperature 8. Observe that
the above condition yields

3 3
Be*Q < B sup e Y | Oxl <a,

XELS X>x

so their result gives exponential decay of correlations for a range of values of 8 which
is uniformly bounded, since

a

B =

3 = L
e2Q Qo

This result has, of course, a clear advantage as opposed to the above theorem, namely
that it holds for dimensions larger than one.

4.1. Idea of the proof: notation. The proof follows the lines of the original argument by
Araki [1], its later extension by Golodets and Neshveyev [14] to AF-algebras, and the
more recent work on the non-commutative Ruelle transfer operator by Matsui [30].

We can absorb $ in the interaction, and so we just have to prove the case § = 1 of
the theorem assuming that

A > 2.

We analyze the one-sided version of the problem on Ay. Let us consider forevery a > 1

—H[ q)
il () = IO

b
tr (e*H“ﬂl)
Fixed 1 < n < a let us denote
E —3H1a1 05 Hii
Eq) i= e 27hale2lmal
_1 1 1
E(.a) = e 2ftal gz Hitarta Hitn.a)
which satisfy
1

~ 1 1 1
e 2HLa — E.a) e 2Hmal — En.a) e 2= Hitna) (33)

Using that 7_, is an algebra homomorphism from A[j4n,c0) into A[1 o), We have

r (e—H[l,a] Q) = tr( e Hiema Ezn,a) QEwa)

=tr (efH“‘“"‘J Ln,a)(Q) ) ,
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‘ e*%H[Hn.a] ‘ 3Hp ) ‘ ‘ e*%H[Hn.a]
’ e% Hitgn.a) ‘ ’ $H1n) ‘ ’ e3Hi14n.0) ‘
e~ 3 Hpa ‘ ’ e~ 3 Hial ‘ ’ e~ 3 Hial ‘
] ] ] [ ] [ ] [ ] [ ] [ ] ] [ ] [ ] [ ] [ ] ] ] [ ] [ ] [ ] ] ] ] [ ] [ ] ] ] [ ] [ ] [ ] [ ] [ ]

1 ~
Fig. 1. From left to right, decomposition of e =2 1.4l in terms of the factors E(n,q) and E, 4 represented
both with shaded boxes

where L, ) : AN —> An is given by

Ln,ay(Q) = Lntr[l,n](Eg-,,,a)QE(n,u)) = T_ptrpy (e~ Hm Eg,, a)QE(n,a))-

Therefore, we can rewrite the local Gibbs state as

a1 (L, 01 (Q))

[1,a] = '
) (Q) (p[l,a—”](ﬁ(n,u)(]l))

(34)

The rest of the proof has been decomposed into several stages corresponding to the
following subsections. Let us briefly sketch them here:

(1) The estimates on the expansionals given in Sect. 3 yield that for every n € N the
elements E, ) converge asa — +00 to a certain £, exponentially fast. In particular,
the family L, 4) strongly converges to some operator Lj,.

(2) The sequence L, satisfies £,, = Lo -+ -0 L (n times) where £ := L is the so-called
Ruelle transfer operator that maps An(x) into An(x) for a suitable constant x > 1
(recall Sect. 1.1 for notation). Moreover, there exist a positive constant ;. > 0, a state
v over Ay and a positive and invertible observable 4 in Ay(x) such that the rank-one
operator

P:AnE) — Anx), Q +— v(Q)h

satisfies
(i) PoP =P,
(i) LoP=PoL=uP.
In particular, we can decompose for every n € N

LM=p" P + L1 —P).

(3) The rescaled operator L := u,_lﬁ : An(x) —> An(x) satisfies that there is y > 1
such that

dim 2@ =P, =

(4) The sequence v o T, converges to a translation invariant state 1//[1’00) on A1 c0)s
which can be extended to a (unique) translation invariant state v over Az satisfying
exponential decay of correlations. The state y is actually the infinite-volume KMS
state associated to ® at § = 1.
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4.2. The map L, : definition and basic properties. We have to prove that, fixed n, E; 4)
and E (n,a) converge when a tends to infinity. For that we will make use of Theorem 3.1
and its subsequent Corollary 3.3. Let us consider the next slightly modified version of
the error terms that appear there:

G == exp (Zk>lk X0k g (2) ) ,

(35)
Go:=G- Zk>ek6290k Q2 (£=1).

As a consequence of the hypothesis A > 20, we have that G is finite and G; decays
exponentially fast. Indeed, using (19) we can estimate for every £ > 1

Z kemokQ,’fQ) Z ke@R0—1k )\kQ*(z) < (max ke@R0— A)k) 2090 _ o0
k>t k>t
We then have the following convergence result.

Proposition 4.2. For each n € N the following limits exist and are invertible

E, = lim E ), En = lim E(,M) Ene_%HUv”].

a—+00 a—+00
Moreover, they satisfy for every 1 <n < a:
O NE N N Ewall, 1E M, IIE(n ol =69
() 1E@m,a) — Enll, IIE(n o — En E;N < Gan,
(iii) For every positive and invertible Q € Ay and E € {E .4y, En}

G210~ '1 < ETQE < G* 0| 1.

Proof. Item (iii) follows from (i). Applying Corollary 3.3, we deduce that for every
n,a,a’ e Nwithn <a <a’

”E(n a)” lE. Il <G and ”E(n @~ (n a/)” ”E(n a) — E(n,u’)” < Gu—n. (36)

(n, a)|

The last Cauchy condition yields that, fixed n, E(, 4 converges to some E, when a
tends to infinity. Analogously, E(;l «) also converges, so its limit must be equal to £, L

Leaving a fixed and taking limit when a’ tends to infinity on the right-hand side of (36)
we obtain (i7). On the other hand, taking limit in a on the left-hand side of (36) leads to
the remaining inequalities of (i) involving E;, and its inverse. O

Definition 4.3. For every n € N, let £,, : Ay —> An be the positive linear operator

£2(0) = Tn (e Ef Q B, ) =t (B} 0 )
We will simply denote £ := L.
Theorem 4.4. Let n, £ € Nand Q, A € An. Then,

() 1£,(Q)] < tr(e~ iy G2 Q]
(i) 1£4(Q) — Linnsty (A < tr(e 1) (2G G| Q1 + G* |10 — All),
(i) 1L, (Q)le < tr(e™ ity 2GG | Q| + G| O llnse)-

Moreover, if Q € Ay is positive and invertible, then
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(iv) r(e” Mty G=2 Q7711 < £,(Q) < (e M) G210 1,
W) 1L (D)l 1,7 < 267 Ge IR I+ GH 1 Qllnse 127

Proof. All statements are consequence of Proposition 4.2. Items (i) and (i v) are straight-
forward. Let us check that (i7) holds.

1£a(Q) = Lanmsty(A) || < tr(e M) |EFQE, — Ef, o0 AE[, 1.
where
NE}QEn — E}, .y AEGuastll < NESQEn — E{, ., QEunsoll +G7 1Q — All
<2GG1Q1+G°1Q — All

Toprove (iii), letus take O € Ay nse) satisfying | Q— Q|| = [|Qllu+e. Then, Ly nse)(O)
belongs to .A[j 5, and so by (ii)

1£2(D)lle < I1£a(Q) = Linnrey (DI < tre™ 1) (2G G Q11+ G* | Qllnse)-
Finally, combining (ii7) and (iv) we conclude that (v) holds. O

A consequence of the previous theorem is that for every positive and invertible ele-
ment Q € Ayitholds ||£, ()] 1£,(Q)~ I < G*|1 0|l |Q~"||. The next resultimproves
this estimate for large values of n.

Theorem 4.5. Let Q € A be positive and invertible andletn, £ € Nsuchthat 1+¢ < n.
Then

1£/(@IE(@ 7' = G* (14463 G 1QI Q™" +4G* 1Qllu-c 107'1) -

Proof. Let us write

1 1 1
/ c— o3 Hin—ts1.n+0) o3 Hin—t+1,n) 55 Hil4n.n+0]
E(n,n+l) = e 2 ez ez .

whose support is contained in [n — £ + 1, n + £]. Note that Corollary 3.3 yields
IE{y ol <G and 1E{, e — Eqnoll < Ge. (37)
Using the tracial state over Aj,;_¢+1,00), let us define
A = Un—t+1,00)(Q) € Af1,n—r)

which is positive and invertible. Notice that A and E én, n+0) have disjoint support and
thus

A EEn,n+l))

1/2
EEn,n+K)A / )

~ —H{i o ' T
A=ttt (e” MIEG L

=ty tr (e AVES
Consequently, applying (37) we get
G2 tr(eMmA)L < A < GPtr(e”HimA)1. (38)
Let ¢ and ¢’ be two states over Ay. From (38) it follows that

P(A) < G*¢'(A)
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and thus

P(La(0) < ¢(A)+ L1(Q) — A |

G/ (A)+ | La(Q) — A ||
< G*o'(La(Q)+ (1 +GH | Li(Q) — A .

Using that for every positive and invertible B € Ay

IA

IB| =supgp(B) and BT = igf«p/(B),
¢ /

where the supremum and infimum are both taken with respect to all states over Ay, we
conclude that

1L (DINL(@ 7' < G+ (1+GH 1£,(Q) — Al 1£2(Q) 7"
A - » (39)
=" (1+21L,@) = AL @)1 -
Observe that But notice that the same argument given in the proof of Theorem 4.4.(i7)
but now using (37) leads to

1£4(Q) — All < tr(e” iy (2G G, 1011+ G* 110 — All).
and thus using Theorem 4.4.(iv)

1£,(Q) — Al L@ < 263 GellQI Q™ I +G* 10 — AlIQ7'I.

(40)
To upper bound the last summand of (40), we use that taking Q,—¢ € A1, ,—¢) With
1Q — Qu—ell = [ Qlln—e, it holds that

10— Al =10 — On—rt +Un—t+1,00(Cn—t — Dl = 21| Qlln—e. 41)
Combining (39), (40) and (41), we conclude the result.

0
4.3. The maps L and L: fixed points.

Proposition 4.6. For everyn € N, L, = L" := Lo --- 0 L (n times).

Proof. Forevery 1 <n < a, itis easy to check that

E(n,a+n) Tn (E(l,a)) = E(n+l,n+a)s
and so

L1,a) © Lina+n) = Lnt1,a+n)-

By Theorem 4.4, we can take limit in the previous expression when a — +00 to conclude
that £1 0 Ly, = Ly41.

O
Theorem 4.7. There exist a state v over Ay and a real number (v > 0 such that
V(L(Q)) = uv(Q) forevery Q € An. (42)
Moreover, it satisfies that for everyn € N

G (e um) < pm < G2 tr(e~ M), 43)
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Proof. Let us first observe that £ : Ay —> Ay is a positive linear operator on the
C*-algebra Ay satisfying that £(1) > y 1 for a positive constant y > 0, by Theorem
4.4. Tts dual operator £* : A, — A is weak™-weak™ continuous, and so does its
restriction £* : § — Ay to the weak*-compact and convex subset S C Ag; of all
states over a Ap. Next, let us define

K%
L*o(1)

We claim that it is well-defined. Indeed, observe that for every ¢ € S we have the
uniform lower bound

E:S—>S, E((p):

forevery ¢ € S.

L¥(1) = ¢(L(1) = yo(l) =y > 0. (44)

Hence the map Z(go) is linear and positive, since for each Q > 0 we have L*¢(Q) =
@©(L(Q)) > 0 using that £ is positive and ¢ is a state. Combining this with the fact that
L(p)(1) = 1, we conclude that L(¢) € S. This proves the claim.

Moreover, we have that the operator £ is also weak*—weak*-continuous, which is
a straightforward consequence of the fact that £* is weak*—weak*-continuous together
with the uniform lower bound (44). We are thus in the conditions to apply Schauder—
Tychonov theorem (see [42, Theorem 5.28]) to the map L and the locally convex space
(A, weak™). We deduce the existence of a fixed point v € S of L. In particular, for
every Q € Ay it has to satisfy

V(L£(Q)) = nv(Q) where p:=v(L(1)).

This proves the first statement of the theorem. To check second one, we simply apply
the state v to each term in Theorem 4.4.(iv) with Q = 1. O

Definition 4.8. Let us denote by L : Ay —> Ay the operator given by L = L/pu,
where i > 0 is the positive number provided by Theorem 4.7. We will also write
Lw,a) = Lp,a)/1" foreverya > n > 1.

The next result collects some straightforward properties of L inherited from L.
Corollary 4.9. Letn, £ € Nand Q € An. Then

M IL"(O)l < G* 12l
(i) IL"(Q) = Lnney (D)l < 2G°Ge QI
(i) 1L"(Q)lle <2G°Ge Q1 + G*| Qlln+e-

Moreover, if Q is positive and invertible, then
WG e 'L = L") = ¢*lIQll L.

In particular, for every x > 1 satisfying Y ,~, Ge xt < oo we have that the restriction
L : An(x) —> An(x) is well-defined and continuous. Indeed, there is a constant
Cy > 0 such that for every m, n € N and every Q € An(x)

L™ DIl . < Cx N1QNlnm -

Proof. Ttems (i)—(iv) follow from Theorem 4.4. (i)—(iv), dividing by ©”* on both sides of
each inequality and using (43). To check the last statement, let Q € Ayn(x) with x > 1
satisfying Zezl Gext <ooandletm,n € N. Using (i) and (iii) we can estimate

m,x —

L[, = 1L @)1+ Y IL"(@)lle x*

>m
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<G01+2G° 101 Y Gext +G* Y [ Qlluse x*

>m {>m
= (9*+26% 32 Gux' + G ) Qi v
£>m
This immediately yields the last statement of the corollary. O

Theorem 4.10. The map L : Ay —> Ay has a fixed point h € Ay satisfying:

@) h € Ax(x) for every x > 1 such that ZEZI Gp xt < o0,
() G *1<h<G*landv(h) = 1.

Proof. Let us consider the set
C :=conv{L"(1): n € N},

which is clearly convex, closed and invariant by L, i.e. L(C) C C. Using Corollary 4.9,
we easily deduce that for every Q € C and £ > 1

(@ =1, 01 <G* 11Qlle<26°G and G™*1 <0 <Gl

In particular, C C An(x) whenever x > 1 satisfies ), G¢ xt < oo, the set C is
bounded and satisfies -
CC A+ Q2GG)Bay. (45)

where B 4, is the closed unit ball of A. Since Aq1,¢ is finite-dimensional, the set C
is moreover totally bounded, and thus compact in the norm topology. Applying again
Schauder—Tychonov theorem (see [42, Theorem 5.28]) to L|¢ : C —> C we deduce the
existence of i € C with L(h) = h. O

4.4. Convergence of L".

Theorem 4.11. Ler x > 1 with ), G, x% < o00. Then, there exists an absolute constant
Cy > 1 with the following property: for every a > 0 there is N = N(x, a) such that
for everyn > N and every Q € Ay positive and invertible with ||| Qlll; , |l 0 Y <a,it
holds that

L"), 1" @717 < Cw.

Proof. Let us fix x > 1 as above. Given a > 0, we are going to show that for every
3 <reN,everyn > N := 3r and every Q € Ay positive and invertible with
QI 107"l < a, itholds that

N @l 1L~ < K (1+ax™) (46)

for some constant K, independent of a and r. It is clear that the theorem follows from
this statement by taking r = r(a, x) large enough so thata < x". To prove the statement,
let us first write n in the form n = 2r + r’ with ¥’ > r. On the one hand, we have using
Theorem 4.4.(iv) and the fact that L" = L£" /"

1L @I (@7 < GHILT @IIL* ()7
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On the other hand, for each £ > 1 we can apply Theorem 4.4.(v) to obtain
L2 ()l 1L (@)~ = IL” (L¥ (@)l IL” (L¥ (@) 7|
<263 G L (DIIL (@) N+ GHIL (D) e ILT (@)1
Combining the last two inequalities we get that
| = IL"(DIIL" ()"
+ > Il 1L (@)«

" @ll|, , 1" @

>1
<264 (1+ 3G ) L @i @'y @7
=1
+G* Y LT (Dl 1L ()7

>1

Let us focus on the last expression of (47). To bound the first summand we can apply
Theorem 4.5 with n = 2r and £ = r, so that

1L @I @71 = ¢* (1+4G°G, 1o 107" I +4G* 12l 107"
< g (1 +4g3g,a+4g4ax—’) (48)
<G 4G G, x" +4G% (1+ax™).

A similar idea works for the second summand if we first apply Theorem 4.4.(v)

D UL () llrrae IL (@) x*

=1
<20’ ; Grex“1QINQ7" I + G ; 1Qlareree 107112 49
<264 (143 Geat Y ax.
>1

Finally, applying (48) and (49) to (47) we conclude that the statement (46) holds. |
The previous result is the key ingredient for the following main theorem.

Theorem 4.12. Let x > 1 with Zl>1 Ge xt < 00. Then, there exist Ky > 0 and 8y > 0
with the following property: for everyn € Nand Q € An(x)

[1L7"(@) — v, , < Ki e NIQIl1 x-

Proof. Let C = C, > 1 be the constant provided in Theorem 4.11 (that we can assume
to be greater than three) and let N = N (x) be the corresponding number when applying
the aforementioned theorem with @ = 2C. This means that if Q € Ay is positive,
invertible and satisfies

el o™ < 2c,
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then for every n > N
1"l = i@,
and so using that v(L"(Q)) = v(Q) we get
v(Q) < |27, = cIL" @77 < Cv(Q).
This yields that the linear operator ¥y : ANy —> An given by

V(A)

— INA) —
Yn(A) =L7(A) — ==

1, Ae Ay

satisfies for the above Q that vy (Q) is positive and invertible with

V@) _ v 1LY @)~"—!

—1y=1 Noy—1y—1
w1 Z LTI - 5=~ =2 5= = > ;

and moreover for every £ > 1

ln (@I < ILY(@I and ¥ (Q)lle = ILV(Q)]le-

Altogether yields that the above Q satisfies

I @l @' = 2 |LY @] LY@ = 2c.

We can iterate this process and get that for every k € N

i@l [uh@] <2

Consequently

e, . =2¢ vk | = 20vhion=2c (1 - i>kv<Q).

2C
(50)
Having this observation in mind we can now prove the result. We are going to distinguish
several cases or steps:
(i) Let Q € Ay(x) be a self-adjoint element with v(Q) = 0 and [||Q]ll; , < 1. Write

Q1 := Q+21 and Q, := 21 which are both positive and invertible. Then

NQilll Q71 < MQillle < 2411l <3 <C (=1,2).

Thus we can apply (50) to get that for every k € N

But since v(Q) = 0, for every k € N

|2

<4c (1 _ L)k (i =1,2).

e ;

1,x

Ll =56(1-5¢)

< |[[vwkcen)

+|vkce)

1,x 1,
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If we take an arbitrary n € Nand writeitasn = kN +r withk = [n/N]and0 <r < N,
then we deduce from the previous inequality and the second part of Corollary 4.9 that

Lr(L"N(Q))H(Lx =sclfel,, (1- L)k < 85x(1—i)ﬁ.

2"l ,=|| 2

Remark that the constants Ex, C, N only depend on x.

(ii) By linearity, we can extend the previous inequality to every Q € An(x) with
v(Q) = 0 (without restriction on the norm) as

~ 1
izl =8& (1- —) Q.

(iii) Let Q € An(x) be a self-adjoint element. We can apply to Q' = Q — v(Q)h the
estimate from (i7) that

’ ~ 1 +1
2" - vl =z @)l = 8E (1- 2C)” 10 — v(Qhllly

IA

~ I\ w+
8C, (L+ 1l o) (1 - 2C)’“|||Q|||1x

(iv) Finally, for an arbitrary Q € An(x), we can use the usual decomposition Q =
Q1 +iQs where Q1 = (Q + 0")/2 and 0, = (iQ" —iQ)/2 are self-adjoint, and
moreover [[|Q;lll; x < IQIll; x (¢ = 1, 2). Applying the estimate from (iii) to each Q;
we easily conclude the result. O

Corollary 4.13. Let x > 1 with Ze>1 Gy xt < 00. Then, there exist I?x >0ands, >0
with the following property: for every m,n > 0 and Q € Ay it holds that

[L7+7(@) = (||, , < K e QI 1m.x-
In particular, if Q € Af1,m] then
1L7(@) = v(@)h|], , < Kee " |1 QI.
Proof. Combining Theorem 4.12 and Corollary 4.9 we deduce that

I (@) = v, , = [I|L"@" (@) = v @], ,
Kee " ([,

5 —ns
< Ke e " 1Ot x-

A

A
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4.5. Exponential decay of correlations and convergence of states.
Theorem 4.14. Letn, £ > 1, A € Aj1,») and B € An. Then,
IL" (A Tase(B)) — Te(B) L" (A)|| <4G° Ge Al B (5D

In particular; there exist constants K, § > 0 independent of n, £ and of the observables
A, B such that

V(A Tuse(B) = v(A) v(Tuse (B)] < K IAIl | Bl ™. (52)

Proof. Let us fist notice that
Lty (ATt (B)) = te(B) Linnwey(A), (53)
since the support of t,¢(B) is contained in [1 + n + £, co) and so it is disjoint from

the other factors and the lattice sites where the partial trace acts. We can then estimate,
using Theorem 4.4

1£n(ATuse(B)) = Linnrty(ATuse(B)|| < tr(e™ 1) 2G Gy | A trae (B)]),
I17e(B)Ln(A) = Te(B)Lin sty (Al < tr(e 1) 2G Gy [|A|l [[7e(B)I.

IA

A

Combining these inequalities with (53) we deduce

1£0(ATuse(B)) — Te(B)La(A)|| < tr(e”"1b) 4G Gy || Al || BII.
Dividing by " on both sides and using (43) we conclude that (51) hold. Let us focus
now on the second statement. We can assume w.l.o.g. that v(A) = O replacing A with

A —v(A)L. Letr := [£/2], then

W(ATyre(B))] = V(L™ (ATyse (B)))] < IL" (ATue(B)) |
< L™ (ATyuae(B)) — Te(B) L™ (A) | + I BI IIL" (A)].

Applying (51) and Corollary 4.13, we have that for suitable constants K.,5 > 0 inde-
pendent of n, r

V(ATuse(B)] < 2G° G | ANl IBIl + K I|AI 1Bl e

where Gy, < G, since £ — r > r, so using that G, converges to zero exponentially fast
in r we conclude the result. m]

Lemma 4.15. Let x > 1 with Z@ Gy xt < oo. Then, there are constants K, 8, > 0
such that for every a, k > 1 and every Q € An(x)

() — ()| < Ki e (1Ol k-

In particular, the sequence of states K1 converges pointwise on Ay to the state v.
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Proof. We can write forevery 1 <n <a’ :=a+k

e (Lo @) o P (O
pll.a'=n] (L(n,a/)(]l)) ’ plla'=nl ()
where the first identity already appeared in (34). Thus

1Ly =kl [Lwa(Q) = v(Q)h]
U= (h) plha =y

o) =

e10) = v(0)| = [¢" Q)]
By Corollary 4.9.(ii) and Theorem 4.12

ILn.ay(Q) = V(O] < | L(n.ar(Q) — L"(Q)]l + [IL"(Q) — v(Q)h||
<2G3Gun 10N+ Ky e %Ol g -

Moreover, applying the state @1’ =11 to Theorem 4.10.(ii) we get Pl =y > g2,
Therefore, combining these estimates

o 1(0) = v(Q)| < 4G5 G 101 +G* K e ™5 1014

Finally, if we take n := |a/2] + k, we have thatn — k = |a/2] and a’ —n > |a/2],
so that G/, < G|a/2). Since the latter converges to zero exponentially fast in a, we
conclude the result. O

Theorem 4.16. There exist a translation invariant state r on Ay and § > 0 such that

lim flvow — v e = 0. (54)
k—o00

Moreover, the (unique) extension of ¥ to a translation invariant state on Ay, that we
also denote by , satisfies that there are constants K, § > 0 such that:

(i) Forevery j € Z, k € N and every A € A(_oo,j] and B € A(j+k,o0)
[W(AB) — y(A) ¥ (B)| < ||All|BI| K e~**.

(ii) For every Q € A[q,p) and every k € N

Y (Q) — lakb+kl ()| < Ke™0k,

In other words, \r is the infinite-volume KMS state associated to ® at temperature one
and satisfies exponential decay of correlations.

Proof. Letn € N, N > 2 for which we denote N’ := |[N/2|, and Q € Ay. Using
Theorems 4.14 and 4.12 we have

|9 (Gan () = v (en (@] = [v(L"N (2x2n(0))) = v(ew(Q)h)|

< IL™N (tnan(Q)) — T (Q) L™V (D)
+ QI IL"™N (1) — A
< (4G%Gn_n + Kr V') |0l
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As a consequence, (v o T ) is a Cauchy sequence of states on Ay convergent to a state
¥ over Ay satisfying moreover

Ivoty — | < 8GGy_nr+2Kse Vo,

Since the right hand-side of the previous expression converges to zero exponentially fast
with N, we deduce that (54) holds for some § > 0. Moreover, ¥ is translation invariant
since Yy o7 = limg vo 1 0T = limg v o 7441 = ¥, and so it can be uniquely extended to
a translationally invariant state over .4 also denoted by 1. Let us now check statements
(i) and (ii).

() Let A € A(—oo,j1and B € A[j+k,00) as above. We can assume w.l.0.g. that A is alocal
observable. Then, there exist ng € N such that 7, (A), t,(B) € Ay for every n > ny.
We have by Theorem 4.14 that there are constants K, § > 0 independent of &, j, ng, n
such that

[V(Ta (A) T (B)) — V(T (A (1, (B))| < Ke ¥ ||A] | B|.

Taking limit on #n and using (54) we conclude the result.
(ii) Let Q € Ajq,p1 and k € N. Then

ekt () — ()] = | H (11 0(0)) — Y(O)|

110 () = v(Tak-a ()]
+Ho(T1k-a(0) = ¥ ()]

IA

The first summand of the last expression can be estimated using first Lemma 4.15

PRI (1 (0)) = V(-0 (O] = K ™ 10k (O 2t
and then using that 7144, (Q) has supportin [1 + k, 1 + b — a + k], so that

NT1ek—a (Dx 240tk = IT14k—a (D) = 1 Q-

The second summand can be estimated replacing ¥ (Q) = ¥ (11—,(Q)) by translational
invariance and using (54). |

5. Spectral Gap Problem for 2D PEPS

In this section, we apply the locality estimates from Sect. 2 to extend a result from [22]
to interactions with exponential decay. To explain the result, we first need to recall some
concepts from the theory of Projected Entangled Pair States (PEPS).

5.1. Basics. Although PEPS can be defined on general graphs and lattices, we are going
to restrict for simplicity to the two-dimensional lattice Z*, and denote by & its set of
edges. Fixed d, D € N, we consider at each lattice point v € Z? a linear operator or
tensor
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J T, : (CP)®* —
Ji
. D k
3 . T, =Y X T5 s 1KY Gz gsjal
Ja k=1"ji.j2.j3.Ja=1

Here, H, = C¢ is the physical space associated to v and each CP is the virtual space
corresponding to an edge e incident to v. We will refer to this family of operators (7}),
as a PEPS. For each finite region R C Z? let us denote by £7 the set of edges connecting
vertices in R, and by 5 the edges simultaneously incident to R and Z>\R. We can
then associate to R the linear operator

Qn: @ (cPect)e ®c” — Q.

veER ecER eeEyRr veR

If we set on each edge e € Er a maximally entangled state

D
1
W, =—§ i jyeCP gCP,

j=1

then, we get a linear operator (see Fig. 2) from the virtual space Hyr = &Q) celon cP

into the bulk physical space Hr = @),cr c?

Tr: Mg — Hr, 1X) — QT &) le) 81X) ).

veR ecER

We say that the PEPS is injective on R if the map Tk is injective. This property is
somehow generic on regions large enough, and allows to construct a local Hamiltonian
for which the PEPS is its unique ground state. Indeed, let us assume that every T,
is injective. For each edge e = {v1, va} of the lattice, let s, denote the orthogonal
projection onto the orthogonal complement of Im T}y, »,). Then, the set of nearest-
neighbor interactions (%.).c¢ determines the parent Hamiltonian of the PEPS. It satisfies
that for every finite region R of the lattice, the groundspace of Hr = ) ccEx e
coincides with Im Tz . Moreover, it is frustration-free, namely that every ground state of
Hp, is a ground state of every local interaction term. See [40] for a detailed exposition
of these statements.

Finally, let us recall that the boundary state of the PEPS on R is defined as!

por = THTR € B(HyR).

Under the injectivity condition the boundary state is a full-rank positive matrix, and so
it can be written as

PoRr = exp(2 GyRr)

for some self-adjoint operator Gyr € B(Hyr) called the boundary Hamiltonian. The
choice of a factor two in the exponent is just convenient for later arguments.

1 We are following the definition given in [22]. See there for a comparison with the definition given in [9].
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Fig. 3. A, B, C are {-admissible rectangles. At the bottom, notation introduced for boundary segments

5.2. Spectral gap and approximate factorization. A main problem to tackle is finding
conditions ensuring that the family of parent Hamiltonians (H ) where R runs over
all (or a certain family of) finite rectangles is gapped, namely that

inf y(Hp) > 0,
R)/( R)

where y (Hp) is the difference between the two smallest eigenvalues of Hg. This is-
sue is related to the correlation properties in the bulk of the system, and the latter are
connected to the locality features of the boundary states and Hamiltonians [9]. This
relation was formalized in [22] as a sufficient condition on the boundary states for the
parent Hamiltonian to be gapped. We have to introduce some notation prior to the formal
statement.

Definition 5.1. Given a length parameter £ € N, let us say that three given rectangles
A, B, C are £-admissible if they are adjacent, B shields A from C, and the width of B
is at least 4¢, as portrayed in Fig. 3.

In this setup, let us introduce in Fig. 3 some further notation for the boundary regions
of ABC that we will use in the following subsections. The horizontal sides of B are split
into four segments of length greater than the length scale ¢. Notice that z and so x, y are
at distance greater than £ from dA U dC, while a and « (as well as ¢ and y) overlap on
segments with length greater than £, by definition.
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Definition 5.2. Let us say that a family of positive and invertible observables (0yR )R,
where R runs over all finite rectangles, is approximately factorizable if there is a pos-
itive decreasing function £ —— ¢(£) with polynomial decay, i.e. £(£) = poly(1/£),
fulfilling that for every £-admissible rectangles A BC there exist invertible observables
Agz, Aze, Yoz, Yz on 0A U 0B U 9C (subscripts indicate the support according to
Fig. 3) such that the full-rank matrices

09ABC ‘= Azclqaz, 03AB = szAaza 09BC = Az Yoz, Ogp = szTaz

satisfy

12 — 1/2
lpyrs 077k pars — 1l < &(¢) forevery R € {ABC, AB, BC, B).

If the boundary states of the above injective PEPS satisfy this property, then the
family of parent Hamiltonians (Hp )% where R runs over all finite rectangles in Z? is
gapped [22]. Moreover, the authors show that this approximate factorization property is
satisfied if the boundary Hamiltonians posses nice locality and compatibility conditions.

Definition 5.3 (Locality and homogeneity). A local decomposition of the boundary
Hamiltonians (G )R is simply a decomposition of each term as a sum of local in-
teractions

IR
Gyr = Z 8x >
XCoR

where each giR is supported in the virtual indices corresponding to X. The rate of decay
of this decomposition is defined as the sequence

Qo :=sup sup Y &I, k=0
R xedR X>x s.t.
diamp (X)>k

where the diameter diamy (-) is calculated in terms of the intrinsic distance distyr of
dR considered as a one-dimensional periodic lattice Z,. We will say that this local
decomposition has exponential decay if there is A > 0 such that

o0
Ak
120 =Y e < oc.
k=0

In addition, given a positive sequence £ —> n(€) converging to zero as £ tends to infinity,
we will say that this decomposition is n-homogeneous if for every pair of adjacent
rectangles A B, the corresponding boundary Hamiltonians Gyap and G4 satisfy that
foreach X C 0A\0B

|

A | B Ig348 — g1 < n(distaan(X, 3B)) (g8 21+ g3 1).
|
|
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It is shown in [22, Section 5] that if the boundary Hamiltonians are finite-range, i.e.
have a local decomposition such that 2, = 0 if k is larger than a fixed r > 0 and
the homogeneity condition holds for a controlling sequence 7 that decays sufficiently
(polynomially) fast, then the quasi-factorization condition holds. We aim to extend this
result to interactions with exponential decay. Our method is analogous, based on the
imaginary time locality estimate from previous sections, although slightly simpler in the
sense that we replace the use of expansional formulas for multiple products with just
perturbation formulas.

5.3. Locality estimates on the boundary. First we have to obtain some locality estimates
on the imaginary-time evolution of an observable Q € B(Hyr) with respect to a bound-
ary Hamiltonian G 3. We are going to call a supporting set Ag C dR admissible if it
consists of at most two connected segments. As usual, we denote

Ap = {x € IR: distyr(x, Ag) <k} , k>0.

Lemma 5.4. Let us consider a family of local boundary Hamiltonians (G yR)R with
exponential decay ||2||, < oo for some A > 0. Then, for every rectangle R and every
observable Q € B(HyR) with admissible support Ay we have

I3, (@) = T, (@) < [|Q|eI0tol il Il (i, (55)
I3, (@)1 < [|Q e 0iol SlTIh, (56)

whenever 0 < £ < L and s € C satisfies |s| < 1/(8R).
Proof. Since A consists of at most two connected segments, |Ax\Ar—1| < 4 for every

k > 1. Consequently, and following the notation of Theorem 2.2, we can bound for
every0 < j <k

W3, k) < IM\A =1 Qup—j < 42—
Analogously to Theorem 2.3, forevery 0 < £ < L ands € C
L
IT},(Q) = T3, (@) < [ Q[e?IRltol 57 Sliokargs)),

k=t+1

L
T, (@) < [[Qle?IFolhol 7 ShIokQr(8]s)).
k=0

Finally, we can argue as in the proof of (21)—(22) to obtain (55)—(56). |



964 D. Pérez-Garcia, A. Pérez-Hernandez
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Fig. 4. Adjacent rectangles AB

5.4. Perturbation formulas on the boundary. Let us consider the border of a rectangle
AB made with two adjacent rectangles A and B. It is then formed by two connected
segments, namely d A\d B and d B\0 A, see Fig. 4. Let us denote by S the set containing
the (four) extreme points of both segments, and

Sj:={v e dR: distyr (v, S1) < j} foreach j > 1.

We are going to consider two local Hamiltonians on d A B, namely G and a perturbed
version G = G + U, and study bounds and locality properties of

- 00 1 Bm— . .
e 0 =1+ Z(_l)m / dpi - - / 1 dBm 1—*5!/31 )y--- thﬂm ), (57)
m=1 0 0

where we have used the expansional formulas described in Sect. 3.

Theorem 5.5. Let us assume that the boundary Hamiltonians (GyR)R have a local
decomposition (gg(R) with exponential decay |2, < oo for some ) > 8. Then, for
every pair of adjacent rectangles AB as above it holds that the local Hamiltonians

._ dAB G IAB JAB
G:= Z gy~ and G := Z gy "+ Z 8y
XCOAB XCIA\OB XCAB\dA

satisfy
G -G 12|
leSe™ | < exp (e!*I%0),

1eGe=C — ¢G50k || < exp (e121903) 1212 (BR0—1k

Proof. Let us denote by F the family of subsets X of dAB suchthat XNdA and XNdB
are both not empty. Then,

G=G+U where U= Z —g%AB.
XeF
Next we split the family F into the following subfamilies: for every j > 1

Fi={XeF: XS\ Fy
J'<j
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We can then decompose

k
U= U; and Us,=» Uj. where Uj:= Y —gi*f. (58)
jz1 j=1 XeF;

Since every set X in F; has diameter greater than or equal to j, and it has non-empty
intersection with S;\S;_; (that contains at most four points) we can easily deduce

U1l < 4%;.

Moreover U; has support in S, which consists of at most two connected segments and
contains at most 4 elements. This is an admissible supporting set, and so we can use
the locality estimates from Lemma 5.4 to get for |s| < 1 and every j <k

A

ITG WAL TG, UDI < U] 2R1T 8120 < 4.0 el Bl B20=07

ITGW)) = Ty WU < U] 200571 120 E0=hE=D,

4.9 ¢80J SIUs (B—1) k=)

IA

=4Q; o Bl ,(B8R0—Mk
Next, using (58) and the previous estimates, we deduce for every k > 1 and |s| < 1 that

ITEWIIL TG, I < Y 4Q;eM S < 4, I8 < 12120
izl

and also that

k
IT5W) = T, WUs)ll = D ITGW) = Ty W1+ Y ITEW)I

j=1 j>k
k
< 4 8IS o (8S0—A)k Z Qje)"l + 4 81821 Z Qje)‘] e (B0—24) ]
j=1 j>k
< 49| Sl ,(820—A)k
< 1218 ,(8R—1)k

Applying these estimates to (57) and reasoning as in the proof of Theorem 3.1 we
conclude the result. O

Theorem 5.6. Let us assume that the boundary Hamiltonians (GyR)Rr have a local
decomposition (gS(R) with exponential decay ||2||,, < oo for some A > 8%, and n-
homogeneous for an absolutely summable sequence n(£). Then, for every pair of adjacent
rectangles AB as above and every £ > 1 the elements

G = Z ¢ and G = Z I3
XCA\IB\Se XC(IA\IB)\Se

satisfy
G,~G _ L[] ] 100€210 i
€90 — 1l s exp 1B n(H]! (3 n()-



966 D. Pérez-Garcia, A. Pérez-Hernandez

Proof. Let us denote by F the family of all sets X C dA\dB. We are going to split F
into the following subfamilies: for each 1 < j < k let us define inductively

Fix={XeF: XCS.XNS; #MN|J(Fyuw:j <jork <k

This ensures that every set X in F ; has support contained in S} x := Sp\S;-1 (So := 9)
and diameter greater than or equal to k — j, since it intersects both S;\ Sx—1 and §;\S; 1.
As a consequence we can estimate the norm of

I 0AB 0A
Uik = Y 8¢5 — gk
XE.’Fj,k

using the n-homogeneity condition by

Wikl < Do D 1ed*” — ekl < 8n(i)u-—;.
xe€Si\Sk—1 Xox

Applying the locality estimates from Lemma 5.4 to U ; i, we further get that for |s| < 1
pplying y Js g
ITG W0l < 11Ukl 201541 120 < 8 () @ e*20E=D (F12

Therefore, using that the perturbation can be written as

U=G-G= Y U
l<j<k

we conclude that for |s]| < 1

ITE@I < Y- TG < 881913 " n () D @ jet0®=D
l<j<k j>t k>j
< 8811120, > " ()
j>t
< 10120 3 ).
Jj>t

Applying these estimates to (57) and reasoning as in the proof of Theorem 3.1 we
conclude the result. O

5.5. Main result.

Theorem 5.7. Let (pyR )R be afamily of boundary states whose boundary Hamiltonians
(GyR)R have a local decomposition with exponential decay ||2||;, < oo for some
A > 8RQ0, and also n-homogeneous for an absolutely summable sequence n(£) with sum
Inll. Then, (pyR)R is approximately factorizable with function

£(0) = exp [ (HIZIHD] ((B2-1E L3 )
k>{

for an absolute constant K > 0.
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Proof. Let us fix £ > 0 and consider an £-admissible triplet of rectangles ABC as in
Fig. 3. For simplicity let us denote the corresponding boundary Hamiltonians of ABC,
AB, BC and B respectively as

2Quazc 2Razy 2Saze 2T,
9 b b

PABC = € PAB =€ PBC =€ pg = el

Following the same idea from [22] one considers the following invertible matrices
Aaz = eane*deQa.\‘y’ TO(Z = eszxe*TyeTaxy,

AZC = eQxyc e_Qeryr’ TZ)/ = eT:ryy e—TX eTyy ,

and shows that they provide the desired approximate factorization. We are going to
explicitly check this for pap and oap := Y;5A,;, namely that

12 — 1/2
lox's oap o5 — 11 < &(6)

for a suitable function &(£) as above. We can explicitly write

pz/l? O—A_llg IO]A/; — (eRaxyy e_anyer e_Tyy) <e_qu eTx e_TxyV eRaxyV) .

Let us show that each of the two factors can be suitably approximated by the identity.
We deal with the first factor, the second one is analogous. Let us decompose
eRzlx)'y e_anyer e_Tyy = (eRaxyy e_Raxy_Ry) (eRaxye_any)

(eRy e_Ty) (ere_Ty) (eT,v+Ty e_TYV)'

By Theorems 5.5 and 5.6 we know that there is an absolute constant K > 0 such that
the five factors are uniformly bounded by

exp (eK(1+Hn||+IIQHA) )7

and moreover we can approximate
eRaxyy g~ Raxy=Ry ~ Ry ,~Ry—Ry

-T, -7y Raxy ,— ) Ry —T, Ryy —T, ~
e 14 s eQ,Ve y , e axy e Q‘”.‘ , e Ye y , e e yy ]l

with an error of order
exp [K (IR (82000 4 57 i), (59)
Thus, applying these estimates to the above decomposition we conclude that
eRaxyy ¢=Qaxy g0y~ Tre » (eR—"V e R Ry ) (eR-" e_T>') (eRV e Ty ) (eTy+TV e D )

— eRYVeiT,VV ~ ]l

’

with an accumulated error of the same type (59) for a suitable absolute constant K. 0O
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6. Final Remarks and Conclusions

We have presented locality estimates for complex time evolution of local observables in
one-dimensional systems with interactions decaying exponentially fast, applying them
to extend previous works on the clustering property of KMS states and the spectral gap
problem for parent Hamiltonians of PEPS.

More specifically, we have shown that if the interactions on the infinite one-dimensional
lattice decay as 2, = O(e™*") for some A > 0, then for every local observable Q the
infinite-volume time evolution operator s —— I'*(Q) is well-defined, analytic and
quasi-local (with exponential tails) on the strip | Im(s)| < A/(4€29). In particular, for
interactions that decay faster than any exponential we get analyticity on the whole com-
plex plane, recovering Araki’s result for finite-range interactions. As far as we know,
there is no 1D model exhibiting this type of threshold, although there are examples in
2D of finite range interactions with this property [6].

We have also shown that, under the previous conditions, the infinite-volume KMS
state at inverse temperature 8 has exponential decay of correlations whether 0 < 8 <
A/(2%2). This leaves open the existence of phase transitions at lower temperatures,
which might be unexpected according to the folklore statement that 1D systems with
short range Hamiltonians do not exhibit phase transitions. A similar constraint in terms
of A and €2 also appears in the result for PEPS.

Inboth applications, these seeming thresholds arise from combining the Araki—Dyson
expansional formulas for local perturbations with the prior locality estimates. Let us
remark that there is an alternative perturbation formula due to Hastings [17] providing
a factorization e~ #*V) = 0 ¢~ 0T, where now the locality properties of O depend
on the locality of the perturbation U via the real-time Lieb—Robinson bounds. Thus, the
locality estimates for O are better than those of Araki’s expansional £ = e~ JHA) g3 H
However, it is not clear how to remake the argument to prove exponential decay of
correlations replacing E with O, leaving this possibility open.
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