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Abstract

We investigate the entanglement dynamics in a free-fermion chain initially prepared in

a Fermi sea and subjected to localized losses (dissipative impurity). We derive a formula

describing the dynamics of the entanglement entropies in the hydrodynamic limit of

long times and large intervals. The result depends only on the absorption coefficient of

the effective delta potential describing the impurity in the hydrodynamic limit. Genuine

dissipation-induced entanglement is certified by the linear growth of the logarithmic

negativity. Finally, in the quantum Zeno regime at strong dissipation the entanglement

growth is arrested (Zeno entanglement death).
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1 Introduction

Common experience suggests that the interaction between a quantum system and its envi-
ronment, and the ensuing dissipation, is detrimental for quantum entanglement. In recent
years this view was challenged as it was realized that dissipation can be a resource to engineer
quantum states [1], for quantum computation [2], or to stabilize exotic states of matter, such
as topological order [3]. These results, together with the interest in Noisy-Intermediate-Scale-
Quantum (NISQ) devices [4], urge for a thorough understanding of the interplay between
entanglement and dissipation in open quantum systems.

A major obstacle is that it is a challenging task to encapsulate the system-environment
interaction within a theoretical framework. Within the so-called Markovian approximation,
the Lindblad equation provides a powerful framework to address open quantum systems [5].
Interestingly, for some models it is possible to obtain exact solutions of the Lindblad equa-
tion [6–16], for instance, in noninteracting systems with linear dissipators [6]. Perturbative
field-theoretical approaches are also available [17]. A promising direction is to extend the
hydrodynamic framework to integrable systems subjected to dissipation [14, 18–21]. This is
motivated by the tremendous success of Generalized Hydrodynamics (GHD) for integrable
systems [22, 23]. In some simple free-fermion setups it has been shown that it is possible to
use a hydrodynamic approach to described the entanglement dynamics [24, 25]. This gen-
eralizes a well-known quasiparticle picture for the entanglement spreading in integrable sys-
tems [26–33].

Dissipative impurities provide a minimal theoretical laboratory to study the effects of dis-
sipation in quantum many-body systems. They are the focus of rapidly-growing interest,
both theoretical [34–46], as well as experimental [47–52], also in interacting fermionic sys-
tems [53, 54]. The interplay between entanglement and thermodynamic entropy in the pres-
ence of dissipative impurities has not been explored much.

One aim of this paper is to start such investigation. We focus on noninteracting fermions
with localized fermion losses. The chain is initially prepared in a Fermi sea, and then undergoes
Lindblad dynamics. To monitor the entanglement dynamics we consider the entanglement
entropies [55–58] (both von Neumann and Rényi entropies), and the fermionic logarithmic
negativity [59–75]. The setup is depicted in Fig. 1. An infinite chain is prepared in a Fermi sea
with generic Fermi level kF . The dissipation acts at the origin removing fermions incoherently
at a rate γ−. To quantify the entanglement shared between different subregions we consider
the bipartitions of the chain shown in Fig. 1 (a) and (b). In (a) (side bipartition) a subsystem
A of length ℓ is placed next to the impurity, whereas in (b) (centered partition) a subsystem A′

of the same length is centered around the origin. Here we focus on the hydrodynamic limit of

(a) (c)

reflected transmittedA
(b)

A'

Figure 1: Dissipation-induced entanglement growth. (a) and (b) A free-fermion
chain is prepared in a Fermi sea and subject to fermionic losses acting at the cen-
ter of the chain at x = 0. Here γ− is the loss rate. We are interested in the von
Neumann entropy S of a subregion of length ℓ. We consider two partitions. In the
first one (side partition) A is placed next to the dissipative impurity (see (a)). In the
second one (centered partition) a subregion A′ is centered around the impurity (see
(b)). (c) Mechanism for entanglement generation. A fermion reaching the origin can
be absorbed or reflected. The reflected and transmitted fermions are entangled.
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large ℓ and long times, with their ratio fixed. A crucial observation is that in the hydrodynamic
limit of large distances from the dissipation source and long times, the dissipation acts as
an effective delta potential (dissipative impurity) with imaginary strength. The associated
reflection and transmission amplitudes can be derived analytically [44]. The presence of loss
dissipation is reflected in a nonzero absorption coefficient.

Due to the nonunitary dynamics entanglement and thermodynamic correlations are deeply
intertwined. The origin of entanglement is understood as follows. The mechanism is depicted
in Fig. 1 (c). The effective delta potential at the origin gives rise to a superposition between
the transmitted and the reflected fermion, which form an entangled pair. The propagation
of entangled pairs generates entanglement between different spatial regions of the system.
More precisely, regions that share entangled pairs get entangled. A similar mechanism is re-
sponsible for entanglement production in free-fermion chains with a defect [76–80]. Together
with quantum entanglement, thermodynamic correlation is produced during the dynamics.
Although the initial state is homogeneous, dissipation gives rise to a nontrivial density profile.
This is accompanied by the creation of thermodynamic entropy. Here we show that the entan-
glement entropies cannot distinguish between these two types of correlations. The reason is
that due to the nonunitary dynamics the total system is not in a pure state and the von Neu-
mann entropy and the mutual information are not proper entanglement measures for globally
mixed states. This can be understood physically as follows. One can think of the global mixed
state as emerging from a larger system comprising the original system and some environment.
The density matrix of the original system is obtained by tracing over the degrees of freedom
of the ad hoc chosen environment (purification). This trace introduces some correlation be-
tween the degrees of freedom of the original system. In contrast, the logarithmic negativity
is a proper measure also for globally mixed states, and it does not suffer from this problem.
The fact that the von Neumann entropy is not a good entanglement measure is reflected in a
generic linear growth with time. This linear growth in open quantum systems has been ob-
served already, for instance, in [81]. One of our main results is that in the hydrodynamic limit
the von Neumann entropy of A (see Fig. 1 (a)) is described by

S =
ℓ

2

∫ kF

−kF

dk

2π
H1(1− |a|

2)min(|vk|t/ℓ, 1) . (1)

We provide similar results for A′. In (1) we defined H1(x) := −x ln(x)− (1− x) ln(1− x), and
vk is the fermion group velocity. Crucially, |a|2 is the absorption coefficient, which is nonzero
because of the losses. For lattice systems a maximum velocity vmax exists and (1) predicts a
linear growth at short times vmax t/ℓ < 1, followed by a volume-law scaling at long times.
We provide similar results for the Rényi entropies and the moments of fermionic correlation
functions. Formula (1) is similar to that describing the entanglement dynamics in a free-
fermion chain with a bond defect [76]. The main difference is that in the unitary case the
growth of the entropy depends only on the transmission coefficient of the defect. We should
stress that although we present results only for the two geometries in Fig. 1, it should be
possible to generalize Eq. (1) to arbitrary bipartitions.

Again, the linear growth in (1) does not reflect genuine entanglement production, which
can be diagnosed by the logarithmic negativity. For instance, we show that the logarithmic
negativity grows linearly with time for subsystem A, whereas it does not increase for A′. This
supports the mechanism outlined above. For the bipartition in Fig. 1 (a) entanglement is due
to the shared pairs formed by the transmitted and the reflected fermions. On the other hand,
for the bipartition in Fig. 1 (b) these pairs are never shared between A′ and its complement.

The manuscript is organized as follows. In section 2 we introduce the model and the
setup. In particular, we review the formula for the fermionic correlators in the hydrodynamic
limit, which are the main ingredients to compute the entanglement entropies and the nega-
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tivity. These formulas where presented elsewhere [39, 44]. Entangled-related quantities are
introduced in section 3. In section 4 we present our main results. We first discuss the formula
describing arbitrary functions of the moments of the fermionic correlators in the hydrodynamic
limit. In section 4.1 we specialize to the moments of the fermionic correlators. In section 4.2
we discuss the hydrodynamic behavior of the entanglement entropies. In section 4.3 we focus
on the stationary value of the von Neumann entropy, discussing its dependence on the dissi-
pation strength. In section 5 we present numerical benchmarks. We focus on the moments
of the fermionic correlators in section 5.1, and on the entanglement entropies in section 5.2.
We discuss some future directions in section 6. In Appendix A we report the derivation of the
main result of section 4.

2 Localized losses in a Fermi sea: Review of known results

Here we consider the infinite free-fermion chain defined by the Hamiltonian

H =

∞∑

x=−∞

(c†
x cx+1 + c

†
x+1cx) , (2)

where c†
x , cx are creation and annihilation operators at site x . The fermionic operators obey

standard canonical anticommutation relations. To diagonalize (2) one defines a Fourier trans-
form with respect to x , introducing the fermionic operators bk in momentum space as

bk :=
∞∑

x=−∞

e−ikx cx , cx =

∫ π

−π

dk

2π
eikx bk . (3)

Eq. (2) is rewritten in terms of bk as

H =

∫ π

−π

dk

2π
ǫk b

†
k
bk , ǫk := 2 cos(k) . (4)

Eq. (4) is diagonal, and it conserves the particle number. Let us consider a generic fermion
density n f = kF/π, with kF the Fermi momentum. The ground state of (2) is obtained by
filling the single-particle states with quasimomenta k in k ∈ [−kF , kF ]. The state with n f = 1
(kF = π) in which all the quasimomenta are occupied is a product state, and it has trivial
correlations. For intermediate filling 0 < kF < π the ground state of (2) is critical, with
power-law correlations.

From the single-particle dispersion in (4) we define the group velocity vk of the fermions
as

vk :=
dǫk

dk
= −2sin(k) . (5)

Here we consider the out-of-equilibrium dynamics under the Hamiltonian (2) and localized
loss processes at the center of the chain. These are treated in the formalism of quantum master
equations [5]. The time-evolved density matrix ρt of the system is described by

dρt

d t
= −i[H,ρt] + L−ρt L−† −

1

2
{L−† L−,ρt} . (6)

Here, the so-called Lindblad jump operator L− is defined as L− =
p
γ−c0 (see Fig. 1 for a

pictorial definition), with γ− the loss rate. Eq. (6) describes incoherent absorption of fermions
at the center of the chain.
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Entanglement properties of the systems can be extracted from the fermionic two-point
correlation functions, i.e., the covariance matrix

Gx ,y(t) := Tr(c†
x cyρ(t)) . (7)

The dynamics of Gx ,y is obtained as (we drop the dependence on the coordinates x , y to lighten
the notation)

G(t) = etΛG(0)etΛ†
, (8)

where G(0) is the matrix containing the initial correlations. The matrix Λ is defined as

Λ = ih−
Γ
−

2
, (9)

where h = δ|x−y |,1 is the Hamiltonian contribution while Γ− = γ−δx ,0 encodes the localized
dissipative effects. The covariance matrix Gx ,y is the solution of the linear system of equations

dGx ,y

d t
= i(Gx+1,y + Gx−1,y − Gx ,y+1 − Gx ,y−1)−

γ−

2
(δx ,0Gx ,y +δy,0Gx ,y) . (10)

Here we are interested in the hydrodynamic limit of large distances from the origin and long
times, i.e., x , y, t → ∞ with the ratios x/t, y/t fixed. In this limit it can be shown that
the dissipation is effectively described by a delta potential. The strength of the potential is
imaginary, which is a consequence of nonunitarity. Several properties of the system can be
derived by studying the scattering problem of a quantum particle with an imaginary delta
potential [82]. For several initial states, both homogeneous as well as inhomogeneous ones,
the dynamics of Gx ,y can be described solely in terms of the initial fermionic occupations and
the reflection and transmission coefficients of the emergent delta potential [44]. Here we are
interested in the situation in which the initial state of the dynamics is a Fermi sea with arbitrary
Fermi momentum kF .

2.1 Hydrodynamic limit of the covariance matrix

In the hydrodynamic limit the solution of (10) with initial condition the Fermi sea is obtained
as [44] (see also [39])

Gx ,y(t) =

∫ kF

−kF

dk

2π
(eikx +χx(t)r(k)e

i|kx |)(e−ik y +χy(t)r(k)e
−i|k y|) . (11)

Notice the absolute values in the second terms in the brackets. Moreover, one should observe
that the contributions associated with the two coordinates x , y factorize. This factorization is
crucial [40] to obtain the exact solution of (10). In (11) r(k) is the momentum-dependent
reflection amplitude of the effective delta potential describing the dissipation source at the
origin. The analytic expressions for r(k) and for the associated transmission amplitude τ(k)
are given as [44]

r(k) := −
γ−

2

1
γ−

2 + |vk|
, τ(k) :=

|vk|
γ−

2 + |vk|
, (12)

where vk is the fermion group velocity defined in (5). Notice that (12) coincide with the
reflection and transmission amplitude for a quantum particle scattering with a delta potential
with imaginary strength −iγ−/2 after redefining [82] vk ∼ k. Crucially, since the dynamics is
nonunitary one has that

|a|2 := 1− |r|2 − |τ|2 =
γ−|vk|

(
γ−

2 + |vk|)2
> 0 , (13)
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Figure 2: Dynamics of the fermionic density nx ,t in the presence of localized losses.
Results are for the initial Fermi sea with kF = π/2 and for loss rate γ− = 10 and
γ− = 0.5 (continuous and dotted lines, respectively). The oscillations are an artifact
of the approximations and vanish in the hydrodynamic limit x , t → ∞ with their
ratio fixed. Notice that in the hydrodynamic limit the density develops a discontinuity
at the origin.

where we defined the absorption coefficient |a|2, which is the probability that a fermion with
quasimomentum k is removed at the origin.

The time dependence of the correlator in (11) is encoded in the function χx , which is
defined as

χx := Θ(|vk|t − |x |) . (14)

At t = 0 from (11) one recovers the initial correlation of the Fermi sea as

Gx ,y(0) =
sin(kF (x − y))

π(x − y)
. (15)

To get an idea of the effect of the dissipation, it is instructive to consider the dynamics of
the local fermionic density nx ,t

nx ,t = Gx ,x . (16)

This is discussed in Fig. 2. We plot nx ,t versus the scaling variable x/(2t), showing results for
γ− = 0.5 and γ− = 10. The results are obtained by using (11). We focus on the effects of the
localized losses on the initial Fermi sea with kF = π/2. As expected, the Fermi seas gets de-
pleted with time and a nontrivial density profile forms around the origin. For |x/(2t)|> 1 the
effect of the dissipation is not present and one has the initial density 1/2. The density profile
exhibits a discontinuity at the origin. This reflects the presence of an effective delta potential
at the origin. Finally, the oscillations present in Fig. 2 are an artifact of the approximations
employed to derive (11), and vanish in the hydrodynamic limit. In the strong dissipation limit
γ− →∞ the evolution of the density freezes. This is a manifestation of the quantum Zeno
effect [83–85]. In the following sections we show that the fermionic dynamics shown in Fig. 2
is accompanied with a robust linear entanglement growth with time.
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3 Entanglement entropies and logarithmic negativity: Definitions

In order to understand how the presence of localized losses affects the entanglement content
of the system here we focus on several quantum-information-related quantities, such as the
entanglement entropies and the logarithmic negativity. To introduce them, let us consider
a bipartition of the system as A∪ Ā (see, for instance, Fig. 1 (a) and (b)). By tracing over
the degrees of freedom of Ā, which is the complement of A, one obtains the reduced density
matrix ρA = TrĀρ, where ρ is the full-system density matrix. The Rényi entropies are defined
as [55–58]

S(n) :=
1

1− n
Tr(ρn

A) , with n ∈ R . (17)

In the limit n→ 1 one obtains the von Neumann entropy as

S = −TrρA ln(ρA) . (18)

Both Rényi and von Neumann entropies are good entanglement measures provided that the
full system is in a pure state. However, in the presence of dissipation the full system is in
a mixed state, which introduces some “classical” correlation between A and Ā. This spurious,
i.e., non-quantum, correlation, affects both the Rényi entropies and the von Neumann entropy.

In these situations the so-called logarithmic negativity [60, 61] can be used to quantify
the amount of genuine entanglement between A and the rest. The logarithmic negativity E is
defined from the partially-transposed density matrix ρT . This is defined from ρ by taking the
matrix transposition with respect to the degrees of freedom of Ā as

〈ei , ē j |ρ
T |ek, ēl〉= 〈ei , ēl |ρ|ek, ē j〉 , (19)

with ei , ē j two bases for A and its complement, respectively. Unlike ρ, ρT is not positive
definite, and its negative eigenvalues quantify the amount of entanglement. The logarithmic
negativity is defined as

E = ln(Tr|ρT |) . (20)

Here we focus on free-fermion models. For free-fermion and free-boson models both the Rényi
entropies and the von Neumann entropy of a region A are calculable from the fermionic cor-
relation function Gx ,y restricted to A, i.e., with x , y ∈ A. Specifically, the Rényi entropies are
obtained as [86]

S(n) =
1

1− n
Tr ln
�
Gn + (1− G)n
�

. (21)

In the limit n→ 1, one recovers the von Neumann entropy as

S = −Tr(G ln(G) + (1− G) ln(1− G)) . (22)

The logarithmic negativity E can be calculated efficiently from the two-point function only
for free bosons [87]. For free fermions the partial transposed ρT is not a gaussian operator,
although it can be written as a sum of two gaussian operators [71] as

ρT = e−iπ/4O+ + eiπ/4O− , (23)

where O± are gaussian operators. Very recently, an alternative definition of negativity has been
put forward [73–75]. We dub this alternative negativity fermionic negativity. Its definition
reads as

E := lnTr
p

O+O− . (24)

Here we use the same symbol E for the fermionic negativity and for the standard one in (20)
because in the following we will only use the fermionic one. In contrast with (20), since the
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product O+O− is a gaussian operator, the fermionic negativity (24) can be computed effectively
in terms of fermionic two-point functions. Specifically, let us rewrite the full-system correlation
matrix G as

G =

�
GAA GAĀ

GĀA GĀĀ

�
. (25)

Here GW Z , with W, Z = A, Ā is obtained from the full system Gx ,y restricting to x ∈ W and
y ∈ Z . One now defines the matrices G± as

G± =

�
−GAA ±iGAĀ

±iGĀA GĀĀ

�
. (26)

We then define the matrix C T as

C T =
1

2
I−

1

2
P−1(G+ + G−) , with P = I− G+G− . (27)

From the eigenvalues ξi of C T and λi of G we can define the fermionic negativity E as [74]

E =
∑

i

�
ln[ξ1/2

i
+ (1− ξi)

1/2] +
1

2
ln[λ2

i + (1−λi)
2]
�

. (28)

It has been shown in Ref. [75] that under reasonable assumptions the fermionic negativity is
a good entanglement measure for mixed states.

4 Hydrodynamic description of entanglement entropies

We now discuss the out-of-equilibrium dynamics of the entanglement entropies in the hydro-
dynamic limit. Before that, we provide a more general result, which allows us to obtain the
hydrodynamic behavior of the trace of a generic function of the fermionic correlator (cf. (11)).
Let us consider the bipartitions in Fig. 1 (a) and (b). In Fig. 1 (a) subsystem A is the inter-
val [0,ℓ], i.e., on the right of the dissipative impurity. In Fig. 1 (b) we consider subsystem
A′ = [−ℓ/2,ℓ/2] centered around the impurity. Let us consider a generic function F(z), and
let us focus on the quantity TrF(GX ), with X = A, A′. In the hydrodynamic limit t,ℓ →∞,
with their ratio fixed, one can show that

TrF(GX ) = ℓ

∫ kF

−kF

dk

2π

��
1−

1

2zX

min(zX |vk|t/ℓ, 1)
�
F(1)

+
1

2zX

F(1− zX |a(k)|
2)min(zX |vk|t/ℓ, 1)

�
, zA(A′) = 1(2) . (29)

Here vk is the fermion group velocity in (5), and |a(k)|2 is the absorption coefficient of the
emergent delta potential (cf. (13)) at the origin. Eq. (29) depends only on 1 − |a|2, i.e.,
the probability of the fermions not to be absorbed at the origin. Also, the only dependence
on time is via the factor min(zX |vk|t/ℓ), which encodes the fact that A and A′ are finite, and
information propagates from the origin at a finite velocity vk. The factor zX in (29) accounts for
the different geometries in Fig. 1 (a) and (b), and it has a simple interpretation. For instance,
in the argument of the second term in (29) zX takes into account that for the bipartition in
Fig. 1 (a) the number of absorbed fermions is twice that for the bipartition in Fig. 1 (a) because
the impurity is at the center of A′. Moreover, in min(zX |vk|t/ℓ, 1), zX reflects that for A′ the
distance between the impurity and the edge of A′ is ℓ/2 instead of ℓ.
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0 1 2 3 4

v
max

t/ℓ

0.2

0.25

0.3

T
r(

G
n
)/
ℓ

n=1
n=2
n=3
n=5
n=∞

Figure 3: Moments of the fermionic correlator Mn = Tr(Gn), where G is the fermionic
correlation function restricted to subsystem A (see Fig 1). We plot the rescaled mo-
ments Mn/ℓ, with ℓ the length of A versus vmax t/ℓ, vmax being the maximum velocity.
Lines are analytic results in the hydrodynamic limit ℓ, t →∞ with their ratio fixed.
We only show results for γ− = 1 and kF = π/3. Note the linear behavior for t ≤ ℓ/vM

followed by a saturation at t →∞.

For generic F(z), Eq. (29) predicts a linear behavior with time for t ≤ ℓ/(zX vmax), with
vmax the maximum velocity in the system. This is followed by an asymptotic saturation at
t →∞ to a volume law∝ ℓ. Finally, for γ− = 0 one recovers the unitary case and from (29),
one obtains that

TrF(GX ) = ℓ

∫ kF

−kF

dk

2π
F(1) . (30)

Eq. (30) means that in the absence of dissipation there is no dynamics and for any F one has
a constant contribution that is proportional to ℓ. The fact that there is no dependence on zX

and on the geometry reflects translation invariance.
The derivation of (29) is reported in Appendix A and it relies on the multidimensional

stationary phase approximation [88], and on the assumption that F(z) admits a Taylor expan-
sion around z = 0. We should also stress that although we discuss only the two geometries in
Fig. 1 (a) and (b), it should be possible to generalize (29) to arbitrary bipartitions or multipar-
titions. In the following, by considering different functions F(z) we provide exact results for
the moments of the correlation matrix and the entanglement entropies in the hydrodynamic
limit.

4.1 Moments of the correlation matrix

Here we study the hydrodynamic limit of the moments Mn of the fermionic correlation matrix.
These are defined as

Mn = Tr(Gn) , (31)

where the correlation matrix G is restricted to subsystem A, A′ (see Fig. 1). The behavior of Mn

in the hydrodynamic limit is readily obtained from (29) by choosing F(z) = zn. One obtains

9
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Figure 4: Entanglement entropies S(n) of a subsystem A placed next to the dissipation
source (see Fig. 1 (a)). The different lines are analytic predictions in the hydrody-
namic limit for different values of n. We plot S(n)/ℓ versus vmax t/ℓ, with ℓ the size
of A and vmax the maximum velocity. We only show results for γ− = 1 and kF = π.

that

Mn = ℓ

∫ kF

−kF

dk

2π

��
1−

1

2zX

min(zX |vk|t/ℓ, 1)
�

+
1

2zX

(1− zX |a(k)|
2)n min(zX |vk|t/ℓ, 1)

�
, zA(A′) = 1(2) . (32)

The structure is the same as in (29). Mn exhibit the same qualitative behavior with a linear
decrease at short times t ≤ ℓ/vmax, which is followed by an asymptotic saturation at t →∞.
Several remarks are in order. First, at t = 0 one has that for any n, Mn = ℓkF/π, which is the
initial number of fermions in the subsystem. For t →∞ one has that the number of fermions
M1 in the subsystem is

M1
t→∞
−−−→ ℓ

∫ kF

−kF

dk

2π

�
1−
|a|2

2

�
. (33)

This means that M1∝ ℓ for t →∞, despite the presence of dissipation. In the strong dissipa-
tion limit γ− →∞ one has that |a|2 → 0, and M1 → ℓkF/π, i.e., the initial fermion number.
This is a manifestation of the quantum Zeno effect. In the limit γ−→∞ the dynamics of the
system is arrested and the number of fermions absorbed at the origin vanishes. Finally, it is
interesting to consider Mn in the limit n→∞. One can readily check that 1−z|a|2 < 1, which
implies that only the first term in (32) survives. In particular, in the limit t →∞, from (32)
one obtains that M∞ = ℓkF/π(1− 1/(2zX )). For zX = 1 (i.e., for the partition in Fig. 1 (a))
one has M∞ = ℓkF/(2π), which is half of the initial number of fermions.

In Fig. 3 we show numerical predictions for Mn obtained by using (32). We consider the
case with kF = π/3 and we restrict ourselves to γ− = 1. We provide results only for the
bipartition in Fig. 1 (a). The generic behavior outlined above is clearly visible in the figure.
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4.2 Entanglement entropies

The hydrodynamic limit of the entanglement entropies, both the von Neumann and the Rényi
entropies, is obtained from (29) by choosing

F(z) = Hn(z) =
1

1− n
ln[zn + (1− z)n] . (34)

In the limit n → 1 one recovers the von Neumann entropy by choosing
H1 = −z ln(z)− (1− z) ln(1− z). After using (34) in (29), and after observing that for any n,
F(1) = 0, one obtains that

S(n) =
1

2zX

ℓ

1− n

∫ kF

−kF

dk

2π
Hn(1− zX |a|

2)min(zX |vk|t/ℓ, 1) . (35)

First, for γ− = 0, i.e., in the absence of dissipation, one has that S(n) = 0 for any n. This
is consistent with the fact that for a Fermi sea the entanglement entropies exhibit the typical
Conformal Field Theory (CFT) logarithmic scaling as [56]

S(n) =
c

6

�
1+

1

n

�
ln(ℓ) + cn , (36)

where c = 1 is the central charge of the model and cn are nonuniversal constants. The
scaling (36) cannot be captured by (35), which describes the leading volume-law behavior
S(n)∝ ℓ. In the strong dissipation limit γ−→∞, one has that, reflecting the Zeno effect, S(n)

vanish for any n.
Away from the limits γ− = 0 and γ− →∞, the entanglement entropies increase linearly

at short times t ≤ ℓ/(zX vmax), and saturate to a volume-law scaling S(n)∝ ℓ at asymptotically
long times. It is interesting to consider the limit n→∞, which gives the so-called single-copy
entanglement. From (35) it is clear that only the first term inside the logarithm in (34) counts,
and one obtains that

S(∞) = −
ℓ

2zX

∫ kF

−kF

dk

2π
ln(1− zX |a|

2)min(zX |vk|t/ℓ, 1) . (37)

It is now crucial to remark that Eq. (35) gives the same qualitative behavior for the entan-
glement entropies of A and A′ (see Fig. 1 (a) and (b)). This is surprising at first because no
production of entanglement is expected for the centered bipartition in Fig. 1 (b). The reason
is that the reflected and the transmitted fermions, which form the entangled pairs, are never
shared between A′ and its complement. The linear growth in this case should be attributed to
the formation of a nontrivial density profile around the origin, which reflects the creation of
thermodynamic entropy. The entanglement entropies are not bona fide entanglement measures
for mixed states because they are sensitive to this thermodynamic contribution. We anticipate
that, in contrast, the logarithmic negativity is sensitive to the genuine quantum correlation
only (see section 5.2).

In Fig. 4 we report analytic predictions for the dynamics of the entanglement entropies
obtained from (35). We plot the rescaled entropies S

(n)
X /ℓ versus vmax t/ℓ for several values of

n. We consider only the bipartition in Fig. 1 (a), i.e., we choose X = A in (35). Furthermore,
we show data for kF = π and γ− = 1. The qualitative behaviour discussed above is clearly
visible.
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Figure 5: Steady-state entropy in the free fermion chain with localized losses. We
show results for the bipartition in Fig. 1 (a). We plot S(steady)/ℓ versus the loss rate
γ−. The different lines in the main figure are for initial states with different Fermi
momentum kF . Note that the steady-state entropy has a maximum at γ− ≈ 1. For
γ−→∞ the steady-state entropy vanishes as S(steady)/ℓ∝ ln(γ−)/γ−, as it is shown
in the inset.

4.3 Zeno death of von Neumann entropy

It is interesting to investigate the steady-state value of the von Neumann entropy as a func-
tion of the dissipation rate γ−. The steady-state von Neumann entropy S(steady) is obtained
from (35) as

S(steady) =
ℓ

2zX

∫ kF

−kF

dk

2π
H1(1− zX |a|

2) . (38)

In Fig. 5 we plot S(steady)/ℓ versus γ−. The results are for X = A (see Fig. 1 (a)). In the main
plot, the different curves correspond to different values of kF . Notice that the von Neumann
entropy increases upon increasing kF . This is expected because the von Neumann entropy is
proportional to the number of fermions that scatter with the impurity at the origin. Interest-
ingly, the data exhibit a maximum in the region γ− ∈ [1.5, 2]. In the strong dissipation limit
γ− → ∞ the von Neumann entropy vanishes. This is a consequence of the quantum Zeno
effect. The decay is as S(steady)∝ ln(γ−)/γ− (see the inset of Fig. 5).

Finally, it is interesting to compare with the result for the centered partition in Fig. 1 (b).
This is discussed in Fig. 6. A richer structure is observed. Indeed, the steady-state entropy
exhibits two maxima, one at “weak” dissipation for γ− ≈ 0.5 and one in the “strong” dissipation
regime for γ− ≈ 10. Notice also that the steady-state entropy is generically smaller than in
Fig. 5.

5 Numerical benchmarks

We now provide numerical benchmarks for the results derived in section 4. We discuss the
moments Mn (cf (32)) in section 5.1. In section 5.2 we focus on the entanglement entropies.
Importantly, we discuss the interplay between entanglement and thermodynamic correlation
by comparing the evolution of the von Neumann entropy and that of the logarithmic negativity
for the two bipartitions in Fig. 1 (a) and (b).
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Figure 6: Same as in Fig. 5 for the centered partition in Fig. 1 (b). Notice the presence
of two maxima, in contrast with Fig. 5.

5.1 Moments of fermionic correlators

Our numerical results for Mn are discussed in Fig. 7. In the panel (a) and (b) we plot M1 and
M2, respectively. We focus on subsystem A (see Fig. 1 (a)). The numerical data in the figure
are obtained by using (8). We consider the situation in which the system is initially prepared
in a Fermi sea with kF = π/3. Notice that M1 is the number of fermions in subsystem A. In
the absence of dissipation M1 = ℓkF/π at any time. As a consequence of the fermion loss the
number of particle decreases with time. In the figure we report results for several values of
ℓ. Clearly, M1 exhibits the qualitative behavior discussed in Fig. 3. At short times t ≤ ℓ/vmax,
M1 decreases linearly, whereas for t →∞ it saturates. However, the data for finite ℓ exhibit
sizeable deviations from the hydrodynamic limit result, which is reported as dashed-dotted
line in Fig. 7. These deviations are expected. The analytic result (32) is expected to hold
only in the hydrodynamic limit t,ℓ → ∞ with their ratio fixed. Indeed, upon increasing ℓ
the data approach (32). Importantly, the fact that the initial state is a Fermi sea gives rise
to logarithmic corrections. This will also happen for the entanglement entropies, as we will
discuss in section 5.2. These corrections are visible for M2 (see the inset in Fig. 7 (b)). In the
figure we plot the deviation δM2 from the hydrodynamic result, which is defined as

δM2 := M
hydro
2 −M2 . (39)

We consider the initial deviation at t = 0. At t = 0 one expects that in the limit ℓ → ∞,
M2 = k f /πℓ. The results in the inset of Fig. 7 (b) suggest the logarithmic behavior as

δM2 = a2 ln(ℓ) + . . . , (40)

with the dots denoting subleading terms, and a2 a constant. The dashed-dotted line in the
inset of Fig. 7 (b) is obtained by fitting the constant a2 in (40). The fit gives a2 ≈ 0.101.
To our knowledge there is no analytic determination of the constant a2, although it should
be possible by using standard techniques for free-fermions systems. Moreover, although the
data in Fig. 7 (b) suggest that such logarithmic terms survive at finite time, it is not clear a
priori whether the constant a2 remains the same. Finally, we should remark that the same
logarithmic terms should be present for the centered partition in Fig. 1 (b). Indeed, for t = 0
the system is translational invariant, and the moments Mn do not depend on the position of the
subsystem. We discuss numerical results for M2 for the centered partition (Fig. 1 (b)) in Fig. 8.
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Figure 7: Moments of the fermionic correlator Mn = Tr(Gn) restricted to subsystem
A (bipartition in Fig 1 (a)). We show the rescaled moments Mn/ℓ, with ℓ the size of
A plotted versus vmax t/ℓ. Here vmax is the maximum velocity. All the results are for
γ− = 1. The two panels are for n = 1 and n = 2. Different lines denote different
subsystem size ℓ. The dashed-dotted line is the analytic result in the hydrodynamic
limit. Sizeable finite-time and finite-size corrections are present. In the inset in (b) we
show the deviation from the hydrodynamic result at t = 0 plottingδM2 = M

hydro
2 −M2

as a function of ℓ. Notice the logarithmic scale on the x-axis.
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Figure 8: Same as in Fig. 7 for the interval A′ (centered partition in Fig 1 (b)).

As it is clear from the figure, the qualitative behavior is the same as for the side bipartition
(see Fig. 7 (b)). Similar finite-size effects as in Fig. 7 (b) are present. Upon approaching the
hydrodynamic limit t,ℓ→∞ deviations from the hydrodynamic limit result (red continuous
line in the figure) vanish.

5.2 Entanglement entropies and logarithmic negativity

Let us now discuss the out-of-equilibrium dynamics of the entanglement entropies. We first
focus on the von Neumann entropy for subsystem A next to the dissipation source (as in Fig. 1
(a)). Our data are reported in Fig. 9. We restrict ourselves to fixed γ− = 1, plotting the entropy
density S/ℓ versus the rescaled time vmax t/ℓ. We show data for ℓ ∈ [10,160]. We also report
the analytic result in the hydrodynamic limit (cf. (35)). Clearly, the numerical data exhibit the
expected linear growth for t ≤ ℓ/(vmax), followed by a saturation at infinite time. Still, one
should observe the sizeable deviations from the analytic result in the hydrodynamic limit (35).
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Figure 9: Von Neumann entropy S in the fermionic chain subjected to localized losses.
We consider subsystem A (bipartition in Fig. 1 (a)). The figure shows the entropy den-
sity S/ℓ plotted versus vmax t/ℓ, with ℓ the size of A and vmax the maximum velocity.
All the results are for fixed loss rate γ− = 1 and kF = π/3. We show results for sev-
eral values of ℓ, and the analytic result in the hydrodynamic limit (red continuous
line in the figure).

This is expected due to the finite ℓ and finite time t. Upon approaching the hydrodynamic
limit, however, the deviations from (35) decrease. An important remark is that since the
initial Fermi sea is a critical state, one should expect nontrivial finite-size corrections to the
linear von Neumann entropy growth. For instance, at t = 0 the entanglement entropies grow
logarithmically with ℓ as in (36). In Fig. 10 we subtract the CFT contribution by plotting
S − 1/3 ln(ℓ). The data are the same as in Fig. 9. As it is clear from the figure, now the
subtracted data exhibit a better agreement with the hydrodynamic result.

We perform a similar analysis for the Rényi entropies. In Fig. 11 we show numerical data
for the second Rényi entropy S(2) plotted versus vmax t/ℓ. We only consider the bipartition in
Fig. 1 (a). The data are for γ− = 1 and the initial Fermi sea with kF = π/3. As for the von
Neumann entropy, we subtract the CFT contribution (cf. (36) with n = 2) that is present at
t = 0. In the Figure we only show data for vmax t/ℓ ® 1. The agreement with the analytic
result in the hydrodynamic limit (35) is satisfactory.

Finally, it is crucial to compare the dynamics of the von Neumann entropy with that of
the logarithmic negativity (see section 3). As it was stressed in section 3 the entanglement
entropies are not proper entanglement measures in the presence of dissipation because the
full system is in a mixed state.

As it was anticipated in the introduction, genuine entanglement and statistical correlations
are deeply intertwined, but it is possible to distinguish them by comparing the behavior of the
von Neumann entropy and of the logarithmic negativity for the two bipartitions in Fig. 1 (a)
and (b). Specifically, subsystem A (see Fig. 1 (a)) is entangled with its complement because
the reflected and the transmitted fermions, which form entangled pairs, are shared between
them. Oppositely, this is not the case for A′ because the transmitted and the reflected fermions
are never shared. This scenario implies that the von Neumann entropy of A and A′ exhibit a
linear growth with time. On the other hand, only the logarithmic negativity of A is expected
to grow with time.

This is demonstrated in Fig. 12 (a) and (b). In Fig. 12 (a) we plot the rescaled negativity
E/ℓ versus the rescaled time vmax t/ℓ, whereas in Fig. 12 (b) we show the rescaled von Neu-
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Figure 10: Same data as in Fig. 9 plotting (S − 1/3 ln(ℓ))/ℓ, where 1/3 ln(ℓ) is the
initial von Neumann entropy. On the x-axis vmax is the maximum velocity and ℓ is
the size of A. Inset: The von Neumann entropy at t = 0 plotted versus ℓ. Note the
logarithmic scale on the x-axis. The dashed-dotted line is fit to the CFT prediction
1/3 ln(ℓ) + a, with a a fitting constant.

mann entropy. The data are for fixed γ− = 1 and kF = π/3 and subsystem size ℓ= 160. In both
panels we show results for the subsystems A (see Fig. 1 (a)) and A′ (see Fig. 1 (b)). It is clear
from the figure that both the negativity and the von Neumann entropy of A increase linearly
with time. For the von Neumann entropy we report the expected slope of the linear growth in
the hydrodynamic limit (dashed-dotted line in Fig. 12 (b)), which is in perfect agreement with
the finite-size numerical results. Notice that at asymptotically long times the von Neumann
entropy saturates (not shown in the figure), as already discussed in the previous sections. This
saturation happens for the logarithmic negativity as well, as expected from the quasiparticle
picture discussed above. This is shown explicitly in the inset in Fig. 12 (a) for subsystem A of
length ℓ= 20. As in the main plot we show E/ℓ versus vmax t/ℓ.

Let us now discuss the entanglement growth for the bipartition in Fig. 1 (b). The nega-
tivity (see Fig. 12), does not grow with time but it remains almost constant, showing a small
decreasing trend at long times. Oppositely, the von Neumann entropy exhibits a linear growth
(see Fig. 12 (b)), which, again, does not reflect entanglement production. The slope of the
linear growth (dashed-dotted line) is in agreement with (35).

6 Conclusions

We investigated the interplay between entanglement and statistical correlation in a uniform
Fermi sea subjected to localized losses. We focused on the hydrodynamic limit of long times
and the large subsystems, with their ratio fixed. In this regime the dynamics of the Rńyi
entropy and the von Neumann entropy can be understood analytically. We showed that the
logarithmic negativity correctly diagnose the production of genuine quantum entanglement,
whereas the entropies are sensitive to both quantum as well as classical correlation.

Let us now illustrate some interesting directions for future research. First, our results
hold for the Fermi sea as initial state. It should be possible to generalize them to other sit-
uations, such as finite-temperature states, or inhomogeneous initial states, for instance, the
domain-wall state. One should expect the linear entanglement growth to persist. An inter-
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Figure 11: Out-of-equilibrium dynamics of the Rényi entropy S(2) of subsystem A

(bipartition in Fig. 1) (a). We plot the subtracted entropy (S(2) − 1/4 ln(ℓ))/ℓ, with
1/4 ln(ℓ) the Fermi sea entropy at t = 0. Data are for γ− = 1 and kF = π/3. On the
x-axis vmax is the maximum velocity and ℓ is the size of A. In the inset we show the
entropy at t = 0 plotted versus ℓ to highlight the logarithmic increase.

esting possibility is to consider the out-of-equilibrium dynamics starting from product states.
Thus, even in absence of losses the von Neumann entropy grows linearly with time due to the
propagation of entangled pairs of quasiparticles. It would be interesting to understand how
this scenario is modified by localized losses. An interesting direction is to try to generalized
the hydrodynamic framework to the logarithmic negativity, for which it should be possible to
obtain a formula similar to (35).

Interestingly, our results suggest that local dissipation generically induces robust entan-
glement production. An important direction is to try to check this scenario for other types
of local dissipation. An interesting candidate is incoherent hopping [89]. Unlike loss dissi-
pation, for incoherent hopping the Liouvillian describing the dynamics of the density matrix
is not quadratic. It would be interesting to understand whether the hydrodynamic approach
outlined here still applies, at least in the weak dissipation limit. Moreover, an interesting
direction would be understand the interplay between entanglement, local dissipation, and
criticality [90]. Finally, it is important to investigate possible experimental verification of our
results. Measuring entanglement in experiments is challenging, although recent results with
cold-atom systems are promising [91], at least for Rényi entropies. On the other hand, the
logarithmic negativity, which is a proper entanglement measure in the presence of dissipation,
is not easy to measure with the current experimental tools. Fortunately, it is possible to de-
tect genuine entanglement by using the moments of the partially transposed reduced density
matrix, which are accessible experimentally [92].

A Derivation of Eq. (29)

In this section we derive formula (29). We employ a similar strategy as in Ref. [93]. Let us
consider the interval A= [0,ℓ] (see Fig. 1 (a)). The main ingredient is the correlation matrix
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Figure 12: Comparison between the logarithmic negativity E and the von Neumann
entropy S for the two bipartitions in Fig. 1. Panels (a) and (b) show E/ℓ and S/ℓ

plotted versus vmax t/ℓ, respectively. Here ℓ is the size of A and A′ (see Fig. 1) and
vmax the maximum velocity. As it is clear from (a) the negativity E of A exhibits a
linear increase with time, whereas that of A′ depends mildly on time. Oppositely, the
von Neumann entropy of both A and A′ increases linearly with time (see (b)).

Gx ,y (cf. (11)) restricted to A, i.e., with x , y ∈ A. First, we can rewrite (11) as

Gx ,y =

∫ kF

−kF

dk

2π
Sk,x S̄k,y , (41)

where we defined

Sk,x = eikx + r(k)ei|kx |

∫ ∞

−∞

dq

2πi

ei(|vk|t−|x |)q

q− i0
, (42)

with vk the fermion group velocity (cf. (5)). The last term ensures the condition (14) and it
relies on the well-known identity

∫ ∞

−∞

dq

2πi

eiqx

q+ i0
= Θ(x) , (43)

where i0 is a positive convergence factor. Let us define Ak,q as

Ak,q(t) :=
ei t|vk|q

q− i0
r(k) . (44)

To proceed we use the following identity

ℓ∑

z=1

eizk =
ℓ

4

∫ 1

−1

dξw(k)ei(ℓξ+ℓ+1)k/2 , with w(k) :=
k

sin(k/2)
. (45)

Let us now define
Fki ,k j

:= Fuu
ki ,k j
+ Fud

ki ,k j
+ F du

ki ,k j
+ F dd

ki ,k j
, (46)

with

Fuu
ki ,k j

:=
ℓ

4

∫
dξw(ki − k j)e

iℓ(ξ+1)(ki−k j)/2 , (47)

Fud
ki ,k j

:= −
ℓ

4

∫
dξ

∫
dq

2πi
w(ki − |k j |+ q)eiℓ(ki−|k j |+q)(ξ+1)/2Āk j ,q , (48)

F du
ki ,k j

:=
ℓ

4

∫
dξ

∫
dq

2πi
w(|ki | − k j − q)eiℓ(|ki |−k j−q)(ξ+1)/2Aki ,q , (49)

18



SciPost Phys. 12, 011 (2022)

and

F dd
ki ,k j

:= −
ℓ

4

∫
dξ

∫
dq′

2πi

∫
dq

2πi
w(|ki |−|k j |−q+q′)×eiℓ(|ki |−|k j |−q+q′)(ξ+1)/2Aki ,qĀk j ,q. (50)

To derive (29), it is convenient to consider the moments of the correlation matrix Mn = Tr(Gn).
For generic integer n, by using (41), (46) and (47)-(50) one obtains that

Tr(Gn) =

∫ kF

−kF

dnk

(2π)n

n∏

i=1

Fki ,ki−1
. (51)

Here the variables ki are arranged in cyclic order, i.e., k0 = kn. We can rewrite F
α,β
ki ,k j

, with

α,β = u, d (cf. (47)-(50)) as

Fuu
ki ,k j
=
ℓ

2

∫
dξeiℓ(ξ+1)(ki−k j)/2 , (52)

Fud
ki ,k j
=
ℓ

2

∫
dξeiℓ(ki−|k j |)(ξ+1)/2r(k j)Θ(−ℓ(ξ+ 1)/2+ |vk j

|t) , (53)

F du
ki ,k j
=
ℓ

2

∫
dξeiℓ(|ki |−k j)(ξ+1)/2r(ki)Θ(−ℓ(ξ+ 1)/2+ |vki

|t) , (54)

and

F dd
ki ,k j
=
ℓ

2

∫
dξeiℓ(|ki |−|k j |)(ξ+1)/2r(ki)r(k j)

×Θ(−ℓ(ξ+ 1)/2+ |vki
|t)Θ(−ℓ(ξ+ 1)/2+ |vk j

|t) . (55)

To obtain (52)-(55), we used that in the hydrodynamic limit ℓ, t →∞ with the ratio t/ℓ fixed
the integrals in (51) are dominated by the regions with ki → k j and q → 0. This implies
that w(ki − k j) → 1/2 (cf. (45)), and that one can perform the integration over q and q′

in (47)-(50), which, by using (43), give the Heaviside theta functions in (52)-(55). We can
now rewrite (51) as

Tr(Gn) =
� ℓ

2

�n∫ kF

−kF

dnk

(2π)n

∫ 1

−1

dnξ

n∏

i=1

eFki ,ki−1
(ξi) . (56)

Here we defined eFki ,ki−1
:= eFuu

ki ,k j
+ eFud

ki ,k j
+ eF du

ki ,k j
+ eF dd

ki ,k j
, where eFα,β

ki ,k j
with α,β = u, d are the

integrands appearing in (52)-(55). To proceed, we now treat the integrals over ξi by using
the stationary phase approximation in the hydrodynamic limit. We first observe that (56) can
be rewritten as

Tr(Gn) =
� ℓ

2

�n∫ kF

−kF

dnk

(2π)n

∫ 1

−1

dnξ
∑

σi ,τi=0,1

n∏

i=1

eiℓ(ξi+1)(kσi
−kτi−1

)/2 r̃σi (ξi , kσi
)r̃τi−1(ξi , kτi−1

) . (57)

Here we defined
r̃(ξ, k) = r(k)Θ(−ℓ(ξ+ 1)/2+ |vk|t) . (58)

Here we also defined

kσi
=

�
ki ifσi = 0
|ki | ifσi = 1

. (59)
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The same definition as (59) holds for kτi
. Eq. (57) arises directly from (56). Each term eFki ,k j

in (56) contains a phase factor eiℓ(ξi+1)(ki−ki−1), where ki , ki−1 can be replaced by |ki |, |ki−1|.
Each term |ki | is accompanied by a factor r̃(ξi , ki). The sum over σi ,τi in (57) accounts for
all the possible ways of distributing the terms with the absolute values |ki |.

We first focus on the situation withσi = τi = 0 for any i. Thus, within the stationary phase
approximation the integral in (57) in the large ℓ limit is dominated by the stationary points
of the exponent of the phase factor. By imposing stationarity with respect to the variables ξi ,
one obtains that

ki = k1 , ∀i . (60)

Now (57) becomes

I
(n)

0 =
� ℓ

2

�n∫ kF

−kF

dnk

(2π)n

∫ 1

−1

dnξeiℓ
∑n

i=1(ξi+1)(ki−ki−1)/2 . (61)

Although the integral (61) can be computed exactly, it is useful to discuss the stationary phase
approximation. Let us change variables as

ζ1 := ξ1 , (62)

ζi := ξi+1 − ξi , i ∈ [1, n] . (63)

The variables ξi and ζi satisfy cyclic boundary conditions. We obtain that (61) is rewritten as

I
(n)

0 =
� ℓ

2

�n∫ kF

−kF

dnk

(2π)n

∫
dnζe

−iℓ
∑n

j=1 ζ j(k j−k1)/2 . (64)

Notice that the 1 in (ξi+1) in (61) cancels out in the sum over i, and it would also be irrelevant
at the stationary point where ki → k1 for any i. The integrand in (64) does not depend on ζ1.
The integration domain for the variables ζ1 is given as

−1≤ ζ1 −

n∑

j=k

ζ j ≤ 1 , ∀k ∈ [2, n] . (65)

As the integrand in (64) does not depend on ζ1, one can perform the integral to obtain

I
(n)

0 :=
� ℓ

2

�∫ kF

−kF

dk1

2π
Λ
(n−1)
0 (k1) =

� ℓ
2

�n∫ kF

−kF

dk1

2π

∫ kF

−kF

dn−1k

(2π)n−1

∫
dn−1ζe

−iℓ
∑n

j=1 ζ j(k j−k1)/2µ({ζk}) , (66)

where we also isolated the integration over k1. Here µ({ζk}) is the measure of the allowed
values for ζ1, and it reads as

µ({ζk}) =max
�
0, min

k∈[2,n]

�
1−

n∑

j=k

ζ j

�
+ min

k∈[2,n]

�
1+

n∑

j=k

ζ j

��
. (67)

We can now apply the stationary phase approximation to the integral

Λ
(n−1)
0 =
� ℓ

2

�n−1
∫ kF

−kF

dn−1k

(2π)n−1

∫
dn−1ζe

−iℓ
∑n

j=1 ζ j(k j−k1)/2µ({ζk}) . (68)
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The stationary phase approximation states that for sufficiently smooth N -dimensional func-
tions f (x ) and g(x ), in the limit ℓ→∞ one has [88]

∫

Ω

dN x g(x )eiℓ f (x ) =
�2π
ℓ

�N/2
g(x 0)|det H|−1/2eiℓ f (x 0)+

iπσ
4 , (69)

whereΩ is the integration domain, x 0 is the stationary point of f (x ), i.e., such that∇ f (x ) = 0,
H is the Hessian matrix, andσ its signature, i.e., the difference between the number of positive
and negative eigenvalues. A straightforward application of the stationary phase gives that in
the limit ℓ→∞ the Λ(n−1)

0 is dominated by the stationary point as

k̄ j = k1 , j = 2 , . . . , n , (70)

ζ̄ j = 0 , j = 2 , . . . , n . (71)

In our case the phase in (69) vanishes and the signature of the Hessian is zero. Moreover,
det H = 2−2n+2. Putting everything together we obtain that

Λ
(n−1)
0 = 2 , (72)

where we used that µ({ζk}) = 2 at the stationary point. Note that there is no dependence on
k1 in (72). Finally, we obtain that the integral (64) is given as

I
(n)

0 = ℓ

∫ kF

−kF

dk1

2π
. (73)

Let us now consider the generic integral (57). We now observe that for any pair of indices
(σi ,τi) there are two possible situations that can occur. Specifically, we define (σi ,τi) as
paired if σi = τi = 1, whereas we define (σi ,τi) as unpaired otherwise. Notice that if (σi ,τi)

are paired it means that both occurrences of momentum ki appear with the absolute value |ki |

in (57).
It is straightforward to convince oneself that the presence of a single set of unpaired indices

(σi ,τi) implies that in the limit ℓ→∞ the stationary point is given as

ki = k1 > 0 , ∀i , (74)

i.e., all the momenta have to be positive to have a finite contribution in the stationary phase.
This implies that one can remove the absolute values of the momenta. Then, the derivation of
the stationary phase is similar to that for the case with σi = τi = 0,∀i.

An important difference is that for any index σi = 1 and τi = 1 there is a factor r̃(ξi , ki).
This implies that the integration over ζ1 in principle cannot be performed as in (72). However,
at the stationary point, from (71) one obtains that ξi → ξ1 = ζ1 and ki → k1 for any i. One is
left with the integral over ζ1 as

∫ 1

−1

dζ1Θ(−ℓ(ζ1 + 1)/2+ t|vk|) = 2min(|vk|t/ℓ, 1) , with k > 0 . (75)

Let us now discuss what happens when paired indices are present. It is clear that the main
consequence of the presence of paired indices σi ,τi is a factor 2 because the integrands do
not depend on the sign of the momenta. To discuss the result of the stationary phase, let us
define for the following the number of paired momenta as p, and the total number of momenta
appearing with the absolute value as na. Let us consider the case na > 0 since the case with
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na = 0 was treated above. na is the number of σi = 1 and τi = 1. The number of terms
N(n,na ,p) with fixed n, na, p can be obtained by elementary combinatorics as

N(n,na ,p) =

�
n

p

��
n− p

na − 2p

�
2na−2p . (76)

Now we take into account that for each set of paired indices there is a factor two. By summing
over the possible number of pairs p, we obtain the total number of terms N ′

(n,na)
as

N ′
(n,na)

=

⌊na/2⌋∑

p=0

2pN(n,na ,p) . (77)

We now use that for each na there is term rna . Finally, it is straightforward to perform the sum
over na to obtain the total contribution as

Tr(Gn) =
� ℓ

2

�∫ kF

−kF

dk1

2π
(Λ
(n−1)
0 +Λ(n−1)) , (78)

where Λ(n−1)
0 = 2 and

Λ
(n−1) = 2min(|vk1

|t/ℓ, 1)
� 2n∑

na=1

N ′
(n,na)

rna − 1
�
Θ(k1) . (79)

We now use that
2n∑

na=1

N ′
(n,na)

rna = (1+ 2r + 2r2)n − 1 , (80)

where r(k1) is the reflection amplitude in (12). We can also use that

1+ 2r + 2r2 = 1− |a|2 , (81)

where |a(k)|2 is the absorption coefficient. Thus, putting everything together one obtains the
final formula for Tr(Gn

A) as

Tr(Gn
A) = ℓ

∫ kF

−kF

dk

2π

�
1−

1

2
min(|vk|t/ℓ, 1) +

1

2
(1− |a(k)|2)n min(|vk|t/ℓ, 1)

�
. (82)

Here we replaced k1→ k and we used the fact that the integrand is symmetric under k→−k

to remove the factorΘ(k) in (79). The subscript A in (82) is to stress that it holds for subsystem
A (see Fig. 1 (a)). Crucially, Eq. (82) depends only on the local density of fermions 1 − |a|2

that are not absorbed at the origin.
Finally, we comment on the modifications in order to generalize (82) to the case of the

bipartition in Fig. 1 (b), i.e., for the interval A′ centered around the impurity. The main differ-
ence is that (77) has to be replaced by eN ′

(n,na)
as

eN ′
(n,na)

=
2na

4

�
2n

na

�
. (83)

A straightforward generalization of the steps leading to (82) gives

Tr(Gn
A′) = ℓ

∫ kF

−kF

dk

2π

�
1−

1

4
min(2|vk|t/ℓ, 1) +

1

4
(1− 2|a(k)|2)n min(2|vk|t/ℓ, 1)

�
. (84)
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The factor 1/4 and the 2|vk| in the integrand in (84) reflect that the distance from the impurity
and the edges of subsystem A′ is ℓ/2 and not ℓ as in (82). Furthermore, the factor 1− 2|a|2

instead of 1−|a|2 in (82) arises because fermions are absorbed from both sides of the impurity.
Finally, by using (82) and (84) one can obtain the hydrodynamic behavior of

Tr(F(G)) , (85)

where F(z) is smooth enough to admit a Taylor expansion around z = 0. By Taylor expanding
F(z) for z = 0 and by using (82) and (84), one obtains (29).
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