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Abstract

We briefly review the five possible real polynomial solutions of hypergeometric differential equa-
tions. Three of them are the well known classical orthogonal polynomials, but the other two are
different with respect to their orthogonality properties. We then focus on the family of polynomials
which exhibits a finite orthogonality. This family, to be referred to as the Romanovski polynomi-
als, is required in exact solutions of several physics problems ranging from quantum mechanics and
quark physics to random matrix theory. It appears timely to draw attention to it by the present
study. Our survey also includes several new observations on the orthogonality properties of the

Romanovski polynomials and new developments from their Rodrigues formula.
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I. INTRODUCTION

Several physics problems ranging from ordinary—and supersymmetric quantum mechan-
ics to applications of random matrix theory in nuclear and condensed matter physics are
ordinarily resolved in terms of Jacobi polynomials of purely imaginary arguments and param-
eters that are complex conjugate to each other. Depending on whether the degree n of these
polynomials is even or odd, they appear either genuinely real or purely imaginary. The fact
is that all the above problems are naturally resolved in terms of manifestly real orthogonal
polynomials. These real polynomials happen to be related to the above Jacobi polynomials
by the purely imaginary phase factor, ", much like the phase relationship between the hy-
perbolic and the trigonometric functions, i.e. siniz = isinh x. These polynomials have first
been reported by Sir Edward John Routh [1] in 1884, and then were rediscovered within the
context of probability distributions by Vsevolod Romanovski |2] in 1929. They are known
in the mathematics literature under the name of “Romanovski” polynomials.

Romanovski polynomials may be derived as the polynomial solutions of the ODE

(1 +x2)%ﬁ(ﬁ +t(x>%ff) FAR() =0, (1)

with ¢(z) a polynomial, at most a linear, which is a particular subclass of the hypergeometric
differential equations [3], [4]. Other subclasses give rise to the well known classical orthogonal
polynomials of Hermite, Laguerre and Jacobi 4], [5]. Romanovski polynomials are not so
widespread as the others in applications. But in recent years several problems have been
solved in terms of this family of polynomials (Schrodinger equation with the hyperbolic
Scarf and the trigonometric Rosen-Morse potentials [6, (7], Klein-Gordon equation with equal
vector and scalar potentials [8], certain classes of non-central potential problems as well [9])
and so they deserve a closer look and be placed on equal footing with the classical orthogonal
polynomials.

In this context, our goal is threefold. First of all, it is to establish the orthogonality
properties of these polynomials. This is achieved by the same methods as for any other
hypergeometric differential equation. Our second goal is to explain their use as orthogonal
eigenfunctions of some Hamiltonian operators. Third, Eq. (Il) has been described in [10] as
a complexification of the Jacobi ODE, a general expression that can be written as

(1— 22)° CZ @) , t(@d];f) FAP(z) =0, @)




where ¢(z) is again an arbitrary polynomial of at most first degree, but not necessarily the
same as in Eq. (). If that were the case, solutions to Eq. (Il) would be the complexification
of the solutions to Eq. (), that is, the complexification of the Jacobi polynomials. Hence,
our final goal is to clarify this relationship.

We deal with all these issues in the following way: In Section [l we give a classification
of hypergeometric equations placing Eq. () among them. Next, in Section we show
some expected properties of the RlP )(1’) functions as solutions of a hypergeometric ODE
such as: being indeed polynomials, recurrence relations; and the absence of another, namely
general orthogonality. In Section [Vl we compare the polynomials R () with the com-
plexified Jacobi polynomials. In Section [V] we show some examples of physical problems
whose solutions lead to Romanovski polynomials. Section [V sheds light on some peculiar-
ities of orthogonal polynomials as part of quantum mechanics wave functions. In the final

Section we summarize our conclusions.

II. CLASSIFICATION OF HYPERGEOMETRIC DIFFERENTIAL EQUATIONS

A hypergeometric equation [3] is an ODE of the form
s(x)F"(z) + t(x)F'(z) + A\F(z) = 0, (3)

where the unknown is a real function of real variable F' : Y — R, where U4 C R is some
open subset of the real line, and A € R a corresponding eigenvalue, and where the functions
s and t are real polynomials of at most second order and first order, respectively. Here the
prime stands for differentiation with respect to the variable x. This class of ODEs is very
well known both from the mathematical and the physical points of view. From the mathe-
matical one, many properties that its solutions exhibit make them interesting in their own
right. For instance, the classical orthogonal polynomials [3], |[L1], [12] (Hermite, Laguerre
and Jacobi polynomials, the latter including as particular cases Legendre, Chebyshev and
Gegenbauer polynomials) are solutions of particular subfamilies of hypergeometric ODEs.
From the physical point of view, many of the exact solutions to the eigenvalue equation of
a quantum mechanical Hamilton operator lead to an equation of the hypergeometric kind:
harmonic oscillator, Coulomb potential, the trigonometric Rosen-Morse and Scarf potentials,

hyperbolic Rosen-Morse and hyperbolic Scarf potentials.



As to our goal, the mathematical properties we are interested in are the following (refer
to [3] for a detailed study and proofs of these statements). The leading property, which gives
the differential equation its name “hypergeometric,” is that if F'(z) is a solution to Eq. (3],
then the derivative F’(x) is a solution to another hypergeometric equation that is closely

related to the former:
s(2)(F' ()" + W (@) (F' () + AV F'(z) = 0, (4)

where t(M(z) = t(z) + s'(x) and AV = X\ +#(2). Iteratively, it is easy to show that the mth

derivative, F(™(z) is a solution of
s(2)(F™ (@) + ) (2)(F™ () + X F™ (2) = 0, (5)

where now t™ (z) = t(z) +ms'(z) and A = A+mt'(z) + 3m(m—1)s”(x). The next result
is that, for any n € {0,1,2,...}, there exists a polynomial F, (z) of degree n, together with
a constant A, which satisfy Eq. ([B]). The constant is given by

N = - <t’(x) b5l 1)3“(:5)) | (6)

The last result, together with the former, tells us that F,(z) and its derivatives, Fém)(x), are
solutions to similar equations. By means of a weight function, it is possible to write down a
formula which gives all these polynomials at once. A weight function w(x) associated with

Eq. @) is a solution of Pearson’s differential equation

[s(x)w(@)]" = t(x)w(w), (7)

that assures the self-adjointness of the differential operator of the hypergeometric ODE.
Then, the generalized Rodrigues formula gives the mth derivative of the polynomial F,,(x)

as

1 dn—m

(m)(z) = w(x)s(z)"™
FE@) = N o (@)@

(8)
0<m < n,

where N,,, is a normalization constant. This constant is related to the coefficient a,, of the

term of degree n in the polynomial F,(x) by the expression

(=)™ "™nla,

N. =
nm n—1 4 (k)
k=m )\"

: (9)



which is valid for 0 < m < n — 1 and n > 1. Equation (§]), with m = 0, gives the classical

Rodrigues formula
1 d" "
S w(@)s(e)). (10)

w(x)

where we have identified £ (x) = F,(z) and N,g = N,,.

If the functions s(z) and w(z) satisfy yet another condition, namely both being positive

within an interval (a,b) and

lim s(2)w(z)z! — lim s(z)w(z)s' =0, (11)

r—a r—b

for any nonnegative integer [, then the family of polynomials is orthogonal with respect to
the weight function w, i.e.
b
[ @) Fale) do = (£,
o (12)
Vm,n € {0,1,2,...},
where f,, is the norm of the polynomials. Hence, all hypergeometric ODEs admit a family
of polynomial solutions. But this family is not orthogonal for all hypergeometric ODEs.
The fact that a solution F(x) and its derivatives F(™(z) obey hypergeometric ODEs
with the same coefficient s(z), Eqgs. (3] and (H), suggests a classification in terms of the
polynomial s(x). Moreover, a classification according to the roots of s(x) has proved useful
and provides a characterization of the solutions [3],[4],]5]. There are five classes in this
scheme, as s(x) may be a constant, a first degree polynomial or a second order one with
two distinct real roots, one real root or, finally, two complex conjugate, not real, roots. In
addition, it is useful to note that an affine change of variable (i.e., z — ax +b, a # 0)
does preserve the hypergeometric character of Eq. (38]) and the kind of roots of polynomial
s(z). Then, in each class, we may consider only a canonical form of the equation, to which
any other can be reduced by an affine change of the independent variable.
1. Polynomial s(x) is a constant:

We take as canonical form
H"(z) — 20xH'(z) + AH(z) = 0, (13)

where a@ € R is an arbitrary constant, i.e., we have here a one-parameter family of ODEs.
We call it generalized Hermite equation (the equation with o = 1 is called Hermite equa-

tion). The polynomials are a generalization of Hermite polynomials, denoted {H,(f‘)},
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n € {0,1,2,...}. The weight function is
w(z) =e *. (14)

For @ > 0 the additional conditions for orthogonality, Eq. (III), are fulfilled in the interval

(—00,00), hence we get an orthogonality relation:

/ e H( (z) H{™ (z) dz = (hn)*6pn,
—oc (15)

Vm,n € {0,1,2,...}, a > 0.

2. Polynomial s(x) is of the first degree:
The canonical form of the ODE is

xL"(z) + t(x)L'(z) + A\L(z) = 0, (16)

which we call generalized Laguerre equation. The first-order polynomial ¢ is still arbitrary,
so this is a two-parameter family of ODEs. If t(x) is written as t(x) = —ax + [+ 1, with
a, 3 € R, the parameters (actually, Eq. (I6]) is called associated Laguerre equation in the

case a = 1, and Laguerre equation if & = 1 and 3 = 0), then the weight function is
w(r) = 2Pe™, (17)

and the polynomials are written {L,(f"ﬁ)}, n e {0,1,2,...}. If o, > 0, the condition of
Eq. () is fulfilled and one gets orthogonality in the interval [0, co) as

/ 2Pe o LB (1) LP) () dx = (1) 6 pum,
0

(18)
Vm,n € {0,1,2,...}, a, 3 > 0.
3. Polynomial s(x) is of the second degree, with two different real roots:
The canonical form of the ODE is
(1 —2*)P"(z) + t(x)P'(x) + \P(z) = 0, (19)

which is known as Jacobi equation. It is customary to write the arbitrary polynomial ¢(x)
in the form t(z) = 6 — a — (a4 S+ 2)x, where «, 3 € R are the parameters. Then, for each
pair («a, 3), the Rodrigues formula defines a family of polynomials, the Jacobi polynomials,
denoted {P}f“ﬁ’}, n € {0,1,2,...} with the weight function given by

w(z) = (1 —2)*(1 +2)°. (20)
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If parameters o and 3 satisfy «, 5 > —1, the additional condition of Eq. (I is fulfilled in
the interval (—1, 1), so there is an orthonormalization relation:
1
| =0 2 PED @ ) do = (S
= (21)
Ym,n €{0,1,2,...},a,0 > —1.
Some particular cases received special names: Gegenbauer polynomials if « = 3, Chebyshev
[ and IT if « = = £1/2, Legendre polynomials if « = 5 = 0.
4. Polynomial s(x) is of the second degree, with one double real root:

We choose as canonical form of the ODE
22B"(x) + t(x)B'(z) + A\B(z) = 0, (22)

If the arbitrary first order polynomial is written as t(z) = (a + 2)z + 3, with «, 5 € R the

parameters, then the weight function is

B
T

w' P () = z% =, (23)

We write the polynomials as {B,(La’ﬁ )}, n € {0,1,2,...}, which are called Bessel polynomials

[13] (they were also given under type V in Ref. [2] and classified in Ref. [4]). There is

no combination of any particular values of the parameters and any interval which satisfies

Eq. (), so neither of these families is orthogonal with respect to the weight function (23)).
5. Polynomial s(x) is of the second degree, with two complex roots:

The canonical form of the ODE for this case is chosen as
(1+2*)R"(z) + t(z)R () + AR(x) = 0, (24)

which is the one studied in [4]-]6], and [14]-[15]. A note of caution: the solutions introduced
in |6] and [7] seem to be different, but this is due just to a different form given to the
arbitrary polynomial ¢(z). A careful review shows that both papers are dealing with the
same ODE, namely Eq. (24)), so the solutions must be the same up to a constant factor.
Writing the polynomial ¢(x) as t(x) = 20z + «, with «,5 € R, we have again a two-
parameter family of ODEs with their respective families of polynomials which we denote
(R, n e {0,1,2,...}. With this notation (which differs slightly from [6],[7],[16]) the
weight function is

w(a,ﬁ)(x) — (1 + x2)ﬁ—le—acot’1x. (25)
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Upon comparison with Romanovski’s original work [2], we conclude {R;a’ﬁ )} are the Ro-
manovski polynomials. In Section [[IIl we study the properties of these polynomials.

In Ref. [4] polynomial solutions of linear homogeneous 2nd-order ODEs

$(@)yn () + t(2)y,(2) = n[(n — 1)e + 2]y (2),
s(r) =ex® +2fr +g, t(z)=2¢+7, (26)
ne{0,1,...}, e, f, 9,6,y €ER,

are classified upon substituting the finite power series

n

(o) = 32 i+ 0, -

ann #0, ceC,
and analyzing the resulting recursions among the coefficients. No other solutions other than
the polynomials given above are found. Their orthogonality properties are derived by means
of the spectral theorem (of Favard [12]).

To sum up, all hypergeometric equations fall into one of these five classes. Three of them
give rise to the very well studied classical orthogonal polynomials (Jacobi, Laguerre and
Hermite) or a slight generalization of them. A fourth one has not attracted much attention
due to, we guess, the lack of general orthogonality. Finally, a fifth class is the family of
ODEs we are dealing with here.

III. DEFINITION AND PROPERTIES OF ROMANOVSKI POLYNOMIALS

We focus now on the Romanovski polynomials R and study some well known, and
some new properties they have. We start by writing down the explicit Rodrigues formula,
Eq. (I0), for this case, that we take as their definition. For each a,3 € R and each
ne€N=1{0,1,2,...} we define the function R%a’ﬁ), by the Rodrigues formula

1 d"

(e.8) = -
R w) = w(@f) () dzm

[w(o"ﬁ) (:B)s(:)s)"] , (28)

where

w(avﬁ)(gj) = (1 + x?)ﬁ—le—acotflxj (29>
is the weight function, same as in equation (25]), and
s(r) =1+ 2%, (30)
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is the coefficient of the second derivative of the hypergeometric differential equation (24)).
Notice that we have chosen the normalization constants N,, = 1, which is equivalent to
make a choice of the coefficient of highest degree in the polynomial, as given by equation

@), which takes the form

n—1

1
a, = — n—=~k)+nn—-1)—k(k—1)|,
n!kl;[O[Qﬂ( )+ n(n—1) —k(k—1)] 1)

n > 1.

Notice that the coefficient a, does not depend on the parameter «, but only on 3 and,

k(k—1)—n(n—1)

SR where k£ =

for particular values of 3, a, is zero (i.e., for all the values § =
0,...,n — 1). This observation poses a problem that we will address somewhere else. For

later reference, we write explicitly the polynomials of degree 0, 1 and 2

RP(z) = 1, (32)
R(a) = — 5 ( @8) (1) (x)+sf(a;)w<aﬁ>(x)) — 1@ () =280 + o, (33)
RO = —— I )di[ () @D () + 25(2)s' (2)u ) (a)

_ ww; x( w9 (2) (EP () + 5 (2)))

= 22+t (@)t (@) + 2+ @D (2))s(x)

= (26+1)(28+2)2° + 228+ Daz + (26 + o* + 2) (34)

that derive from the Rodrigues formula (28]) in conjunction with Pearson’s ODE ([).
The whole set of Romanovski polynomials is spanned by the three parameters «, § and

{R@H) . o, 3R, ne N} (35)

n

In order to study their properties we have found it useful to classify them in families. The
properties are stated for each family. We have found two different classifications in families
of different kinds which share different properties, so we distinguish them in the following

two subsections.



A. The R@P) families

The family R(*? contains the polynomials with fixed parameters o and 3.
R@H) = {RP) . n e NY. (36)

This family has one polynomial, and only one, of each degree; two different families do
not share any polynomial in common and the union of all of them gives the whole set of
Romanovski polynomials (i.e., they form a partition of this set).

The first property of one of these families is that which led to their construction: the
family R(*# () comprises all the polynomial solutions of the hypergeometric differential
equation

(1+2*)R"(z) + (262 + )R (x) + AR(x) = 0, (37)

where A is a constant which, for the solution R{” (x), is given by A\, = —n(26 +n —1).
Other characteristic properties of classical polynomials are present in the R(*? family
too, such as a differential recursion relation and an expression for a generating function in
closed form.
The differential recursion relation is obtained from the Rodrigues formula, Eq. (28], for
the polynomial R, () (superscripts («, 3) omitted for clarity).

1 drtt
w(z) dent!

Ry (x) = [w()s(x)™] (38)

Then, because of the very definition of the weight function, Eq. (@), it is easy to see that
[w(@)s(z)™1]) = w(@)s(@)"[2(8 + n)z + al. (39)

Upon substitution in Eq. (38) and a straightforward derivation one gets

n n—1

o (w(@)s(@)"] +2n(6 +n) 7= [W(x)S(I)"]) . (40)

b
w(z)

In the first term, the formula for R, (z) is recognized, while in the second term its derivative,

R,i1(x) = ([Q(ﬁ +n)z + af

R/ (x), appears (by means of Eq. (8) applied to the present case). The result, which makes
use of Egs. (@) and (B1), is the following differential recursion relation

AR ()

2(8+m)(1+ )

= 20+n-1) (RS (2) = 28+ n)z +a]RE(2)) . (41)
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An integral representation of the Romanovski polynomials is obtained by means of the
Cauchy’s integral formula. As the weight function can be extended to the complex plane,
where it is analytic except at points 4, we can use Cauchy’s integral formula to get
1 w@A) (2)s(2)"
@8 ()5 n:_/—d 42
w P z)s(x) 2mi J,, Z—x = (42)
where z is real but z is a complex variable, and v is a closed curve in the complex plane,
enclosing point z, but not +i. Substituting this equation into the definition of Romanovski
polynomials, Eq. (28]), we get
1 d” w@P(2)s(2)"
R@A) (z) = / (2)s(z)" 4, (43)

" 2miw P (x) dam zZ—x

The n derivatives with respect to x can be easily performed under the integral sign, giving

rise to the following integral representation:

R (g) — " /w(aﬂ)(z)s(z)" N "

2miw P (x)

This representation is useful in calculating the generating function, as explained in [3]. A
generating function, R (z,y), of the family R is a function that is analytic in the

variable y and whose Taylor expansion in the variable y has the form

Upon substitution of Eq. ([44]) in previous equation, and interchanging the order of integral

(45)

?v|@

and sum signs (which is allowed since the function is analytic), we get

1 w D (2) ¢~ y's(2)"
(a76) P
R () 27w (@) (z) /y z2—x Z (z —x)k dz. (46)

k=0

The sum is a geometric series, which can be summed as

L) e @

k=0 z—x

provided |yS 2) | < 1. In this case, the expression for the generating function results in an
integral which can be easily evaluated by the method of residues.

1 w@d) (2 1 w@d) (2
R(aﬂ)(;):,y) = - / (2) dz = wd) (1) Res <—(>)>zl) , (48)

2miw @A) (x) [, 2 —x — ys(2) z—x—ys(z

11



where z; is one of the roots (the one closer to x so it is the only one enclosed by «y) of the

second order polynomial in z in the denominator: z —x — ys(z) = —yz? + 2z — (z +y). The
residue is ) )
o, _ a,B
Res <—w (2) ,zl) = (1) : (49)
@ ) T ehtre

where z; = %(1 — /1 —4y(x +y)). Direct substitution gives the final form for the gener-

ating function:
y(]. + A2)6—le—acot*1A
(QyA _ ]_) (]_ + x2)ﬁ—le—acot*1x )

1—+/1—-4y(x+
2y
The next issue to study is the orthogonality properties inside one family. In contrast with

R (z,y) = (50)

where

the classical orthogonal polynomials, these families are not orthogonal with respect to the
weight function w(®#(z) in the natural interval (—oo, 00) as the following counterexample
shows.

Let us consider the family of polynomials with o = 0 and # = 0 and, within it, the

polynomials of degree 0 and 2 which, upon substitution in Eqgs. ([82) and (B4]), result

R O(z) =1, (52)
RO (2) = 2(2 + 1). (53)

Then, an integral of the form of that in Eq. (I2]), in the interval (—oo, 00), takes the form

/ w® ()R () RS (x) da = 2 / dz, (54)
which does not converge. Notice that this poses also a problem with the normalization:
polynomial Rgo’o) (x), for instance, is not normalizable. The most that can be said is the
following theorem [2],[4] that we state and prove, which establishes (the so-called finite)

orthogonality among a few of the polynomials in the family.

If R&? )(1’) and R\ )(:)3), m # n, are Romanovski polynomials of degree m and

n respectively, then

m

/ W@ (2) RO (2) R (z) dar = 0 (55)

oo

if, and only if, m +n < 1 —20.

12



The proof follows the steps of the usual proof of orthogonality of the polynomial solutions of
hypergeometric equations. Express Eq. ([B7) in the adjoint form with the aid of the weight
function (it is possible thanks to the Pearson’s relation in Eq. (7)) for R,,(z) (in the proof
we drop the superscripts («, 3) as they are fixed):

[w(z)s(z)R. ()] + Amw(z) R (z) = 0. (56)

Multiply by R,(z), and do the same as above but interchange m and n. Then subtract and

integrate, which leads to

/ {R.(2)[w(@)s(z) Ry, ()] = R (@) [w(x)s(x) R, (x)]'} do
F O — M) / w(z) Ro() Ry (2) d = 0. (57)
The second integral is the orthogonality integral of Eq. (I2). The first integral, upon in-

tegration by parts, vanishes except for the boundary terms, so we are left with (because

Am # An)

| 0@ R ) Rae) do = 1 (w(@)s(a) B Ri0) — By R} (58)

The boundary term must be evaluated as

Tim M(z) ~ lim_M(z), (59)
where
M(w) = ((1+2%)%e > Ry (2) R, (@) — R (2)Ba()]) (60)

Both limits must exist separately. Notice that the limit of the exponential factor is a positive

constant (1 or e”7)

. The other factors behave as a power of x with exponent (25+m+n—1).
Then, both limits exist if, and only if, this exponent is negative, in which case both are zero,
as claimed.

With a similar argument the following is proved, but we omit the explicit proof:

For the family of polynomials R(®#) only the polynomials R (z) with n < —3

are normalizable, i.e., the integral

/ e () (R ()" da, (61)

—00

converges.
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So, for the family R only the polynomials in a finite subset are normalizable, and only
a finite number of couples are orthogonal. This type of orthogonality is sometimes called

finite orthogonality.

B. The Q@A) families

In order to calculate explicitly a polynomial R (x) one has to evaluate the nth deriva-

tive L= (w@?(z)s(x)"), step by step: first L (w®?(z)s(z)"), then % (w @ (z)s(z)"),

dxn

and so on. It is useful to notice the following relation holds
w @ (@)s(z)" = w' P (x), (62)

as can be seen directly in the definitions of w(®#(z) and s(z), Eq. (25). Thus, it is enough
to have an expression for the vth derivative of w(®®(z). In looking for it one soon discovers

~¥ and

the structure of these derivatives: the vth derivative can be factorized as w(x)s(z)
a polynomial of degree v. For instance, it is easy to calculate directly the first derivative

(compare with Pearson’s ODE ([7))

% [w(o"ﬁ)(x)} = w(a’ﬁ)(x)s(:v)_l[Q(ﬁ — Dz +al. (63)

By induction, it is easy to prove the statement in general: for fixed o and 3, the vth
derivative, v € N, of w(®? () has the form

dl/
dav

(w2 (2)] = Qu(@)w' ™ (2)s(2)", (64)

where @), (x) is a polynomial of degree v. The case v = 0 is trivial, and the case v = 1 is
shown in Eq. (G3). The step from case v to v + 1 is a straightforward derivation. So, for

given «,  and v we define the polynomial Q,(,a’ﬁ ) as

QD) = o (W) (65)

Using Pearson’s ODE ([7) as above the first three polynomials for fixed « and [ are

Qe (x) =1, (66)
(@) =28 - Do +a, (67)
QY () =2(3 —1)(28 — 3)2® + 20(28 — 3)z + 2(8 — 1) + o2 (68)
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By looking at these expressions, and upon comparison with the first three R (x) polyno-
mials, one readily suspects some relation between the polynomials @), (z) and R, (z). This

relation indeed exists and is the following.
The polynomial Q,(,O"ﬁ ) (x) is a Romanovski polynomial, specifically
Q7 = R, (69)

The proof is a straightforward manipulation of Eq. (28)), applied to RYP™) with the aid of

Eq. ([62):

1 d”
(ev,3—v) — (ev,3—v) v
Ru (LL’) - w(aﬂ_V)(x) dxv [’UJ (LL’)S(SL’) ] (70)
- L & [w@P) (2)] .
w(@d) (x)s(x)~v dav
But the last term is precisely the definition of Ql(,a’ﬁ )(:):), Eq. (63).
We now define the family Q®#) as
QA (z) = {Q™? : v e N} = {R™™) . v e N}. (71)

This family contains Romanovski polynomials with one fixed superscript and the other
running with the degree. As in the case of the R families, the Q(®#) family contains one,
and only one, polynomial of each degree; two different families do not share any polynomial
in common and the union of all the families gives the whole set of Romanovski polynomials
(i.e. they constitute another partition of this set).

We now study the properties of the polynomials in the family Q%)

In the first place we give some Rodrigues-looking expressions for the Q,(,O"ﬁ ) polynomials.

The polynomials in the family Q# obey the following formulas:

Q) = e g [0 @)s(e)). (72)
Q) =~ [ )s(a) Q)] 73

w(@d) (z)s(x)~v daev—+

The first one arises right from the definition in Eq. (63) and Eq. ([62). For the second
formula, take p derivatives of w(®%(x) in Eq. (65) and apply the definition of the Q,(f’ﬁ ) (x)

polynomial.
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A second property is the one which makes worthy the definition of the families Q%)
for it captures the exact relation between a Romanovski polynomial and its derivative,
and expresses it in a simple fashion. We already know that if RlP )(1’) is a Romanovski
polynomial, so is its derivative, because it is a solution of the same hypergeometric equation
for the parameters (o, 5+ 1). So dR" and R aﬁ“ ( ) must be proportional. Working
through Eqs. (), (@) and (31), the exact relation results:

AR (@)

- n(28 +n—1) R*7 (). (74)

n—

This equation, when expressed in terms of the @, (z) polynomials, takes the form

Q™" (x .
S ) 40— 1) QD (2. (75)

x

which tells us that in the family Q(®?) each polynomial is the derivative (up to a constant

factor) of the following polynomial in the same family.

For a third property, let us note first that the family Q(®?) obeys the following differential

recurrence relation:

(0r,8)
Q@) = s @D 4 a3+ 0— 1)+ alQE ) (76)

For a proof, derive the definition of Q,(,O"ﬁ ) (x), Eq. ([€5), and get

dQ(aﬁ ( ) 1 dw(a’ﬁ_u)(l’) duw(a,ﬁ)(x) 1 dl/-i—lw(oc,ﬁ) (I)

& @erI@E  do T ) oy R

The second term on the right is s7!()Q'%? (). The first term in the right, after the
derivation of w(®#)(z), gives s~1(z)[2(3 — v — D)z + o]Q"?(x). The result arises after
reordering. Then, the substitution of the derivative formula, Eq. (73]), gives a three term

recurrence relation.

QWP(@) = 208+ v — D +a]QP(2) —v(28 + v — )1+ 2)QL V(@) =0, (77)

from which the polynomials can be efficiently generated, in contrast to the Rodrigues formu-

0 ()

las. A fourth property states that Q is the polynomial solution to the hypergeometric

differential equation
(1+2%)Q"(x) + [2(8 — v)z + aJQ'(z) + \.Q(x) =0, (78)
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where A\, = —v(23 — v — 1). This equation is just the hypergeometric differential equation
B7) for the polynomial RiP ( ), which is QP (x), so it is proved.

The fifth property is that there exists a generating function Q@ (x,5) in closed form
for the family Q®#) which is an analytic function whose Taylor expansion in the variable

y is given by

[e.e]

QI y) =" (79)

=0
By substituting the definition of Q\™” (), Eq. (65)), in previous equation and grouping

factors and setting z = = + ys(x) we get

Qe ) = ke 3 W ey

w(@f)(z) vl dav
v=0
80
_ 1 i(z—m’) d” [ (aﬁ)( )]| ( )
w(@d)(z) —~ v dzv v

which is a Taylor expansion of the function inside the derivative at the point (x + ys(z))
with base point z. Thus, the summation of the series is given by w(®? at the point B =
r+ys(x) =z +y(1 + 2%). The result is

(1 + B2)ﬁ—1e—o¢cot’1B
(1 _._x2>6—le—acot*1x )

QU (w,y) = (81)

from which numerous recursion relations, such as Eq. (7)), may be derived as usual [17],
[18], [19].
We now address an orthogonahty property of the Ql(,a’ﬁ )(x) polynomials. Polynomials in
the family Q(#) with 3 < ¢ — satlsfy the following relation:
* wed(z) QR (x) Q7 (x)
/ dz =0, (82)

o sx)z  s(x)T  s(x)z

where m # n and € = 1 if m+n is odd, and € = 2 if m +n is even. This is an orthogonality
integral between the functions Q'e” /s(z)™2 and Q'™ /s(x)™? built on top of the poly-
nomials in Q# . In contrast to the orthogonality relations in the R(*# families, which
are valid only for a finite subfamily of polynomials, Eq. (82)) applies to the whole family
Q@A In terms of the Romanovski polynomials in Eq. ([©9) the integral in Eq. (82) takes

the following form

[\t B ) fues @) R ) ar =0, (59
oo S\x
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which can be read as orthogonality within the infinite sequence of polynomials R,(f"ﬁ ") Wwith
a running parameter attached to the polynomial degree.

In fact, Eq. (82) stands for two different results which require separate proofs. In any
case, since m # n, we can take m > n. Let us consider first the case of even m + n. Then,

the integral of Eq. (82) is

0o, (o,8) (o,3) (,8)
O = / woAe) @n o) @ (0) g, (84)
b s@) s(@)F 0 s(2)2
Upon substitution of Q5" (x) by its definition, Eq. (63), we get
Omn = / s(x)%(m_")_lQ,(f’ﬁ) (x)ic—mw(a’ﬁ) (x) du. (85)

Because m + n is even and m > n, then m —n — 2 is an even, nonnegative, integer. Thus,
s(z)2m =1 is a polynomial of degree m—n—2 and s(z)%(m_")_nga’ﬁ)(x) is a polynomial of
degree m — 2, which we call P,,_5. Then, after m — 1 integrations by parts, m — 1 derivatives

are applied to P,,_5 so it vanishes and we are left only with the boundary terms.

m—1 00

d*1P, _o(x) d™Fw @) (z)
Omp =Y (—1)F! z . 86
N (56)
For each k, the derivative of P,,_5 is a polynomial of degree m — k — 1 whereas the m — k
(a,8)

derivative of w(®# is given in terms of the polynomial Q,""), again by its definition in

Eq. (65). Then, the & boundary term results

d*=1 P, _o(x) d™Fw(@d) (z)
dxk-1 dxm—Fk

_ e—acotflx(]_ + $2)ﬁ—m+k—1p2m_2k_1($), (87)

where pgm_gk_l is a polynomial of degree 2m — 2k — 1. The asymptotic behavior of this

28-3

term at 400 is the same as x and, thus, it goes to zero if, and only if, § < %

The proof of the case with (m + n) odd is similar.

IV. RELATIONSHIP BETWEEN ROMANOVSKI POLYNOMIALS AND JA-
COBI POLYNOMIALS

Romanovski and Jacobi polynomials are closely related. In fact, it is common that
Romanovski polynomials are referred to as complexified Jacobi polynomials [1], [10]. In

this section we are showing which is the precise relationship between them and which is not:
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Romanovski polynomials can indeed be obtained from a generalization of Jacobi polynomials
to the complex plane, but not through the complexification of Jacobi polynomials, which is
a different issue. Let us distinguish both concepts.

For ease of reference, we recall here equations () and (2]), which are the equations

Romanovski polynomials and Jacobi polynomials solve, respectively.

(14+2*)R" +t(x)R' + AR =0, (88a)
(1—a2*)P"+t(x)P' + AP =0, (88b)

where t(z) is a polynomial of, at most, first degree.

The argument of the complexification is based on the fact that the change from x to ix
transforms the coefficient (1—2?) in Eq. (88L) into (1+2?%), the coefficient in Eq. (88a)). But
caution is needed with this idea. Complexification is a transformation which takes real valued
functions of a real variable into complex functions of a real variable. If g : i/ C R — R is
such a real valued function, defined in an open subset of the real line, we define the function

g:U CU — C by the recipe (wherever it makes sense)

g(x) = g(ix). (89)

The new function g may, or may not, be well defined in all the points of & and may, or may
not, inherit the continuity and differentiability properties of ¢ in all points of ¢ (think, for
an instance, of the function g(z) = (1 + 2?)7!). In the case g happens to be a polynomial
it is easy to see that both continuity and differentiability are indeed respected. Then, the

derivatives of g and g with respect to = satisfy the following identity:

g =g, (90)

ne{0,1,...}.
Complexification respects the sum and product operations, i.e., f:/g = f+ g and j?jq = ffq'
(it is a ring homomorphism from a ring of real valued functions of a real variable to the
ring of complex valued functions of a real variable). Thus, if the function ¢ is a solution
to a linear differential equation, then g is a solution of the complexification of that linear

differential equation. The application of this argument to the Jacobi polynomials gives the

result that P\ (z) = P{*? (iz) verifies the complexification of Eq. (88E), namely
(14 22)(P)" +it(iz)(P) — AP =0, (91)
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where the prime still stands for derivative with respect to the real variable z. But equation
(@T)) is not the same as equation (88al) unless i t(ix) is real. If we write t(z) = —a — (o +
B+ 2)z, as is customary in the Jacobi equation (see Eq. (Id)), we need (a + [ + 2) to be
real and (5 — «) to be imaginary, which is achieved only if o and 3 are complex and § = o*.
Hence we have to consider the functions P{*? (1z) with complex parameters o and (3 which
are no longer the complexification of the classical Jacobi polynomials as described above. So,
the complexification of Jacobi polynomials does not result in the Romanovski polynomials.
But, even in case it did, not all the properties of Jacobi polynomials would be translated to
properties of Romanovski polynomials: only those which made use of theorems like equation
@0), which relates the derivatives. For instance, there is no theorem relating integrals of
a complexified function and the original function; thus, all the properties depending on
integrations, such as the orthogonality, would have no translation to the complexified version.

An alternative scenario is to extend the definition of Jacobi polynomials to the complex
plane: complex variable z, complex parameters o and [ and, obviously, complex values. In
[20] this definition has been successfully given as

P9(z) = % Z (Z ! Z) (n Z ’ ) (1=2)" (1 +2)"" (92)

k=0
or, equivalently, by the Rodrigues formula
-5 A"
dz"

which are formally the same as the classical ones except now z,a,08 € C while n €

P}La’ﬁ)(z) = L(1 —2)7 Y1+ 2)

= o [(1—z)" (1 +2)"7], (93)

{0,1,2,...}. These polynomials solve the complex Jacobi ODE
(1—=2)P'(2)+[B—a—(a+B8+2)zP(2) + (a+ B+ 1+n)nP(z) =0, (94)

where the prime stands now for the derivative with respect to the complex variable z.

The specialization of the variable to the imaginary axis, z = iz, and the parameters to
8 = a* leaves us with Eq. (88al) (notice the change from d/dz to d/dz gives an extra i), so
these complex Jacobi polynomials solve the differential equation that define the Romanovski
polynomials. One has to prove now that functions P,Sa’a*)(z) restricted to z = iz are real
valued or, at least, proportional to a real valued one. This is easily achieved by computing

the complex conjugate of the function P (iz) in terms of the definition in Eq. (@2

plaa)(jzyr = (1" zn% (2?2) <n Z O‘) (1 + iz)*(1 — iz)"", (95)
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With a change in the summation index from k to | =n — k, we get
Py (iz)" = (—1)" Py (ix), (96)

i.e., for even n, P,go"o‘*)(z'x) is real, while for odd n, it is imaginary. Hence, the combination
i”Pyga’a*)(ix) is a real function for all n. Finally, because the polynomial solutions of a
hypergeometric differential equation are unique for each degree, up to a constant factor,
we conclude that i"P,ga’a*)(ix) is the Romanovski polynomial of degree n with parameters
—2%(«) and —(R(a) + 1). In other words, complex Jacobi polynomials do provide another

characterization of the Romanovski polynomials via
R () = in Pyt 7722 (i) (97)

(with suitably chosen normalization constants for the Jacobi polynomials). However, this
alternative characterization is of no help when it comes to study the orthogonality properties,
because the orthogonality properties of the complex Jacobi polynomials are not well known.
In [20] the authors state some new results on the orthogonality along some particular paths
in the complex plane. For instance, in their Eq. (4.3) an orthogonality relation is given
along the imaginary axis, which is our case, but only for a special case demanding real, not
integer, parameters, which is not our case. To our knowledge, at the present time there are
no results concerning the orthogonality of these complex polynomials which would provide
an alternative approach to the results on orthogonality stated in Subsection [ITAl
The argument presented here states that Romanovski polynomials are just a subset of
complex Jacobi polynomials. Therefore it may seem that Romanovski polynomials are,
somehow, subordinated to the Jacobi polynomials. But the whole argument could be re-
versed if we had a definition of complex Romanovski polynomials as the one given in Ref. [20]
(here reproduced in Eq. ([@2))). If that would be the case, it would not be surprising to get
a relation of the form
Pysa,ﬁ) (z) = (in)Rg(a—ﬁ)é(aw)H)(ix)

)

o) L (e
where, now, Pyga’ﬁ)(:c) is a real Jacobi polynomial and RUe=Aal +6)+1)(

iz) would be a
complex Romanovski polynomial. But, as we do not have such a definition, this last formula

is nothing but a conjecture.
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V. ROMANOVSKI POLYNOMIALS IN SELECTED QUANTUM MECHANICS
PROBLEMS

The Romanovski polynomials are part of the exact solutions of several problems in ordi-
nary and supersymmetric quantum mechanics. In this section we review a few prominent
cases. The selection of the examples certainly reflects personal preferences and does not
pretend to be complete.

In general, the exactly soluble Schrodinger equations enjoy a special status because most
of them describe phenomena that play a key role in physics. Suffice it to mention in that
regard such textbook examples as the description of the spectrum of the hydrogen atom in
terms of the Coulomb potential |21], or the description of vibrational modes in molecules and
nuclei in terms of the Hulthen and Morse potentials [22], [23]. More recently, exactly soluble
potentials acquired importance within the context of supersymmetric quantum mechanics
(SUSYQM) which considers the special class of Schrédinger equations (H(z) — E)¥(z) = 0,
with H(z) standing for the Hamiltonian (of the one-dimensional, real variable z), and E
for the energy, which allow [24] a factorization of H(z) according to H(z) = A*(2) A (2) +
Euq, and A7 (2)Ugqy(2) = 0. SUSYQM provides a powerful technique for finding the exact
solutions of Schrodinger equations. To be specific, any excited state can be obtained by
the successive action on the ground state, Wy (2), of an appropriate number of creation
operators, A*(z), defined in terms of the so-called superpotential, U(z), as

AE(z) = (:t\/%% +L{(z)) |

Supersymmetric quantum mechanics governs a family of exactly soluble potentials (see
Refs. [25]- [28] for details) two of which are the so-called hyperbolic Scarf and trigono-
metric Rosen-Morse potentials, that have been solved recently in [6], [7], [L6] in terms of the
Romanovski polynomials as discussed in the next two subsections. The third subsection is

devoted to applications of the Romanovski polynomials in random matrix theory.
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A. Romanovski polynomials in problems with non-central electric potentials

The (one-dimensional) Schrédinger equation with the hyperbolic Scarf potential is

(98)

— B(2A+1 h )
cosh” z (24+1)tan Zcoshz

This equation appears, among others, in the problem of a particle within a non-central scalar
potential, a result due to Ref. [9]. In denoting such a potential by V'(r,#), one can make for

it the specific choice of

re (99)
Vo(0) = —bcot 6.

An interesting phenomenon is the electrostatic non-central potential in which case V;j(r) is

the Coulomb potential. The corresponding Schrodinger equation

{712{1828 1 9 . .0 1
- —sinf— +
21

S R ANI . . o v
2or or ' Zsm0o0 " o0 rzsin26’a¢2}+v(r’9)} (r:6.)

= EVY(r,0,¢), (100)

is solved in the standard way by separating variables. As long as the potential does not

depend on the azimuthal angle, one assumes
U(r,0,0) = R(r)0(0)e™ . (101)

The radial and angular differential equations for R(r) and ©(f) are then found as

ddRrgr) N %d@ﬁr) N E—’;[%(r) . l(l; 1))} R(r) =0, (102)
and
TOO) + oty [1(1 1) 2“‘;22(9) - sgf?e] o) = 0. (103)

with [(l 4+ 1) being the separation constant. From now on we will focus on the second
equation. Notice that for V5(f) = 0, and upon changing variables from 6 to cos 6, the last

equation transforms into the associated Legendre equation and correspondingly

V2(0)—0
_

O(0) P"(cosb), (104)
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an observation that will become important below.
Following Ref. [9] one begins with substituting the polar angle variable by a new variable,

z, introduced via 6 = f(z), with f to be determined. This leads to the new equation

lj—; + [— j;,/((;) + f'(2) cot f(z)] d%

v ey - ] e e =0 (o
n? sin? f(z2) B
with f'(z) = d];(;), and 1 (z) defined as ¥(z) = ©(f(z)). Next one can require that f'(z)
approaches zero at z = 0 like sin z, meaning, lim, .o f'(z)/sin z = 1, and define f(z) via
")
= f'(2) cot f(z). 106
8 = FG e ) (106)
The latter equation is solved by f(z) = 2tan~! e*. With this relation one finds that
) 1
sinf = —— cos = —tanh z , (107)
and consequently, f’(z) = sin f(z) = sechz. Upon substituting the last relations into
Egs. [@9), and (I03), one arrives at
P(2) L o :
l(l+1 — —btanh — =0. 1
2 T (I + )cosh2z pzbtanhz—o— —m Y(z) =0 (108)

In taking in consideration Eqgs. (O8], (I07) one realizes that the letter equation is precisely

the one-dimensional Schrodinger equation with the hyperbolic Scarf potential and with
e [(I + 1) playing the role of —(B* — A(A + 1))/ (R*/(2w)),
e m? playing the role of —E,/ (1*/(2w)),
e b playing the role of —B(2A + 1).

This equation has been solved in terms of the Romanovski polynomials in Ref. [6] upon sub-
stituting sinh z = x. Notice that there the weight function was defined as (14 22) Pedtan™" =,
and the polynomials have been labeled correspondingly as RP9 (x), following [29]. A com-
parison with Eq. (28] allows identifying p — —f3 4+ 1, ¢ — «. In terms of the notations
of the present work, the result of Ref. [6] can be cast into the following form:

Yn(2) = Cp1 + (sinh ,2)2]%_i o2 tan ! sinh = plesd) (ging 2,
(109)

a=-2B, ﬁ:—A+1

27 En:_(A_n)27
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with C), being a normalization constant. Back to the 6 variable and in making use of the
equality x  Ginh 2z = — cot 0, we find

B
2

I,

O(0) = by (sinh! (= cot ) = C,y[1 + (cot §)%]2 7 eZ 0 (=t RO (_coth),  (110)

showing that the angular part of the exact solution to the non-central potential under con-
sideration is defined by the Romanovski polynomials. In turning off the non-central piece
of the potential, the angular part of the solutions will become the standard spherical har-
monics, Y;"(0, ¢) = P™(6) ™, which will produce a relationship between the Romanovski
polynomials and the associated Legendre functions, an issue to be considered in more detail
at the end of this section.

Now, in accord with the theorem on the finite orthogonality of the Romanovski polyno-
mials in Eq. (53)), also only a finite number of eigen-wave functions to the hyperbolic Scarf
potential appears orthogonal,

Foo +o0
U@z = Oy [ 0D @) RGN @) R (0) = b
—00 00 (111)
m+n<24.
This finite orthogonality reflects the finite number of bound states within the potential under
consideration.

Next, it is quite instructive to consider the case of a vanishing V5(0), i.e. b = 0, and
compare Eq. (I08) to Eq. [@8) for B = 0. From now on we will give all quantities in units
of h =1 =2u. In this case

e Eq. (I08) reduces to the equation for the associated Legendre polynomials, P/™(cos#),

e [ becomes A,

e m? becomes (I —n)?,

0=0,f=—1+1
e Eq. (98) produces R l+2)(1’) as part of its solutions,

which allows one to relate n to [ and m as m = [ —n. In taking into account Eq. (L104])
together with cot® = —sinh z provides the following relationship between the associated

Legendre functions and the Romanovski polynomials

1_
P (cos0) = const[1 + (cot 0)2 72 Rz (— cot ) |
(112)
m+l=ne{0,1,... 1}
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In substituting the latter equation into the orthogonality integral between the associated

Legendre functions,

1
/ P™(cos @) P (cos @) dcos =0,

-1 (113)
A

we find

1 , 1
/ (11 (ot ) RO~ cot 6) B2~ cot 0)d cos § = 0,
o (114)

147

The latter relationship amounts to the following orthogonality integral

/ (1+ (sinh 2)?)~ 4 R(0’2 (sinh z)RES’%_l,)(sinh z)(sech 2)*dz =

r=sinhz, l—n=0—-n"=m>0, [#I' (115)

Careful inspection shows that this equation is nothing but a particular case of the orthogo-
nality relation in the family of polynomials Q(*#), established in Eq. (82) and translated to
the R notation in Eq. (83).

A further example is given by the Klein-Gordon equation with equal scalar and vector
potentials. It has been shown in Ref. [§] that the former can be reduced to the corresponding
Schrodinger equation. Therefore, in case one uses the hyperbolic Scarf potential in the above
Klein-Gordon equation, one will face again the Romanovski polynomials as part of its exact

solutions.

B. Romanovski polynomials in quark physics.

The interaction of quarks, the fundamental constituents of the baryons, are governed by
Quantum Chromodynamics (QCD) which is a non-Abelian gauge theory with gauge bosons
being the so called gluons. QCD predicts that the quark interactions run from one- to many
gluon exchanges over gluon self-interactions, the latter being responsible for the so-called
quark confinement, where highly energetic quarks remain trapped but behave as (asymptot-

ically) free particles at high energies and momenta. The QCD equations are nonlinear and
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FIG. 1: The non-central potential V' (r,0), here displayed in its intersection with the z = 0 plane,
. _ _ _1 . . . .
i.e. for r = \/y? + 22, and 6 = tan % The polar angle part of its exact solutions is expressed in

terms of the Romanovski polynomials.

complicated due to the gluonic self-interaction processes and their solution requires employ-
ment of highly sophisticated techniques such as discretization of space time, so-called lattice
QCD. Lattice QCD calculations of the properties of hadrons, which are all strongly interact-
ing composite particles, predict a linear confinement potential with increasing energy. The
one-gluon exchange potential, which is Coulomb-like, ~ 1/r, adds to the linear confinement
potential, ~ r, a combination that is believed to provide the basic properties of two-body
(mainly quark-antiquark) systems as concluded from quark model calculations. In contrast
to this, three quark systems (baryons) have been believed for a long time to involve more
complicated interactions depending on the internal quark degrees of freedom such as their
spins, isospins, flavors, and combinations of them, while the potential in coordinate space
has been considered of lesser relevance and modeled preferably by means of the harmonic
oscillator. However, in so doing, one encounters the problem of a serious excess of predicted
baryon excitations in comparison with data |30] (so called “missing resonances”).

More recently, the structure of the baryon spectra has been re-analyzed in Refs. |31] with
the emphasis on the light quark resonances. The result was the observation of a striking

grouping of resonances with different spins and parities in narrow mass bands separated
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by significant spacings. More specifically, it was found that to a very good accuracy, the
nucleon excitation levels carry the same degeneracies as the levels of the electron with spin
in the hydrogen atom, though the splittings of the former are quite different from those of
the latter. Namely, compared to the hydrogen atom, the baryon level splittings contain, in
addition to the Balmer term, also its inverse but of opposite sign. The same was found to
be valid for the excitation spectrum of the so called A(1232) particle, the most important
baryon excitation after the nucleon. The appeal of these results lies in the fact that no
state drops out of the systematics, on the one side, and that the number of “missing”
states predicted by it is significantly less than within all preceding schemes. The observed
degeneracies in the spectra of the light quark baryons have been attributed in Ref. [32] to
the dominance of a quark—antiquark configuration in baryon structure. Within the light of
these findings, the form of the potential in configuration space acquires importance anew.
In Refs. [7],[16] the case was made that the trigonometric Rosen-Morse potential provides
precisely degeneracies and level splittings as required by the light quark baryon spectra. The

trigonometric Rosen-Morse potential in the parametrization of Ref. |[16] reads:

1
virm (2) = —2bcot z + (1 + l)sin2 ~ (116)

with [ standing for the relative angular momentum between the quark and the di-quark in
units, as usual, of i = 1 = 2y, and z = 7 is a dimensionless variable built with a suited
length scale d.

The reason for the success of this potential in quark physics is that it captures the essential
traits of the QCD quark-gluon dynamics in interpolating between the Coulomb potential
(associated with the one-gluon exchange) and the infinite wall potential (associated with the
trapped but asymptotically free quarks) while passing through a linear confinement region

(as predicted by lattice QCD) (see Fig. 2). It is quite instructive to perform the Taylor

expansion of the potential of interest,

20 20 I(l+1)  I(+1
(i & ——+ 52+ ( 5 ) 4 (15 )24

. - (117)

This expansion clearly reveals the proximity of the cot term to the Coulomb-plus-linear
confinement potential, and the proximity of the csc? term to the standard centrifugal bar-
rier. The great advantage of the trigonometric Rosen-Morse potential over the linear-plus-

Coulomb potential is that while the latter is neither especially symmetric, nor exactly soluble,
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FIG. 2: The trigonometric Rosen-Morse potential (solid line) and its proximity to the Coulomb-
plus-linear potential as predicted by lattice QCD (dashed line) for the toy values I = 1,b = 50 of

the parameters.

the former is both, it has the dynamical O(4) symmetry (as the hydrogen atom) and is ex-
actly soluble. The exact solutions of the, now three dimensional, Schrodinger equation with
viram (2) from Eq. (II6]) have been constructed in [16] on the basis of the one-dimensional

solutions found in [7] and read:

_ —(n 2
Ynleot™ ) = (14 22 F et ot 2O ), (118)
with & = cot z. The C polynomials from [7] are Romanovski polynomials but with parame-

ters that depend on the degree of the polynomial. The following identification is valid:

(—(n+0)+1,277)

(:21 (:U) = .l%(cxn7[3n) (ﬂf),

n

2b l 1 0,1.2 (119)
- Bn=—Mm+1)+1, ne{0,1,2,...}

Qn

The Schrédinger wave functions are orthogonal, as they are eigenfunctions of a Hamilton

operator. Their orthogonality integral (here in z space) reads

/07r dz Py (2)n (2) = Op - (120)

The orthogonality of the wave functions v,(z) implies in x space orthogonality of the

R ”)(x) polynomials with respect to w®%")(2)% due to the variable change. As long as
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deot T2 — _1/(1+ 2?) = —1/s(z) then the orthogonality integral takes the form

&0 d o1 !
/ S @) R ) o O R @) = b (120
oo S(T

To recapitulate, the Romanovski polynomials have been shown to be important ingredients

of the wave functions of quarks in accord with QCD quark-gluon dynamics.

C. Romanovski polynomials in random matrix theory

Random matrix theory was pioneered by Wigner [33] for the sake of modeling spectra
of heavy nuclei which are characterized by complicated interactions between large numbers
of protons and neutrons. Wigner’s idea was to limit the infinite dimensional Hamiltonian
matrix in configuration space to a finite, real quadratic (N x N), and symmetric, matrix
with elements being chosen at random from a suitable probability density distribution, say,
the Gaussian one. Along this line one can then model the densities of the nuclear states
as averages over the weighted sets of matrices. The advantage of this method is that as
N — o0, the (normalized) eigenvalues of any randomly chosen matrix approach the limits
of the corresponding system averages, much like the general limit theorem. The probability
density distribution (p.d.f.) of the eigenvalues of the Gaussian ensemble of random matrices
is given by (the presentation in this section closely follows Ref. [34]):

CLNe—é X [T -l (122)
1<j<k<N
where Cy is the normalization constant and ); are the eigenvalues. Besides the Gaussian
random ensemble there are other random matrix ensembles under consideration in quantum
physics such as the circular Jacobi ensemble and the Cauchy ensemble, and precisely these
are of interest in the present section. However, their definitions require us to go beyond
the ensembles of random real matrices and consider matrices with complex entries. To be
more specific, one considers random ensembles composed by symmetric, unitary matrices, in
which case the theory is not developed from an explicit distribution density function for their
elements but rather from the requirement of the existence of a certain appropriate uniform
measure. The random unitary matrix ensemble is special not only because it forms a group
but mainly because this group is compact and allows for the definition of the so called Haar

volume, which then provides the uniform measure on the space as required above.
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Definition: The circular unitary ensemble is the group of unitary matrices U

endowed with the volume form (dyU) = & (U'U) = idM, with M, hermitian.
The eigenvalues of the circular ensembles are confined to the unit circle, i.e. to \; = '
with —m < 6; < 7. The associated probability density distribution of the eigenvalues is then
given by
1 . .
= I lem=el,
1<j<k<N (123)
—T <O <.
More generally, an ensemble of unitary and symmetric matrices has an eigenvalues p.d.f of

the form (in the notations of Ref. [34])

N
sz(zl) H |2k — 21,
=1

1<j<k<N (124)

0 27mix

z=¢=¢e1, 0€0,2r), x€[0,L),

where wq(2;) is a specific weight function. The circular Jacobi ensemble is specified by
wo(2) = |1 — z**. (125)

A relevant research goal in quantum physics is finding the spacings in the spectra of the
circular Jacobi ensemble. Compared to the state densities, the calculation of gap proba-
bilities in the spectra deserves special efforts. In this section we review briefly the concept
for the calculation of gap probabilities in the circular Jacobi ensemble by means of the so
called Cauchy random matriz ensemble, a venue that will conduct us one more time to the
Romanovski polynomials .
To begin with, one considers the mapping
, 14X

e = T (126)

which maps each point A on the real line to a point § on the unit circle (measured anticlock-

wise from the origin) via a stereographic projection. Changing correspondingly variables in

Eqgs. (I124)—-(I25) amounts to the following eigenvalue p.d.f.:

N

[Ta+x)=" I =Al

1=1 1<j<k<N (127)

Aj € (—00,+00) .
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As long as one recognizes in the weight function the Cauchy weight, the random unitary
matrix ensemble generated this way is termed the Cauchy ensemble. On the other hand,
a comparison with the weight function of the Romanovski polynomials reveals the Cauchy
weight as w(® V=% (z), an observation that will acquire a profound importance in the
following.

Back to the main goal, the gap probability, or better, the probability for no eigenvalues

in a region I, denoted by E(0, /), and for the case of any ensemble is now calculated as [34]

E0,I)=1+ Z (—nll)" /Idzvl.../ldzndet Z_ wa(z;)pr(zi) 1/ walx)pi(z5) | (128)

where p;(z) with [ = 0,1,2,... stand for the orthogonal polynomials associated with the

weight function wy(z). In other words, knowing the orthogonal polynomials is crucial for
the calculation of gap probabilities in any random matrix ensemble. In the specific case under
consideration, one seems to have two options in the choice for those polynomials, Romanovski
versus Jacobi polynomials in accord with their relationship established in Eq. ([@7)). The
choice is clearly in favor of the Romanovski polynomials because the formalism developed
for calculating F(0, I) (see Ref. [35] for details) is based on real coupled differential equations.
In choosing the Romanovski polynomials one, to speak with the authors of Ref. [34], avoids
the clumsy and unnecessary work of recasting the formalism on the circle, i.e. in terms of
the complexified Jacobi polynomials. In summary, the Romanovski polynomials (termed
Cauchy weight polynomials in Ref. [34]) provide a natural and comfortable tool for finding

all the results for the circular Jacobi ensemble from those of the Cauchy ensemble.

VI. ON THE ORTHOGONALITY RELATIONS

We have shown in the previous sections not one but several different orthogonality rela-
tions among the Romanovski polynomials. In this section we comment on this issue.

First we have shown, in Eq. (53, a finite orthogonality in the family R(®® (that of
polynomials with fixed parameters a and 3). It is the equivalent relation to the well known
orthogonality of the Hermite, Laguerre and Jacobi polynomials, except that in these cases,
there is complete orthogonality. The finite orthogonality, however, is required as such in
the solution of the wave eigenfunctions of the hyperbolic Scarf potential, see Eq. (I11]) in

subsection [V Al or Ref. [6]: in this case only a finite number of states are bounded; precisely
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those which are normalizable. The orthogonality relation in the Q*# family, Eq. (82),
is a complete, not finite, orthogonality: it is valid for all the polynomials in the family.
The difference with the previous is that the Q@ family is made up with Romanovski
polynomials with one fixed parameter but the other running attached to the degree. This
different orthogonality also find its application in, for instance, Eq. (I15)) in subsection [V Al

Finally another physics problem, the eigenfunctions of the trigonometric Rosen-Morse
potential studied in 7] and [10] and revised in Subsection [V Bl has given rise to yet another
orthogonality relation: the one in Eq. (I2I]), which is very similar to the orthogonality
in the Q% family, but not equivalent. The polynomials involved in Eq. (I2I) have both
parameters, « and [ running with the degree, as shown in Eq. (I19]). This last orthogonality
is proved not directly as the others, but by means of the Schrodinger equation where it comes
from: as the functions involved are the eigenfunctions of a self-adjoint operator, they are
orthogonal. Here, thus, it seems as if the Schrédinger equation carefully chooses, from
the set of all Romanovski polynomials, another family with a special combination between
parameters and degrees such that another orthogonality relation surfaces. This kind of fine
tuned combination of parameters is not completely new. Here is a well known instance: the
radial part of the well-known solution of the hydrogen atom, which is given by

i

2
In z

Rnl(xn) = an—e_TnL 1_75/_1(1,”)’ /61 =2+ ]-7 T = QpT, (129)
/T "

where z,, is the dimensionless but n dependent variable (see also Problem 13.2.11 in Ref. [19]),
while 7 is the radial one. Here L& (x) is the generalized Laguerre polynomial of degree
m as introduced after Eq. (IT). Notice that Laguerre polynomials of different degrees in
Eq. (I29) emerge within different potential strengths, Ze? /a,,, and, henceforth, the orthog-

onality relation given by the Schrédinger equation

- I% 2o 7 (1,6:) I% Inl o (1,8) 2
Le_T”LL sl l»n Le_ ’él L sl l’n’ T dxn — 0’
| S R L ) S H LG, ) )
Q!
Br=2k+1, mupr=n—k—1, n#n, Ty=-—"u,,

is not equivalent to the orthogonality given by the weight function, Eq. (I8), here restated

fora=1

(131)
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In particular, notice that Eq. (I31)), when 5 € N, is recovered from Eq. (I30) in the case
I =1, but for 5 ¢ N both formulas are completely different.

In the Introduction we said that, perhaps, the lack of general orthogonality of Romanovski
polynomials has been seen as a weakness and because of it they have not attracted as much
attention as the classical orthogonal polynomials. Now we have shown that, far from being
a weakness, the various orthogonality relations of Romanovski polynomials give them new

appealing properties which widens their possible applications.

VII. CONCLUSIONS

We have presented a fairly complete description of the Romanovski polynomials as so-
lutions of the hypergeometric differential equation (), properties derived from it and some

applications, with the following prominent items:

1. We have described a complete classification of the hypergeometric differential equations

in order to place Eq. () in its proper context.

2. We have described completely, in Eq. (28] the polynomial solutions to Eq. (I, which
are the Romanovski polynomials. We have also stated some known and some new
properties of these polynomials. We have proposed different partitions of the set of
all Romanovski polynomials into families which allows one to express the plethora of
properties in a simpler and more ordered form. This approach can be applied as well to
the other four classes of polynomial solutions of hypergeometric equations: Hermite,

Laguerre, Jacobi and Bessel.

3. In particular we have stated exact results about several orthogonality relations among
the Romanovski polynomials. We have shown that a family of Romanovski polynomi-
als, solutions to the same hypergeometric equation, is not completely orthogonal, but
exhibits a finite orthogonality, Eq. (53). However, we have found two other orthog-
onality relations, in families with running parameters (attached to the degree of the

polynomial) which provide infinite orthogonality, Eqgs. (82) and (I21)).

4. The relationship between Romanovski polynomials and Jacobi polynomials has been
precisely stated: Romanovski polynomials cannot be obtained as just a complexifi-

cation of Jacobi polynomials (i.e., change x by ix), but they can be realized as a
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particularization of complex Jacobi polynomials (an extension to the complex plane
with complex parameters). Yet, despite this relation, these complex Jacobi polyno-
mials are not completely understood so, for instance, the orthogonality properties of
Romanovski polynomials cannot be derived, at the present time, from properties of

the Jacobi polynomials.

5. We have presented three instances of the use of Romanovski polynomials in actual
physics problems. In particular the polynomials introduced in 7] and [6] are recognized
as Romanovski polynomials. The orthonormality relations shown in these references

are explained in this context.
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