International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072046 doi:10.1088/1742-6596/331/7/072046

CMS Configuration Editor: GUI based application for user
analysis job

A de Cosa"

Istituto Nazionale di Fisica Nucleare Sezione di Napoli
Complesso Monte Sant’ Angelo, Ed. 6 — Via Cintia
[-80126 Napoli, Italy

E-mail: annapaola.de.cosa@cern.ch

Abstract. We present the user interface and the software architecture of the Configuration
Editor for the CMS experiment. The analysis workflow is organized in a modular way
integrated within the CMS framework that organizes in a flexible way user analysis code. The
Python scripting language is adopted to define the job configuration that drives the analysis
workflow. It could be a challenging task for users, especially for newcomers, to develop
analysis jobs managing the configuration of many required modules. For this reason a
graphical tool has been conceived in order to edit and inspect configuration files. A set of
common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and
configured using the Config Editor. A user-defined analysis workflow can be produced starting
from a standard configuration file, applying and configuring PAT tools according to the
specific user requirements. CMS users can adopt this tool, the Config Editor, to create their
analysis visualizing in real time which are the effects of their actions. They can visualize the
structure of their configuration, look at the modules included in the workflow, inspect the
dependences existing among the modules and check the data flow. They can visualize at which
values parameters are set and change them according to what is required by their analysis task.
The integration of common tools in the GUI needed to adopt an object-oriented structure in the
Python definition of the PAT tools and the definition of a layer of abstraction from which all
PAT tools inherit.

1. Introduction

The analysis workflow for the CMS experiment is based on the concept of modular analysis, and it is
completely managed within CMSSW, the framework of CMS [1]. CMSSW provides a flexible way to
develop user analysis code. The Python scripting language is adopted to define the job configuration
that drives the analysis workflow by managing all modules involved and setting parameters for each
one. The number of modules involved is usually rather high, making challenging operations such as
inspecting and editing of the entire configuration. The ConfigEditor is a graphical tool conceived to
facilitate physics analysis development in the CMSSW environment. It makes use of a set of common
tools defined in the CMS Physics Analysis Toolkit (PAT) [2][3][4]. They can be steered and
configured allowing customization of data flow and analysis to fit specific user physics issues. The

Universita degli Studi di Napoli “Federico II”’, Naples, Italy

> INFN Sezione di Napoli, Italy

Published under licence by IOP Publishing Ltd

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072046 doi:10.1088/1742-6596/331/7/072046

integration of PAT tools in the Graphical User Interface (GUI) is achieved by applying an object-
oriented organization in their definition.

The design of the ConfigEditor is aimed to meet needs of all kind of users, independently from their
level of experience. One of the main goals of this tool is the absence of any programming knowledge
requirements for developing a basic analysis. A typical user-defined analysis can be produced starting
from a standard configuration file, applying and configuring PAT tools according to the requirements
of the specific task. The ConfigEditor allows to create such analysis without writing any lines of code,
providing at the end of browsing-editing chain as final product a Python configuration file ready to be
run.

The two main features of the ConfigEditor are Browsing and Editing configuration files. They will be
explained in detail in the next two sections. The section 4 will be dedicated to more technical details
on object-oriented structure conceived for tools integration with the GUI.

. YeYe \| ConfigEditor
File Edit View Config Help
: U?er ﬁ m Import configuration ~ Apply tool

UNTITLED
Generated by ConfigEditor ### = Property Value =
import sys Object info
import os.path label t
sys.path.append(os.path.abspath(os.path.expandvars(os.path join('$CMSSW_BASE','src/Physit patiiuons
sys.path.append(os.path.abspath(os.path.expandvars(os.path.join('$CMSSW_RELEASE_BASE',’ type *r <PATMuonProducer=>
BB e HE# file muonProducer_cfi : 93

package Algos/producersLayerl

from patTuple_standard_cfg import * full flename 1/muonProducer_cfipy

in sequence makePatMuons

«»

Generated bv ConfiaEditor

4 » Connections
= muonMETValueMapProc
uses
> Tree View > Connection structure <1 iC
= = atCandidateSummar
| = process 2 lused by i Y

‘- source < |

J-paths Parameters

+.-endpaths R

5 services addEfficiencies

*-psets s genParticleMatch addGenMatch [

- vpsets addResolutions

T essources addTeVRefits %

+.-esproducers -) ; —

1. esprefers \e_genParticleMatch beamLineSrc fflineBeamSpot", "*, ")
caloMETMuo... icer","muCorrData", ")
embedCaloM... (%

~ topCollection embedComb... (%
embedGenM... (%
embedHighL... (%
embedPFCan... (%
o | embedPicky... %
'v || |lembedStand... (% -
1 4 embedTcMET... (% hd
Updating property view... done. 4

Figure 1. Configuration browsing with the ConfigEditor. The configuration sequence is visualized
by a Tree View in the left column, the same sequence is shown in the central part in the
Connection Structure by a graphical representation. The Property View Box on the right gives
information about the selected module: in which file it is implemented and in which package user
can find it, its connections with other modules and finally the list of its configuration parameters.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072046 doi:10.1088/1742-6596/331/7/072046

2. Browsing with the ConfigEditor

The configuration of a CMS analysis workflow may be spread over hundreds of files. It makes it
difficult inspecting the entire chain of modules and managing each aspect of the analysis. The
graphical interface of the ConfigEditor allows to inspect Python configuration files and to browse
them visualizing all involved modules and all other included configuration files. Figure 1 shows how
the GUI appears to the user. It is divided into three columns. The Tree View in the left column and the
graphical representation, in the Connection Structure box in the centre, show graphically the job
structure giving the possibility to analyze module by module the entire organization. In the Property
View box (on the right) the user can get information about the selected module, checking which
dependencies with other modules are existing and which is parameter setting, specifying in which file
certain module can be found. The Graphical Representation can be saved and used, for instance, for
documentation purposes.

3. Editing with the ConfigEditor

The ConfigEditor aids the user in setting up an analysis workflow. Its manual implementation can be
rather complex and can require a good level of knowledge of the CMS framework and of the Python
scripting language. By the ConfigEditor user can access graphical to specific tools developed for
workflow configuration managing. This feature allows to approach analysis configuration even if user
has not a good grasp of CMSSW functionalities and of the Python language. The Physics Analysis
Toolkit provides several tools conceived to customize and configure PAT workflow and output. They
are provided as plugins to import in Python configuration and to call like simple functions. An
example from these tools is the removeMCMatching. It can be included to remove the matching of the
reconstructed particles to generator particles in order to run the analysis on data.

A typical analysis consists of three main steps. The following subsections will explain how to edit an
analysis configuration with the ConfigEditor graphical interface.

3.1. Import Configuration

To create the analysis workflow we need to start from a standard configuration. Clicking on Import
configuration in the menu bar of the GUI the users can choose the Python configuration file to start
from among those available and import it (Figure 2).

3.2. Apply Tools

To customize the imported configuration file it is useful to import a specific tool for the analysis task
Clicking on Apply tool on the menu bar and selecting it in the tool box among all tools available. For
each one a description is provided together with the list of parameters to set (Figure 3).
AddJetCollection tool, for instance, can be included in configuration file to add a further jet collection
to user PAT-tuple.

3.3. Replace Parameters

In addition to apply one or more tools, it is possible to configure parameter setting by replacing values
in the Property View box on the right for a selected module in order to complete the customization
(Figure 4).

3.4. Resulting User Configuration File
The resulting user configuration file appears in real time in the top left corner. User can check the
configuration action by action. Once saved the configuration file is ready to be run (Figure 5).

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072046 doi:10.1088/1742-6596/331/7/072046

4. Technical details: Python class structure for tools

PAT tools are developed according to a Python object-oriented structure with the definition of a layer
of abstraction all tools inherit from: the ConfigToolBase, the base class which works as interface with
the GUI. The integration of such tools within the ConfigEditor is allowed by Python introspection
abilities. By means of introspection mechanisms we can examine Python objects, get information
about them and manipulate them. To develop the ConfigToolBase class and integrate it with the GUI a
huge use of introspection has been made. It results in a flexible structure providing features needed for
application in the GUI:

* Dbuild step by step configuration files;

e get documentation of each tool and parameter;

* check for right type and value for inserted parameters;
* add comment lines to config files;

* manage parameters changing their values.

The interface of ConfigToolBase class consists of a series of methods to manage tools properties
(parameters and tool actions) and connect them with the GUI providing the way to access them, to get
information about them, to dump code needed to include tools in the configuration file the user is
creating with the ConfigEditor.

The object-oriented structure allows to store tools added to the process and applied modifications
creating a history of the process itself. Tools and modifications can be added to the history and also
removed. The process inspection code allows to manage modifications and it can also be used for
debugging configuration. The method apply implemented in the ConfigToolBase class, add the tool
itself to process history and call toolCode method. The tool action has to be implemented in this
method for all daughter classes. dumpPython method returns a string with the code to include in a
configuration file to apply the tool. Documentation about tools is accessible via __doc__ attribute, a
string containing object description. A parameter can be added to the tool by addParameter method,
specifying its label, value, description, type and, optionally, a list of allowed values. Information about
each one can get to provide documentation in the GUI.

In ConfigToolBase class there are two methods implemented to make a check about correctness of
parameter type and value inserted by the user: typeError and isAllowed. In case type is not of kind
required an error message appears telling the user which is the right type. isAllowed method acts in
case a list of supported values is specified for the specific tool. If the user put a wrong value a message
advises him it is not supported, and suggests him the list of allowed values. Comment can be added to
configuration file by setComment method. The comment added by the user is dumped in the
configuration file together with the other lines of code. Python inspection acts in parameter managing
as well. Modifications are added to process history and dumped by dumpPython function.

Daughter classes have to be implemented just inheriting from the ConfigToolBase and redefining
__init__ (the object constructor) calling addParameter method for each tool parameter, specifying tool
label and implementing toolCode method according to the specific tool action.

This structure can be adopted for all kind of tools, including user-defined ones, not only for PAT.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072046 doi:10.1088/1742-6596/331/7/072046

Figure 2. Configuration editing with the
i ConfigEditor. First step: Import Configuration.
i ConfigEditor provides a list of all available

Figure 3. Configuration editing with the
ConfigEditor. Second step: Apply tools. All
tools have a description of their action and the

i el X Configéditor i i < Configtditor i
' file Edit View Config Help ! ! Fle Edt View Config Help '
! ! ! !
! @ B M mport configuration ' ' @ % M impor configuration Apply tool '
! uNTmED | [e !
! ### Generated by Conigedtor #44 Froperty Value ! ! SRy PEASESE SRS [popeny | Value !
! import 55 path 800 N Sel i i ! ! e !
lecta configuration file import +
| e eomandiospaty \ \ from patfuple_standard cfg import abel process .
. Sy pathappenlos rarh e = . . ### Generated by § & l.apply ool .
\ o P PG 557 h h ihas el R = h
! ol ! ! !
I " ! s Tool coreTools removeCleaning ™ BN
. nte . T remove FAT cleaning from the default sequence: .
\ - \ \ Description \
! ! ! | !
| > Tree view 1 B Tree el oo CiicPATObject:) Cleaningp True, %) I
! ! | EEmED B |<oretools restrcimpuioAoD code !
I I I - source electronfools addElectronUserisolation - I
' ' ' paths. Is configureHeavylons | || commen '
! ! ! endpath JeMonteCarloDeps Farameters |
! I V| o senvices onD: ouputinproc... % '
| | | psets Is selectionDefauts postix |
h h h vpsets jetfoolsaddjetCollection h
| | | - essources |etTools addjetd |
esproducers un
1 1 1 P! 1
! ! ! pref !
! ! ! !
File pame: [patTuple_standard_c

! B petle. =iy ! ! metTools addPHET !
! ! ! !
' i i Change tools directory..| | Help cancel | [_zoply i
' o Conv 1] |
! ! ! O T !
' “ ! ' ing center view.. don: '
e 4 - - — - NP e RN % -

| ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

GXe k) X\ ConfigEditor
File Edit View Config Help

E U?er % m Import configuration Apply tool

*UNTITLED

Generated by ConfigEditor ### B
if hasattr(process,'resetHistory'): process.resetHistory()
B S — ##H

from PhysicsTools.PatAlgos tools.coreTools import *

b @ removeMCMatching(process , ['All'],)

X | process.patjets jetSource = cms.InputTag(“akSPF)ets") E
+ v
<« >

Figure 5. Configuration editing with the
ConfigEditor. On the top left corner the
resulting user code appears in real time. Users
can check it step by step. Once saved, the code
is ready to be run.

: Figure 4. Configuration editing with the
i ConfigEditor. Third step: Replace parameters.
i Each module is configurable according to user

' needs by replacing parameter values.

5. Conclusions

Using ConfigEditor users can access all features of configuration tools and make use of them by a
graphical interface instead of writing complicated Python configurations themselves. Through the GUI
users can visualize the list of all available standard config files provided and the list of all available
tools and their parameters. Moreover the entire sequence is visualized module by module with all
information. All changes applied by users are safe, since original file remains unchanged.

By means of this peculiar aspect, ConfigEditor has been adopted for educational purposes in the
tutorials organized in the CMS community to show users how to use PAT in their analyses [5]. It is
achieving great success, since it helps users to understand deeply Python configuration and how to
manage it. The use of the ConfigEditor is spreading in the entire CMS community offering a quick and
easy access to analysis development.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 072046 doi:10.1088/1742-6596/331/7/072046

6. References

[1] Jones C. D. et al. 2006 The New CMS Event Data Model and Framework, Proc. CHEP 2006
(Mumbai, India, 13-17 February 2006).

[2] Fabozzi, F.; Jones, C.D.; Hegner, B.; Lista, L. Physics Analysis Tools for the CMS Experiment
at LHC IEEE Transactions on Nuclear Science, Vol. 55, Issue 6 (2008) 3539 — 3543.

[3] W.Adam et al., The CMS physics analysis toolkit, J.Phys.Conf.Ser.219:032017,2010.

[4] Hinzmann A., Tools for Physics Analysis at CMS, Proceedings of the CHEP 2010 conference in
Taipei, Taiwan.

[5] Lassila-Perini K., Planning and Organization of an E-learning Training Program on the Analysis
Software in CMS, Proceedings of the CHEP 2010 conference in Taipei, Taiwan.

ConfigToolBase

————

Add Remove SwitchOn
JetCollection MCMatching Trigger

Figure 6. Object-oriented structure adopted for tools architecture.
It allows tools integration with the GUI and can be applied to any
kind of tool.

