






Dedicated

to

My Family



Acknowledgement

First I would like to thank my supervisor Dr. J. N. Pandya for his valuable guidance,

continuous encouragement and admirable patience during this research work. His

eagerness and enthusiasm to take up challenging tasks inspired me a lot in exploring

the subject in more detail. He gave me complete freedom and support to do the things

in the way I wanted. I feel blessed to have a mentor like him. I would also like to

thank Prof. P. C. Vinodkumar, Sardar Patel University for his help and suggestions

in the initial stage of this work.

I would like to thank Prof. Mikhail A. Ivanov, BLTP, JINR, Dubna, Russia in col-

laboration with whom the numerical work was done for D and Ds mesons. He care-

fully explained the Covariant Confined Quark Model calculations in minute details

during my visit to JINR for Helmhotz International Summer School. I feel highly

privileged to have guidance and support from him throughout these calculations. I

also thank our collaborator Chien-Thang Tran from Naples University for helping

in computations for D and Ds decays. The support from Prof. Jürgen G. Körner

from Mainz University and Prof. P. Santorelli from Naples University are highly

appreciated. My special thanks to my friend Shesha with whom I started learning

the Quantum Field Theory. She helped me in understanding and solving Feynman

diagrams.

I would also like to thank Dr. Arun Anand and Dr. Kirit Lad whose continuous

motivation, clear guidance and support were a great work force for me. I am thankful

to Dr. B. S. Chakrabarty, Head of the Department and Prof. Arun Pratap, Dean,

Faculty of Technology and Engineering for providing me research facilities. I thank

our M.Sc. dissertation students Foram, Kanan, Dhruvit, Akshay, Brijal, Radhika

and Hemangi for providing lot of inputs for this thesis. I also express my thanks to

the colleagues and very good friends Harshal, Sohan, Sonal, Supriya, Laxmi, Nimit,

Avani, Swapnil Prabhu, Vismay, Kevil, Rahul, Piyush, Deepak, Dhavalbhai, Margi,

Priyanka, Janki, Mugdha, Nirav and Parth.

I am also thankful to my friends Raghav, Chaitanya, Gargi and Preeti for being

there with me in the difficult times and also handling my frustrations and anger.

Also I would also like to thank Chaxu, Payal, Kajal for providing moral support and

encouragement.

I would like to express my deep sense of gratitude to my parents and sister for their

patience and continued encouragement, without whose cooperation and moral support

it would not have been possible to carry out this work.

My acknowledgement is also due to University Grants Commission, New Delhi for

providing me research fellowship through a major research project on Decay Proper-

ties of Hadrons undertaken by Dr. J N Pandya in this department.

(Nakul R Soni)



Contents

Abstract iii

List of Figures iv

List of Tables vii

1 Theoretical Developments in Particle Physics 1

1.1 Status of Experimental facilities . . . . . . . . . . . . . . . . . . . . . 1

1.2 Status of Theoretical approaches . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Lattice Quantum Chromodynamics . . . . . . . . . . . . . . . 2

1.2.2 QCD sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Effective Field Theories . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Other Phenomenological Approaches . . . . . . . . . . . . . . 5

1.3 Objectives of the present study and organisation of thesis . . . . . . . 7

2 Heavy Quarkonium Spectroscopy 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Decay Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Leptonic decay constants . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Annihilation widths . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Electromagnetic transition widths . . . . . . . . . . . . . . . . 28

2.3.4 Weak decays of Bc mesons . . . . . . . . . . . . . . . . . . . . 32

i



2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Decay Properties of Heavy Baryons 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Magnetic Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Radiative decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Study of Exotic States as Dimesonic Molecules 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Strong decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Weak Decays of Open Flavor Mesons 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Form factors and differential decay distribution . . . . . . . . . . . . 59

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion and Future Scopes 73

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 98

List of Publications 99

ii



Abstract

In this thesis, we study the mass spectra and decay properties of heavy quarko-

nia, doubly heavy baryons, exotic states and open flavor mesons using different

approaches. For heavy quarkonia, we employ Cornell potential and the ground

state energy is obtained by solving the Schrödinger equation numerically. Using the

potential parameters and numerical solution of wave-function, we study the decay

properties of charmonia, bottomonia and Bc mesons. The computation of excited

state masses and decay properties are then performed without additional parame-

ters. For doubly heavy baryons, we employ the relativistic harmonic confinement

potential and ground state energy is obtained using the non-relativistic reduction

of Dirac equation. The exotic states are investigated using the modified Woods-

Saxon potential by solving the Schrödinger equation numerically. We also compute

the leptonic and semileptonic branching fractions of D and Ds mesons in Covariant

Confined Quark Model based on the effective field theory formalism.
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Chapter 1

Theoretical Developments in Particle

Physics

One of the most challenging task in particle physics is to encompass the diversity and

the complexity observed in the decay modes and fractional widths of particles. For

example, there are twenty-two quantitative modes and total forty-nine decay modes

of K±, and ratio of highest to lowest of these fractions amounts to the order of 1011.

The spectroscopy and decay rates of various hadronic states are quite important

to study due to availability of huge amount of high precession data acquired using

large number of experimental facilities viz. BESIII at the Beijing Electron Positron

Collider (BEPC), E835 at Fermilab and CLEO at the Cornell Electron Storage Ring

(CESR), the B-meson factories, BaBar at PEP-II, Belle at KEKB, the CDF and D0

experiments at Fermilab, the Selex experiment at Fermilab, ZEUS and H1 at DESY,

PHENIX and STAR at RHIC, NA60 and LHCb at CERN and new future facility

PANDA at FAIR, GSI. The plethora of observations from these facilities offer greater

challenges and opportunities in theoretical high energy physics. The hadronic states

are not only identified with their masses but also with their various decay rates. All

the hadronic states along with experimentally identified decay channels are reported

in Particle Data Group (PDG) [1].

1.1 Status of Experimental facilities

The study of Hadron Physics has created lot of interest because of many experi-

mental facilities available world wide. They are collecting huge data in the heavy

flavor sectors as well as open flavor sectors. These facilities are working on possible
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interpretation of data within Standard Model (SM) and beyond Standard Model

(BSM). The BSM includes possible exotic states that are bound states with more

than three quarks namely tetra-quark, penta-quark, hexa-quark or hybrid (consist-

ing of quarks and gluons) states. The BSM also includes the rare decays, search

for supersymmetry, leptoquarks phenomenology, lepton flavor violation decays and

many more.

The experimental collider facilities world wide are divided mainly into two categories:

fixed target method and particle colliders. The detailed Physics objectives of the

experimental facilities are given in Tab. 1.1.

1.2 Status of Theoretical approaches

The experimental facilities tabulated in Tab. 1.1 are aimed at different areas and all

of them are trying to understand the structure and dynamics of the basic building

blocks of nature. Presently, the analysis and interpretation of huge data coming

from experiments is the most crucial and challenging task. Theoretical methods are

focused towards the direction of explaining these data and providing predictions for

investigation by the upcoming experimental facilities. The theoretical approaches

may be divided in three categories: (i) theories based on first principles such as

lattice quantum chromodynamics (LQCD), (ii) QCD sum rules and (iii) theories

based on effective field theories as well as phenomenological potential models.

1.2.1 Lattice Quantum Chromodynamics

The Lattice Quantum Chromodynamics (LQCD) is based on the first principles uti-

lizing non-perturbative approach to calculate the hadronic spectrum and matrix ele-

ment for any interaction explained using Feynman diagram. It is a non-perturbative

lattice gauge theory formulated on grid of Euclidian space time allowing the con-

struction of the correlation function between the hadronic state with the help of

quark and gluon degrees of freedom. Here, the potential term comes from the inter-

action at the lattice point and therefore LQCD is considered to be the most realistic

theory among all other theories and the results from LQCD calculations have been

the closest to experimental data so far.

2



Table 1.1: Experimental facility and their objective

Collaboration Country Type Objective
CMS CERN, pp̄ Search for Higgs bosons

Switzerland Look for Physics BSM eg. Supersymmetry
Pb− Pb Heavy ion Collision

ATLAS CERN, pp̄ Search for Higgs bosons
Switzerland Search for CP violation in B and D meson

decays
Search for supersymmetry

ALICE CERN, Pb− Pb Study of Quark gluon plasma
Switzerland Pb− p Physics of strongly interacting matter

LHCb CERN, pp̄ B Physics
Switzerland Search for CP violation

Search for FCNC decays
BABAR SLAC, e+e− Search for CP violation in B meson

USA CKM measurement
Heavy quarkonium production

Belle KEK, e+e− Search for CP violation
Japan Search for rare decays in B mesons

Search for exotic states
CLEO CESR, e+e− Study of B Physics including Υ resonance

USA Quarkonium production
Study of Charm Physics

BESIII BEPC, e+e− Charm Physics
China Search for CP violation in D(s) decays

Production and decays of light hadrons
Search for Physics beyond SM

D0 Fermilab, pp̄ Search for Higgs bosons
USA B Physics

CDF Fermilab, pp̄ Search for Physics beyond SM
USA Production and decay of top and b quark

SELEX Fermilab, Fixed Search for charm meson and baryons
USA Target Search for exotic states

FOCUS Fermilab, Fixed Spectroscopy of charmed hadrons
USA Target Search for rare and forbidden decays

Search for doubly charmed baryons and
pentaquark

CBM FAIR, A−A Explore QCD phase diagram at high
Germany baryon density

PANDA FAIR, Fixed Study of hadron structure and exotic
Germany Target hadrons

NUSTAR FAIR, Study of nuclear structure
Germany Astrophysics

STAR BNL, Au−Au Characteristics of the quark-gluon plasma
USA Properties of QGP and equation os state

With the advancement in the computation facilities, many interesting results are

available, particularly in the heavy quark sector. In the heavy flavor spectrum,

the LQCD have provided most accurate results with a very small standard de-

viation. LQCD have successfully provided the mass spectrum of charmonia and

bottomonia in the papers [2–12] and also successfully predicted the leptonic decay
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constants [13, 14]. However, the information regarding the excited states are yet to

be reported. Also the LQCD have not yet provided the information regarding all

decay properties of heavy quarkonia and mass spectra of Bc mesons. The reviews

on LQCD calculations on heavy quarkonium physics is given in the Ref. [15, 16].

In the open flavor sector, the meson form factors are computed for the channel

D → (π,K)ℓ+νℓ channels [17–19]. Heavy to light meson form factors are also com-

puted in the papers [20–22], where the authors of [22] have computed the form

factors for Ds → η(′) as a pilot study only. The Ds → φ form factors are also com-

puted for the first time by the HPQCD collaborations [21]. However, the branching

fractions computation is not yet reported using LQCD. The mass spectrum for the

heavy baryons is also reported by Refs. [23–28].

1.2.2 QCD sum rules

The QCD sum rules (QCDSR) also known as Shifman–Vainshtein–Zakharov sum

rules [29] is the nonperturbative tool for hadronic phenomenology. In QCDSR,

the hadrons are written in terms of interpolating quark currents and treated in

the framework of gauge invariant operator product expansion. This calculation

technique gives excellent agreement with the experimental data and also believed to

the best theoretical approach after the LQCD.

1.2.3 Effective Field Theories

The computation of hadronic process from the first principles is not trivial and also

requires lot of computational power. The alternative to the real scale processes is

the Effective Field Theories (EFT). EFT is the fundamental framework to hadronic

interaction with the quantum field theory. The EFTs are generally known as the

nonrelativistic QCD (NRQCD) [30,31] which takes into account the energy scale of

the order mQ ≫ mQv ≫ mQv
2. The remaining energy scale mQ ≪ mQv is extracted

using the potential NRQCD (pNRQCD) [32,33]. The NRQCD has been successfully

employed for the spectroscopy of heavy quarkonia (charmonia, bottomonia and Bc

mesons). Both pNRQCD and NRQCD have incorporated the correction in inter-

acting potential of the order 1/m2
Q. It is important to note here that this potential

is determined by LQCD simulations. They have successfully predicted the mass

spectra of the heavy quarkonia. For computing the decay properties of the heavy
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quarkonia, the relativistic corrections are also employed to match the experimen-

tal data. In the heavy quarkonium spectroscopy, these theories have played very

important role in development of the heavy quarkonium physics as the LQCD and

QCDSR have not provided the detailed information for the excited states as well as

for the decay properties.

EFTs are also developed for understanding the hadrons containing at least one heavy

quark (c and/or b) whose masses are more than the QCD scale ΛQCD, e.g. The heavy

quark effective theory. This theory assumes that the heavy quark in hadron moves

with the constant velocity and hence is considered to be the spectator in the rest

frame of heavy hadrons. This theory basically falls in the category of low energy

physics which is useful for studying the D(s) and B(s) mesons and understanding the

flavor dynamics in these mesons. This can be helpful in studying the weak and strong

interactions in the charm and bottom sectors. Their decay properties, especially

the leptonic and semileptonic decays allow the direct measurement of Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements via hadronic form factors. The CKM

matrix is unitary matrix providing the information regarding quark mixing which

basically takes place in the weak interactions. The flavor dynamics also gives the

information regarding the origin of the CP violation. Currently, the CP violation is

one of the main search for most of the experimental facilities.

1.2.4 Other Phenomenological Approaches

The very important problem in theoretical approaches in Particle Physics is quark

confinement wherein the isolated color charged quark is not freely available and

the quarks and gluons are permanently confined within the hadrons. In the theo-

ries based on first principles, the confinement evolves from the QCD computations.

The confinement of quarks within hadrons is assumed in the phenomenological ap-

proaches. The earliest confinement model is the Bag model developed by Bogo-

lioubov et al. that considers the quarks to be confined within the spherical volume

and the force acting between the quarks to be the attractive force with strength of

the attraction of the order of quark mass [34, and the references therein]. After the

discovery of asymptotic freedom, the more advanced MIT Bag model was developed

for the hadronic interactions.

The phenomenological approaches include both relativistic as well as nonrelativis-
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tic treatment of the quarks comprising the hadrons. The oldest but still effective

approach is the potential models inspired from the QCD. In potential models, the

interaction is chosen from the LQCD calculations. The next task is to solve the

relativistic Dirac equation or the nonrelativistic Schrödinger equation to obtain the

bound state mass of the hadrons. For the heavy quarkonium, heavy baryons and

the exotic states involving the heavy quarks, the Schrödinger mechanism may be

adopted because of the inclusion of heavy quark (c and/or b quark). This is justified

to a great extent as the heavy quarks have Significantly low momentum compared

to the bound state system constituting the basis for nonrelativistic treatment for

heavy hadron spectroscopy. However, for open flavor meson spectroscopy, the non-

relativistic treatment is not valid because of the inclusion of light flavor quark.

In potential model calculations, the short distance behaviour is of the Coulomb

type interaction and long distance coefficients are essentially confinement part and

in the literature, there are various forms of potentials are available. For the hadronic

interaction, relativistic as well as non relativistic potential models are reported. The

oldest and still applicable potential is Cornell potential using the linear confinement.

The potential equation is given by [35],

V (r) = Ar − 4

3

αs
r

(1.1)

This potential is also supported by LQCD calculations. Where A is the confinement

strength analogous to the string tension and r is the inter-quark separation. For

the heavy quarkonia, the Cornell potential is used for computing the mass spectra

of ground state as well as excited states. This potential also takes care of the

asymptotic freedom, at short distances the Coulomb term dominates where as at

the large distances, the confinement term dominates. Here, αs is the strong running

coupling constant.

In Cornell potential Eq. (1.1), the confinement is the special case of the general

Martin potential of the form [36]

V (r) = A+Brν , n > 0 (1.2)

with A and B to be the model constant parameters. This potential was employed

for upsilon and charmonium spectra [36].

The logarithmic confinement is also used for computing the quarkonium mass spectra
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by Quigg-Rosner. The potential is of the type [37]

V (r) = CLog

(

r

r0

)

(1.3)

where C and r0 are the constants to be determined from the experimental data.

The harmonic confinement also has been employed to compute the mass spectra

and decay properties of mesons and baryons. Here, the relativistic Dirac equation

is reduced nonrelativistically and the binding energy is obtained. The potential is

given by [38]

V (r) =
1

2
(1 + γ0)A

2r2 +B (1.4)

Where A and B are the relativistic harmonic model (RHM) parameters. Initially

RHM was applied to the light flavor sector only and later extended to the heavy

flavor sectors (ERHM) [38,39] with inclusion of Colour Confinement Model [40–42].

The ψ and Υ spectroscopy are also computed in Buchmuller and Tye potential given

by [43]

V (r) = −4

3

1

(2π)3

∫

d3q eiqr
(

4παs
q2

)

(1.5)

There are many other potentials available in the literature. All the potentials have

their different range of applicability. The potential models should reproduce the

experimental ground state masses and also predict the excited states correctly. Also

the potential models should correctly predict the decay properties. The computation

of decay properties depend on the wave function chosen to solve the Schrödinger

equation or Dirac equation. But not all potential models successfully predict the

mass spectra as well as all decay properties. Till date, not a single potential model

has successfully predict the mass spectra and decay properties. As a result, attempts

towards the development of potential model to computed all properties of hadrons

are still in progress. For example, in calculations of decay properties, different

relativistic correction factors are also incorporated to match the experimental data.

1.3 Objectives of the present study and organisa-

tion of thesis

The heavy quarkonia (cc̄, bb̄ and cb̄) are the most powerful systems for understand-

ing the heavy quark antiquark interactions in QCD. For charmonia and bottomonia,
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there are more than 15 experimentally identified states for both the systems and for

Bc mesons only pseudoscalar states for 1S and 2S states are available. As explained

in the previous section, there are many ways in which these systems are studied.

The oldest but still relevant approach is the potential model wherein the widely

accepted potential for the interaction between constituent quarks is the Cornell po-

tential given by Eq. (1.1). There are many individual studies for the spectroscopy

and decay properties of the heavy quarkonia. Many of them provide good predic-

tion for mass spectra but when it comes to predicting the decay properties such

as weak decays, not all models provide successful computation of the decay prop-

erties [35, 36, 43–50]. In Chapter 2, we compute the mass spectra of charmonia,

bottomonia and Bc mesons with the least number of model parameters. For com-

puting the spectra, we employed the nonrelativistic approach for Cornell potential

Eq. (1.1) and Schrödinger equation is solved numerically. For computing the masses

of excited states, we add the spin dependent part of one gluon exchange potential

perturbatively. With the help of model parameters and numerical wave function,

we compute various decay properties such as leptonic decay constants, various an-

nihilation widths (digamma, three gamma, digluon, three gluon, γgg, dilepton),

electromagnetic transition widths. We also compute the weak decays of Bc mesons

in a spectator model and also compute its life time. We compare our findings with

the available experimental data, LQCD results and other theoretical and we observe

that our results are in good agreement with them.

In chapter 3, we compute the spectroscopy of doubly heavy baryons in harmonic

confinement scheme considering the potential of the type Lorentz scalar plus vector

potential Eq. (1.4). Here, we employ the nonrelativistic reduction of the Dirac

equation. For computing octet and decuplet masses, the spin dependent part of

the one gluon exchange potential is employed perturbatively. Using the model pa-

rameters and spin flavor wave function, we compute the magnetic moment of the

doubly heavy baryons. We also compute the radiative decay width for the transi-

tion 3/2+ → 1/2+ using the transition magnetic moments. We compare our findings

with the available experimental data as well with the other theoretical approaches.

In last decade, with the advancement of the experimental facilities, lots of new and

sometimes unexpected results have been reported. The first unexpected result came

in 2003 when Belle collaboration reported the first new state X(3872) in the channel

B → K(π+π−J/φ) [51]. The structure of this state was beyond the conventional
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quark model. It was observed that this state has a structure of 4 quark state. Later

on, this state was also confirmed by BABAR collaboration in the same channel

[52, 53]. Further this state was also confirmed by other experimental facilities such

as CDF [54], and LHCb [55] collaborations. After 10 years of the discovery, LHCb

collaboration has determined its quantum number to be JPC = 1++ [56]. Further,

many different multi-quark states – so called exotic states were also identified. In

PDG 2018, more than 20 tetra-quark states are reported along with several penta-

quark and hexa-quark states. There are different ways in which these states are

perceived theoretically. These include four quark, di-mesonic, hadro-quarkonium

or composite molecular states. In chapter 4, we study exotic states considering

them as di-meson molecules. For computing the bound state masses of these states,

we solve the Schrödinger equation for the generalised Woods-Saxon potential. We

also compute the strong two body decay widths using the interaction Lagrangian

mechanism. We compare our results for masses as well as decay widths with the

experimental data and other theoretical predictions.

In chapters 2, 3 and 4, we have successfully computed the mass spectra and decay

properties of heavy quarkonia, doubly heavy baryons and exotic states considering

the nonrelativistic treatment for heavy hadrons. But this nonrelativistic treatment

is not applicable for the spectroscopy of open flavor mesons because of inclusion of

light quark. In some crude approximation there are also some papers available in

the literature where open flavor mesons are considered in the nonrelativistic approx-

imation. But since their momenta are close to the bound state mass, it can not be

treated nonrelativistically.

Next in chapter 5, we compute the decay properties of open flavor mesons, par-

ticularly charmed mesons. The open flavor mesons are important tool for under-

standing the dynamics of weak and strong interactions in the charm sectors. The

semileptonic branching fractions of these mesons are proportional to the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements, therefore these channels provide the

direct determinations of c → q matrix element where q = d, s. We compute the

decay properties of charmed and charmed-strange (D and Ds) mesons in a effective

quantum field theory approach. We study the weak decay properties such as lep-

tonic and semileptonic decay decays of D(s) mesons in the covariant confined quark

model (CCQM) with built-in ifrared confinement developed by G. V. Efimov and M.

A. Ivanov [57,58]. The interaction Lagrangian is written in terms of the constituent
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quarks. In this model, the confinement of the quark can be introduced using the

compositeness conditions [59,60]. One of the important key feature of the CCQM is

computation of form factors in the entire physical range of momentum transfer. We

study the leptonic branching fractions D(s) → ℓ+νℓ for ℓ = e, µ and τ and semilep-

tonic branching fractions for the channels D(s) → (P, V )ℓ+ν for ℓ = e and µ. Here P

and V corresponds to the pseudoscalar and vector mesons. It is important to note

that in semileptonic decays D(s) mesons the tau mode is kinematically forbidden.

We also compare our findings of form factors and branching fractions with latest

BESIII data along with other experimental data and other theoretical predictions.

Finally in chapter 6, we conclude the present study. We also discuss the future

prospects of research in the area of weak decays using the covariant confined quark

model. We also discuss the other possibilities of the application of potential models

for heavy quarkonium spectroscopy.
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Chapter 2

Heavy Quarkonium Spectroscopy

2.1 Introduction

Quarkonia are the flavorless mesons that have both quark and antiquark of the

same type making them the best tools for understanding the dynamics of strongly

interacting systems. The first quarkonium state J/ψ (cc̄ or charmonia) was dis-

covered experimentally and announced by Stanford Linear Accelerator Center and

Brookhaven National Laboratory on November 11, 1974 [61]. The E760 collabora-

tion at Fermilab measured the masses as well as the total widths of P states namely

χc1 and χc2 [62]. Then, the 13D2 state was discovered in B decays by BESIII col-

laboration [63]. The first ground state singlet charmonium ηc was also discovered

in Mark-II and Crystal ball experiments. Similarly, Υ (bb̄ or bottomonia) was first

discovered by E288 at Fermilab [64,65]. After 30 years, the first singlet state ηb(1S)

was discovered by Belle Collaboration [66] in 2008. Later, ηb(2S) was also discovered

by BABAR [67], CLEO [68] and Belle [69] collaborations. Also in 90’s, the nonrel-

ativistic potential models predicted not only the ground state mass of the tightly

bound state of c and b̄ in the range of 6.2–6.3 GeV [70, 71], but also predicted to

have very rich spectroscopy. In 1998, CDF collaboration [72] reported Bc mesons in

pp̄ collisions at
√
s = 1.8 TeV and was later confirmed by D0 [73] and LHCb [74] col-

laborations. The LHCb collaboration has also made the most precise measurement

of the lifetime of Bc mesons [75]. Its first excited state has also been reported by

ATLAS Collaborations [76] in pp̄ collisions with significance of 5.2σ. Many exper-

imental groups such as CLEO, LEP, CDF, D0 and NA50 have provided data and

BABAR, Belle, CLEO-III, ATLAS, CMS and LHCb are producing and expected

to produce more precise data in upcoming experiments, particularly for the heavy
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quarkonium physics. Comprehensive reviews on the status of experimental heavy

quarkonium physics are found in literature [15, 16, 77–80].

There are many theoretical groups working on the heavy quarkonium spectroscopy

as well as its decay properties. The models based on first principles and fully non-

perturbative ones such as lattice quantum chromodynamics (LQCD) [2–12], QCD

sum rules [45,81] with QCD [82,83], perturbative QCD [84], lattice NRQCD [85,86]

and effective field theories [87] that have attempted to explain the production and de-

cays of these states. The other approaches include phenomenological potential mod-

els such as the relativistic quark model based on quasi-potential approach [88–94],

where the relativistic quasi-potential including one loop radiative corrections re-

produce the mass spectrum of quarkonium states. The quasi-potential has also

been employed along with leading order radiative correction to heavy quark po-

tential [95–98], relativistic potential model [99–101] as well as semirelativistic po-

tential model [102]. In nonrelativistic potential models, there exist several forms

of quark antiquark potentials in the literature. Common element among them is

the coulomb repulsive plus quark confinement interaction potential. The authors

of [46–50, 103, 104] have considered the confinement of power potential Arν with ν

varying from 0.1 to 2.0 and the confinement strength A to vary with potential index

ν. Confinement of the order r2/3 have also been attempted [105]. Linear confine-

ment of quarks has been considered by many groups [35,37,106–116] and they have

been in good agreement with the experimental data for quarkonium spectroscopy

along with decay properties. The Bethe-Salpeter approach was also employed for

the mass spectroscopy of charmonia and bottomonia [110, 111, 117]. The quarko-

nium mass spectrum was also computed in the nonrelativistic quark model [118],

screened potential model (SPM) [115,116] and constituent quark model [119]. There

are also other non-linear potential models that predict the mass spectra of the heavy

quarkonia successfully [36, 43, 44, 120–127].

The interaction potential for mesonic states is difficult to derive for full range of

quark antiquark separation from first principles of QCD. So most forms of QCD

inspired potential would result in uncertainties in the computation of spectroscopic

properties particularly in the intermediate range. Different potential models may

produce similar mass spectra matching with experimental observations but they

may not be in mutual agreement when it comes to decay properties like decay

constants, leptonic decays or radiative transitions. Moreover, the mesonic states are
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identified with masses along with certain decay channels, therefore the test for any

successful theoretical model is to reproduce the mass spectrum along with decay

properties. Relativistic as well as nonrelativistic potential models have successfully

predicted the spectroscopy but they are found to differ in computation of the decay

properties [35, 36, 43–50].

In this chapter, we employ nonrelativistic potential with one gluon exchange (essen-

tially Coulomb like) plus linear confinement (Cornell potential) as this form of the

potential is also supported by LQCD [128–130]. We solve the Schrödinger equation

numerically for the potential to get the spectroscopy of the quarkonia. We first

compute the mass spectra of charmonia and bottomonia states to determine quark

masses and confinement strengths after fitting the spin-averaged ground state masses

with experimental data of respective mesons. Using the potential parameters and

numerical wave functions, we compute the decay properties such as leptonic decay

constants, digamma, dilepton, digluon decay width using the Van-Royen Weiskopf

formula. These parameters are then used to compute the mass spectra and lifetime

of Bc meson. We also compute the electromagnetic (E1 and M1) transition widths

of heavy quarkonia and Bc mesons. This work was published in European Physical

Journal C [131]. We have also computed the decay properties of charmonia and

bottomonia in the extended harmonic confinement model (ERHM) [38, 39] as well

as in nonrelativistic treatment for Coulomb plus power potential (CPPν=1) using

variational trial wave function [46–49, 132, 133]. This work was also published in

Chinese Physics C [134].

2.2 Methodology

The bound state of two body systems in QCD is nonperturbative in nature and only

LQCD can explain its properties. However, other methods are also found to exist in

literature. The mesonic bound state within relativistic quantum field is described

in Bethe-Salpeter formalism but the Bethe-Salpeter equation is solved only in the

ladder approximations. Also, Bethe-Salpeter approach in harmonic confinement is

successful in low flavor sectors [135,136]. The alternative, old and still effective ap-

proach is the nonrelativistic potential model approach. Sufficiently small momenta

of the charm and bottom quark compared to bound state mass of charmonia and

bottomonia constitutes the basis of nonrelativistic treatment for heavy quarkonium
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spectroscopy. Though Lattice QCD calculations in the quenched approximation sug-

gest a linearly increasing potential in the confinement range [2–12], a specific form of

interaction potential in the full range is not yet known. At short distances relativis-

tic effects are more important as they give rise to quark-antiquark pairs from the

vacuum that in turn affect the nonrelativistic Coulomb interaction in the presence

of sea quarks. The mass spectra of quarkonia is not sensitive to these relativistic

effects at short distances. However, the decay properties show significant difference

with inclusion of relativistic corrections. So we choose to compute the charmonium

mass spectra nonrelativistically in present study. The nonrelativistic Hamiltonian

for the study of heavy bound state of mesons such as cc̄, cb̄ and bb̄ given by

H =M +
p2

2Mcm

+ VCornell(r) + VSD(r) (2.1)

with

M = mQ +mQ̄ and Mcm =
mQmQ̄

mQ +mQ̄

(2.2)

where mQ and mQ̄ are the masses of quark and antiquark respectively, ~p is the

relative momentum of the each quark and VCornell(r) is the quark-antiquark potential

of the type coulomb plus linear confinement (Cornell potential) given by

VCornell(r) = −4

3

αs
r

+ Ar. (2.3)

Here, 1/r term is analogous to the Coulomb type interaction corresponding to the

potential induced between quark and antiquark through one gluon exchange that

dominates at small distances. The second term is the confinement part of the poten-

tial with the confinement strength A as the model parameter. The confinement term

becomes dominant at the large distances. αs is a strong running coupling constant

and can be computed as

αs(µ
2) =

4π

(11− 2
3
nf) ln(µ2/Λ2)

(2.4)

where nf is the number of flavors, µ is renormalization scale related to the constituent

quark masses as µ = 2mQmQ̄/(mQ +mQ̄) and Λ is a QCD scale which is taken as

0.15 GeV by fixing αs = 0.1185 [1] at the Z-boson mass.

The confinement strengths with respective quark masses are fine tuned to reproduce

the experimental spin averaged ground state masses of both cc̄ and bb̄ mesons and

they are given in Table 2.1. We compute the masses of radially and orbitally excited

states without any additional parameters. Similar work has been done by [49,50,104]
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and they have considered different values of confinement strengths for different po-

tential indices. The Cornell potential has been shown to be independently successful

in computing the spectroscopy of ψ and Υ families. In this chapter, we compute the

mass spectra of the ψ and Υ families along with Bc meson with minimum number

of parameters.

Using the parameters defined in Table 2.1, we compute the spin averaged masses of

quarkonia and the excited state masses are computed employing the spin dependent

part of one gluon exchange potential (OGEP) VSD(r) perturbatively which includes

spin-spin, spin-orbit and tensor terms given by [45, 83, 109, 118]

VSD(r) = VSS(r)

[

S(S + 1)− 3

2

]

+ VLS(r)(~L · ~S) + VT (r) [S(S + 1)− 3(S · r̂)(S · r̂)](2.5)

The spin-spin interaction term gives the hyper-fine splitting while spin-orbit and

Table 2.1: Parameters for quarkonium spectroscopy

mc mb Acc Abb
1.317 GeV 4.584 GeV 0.18 GeV2 0.25 GeV2

Table 2.2: Mass spectrum of S and P -wave charmonia (in GeV)

Present RQM NRQM BSE SPM RPM PM NRPM NRQM PM LQCD PDG
State [131] [88] [115] [117] [126] [100] [123] [109] [118] [120] [11] [1]

11S0 2.989 2.981 2.984 2.925 2.979 2.980 2.980 2.982 3.088 2.979 2.884 2.984

13S1 3.094 3.096 3.097 3.113 3.097 3.097 3.097 3.090 3.168 3.096 3.056 3.097

21S0 3.602 3.635 3.637 3.684 3.623 3.597 3.633 3.630 3.669 3.600 3.535 3.639

23S1 3.681 3.685 3.679 3.676 3.673 3.685 3.690 3.672 3.707 3.680 3.662 3.686

31S0 4.058 3.989 4.004 – 3.991 4.014 3.992 4.043 4.067 4.011 – –

33S1 4.129 4.039 4.030 3.803 4.022 4.095 4.030 4.072 4.094 4.077 – 4.039

41S0 4.448 4.401 4.264 – 4.250 4.433 4.244 4.384 4.398 4.397 – –

43S1 4.514 4.427 4.281 – 4.273 4.477 4.273 4.406 4.420 4.454 – 4.421

51S0 4.799 4.811 4.459 – 4.446 – 4.440 – – – – –

53S1 4.863 4.837 4.472 – 4.463 – 4.464 – – – – –

61S0 5.124 5.155 – – 4.595 – 4.601 – – – – –

63S1 5.185 5.167 – – 4.608 – 4.621 – – – – –

13P0 3.428 3.413 3.415 3.323 3.433 3.416 3.392 3.424 3.448 3.488 3.412 3.415

13P1 3.468 3.511 3.521 3.489 3.510 3.508 3.491 3.505 3.520 3.514 3.480 3.511

11P1 3.470 3.525 3.526 3.433 3.519 3.527 3.524 3.516 3.536 3.539 3.494 3.525

13P2 3.480 3.555 3.553 3.550 3.556 3.558 3.570 3.556 3.564 3.565 3.536 3.556

23P0 3.897 3.870 3.848 3.833 3.842 3.844 3.845 3.852 3.870 3.947 – 3.918

23P1 3.938 3.906 3.914 3.672 3.901 3.940 3.902 3.925 3.934 3.972 – –

21P1 3.943 3.926 3.916 3.747 3.908 3.960 3.922 3.934 3.950 3.996 – –

23P2 3.955 3.949 3.937 – 3.937 3.994 3.949 3.972 3.976 4.021 4.066 3.927

33P0 4.296 4.301 4.146 – 4.131 – 4.192 4.202 4.214 – – –

33P1 4.338 4.319 4.192 3.912 4.178 – 4.178 4.271 4.275 – – –

31P1 4.344 4.337 4.193 – 4.184 – 4.137 4.279 4.291 – – –

33P2 4.358 4.354 4.211 – 4.208 – 4.212 4.317 4.316 – – –

43P0 4.653 4.698 – – – – – – – – – –

43P1 4.696 4.728 – – – – – – – – – –

41P1 4.704 4.744 – – – – – – – – – –

43P2 4.718 4.763 – – – – – – – – – –

53P0 4.983 – – – – – – – – – – –

53P1 5.026 – – – – – – – – – – –

51P1 5.034 – – – – – – – – – – –

53P2 5.049 – – – – – – – – – – –
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Table 2.3: Mass spectrum of D and F -wave charmonia (in GeV)

Present RQM NRQM BSE SPM RPM PM NRPM NRQM PM
State [131] [88] [115] [117] [126] [100] [123] [109] [118] [120]

13D3 3.755 3.813 3.808 3.869 3.799 3.831 3.844 3.806 3.809 3.798

11D2 3.765 3.807 3.805 3.739 3.796 3.824 3.802 3.799 3.803 3.796

13D2 3.772 3.795 3.807 3.550 3.798 3.824 3.788 3.800 3.804 3.794

13D1 3.775 3.783 3.792 – 3.787 3.804 3.729 3.785 3.789 3.792

23D3 4.176 4.220 4.112 3.806 4.103 4.202 4.132 4.167 4.167 4.425

21D2 4.182 4.196 4.108 – 4.099 4.191 4.105 4.158 4.158 4.224

23D2 4.188 4.190 4.109 – 4.100 4.189 4.095 4.158 4.159 4.223

23D1 4.188 4.105 4.095 – 4.089 4.164 4.057 4.142 4.143 4.222

33D3 4.549 4.574 4.340 – 4.331 – 4.351 – – –

31D2 4.553 3.549 4.336 – 4.326 – 4.330 – – –

33D2 4.557 4.544 4.337 – 4.327 – 4.322 – – –

33D1 4.555 4.507 4.324 – 4.317 – 4.293 – – –

43D3 4.890 4.920 – – – – 4.526 – – –

41D2 4.892 4.898 – – – – 4.509 – – –

43D2 4.896 4.896 – – – – 4.504 – – –

43D1 4.891 4.857 – – – – 4.480 – – –

13F2 3.990 4.041 – – – 4.068 – 4.029 – –

13F3 4.012 4.068 – 3.999 – 4.070 – 4.029 – –

11F3 4.017 4.071 – 4.037 – 4.066 – 4.026 – –

13F4 4.036 4.093 – – – 4.062 – 4.021 – –

23F2 4.378 4.361 – – – – – 4.351 – –

23F3 4.396 4.400 – – – – – 3.352 – –

21F3 4.400 4.406 – – – – – 4.350 – –

23F4 4.415 4.434 – – – – – 4.348 – –

33F2 4.730 – – – – – – – – –

33F3 4.746 – – – – – – – – –

31F3 4.749 – – – – – – – – –

33F4 4.761 – – – – – – – – –

tensor terms gives the fine structure of the quarkonium states. The coefficients of

spin dependent terms of the Eq. (2.5) can be written as [83],

VSS(r) =
1

3mQmQ̄

∇2VV (r) =
16παs
9mQmQ̄

δ3(~r) (2.6)

VLS(r) =
1

2mQmQ̄r

(

3
dVV (r)

dr
− dVS(r)

dr

)

(2.7)

VT (r) =
1

6mQmQ̄

(

3
dV 2

V (r)

dr2
− 1

r

dVV (r)

dr

)

(2.8)

Where VV (r) and VS(r) correspond to the vector and scalar part of the Cornell

potential in Eq. (2.3) respectively. Using all the parameters defined above, the

Schrödinger equation is numerically solved using Mathematica notebook utilizing

the Runge-Kutta method [137]. It is generally believed that the charmonia need

to be treated relativistically due to their lighter masses, but we note here that the

computed wave functions of charmonia using relativistic as well as nonrelativistic

approaches don’t show significant difference [94]. The computed mass spectra of

heavy quarkonia and Bc mesons are listed in Tables 2.2–2.7.

In the ERHM approach, we use the scalar plus vector potential for the quark confine-

ment. This method was successful in predicting the low lying hadronic properties in

the relativistic schemes for quark confinement [139,140] and later it was extended to
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Table 2.4: Mass spectrum of S and P -wave bottomonia (in GeV)

Present RQM RQM NRQM BSE SPM RPM PM NRCQM PDG
State [131] [114] [88] [116] [117] [127] [101] [123] [119] [1]

11S0 9.428 9.402 9.398 9.390 9.414 9.389 9.393 9.392 9.455 9.398

13S1 9.463 9.465 9.460 9.460 9.490 9.460 9.460 9.460 9.502 9.460

21S0 9.955 9.976 9.990 9.990 9.987 9.987 9.987 9.991 9.990 9999

23S1 9.979 10.003 10.023 10.015 10.089 10.016 10.023 10.024 10.015 10.023

31S0 10.338 10.336 10.329 10.326 – 10.330 10.345 10.323 10.330 –

33S1 10.359 10.354 10.355 10.343 10.327 10.351 10.364 10.346 10.349 10.355

41S0 10.663 10.523 10.573 10.584 – 10.595 10.623 10.558 – –

43S1 10.683 10.635 10.586 10.597 – 10.611 10.643 10.575 10.607 10.579

51S0 10.956 10.869 10.851 10.800 – 10.817 – 10.741 – –

53S1 10.975 10.878 10.869 10.811 – 10.831 – 10.755 10.818 10.876

61S0 11.226 11.097 11.061 10.997 – 11.011 – 10.892 – –

63S1 11.243 11.102 11.088 10.988 – 11.023 – 10.904 10.995 11.019

13P0 9.806 9.847 9.859 9.864 9.815 9.865 9.861 9.862 9.855 9.859

13P1 9.819 9.876 9.892 9.903 9.842 9.897 9.891 9.888 9.874 9.893

11P1 9.821 9.882 9.900 9.909 9.806 9.903 9.900 9.896 9.879 9.899

13P2 9.825 9.897 9.912 9.921 9.906 9.918 9.912 9.908 9.886 9.912

23P0 10.205 10.226 10.233 10.220 10.254 10.226 10.230 10.241 10.221 10.232

23P1 10.217 10.246 10.255 10.249 10.120 10.251 10.255 10.256 10.236 10.255

21P1 10.220 10.250 10.260 10.254 10.154 10.256 10.262 10.261 10.240 10.260

23P2 10.224 10.261 10.268 10.264 – 10.269 10.271 10.268 10.246 10.269

33P0 10.540 10.552 10.521 10.490 – 10.502 – 10.511 10.500 –

33P1 10.553 10.538 10.541 10.515 10.303 10.524 – 10.507 10.513 –

31P1 10.556 10.541 10.544 10.519 – 10.529 – 10.497 10.516 –

33P2 10.560 10.550 10.550 10.528 – 10.540 – 10.516 10.521 –

43P0 10.840 10.775 10.781 – – 10.732 – – – –

43P1 10.853 10.788 10.802 – – 10.753 – – – –

41P1 10.855 10.790 10.804 – – 10.757 – – – –

43P2 10.860 10.798 10.812 – – 10.767 – – – –

53P0 11.115 11.004 – – – 10.933 – – – –

53P1 11.127 11.014 – – – 10.951 – – – –

51P1 11.130 11.016 – – – 10.955 – – – –

53P2 11.135 11.022 – – – 10.965 – – – –

Table 2.5: Mass spectrum of D and F -wave bottomonia (in GeV)

Present RQM RQM NRQM BSE SPM RPM PM NRCQM PDG
State [131] [114] [88] [116] [117] [127] [101] [123] [119] [1]

13D3 10.073 10.115 10.166 10.157 10.232 10.156 10.163 10.177 10.127 –

11D2 10.074 10.148 10.163 10.153 10.194 10.152 10.158 10.166 10.123 –

13D2 10.075 10.147 10.161 10.153 10.145 10.151 10.157 10.162 10.122 10.163

13D1 10.074 10.138 10.154 10.146 – 10.145 10.149 10.147 10.117 –

23D3 10.423 10.455 10.449 10.436 – 10.442 10.456 10.447 10.422 –

21D2 10.424 10.450 10.445 10.432 – 10.439 10.452 10.440 10.419 –

23D2 10.424 10.449 10.443 10.432 – 10.438 10.450 10.437 10.418 –

23D1 10.423 10.441 10.435 10.425 – 10.432 10.443 10.428 10.414 –

33D3 10.733 10.711 10.717 – – 10.680 – 10.652 – –

31D2 10.733 10.706 10.713 – – 10.677 – 10.646 – –

33D2 10.733 10.705 10.711 – – 10.676 – 10.645 – –

33D1 10.731 10.698 10.704 – – 10.670 – 10.637 – –

43D3 11.015 10.939 10.963 – – 10.886 – 10.817 – –

41D2 11.015 10.935 10.959 – – 10.883 – 10.813 – –

43D2 11.016 10.934 10.957 – – 10.882 – 10.811 – –

43D1 11.013 10.928 10.949 – – 10.877 – 10.805 – –

13F2 10.283 10.350 10.343 10.338 – – 10.353 – 10.315 –

13F3 10.287 10.355 10.346 10.340 10.302 – 10.356 – 10.321 –

11F3 10.288 10.355 10.347 10.339 10.319 – 10.356 – 10.322 –

13F4 10.291 10.358 10.349 10.340 – – 10.357 – – –

23F2 10.604 10.615 10.610 – – – 10.610 – – –

23F3 10.607 10.619 10.614 – – – 10.613 – – –

21F3 10.607 10.619 10.647 – – – 10.613 – – –

23F4 10.609 10.622 10.617 – – – 10.615 – – –

33F2 10.894 10.850 – – – – – – – –

33F3 10.896 10.853 – – – – – – – –

31F3 10.897 10.853 – – – – – – – –

33F4 10.898 10.856 – – – – – – – –
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Table 2.6: Mass spectrum of S and P -wave Bc meson (in GeV)

Present PM RQM RQM RQM PDG
State [131] [103] [88] [113] [138] [1]
11S0 6.272 6.278 6.272 6.271 6.275 6.275
13S1 6.321 6.331 6.333 6.338 6.314 –
21S0 6.864 6.863 6.842 6.855 6.838 6.842
23S1 6.900 6.873 6.882 6.887 6.850 –
31S0 7.306 7.244 7.226 7.250 – –
33S1 7.338 7.249 7.258 7.272 – –
41S0 7.684 7.564 7.585 – – –
43S1 7.714 7.568 7.609 – – –
51S0 8.025 7.852 7.928 – – –
53S1 8.054 7.855 7.947 – – –
61S0 8.340 8.120 – – – –
63S1 8.368 8.122 – – – –
13P0 6.686 6.748 6.699 6.706 6.672 –
13P1 6.705 6.767 6.750 6.741 6.766 –
11P1 6.706 6.769 6.743 6.750 6.828 –
13P2 6.712 6.775 6.761 6.768 6.776 –
23P0 7.146 7.139 7.094 7.122 6.914 –
23P1 7.165 7.155 7.134 7.145 7.259 –
21P1 7.168 7.156 7.094 7.150 7.322 –
23P2 7.173 7.162 7.157 7.164 7.232 –
33P0 7.536 7.463 7.474 – – –
33P1 7.555 7.479 7.510 – – –
31P1 7.559 7.479 7.500 – – –
33P2 7.565 7.485 7.524 – – –
43P0 7.885 – 7.817 – – –
43P1 7.905 – 7.853 – – –
41P1 7.908 – 7.844 – – –
43P2 7.915 – 7.867 – – –
53P0 8.207 – – – –
53P1 8.226 – – – –
51P1 8.230 – – – –
53P2 8.237 – – – –
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Table 2.7: Mass spectrum of D and F -wave Bc meson (in GeV)

Present PM RQM RQM RQM
State [131] [103] [88] [113] [138]
13D3 6.990 7.026 7.029 7.045 6.980
11D2 6.994 7.035 7.026 7.041 7.009
13D2 6.997 7.025 7.025 7.036 7.154
13D1 6.998 7.030 7.021 7.028 7.078
23D3 7.399 7.363 7.405 – –
21D2 7.401 7.370 7.400 – –
23D2 7.403 7.361 7,399 – –
23D1 7.403 7.365 7.392 – –
33D3 7.761 – 7.750 – –
31D2 7.762 – 7.743 – –
33D2 7.764 – 7.741 – –
33D1 7.762 – 7.732 – –
43D3 8.092 – – – –
41D2 8.093 – – – –
43D2 8.094 – – – –
43D1 8.091 – – – –
13F2 7.234 – 7.273 7.269 –
13F3 7.242 – 7.269 7.276 –
11F3 7.241 – 7.268 7.266 –
13F4 7.244 – 7.277 7.271 –
23F2 7.607 – 7.618 – –
23F3 7.615 – 7.616 – –
21F3 7.614 – 7.615 – –
23F4 7.617 – 7.617 – –
33F2 7.946 – – – –
33F3 7.954 – – – –
31F3 7.953 – – – –
33F4 7.956 – – – –
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accommodate multi-quark states with unequal quark masses [38, 39]. The detailed

computation technique is given in the Chapter 3. The spin average masses of the

charmonia and bottomonia are obtained using the model parameters mc = 1.428

GeV, mb = 4.637 GeV, A = 2166 MeV3/2 [134].

In CPPν approach also the quarks and antiquarks are treated nonrelativistically.

The interacting potential is given by

V (r) = −αc
r

+ Arν (2.9)

with αc = 4/3αs, A is the confinement strength and ν is the general power ranges

from 0.5 to 2 and ν = 1 corresponds to the Cornell potential. The Schrödinger

equation for the potential Eq. (2.9) is solved using the hydrogenic trial wave function

given by,

Rnl(r) =

√

µ3(n− l − 1)!

2n(n+ l)!
(µr)le−µr/2L2l+1

n−l−1(µr) (2.10)

Here, µ is the variational parameter and L2l+1
n−l−1(µr) is the associated Laguerre poly-

nomial. For the given ν, the variational parameter is determined using the virial

theorem

〈KE〉 = 1

2

〈

r
dV

dr

〉

(2.11)

The potential parameters are mc = 1.31 GeV, mb = 4.66 GeV, αc = 0.4 for char-

monia and αc = 0.3 for bottomonia. In this chapter, we present our results for the

ν = 1 only.

It is important to note that Eq. (2.3) and Eq. (2.9) for ν = 1 is same but in

our paper Ref. [131], the Schrödinger equation was solved numerically while in our

paper Ref. [134], the Schrödinger equation was solved using the variational trial

wave function.

2.3 Decay Properties

In PDG [1], the quarkonium states are reported with masses along with their de-

cay channels and in fact the mass spectra are determined from the decay channels

only. Therefore it is important to validate any potential model with not only mass

spectrum but also with the decay channels without using any additional parameter.

In nonrelativistic limit, the decay channels are directly related to the corresponding
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Table 2.8: Leptonic decay constant of charmonia (in MeV)

Present PM BSE NRQM LQCD QCDSR PDG
State [131] [104] [144] [118] [13] [13] [1]
J/ψ 325.876 338 411 393 418(8)(5) 401 ± 46 416 ± 6
ηc(1S) 350.314 363 378 402 387(7)(2) 309 ± 39 335 ± 75
ψ(2S) 257.340 254 155 293 – – 304 ± 4
ηc(2S) 278.447 275 82 240 – – –
ψ(3S) 229.857 220 188 258 – – –
ηc(3S) 249.253 239 206 193 – – –
ψ(4S) 212.959 200 262 – – – –
ηc(4S) 231.211 217 87 – – – –
ψ(5S) 200.848 186 – – – – –
ηc(5S) 218.241 202 – – – –
ψ(6S) 191.459 175 – – – – –
ηc(6S) 208.163 197 – – – – –

wave function. In this section, we test our potential parameters and wave function

to compute the weak decays, particularly decay constants, annihilation widths and

electromagnetic transitions.

2.3.1 Leptonic decay constants

The leptonic decay constants are helpful in understanding the weak decays. The

matrix elements for leptonic decay constants of pseudoscalar and vector mesons are

given by

〈0|Q̄γµγ5Q|Pµ(k)〉 = ifPk
µ (2.12)

〈0|Q̄γµQ|Pµ(k)〉 = ifVMV ǫ
∗µ (2.13)

where k is the momentum of pseudoscalar meson, ǫ∗µ is the polarization vector

of meson. In the nonrelativistic limit, the decay constants of pseudoscalar and

vector mesons are given by Van Royen-Weiskopf formula with QCD correction factor

[141–143]

f 2
P/V =

3|RnsP/V (0)|2
πMnsP/V

[

1− αs
π

(

δP/V − mQ −mQ̄

mQ +mQ̄

ln
mQ

mQ̄

)]

. (2.14)

With δP = 2 and δV = 8/3. Using the above relation, we compute the leptonic

decay constants and the results are listed in Tables 2.8 – 2.11 in comparison with

other models including LQCD.
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Table 2.9: Leptonic decay constant of bottomonia (in MeV)

Present PM BSE NRQM BSE LQCD PDG
State [131] [104] [144] [118] [145] [14] [1]
Υ(1S) 647.250 706 707 665 498±(20) 649(31) 715 ± 5
ηb(1S) 646.025 744 756 599 – – –
Υ(2S) 519.436 547 393 475 366±(27) 481(39) 498 ± 8
ηb(2S) 518.803 577 285 411 – – –
Υ(3S) 475.440 484 9 418 304±(27) – 430 ± 4
ηb(3S) 474.954 511 333 354 – – –
Υ(4S) 450.066 446 20 388 259±(22) – 336 ± 18
ηb(4S) 449.654 471 40 – – – –
Υ(5S) 432.437 419 – 367 228±(16) – –
ηb(5S) 432.072 443 – – – – –
Υ(6S) 418.977 399 – 351 – – –
ηb(6S) 418.645 422 – – – – –

Table 2.10: Pseudoscalar decay constant of Bc meson (in MeV)

fP PM RQM QCDSR PM RQM
State Present [131] [104] [91] [45] [71] [138]
1S 432.955 465 503 460±(60) 500 554.125
2S 355.504 361 – – –
3S 325.659 319 – – –
4S 307.492 293 – – –
5S 294.434 275 – – –
6S 284.237 261 – – –

Table 2.11: Vector decay constant of Bc meson (in MeV)

fV PM RQM QCDSR PM
State Present [131] [104] [91] [45] [71]
1S 434.642 435 433 460±(60) 500
2S 356.435 337 – – –
3S 326.374 297 – – –
4S 308.094 273 – – –
5S 294.962 256 – – –
6S 284.709 243 – – –
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Table 2.12: Digamma decay width of S and P -wave charmonia (in keV)

Present ERHM CPPν SPM RQM NRQM BSE PDG
State [131] [134] [134] [126] [93] [118] [158] [1]
11S0 7.231 6.21 12.99 8.5 5.5 7.18 7.14±0.95 5.1±0.4
21S0 5.507 4.21 5.63 2.4 1.8 1.71 4.44±0.48 2.15±1.58
31S0 4.971 2.17 3.84 0.88 – 1.21 – –
41S0 4.688 1.01 3.01 – – – – –
51S0 4.507 – – – – – – –
61S0 4.377 – – – – – – –
13P0 8.982 71.04 27.91 2.5 2.9 3.28 – 2.34±0.19
13P2 1.069 75.06 5.76 0.31 0.50 – – 0.53±0.4
23P0 9.111 5.87 146.57 1.7 1.9 – – –
23P2 1.084 5.91 30.49 0.23 0.52 – – –
33P0 9.104 – – 1.2 – – – –
33P2 1.0846 – – 0.17 – – – –
43P0 9.076 – – – – – – –
43P2 1.080 – – – – – – –
53P0 9.047 – – – – – – –
53P2 1.077 – – – – – – –

2.3.2 Annihilation widths

In this subsection we compute γγ, γγγ, gg, ggg, γgg and ℓ+ℓ− annihilation decay

widths of heavy quarkonia.

Photon annihilation widths

The measurement of digamma decay widths provides the information regarding the

internal structure of meson. The decays ηc → γγ, χc0,2 → γγ were reported by

CLEO-c [146], BABAR [147] and then BESIII [148] collaboration have reported

high accuracy data. LQCD is found to underestimate the decay widths of ηc → γγ

and χc0 → γγ when compared to experimental data [149, 150]. Other approaches

to attempt computation of annihilation rates of heavy quarkonia include NRQCD

[31, 151–154], relativistic quark model [92, 93], effective Lagrangian [155, 156] and

next-to-next-to leading order QCD correction to χc0,2 → γγ in the framework of

nonrelativistic QCD factorization [157].

The meson decaying into two photons suggests that the spin can never be one

[160,161]. Corresponding digamma decay width of a pseudoscalar meson in nonrel-
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Table 2.13: Digamma decay width of S and P -wave bottomonia (in keV)

Present ERHM CPPν SPM RQM RQM NRQM BSE
State [131] [134] [134] [127] [112] [93] [118] [158]
11S0 0.387 0.35 0.37 0.527 0.214 0.35 0.23 0.384 ± 0.047
21S0 0.263 0.20 0.10 0.263 0.121 0.15 0.07 0.191 ± 0.025
31S0 0.229 0.09 0.06 0.172 0.906 0.10 0.04 –
41S0 0.212 0.07 0.054 0.105 0.755 – – –
51S0 0.201 – – 0.121 – – – –
61S0 0.193 – – 0.050 – – – –
13P0 0.0196 1.39 0.08 0.050 0.0208 0.038 – –
13P2 0.0052 1.40 0.018 0.0066 0.0051 0.008 – –
23P0 0.0195 0.10 0.43 0.037 0.0227 0.029 – –
23P2 0.0052 0.10 0.09 0.0067 0.0062 0.006 – –
33P0 0.0194 – – 0.037 – – – –
33P2 0.0051 – – 0.0064 – – – –
43P0 0.0192 – – – – – – –
43P2 0.0051 – – – – – – –
53P0 0.0191 – – – – – – –
53P2 0.0050 – – – – – – –

Table 2.14: 3γ decay widths of charmonia (in eV) and bottomonia (in 10−6 keV)

PM PDG NRCQM
State Present [159] [1] State Present [119]
J/ψ 1.36 3.95 1.08± 0.032 Υ(1S) 7.05 3.44
ψ(2S) 1.01 1.64 – Υ(2S) 4.79 2.00
ψ(3S) 0.91 1.39 – Υ(3S) 4.16 1.55
ψ(4S) 0.85 1.30 – Υ(4S) 3.85 1.29
ψ(5S) 0.81 1.25 – Υ(5S) 3.64 –
ψ(6S) 0.79 1.22 – Υ(6S) 3.51 –
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ativistic limit is given by Van Royen-Weiskopf formula [141, 162],

Γn1S0→γγ =
3α2

ee
4
Q|RnsP (0)|2
m2
Q

[

1 +
αs
π

(

π2 − 20

3

)]

Γn3P0→γγ =
27α2

ee
4
Q|R′

nP (0)|2
m4
Q

[

1 +
αs
π

(

3π2 − 28

9

)]

(2.15)

Γn3P2→γγ =
36α2

ee
4
Q|R′

nP (0)|2
5m4

Q

[

1− 16

3

αs
π

]

Also the 3γ decay width of the vector quarkonia is given by [163]

Γn3S1→3γ =
4(π2 − 9)e6Qα

3
e |RnS(0)|2

3πm2
Q

[

1− 12.6αs
π

]

(2.16)

where the bracketed quantities are QCD next-to-leading order radiative corrections

[162, 164].

Annihilation widths into gluon

Digluon annihilation of quarkonia is not directly observed in detectors as digluonic

state decays into various hadronic states making it a bit complex to compute digluon

annihilation widths from nonrelativistic approximations derived from first principles.

The digluon decay width of pseudoscalar meson along with the QCD leading order

radiative correction is given by [155, 162, 164, 165],

Γn1S0→gg =
2α2

s|RnsP (0)|2
3m2

Q

[1 + CQ(αs/π)]

Γn3P0→gg =
6α2

s|R′
nP (0)|2
m4
Q

[1 + C0Q(αs/π)] (2.17)

Γn3P2→gg =
4α2

s|R′
nP (0)|2

5m4
Q

[1 + C2Q(αs/π)]

Also the 3g decay width of vector quarkonia is given by

Γn3S1→3g =
10(π2 − 9)α3

s|RnS(0)|2
81πm2

Q

[

1− 3.7αs
π

]

(2.18)

Here, the coefficients in the bracket have values of CQ = 4.8, C0Q = 9.5, C2Q = −2.2

for the charm quark and CQ = 4.4, C0Q = 10.0, C2Q = −0.1 for the bottom

quark [162].

Also the annihilation width into γgg given by [119],

Γn3S1→γgg =
8(π2 − 9)e2Qαeαs|RnS(0)|2

9πm2
Q

[

1− 6.7αs
π

]

(2.19)
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Table 2.15: Digluon decay width of S and P -wave charmonia (in MeV)

Present ERHM CPPν PM BSE PDG
State [131] [134] [134] [120] [158] [1]
11S0 35.909 19.04 124.08 22.37 19.60 26.7±3.0
21S0 27.345 12.91 53.77 16.74 12.1 14.7±0.7
31S0 24.683 6.64 36.64 14.30 – –
41S0 23.281 3.1 28.74 – – –
51S0 22.379 – – – – –
61S0 23.736 – – – – –
13P0 37.919 0.19 0.195 9.45 – 10.4±0.7
13P2 3.974 0.2 6.93 2.81 – 2.03±0.12
23P0 38.462 5.31 1.02 10.09 – –
23P2 4.034 5.43 36.69 7.34 – –
33P0 38.433 – – – – –
33P2 4.028 – – – – –
43P0 38.315 – – – – –
43P2 4.016 – – – – –
53P0 39.191 – – – – –
53P2 4.003 – – – – –

Table 2.16: Digluon decay width of S and P -wave bottomonia (in MeV)

Present ERHM CPPν PM BSE RPM
State [131] [134] [134] [50] [158] [166]
11S0 5.448 9.95 23.72 17.945 6.98 12.46
21S0 3.710 5.64 6.61 – 3.47 –
31S0 3.229 2.61 3.86 – – –
41S0 2.985 2.07 3.45 – – –
51S0 2.832 – – – – –
61S0 2.274 – – – – –
13P0 0.276 38.17 4.90 5.250 – 2.15
13P2 0.073 38.57 0.66 0.822 – 0.22
23P0 0.275 1.92 25.04 – – –
23P2 0.073 1.92 3.39 – – –
33P0 0.273 – – – – –
33P2 0.072 – – – – –
43P0 0.271 – – – – –
43P2 0.072 – – – – –
53P0 0.269 – – – – –
53P2 0.071 – – – – –

26



Table 2.17: 3g decay widths of charmonia (in keV) and bottomonia (in keV)

PM PDG NRCQM PDG
State Present [159] [1] State Present [119] [1]
J/ψ 264.25 269.06 59.55 Υ(1S) 39.15 41.63 –
ψ(2S) 196.05 112.03 31.16 Υ(2S) 26.59 24.25 18.80
ψ(3S) 175.43 94.57 – Υ(3S) 23.13 18.76 7.25
ψ(4S) 164.66 88.44 – Υ(4S) 21.37 15.58 –
ψ(5S) 157.77 85.30 – Υ(5S) 20.27 – –
ψ(6S) 152.86 83.19 – Υ(6S) 19.49 – –

Table 2.18: γgg decay widths of charmonia (in keV) and bottomonia (in keV)

PM PDG NRCQM PDG
State Present [159] [1] State Present [119] [1]
J/ψ 7.51 8.90 8.17 Υ(1S) 0.85 0.79 –
ψ(2S) 5.57 3.75 3.03 Υ(2S) 0.58 0.46 0.60
ψ(3S) 4.99 3.16 – Υ(3S) 0.50 0.36 1.97
ψ(4S) 4.68 2.96 – Υ(4S) 0.46 0.30 –
ψ(5S) 4.48 2.85 – Υ(5S) 0.44 – –
ψ(6S) 4.35 2.78 – Υ(6S) 0.42 – –

Annihilation widths into electron

The vector mesons have quantum numbers 1−− and can annihilate into dilepton.

The dileptonic decay of vector meson along with one loop QCD radiative correction

is given by [141, 162]

Γn3S1→ℓ+ℓ− =
4α2

ee
2
Q|RnsV (0)|2
M2

nsV

[

1− 16αs
3π

]

(2.20)

Here, αe is the electromagnetic coupling constant, αs is the strong running coupling

constant in Eq. (2.4) and eQ is the charge of heavy quark in terms of electron charge.

In above relations, |RnsP/V (0)| corresponds to the wave function of S-wave at origin

for pseudoscalar and vector mesons while |R′
nP (0)| is the derivative of P -wave radial

Table 2.19: Dilepton decay width of charmonia (in keV)

Present RPM PM RPM RQM PDG
State [131] [123] [104] [100] [92] [1]
1S 2.925 4.95 6.99 1.89 5.4 5.547 ± 0.14
2S 1.533 1.69 3.38 1.04 2.4 2.359 ± 0.04
3S 1.091 0.96 2.31 0.77 – 0.86 ± 0.07
4S 0.856 0.65 1.78 0.65 – 0.58 ± 0.07
5S 0.707 0.49 1.46 – – –
6S 0.602 0.39 1.24 – – –
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Table 2.20: Dilepton decay width of bottomonia (in keV)

Present RPM RPM PM RQM SPM PDG
State [131] [123] [101] [104] [92] [167] [1]
1S 1.098 1.20 1.33 1.61 1.3 0.98 1.340 ± 0.018
2S 0.670 0.52 0.62 0.87 0.5 0.41 0.612 ± 0.011
3S 0.541 0.33 0.48 0.66 – 0.27 0.443 ± 0.008
4S 0.470 0.24 0.40 0.53 – 0.20 0.272 ± 0.029
5S 0.422 0.19 – 0.44 – 0.16 –
6S 0.387 0.16 – 0.39 – 0.12 –

wave function at origin. The annihilation rates of heavy quarkonia are listed in

Tables 2.12 - 2.20.

2.3.3 Electromagnetic transition widths

The electromagnetic transitions can be determined broadly in terms of electric and

magnetic multipole expansions and their study can help in understanding the non-

perturbative regime of QCD. We consider the leading order terms i.e. electric (E1)

and magnetic (M1) dipoles with selection rules ∆L = ±1 and ∆S = 0 for the

E1 transitions while ∆L = 0 and ∆S = ±1 for M1 transitions. We now employ

the numerical wave function for computing the electromagnetic transition widths

among quarkonia and Bc meson states in order to test parameters used in present

work. For M1 transition, we restrict our calculations for transitions among S-

waves only. In the nonrelativistic limit, the radiative E1 and M1 widths are given

by [16, 35, 106, 168, 169]

Γ(n2S+1LiJi → n′2S+1
LfJf + γ) =

4αe〈eQ〉2ω3

3
(2Jf + 1)SE1

if |ME1
if |2 (2.21)

Γ(n3S1 → n′1S0 + γ) =
αeµ

2ω3

3
(2Jf + 1)|MM1

if |2 (2.22)

where, mean charge content 〈eQ〉 of the QQ̄ system, magnetic dipole moment µ and

photon energy ω are given by

〈eQ〉 =

∣

∣

∣

∣

mQ̄eQ − eQ̄mQ

mQ +mQ̄

∣

∣

∣

∣

(2.23)

µ =
eQ
mQ

− eQ̄
mQ̄

(2.24)

ω =
M2

i −M2
f

2Mi
(2.25)
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Table 2.21: E1 transition width of charmonia (in keV)

Present ERHM CPPν RPM RQM SPM NRQM PDG
Transition [131] [134] [134] [100] [91] [126] [115] [1]

23S1 → 13P0 21.863 9.92 38.2 45.0 51.7 74 22 29.8 ± 1.5
23S1 → 13P1 43.292 18.6 73.6 40.9 44.9 62 42 27.9 ± 1.5
23S1 → 13P2 62.312 11.3 37.2 26.5 30.9 43 38 26± 1.5
21S0 → 11P1 36.197 – – 8.3 8.6 146 49 –

33S1 → 23P0 31.839 16.4 51.4 87.3 – – – –
33S1 → 23P1 64.234 43.3 65.2 65.7 – – – –
33S1 → 23P2 86.472 54.2 4 31.6 – – – –
33S1 → 13P0 46.872 129.4 583.9 1.2 – – – –
33S1 → 13P1 107.088 336.4 1531 2.5 – – – –
33S1 → 13P2 163.485 410.1 4379 3.3 – – – –
31S0 → 21P1 51.917 – – – – – – –
31S0 → 11P1 178.312 – – – – – – –

13P0 → 13S1 112.030 325.9 209 142.2 161 167 284 119.5 ± 8
13P1 → 13S1 146.317 426.2 269 287.0 333 354 306 295 ± 13
13P2 → 13S1 157.225 680.7 421 390.6 448 473 172 384.2 ± 16
11P1 → 11S0 247.971 1076 1015 610.0 723 764 361 357 ± 280

23P0 → 23S1 70.400 231.0 190 53.6 – 61 – –
23P1 → 23S1 102.672 258.9 316 208.3 – 103 – –
23P2 → 23S1 116.325 325.3 701 358.6 – 225 – –
21P1 → 21S0 163.646 611.7 843 – – 309 – –

23P0 → 13S1 173.324 643.5 822 20.8 – 74 – –
23P1 → 13S1 210.958 661.3 962 28.4 – 83 – –
23P2 → 13S1 227.915 700.1 1279 33.2 – 101 – –
21P1 → 11S0 329.384 951.6 549 – – 134 – –

13D1 → 13P0 161.504 – – – 423 486 272 172 ± 30
13D1 → 13P1 93.775 – – – 142 150 138 70± 17
13D1 → 13P2 5.722 – – – 5.8 5.8 7.1 ≤ 21
13D2 → 13P1 165.176 – – 317.3 297 342 285 –
13D2 → 13P2 50.317 – – 65.7 62 70 91 –
13D3 → 13P2 175.212 – – 62.7 252 284 350 –
11D2 → 11P1 205.93 – – – 335 575 362 –

respectively. Also the symmetric statistical factor is given by

SE1
if = max(Li, Lf )

{

Ji 1 Jf
Lf S Li

}2

. (2.26)

The matrix element |Mif | for E1 and M1 transition can be written as
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(2.28)

The electromagnetic transition widths are listed in Tables 2.21 - 2.26 and also

compared with experimental results as well as theoretical predictions.
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Table 2.22: E1 transition width of bottomonia (in keV)

Present ERHM CPPν RPM RQM SPM NRQM PDG
Transition [131] [134] [134] [100] [91] [127] [116] [1]

23S1 → 13P0 2.377 0.24 0.4 1.15 1.65 1.67 1.09 1.22 ± 0.11
23S1 → 13P1 5.689 0.40 0.74 1.87 2.57 2.54 2.17 2.21 ± 0.19
23S1 → 13P2 8.486 0.12 0.38 1.88 2.53 2.62 2.62 2.29 ± 0.20
21S0 → 11P1 10.181 – – 4.17 3.25 6.10 3.41 –

33S1 → 23P0 3.330 0.35 0.32 1.67 1.65 1.83 1.21 1.20 ± 0.12
33S1 → 23P1 7.936 0.82 0.62 2.74 2.65 2.96 2.61 2.56 ± 0.26
33S1 → 23P2 11.447 0.80 0.30 2.80 2.89 3.23 3.16 2.66 ± 0.27
33S1 → 13P0 0.594 3.91 15.4 0.03 0.124 0.07 0.097 0.055 ± 0.010
33S1 → 13P1 1.518 9.50 41.4 0.09 0.307 0.17 0.0005 0.018 ± 0.010
33S1 → 13P2 2.354 9.86 54.7 0.13 0.445 0.15 0.14 0.20 ± 0.03
31S0 → 11P1 3.385 – – 0.03 0.770 1.24 0.67 –
31S0 → 21P1 13.981 – – – 3.07 11.0 4.25 –

13P2 → 13S1 57.530 61.96 26.7 31.2 29.5 38.2 31.8 –
13P1 → 13S1 54.927 39.58 21.3 27.3 37.1 33.6 31.9 –
13P0 → 13S1 49.530 30.72 18.7 22.1 42.7 26.6 27.5 –
11P1 → 11S0 72.094 62.70 37.7 37.9 54.4 55.8 35.8 –

23P2 → 23S1 28.848 14.57 23.4 16.8 18.8 18.8 15.5 15.1 ± 5.6
23P1 → 23S1 26.672 10.65 18.2 13.7 15.9 15.9 15.3 19.4 ± 5.0
23P0 → 23S1 23.162 8.98 15.9 9.90 11.7 11.7 14.4 –
21P1 → 21S0 35.578 15.67 25.4 – 23.6 24.7 16.2 –

23P2 → 13S1 29.635 45.03 33.0 7.74 8.41 13.0 12.5 9.8 ± 2.3
23P1 → 13S1 28.552 41.71 30.2 7.31 8.01 12.4 10.8 8.9 ± 2.2
23P0 → 13S1 26.769 40.12 28.8 6.69 7.36 11.4 5.4 –
21P1 → 11S0 34.815 49.57 1.07 – 9.9 15.9 16.1 –

13D1 → 13P0 9.670 – – – 24.2 23.6 19.8 –
13D1 → 13P1 6.313 – – – 12.9 12.3 13.3 –
13D1 → 13P2 0.394 – – – 0.67 0.65 1.02 –
13D2 → 13P1 11.489 – – 19.3 24.8 23.8 21.8 –
13D2 → 13P2 3.583 – – 5.07 6.45 6.29 7.23 –
13D3 → 13P2 14.013 – – 21.7 26.7 26.4 32.1 –
11D2 → 11P1 14.821 – – – 30.2 42.3 30.3 –
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Table 2.23: E1 transition width of Bc meson (in keV)

Present RQM RQM PM
Transition [131] [91] [113] [103]
23S1 → 13P0 4.782 5.53 2.9 0.94
23S1 → 13P1 11.156 7.65 4.7 1.45
23S1 → 13P2 16.823 7.59 5.7 2.28
21S0 → 11P1 18.663 4.40 6.1 3.03
33S1 → 23P0 7.406 – – –
33S1 → 23P1 17.049 – – –
33S1 → 23P2 25.112 – – –
33S1 → 13P0 6.910 – – –
33S1 → 13P1 17.563 – – –
33S1 → 13P2 27.487 – – –
31S0 → 11P1 38.755 – – –
31S0 → 21P1 27.988 – – –
13P2 → 13S1 55.761 122 83 64.24
13P1 → 13S1 53.294 87.1 11 51.14
13P0 → 13S1 46.862 75.5 55 58.55
11P1 → 11S0 71.923 18.4 80 72.28
23P2 → 23S1 41.259 75.3 55 64.92
23P1 → 23S1 38.533 45.3 45 50.40
23P0 → 23S1 38.308 34.0 42 55.05
21P1 → 21S0 52.205 13.8 52 56.28
23P2 → 13S1 60.195 – 14 –
23P1 → 13S1 57.839 – 5.4 –
23P0 → 13S1 52.508 – 1.0 –
21P1 → 11S0 74.211 – 19 –
13D1 → 13P0 44.783 133 55 –
13D1 → 13P1 28.731 65.3 28 –
13D1 → 13P2 1.786 3.82 1.8 –
13D2 → 13P1 51.272 139 64 –
13D2 → 13P2 16.073 23.6 15 –
13D3 → 13P2 60.336 149 78 –
11D2 → 11P1 66.020 143 63 –

Table 2.24: M1 transition width of charmonia (in keV)

Present ERHM CPPν RPM RQM NRQM PM PDG
Transition [131] [134] [134] [100] [91] [115] [125] [1]

13S1 → 11S0 2.722 0.703 9.68 2.7 1.05 2.39 3.28 1.58 ± 0.37
23S1 → 21S0 1.172 0.151 0.55 1.2 0.99 0.19 1.45 0.21 ± 0.15
23S1 → 11S0 7.506 20.51 58.13 0.0 0.95 7.80 – 1.24 ± 0.29
33S1 → 31S0 9.927 20.521 58.13 – – 0.088 – –
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Table 2.25: M1 transition width of bottomonia (in eV)

Present ERHM CPPν RPM RQM NRQM PM PDG
Transition [131] [134] [134] [100] [91] [116] [125] [1]
13S1 → 11S0 37.668 2.33 9.13 4.0 5.8 10 15.36 –
23S1 → 21S0 5.619 0.169 0.17 0.05 1.40 0.59 1.82 –
23S1 → 11S0 77.173 1395 799 0.0 6.4 66 – 12.5 ± 4.9
33S1 → 31S0 2.849 0.050 0.036 – 0.8 3.9 – –
33S1 → 21S0 36.177 – – – 1.5 11 – ≤ 14
33S1 → 11S0 76.990 – – – 10.5 71 – 10 ± 2

Table 2.26: M1 transition width of Bc meson (in eV)

Present RQM RQM PM
Transition [131] [91] [113] [103]
13S1 → 11S0 53.109 33 80 2.2
23S1 → 21S0 21.119 17 10 0.014
23S1 → 11S0 481.572 428 600 495
21S0 → 13S1 568.346 488 300 1092

2.3.4 Weak decays of Bc mesons

The decay modes of Bc mesons are different from charmonia and bottomonia because

of the inclusion of different flavor quarks. Their decay properties are very important

probes for the weak interaction as Bc meson decays only through weak decays,

therefore have relatively quite long lifetime. The pseudoscalar state can not decay

via strong or electromagnetic decays because of this flavor asymmetry.

In the spectator model [170], the total decay width of Bc meson can be broadly

classified into three ways: (i) Decay of b quark considering c quark as a spectator,

(ii) Decay of c quark considering b quark as a spectator and (iii) Annihilation channel

Bc → ℓ+νℓ. The total width is given by

Γ(Bc → X) = Γ(b→ X) + Γ(c→ X) + Γ(Anni) (2.29)

In the calculations of total width, we have not considered the interference among

them as all these decays lead to different channel. In the spectator approximation,

the inclusive decay width of b and c quark is given by

Γ(b→ X) =
9G2

F |Vcb|2m5
b

192π3
(2.30)

Γ(c→ X) =
9G2

F |Vcs|2m5
c

192π3
(2.31)
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Γ(Anni) =
G2
F

8π
|Vcb|2f 2

BcMBcm
2
q

(

1−
m2
q

MB2
c

)2

Cq (2.32)

Where Cq = 3|Vcs| for Ds mesons and mq is the mass of heaviest fermions. Vcs

and Vcb are the CKM matrices and we have taken the value of CKM matrices from

the PDG. Gf is the Fermi coupling constant. Here we have used the model quark

masses, Bc meson mass and decay constants for the computation of total width.

Here we compute the decay width of Bc meson using Eq. (2.29) and corresponding

lifetime. The computed lifetime comes out to be 0.539 × 10−12 s which is in very

good agreement with the world averaged mean life time (0.507±0.009)×10−12 s [1].

2.4 Results and Discussion

Having determined the model parameters namely confinement strength and quark

masses in Tab. 2.1, we present our numerical results. We first compute the mass

spectra of the heavy quarkonia and Bc mesons. In almost all the papers based on

potential models, the model parameters are independently fixed for experimental

ground state masses of cc̄, bb̄ and cb̄ mesons. But it is observed that the confine-

ment strength of cb̄ meson is the arithmetic mean of those for cc̄ and bb̄ mesons

which discards the requirement of additional independent parameter for the Bc me-

son. Similar approach was used long back within QCD potential model [171]. We

also compute various decay properties of heavy quarkonia and Bc mesons without

additional parameter.

In Tables 2.2 - 2.5, we present our result for charmonium and bottomonium mass

spectra. We compare our findings with PDG data [1], lattice QCD [11] data, rela-

tivistic quark model [88], nonrelativistic quark model [115,116,118], QCD relativistic

functional approach [117], relativistic potential model [100], nonrelativistic potential

models [109,120,123,126,127] and covariant constituent quark model [119]. Our re-

sults are in very good agreement with the PDG data [1]. For charmonia, our results

show very good agreement with the LQCD data [11] with less than 2% deviation.

Our results for charmonia and bottomonia also close to the relativistic quark model

(RQM) [91] with less than 1% deviation. Our results are also consistent with other

theoretical approaches. In Tables 2.6 and 2.7, we also predict the Bc meson mass

spectra. Experimentally only pseudoscalar state for n = 1 and 2 is available and

our results match well with very few % error. It is worth noting that the masses
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of orbitally excited states (to be specific for n = 1) of charmonia is systematically

lower than the other models and experimental data. This tendency decreases as one

moves to higher excited states. But this trend is not there in Bc and bottomonia

systems suggesting that the relativistic treatment may improve the results in lower

energy regime of charmonia.

Using the mass spectra of heavy quarkonia and Bc meson, we plot the Regge tra-

jectories in (J,M2) and (nr,M
2) planes where nr = n− 1. The following relations

are utilised [88]

J = αM2 + α0 (2.33)

nr = βM2 + β0 (2.34)

where α, β are slopes and α0, β0 are the intercepts that can be computed using the

methods given in Ref. [88]. In Figs. 2.1, 2.2 and 2.3, we plot the Regge trajectories.

Regge trajectories from present approach and relativistic quark model [88] show

similar trend i.e. for charmonium spectra, the computed mass squared fits very well

to a linear trajectory and is found to be almost parallel and equidistant in both

the planes. Also, for bottomonia and Bc mesons, we observe the nonlinearity in

the parent trajectories. The nonlinearity increases as we go from cb̄ to bb̄ mesons

indicating increasing contribution from the inter-quark interaction over confinement.

Figure 2.1: Parent and daughter Regge trajectories (J,M2) for charmonia (left),
bottomonia (middle) and Bc (right) mesons with natural parity (P = (−1)J).

Using the potential parameters and numerical wave function, we compute the various

decay properties of heavy quarkonia. We first compute the leptonic decay constants

of pseudoscalar and vector mesons and our numerical results are tabulated in Tables

2.8 – 2.11. For the case of charmonia, our results are higher than those using LQCD

and QCDSR [13] and discrepancy removed when we include the QCD correction

factors [142]. After introducing the correction factors, our results match with PDG,
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Figure 2.2: Parent and daughter Regge trajectories (J,M2) for charmonia (left),
bottomonia (middle) and Bc (right) mesons with unnatural parity (P = (−1)J+1).

Figure 2.3: Parent and daughter Regge trajectories (nr →M2) for charmonia (left),
bottomonia (middle) and Bc (right) mesons

LQCD and QCDSR [13] along with other theoretical models. We also compute

the decay constants of bottomonia and Bc mesons. In this case, our results match

with other theoretical predictions without incorporating the relativistic corrections.

In the case of vector decay constants of bottomonia, our results are very close to

experimental results as well as those obtained in LQCD Ref. [14]. For the decay

constants of Bc mesons, we compare our results with nonrelativistic potential models

[104, 138].

Then we compute the various annihilation widths of pseudoscalar and vector heavy

quarkonia using the relations Eqs.(2.15)–(2.20). Where the bracketed quantities

are the first order radiative corrections to the decay widths. We also compare

our outcomes with the available experimental data and other theoretical results

such as screened potential model (SPM) [126,127,167], Martin-like potential model

[123], relativistic quark model (RQM) [92, 93], heavy quark spin symmetry [156],

relativistic Salpeter model [158] and other theoretical models.

In Tables 2.12 and 2.13 we present our results for digamma decay widths for charmo-

nia and bottomonia respectively. Our results for Γ(ηc → γγ) and Γ(ηc(2S) → γγ)

are higher than the experimental data and the first order radiative correction (brack-

eted terms in Eq. (2.15)) was utilized to incorporate the difference and it is observed

that our results along with the correction match with the data [1]. Our results for

P -wave charmonia are higher than that of screened potential model [126] and rel-
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ativistic quark model [93]. Our results for Γ(ηb → γγ) match quite well with the

experimental data while computed Γ(ηb(2S) → γγ) value is overestimated when

compared with the PDG data. For the excited state of S-wave bottomonia, our re-

sults fall in between those obtained in screened potential model [127] and relativistic

quark model with linear confinement [114]. The scenario is similar with P -wave bot-

tomonia and charmonia. In Tab. 2.14, we present our results for 3γ decay widths

of vector quarkonia and also compared with the nonrelativistic constituent quark

model [119] and potential mdoel results [159]. Our results are matching well the

experimental data for the channel J/ψ → 3γ and other states are also inline with

the others.

Digluon decay has substantial contribution to hadronic decay of quarkonia below cc̄

and bb̄ threshold. In Tables 2.15 and 2.16 we represent our results for digluon decay

width of charmonia and bottomonia respectively. Our results for Γ(ηc → gg) match

perfectly with the PDG data [1] but in the case of Γ(ηc(2S) → gg) our result is

higher than the PDG data. We also compare the results obtained with that of the

relativistic Salpeter method [158] and an approximate potential model [120]. It is

seen from Table 2.15 that the relativistic corrections provide better results in case

of P -wave charmonia where as that for bottomonia are underestimated in present

calculations when compared to relativistic QCD potential model [166] and power

potential model [50]. In Tab. 2.17 and 2.18 we present our results of three gluon

decay and γgg decays with the comparing PDG data as well as other nonrelativistic

approaches [119, 159]. It is observed that our results also in good accordance with

the PDG data and theoretical models except for the channel ψ(nS) → 3g.

We present the result of dilepton decay widths in the Table 2.19 and 2.20 and it is

observed that our results matches with the PDG data [1] upto n = 3 for both char-

monia and bottomonia. The contribution of the correction factor is more significant

in the excited states with compared to that in the ground states of the quarkonia,

indicating different dynamics in the intermediate quark-antiquark distance. Our

results are also in good accordance with the other theoretical models.

Next, we present our results of E1 transitions in Tables 2.21 - 2.23 in comparison

with theoretical attempts such as relativistic potential model [100], quark model [91],

nonrelativistic screened potential model [116,126,127]. We also compare our results

of charmonia transitions with available experimental results. We also compare our
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results of ERHM and CPPν results [134]. Our result for Γ(ψ(2S) → χcJ(1P ) + γ)

is in good agreement with the experimental result for J = 0 but our results for

J = 1, 2 are higher than the PDG data. Our results also agree well for the tran-

sition Γ(χc2(1P ) → J/ψ + γ). We also satisfy the experimental constraints for

the transition Γ(13D1 → χcJ + γ) for J = 0, 1, 2. Our results share the same

range with the results computed in other theoretical models. The E1 transitions

of bottomonia agree fairly well except for the channel Γ(Υ(3S) → χbJ (3P )), where

our results are higher than the experimental results. The comparison of our re-

sults of E1 transitions in Bc mesons with relativistic quark model [91, 113] and

power potential model [103] are found to be in good agreement. In Tables 2.24 -

2.26, we present our results of M1 transitions and also compared with relativis-

tic potential model [100], quark model [91, 114], nonrelativistic screened potential

model [115, 116], power potential [103] as well as with available experimental re-

sults. Our results of Γ(nψ → n′ηc + γ) are in very good agreement with the PDG

data as well with the other theoretical predictions. Computed M1 transitions in

Bc mesons are also within the results obtained from theoretical predictions. The

computed M1 transition of bottomonia are found to be higher than the PDG data

and also theoretical predictions. It is important to note that the experimental data

of many channels are not yet available, the validity of either of the approaches can

be validated only after observations in forthcoming experiments.
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Chapter 3

Decay Properties of Heavy Baryons

3.1 Introduction

Baryons are strongly interacting three quark fermions. This chapter is dedicated

to the study of doubly heavy baryons i.e. baryons having two heavy quarks (c

and/or b) as they might prove to be important tool for testing quantum chro-

modynamics [172, 173]. These states were also predicted long back in the quark

model [174]. After the experimental discovery of the first doubly heavy baryon, Ξ+
cc

by SELEX Collaboration [175] and later confirmed by them [176]. The next dou-

bly heavy baryon Ξ++
cc was discovered experimentally by LHCb collaboration in the

Λ+
c K

−π+π− mass spectrum [177]. LHCb collaboration has also recently reported

the life time of Ξ++
cc baryon [178]. As an outcome of the LHCb upgrade, one can

expect more detailed information on existing doubly heavy baryons and also the

discovery of other doubly heavy baryons [177–179].

With the advancement in the detector technology and new results on the properties

of doubly heavy baryons, it has created lot of interest for the theoreticians world

wide. In the literature, there are two ways in which the spectroscopy and decay

properties of the heavy baryons are studied theoretically: quark-diquark picture

and other is three quark picture. In quark-diquark picture, the masses and radia-

tive decay properties are studied in Bethe-Salpeter approach [180] and relativistic

quark model (RQM) [181, 182]. The spectroscopy of doubly heavy baryons is also

studied in the nonrelativistic framework of quark model using the potential of the

type Buchmüller and Tye [183], chiral perturbation theory (χPT) [184–188] and

also in Ref [189]. In three quark picture, the spectroscopy and decay properties are
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studied in Bag model [190, 191], effective Lagrangian approach [192], SU(4) chiral

constituent quark model (χCQM) [193], relativistic quark model (RQM) [194,195],

chromomagnetic model [196], nonrelativistic quark model (NRQM) [197–200] non-

relativistic hypercentral constituent quark model (hCM) [104, 201–204]. The mass

spectra are also computed on the model based on first principles such as lattice

quantum chromodynamics LQCD [23–28], QCD sum rules [205–208] and NRQCD

sum rules [209], light cone sum rules [210]. The mass spectra of heavy baryons are

also studied using the Regge phenomenology [211, 212].

In this chapter, we employ the three quark picture of relativistic harmonic model

for computing the masses of the doubly heavy baryon (ERHM). The spin dependent

part of the one gluon exchange potential employed perturbatively for computing

the masses of 1/2+ and 3/2+ states. The magnetic moments of the doubly heavy

baryons are computed using the spin flavor wave function of the baryons. We also

compute the radiative transition widths without using additional parameter.

This chapter is organised in the following way: After the brief introduction and

survey on doubly heavy baryons in Sec. 3.1, we give the essential components of

relativistic harmonic confinement model in Sec. 3.2 and compute the masses of

doubly heavy baryons. In Sec. 3.3, we compute the magnetic moments using the

spin flavor wave functions. Next, in Sec. 3.4 we compute the radiative decays using

the transition magnetic moments. In Sec. 3.5 we present our results of masses,

magnetic moments and radiative decay widths. We also compare our results with

the available experimental results and other theoretical predictions.

3.2 Methodology

For computation of bound state masses of baryon, we use the relativistic harmonic

confinement model in which the quarks are confined through the Lorentz scalar plus

vector potential of the form

Vconf(r) =
1

2
(1 + γ0)A

2r2 (3.1)

Where A is the confinement strength mean field parameter and γ0 is the Dirac

matrix. The Dirac equation is solved using the method of non-relativistic reduction

and the eigen energy (ǫconf) is obtained. The detailed computation technique is

given in the Ref. [38, 39], here we provide only the essential components of the
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model. We perturbatively add contribution due to the Coulomb potential along

with state dependent colour dielectric coefficient ω given by

Vcoul(r) =
kαs(µ)

ωr
(3.2)

The mass of a baryon in the different n2S+1LJ state according to different JPC can

be written as [38, 39, 134]

MJ
N =

3
∑

i=1

ǫN (qi)conf +

3
∑

i<j=1

ǫ(qi, qj)coul +

3
∑

i<j=1

ǫJN (qi, qj)S.D. (3.3)

Table 3.1: Model parameters

A k mu md ms mc mb

2166 MeV3/2 0.37 240 MeV 243 MeV 450 MeV 1313 MeV 4632 MeV

In above Eq. 3.3, the first term corresponds to total confinement energy of the

constituent quarks inside the baryon which is computed in the relativistic harmonic

confinement model [139]. In order to obtain the confinement energy, the Dirac

equation is reduced to the nonrelativistic case [38]. The confinement energy is given

by

ǫN (q)conf =

(

(2N + 3)ΩN (q) +m2
q −

3mq
∑3

i mqi

Ω0(q)

)1/2

(3.4)

where mq is the quark mass, ΩN is the energy dependent size parameter given by

ΩN =
√

EN +mq A (3.5)

and the energy eigen value coming from the nonrelativistic reduation of Dirac equa-

tion given by

E2
N = m2

q + (2N + 3)ΩN with N = 0, 1, 2, 3... (3.6)

with the radial solution of Dirac equation

Rnℓ(r) =

√

Ω
3/2
N

2π

n!

Γ(n + ℓ+ 3/2)
(Ω

1/2
N r)ℓ exp

(

−ΩNr
2

2

)

L
ℓ+3/2
N (ΩNr

2). (3.7)

The second term in Eq. (3.3) corresponds to the Coulomb energy which is the

expectation value of the Coulomb potential Eq. (3.2). In Eq. (3.2), ω is the state
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dependent color dielectric constant [38]. αs is the strong running coupling constant.

The Coulomb energy can be computed as

ǫN(q1, q2)coul = 〈NS|Vcoul(r)|NS〉 (3.8)

The third term in Eq. (3.3) corresponds to the expectation value of spin dependent

part of the confined one gluon exchange potential [213]. The single particle energy

given by Eq. (3.6) which is the results of the nonrelativistic reduction of Dirac

equation. This methodology also treats the quark and antiquarks on the equal

basis. Also the confinement energy of the quarks and antiquarks within the baryons

are computed by subtracting the contribution to the centre of mass energy from

the single particle energy (last term of Eq. (3.4)). In harmonic confinement model,

the residual Coulomb interaction has been introduced for the heavy flavor sector

(ERHM) [38,39]. This method is general and applicable to the hadronic state with

any number of constituent quarks.

Table 3.2: Masses of doubly heavy baryons (in MeV)

Quark RQM hCM NRQM RQM Chromo LQCD QCDSR QCDSR
State Content Present [91] [202–204] [197] [181] [196] [24] [207] [205, 206]

Ξ++
cc ccu 3621 3620 3511 3676 3606 3633.3 ± 9.3 3610(23)(22) 4260 3720

Ξ∗++
cc ccu 3744 3727 3687 4029 3675 3696.1 ± 7.4 3692(28)(21) 3900 3720

Ξ+
cc ccd 3623 3620 3520 3676 – – – –

Ξ∗+
cc ccd 3744 3727 3695 4019 – – – –

Ω+
cc ccs 3756 3778 3650 3815 3715 3731.8 ± 9.8 3738(20)(20) 4250 3730

Ω∗+
cc ccd 3815 3872 3810 4180 3772 3802.4 ± 8.0 3822(20)(22) 3810 3780

Ξ+

bc
bcu 6931 6933 6914 7011 – 6922.3 ± 6.9 6943(33)(28) 6750 6720

Ξ∗+

bc
bcu 7003 6980 6980 7047 – 6973.2 ± 5.5 6985(36)(28) 8000 7200

Ξ0
bc bcd 6933 6933 6920 7011 – – – –

Ξ∗0
bc bcd 7003 6980 6986 7047 – – – –

Ω0
bc bcs 7051 7088 7136 7136 – 7010.7 ± 9.3 6998(27)(20) 7020 6750

Ω∗0
bc bcs 7084 7130 7187 7187 – 7065.7 ± 7.5 7059(28)(21) 7540 7350

Ξ0
bb bbu 10205 10202 10312 10340 10138 10168.9 ± 9.2 10143(30)(23) 9780 9960

Ξ∗0
bb bbu 10229 10237 10355 10576 10169 10188.8 ± 7.1 10178(30)(24) 10350 10300

Ξ−

bb
bbd 10206 10202 10317 10340 – – – –

Ξ∗−

bb
bbd 10229 10237 10340 10576 – – – –

Ω−

bb
bbs 10311 10359 10446 10454 10230 10259.0 ± 15.5 10273(27)(20) 9850 9970

Ω∗−

bb
bbs 10322 10389 10467 10693 10258 10267.5 ± 12.1 10308(27)(21) 10280 10400

Ω∗++
ccc ccc 4465 – 4806 4965 – – –

Ω+

ccb
ccb 7720 – – 8245 – 7990.3 ± 12.2 8007(9)(20)

Ω∗+

ccb
ccb 7728 – – 8265 – 8021.8 ± 9.0 8037(9)(20)

Ω0
cbb cbb 10965 – – 11535 – 11165.0 ± 11.8 11195(8)(20)

Ω∗0
cbb cbb 10967 – – 11554 – 11196.4 ± 8.5 11229(8)(20)

Ω∗−

bbb
bbb 14198 – 14496 14834 – 14309.7 ± 11.8 –

3.3 Magnetic Moments

The magnetic moment can provide the information regarding the structure of the

baryons. The magnetic moment of the doubly heavy baryons in terms of constituent
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quarks as [201]

µB =
∑

i

〈φsf |µi~σi|φsf〉 (3.9)

with

µi =
ei

2meff
i

(3.10)

Where ei is the charge of the quark and σi is the spin of the quark, |φsf〉 is the

spin-flavor wave function of the respective baryons and meff
i is the effective mass of

the quarks within the baryons can be computed as

meff
i = mi

(

1 +
E + 〈Vspin〉
∑

imi

)

. (3.11)

Using Eqs. 3.9 –3.11 we compute the magnetic moments of doubly heavy baryons

and tabulated in Tab. 3.3. We also compare our findings with the other theoretical

approaches.

Table 3.3: Magnetic moment in µN

hCM hCM NRQM NRQM exBag LCSR
State µ [104, 201] Present [202, 203] [104, 201] [198] [199, 200] [191] [210]

Ξ++
cc

4
3
µc − 1

3
µu −0.185 0.031 −0.133 −0.208+0.035

−0.086
– −0.110 0.23 ± 0.05

Ξ∗++
cc 2µc + µu 2.724 2.218 2.663 2.670+0.27

−0.25
2.52 2.35 –

Ξ+
cc

4
3
µc − 1

3
µd 0.843 0.784 0.833 0.785+0.050

−0.030
– 0.719 0.43 ± 0.09

Ξ∗+
cc 2µc + µd −0.256 0.068 −0.163 −0.311+0.052

−0.130
0.035 −0.178 –

Ω+
cc

4
3
µc −

1
3
µs 0.710 0.692 0.756 0.635+0.012

−0.015
– 0.645 0.39 ± 0.09

Ω∗+
cc 2µc + µs 0.208 0.285 0.120 0.139+0.009

−0.017
0.21 0.0475 –

Ξ+

bc
2
3
µb + 2

3
µc −

1
3
µu −0.532 −0.204 −0.394 −0.475+0.040

−0.088
−0.369 –

Ξ∗+

bc
µb + µc + µu 2.663 1.562 2.017 2.270+0.27

−0.14
2.022 1.88 –

Ξ0
bc

2
3
µb + 2

3
µc − 1

3
µd 0.626 0.354 0.469 0.518+0.048

−0.020
0.48 –

Ξ∗0
bc µb + µc + µd −0.776 −0.372 −0.558 −0.712+0.059

−0.133
−0.508 −0.534 –

Ω0
bc

2
3
µb + 2

3
µc − 1

3
µs 0.457 0.439 0.389 0.368+0.010

−0.011
0.407 –

Ω∗0
bc µb + µc + µs −0.258 −0.181 −0.310 −0.261+0.015

−0.021
−0.309 −0.329 –

Ξ0
bb

4
3
µb −

1
3
µu −0.893 −0.663 −0.650 −0.742+0.044

−0.091
−0.63 −0.581 0.51 ± 0.09

Ξ∗0
bb 2µb + µu 2.302 −1.607 1.559 1.870+0.27

−0.13
1.507 1.40 –

Ξ
−

bb
4
3
µb −

1
3
µd 0.316 0.196 0.188 0.251

+0.045
−0.021

0.215 0.171 0.28 ± 0.04

Ξ∗−

bb
2µb + µd −1.324 −1.737 −0.941 −1.110+0.06

−0.14
−1.029 −0.880 –

Ω−

bb
4
3
µb − 1

3
µs 0.133 0.108 0.107 0.101+0.007

−0.007
0.138 0.112 0.42 ± 0.05

Ω∗−

bb
2µb + µs −0.782 −1.239 −0.702 −0.662+0.022

−0.024
−0.805 −0.697 –

Ω∗++
ccc 3µc 1.261 – 1.189 – 1.16 0.989 –

Ω+

ccb
4
3
µc −

1
3
µb 0.618 – 0.502 – 0.522 0.455 –

Ω∗+

ccb
µb + 2µc 0.831 – 0.651 – 0.703 0.594 –

Ω0
cbb

4
3
µb − 1

3
µc −0.24 – −0.203 – −0.2 −0.187 –

Ω∗0
cbb 2µb + µc 0.329 – 0.216 – 0.225 0.204 –

Ω
∗−

bbb
3µb −0.198 – −0.195 – −0.198 −0.178 –

3.4 Radiative decays

The radiative decay width can be expressed in terms of transition magnetic moment

(in nuclear magneton µN) as [214]

ΓB∗→Bγ =
ω3

4π

2

2J + 1

e2

m2
p

µ2
B∗→Bγ (3.12)
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where, mp is the mass of proton, µ is the transition magnetic moment that can be

written in terms of magnetic moment of constituent quark of final and initial state of

baryons as µB∗→Bγ = 〈B|µ̂B∗z|B∗〉. Our results for the transition magnetic moment

and radiative decay widths are tabulated in Tab. 3.4 and 3.5 in comparison with

other theoretical predictions such as Bag models, chiral perturbation theory and

different quark model results.

Table 3.4: Transition magnetic moment in µN

χPT Bag exBag χCQM NRQM
Transition µB′→Bγ [184] Present [184] [190] [191] [193] [199]

Ξ∗++
cc → Ξ++

cc
2
√
2

3 (µu − µc) 1.563 −2.35 −0.787 −1.27 1.33 1.35

Ξ∗+
cc → Ξ+

cc
2
√
2

3 (µd − µc) −1.295 1.55 0.945 1.07 −1.41 1.06

Ω∗+
cc → Ω+

cc
2
√
2

3 (µs − µc) −0.897 1.54 0.789 0.869 −0.89 0.88

Ξ∗+
bc → Ξ+

bc

√
2
3 (µc + µb − 2µu) −2.010 −2.56 0.695 1.12 – –

Ξ∗0
bc → Ξ0

bc

√
2
3 (µc + µb − 2µd) 1.249 1.34 −0.747 −0.919 – –

Ω∗0
bc → Ω0

bc

√
2
3 (µc + µb − 2µs) 0.769 1.33 −0.624 −0.748 – –

Ξ∗0
bb → Ξ0

bb
2
√
2

3 (µb − µu) −4.631 −2.77 −1.039 −1.45 – –

Ξ∗−
bb → Ξ−

bb
2
√
2

3 (µb − µd) 2.199 1.13 0.428 0.643 – –

Ω∗−
bb → Ω−

bb
2
√
2

3 (µb − µs) 1.174 1.12 −0.624 0.478 – –

Table 3.5: Radiative decay width (in keV)

χPT Bag exBag χQM RQM RQM
Transition Present [184] [190] [191] [215] [181] [195]
Ξ∗++
cc → Ξ++

cc 18.545 22 1.43 2.79 16.7 7.21 23.46
Ξ∗+
cc → Ξ+

cc 12.145 9.57 2.08 2.17 14.6 3.90 28.79
Ω∗+
cc → Ω+

cc 0.678 9.45 0.949 1.60 6.93 0.82 2.11
Ξ∗+
bc → Ξ+

bc 6.042 26.2 0.533 1.31 – – 0.49
Ξ∗0
bc → Ξ0

bc 2.22 7.19 0.612 0.876 – – 0.24
Ω∗0
bc → Ω0

bc 0.087 7.08 0.239 0.637 – – 0.12
Ξ∗0
bb → Ξ0

bb 1.233 31.1 0.126 0.137 1.19 0.98 0.31
Ξ∗−
bb → Ξ−

bb 0.265 5.17 0.022 0.0268 0.24 0.21 0.0587
Ω∗−
bb → Ω−

bb 0.008 5.08 0.011 0.0148 0.08 0.04 0.0226

3.5 Results and Discussion

After determining all the required model parameters, we present our numerical re-

sults. In Tab. 3.2, we present our results for the masses of doubly heavy baryons. It

is observed that our result for Ξ++
cc matches perfectly with the LHCb results [177].
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In Tab. 3.2 we also compare our results with the other theoretical approaches such

as hypercentral model [202–204], nonrelativistic quark model [197] chromomagnetic

model [196] that are based on three quark picture of baryons. We also compare with

the quark-diquark models such as relativistic quark model [91,181]. In NRQM [197],

the authors have used the NRQM Hamilton and the wave function chosen to be on

the basis of Harmonic Oscillator wave function. In hypercentral model [202–204],

the authors have computed the mass spectra by solving the Schrödinger equation

for the hypercentral Cornell potential. Our results are in very good agrement with

the RQM [91] for ΞQQ baryons. For ΩQQ baryons, our results are nearly 40 − 50

MeV lower. This is may be because of the different methodology as the authors of

Ref. [91] has used the relativistic treatment for the light quarks where as we have

treated the all systems as nonrelativistically. Our results are also in good accor-

dance with the chromagnetic model [196], in which the authors have used the effect

of color interaction in chromomagnetic model. But for triply heavy baryons, our

results are systematically lower than others. We also compare our results with the

LQCD data [24] and we found that our results for doubly heavy baryons match well

but for triply heavy baryons, our results underestimate LQCD data.

In Tab. 3.3 we present our results of magnetic moment of doubly heavy baryons

using the spin flavor wave function of the respective baryons. Note that we have

not introduced any additional parameter to compute the magnetic moments of spin

1/2 and 3/2 baryons. Our results are in good agreement with the hypercentral

model [201] and also nonrelativistic quark models [198] and [199, 200]. For triply

heavy baryons also our predictions are matching well with the NRQM [199,200].

Next, we compute the radiative decays of doubly heavy baryons and tabulate in Tab.

3.5. We consider here the transition from spin 3/2+ → 1/2+ only. The required

transition magnetic moments are presented in Tab. 3.4. Still the radiative decays of

doubly heavy baryons are not reported in any experimental facility but theoretical

results are available in the literature. We compare our findings with the theoretical

approaches such as RQM [194] and [181]. We also compare with the results from

χQM [215], χPT [184] and Bag model [190] predictions. There are wide range of

results predicted in theory. Our results for the radiative decay widths of Ξcc baryon

is very close to those obtained using χPT [184] and χQM [215]. For Ωcc baryons, our

results are near to the Bag model [190] and RQM [181]. For Ξbc and Ωbc baryons,

our results are higher than Bag model [190] and RQM [194] where as it is lower than
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the χPT [184]. For Ξbb baryons, our results are very nearer to the χQM [215] and

RQM [181]. For Ωbb, our result underestimate with χQM [215] by one order. But

as discussed earlier, there are a wide range of radiative decay widths available in

the literature and also no experimental as well as LQCD results are available, our

results might be interesting for the point of view of future experiments.

45



Chapter 4

Study of Exotic States as Dimesonic

Molecules

4.1 Introduction

Z±
c (3900) is the charged charmonium-like state observed first time by BESIII [216]

and then Belle [217] collaboration in the channel e+e− → π+π−J/ψ. This state was

also confirmed by CLEO collaboration [218]. BESIII have also determined parity to

be JP = 1+ using the partial wave analysis [219]. Also the charged bottomonium-

like states Zb(10610) and Zb(10650) observed in Belle Collaboration [220] and later

also confirmed by them [221, 222]. These states are also identified with the parity

to be JP = 1+. These states (Zc and Zb) don’t fit into the conventional quark

model and their minimal quark content to be cc̄dū or bb̄dū/bb̄ud̄ which are beyond

the conventional qq̄ or qqq model. These states have masses nearer to threshold

of two heavy flavor mesons and gained lot of attentions for both experimentalists

and theoreticians world wide. There are different ways in which these states are

studied theoretically based on tetraquark states [223–231], hadro-quarkonium state

[232–234] in which the exotic states are considered as coupling to the light and heavy

quarkonium state to intermediate open-flavor mesons. These states are also studied

on the basis of hadronic composite molecular pictures [235–247]. These states are

studied in the different approaches such as chiral quark model [248], relativistic

quark model [249], effective field theory [250,251], holographic QCD [252] and QCD

sum rules [253]. The comprehensive reviews on the status of these exotic states are

given in the literature [246, 254, 255].

In this chapter, we restrict our study to the exotic states namely Z+
c , Z+

b and
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Z ′
b considering them as a hadronic composite molecule of D+D̄∗, BB̄∗ and B∗B̄∗

respectively as their masses are below these threshold. The bound state masses are

computed by sloving the Schrödinger equation nemerically for the generalized Woods

- Saxon potantial. We also compute the two body strong decays of these states using

the phenomenological Lagrangian mechanism. We compare our findings with the

available experimental data and other theoretical predictions. We have presented

this work in the XXII DAE High energy Physics Symposium held at University of

Delhi during December 12-16, 2016 and published in a conference proceeding [256].

4.2 Methodology

There are various approaches available in the literature for studying these exotic

states but since their masses are nearer to the D∗D̄, B∗B̄ and B∗B̄∗ threshold,

these states are considered as a hadronic composite molecules of these mesons. We

consider here the potential of the form modified Woods Saxon potential for the con-

finement of the exotic state along with the Coulomb replusive term. The potential

equation is given by [257, 258],

V (r) =
V0

1 + e
r−R0
a

+
Ce

r−R0
a

(

1 + e
r−R0
a

)2 − b

r
(4.1)

where, V0 is the potential strength, b is the strength of Coulomb interaction. R0 is

the radius of the molecule. a is the diffuseness of the surface [257], C is the depth

of the potential which range from 0 < C < 150 MeV [258], where C = 0 MeV

corresponds to the standard Woods-Saxon Potential. The plot of the potential is

also shown in the Fig. 4.1 with the variation in the depth of the potential C.

Table 4.1: Fitted parameters for computing the masses

Potential Strength V0 15 MeV
Radius of the molecule R0 1.75 fm
Strength of coulomb interaction b 0.08
Diffuseness of the potential -0.51 fm
Potential Depth Range 0 < C < 150 MeV [258]
Size Parameter Λ: 500 MeV

For computing the bound state masses of the exotic states the Schrödinger equation

is sloved nemerically for the potential Eq. (4.1) using the Mathematica notebook

utilizing the Runge–Kutta method [137] and the binding energy is obtained. The
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Figure 4.1: Wood-Saxon potential with variation in potential depth

masses of the dimesonic states are obtained using constituent mesons and binding

energy

M12 =M1 +M2 − BE. (4.2)

The model parameters are fitted to obtain the masses of the respective exotic states.

Table 4.2: Masses of Z+
c (D

+D̄∗), Z+
b (BB̄

∗) and Z ′

b(B
∗B̄∗) molecular states (in MeV)

with the variation in potential depth C (in MeV)

C D+D̄∗ BB̄∗ B∗B̄∗

Binding Energy Mass Binding Energy Mass Binding Energy Mass
0 11.82 3864.74 5.58 10598.9 5.54 10644.9
50 11.96 3864.61 7.05 10597.4 7.01 10643.4
100 12.07 3864.5 8.04 10596.4 8.02 10642.4
150 12.15 3864.42 8.72 10595.7 8.70 10641.7

PDG [1] 3883.9±4.5 10607.2±2.0 10652.2 ± 1.5

4.3 Strong decay width

The strong two body decay widths are computed using the phenomenological La-

grangian mechanism given in Ref. [235, 236]. The the Lagrangian corresponding to

the coupling of Zc and Zb states to its constituent can be written as [235, 236],

LZc(x) =
gZc√
2
MZcZ

µ
c (x)

∫

d4yΦZc(y
2)
{

D
(

x+
y

2

)

D̄∗
µ

(

x− y

2

)

+D∗
µ

(

x+
y

2

)

D̄
(

x− y

2

)}

LZ′

b
(x) =

gZ′

b√
2
iǫµναβ

∫

d4yΦZ′

b
(y2)B∗α

(

x+
y

2

)

B̄∗β
(

x− y

2

)

(4.3)

LZb(x) =
gZb√
2
MZbZ

µ
b (x)

∫

d4yΦZb(y
2)
{

B
(

x+
y

2

)

B̄∗
µ

(

x− y

2

)

+B∗
µ

(

x+
y

2

)

B̄
(

x− y

2

)}

where y is the relative Jacobi coordinate, gZc, gZb and gZ′
b

are the dimensional

coupling constants of Zc, Zb and Z ′
b to the molecular D+D̄∗, BB̄∗ and B∗B̄∗ com-
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ponents, respectively. ΦZc(y
2), ΦZ′

b
(y2) and ΦZ′

b
(y2) are the correlation functions,

which describes the distributions of the constituent mesons in the bound states.

The strong two body decay widths are given by [235, 236]

ΓZ+
c →Ψ(ns)π+ ≃

g2ZcΨ(ns)π

96πM3
Zc

λ3/2(M2
Zc ,M

2
ψ(ns),M

2
π)

(

1 +
M2

ψ(ns)

2M2
Zc

)

ΓZ+
b
→Υ(ns)π ≃

g2ZbΥ(ns)π

16πMZb

λ1/2(M2
Zb
,M2

Υ(ns),M
2
π) (4.4)

Γ
Z

′+
b

→Υ(ns)π
≃

g2ZbΥ(ns)π

16πMZ
′

b

λ1/2(M2
Z

′

b

,M2
Υ(ns),M

2
π)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källen function, gZcΨ(ns)π,

gZbΥ(ns)π and gZ′
b
Υ(ns)π are the decay coupling constants, expressed as [235, 236]

gZcΨ(ns)π = 8gZc
gFgH
FπMJ

JZcMZc

gZbΥ(ns)π = gZbgBB∗Υ(ns)πJZb (4.5)

gZ′

b
Υ(ns)π = gZ′

b
gB∗B∗Υ(ns)πMZ

′

b
JZ′

b

with g′s and J ′s are the coupling constants and loop integrals respectively given by

1

g2Zc
=

M2
Zc

32π2Λ2

∫ ∞

0

dα1dα2

∆3
1

(α12 + 2α1α2)

(

1 +
Λ2

2M2
D∗∆1

)

× exp

(

−M
2
D∗α1 +M2

Dα2

Λ2
+
M2

Zc

2Λ2

α12 + 2α1α2

∆1

)

1

g2Zb
=

M2
Zb

32π2Λ2

∫ ∞

0

dα1dα2

∆3
1

(α12 + 2α1α2)

(

1 +
Λ2

2M2
B∗∆1

)

× exp

(

−M
2
B∗α1 +M2

Bα2

Λ2
+
M2

Zb

2Λ2

α12 + 2α1α2

∆1

)

(4.6)

1

g2
Z

′

b

=
M2

Zb

32π2Λ2

∫ ∞

0

dα1dα2

∆2
1

(

Λ2

M2
Z

′

b

+
α12 + 2α1α2

2∆1

)

(

1 +
Λ2

M2
B∗∆1

)

× exp

(

−M
2
B∗α12

Λ2
+
M2

Z
′

b

2Λ2

α12 + 2α1α2

∆1

)

and

JZc =
1

8π2

∫ ∞

0

dα1dα2

∆2
2

(

1 +
Λ2

2M2
D∗∆2

)

exp

(

−M
2
D∗α1 +M2

Dα2

Λ2
+
M2

Zc

4Λ2

α12 + 4α1α2

∆2

)

JZb =
1

8π2

∫ ∞

0

dα1dα2

∆2
2

(

1 +
Λ2

2M2
B∗∆2

)

exp

(

−M
2
B∗α1 +M2

Bα2

Λ2
+
M2

Zb

4Λ2

α12 + 4α1α2

∆2

)

JZ′
b

=
1

8π2

∫ ∞

0

dα1dα2

∆2
2

(

1 +
Λ2

2M2
B∗∆2

)

exp

(

−M
2
B∗α12

Λ2
+
M2

Z
′

b

α12

4Λ2

α12 + 4α1α2

∆2

)
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with ∆1 = 2 + α12, ∆2 = 1 + α12, α12 = α1 + α2 and Λ is the size parameter which

characterizes the effective size of the hadrons. For computation we take Λ = 0.5

GeV [235,236].

The strong two body decay widths are computed using Eq. (4.4) and the results are

tabulated in Tab. 4.3.

Table 4.3: Hadronic decay widths of Z+
c , Z+

b and Z ′
b molecular states (in MeV)

Decay Mode Decay width
C = 0 C = 50 C = 100 C = 50 Exp [259] [235, 236] [260] [261] [262]

Zc → ψ(1s) + π 11.72 11.76 11.78 11.81 – 10.43 − 23.89 12.00 3.67
Zc → ψ(2s) + π 2.12 2.11 2.11 2.11 – 1.28 − 2.94 0.9749 8.24
Zb → Υ(1s) + π 22.84 22.93 23.00 23.06 22.9±7.3 13.3 − 30.8 19.34 – 5.9 ± 0.4
Zb → Υ(2s) + π 26.93 26.99 27.04 27.09 21.1±4.0 15.4 − 35.7 23.54 – –

Z
′

b → Υ(1s) + π 23.43 23.51 23.58 23.64 12±10±3 14.0 − 31.7 19.49 – 9.5+0.7
−0.6

Z
′

b → Υ(2s) + π 28.77 28.84 28.90 28.95 16.4±3.6 16.9 − 39.3 25.07 – –

4.4 Results and Discussion

In this chapter we compute the masses of exotic states considering the dimeson

molecules considering interaction of type modified Woods - Saxon potential. We

have also analysed the nature of potential with the depth of the potential. From the

potential plot Fig. 4.1, it is clear that as the depth of the potential increases, the

binding energy increases. Solving Schrödinger equation numerically, we obtain the

binding energy of the exotic states and the bound state masses are obtained. The

bound state masses of the exotic states are in good agreement with PDG data [1]. We

have also computed the two body strong decay widths of these states in interaction

Lagrangian mechanism from Ref. [235,236] and compare with the experiments. Our

predictions of decay widths are in good agreement with the experimental data [1].

We also compare our findings with the other theoretical approaches such as covariant

quark model [262], light front model [261] and potential model [260]. It is observed

that our results are also matching well with the theoretical approaches.
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Chapter 5

Weak Decays of Open Flavor Mesons

5.1 Introduction

Charm sector is a good platform to test the absolute scale of computed decay am-

plitudes in terms of form factors because the Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements can be determined independently for D decays by exploiting the

CKM unitarity and numerical values of the matrix elements for B decays. Study

of charm decays is also important for understanding of new physics (NP) affecting

the up-type quark dynamics as it is the only up-type quark displaying flavor oscil-

lations [263, 264]. Some hints about the dynamics of TeV scale QCD are expected

from charm flavour oscillations in the same line of charm mass and dynamics predic-

tions from experimentally observed low energy kaon oscillations [265]. These flavour

oscillations are very sensitive probes for the underlying new physics interactions

involving charged particles.

Semileptonic decays have reasonably large amplitudes making them more accessible

in recently upgraded experimental facilities and hence are considered to be primary

source to get information about CKM matrix elements. Charmed meson semilep-

tonic decays are the easiest direct way to determine the magnitude of quark-mixing

parameters i.e. direct access to |Vcs| and |Vcd|. The study of charm semileptonic

decays provides insight to |Vcq|2 via matrix elements that describe strong interaction

effects and may contribute to a precise determination of the CKM matrix element

|Vub| via constraints provided by charm decays to reduce the model dependence

in extracting |Vub| from exclusive charmless B semileptonic decays. For example,

flavour symmetry relates the form factors of the semileptonic decays of D and B
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systems. Recently, the matrix elements |Vcd(s)| was extracted (PDG [1]) from the ex-

perimental results from the BABAR [266,267], Belle [268], BESIII [269], CLEO [270]

in the channel D → π(K)ℓ+νℓ.

Many lattice quantum chromodynamics (LQCD) papers are available in literature

regarding the semileptonic form factors for the channel D → (K, π)ℓνℓ. However, in

the light sector of daughter meson, the first successful computation of form factors

for Ds → φℓ+νℓ from full LQCD was reported by HPQCD collaboration [21]. Later,

Ds → η(′)ℓ+νℓ semileptonic form factors were also reported for the first time using

LQCD [22]. The heavy (D(s)) to light (π, ρ, ω, φ, η(′), K ) form factors have also

been computed within the QCD sum rules [271,272] and light cone QCD sum rules

(LCSR) [273–276]. The LCSR along with heavy quark effective theory (HQET)

has also been employed for computing the transition form factors and branching

fractions [277]. Recently, computation of form factors and semileptonic branching

fractions of D → ρ decays have been reported using LCSR with chiral correlator

[278]. The heavy to light form factors are also computed in the heavy quark limit of

the large energy effective theory [279], constituent quark model [280], chiral quark

model (χQM) [281] and chiral perturbation theory [282]. The form factors and

semileptonic branching fractions of D(s) mesons are also computed in the frame

work of heavy meson chiral theory (HMχT) [283, 284] and the light front quark

model (LFQM) [285–287]. The authors of Ref. [288] have computed the semileptonic

branching fractions of D(s) mesons in the chiral unitary (χUA) approach.

In this chapter, we compute the semileptonic branching fractions of the charmed

(D) and charmed-strange (D+
s ) meson to light mesons (ρ, ω, φ, η(′) and K(∗)0).

The required transition form factors are computed in the frame work of Covariant

Confined Quark Model (CCQM) [57,58,289]. The CCQM is the effective field theory

approach with the infrared confinement for the hadronic interactions with their

constituents. This allows us to compute the form factors in the complete physical

range of momentum transfer. We also compute the semileptonic branching fractions

for D+
(s) → D0e+νe. These are the rare class of semileptonic decays where the

light quark decays weakly leaving behind the heavy quark as a spectator. Recently,

BESIII collaboration has reported the upper bound on the branching fraction for

the channel D+ → D0e+νe at 90% confidence level to be 1.0 × 10−4 [290]. These

channels were studied within the SU(3) symmetry [291] as well as heavy flavour

conserving decays [292].
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The next section gives detailed formulation of the model CCQM. Next, we provide

the branching fractions in terms of helicity structure functions followed by the results

in comparison with the experimental data and theoretical predictions. This study

comprising computation of leptonic and semileptonic decays of D and D(s) mesons

is published in Physical Review D [293,294]. In these papers, we have considered the

channelsD0 → (K−, π−, ρ−, K∗(892)−)ℓ+νℓ,D+ → (K̄0, π0, η, η′, ρ0, ω, K̄∗(892)0)ℓ+νℓ

and D+
s → (K0, η, η′, φ,K∗(892)−)ℓ+νℓ for ℓ = e and µ.

5.2 Methodology

The CCQM is an effective quantum field approach [57, 58, 289] for hadronic in-

teractions that utilizes an effective Lagrangian for hadrons interacting with the

constituent quarks. In this model it is assumed that hadrons interact with the con-

stituent quarks only. The Lagrangian describing the coupling of meson M(q1q̄2) to

its constituent quarks q1 and q̄2 is given by

Lint = gMM(x)

∫

dx1

∫

dx2FM(x; x1, x2)q̄2(x2)ΓMq1(x1) +H.c. (5.1)

where ΓM is the Dirac matrix and projects onto the spin quantum number of relevant

mesonic field M(x). FM is the vertex factor which characterizes the finite size of the

meson and is invariant under translation FM(x+ a, x1 + a, x2 + a) = FM(x, x1, x2).

This ensures the Lorentz invariance of the Lagrangian Eq. (5.1) for any value of

four-vector a. We choose the following form of the vertex function

FM (x, x1, x2) = δ(4)

(

x−
2
∑

i=1

wixi

)

ΦM
(

(x1 − x2)
2
)

(5.2)

with ΦM is the correlation function of two constituent quarks with masses mq1 and

mq2 and wqi = mqi/(mq1 +mq2) such that w1 + w2 = 1.

We choose Gaussian function for vertex function as

Φ̃M (−p2) = exp (p2/Λ2
M) (5.3)

with the parameter ΛM characterized by the finite size of the meson. Note that any

form of ΦM is appropriate as long as it falls off sufficiently fast in the ultraviolet

region of Euclidian space in order to overcome the ultraviolet divergence of the loop

integral. The local fermion propagator for the constituent quarks is given by

Sq(k) =
1

mq− 6k (5.4)
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with an effective constituent quark mass mq. The compositeness condition [59, 60]

Figure 5.1: Diagram describing meson mass operator.

is used to determine the coupling constant gM in Eq. (5.1)

ZM = 1− 3g2M
4π2

Π̃′
M (m2

M) = 0, (5.5)

where Π̃′
M(p2) is the derivative of the mass operator taken on the mass-shell p2 =

m2
M . By using the Fourier transformation of the vertex function in Eq. (5.3) and

quark propagator in Eq. (5.4), one can write the meson mass function defined in

Fig. 5.1. For pseudoscalar meson

Π̃P (p
2) = Ncg

2
P

∫

d4k

(2π)4i
Φ̃2
P (−k2)tr

(

γ5S1(k + w1p)γ
5S2(k − w2p)

)

, (5.6)

and for vector meson

Π̃µν
V (p2) = Ncg

2
V

∫

d4k

(2π)4i
Φ̃2
V (−k2)tr

(

γµS1(k + w1p)γ
νS2(k − w2p)

)

(5.7)

where Nc = 3 is the number of colors. Since the vector meson is on its mass-shell,

one has ǫV ·p = 0 and needs only the part of the vector meson function proportional

to gµν , given by

Π̃V (p
2) =

1

3

(

gµν −
pµpν
p2

)

Π̃µν
V (p). (5.8)

The loop integrations in Eqs. (5.6) and (5.7) are performed with Fock-Schwinger

representation of quark propagators

Sq(k + p) =
1

mq− 6k− 6p =
mq+ 6k+ 6p

m2
q − (k + p)2

= (mq+ 6k+ 6p)
∞
∫

0

dα e−α[m
2
q−(k+p)2], (5.9)
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allowing tensor loop integral by conversion of the loop momentum to the derivative

of the exponential function. All the loop integrations are performed in Euclidean

space transformed from Minkowski space using the Wick rotation

k0 = ei
π
2 k4 = ik4 (5.10)

so that k2 = k20 − ~k2 = −k24 − ~k2 = −k2E ≤ 0. Simultaneously one has to rotate all

external momenta, i.e. p0 → ip4 so that p2 = −p2E ≤ 0. Then the quadratic form in

Eq. (5.9) becomes positive-definite,

m2
q − (k + p)2 = m2

q + (kE + pE)
2 > 0 (5.11)

where the integral over α is convergent.

Collecting the representation of the vertex function Eq. (5.3) and quark propagator

Eq. (5.4), we perform the Gaussian integration in the derivatives of the mass func-

tions in Eqs. (5.6) and (5.7). The exponential function has the form ak2+2kr+ z0,

where r = bp. Using the following properties

kµ exp(ak2 + 2kr + z0) =
1

2

∂

∂rµ
exp(ak2 + 2kr + z0),

kµkν exp(ak2 + 2kr + z0) =
1

2

∂

∂rµ

1

2

∂

∂rν
exp(ak2 + 2kr + z0), etc.

one can replace 6 k by 6∂r = γµ ∂
∂rµ

in order to perform the exchange of tensor in-

tegrations for differentiation of the Gaussian exponent. The r-dependent Gaussian

exponent e−r2/a can be moved to the left through the differential operator 6∂r using

∂

∂rµ
e−r

2/a = e−r
2/a

[

−2rµ

a
+

∂

∂rµ

]

,

∂

∂rµ

∂

∂rν
e−r

2/a = e−r
2/a

[

−2rµ

a
+

∂

∂rµ

]

·
[

−2rν

a
+

∂

∂rν

]

, etc. (5.12)

Finally, we move the derivatives to the right by using the commutation relation
[

∂

∂rµ
, rν
]

= gµν . (5.13)

The last step has been done by using a form code [295] which works for any num-

bers of loops and propagators. In the remaining integrals over the Fock-Schwinger

parameters 0 ≤ αi <∞, we introduce an additional integration which converts the

set of Fock-Schwinger parameters into a simplex. Using the transformation [296]

n
∏

i=1

∞
∫

0

dαif(α1, . . . , αn) =

∞
∫

0

dttn−1
n
∏

i=1

∫

dαiδ

(

1−
n
∑

i=1

αi

)

f(tα1, . . . , tαn) (5.14)

55



Finally, we have

Π̃M(p2) =
3g2M
4π2

∞
∫

0

dt t

a2M

1
∫

0

dα e−t z0+zM fM(t, α), (5.15)

z0 = αm2
q1
+ (1− α)m2

q2
− α(1− α)p2,

zM =
2sM t

2sM + t
(α− w2)

2p2,

aM = 2sM + t, b = (α− w2)t.

where SM = 1/Λ2
M and the function fM(t, α) coming from the trace evaluation in

Eqs. (5.6) and (5.7).

It can be seen that the integral over t in Eq. (5.15) is well defined and convergent

below the threshold p2 < (mq1 + mq2)
2. The convergence of the integral above

threshold p2 ≥ (mq1 + mq2)
2 is ensured by incrementing the quark mass by an

imaginary part, i.e. mq → mq − iǫ, ǫ > 0, in the quark propagator Eq. (5.4).

This allows transformation of the integration variable t to imaginary axis t → it.

As a result, the integral Eq. (5.15) becomes convergent, however it does obtain an

imaginary part that accounts for quark pair production.

However, by truncating the scale of integration to the upper limit by introducing

the infrared cutoff
∞
∫

0

dt(. . .) →
1/λ2
∫

0

dt(. . .), (5.16)

all possible thresholds present in the initial quark diagram can be removed [289].

Thus the infrared cutoff parameter λ ensures the confinement. This method is

quite general and can be used for diagrams with an arbitrary number of loops and

propagators. In CCQM, the infrared cutoff parameter λ is taken to be universal for

all physical processes.

Since the model CCQM is not based on the first principle, we need to fix the param-

eters such as quark masses (mq) and meson size parameters (ΛM) as in Tab. 5.1 and

Tab. 5.2 respectively. The model parameters are determined by fitting computed

leptonic and radiative decay constants to available experimental data or LQCD for

pseudoscalar and vector mesons. The matrix elements of the leptonic decays are

described by the Feynman diagram shown in Fig. 5.2. The leptonic decay constants
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Table 5.1: Quark masses and infrared cutoff parameter in GeV

mu/d ms mc mb λ
0.241 0.428 1.672 5.05 0.181

Table 5.2: Meson size parameters in GeV

ΛD ΛDs ΛK ΛK∗ Λφ Λρ Λω Λπ Λqq̄η Λss̄η Λqq̄η′ Λss̄η′

1.600 1.784 1.014 0.805 0.883 0.624 0.488 0.870 0.881 1.973 0.257 2.797

of the pseudoscalar and vector mesons are defined by

NcgP

∫

d4k

(2π)4i
φ̃P (−k2)tr[OµS1(k + w1p)γ

5S2(k − w2p)] = fpp
µ

NcgV

∫

d4k

(2π)4i
φ̃V (−k2)tr[OµS1(k + w1p) 6ǫvS2(k − w2p)] = mV fV ǫ

µ
V (5.17)

where Nc is the number of colors and Oµ = γµ(1−γ5) is the weak Dirac matrix with

left chirality. Our results for the leptonic decay constants are given in the Table 5.3.

D

p

k + p

q
1

q
2

k

v

l

Figure 5.2: Quark model diagrams for the D-meson leptonic decay

The decay constants we use in our calculations match quite well with PDG, LQCD

and QCD sum rules (QCDSR) parameters.

In the SM, pure leptonic decays D+
(s) → ℓνℓ proceed by exchange of virtual W boson.

The leptonic branching fraction is given by

B(D+
(s) → ℓνℓ) =

G2
F

8π
mD(s)

m2
ℓ

(

1− m2
ℓ

m2
D(s)

)2

f 2
D(s)

|Vcd|2τD(s)
(5.18)

where, GF is the fermi coupling constant, mD and mℓ are the D-meson and lepton

masses respectively and τD(s)
is the D(s)-meson lifetime. fD(s)

is the leptonic decay

constant of D-meson from Table 5.3. The resultant branching fractions for ℓ = τ, µ

57



Table 5.3: Leptonic decay constants fH (in MeV)

fH Present Data Reference
fD 206.08 202.2 (2.2) (2.6) LQCD [297]

210± 11 QCDSR [298]
211.9(1.1) PDG [1]

fDs 257.70 258.7 (1.1) (2.9) LQCD [297]
259± 10 QCDSR [298]
249.0(1.2) PDG [1]

fDs/fD 1.25 1.173(3) PDG [1]
fK 156.96 155.37(34) LQCD [299]

157.9± 1.5 LQCD [300]
155.6(0.4) PDG [1]

fπ 130.30 130.39 (20) LQCD [299]
132.3± 1.6 LQCD [300]
130.2(1.7) PDG [1]

fK/fπ 1.20 1.1928(26) PDG [1]
fD∗ 244.27 278± 13± 10 LQCD [301]

263± 21 QCDSR [298]
fD∗

s
272.08 311± 9 LQCD [301]

308± 21 QCDSR [298]
fK∗ 226.81 222± 8 QCDSR [302]
fρ 218.28 208.5± 55± 0.9 LQCD [303]
fφ 226.56 238± 3 LQCD [304]

215± 5 QCDSR [302]
fω 198.38 194.60 ± 3.24 LFQM [286]

and e are given in Table 5.4. I is important to note here that the branching fractions

are affected by different lepton masses through the helicity flip factor (1−m2
ℓ/m

2
D(s)

)2.

Table 5.4: Leptonic D+
(s) branching fractions

Channel Present PDG Data [1]
D+ → e+νe 8.42× 10−9 < 8.8× 10−6

D+ → µ+νµ 3.57× 10−4 (3.74± 0.17)× 10−4

D+ → τ+ντ 0.95× 10−3 < 1.2× 10−3

D+
s → e+νe 1.40× 10−7 < 8.3× 10−5

D+
s → µ+νµ 5.97× 10−3 (5.50± 0.23)× 10−3

D+
s → τ+ντ 5.82 % (5.48± 0.23)%
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5.3 Form factors and differential decay distribution

After fixing all the model parameters, we employ CCQM to compute the semilep-

tonic branching fractions of D(s) → P/V transition where P and V corresponds to

pseudoscalar and vector daughter mesons. We start with the definitions of the form

factors. The invariant matrix element for this decay can be written as

M(D(s) → (P, V )ℓ+νℓ) =
GF√
2
Vcx〈(P, V )|x̄γµ(1− γ5)c|D(s)〉ℓ+Oµνℓ (5.19)

where Oµ = γµ(1−γ5) and x = d, s. The matrix elements for the above semileptonic

transitions in the covariant quark model are defined by the diagram in Fig 5.3. The

D p( )
1 K * p( )( )

2

O
m

q
1

q
3

q
3

q
2

k+p
1

k+p
2

k

(*)

2

23 2( ( ) )
K

k w pF - +2

13 1( ( ) )D k w pF - +

Figure 5.3: Quark model diagrams for the D-meson semileptonic decay

matrix element for the semileptonic transition can be written as

〈P (p2)|x̄Oµc|D(s)(p1)〉 = NcgD(s)
gP

∫

d4k

(2π)4i
Φ̃D(s)

(−(k + w13p1)
2)Φ̃P (−(k + w23p2)

2)

×tr[OµS1(k + p1)γ
5S3(k)γ

5S2(k + p2)]

= F+(q
2)P µ + F−(q

2)qµ (5.20)

〈V (p2, ǫν)|x̄Oµc|D(s)(p1)〉 = NcgD(s)
gV

∫

d4k

(2π)4i
Φ̃D(s)

(−(k + w13p1)
2)Φ̃V (−(k + w23p2)

2)

×tr[OµS1(k + p1)γ
5S3(k) 6ǫ†νS2(k + p2)]

=
ǫ†ν

m1 +m2

[

−gµνP · qA0(q
2) + P µP νA+(q

2)

+qµP νA−(q
2) + iεµναβPαqβV (q

2)
]

(5.21)

with P = p1+p2, q = p1−p2 and ǫν to be the polarization vector such that ǫ†ν ·p2 = 0

and on-shell conditions of particles require p21 = m2
1 = m2

D(s)
and p22 = m2

2 = m2
P,V .

Since there are three quarks involved in this transition, we use wij = mqj/(mqi+mqj)
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(i, j = 1, 2, 3) such that wij + wji = 1. Performing the loop integration in Eqs

(5.20) and (5.21), we obtain the semileptonic form factors within the entire range

of momentum transfer 0 ≤ q2 ≤ q2max with q2max = (mD(s)
− mP,V )

2. The required

multi-dimensional integration appeared in Eqs. (5.20) and (5.21) are computed

numerically using Mathematica as well as FORTRAN codes with NAG library. We

also represent our form factors using double pole parametrization as

F (q2) =
F (0)

1− as+ bs2
, s =

q2

m2
1

(5.22)

In Tab. 5.5, we list the quark channel and the CKM matrix for the semileptonic

decays of D(s) mesons and in Tab. 5.6, we give the numerical results of the form

factors and associated double pole parameters. For the comparison of our form

Table 5.5: Quark channel and associated CKM matrix element for semileptonic
decays (φ = 39.3 deg)

Channel qq1 qq2 Vckm Channel qq1 qq2 Vckm
D0 → K− cū sū Vcs D+ → K0 cd̄ sd̄ Vcs
D0 → K∗(892)− cū sū Vcs D+ → K∗(892)0 cd̄ sd̄ Vcs
D+
s → K0 cs̄ ds̄ Vcd D+

s → K∗(892)0 cs̄ ds̄ Vcd
D0 → π− cū dū Vcd D+ → π0 cd̄ dd̄ Vcd/

√
2

D0 → ρ− cū dū Vcd D+ → ρ0 cd̄ dd̄ −Vcd/
√
2

D+ → ω cd̄ dd̄ Vcd/
√
2 D+

s → φ cs̄ ss̄ Vcs
D+ → η cd̄ dd̄ Vcd cosφ/

√
2 D+

s → η cs̄ ss̄ Vcs sin φ

D+ → η′ cd̄ dd̄ Vcd sin φ/
√
2 D+

s → η′ cs̄ ss̄ Vcs cosφ
D+ → D0 cd̄ cū Vud D+

s → D0 cs̄ cū Vus

factors with the other studies, we need to transform our form factors to the Bauer-

Stech-Wirbel (BSW) form factors. The relation reads [305]

A′
2 = A+, V ′ = V

A′
1 =

M1 −M2

M1 +M2
A0 (5.23)

A′
0 =

M1 −M2

2M2

(

A0 −A+ − q2

M2
1 −M2

2

A−

)

and

F ′
0 = F+ +

q2

M2
1 −M2

2

F−, F ′
+ = F+ (5.24)

Once the form factors are known, it is straight forward to calculate the semileptonic

decay rates. The differential decay widths are written in terms of helicity amplitudes
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Table 5.6: Form factors and associated double pole parameters

F F (0) a b F F (0) a b

AD→K∗

+ 0.68 0.86 0.09 AD→K∗0

− −0.90 0.96 0.14
AD→K∗

0 2.08 0.40 −0.10 V D→K∗0 0.90 0.97 0.13
AD→ρ

+ 0.57 0.96 0.15 AD→ρ
− −0.74 1.11 0.22

AD→ρ
0 1.47 0.47 −0.10 V D→ρ 0.76 1.13 0.23

AD→ω
+ 0.55 1.01 0.17 AD→ω

− −0.69 1.17 0.26
AD→ω

0 1.41 0.53 −0.10 V D→ω 0.72 1.19 0.27
ADs→φ

+ 0.67 1.06 0.17 ADs→φ
− −0.95 1.20 0.26

ADs→φ
0 2.13 0.59 −0.12 V Ds→φ 0.91 1.20 0.25

ADs→K∗

+ 0.57 1.13 0.21 ADs→K∗

− −0.82 1.32 0.34
ADs→K∗

0 1.53 0.61 −0.11 V Ds→K∗ 0.80 1.32 0.33
FD→K
+ 0.77 0.73 0.05 FD→K

− −0.39 0.78 0.07
FD→π
+ 0.63 0.86 0.09 FD→π

− −0.41 0.93 0.13
FD→η
+ 0.36 0.93 0.12 FD→η

− −0.20 1.02 0.18
FD→η′

+ 0.36 1.23 0.23 FD→η′

− −0.03 2.29 1.71
FD→D0

+ 0.91 5.88 4.40 FD→D0

− −0.026 6.32 8.37
FDs→η
+ 0.49 0.69 0.002 FDs→η

− −0.26 0.74 0.008
FDs→η′

+ 0.59 0.88 0.018 FDs→η′

s −0.23 0.92 0.009
FDs→K
+ 0.60 1.05 0.18 FDs→K

− −0.38 1.14 0.24
FDs→D0

+ 0.92 5.08 2.25 FDs→D0

− −0.34 6.79 8.91

as

dΓ(D(s) → (P, V )ℓ+νℓ)

dq2
=

G2
F |Vcq|2|p2|q2
96π3M2

1

(

1− m2
ℓ

q2

)2

×
[(

1 +
m2
ℓ

2q2

)

∑

|Hn|2 +
3m2

ℓ

2q2
|Ht|2

]

, (5.25)

with |p2| = λ1/2(M2
1 ,M

2
2 , q

2)/2M1 is the momentum of the daughter meson in the

rest frame of the D(s) meson and the index n runs through (+,−, 0). The helicity

amplitudes are related to the form factors in the following manner:

For D(s) → P channel:

Ht =
1
√

q2
(PqF+ + q2F−),

H± = 0 and H0 =
2m1|p2|
√

q2
F+ (5.26)
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For D(s) → V channel:

Ht =
1

m1 +m2

m1|p2|
m2

√

q2

(

(m2
1 −m2

2)(A+ − A−) + q2A−
)

H± =
1

m1 +m2
(−(m2

1 −m2
2)A0 ± 2m1|p2|V )

H0 =
1

m1 +m2

1

2m2

√

q2
(−(m2

1 −m2
2)(m

2
1 −m2

2 − q2)A0 + 4m2
1|p2|2A+).(5.27)

For studying the lepton-mass effect, we define the physical observables such as

forward-backward asymmetry Aℓ
FB(q

2), the longitudinal P ℓ
L(q

2) and transverse P ℓ
T (q

2)

polarization of the charged lepton in the final state. They are also related to the

helicity amplitude via the relations

Aℓ
FB(q

2) = −3

4

|H+|2 − |H−|2 + 4δℓH0Ht

(1 + δℓ)
∑

|Hn|2 + 3δℓ|Ht|2
, (5.28)

P ℓ
L(q

2) = −(1 − δℓ)
∑

|Hn|2 − 3δℓ|Ht|2
(1 + δℓ)

∑ |Hn|2 + 3δℓ|Ht|2
, (5.29)

P ℓ
T (q

2) = − 3π

4
√
2

√
δℓ(|H+|2 − |H−|2 − 2H0Ht)

(1 + δℓ)
∑

|Hn|2 + 3δℓ|Ht|2
, (5.30)

where δℓ = m2
ℓ/2q

2 is the helicity-flip factor. The detailed analytical calculations of

the helicity amplitudes and differential distributions are given in our recent papers

[293,294,306,307]. The averages of these observables in the q2 range is better suited

for experimental measurements with low statistics. In order to compute the averages

of these observables Eqns. 5.28 – 5.30, one has to multiply and divide the numerator

and denominator with the phase factor |p2|(q2 −m2
ℓ)

2/q2 and integrate seperately.

These observables are sensitive to contributions of physics beyond the SM and can

be used to test LFU violations [308–313].

5.4 Results and Discussion

Having determined all the model parameters we are now in a position to represent

our results. First we compute the leptonic branching fractions using the Eq. (5.18)

and tabulated in Tab. 5.4. We compare our results with the latest PDG data [1]

and it is observed that our results satisfies the experimental constraint for electron

channel and for muon and tau channel also our results are in very good agreement

with the PDG data.

Then we compute the form factors for the semileptonic decays of D(s) mesons in the

entire physical range of momentum transfer. We also compare our findings with the
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other theoretical approaches. For comparing our form factors with other studies, we

need to transform to BSW form factors Eq. (5.24 and 5.24). We note that based on

the method we used in the model-parameter fitting, as well as comparisons of our

predictions with experimental data in previous studies, the estimation of the errors

for the form factors in our model are of order 20% for small q2 and 30% for large q2

.

Table 5.7: Comparison of F+(0) for D(s) → P transitions at maximum recoil.

D → π D → K D → η D → η′ Ds → η Ds → η′ Ds → K0

Present 0.63 0.77 0.36 0.36 0.49 0.59 0.60
CQM [280] 0.69 0.78 – – 0.50 0.60 0.72
LFQM [286] 0.66 0.79 0.39 0.32 0.48 0.59 0.66
LQCD [22] – – – – 0.564(11) 0.437(18) –
LQCD [22] – – – – 0.542(13) 0.404(25) –
LQCD [17] 0.612(35) 0.765(31) – – – – –
LCSR [274] – – 0.552 ± 0.051 0.458 ± 0.105 0.432 ± 0.033 0.520 ± 0.080 –

LCSR [276] – – 0.429+0.165
−0.141

0.292+0.113
−0.104

0.495+0.030
−0.029

0.558+0.047
−0.045

–

Table 5.8: Ratios of the D(s) → V transition form factors at maximum recoil.

Channel Ratio Present PDG [1] LQCD [21] CQM [280] LFQM [286] HMχT [284]
D → ρ r2 0.93 0.83 ± 0.12 – 0.83 0.78 0.51

rV 1.26 1.48 ± 0.16 – 1.53 1.47 1.72

D+
→ ω r2 0.95 1.06 ± 0.16 – – 0.84 0.51

rV 1.24 1.24 ± 0.11 – – 1.47 1.72
D → K∗ r2 0.92 0.80 ± 0.021 – 0.74 0.92 0.5

rV 1.22 1.49 ± 0.05 – 1.56 1.26 1.60

D+
s → φ r2 0.99 0.84 ± 0.11 0.74(12) 0.73 0.86 0.52

rV 1.34 1.80 ± 0.08 1.72(21) 1.72 1.42 1.80

D+
s → K∗0 r2 0.99 0.77 ± 0.28 ± 0.07 [314] – 0.74 0.82 0.55

rV 1.40 1.67 ± 0.34 ± 0.16 [314] – 1.82 1.55 1.93

In Tab. 5.7, we compare our results of the form factor F+ at the maximum recoil for

the channelD(s) → P transition with the other theoretical approaches. It is observed

that our results are in very good agreement with the Quark model predictions such

as CQM [280] and LFQM [286]. For D → π(K) channels, our results are in excellent

agreement with the LQCD calculations [17,18]. For D(s) → η(′) channels, our results

are LCSR [274,276] and LQCD [22] but is is to be noted that the authors of Ref. [22]

have considered the LQCD calculations as a pilot study.

For vector form factors, we compare the ratios at the maximum recoil as

r2 =
A2(0)

A1(0)
and rV =

V (0)

A1(0)
(5.31)

In Tab. 5.8, we compare our ratios with the PDG averages data [1] and other

theoretical approaches. It is observed that our results for the ratios of the form

factors agree well with the PDG data within the uncertanity except for the channel

Ds → φ. It is also important to note that our result rV (Ds → φ) = 1.34 is very

close to the value 1.42 from LFQM [286].
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Figure 5.4: The form factors for semileptonic D → K, π, D+
(s) → η(′) and D+

s → K0

transitions with comparison to LCSR, LFQM and CQM.
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Figure 5.5: The form factors for semileptonic D+
s → φ (left) and D+

s → K∗(892)−

(right) transitions with comparison to LFQM, HMχT and CQM.
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Figure 5.6: The form factors for semileptonic D+ → K∗ (left), D → ρ (middle) and
D → ω (right) transitions with comparison to LFQM, HMχT, CQM and CLEO
data.

In Figs. 5.4 – 5.6 we plot the form factors in the entire q2 range of momentum

transfer i.e. 0 ≤ q2 ≤ q2max = (mD(s)
− mP/V )

2. It is interesting to note that our

results are in excellent agreement with the LFQM [286] for all the channels. It is

also observed that the HMχT [284] predictions for the A0(q
2) is much higher than

the other theoretical calculations.

It is important to note that the form factor computation to the η and η′ channel

is different since they are the mixture of s-quark and light quarks component. The

quark content in the approximation of mu = md ≡ mq can be written as [315]
(

η
η′

)

= −
(

sin δ cos δ
− cos δ sin δ

)(

qq̄
ss̄

)

, qq̄ ≡ uū+ dd̄√
2

. (5.32)

The angle δ is defined by δ = θP − θI , where θI = arctan(1/
√
2) is the ideal mixing
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angle. We adopt the value θP = −15.4◦ from Ref. [315]. Also, in computing the form

factors for the channel D → η(′), we take the contribution from the qq̄ component

while for the Ds → η(′) channel, we take the contribution from the ss̄ component

only [285].

Figure 5.7: D → π(K) form factors obtained in our model (solid lines) and in LQCD
calculations (dots with error bar) by ETM collaboration.

Table 5.9: D → π(K)ℓν form factors and their ratios at q2 = 0.

fDπ+ fDK+ fDπT fDKT fDπT /fDπ+ fDKT /fDK+

Present 0.63 0.78 0.53 0.70 0.84 0.90
ETM [17,18] 0.612(35) 0.765(31) 0.506(79) 0.687(54) 0.827(114) 0.898(50)

Recently, ETM collaboration has provided the LQCD calculations [17, 18] for the

full set of form factors for the channel D → π(K)ℓνℓ and D → π(K)ℓℓ including

tensor and scalar form factors. The tensor form factor is defined as

〈P (p2)|q̄σµν(1− γ5)c|D(p1)〉 =
iF T (q2)

M1 +M2

(

P µqν − P νqµ + iεµνPq
)

. (5.33)

and the scalar form factor F0(q
2) can be computed using F+(q

2) and F−(q
2) defined

in Eq. (5.20)

F0(q
2) = F+(q

2) +
q2

M2
1 −M2

2

F−(q
2). (5.34)

In Fig. 5.7, we compare our form factors for the channel D → π(K) with the LQCD

data by ETM Collaboration. It is observed that our plot for F0(q
2) agrees well

with ETM in low q2 region. However, our plot for F+(q
2) is very close to ETM

and the tensor form factors are in excellent agreement with ETM. In Tab. 5.9, we
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also present our results of the form factors at the maximum recoil along with the

comparison with ETM. It is worth noting that our results agree well with ETM

calculations within the uncertainties.

Next we compute the semileptonic branching fractions. In Tab. 5.10 – 5.12, we

summarize our outcomes with the other theoretical approaches and the recent data

given by CLEO and BESIII collaborations.

Table 5.10: Semileptonic decays of D0 mesons (in %)

Channel Present Other Reference Data Reference

D0
→ K−e+νe 3.63 3.4 HMχT [283] 3.505 ± 0.014 ± 0.033 BESIII [316]

3.50 ± 0.03 ± 0.04 CLEO [270]
3.45 ± 0.07 ± 0.20 Belle [268]

D0
→ K−µ+νµ 3.53 3.413 ± 0.019 ± 0.035 BESIII [317]

D0
→ π−e+νe 0.22 0.27 HMχT [283] 0.295 ± 0.004 ± 0.003 BESIII [316]

0.2770 ± 0.0068 ± 0.0092 BABAR [266]
0.288 ± 0.008 ± 0.003 CLEO [270]
0.255 ± 0.019 ± 0.016 Belle [268]

D0
→ π−µ+νµ 0.22 0.272 ± 0.008 ± 0.006 BESIII [318]

D0
→ K∗(892)−e+νe 2.96 2.15 χUA [288] 2.033 ± 0.046 ± 0.047 BESIII [319]

2.2 HMχT [284] 2.16 ± 0.15 ± 0.08 CLEO [320]

D0
→ K∗(892)−µ+νµ 2.80 1.98 χUA [288]

D0
→ ρ−e+νe 0.16 0.197 χUA [288] 0.1445 ± 0.0058 ± 0.0039 BESIII [321]

0.1749
+0.0421
−0.0297

LCSR 0.177 ± 0.012 ± 0.010 CLEO [322] [278]

0.20 HMχT [284]
0.1 ISGW2 [323]

D0
→ ρ−µ+νµ 0.15 0.184 χUA [288] – –

In Tab. 5.10, we summarize our results for D0 → (P, V )ℓ+νℓ channel. The following

are our comments:

• For D0 → K−ℓ+νℓ channel, our results are in very good agreement with the

recent BESIII data also with the CLEO and Belle data.

• For D0 → K∗(892)− channel, our results are higher than the CLEO data for

the electrono channel and for still experimental results are still not available.

• For D0 → π− channel, our results are higher than the recent BESIII data but

it is nearer to the data from Belle results.

• For D0 → ρ−e+νe channel, our results are matching very well with the central

values of the CLEO data [322].

In Tab. 5.11 we summarize our results on D+ → (P, V )ℓ+νℓ channels. Our results

are in good agreement with the experimental data. The following are our comments:

• For D+ → K̄0ℓ+νℓ channel, our results are nearly 8 % higher than the BESIII

data.
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Table 5.11: Semileptonic decays of D+ mesons

Channel Unit Present Other Reference Data Reference

D+
→ K̄0e+νe 10−2 9.28 8.4 HMχT [283] 8.60 ± 0.06 ± 0.15 BESIII [324]

10.32 ± 0.93 LFQM [287] 8.83 ± 0.10 ± 0.20 CLEO [270]

D+
→ K̄0µ+νµ 10−2 9.02 10.07 ± 0.91 LFQM [287] 8.72 ± 0.07 ± 0.18 BESIII [325]

D+
→ π0e+νe 10−2 0.29 0.33 HMχT [283] 0.350 ± 0.011 ± 0.010 BESIII [318]

0.41 ± 0.03 LFQM [287]

D+
→ π0µ+νµ 10−2 0.28 0.41 ± 0.03 LFQM [287]

D+
→ K̄∗(892)0e+νe 10−2 7.61 5.56 χUA [288]

5.6 HMχT [284]

D+
→ K̄∗(892)0µ+νµ 10−2 7.21 5.12 χUA [288]

D+
→ ρ0e+νe 10−3 2.09 2.54 χUA [288] 1.860 ± 0.070 ± 0.061 BESIII [321]

2.217+0.534
−0.376

± 0.015 LCSR [278] 2.17 ± 0.12+0.12
−0.22

CLEO [322]

2.5 HMχT [284]

D+
→ ρ0µ+νµ 10−3 2.01 2.37 χUA [288] 2.4 ± 0.4 PDG [1]

D+
→ ωe+νe 10−3 1.85 2.46 χUA [288] 1.63 ± 0.11 ± 0.08 BESIII [316]

2.5 HMχT [284] 1.82 ± 0.18 ± 0.07 CLEO [322]
2.1 ± 0.2 LFQM [287]

D+
→ ωµ+νµ 10−3 1.78 2.29 χUA [288] – –

2.0 ± 0.2 LFQM [287]

D+
→ ηe+νe 10−4 9.38 12 ± 1 LFQM [287] 10.74 ± 0.81 ± 0.51 BESIII [326]

24.5 ± 5.26 LCSR [274] 11.4 ± 0.9 ± 0.4 CLEO [327]
14.24 ± 10.98 LCSR [276]

D+
→ ηµ+νµ 10−4 9.12 12 ± 1 LFQM [287] – –

D+
→ η′e+νe 10−4 2.00 1.8 ± 0.2 LFQM [287] 1.91 ± 0.51 ± 0.13 BESIII [326]

3.86 ± 1.77 LCSR [274] 2.16 ± 0.53 ± 0.07 CLEO [327]
1.52 ± 1.17 LCSR [276]

D+
→ η′µ+νµ 10−4 1.90 1.7 ± 0.2 LFQM [287] – –

• For D+ → K̄∗(892)0ℓ+νℓ channel, still the experimental results are not avail-

able. Also our results are nearer to the other theoretical approaches.

• D+ → π0ℓ+νℓ channel, our results are very well within the range predicted by

the BESIII data.

• For D+ → ωe+νe channel, our result is a bit higher than the BESIII data [316],

but it is well within the range predicted by CLEO data [322].

• For D+ → η(′) channel, the branching fractions are very small and also wide

range of uncertainties have been reported in the experiments. Our results

remain within the range predicted by recent BESIII data [326] and also with

the results on CLEO data [328]. We also compare our results with the results

from LCSR data [274] and [276].

• We have compared our results with the other theoretical approaches such as

LCSR [274,276,278], χUA [288], LFQM [287], HMχT [283] and ISGW2 [323].

Our results for D → ρe+νe give very good agreement with the LCSR [278] and

χUA [288] results. For muon channel also, our results are very nearer to those

obtained in χUA [288]. For D+ → ωℓ+νℓ channel, our results are matching

with the LFQM [287]. For D+ → η(′)ℓ+νℓ channel, our results are deviating

from the results obtained in LCSR [274,276], but are very close to the LFQM

data [287].

In Tab 5.12, we summarize the results on Ds → (P, V )ℓνℓ channels. The short
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Table 5.12: Semileptonic branching fractions of Ds mesons (in %).

Channel Present Other Reference Experimental Data Reference

D+
s → φe+νe 3.01 2.12 χUA [288] 2.26 ± 0.45 ± 0.09 BESIII [329]

3.1 ± 0.3 LFQM [287] 2.61 ± 0.03 ± 0.08 ± 0.15 BABAR [267]
2.4 HMχT [284] 2.14 ± 0.17 ± 0.08 CLEO [328]

D+
s → φµ+νµ 2.85 1.94 χUA [288] 1.94 ± 0.53 ± 0.09 BESIII [329]

2.9 ± 0.3 LFQM [287]

D+
s → K0e+νe 0.20 0.27 ± 0.02 LFQM [287] 0.39 ± 0.08 ± 0.03 CLEO [328]

D+
s → K0µ+νµ 0.19 0.26 ± 0.02 LFQM [287] –

D+
s → K∗(892)0e+νe 0.18 0.202 χUA [288] 0.18 ± 0.04 ± 0.01 CLEO [328]

0.19 ± 0.02 LFQM [287]
0.22 HMχT [284]

D+
s → K∗(892)0µ+νµ 0.17 0.189 χUA [288] – –

0.19 ± 0.02 LFQM [287]

D+
s → ηe+νe 2.24 2.26 ± 0.21 LFQM [287] 2.30 ± 0.31 ± 0.08 BESIII [330]

2.0 ± 0.32 LCSR [274] 2.28 ± 0.14 ± 0.19 CLEO [328]
2.40 ± 0.28 LCSR [276]

D+
s → ηµ+νµ 2.18 2.22 ± 0.20 LFQM [287] 2.42 ± 0.46 ± 0.11 BESIII [329]

D+
s → η′e+νe 0.83 0.89 ± 0.09 LFQM [287] 0.93 ± 0.30 ± 0.05 BESIII [330]

0.75 ± 0.23 LCSR [274] 0.68 ± 0.15 ± 0.06 CLEO [328]
0.79 ± 0.14 LCSR [276]

D+
s → η′µ+νµ 0.79 0.85 ± 0.08 LFQM [287] 1.06 ± 0.54 ± 0.07 BESIII [329]

comments are:

• For D+
s → φℓ+νℓ channel, our result is quite high compared to recent BESIII

[329] and the results based on CLEO [328] data but it is observed to be within

the range predicted by BABAR data [267].

• For D+
s → K0ℓ+νℓ channel, our result for branching fraction is almost double

with compared to CLEO data [328]. For electron and muon channels, ex-

perimental results are yet to be reported. Our result for the channel D+
s →

K∗(892)0e+νe is matching perfectly with the central value of the CLEO data

[328]. The discrepancy of our results with the experimental results seems ob-

vious as there are large deviations of the form factors, particularly A0 and A2

in the Figs. 5.5 and f+ in the last plot in Fig. 5.4.

• For D+
s → η(′)ℓ+νℓ, there is wide range of uncertainties reported in the exper-

imental data and LCSR results. Our results are in excellent agreement with

the BESIII [330] and CLEO [328] results for the electron channel. For muonic

channel, our results give excellent agreement with the BESIII data [326] which

is a first time ever experimental observation.

• Here also we compare our findings with the theoretical models such as χUA

[288], LCSR [274, 276], HMχT [284] and LFQM [287]. For D+
s → φℓ+νℓ

channel, though our result is higher than BESIII and BABAR data, it is

in good agreement with the LFQM [287] data. But for the D+
s → K0ℓ+νℓ

channel, our result is lower than the LFQM predictions. For the rest of the D+
s

semileptonic decays, our results are in good accordance with the LFQM [287]

and LCSR [274,276] predictions.
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Overall, our results are in very good agreement with the experimental results along

with theoretical models such as LFQM and LCSR predictions. In Tab. 5.13, we

Table 5.13: Ratios of the semileptonic decays

Ratio SM Value Data Reference

Γ(D0 → K−e+νe)/Γ(D
+ → K̄0e+νe) 1.0 0.99 1.08 ± 0.22 ± 0.07 BESIII [331]

1.06 ± 0.02 ± 0.03 CLEO [332]
Γ(D0 → K−µ+νµ)/Γ(D

+ → K̄0µ+νµ) 1.0 0.99
Γ(D+ → K̄0µ+νµ)/Γ(D

+ → K̄0e+νe) 1.0 0.97
Γ(D0 → K−µ+νµ)/Γ(D

0 → K−e+νe) 1.0 0.97 0.974 ± 0.007 ± 0.012 BESIII [317]
B(D0 → π−µ+νµ)/B(D0 → π−e+νe) 1.0 0.98 0.922 ± 0.030 ± 0.022 BESIII [318]
B(D+ → π0µ+νµ)/B(D+ → π0e+νe) 1.0 0.98 0.964 ± 0.037 ± 0.026 BESIII [318]
Γ(D0 → π−e+νe)/Γ(D

+ → π0e+νe) 2.0 1.97 2.03 ± 0.14 ± 0.08 CLEO [332]

Γ(D0 → ρ−e+νe)/2Γ(D
+ → ρ0e+νe) 1.0 0.98 1.03 ± 0.09+0.08

−0.02 CLEO [322]
B(D+ → η′e+νe)/B(D+ → ηe+νe) – 0.21 0.19 ± 0.05 CLEO [327]

0.18 ± 0.05 BESIII [326]
B(D+

s → φµ+νµ)/B(D+
s → φe+νe) 1.0 0.95 0.86 ± 0.29 BESIII [329]

B(D+
s → η′e+νe)/B(D+

s → ηe+νe) – 0.37 0.36 ± 0.14 CLEO [333]
0.40 ± 0.14 BESIII [330]

B(D+
s → η′µ+νµ)/B(D+

s → ηµ+νµ) – 0.36 0.44 ± 0.23 BESIII [329]

present the ratios of different semileptonic decay widths. It is observed that our re-

sults are very well within the isospin conservation rules [334]. It is worth mentioning

here that very recently, the BESIII collaboration has reported their measurement of

B(D0 → K−µ+νµ) [317] with significantly improved presicion and they also approved

our prediction of the model for the channel B(D0 → K−µ+νµ)/B(D0 → K−e+νe)

provided in our paper Ref. [293].

Table 5.14: Semileptonic branching fractions for D+
(s) → D0ℓ+νℓ

Channel Present Theory Data Reference Experimental Data Reference

D+
→ D0e+νe 2.23 × 10−13 2.78 × 10−13 [291] < 1.0 × 10−4 BESIII [290]

2.71 × 10−13 [292]

D+
s → D0e+νe 2.52 × 10−8 (2.97 ± 0.03) × 10−8 [291] – –

3.34 × 10−8 [292]

In Tab. 5.14, we present our results on the rare semileptonic branching fractions of

D+
(s) → D0e+νe. Our results for branching fraction for the channel D+ → D0e+νe

satisfies the experimental constraints predicted by the recent BESIII [290] collabora-

tion. Our results also satisfies the theoretical predictions using SU(3) symmetry [291]

and also heavy flavour conserving decays [292].

Finally, in Table 5.15 we list our predictions for the forward-backward asymmetry

〈Aℓ
FB〉, the longitudinal polarization 〈P ℓ

L〉, and the transverse polarization 〈P ℓ
T 〉 of

the charged lepton in the final state. It is seen that for the P → V transitions, the
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Table 5.15: Forward-backward asymmetry and longitudinal polarization.

Channel 〈Ae
FB〉 〈Aµ

FB〉 〈P e
L〉 〈P µ

L 〉
D0 → K−ℓ+νℓ −6.14× 10−6 −0.06 −1.00 −0.87
D0 → K∗(892)−ℓ+νℓ 0.18 0.14 −1.00 −0.92
D0 → π−ℓ+νℓ −3.84× 10−6 −0.04 −1.00 −0.90
D0 → ρ−ℓ+νℓ 0.21 0.18 −1.00 −0.92
D+ → K̄0ℓ+νℓ −6.11× 10−6 −0.06 −1.00 −0.87
D+ → K̄∗(892)−ℓ+νℓ 0.18 0.14 −1.00 −0.92
D+ → π0ℓ+νℓ −3.80× 10−6 −0.04 −1.00 −0.91
D+ → ρ0ℓ+νℓ 0.22 0.19 −1.00 −0.93
D+ → ωℓ+νℓ 0.21 0.18 −1.00 −0.93
D+ → ηℓ+νℓ −6.18× 10−6 −0.06 −1.00 −0.87
D+ → η′ℓ+νℓ −13.23 ×10−6 −0.10 −1.00 −0.82
D+ → D0ℓ+νℓ −0.094 – −0.73 –
D+
s → φℓ+νℓ 0.18 0.14 −1.00 −0.92

D+
s → K∗0ℓ+νℓ 0.22 0.19 −1.00 −0.93

D+
s → K0ℓ+νℓ −4.75 ×10−6 −0.05 −1.00 −0.89

D+
s → ηℓ+νℓ −5.75 ×10−6 −0.06 −1.00 −0.87

D+
s → η′ℓ+νℓ 11.20 ×10−6 −0.09 −1.00 −0.83

D+
s → D0ℓ+νℓ −5.33 ×10−4 – −1.00 –

lepton-mass effect in 〈Aℓ
FB〉 is small, resulting in a difference of only 10% − 15%

between the corresponding electron and muon modes. For the P → P ′ transi-

tions, 〈Aµ
FB〉 are about 104 times larger than 〈Ae

FB〉. This is readily seen from

Eq. (5.28): for P → P ′ transitions the two helicity amplitudes H± vanish and the

forward-backward asymmetry is proportional to the lepton mass squared. Regarding

the longitudinal polarization, the difference between 〈P µ
L〉 and 〈P e

L〉 is 10% − 30%.

One sees that the lepton-mass effect in the transverse polarization is much more

significant than that in the longitudinal one. This is true for both P → P ′ and

P → V transitions. Note that the values of 〈Ae
FB〉 and 〈P e

L(T )〉 for the rare decays

D+
(s) → D0e+νe are quite different in comparison with other P → P ′ transitions due

to their extremely small kinematical regions.

We expect BESIII and other experiments such as LHC-b, Belle, CLEO and PANDA

collaborations to throw more light in search of these transitions.
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Chapter 6

Conclusion and Future Scopes

6.1 Conclusion

In this thesis, we have studied the mass spectra and decay properties of hadrons in

the light, heavy and mixed (open) flavor sectors. In chapter 1, we have provided brief

review of the recent development reported by experiments as well as the theoretical

groups. We have also listed various issues, challenges and attempts made in the

understanding the dynamics of heavy as well as open flavor sectors.

Chapter 2 corresponds to the spectroscopy of heavy quarkonia that includes char-

monia (cc̄), bottomonia (bb̄) and Bc (cb̄) mesons. We have reported a comprehensive

study of heavy quarkonia in the framework of nonrelativistic potential model consid-

ering the Cornell potential with least possible number of free model parameters such

as confinement strength and quark masses. These parameters are fine tuned to ob-

tain the corresponding spin averaged ground state masses of quarkonia determined

from experimental data. Further, we predict the masses of excited states including

spin dependent part of confined one gluon exchange potential perturbatively. We

have also computed the pseudoscalar and vector decay constants, different annihi-

lation widths such as γγ, gg, ℓ+ℓ−, γγγ, ggg and γgg of heavy quarkonia using

nonrelativistic Van-Royen Weiskopf formulae. The first order radiative corrections

in computation of these decays provide satisfactory results for the charmonia while

no such correction is needed in case of bottomonia for being purely nonrelativistic

system. We compute Bc mass spectra employing the quark masses and mean value

of confinement strength of charmonia and bottomonia. We have also computed the

weak decays of Bc mesons and the computed life time is also consistent with the
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PDG data and other theoretical approaches. It is interesting to note here that de-

spite having a c quark, the nonrelativistic calculation of Bc spectroscopy is in very

good agreement with experimental data and other theoretical approaches.

In chapter 3, we have computed the masses and decay properties of doubly heavy

baryons. We have reported the masses, magnetic moments and radiative decays

of doubly heavy baryons in the extended relativistic harmonic confinement model

(ERHM). ERHM uses the nonrelativistic reduction of the Dirac equation to study

the masses of doubly heavy baryons. This model treats quark and antiquarks on

equal basis. The spin averaged masses of the doubly heavy baryons are computed

by solving the Dirac equation for harmonic confinement part of the potential. The

expectation value of the Coulomb repulsion term is computed perturbatively using

the Harmonic oscillator wave function. The spin dependent part of confined one

gluon exchange interaction is computed perturbatively for determining the masses

of spin 1/2+ and 3/2+ baryons. The masses are compared with different theoret-

ical approaches and our results are in good accordance with the relativistic quark

model and LQCD results. Our prediction on the mass of Ξ++
cc match precisely with

the LHCb data. We have also computed the magnetic moments using the spin

flavor wave function of the respective baryons and compare with other theoretical

approaches. Next, we have computed the radiative decay widths (3/2+ → 1/2+)

in terms of transition magnetic moments. While the radiative decays are yet to be

identified experimentally and also there are wide range of results available in the

literature, our results are consistently found to be within the range predicted by

different theoretical approaches. We expect the experimental facilities to provide

more results not only for the masses of the doubly heavy baryons but also for their

decay properties.

In chapter 4, we have presented the mass and decay properties of exotic four quark

states. In the literature, there are different models available that consider these

states to be independent tetra quark states, dimeson molecules, hadro-charmonium

etc. We have considered the Zc, Zb and Z ′
b to be the dimeson molecules of D+D̄∗,

BB̄∗ and B∗B̄∗ respectively. We consider the modified Woods-Saxon potential to

compute the interaction between these mesons. The bound state masses are obtained

by solving the Schrödinger equation numerically. It is observed that the computed

masses are found to be sensitive to the variation in radius/size of the molecule for

generalized Woods-Saxon potential unlike the standard Woods-Saxon potential. We

74



also compute the strong two body decay widths in the phenomenological Lagrangian

mechanism. Our results of masses and decay widths are found to be consistent with

the experimental data and other theoretical approaches.

While we have employed the nonrelativistic approach for studying the quarkonium,

doubly heavy baryons and exotic states in chapters 2, 3 and 4 respectively, we have

studied the weak decays of open flavor mesons in chapter 5. We have investigated

the leptonic and semileptonic decays of D and Ds mesons within the framework of

covariant confined quark model (CCQM) with in-built infrared confinement. The

transition form factors have been calculated in the entire physical range of momen-

tum transfer. We have also provided a brief comparison of the form factors with

the other theoretical predictions. The parametrization of the form factors is done

using the double pole approximation. These form factors are then used in computa-

tions of semileptonic branching fractions. We compared our results of the leptonic

and semileptonic branching fractions with the recent BESIII, CLEO, BABAR data

along with the light cone sum rules results and other theoretical predictions. Our

results are in good agreement with the experimental data within 10% except for

the channel Ds → K0ℓ+νℓ. Our predictions for ratios of the branching fractions are

also in excellent agreement with the experimental data. The ratios of the branching

fractions for muon channel to electron channel Rµ/e ∼ 1 which is consistent with the

standard model prediction suggests no violation of lepton flavor universality. For

the rare semileptonic decays D+
(s) → D0ℓ+νℓ, our results match with the theoretical

predictions and also satisfies the experimental constraint. Low phase space gives a

very small branching fraction that makes it difficult to probe experimentally. Exper-

imentally, only BESIII have reported the upper bound on the branching fractions

at 90% confidence level. We expect BESIII and other experiments such as LHC-

b, Belle, CLEO and PANDA collaborations to throw more light in search of these

transitions.

6.2 Future Scope

In chapter 2, we have computed the spectroscopy of heavy quarkonia using Cornell

potential. This work can be further extended incorporating the velocity dependent

potentials together with the spin dependent ones at order 1/m2. Also the spectra

can be computed using the pNRQCD potentials. The relativistic approach can give
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better estimation for mass spectra and decay properties. Further, the same can also

be applied for computing the mass spectra for the heavy baryons as well as for exotic

states too.

In chapter 5, we have computed the decay properties of D(s) mesons in covariant

confined quark model formalism. This study can further be utilised for the com-

prehensive review for the semileptonic D and Ds meson decays to probe for the

probable search for lepton flavor universality. This method is also applicable to the

computation of the semileptonic decays of B and Bs meson decays. The decays

involving flavor changing neutral currents (FCNC) are the best tool to probe for the

new physics beyond standard model because these decays are highly suppressed ac-

cording to the Standard Model. The FCNCs are yet to be fully explored in the charm

decays and CCQM is a promising tool for these decays. This includes the study of

rare D+ → π+ ℓ+ℓ− decay and at quark level this can be induced by c → uℓ+ℓ−

for ℓ = e and µ transition. The new physics in decays involving FCNC can be

introduced by the phenomenology of leptoquark, minimal supersymmetric standard

models and other approaches. CCQM is the general formalism which can be applied

to multiquark states also. Therefore CCQM can be employed for the studying decay

properties of baryons as well as exotic states viz. tetraquark, pentaquark hadrons.
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Abstract: The electromagnetic radiative transition widths for heavy quarkonia, as well as digamma and digluon

decay widths, are computed in the framework of the extended harmonic confinement model (ERHM) and Coulomb

plus power potential (CPPν ) with varying potential index ν. The outcome is compared with the values obtained

from other theoretical models and experimental results. While the mass spectra, digamma and digluon widths from

ERHM as well as CPPν=1 are in good agreement with experimental data, the electromagnetic transition widths span

over a wide range for the potential models considered here making it difficult to prefer a particular model over the

others because of the lack of experimental data for most transition widths.
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1 Introduction

Decay properties of mesons are of special experimen-
tal and theoretical interest because they provide us with
further insights into the dynamics of these systems in ad-
dition to the knowledge we have gained from the spectra
of these families. A large number of experimental facil-
ities worldwide have provided and continue to provide
enormous amounts of data which need to be interpreted
using the available theoretical approaches [1]. Many phe-
nomenological studies on numerous observables of the
cc̄ and bb̄ bound states have established that the non-
relativistic nature appears to be an essential ingredient to
understand the dynamics of heavy quarkonia [2]. Thus,
the heavy quarkonium spectroscopy is mostly dependent
on the quark mass m, the momentum mv and the binding
energy mv2 in the non-relativistic limit. Two effective
field theories, non-relativistic QCD (NRQCD) [3, 4] and
potential NRQCD (pNRQCD) [5, 6], have been devel-
oped leading to a large number of new results for several
observables in quarkonium physics [7].

Radiative transitions in heavy quarkonia have been a
subject of interest as the CLEO-c experiment has mea-
sured the magnetic dipole (M1) transitions J/ψ(1S)→
γηc(1S) and J/ψ(2S)→γηc(1S) using a combination of
inclusive and exclusive techniques and reconciling with

theoretical calculations of lattice QCD and effective field
theory techniques [8, 9]. M1 transition rates are normally
weaker than E1 rates, but they are of more interest be-
cause they may allow access to spin-singlet states that
are very difficult to produce otherwise. It is also interest-
ing that the known M1 rates show serious disagreement
between theory and experiment when it comes to po-
tential models. This is in part due to the fact that M1
transitions between different spatial multiplets, such as
J/ψ(1S)→γηc(2S→1S) are nonzero only due to small
relativistic corrections to a vanishing lowest-order M1
matrix element [10].

We use the spectroscopic parameters of the extended
harmonic confinement model (ERHM), which has been
successful in predictions of masses of open flavour mesons
from light to heavy flavour sectors [11–13]. The mass
spectra of charmonia and bottomonia predicted by this
model, and a Coulomb plus power potential (CPPν) with
varying potential index ν (from 0.5 to 2.0), employing a
non-relativistic treatment for heavy quarks [14–17], have
been utilized for the present computations along with
other theoretical and experimental results.

2 Theoretical framework

One of the tests for the success of any theoretical
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model for mesons is the correct prediction of their
decay rates. Many phenomenological models predict
the masses correctly but overestimate the decay rates
[14, 15, 18]. We have successfully employed a phe-
nomenological harmonic potential scheme and CPPν po-
tential with varying potential index for different confine-
ment strengths to compute masses of bound states of
heavy quarkonia, and the resulting parameters and wave
functions have been used to study various decay proper-
ties [13].

The choice of scalar plus vector potential for quark
confinement has been successful in predictions of the low
lying hadronic properties in the relativistic schemes for
quark confinement [19–21], which have been extended to
accommodate multiquark states from lighter to heavier
flavour sectors with unequal quark masses [11, 12]. The
coloured quarks are assumed to be confined through a
Lorentz scalar plus a vector potential of the form

V (r)=
1

2
(1+γ0)A

2r2+B, (1)

where A and B are the model parameters and γ0 is the
Dirac matrix.

The wave functions for quarkonia are constructed
here by retaining the nature of the single particle wave
function but with a two particle size parameter ΩN (qiqj),

Rn`(r) =









Ω3/2
N

2π

n!

Γ

(

n+`+
3

2

)









1
2

(Ω1/2
N r)`

×exp

(

−ΩN r2

2

)

L
`+1

2
n (ΩNr2). (2)

The Coulombic part of the energy is computed using
the residual Coulomb potential using the colour dielec-
tric “coefficient”, which is found to be state dependent
[11], so as to get a consistent Coulombic contribution to
the excited states of the hadrons. This is a measure of

the confinement strength through the non-perturbative
contributions to the confinement scale at the respective
threshold energies of the quark-antiquark excitations.

The spin average (center of weight) masses of the
cc̄ and bb̄ ground states are obtained by choosing the
model parameters mc=1.428 GeV, mb=4.637 GeV, k =
0.1925 and the confinement parameter A=0.0685 GeV3/2

[11, 12].
In the other approach using the CPPν scheme for

the heavy-heavy bound state systems such as cc̄ and bb̄,
we treat the motion of both the quarks and antiquarks
nonrelativistically [13]. The CPPν potential is given by

V (r)=
−αc

r
+Arν , (3)

Here, for the study of heavy flavoured mesons, αc =
4αs/3, αs being the strong running coupling constant,
A is the potential parameter and ν is a general power,
such that the choice ν =1 corresponds to the Coulomb
plus linear potential.

We have employed the hydrogenic trial wave function
here for the present calculations. For excited states we
consider the wave function multiplied by an appropriate
orthogonal polynomial function such that the generalized
variational wave function gets orthonormalized. Thus,
the trial wave function for the (n,l) state is assumed to
be the form given by

Rnl(r)=

(

µ3(n−l−1)!

2n(n+l)!

) 1
2

(µ r)le−µr/2L2l+1
n−l−1(µr). (4)

Here, µ is the variational parameter and L2l+1
n−l−1(µr) is a

Laguerre polynomial.
For a chosen value of ν, the variational parameter µ

is determined for each state using the virial theorem

〈KE〉=
1

2

〈

rdV

dr

〉

. (5)

The potential index ν is chosen to vary from 0.5 to 2.

Table 1. Digamma decay width of charmonia (keV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 8.76 5.94 3.05 1.43 69.97 73.93 6.93 6.98

ERHM(corr) 6.21 4.21 2.17 1.01 71.04 75.06 5.87 5.91

CPPν=0.5 12.85 3.47 1.83 1.24 5.74 1.54 21.11 5.69

CPPν=0.5(corr) 7.32 1.98 1.04 0.71 5.84 1.19 21.59 4.40

CPPν=1.0 22.79 9.88 6.73 5.28 27.29 7.45 143.30 39.41

CPPν=1.0(corr) 12.99 5.63 3.84 3.01 27.91 5.76 146.57 30.49

CPPν=1.5 30.84 17.55 14.16 12.65 63.35 17.52 511.88 144.33

CPPν=1.5(corr) 17.58 10.00 8.07 7.21 64.79 13.56 523.53 111.66

CPPν=2.0 37.43 25.11 22.88 22.43 108.06 30.26 1058.7 305.98

CPPν=2.0(corr) 21.34 14.31 13.04 12.79 110.52 23.41 1082.8 236.72

[29] 10.38 3.378 1.9 1.288 – – – –

[30] 8.5 2.4 0.88 – 2.5 0.31 1.7 0.23

[31] 7.8 3.5 – – – – – –

[32] 11.8 – – – – – – –
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Table 2. Digluon decay width of charmonia (MeV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 13.48 9.14 4.7 2.19 0.11 0.11 9.07 9.13

ERHM(corr) 19.04 12.91 6.64 3.1 0.19 0.2 5.31 5.43

CPPν=0.5 43.41 11.73 6.17 4.19 0.019 3.71 0.07 13.74

CPPν=0.5(corr) 69.94 18.89 9.94 6.76 0.040 1.43 0.15 5.29

CPPν=1.0 77.01 33.37 22.74 17.84 0.092 17.99 0.48 95.21

CPPν=1.0(corr) 124.08 53.77 36.64 28.74 0.195 6.93 1.02 36.69

CPPν=1.5 104.18 59.28 47.85 42.73 0.214 42.33 1.73 348.66

CPPν=1.5(corr) 167.85 95.51 77.09 68.85 0.453 16.31 3.66 134.38

CPPν=2 126.46 84.83 77.29 75.79 0.365 73.11 3.58 739.15

CPPν=2.0(corr) 203.75 136.67 124.53 122.12 0.773 28.18 7.57 284.88

[22] 26.7±3.0 – – – 10.2±0.7 2.034±0.12 – –

[23] 48.927 – – – 38.574 4.396 – –

[33]pert. 15.70 – – – 4.68 1.72 – –

[33]nonpert. 10.57 – – – 4.88 0.69 – –

Table 3. Digamma decay width of bottomonia (keV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 0.47 0.26 0.12 0.01 1.37 1.39 0.12 0.12

ERHM(corr) 0.35 0.20 0.09 0.07 1.39 1.40 0.10 0.10

CPPν=0.5 0.36 0.06 0.03 0.038 0.02 0.005 0.057 0.015

CPPν=0.5(corr) 0.24 0.04 0.02 0.026 0.02 0.004 0.058 0.013

CPPν=1.0 0.55 0.15 0.09 0.080 0.08 0.022 0.42 0.11

CPPν=1.0(corr) 0.37 0.10 0.06 0.054 0.08 0.018 0.43 0.09

CPPν=1.5 0.71 0.27 0.18 0.123 0.20 0.055 1.34 0.36

CPPν=1.5(corr) 0.48 0.18 0.12 0.084 0.21 0.045 1.36 0.30

CPPν=2.0 0.84 0.38 0.29 0.165 0.35 0.095 2.83 0.76

CPPν=2.0(corr) 0.57 0.26 0.20 0.112 0.36 0.078 2.88 0.63

[29] 0.496 0.212 0.135 0.099 – – – –

[30] 0.527 0.263 0.172 – 0.037 0.0066 0.037 0.0067

[31] 0.460 0.20 – – – – – –

[32] 0.580 – – – – – – –

Table 4. Digluon decay width of bottomonia (MeV).

11S0 21S0 31S0 41S0 13P0 13P2 23P0 23P2

ERHM 7.61 4.31 1.99 1.58 22.45 22.68 1.93 1.94

ERHM(corr) 9.95 5.64 2.61 2.07 38.17 38.57 1.92 1.92

CPPν=0.5 10.92 1.77 0.78 1.17 0.61 0.16 1.74 0.46

CPPν=0.5(corr) 15.51 2.51 1.11 1.66 1.20 0.16 3.40 0.46

CPPν=1.0 16.71 4.65 2.72 2.43 2.51 0.67 12.81 3.42

CPPν=1.0(corr) 23.72 6.61 3.86 3.45 4.90 0.66 25.04 3.39

CPPν=1.5 21.53 8.14 5.60 3.76 6.22 1.67 40.70 10.91

CPPν=1.5(corr) 30.58 11.55 7.95 5.34 12.16 1.65 79.57 10.81

CPPν=2.0 25.55 11.66 8.95 5.03 10.74 2.88 86.12 23.15

CPPν=2.0(corr) 36.29 16.56 12.72 7.14 21.00 2.85 168.36 22.93

[23] 14.64 – – – 2.745 0.429 – –

[33]pert. 11.49 – – – 0.96 0.33 – –

[33]nonpert. 12.39 – – – 2.74 0.25 – –

[39] 12.46 – – – 2.15 0.22 – –

Quark mass parameters are fitted to get the experimen-
tal ground state masses of mc=1.31 GeV, mb=4.66 GeV,
αc=0.4 (for cc̄) and αc=0.3 (for bb̄). The potential pa-
rameter A also varies with ν [16].

We have done a completely parameter-free computa-

tion of digamma and digluon decay widths and radiative
electric and magnetic dipole transition widths using the
parameters of these phenomenological models that were
fixed to obtain the ground state masses of the quarkonia
systems.
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Table 5. E1 transition partial widths of cc̄ (keV).

transitions ERHM CPPν [34] [35] [23] [36] [30] [22]

ν=0.5 ν=1.0 ν=1.5 ν=2.0

23S1→13P0 9.2 6.7 38.2 89.2 145.8 51.7 45 – 47 74 29.8±1.29

23S1→13P1 18.6 13.8 73.6 164.6 259.7 44.9 40.9 – 42.8 62 28.2±1.47

23S1→13P2 11.3 8.4 37.2 72.4 100.3 30.9 26.5 – 30.1 43 26.5±1.3

33S1→23P0 16.4 5.9 51.4 164.3 349.2 – 87.3 – – –

33S1→23P1 43.3 8.4 65.2 192.7 382.9 65.7 – – – –

33S1→23P2 54.2 1.6 4 4.1 3.1 – 31.6 – – –

33S1→13P0 129.4 105.1 583.9 1389 2274 – 1.2 – – –

33S1→13P1 336.4 281.5 1531 3607 5863 – 2.5 – – –

33S1→13P2 410.1 1897 4379 6998 – – 3.3 – – –

13P2→13S1 680.7 168 421 652 828 448 390.6 250 315 424 390±26

13P1→13S1 426.2 127 269 363 409 333 287 229 41 314 299±22

13P0→13S1 325.9 110 209 256 264 161 142 173 120 152 133±9

11P1→11S0 1076.2 401 1015 1569 2000 723 610 451 482 498

23P2→23S1 325.3 151 701 1707 2883 – 358.6 83 – 225

23P1→23S1 258.9 92 316 596 824 – 208.3 73.8 – 103

23P0→23S1 231.0 68 190 291 322 – 53.6 49.4 – 61

21P1→21S0 611.7 184 843 1961 3219 – – 146.9 – 309

23P2→13S1 700.1 187 1279 3510 5896 – 33 140 – 101

23P1→13S1 661.3 160 962 2352 3590 – 28 133 – 83

23P0→13S1 643.5 146 822 1880 2683 – 21 114 – 74

23P1→11S0 951.6 93 549 1321 2013 – – 227 – 134

Table 6. E1 transition partial widths of bb̄ (keV).

CPPν
transitions ERHM

ν=0.5 ν=1.0 ν=1.5 ν=2.0
[34] [35] [23] [36] [30] [22]

23S1→13P0 0.24 0.06 0.4 1.08 1.63 1.65 1.15 – 1.29 1.67 1.21±0.16

23S1→13P1 0.40 0.12 0.74 1.75 2.71 2.57 1.87 – 2.0 2054 2.21±0.22

23S1→13P2 0.12 0.04 0.38 1.39 3.03 2.53 1.88 – 2.04 2.62 2.29±0.22

33S1→23P0 0.35 0.04 0.32 1.03 2.16 1.65 1.67 – 1.35 1.83 1.2±0.16

33S1→23P1 0.82 0.08 0.62 1.78 3.60 2.65 2.74 – 2.20 2.96 2.56±0.34

33S1→23P2 0.80 0.06 0.30 0.62 0.98 2.89 2.80 – 2.40 3.23 2.66±0.41

33S1→13P0 3.91 2.38 15.4 40.4 72.0 0.124 0.03 – 0.001 0.07 0.055±0.08

33S1→13P1 9.50 6.38 41.1 106.8 188.8 0.307 0.09 – 0.008 0.17 <0.018±0.001

33S1→13P2 9.86 8.22 54.7 153.7 290.8 0.445 0.13 – 0.015 0.25 <0.2±0.32

13P2→13S1 61.96 11.3 26.7 40.1 48.8 42.7 31 44.0 31.6 38

13P1→13S1 39.58 09.4 21.3 33.3 43.5 37.1 27 42.0 27.8 34

13P0→13S1 30.72 08.6 18.7 27.8 35.0 29.5 22 37.0 22.0 27

11P1→13S0 62.70 15.7 37.7 60.4 81.6 – 38 60.0 – 56.8

23P2→23S1 14.57 04.9 23.4 55.5 96.1 18.8 17 20.4 14.5 18.8

23P1→23S1 10.65 04.3 18.2 39.5 63.7 15.9 14 12.5 12.4 15.9

23P0→23S1 8.98 03.9 15.9 32.8 51.1 11.7 10 4.4 9.2 11.7

21P1→21S0 15.67 05.4 25.4 60.0 102.1 23.6 – 25.8 – 24.7

23P2→13S1 45.03 09.0 33.0 67.2 104.0 8.41 7.74 20.8 12.7 13

23P1→13S1 41.71 08.6 30.2 58.9 88.0 8.01 7.31 19.9 12.7 12.4

23P0→13S1 40.12 08.4 28.8 55.0 80.8 7.36 6.69 14.1 10.9 11.4

21P1→11S1 49.57 0.3 01.7 04.5 08.2 9.9 – 14.1 10.9 15.9

3 Digamma and digluon decay widths

Using the model parameters and the radial wave func-
tions, we compute the digamma (Γγγ(ηQ)) and digluon
(Γgg(χQ)) decay widths. The digamma decay width of

the P -wave QQ̄ state χQ1 is forbidden according to the
Landau-Yang theorem. Most of the quark model predic-
tions for the S-wave ηQ→γγ width are comparable with
the experimental result, while the theoretical predictions
for the P -wave (χQ0,2→γγ) widths differ significantly
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Table 7. Radiative M1 transition widths of cc̄ in (keV).

transition 13S1→11S0 23S1→21S0 33S1→31S0 23S1→11S0

ERHM 0.703 (110) 0.151 (62) 0.023 (17) 20.521 (654)

CPPν=0.5 1.86 0.03 0.004 16.52

CPPν=1.0 9.68 0.55 0.135 58.13

CPPν=1.5 20.45 2.60 0.942 108.44

CPPν=2.0 38.35 6.92 3.241 157.23

[9] 1.5±1.0 – – –

[10]NR 2.90 (116) 0.21 (48) 0.046 (29) –

[23] 1.29 0.12 0.04 –

[35] 2.7 1.2 – –

[22] 1.21±0.37 < 0.67 – 3000±500

Table 8. Radiative M1 transition widths of bb̄ in (eV).

transition13S1→11S0 23S1→21S0 33S1→31S0 23S1→11S0

ERHM 2.33 (36) 0.169 (15) 0.050 (10) 1395.9 (580)

CPPν=0.5 2.51 0.01 0.001 223.23

CPPν=1.0 9.13 0.17 0.036 799.45

CPPν=1.5 19.12 0.98 0.244 1629.06

CPPν=2.0 31.20 2.51 1.088 2514.04

[23] 7.28 0.67 0.19 –

[34] 5.8 (60) 1.40 (33) 0.80 (27) –

[35] 4.0 0.5 – –

[36] 8.95 1.51 0.826 –

[37] 9.2 0.6 0.6 –

[38] 7.7 (59) 0.53 (25) 0.13 (16) –

from the experimental observations [22]. The contribu-
tion from QCD corrections takes care of this discrepancy.
The one-loop QCD radiative corrections in the digamma
decay widths of 1S0(ηQ), 3P0(χQ0) and 3P2(χQ2) are com-
puted using the non relativistic expressions given by
[23, 24]:

Γγγ(ηQ) =
3e4

Qα2
emMηQ

|R0(0)|2

2m3
Q

[

1−
αs

π

(20−π2)

3

]

, (6)

Γγγ(χQ0) =
27e4

Qα2
emMχQ0

|R
′

1(0)|2

2m5
Q

[

1+B0

αs

π

]

, (7)

Γγγ(χQ2) =
4

15

27e4
Qα2

emMχQ2
|R

′

1(0)|2

2m5
Q

[

1+B2

αs

π

]

, (8)

where B0 =π2/3−28/9 and B2 =−16/3 are the next-to-
leading-order (NLO) QCD radiative corrections [25–27].

Similarly, the digluon decay widths of the ηQ, χQ0

and χQ2 states are given by [28]:

Γgg(ηQ)=
α2

sMηQ
|R0(0)|2

3m3
Q

[1+CQ(αs/π)], (9)

Γgg(χQ0)=
3α2

sMχQ0
|R

′

1(0)|2

m5
Q

[1+C0Q(αs/π)]. (10)

Γgg(χQ2)=

(

4

15

)

3α2
sMχQ2

|R
′

1(0)|2

m5
Q

[1+C2Q(αs/π)]. (11)

Here, the quantities in the brackets are the NLO QCD
radiative corrections [27] and the coefficients have values
of CQ = 4.4, C0Q = 10.0 and C2Q =−0.1 for the bottom
quark.

4 Radiative E1 and M1 transitions

In the non-relativistic limit, the M1 transition width
between two S-wave states is given by [9]

Γn3S1→n′1S0γ

=
4

3
αe2

Q

k3
γ

m2

∣

∣

∣

∣

∫
∞

0

r2drRn′0(r)Rn0(r)j0

(

kγr

2

)∣

∣

∣

∣

2

, (12)

where eQ is the fraction of electrical charge of the heavy
quark (eb =−1/3, ec =2/3), α is the fine structure con-
stant and Rnl(r) are the radial Schrödinger wave func-
tions. The photon energy kγ is nearly equal to the mass
difference of the two quarkonia, so it is of order mv2

or smaller. This is unlike radiative transitions from a
heavy quarkonium to a light meson, such as J/ψ→ηγ,
where a hard photon is emitted. Since r ∼ 1/(mv),
the spherical Bessel function is expanded as j0(kγr/2)=
1−(kγr)

2/24+ ··· [9]. While the overlap integral in (12) is
unity at leading order for n=n′ (allowed transitions), it
vanishes for n 6=n′ (hindered transitions). The widths of
hindered transitions are determined by higher-order and
relativistic corrections only.

In the non-relativistic limit, radiative E1 and M1
transition partial widths are given by [9]

Γn2S+1LiJi
→n′2S+1LfJf

γ

=
4αe2

Qk3
γ

3
(2J ′+1)max(Li,Lf)

×

{

Ji 1 Jf

Lf S Li

}

×|〈f |r|i〉|2, (13)

Γn3S1→n′1S0γ =
4

3

2J ′+1

2L+1
δLL′δS,S′±1αe2

Q

k3
γ

m2

×

∣

∣

∣

∣

∫
∞

0

r2drRn′0(r)Rn0(r)j0

(

kγr

2

)∣

∣

∣

∣

2

.

(14)

The CLEO-c experiment has measured the magnetic
dipole (M1) transitions J/ψ(1S)→γηc(1S) and ψ(2S)→
γηc(1S) using a combination of inclusive and exclusive
techniques reconciling with the theoretical calculations of
lattice QCD and effective field theory techniques [8, 9].
M1 transition rates are normally weaker than E1 rates,
but they are of more interest because they may allow ac-
cess to spin-singlet states that are very difficult to pro-
duce otherwise. The spectroscopic parameters of ERHM
and CPPν are utilized for the present computations.
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5 Results and conclusions

In this paper, we have employed the masses of the
pseudoscalar and vector mesons, their wave functions,
and other input parameters from our earlier work [13] for
the calculations of the digamma, digluon decay widths
as well as E1 & M1 transitions. E1 and M1 radiative
transitions of the cc̄ and bb̄ mesons in the ERHM and
Coulomb plus power potential CPPν models and com-
puted numerical results are tabulated in Tables 1–8. The
digamma and digluon decay widths of the cc̄ and bb̄
mesons are computed with and without QCD correc-
tions. The ERHM predictions of digamma decay widths
of charmonia for the ground state are found to be com-
parable to the other theoretical results. In case of the
CPPν model these values are fairly close around ν<1. A
similar trend is found in the case of digluon decay rates
of charmonia. The digamma and digluon decay widths
predicted by the ERHM and CPPν models are very close
to the other theoretical predictions.

The computations of E1 transition widths are done
without any relativistic correction terms. This indicates
the possible inclusion of the same in the wave function
with a single center size parameter. The E1 and M1

transitions of the cc̄ and bb̄ mesons have been calculated
by several groups (See Tables 5–8) but their predictions
are not in mutual agreement. The predictions from Ref-
erences [34, 35] and the CPPν model (at ν ' 1 for cc̄
and at ν'1.5 for bb̄ mesons) are in fair agreement with
experimental values. One of the limitations of the CPPν

model is the inability to obtain the mass spectra of the cc̄
and bb̄ mesons at the same potential index ν. The com-
puted magnetic radiative transition rates are tabulated
along with other theoretical predictions and available ex-
perimental values in Tables 7 and 8. The values in the
parentheses are the energy of the photon in MeV. The
transition widths obtained by the potential models show
a large deviation from the experimental data; however,
the values computed using effective mean field theories
(ΓJ/ψ→ηcγ = 1.5±1.0 keV and ΓΥ(1S)→ηbγ = 3.6±2.9 eV
[9]), are found to be nearly the same as the potential
model results. The photon energies in all the models are
found to be nearly the same as the mass splitting. The
wide variation in predicted hyperfine splitting leads to
considerable uncertainty in the predicted rates for these
transitions. Differences in the theoretical assumptions of
the potential models make it difficult to draw sharp con-
clusion about the validity of a particular model because
of the lack of experimental data.
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Decay D → Kð�Þl+ νl in covariant quark model
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We study the leptonic and semileptonic D-meson decays (D → lþνl and D → Kð�Þlþνl) in the
framework of covariant quark model with built-in infrared confinement. We compute the required
form factors in the entire kinematical momentum transfer region. The calculated form factors are
used to evaluate the branching fractions of these transitions. We determine the following ratios of the partial
widths: ΓðD0 → K−eþνeÞ=ΓðDþ → K̄0eþνeÞ ¼ 1.02, ΓðD0 → K−μþνμÞ=ΓðDþ → K̄0μþνμÞ ¼ 0.99 and

ΓðDþ → K̄0μþνμÞ=ΓðDþ → K̄0eþνeÞ ¼ 0.97 which are in close resemblance with the isospin invariance
and experimental results.

DOI: 10.1103/PhysRevD.96.016017

I. INTRODUCTION

The semileptonic decays involve strong as well as
weak interactions. The extraction of Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements from these exclusive
decays can be parametrized by form factor calculations. As
jVcdj and jVcsj are constrained by CKM unitarity, the
calculation of semileptonic decays ofD-mesons can also be
an important test to look for new physics. The decay D →
Kð�Þlþνl provides accurate determination of jVcsj. Thus,
the theoretical prediction for the form factors and their q2-
dependence need to be tested. A comprehensive review of
experimental and theoretical challenges in study of had-
ronic decays of D and Ds mesons along with required
experimental and theoretical tools [1] provide motivation to
look into semileptonic decays in this paper.
Recently, BESIII [2–5] and BABAR [6] collaborations

have reported precise and improved measurements on
semileptonic form factors and branching fractions on
decays of D → Klþνl and D → πlþνl. A brief review
of the earlier work and present experimental status of
D-meson decays are given in [7]. Also there are variety of
theoretical models available in the literature for the com-
putation of hadronic form factors. One of the oldest models
is based on the quark model known as ISGW model for
CP violation in semileptonic B meson decays based on the
nonrelativistic constituent quark picture [8]. The advanced
version (ISGW2 model [9]) includes the heavy quark
symmetry and has been used for semileptonic decays of
BðsÞ, DðsÞ and Bc mesons. The form factors are also
calculated in lattice quantum chromodynamics (LQCD)
[10–15], light-cone sum rules (LCSR) [16–18] and LCSR
with heavy quark effective theory [19]. The form factor
calculations from LCSR provide good results at low

(q2 ≃ 0) and high (q2 ≃ q2max) momentum transfers. The
form factors have also been calculated for the process D →
Klνl in the entire momentum transfer range [15] using the
LQCD. Also recently the Flavour Lattice Averaging Group
(FLAG) have reported the latest lattice results for deter-
mination of CKM matrices within the standard model [20].
The form factors ofD;B → P; V; S transitions with P, V

and S corresponding to pseudoscalar, vector and scalar
meson respectively have been evaluated in the light front
quark model (LFQM) [21]. The form factors for D → P;V
are also computed in the framework of chiral quark model
(χQM) [22] as well in the phenomenological model based
on heavy meson chiral theory (HMχT) [23,24]. The form
factors of BðsÞ; DðsÞ → π; K; η have been evaluated in three
flavor hard pion chiral perturbation theory [25]. The form
factors for D → πeþνe have been computed in the frame-
work of “charm-changing current” [26]. The authors of

[27,28] have determined the form factors fKðπÞþ by globally
analyzing the available measurements of branching frac-
tions for D → KðπÞeþνe. The vector form factors for D →
Klνl were also parameterized in [29]. The evaluation of
transition form factors and decays of BðsÞ; DðsÞ →
f0ð980Þ; K�

0ð1430Þlνl has been done in [30,31] from
QCD sum rules. The computation of differential branching
fractions forDðsÞ → ðP;V; SÞlνl was also performed using
chiral unitary approach [32,33], generalized linear sigma
model [34,35] and sum rules [36]. Various decay properties
of DðsÞ and BðsÞ are also studied in the formalism of
semirelativistic [37–40] and relativistic [41–43] potential
models.
In this paper, we employ the covariant constituent quark

model (CQM) with built-in infrared confinement [44–49]
to compute the leptonic and semileptonic decays. The form
factors of these transitions are expressed through only few
universal functions. One of the key features of CQM is
access to the entire physical range of momentum transfer.
Our aim is to perform independent calculations of these
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decays including q2 behavior of the transition form factors,
leptonic decay constants of D and K mesons and ratios
of branching fractions for the decay D → Kð�Þlþνl and
D → πlþνl.
This paper is organized as follows. After a brief

introduction of the semileptonic D-meson decays in
Sec. I, in Sec. II we introduce the theoretical framework
of CQM and also discuss the method of extracting the
model parameters. In Sec. III, we give the definition of the
form factors for the decays D → Kð�Þlþνl. In Sec. IV for
numerical results, we first compute the leptonic branching
fractions of Dþ-meson. Next we give numerical results
of the form factors. We also parametrize the form factors
using double pole approximation. From the form factors,
we compute the differential branching fraction for the
D → Kð�Þlþνl, with l ¼ e and μ and the branching
fractions. We also calculate the forward-backward asym-
metry and convexity parameters. We compare our results
with available experimental, lattice and other theoretical
results. Finally, we summarize the present work in Sec. V.

II. MODEL

The CQM is an effective quantum field approach
[44–49] for hadronic interactions based on an effective
Lagrangian of hadrons interacting with their constituent
quarks. In this paper, we restrict ourselves to weak decays
of D-mesons only. The interaction Lagrangian describing
the coupling of mesonMðq1q̄2Þ to the constituent quarks q1
and q̄2 in the framework of CQM is given by

Lint ¼ gMMðxÞ
Z

dx1dx2FMðx; x1; x2Þq̄2ðx2ÞΓMq1ðx1Þ

þ H:c: ð1Þ
where ΓM is the Dirac matrix and projects onto the spin
quantum number of relevant mesonic field MðxÞ. gM is the
coupling constant and FM is the vertex function that is
related to the scalar part of the Bethe-Salpeter amplitude.
FM also characterizes the finite size of the mesons. We
choose the vertex function that satisfies the Lorentz
invariance of the Lagrangian Eq. (1),

FMðx; x1; x2Þ ¼ δ

�
x −

X2
i¼1

wixi

�
ΦMððx1 − x2Þ2Þ ð2Þ

with ΦM is the correlation function of two constituent
quarks with masses mq1 and mq2 and wqi ¼ mqi=ðmq1 þ
mq2Þ such that w1 þ w2 ¼ 1. We choose Gaussian function
for vertex function as

~ΦMð−p2Þ ¼ expðp2=Λ2
MÞ ð3Þ

with the parameterΛM characterized by the finite size of the
meson. In the Euclidian space, we can write p2 ¼ −p2

E, so
that the vertex function has the appropriate falloff behavior

so as to remove the ultraviolet divergence in the loop
integral.
We use the compositeness conditions [50,51] to deter-

mine the coupling strength gM in Eq. (5) that requires the
renormalization constant ZM for the bare state to composite
mesonic state MðxÞ set to zero, i.e.,

ZM ¼ 1 − ~Π0
Mðm2

MÞ ¼ 0; ð4Þ

where ~Π0
M is the derivative of meson mass operator and ZM

is the wave function renormalization constant of the meson
M. Here, Z1=2

M is the matrix element between the physical
state and the corresponding bare state. The above condition
guarantees that the physical state does not contain any bare
quark state i.e. bound state. The constituents are virtual and
are introduced to realize the interaction and as a result the
physical state turns dressed and its mass and wave function
are renormalized.
The meson mass operator Fig. 1 for any meson is defined

as

~ΠMðp2Þ ¼ Ncg2M

Z
d4k

ð2πÞ4i
~Φ2
Mð−k2Þ

× trðΓ1S1ðkþ w1pÞΓ2S2ðk − w2pÞÞ ð5Þ
where Nc ¼ 3 is the number of colors. Γ1, Γ2 are the Dirac
matrices and for scalar, vector and pseudoscalar mesons,
we choose the gamma matrices accordingly. S0s are the
quark propagator and we use the free fermion propagator
for the constituent quark. For the computation of loop
integral in Eq. (5), we write the quark propagator in terms
of Fock-Schwinger representation as

Sqðkþ pÞ ¼ 1

mq − k − p
¼ mq þ kþ p

m2
q − ðkþ pÞ2

¼ ðmq þ kþ pÞ
Z

∞

0

dαe−α½m2
q−ðkþpÞ2�; ð6Þ

where k is the loop momentum and p is the external
momentum. The use of Fock-Schwinger representation
allows to do the tensor integral in an efficient way since

FIG. 1. Diagram describing meson mass operator.
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the loop momenta can be converted into the derivative of
exponential function [49]. All the necessary trace evalu-
ation and loop integrals are done in FORM [52]. For the
remaining integral over the Fock-Schwinger parameters
0 ≤ αi ≤ ∞, we use an additional integration converting
the Fock-Schwinger parameters into a simplex. The trans-
formation reads [53]

Yn
i¼1

Z
∞

0

dαifðα1;…;αnÞ

¼
Z

∞

0

dttn−1
Yn
i¼1

Z
dαiδ

�
1 −

Xn
i¼1

αi

�
fðtα1;…; tαnÞ

ð7Þ
For meson case n ¼ 2.
While the integral over t in Eq. (7) is convergent below

the threshold p2 < ðmq1 þmq2Þ2, its convergence above
threshold p2 ≥ ðmq1 þmq2Þ2 is guaranteed by augmenting
the quark mass by an imaginary part, i.e. mq → mq−
iϵ; ϵ > 0, in the quark propagator Eq. (6). This makes it
possible to rotate the integration variable t to the imaginary
axis t → it. The integral Eq. (7) in turn becomes convergent
but obtains an imaginary part corresponding to quark pair
production. However, by reducing the scale of integration
at the upper limit corresponding to the introduction of an
infrared cutoff

Z
∞

0

dtð…Þ →
Z

1=λ2

0

dtð…Þ; ð8Þ

one can remove all possible thresholds present in the initial
quark diagram [49]. Thus the infrared cutoff parameter λ
effectively guarantees the confinement of quarks within
hadrons.
Before going for the semileptonic decays, we need to

specify the independent model parameters namely size
parameter of meson Λ and constituent quark masses mqi .
These model parameters are determined by fitting calcu-
lated decay constants of basic processes such as leptonic
(Fig. 2) and radiative decays to available experimental data

or LQCD for vector and pseudoscalar mesons. We use the
updated least square fit performed in the recent papers of
the model parameters [54–56] (all in GeV). We take the
infrared cutoff parameter λ to be the same throughout this
study.

mu=d ms mc mb λ

0.241 0.428 1.67 5.05 0.181 GeV

and the size parameters

ΛD ΛD� ΛK ΛK� Λπ

1.6 1.53 1.01 0.80 0.87 GeV

We have listed our results for the leptonic decay

constants of Dð�Þ
ðsÞ , K

ð�Þ and π mesons in the Table I. The

decay constants we use in our calculations match quite well
with Particle Data Group (PDG), LQCD and QCD sum
rules (QCDSR) results.

III. FORM FACTORS

In the standard model of particle physics, semileptonic
decays of any meson is caused by weak force in which one
lepton and corresponding neutrino is produced in addition
to one or more hadrons (Fig. 3).
The invariant matrix element for the semileptonic

D → Kð�Þlþνl decay can be written asFIG. 2. Quark model diagrams for the D-meson leptonic decay.

TABLE I. Leptonic decay constants fH (in MeV).

fH Present Data Reference

fD 206.1 204.6� 5.0 PDG [57]
207.4 (3.8) LQCD [58]
210� 11 QCDSR [59]

fD� 244.3 263� 21 QCDSR [59]
278� 13� 10 LQCD [60]

fDs
257.5 257.5� 4.6 PDG [57]

254 (2) (4) LQCD [61]
250.2� 3.6 LQCD [12]
247.2 (4.1) LQCD [58]
259� 10 QCDSR [59]

fD�
s

272.0 308� 21 QCDSR [59]
311� 9 LQCD [60]

fDs
=fD 1.249 1.258� 0.038 PDG [57]

1.192 (0.22) LQCD [58]
1.23� 0.07 QCDSR [59]

fK 156.0 155.0 (1.9) LQCD [58]
155.37 (34) LQCD [62]
157.9� 1.5 LQCD [12]

fK� 226.8 217� 7 PDG [57]
fπ 130.3 132.3� 1.6 LQCD [12]

130.39 (20) LQCD [62]
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MðD → Kð�ÞlþνlÞ ¼
GFffiffiffi
2

p VcshKð�Þjs̄OμcjDilþOμνl ð9Þ

where Oμ ¼ γμð1 − γ5Þ is the weak Dirac matrix with left chirality. The matrix elements for the above semileptonic
transitions in the covariant quark model are written as

hK½d̄s�ðp2Þjs̄OμcjD½d̄c�ðp1Þi¼NcgDgK

Z
d4k

ð2πÞ4i
~ϕDð−ðkþw13p1Þ2Þ ~ϕKð−ðkþw23p2Þ2Þ

×tr½OμS1ðkþp1Þγ5S3ðkÞγ5S2ðkþp2Þ�
¼Fþðq2ÞPμþF−ðq2Þqμ ð10Þ

hK�
½d̄s�ðp2; ϵνÞjs̄OμcjD½d̄c�ðp1Þi ¼ NcgDgK�

Z
d4k

ð2πÞ4i
~ϕDð−ðkþ w13p1Þ2Þ ~ϕK� ð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞϵ†νS2ðkþ p2Þ�

¼ ϵ†ν
m1 þm2

½−gμνP · qA0ðq2Þ þ PμPνAþðq2Þ þ qμPνA−ðq2ÞþiεμναβPαqβVðq2Þ� ð11Þ

with P ¼ p1 þ p2, q ¼ p1 − p2 and ϵν to be the polari-
zation vector such that ϵ†ν · p2 ¼ 0 and on-shell conditions
of particles require p2

1 ¼ m2
1 ¼ m2

D and p2
2 ¼ m2

2 ¼ m2
Kð�Þ .

Since there are three quarks involved in this transition, we
use the notation wij ¼ mqj=ðmqi þmqjÞ (i, j ¼ 1, 2, 3)
such that wij þ wji ¼ 1.

IV. NUMERICAL RESULTS

Having determined the necessary model parameters and
form factors, we are now in position to present our
numerical results. We first compute pure leptonic decays
of Dþ-meson and then using the form factors obtained in
Sec. III, we compute branching fractions for semileptonic
D-meson decays.

We compute the pure leptonic decays of Dþ → lþνl
within the standard model. The branching fraction for
leptonic decay is given by

BðDþ → lþνlÞ ¼
G2

F

8π
mDm2

l

�
1−

m2
l

m2
D

�
2

f2DjVcdj2τD ð12Þ

where GF is the fermi coupling constant, mD and ml are
the D-meson and lepton masses respectively and τD is the
D-meson lifetime. fD is the leptonic decay constant of
D-meson from Table I. The resultant branching fractions
for l ¼ τ, μ and e are given in Table II. It is important to
note that the helicity flip factor ð1 −m2

l=m
2
DÞ affects the

leptonic branching fractions because of the different lepton
masses. We also compare our results with the experimental
data. The branching fraction for Dþ → μþνμ shows very
good agreement with BESIII [63] and CLEO-c [64] data.
The branching fractions for Dþ → eþνe and Dþ → τþντ
also fulfill the experimental constraints.
In Figs. 4 and 5, we plot our calculated form factors as

a function of momentum transfer squared in the entire
range 0 ≤ q2 ≤ q2max ¼ ðmD −mKð�Þ Þ2. The multidimen-
sional integral (three-fold for semileptonic case) appear-
ing in Eqs. (10) and (11) are computed numerically using

FIG. 3. Quark model diagrams for the D-meson semileptonic
decay.

TABLE II. Leptonic Dþ-decay branching fraction (τDþ ¼
1.040 × 10−12 s [57]).

Channel Present Data Reference

Dþ → eþνe 8.953 × 10−9 <8.8 × 10−6 PDG [57]
Dþ → μþνμ 3.803 × 10−4 ð3.71� 0.19Þ × 10−4 BESIII [63]

ð3.82� 0.32Þ × 10−4 CLEO-c [64]
Dþ → τþντ 1.013 × 10−3 <1.2 × 10−3 PDG [57]
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Mathematica. Our form factor results are also well
represented by the double-pole parametrization

Fðq2Þ ¼ Fð0Þ
1 − asþ bs2

; s ¼ q2

m2
1

: ð13Þ

The numerical results of form factors and associated
double-pole parameters are listed in Table III. In Fig. 4, we
plot the form factor Fþ for D → KðπÞlþνl decays in the
entire kinematical range of momentum transfer. We com-
pare our plot with the results from LCSR Ref. [18], LFQM

FIG. 4. The results for the form factors appearing in Eq. (10) for semileptonic D → π and D → K transitions. We compare our plot
with the results from LCSR Ref. [18], LFQM Ref. [21], LQCD Ref. [10] as well with the BESIII data Ref. [4].

FIG. 5. The form factors appearing in Eq. (11) for semileptonic D → K� transitions. We compare our results with LFQM Ref. [21],
chiral quark model (χQM) Ref. [22] and heavy meson chiral theory (HMχT) [24].
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Ref. [21], LQCD Ref. [10] as well with the BESIII data
Ref. [4]. Our results at maximum recoil point q2 → 0 are in
very good agreement with the other approaches as well as
with the experimental result. A similar plot can be obtained
for form factor F−. We also plot the vector form factors and
for the comparison of the form factors for D → K�lþνl
transition with other approaches, we need to write our form
factors Eq. (11) in terms of those used in Ref. [17]. The
relations read

A0 ¼
m1 þm2

m1 −m2

A1; Aþ ¼ A2;

A− ¼ 2m2ðm1 þm2Þ
q2

ðA3 − A0Þ; V ¼ V: ð14Þ

The form factors in Eq. (14) also satisfy the constraints

A0ð0Þ ¼ A3ð0Þ
2m2A3ðq2Þ ¼ ðm1þm2ÞA1ðq2Þ− ðm1 −m2ÞA2ðq2Þ: ð15Þ

Figure 5 shows form factors from the present calculation
along with the results from LFQM [21], chiral quark model
(χQM) [22] and with heavy meson chiral theory (HMχT)
[24]. The plot shows that our results of the form factors A0,
A1 and A2 match with LFQM [21] and the vector form
factors match with the χQM [22] where the authors have
used energy scaling parameters extracted from modified
low energy effective theory in H → V transitions. Our
results show little deviation from those obtained using
HMχT [24]. In computation of form factors for q2 ¼ 0

using LCSR, the authors of [18] have used the MS scheme
for c-quark mass and the computation of form factors for
q ≥ 0 is performed in the form of conformal mapping and
series parametrization. In the LFQM [21], the authors have
used the method of double pole approximation, where as in
BESIII [4] and BABAR [6] experiment, the form factors are
parametrized in terms of two and three parameters series
expansion respectively.
The differential branching fractions for semileptonic

D → Klþνl decay are computed using [65,66]

dΓðD → KlþνlÞ
dq2

¼ G2
FjVcsj2jp2jq2v2
12ð2πÞ3m2

1

× ðð1þ δlÞHL þ 3δlHSLÞ ð16Þ

where the helicity flip factor δl ¼ m2
l=2q

2, jp2j ¼
λ2ðm2

1; m
2
2; q

2Þ=2m1 is momentum of K meson in the
rest frame of D-meson and velocity-type parameter
v ¼ 1 −m2

l=q
2.

The bilinear combinations of the helicity amplitudes H
are defined as [48],

HL ¼ jH0j2; HS ¼ jHtj2; HSL ¼ ReðH0H
†
t Þ
ð17Þ

and the helicity amplitudes are expressed via the form
factor in the matrix element as,

Ht ¼
1ffiffiffiffiffi
q2

p ðPqFþ þ q2F−Þ ð18Þ

H0 ¼
2m1jp2jffiffiffiffiffi

q2
p Fþ: ð19Þ

Similarly the differential branching fractions for semi-
leptonic D → K�lþνl decay is computed by [65,66]

dΓðD → K�lþνlÞ
dq2

¼ G2
FjVcsj2jp2jq2v2
12ð2πÞ3m2

1

× ðð1þ δlÞðHU þHLÞ þ 3δlHSÞ:
ð20Þ

The bilinear combinations of the helicity amplitudes H
are defined as [48]

HU ¼ jHþ1þ1j2 þ jH−1−1j2;
HP ¼ jHþ1þ1j2 − jH−1−1j2;
HL ¼ jH00j2; HS ¼ jHt0j2;
HSL ¼ ReðH00H

†
t0Þ ð21Þ

here also the helicity amplitudes are expressed via the form
factor in the matrix element as

Ht0 ¼
1

m1 þm2

m1jp2j
m2

ffiffiffiffiffi
q2

p ðPqð−A0 þ AþÞ þ q2A−Þ ð22Þ

H�1�1 ¼
1

m1 þm2

ð−PqA0 � 2m1jp2jVÞ ð23Þ

H00 ¼
1

m1 þm2

1

2m2

ffiffiffiffiffi
q2

p
× ð−Pqðm2

1 −m2
2 − q2ÞA0 þ 4m2

1jp2j2AþÞ: ð24Þ

In Fig. 6, we present our results for differential branching
fractions of D → Kð�Þlþνl in the entire kinematical range
of momentum transfer. The semileptonic branching

TABLE III. Double pole parameters for the computation of
form factors in Eq. (13).

Fþ F− A0 Aþ A− V

Fð0Þ 0.76 −0.39 2.07 0.67 −0.90 0.89
a 0.72 0.75 0.39 0.84 0.95 0.96
b 0.046 0.032 −0.10 0.087 0.13 0.13
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FIG. 6. Differential branching fractions of the decays D → Kð�Þlþνl.

TABLE IV. Branching fractions of D → Kð�Þlþνl and D → πlþνl (in %).

Channel Present Data Reference

Dþ → K̄0eþνe 8.84 8.60� 0.06� 0.15 BESIII [2]
8.83� 0.10� 0.20 CLEO-c [72]

Dþ → K̄0μþνμ 8.60 8.72� 0.07� 0.18 BESIII [3]
Dþ → π0eþνe 0.619 0.363� 0.08� 0.05 BESIII [2]

0.405� 0.016� 0.009 CLEO-c [72]
Dþ → π0μþνμ 0.607 – –
Dþ → K̄�ð892Þ0eþνe 8.35 – –
Dþ → K̄�ð892Þ0μþνμ 7.94 – –
D0 → K−eþνe 3.46 3.538� 0.033 PDG [57]

3.505� 0.014� 0.033 BESIII [4]
3.50� 0.03� 0.04 CLEO-c [72]
3.45� 0.07� 0.20 Belle [73]

D0 → K−μþνμ 3.36 3.33� 0.13 PDG [57]
3.505� 0.014� 0.033 BESIII

D0 → π−eþνe 0.239 0.2770� 0.0068� 0.0092 BABAR [6]
0.295� 0.004� 0.003 BESIII [4]
0.288� 0.008� 0.003 CLEO-c [72]
0.255� 0.019� 0.016 Belle [73]

D0 → π−μþνμ 0.235 0.238� 0.024 PDG [57]
D0 → K�ð892Þ−eþνe 3.25 2.16� 0.16 PDG [57]
D0 → K�ð892Þ−μþνμ 3.09 1.92� 0.25 PDG [57]
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fractions in Eqs. (16) and (20) are computed by numerically
integrating the differential branching fractions shown in
Fig. 6. The branching fractions for D → Kð�Þlþνl and
D → πlþνl are presented in Table IV. We also compare
our results with experimental results. The results for
BðDþ → K̄0lþνlÞ and BðD0 → K−lþνlÞ, (l ¼ e and μ)
show excellent agreement with the recent BESIII data [2–4]
as well with the other experimental collaborations. Also the
ratios of the different semileptonic decay widths for the
channels D → Klþνl are presented in Table V and our
results are well within the isospin conservation rules
given in Ref. [67]. We also present our results for
BðD0 → K�ð892Þ−lþνeÞ but our results overestimate the
data given in PDG [57]. This deviation of the present study
within the standard model might be explained through
hadronic uncertainty or ratios of differential distributions
for longitudinal and transverse polarizations of these K�

mesons [68]. The FOCUS [69] and CLEO-c [70] experi-
ments have also reported mixing of scalar amplitudes with
dominant vector decays. These observations open up new
possibilities of investigations in charm semileptonic
decays. There have also been attempts to explain these
exclusive decays using R-parity violating supersymmetric
effects [71] and their direct correlation with possible
supersymmetric signals expected from LHC and BESIII
data. We predict the branching fractions for Dþ →
K̄�ð892Þ0lþνe but we do not compare our results since
no experimental results are available for this channel.
We also present our results for branching fractions of

Dþ → π0lþνl and D0 → π−lþνl transitions. Our predic-
tion for BðDþ → π0eþνeÞ is higher than BESIII [2] and
CLEO-c data [72] while the trend is opposite in the case of
BðD0 → π−eþνeÞ. The deviation of the BðDþ → π0eþνeÞ
from experimental and LQCD data might be attributed to
the computed form factors. However, our BðD0 → π−eþνeÞ
is in close proximity to that by Belle [73] and BðD0 →
π−μþνμÞ is in excellent agreement with PDG data [57].
We also list some more physical observables in terms of

helicity amplitudes. We have already shown the computed
differential branching fractions in Fig. 6. Next, the
helicity amplitudes defined above are used to plot the

FIG. 7. Forward-backward asymmetries of the decays D → Kð�Þlþνl.

TABLE V. Ratios of the semileptonic decays of D mesons.

Ratio Value

ΓðD0 → K−eþνeÞ=ΓðDþ → K̄0eþνeÞ 1.02
ΓðD0 → K−μþνμÞ=ΓðDþ → K̄0μþνμÞ 0.99
ΓðDþ → K̄0μþνμÞ=ΓðDþ → K̄0eþνeÞ 0.97

N. R. SONI and J. N. PANDYA PHYSICAL REVIEW D 96, 016017 (2017)

016017-8



forward-backward asymmetry in Fig. 7 for D → Kð�Þlþνl
in the entire kinematical range of momentum transfer. We
use the following relation for plotting the forward-back-
ward asymmetry (AFB) [55,65]

AFBðq2Þ ¼ −
3

4

HP þ 4δlHSL

ð1þ δlÞðHU þHLÞ þ 3δlHS
: ð25Þ

It is evident from Fig. 7 that the AFBðq2Þ for D → Klþνl
and D → K�lþνl are similar for both e and μ modes.
AFBðq2Þ → 0 for in the both zero recoil and larger recoil
limits because of the zero recoil relations of the helicity
functions HP ¼ HSL ¼ 0 and longitudinal dominance in
the partial rates at the maximum recoil.
Also the lepton and hadron side convexity parameter are

defined as [55,65]

Cl
F ¼ 3

4

ð1 − 2δlÞðHU − 2HLÞ
ð1þ δlÞðHU þHLÞ þ 3δlHS

ð26Þ

and

Ch
F ¼ −

3

2

ð1þ δlÞðHU − 2HLÞ − 6δlHS

ð1þ δlÞðHU þHLÞ þ 3δlHS
: ð27Þ

The plot for the convexity parameters Eqs. (26) and (27)
as a function of entire momentum transfer range can easily
be obtained. In Table VI, we give the q2 averages of the
above observables. Note that in order to obtain the averages
of these observables, we need to multiply the numerator
and denominator by phase space factor jp2jq2v2. Also in

computation of leptonic and semileptonic branching frac-
tions, forward-backward asymmetry and convexity param-
eters, the values of CKM matrices namely jVcsj and jVcdj,
meson masses, lepton masses and their lifetimes are taken
from PDG [57].

V. CONCLUSION

In this article, we have analyzed the leptonic (Dþ →
eþνe) and semileptonic (D → Kð�Þlþνl, D → πlþνl)
decays using covariant quark model with infrared confine-
ment within the standard model framework. The ratios of
the partial widths are found to be consistent with the isospin
conservation holding within uncertainties in experimental
data. It is interesting to note here that the BðDþ → π0lþνlÞ
deviate from existing data while BðD0 → π−lþνlÞ match
well. Further exploration to this observation may lead to
interesting outcome.
The deviation of branching fractions in case of D →

K�lνl might be understood by underlying hadronic
uncertainty or ratios of differential distributions for longi-
tudinal and transverse polarizations of the K� mesons. We
are looking forward to analyzing D → K�lþνl decay and
expect the experimental facilities to throw more light on
their form factor shapes in forthcoming attempts that will
help in understanding the charm decays and possibly the
dynamics of these systems beyond the standard model.
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For computing the branching fraction for Dþ → π0lþνl using Eq. (20), there was a factor of 1=2 missing. The updated
correct results of the branching fraction (Table IV) should read BðDþ → π0eþνeÞ ¼ 0.309% and BðDþ → π0μþνμÞ ¼
0.303%. Accordingly, in the numerical results section, the statement, “Our prediction for BðDþ → π0eþνeÞ is higher than
BESIII [2] and CLEO-c data [72] while the trend is opposite in the case of BðD0 → π−eþνeÞ.” (on page 8) should be read
as, “Our predictions for BðDþ → π0eþνeÞ and BðD0 → π−eþνeÞ are lower than BESIII [2] and CLEO-c data [72] data.”
The other numerical results of the paper are not affected by this unintended error. The conclusion remains unchanged.
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Abstract The mass spectra and decay properties of heavy
quarkonia are computed in nonrelativistic quark-antiquark
Cornell potential model. We have employed the numerical
solution of Schrödinger equation to obtain their mass spectra
using only four parameters namely quark mass (mc, mb) and
confinement strength (Acc̄, Abb̄). The spin hyperfine, spin-
orbit and tensor components of the one gluon exchange inter-
action are computed perturbatively to determine the mass
spectra of excited S, P , D and F states. Digamma, digluon
and dilepton decays of these mesons are computed using the
model parameters and numerical wave functions. The pre-
dicted spectroscopy and decay properties for quarkonia are
found to be consistent with available data from experiments,
lattice QCD and other theoretical approaches. We also com-
pute mass spectra and life time of the Bc meson without addi-
tional parameters. The computed electromagnetic transition
widths of heavy quarkonia and Bc mesons are in tune with
available experimental data and other theoretical approaches.

1 Introduction

Mesonic bound states having both heavy quark and antiquark
(cc̄, bb̄ and cb̄) are among the best tools for understanding the
quantum chromodynamics. Many experimental groups such
as CLEO, LEP, CDF, D0 and NA50 have provided data and
BABAR, Belle, CLEO-III, ATLAS, CMS and LHCb are pro-
ducing and expected to produce more precise data in upcom-
ing experiments. Comprehensive reviews on the status of
experimental heavy quarkonium physics are found in litera-
ture [1–6].

Within open flavor threshold, the heavy quarkonia have
very rich spectroscopy with narrow and experimentally char-
acterized states. The potential between the interacting quarks
within the hadrons demands the understanding of underly-

a e-mail: nrsoni-apphy@msubaroda.ac.in
b e-mail: jnpandya-apphy@msubaroda.ac.in

ing physics of strong interactions. In PDG [7], large amount
of experimental data is available for masses along with
different decay modes. There are many theoretical groups
viz. the lattice quantum chromodynamics (LQCD) [8–18],
QCD [19,20], QCD sum rules [21,22], perturbative QCD
[23], lattice NRQCD [24,25] and effective field theories [26]
that have attempted to explain the production and decays
of these states. Others include phenomenological potential
models such as the relativistic quark model based on quasi-
potential approach [27–33], where the relativistic quasi-
potential including one loop radiative corrections reproduce
the mass spectrum of quarkonium states. The quasi-potential
has also been employed along with leading order radia-
tive correction to heavy quark potential [34–37], relativistic
potential model [38–40] as well as semirelativistic potential
model [41]. In nonrelativistic potential models, there exist
several forms of quark antiquark potentials in the literature.
The most common among them is the coulomb repulsive
plus quark confinement interaction potential. In our previous
work [42–45], we have employed the confinement scheme
based on harmonic approximation along with Lorentz scalar
plus vector potential. The authors of [46–52] have consid-
ered the confinement of power potential Arν with ν vary-
ing from 0.1 to 2.0 and the confinement strength A to vary
with potential index ν. Confinement of the order r2/3 have
also been attempted [53]. Linear confinement of quarks has
been considered by many groups [54–66] and they have
provided good agreement with the experimental data for
quarkonium spectroscopy along with decay properties. The
Bethe–Salpeter approach was also employed for the mass
spectroscopy of charmonia and bottomonia [60,61,67]. The
quarkonium mass spectrum was also computed in the nonrel-
ativistic quark model [68], screened potential model [65,66]
and constituent quark model [69]. There are also other non-
linear potential models that predict the mass spectra of the
heavy quarkonia successfully [70–80].

In 90’s, the nonrelativistic potential models predicted not
only the ground state mass of the tightly bound state of c
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and b̄ in the range of 6.2–6.3 GeV [81,82] but also predicted
to have very rich spectroscopy. In 1998, CDF collaboration
[83] reported Bc mesons in p p̄ collisions at

√
s = 1.8 TeV

and was later confirmed by D0 [84] and LHCb [85] collab-
orations. The LHCb collaboration has also made the most
precise measurement of the life time of Bc mesons [86]. The
first excited state is also reported by ATLAS Collaborations
[87] in p p̄ collisions with significance of 5.2σ .

It is important to show that any given potential model
should be able to compute mass spectra and decay properties
of Bc meson using parameters fitted for heavy quarkonia.
Attempts in this direction have been made in relativistic quark
model based on quasi-potential along with one loop radiative
correction [27], quasistatic and confinement QCD potential
with confinement parameters along with quark masses [88]
and rainbow-ladder approximation of Dyson–Schwinger and
Bethe–Salpeter equations [67].

The interaction potential for mesonic states is difficult
to derive for full range of quark antiquark separation from
first principles of QCD. So most forms of QCD inspired
potential would result in uncertainties in the computation
of spectroscopic properties particularly in the intermediate
range. Different potential models may produce similar mass
spectra matching with experimental observations but they
may not be in mutual agreement when it comes to decay
properties like decay constants, leptonic decays or radia-
tive transitions. Moreover, the mesonic states are identified
with masses along with certain decay channels, therefore
the test for any successful theoretical model is to reproduce
the mass spectrum along with decay properties. Relativis-
tic as well as nonrelativistic potential models have success-
fully predicted the spectroscopy but they are found to differ
in computation of the decay properties [22,47–51,55,78–
80]. In this article, we employ nonrelativistic potential with
one gluon exchange (essentially Coulomb like) plus linear
confinement (Cornell potential) as this form of the poten-
tial is also supported by LQCD [89–91]. We solve the
Schrödinger equation numerically for the potential to get
the spectroscopy of the quarkonia. We first compute the
mass spectra of charmonia and bottomonia states to deter-
mine quark masses and confinement strengths after fitting the
spin-averaged ground state masses with experimental data
of respective mesons. Using the potential parameters and
numerical wave function, we compute the decay properties
such as leptonic decay constants, digamma, dilepton, digluon
decay width using the Van-Royen Weiskopf formula. These
parameters are then used to compute the mass spectra and
life-time of Bc meson. We also compute the electromagnetic
(E1 and M1) transition widths of heavy quarkonia and Bc

mesons.

2 Methodology

Bound state of two body system within relativistic quantum
field is described in Bethe–Salpeter formalism. However, the
Bethe–Salpeter equation is solved only in the ladder approx-
imations. Also, Bethe–Salpeter approach in harmonic con-
finement is successful in low flavor sectors [92,93]. There-
fore the alternative treatment for the heavy bound state is
nonrelativistic. Significantly low momenta of quark and anti-
quark compared to mass of quark-antiquark systemmQ,Q̄ �
�QCD ∼ |p| also constitutes the basis of the nonrelativistic
treatment for the heavy quarkonium spectroscopy. Here, for
the study of heavy bound state of mesons such as cc̄, cb̄ and
bb̄, the nonrelativistic Hamiltonian is given by

H = M + p2

2Mcm
+ VCornell(r) + VSD(r) (1)

where

M = mQ + mQ̄ and Mcm = mQmQ̄

mQ + mQ̄
(2)

where mQ and mQ̄ are the masses of quark and antiquark
respectively, p is the relative momentum of the each quark
and VCornell(r) is the quark-antiquark potential of the type
coulomb plus linear confinement (Cornell potential) given
by

VCornell(r) = −4

3

αs

r
+ Ar. (3)

Here, 1/r term is analogous to the Coulomb type interac-
tion corresponding to the potential induced between quark
and antiquark through one gluon exchange that dominates at
small distances. The second term is the confinement part of
the potential with the confinement strength A as the model
parameter. The confinement term becomes dominant at the
large distances. αs is a strong running coupling constant and
can be computed as

αs(μ
2) = 4π

(
11 − 2

3n f
)

ln
(
μ2/�2

) (4)

where n f is the number of flavors, μ is renormalization
scale related to the constituent quark masses as μ =
2mQmQ̄/(mQ + mQ̄) and � is a QCD scale which is taken
as 0.15 GeV by fixing αs = 0.1185 [7] at the Z -boson mass.

The confinement strengths with respective quark masses
are fine tuned to reproduce the experimental spin averaged
ground state masses of both cc̄ and bb̄ mesons and they are
given in Table 1. We compute the masses of radially and
orbitally excited states without any additional parameters.
Similar work has been done by [47,51,52] and they have con-
sidered different values of confinement strengths for different
potential indices. The Cornell potential has been shown to be
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Table 1 Parameters for quarkonium spectroscopy

mc mc Acc Abb

1.317 GeV 4.584 GeV 0.18 GeV2 0.25 GeV2

independently successful in computing the spectroscopy of
ψ and ϒ families. In this article, we compute the mass spectra
of the ψ and ϒ families along with Bc meson with minimum
number of parameters.

Using the parameters defined in Table 1, we compute
the spin averaged masses of quarkonia. In order to compute
masses of different nmL J states according to different J PC

values, we use the spin dependent part of one gluon exchange
potential (OGEP)VSD(r) perturbatively. The OGEP includes
spin-spin, spin-orbit and tensor terms given by [20,22,59,68]

VSD(r) = VSS(r)

[
S(S + 1) − 3

2

]
+ VLS(r)(L · S)

+VT (r)
[
S(S + 1) − 3(S · r̂)(S · r̂)] (5)

The spin-spin interaction term gives the hyper-fine split-
ting while spin-orbit and tensor terms gives the fine structure
of the quarkonium states. The coefficients of spin dependent
terms of the Eq. (5) can be written as [20]

VSS(r) = 1

3mQmQ̄
∇2VV (r) = 16παs

9mQmQ̄
δ3(r) (6)

VLS(r) = 1

2mQmQ̄r

(
3
dVV (r)

dr
− dVS(r)

dr

)
(7)

VT (r) = 1

6mQmQ̄

(

3
dV 2

V (r)

dr2 − 1

r

dVV (r)

dr

)

(8)

Where VV (r) and VS(r) correspond to the vector and scalar
part of the Cornell potential in Eq. (3) respectively. Using
all the parameters defined above, the Schrödinger equation
is numerically solved using Mathematica notebook utilizing
the Runge–Kutta method [94]. It is generally believed that
the charmonia need to be treated relativistically due to their
lighter masses, but we note here that the computed wave
functions of charmonia using relativistic as well as nonrel-
ativistic approaches do not show significant difference [33].
So we choose to compute the charmonium mass spectra non-
relativistically in present study. The computed mass spectra
of heavy quarkonia and Bc mesons are listed in Tables 2, 3,
4, 5, 6 and 7.

3 Decay properties

The mass spectra of the hadronic states are experimentally
determined through detection of energy and momenta of
daughter particles in various decay channels. Generally, most

phenomenological approaches obtain their model parame-
ters like quark masses and confinement/Coulomb strength
by fitting with the experimental ground states. So it becomes
necessary for any phenomenological model to validate their
fitted parameters through proper evaluation of various decay
rates in general and annihilation rates in particular. In the
nonrelativistic limit, the decay properties are dependent on
the wave function. In this section, we test our parameters and
wave functions to determine various annihilation widths and
electromagnetic transitions.

3.1 Leptonic decay constants

The leptonic decay constants of heavy quarkonia play very
important role in understanding the weak decays. The matrix
elements for leptonic decay constants of pseudoscalar and
vector mesons are given by

〈0|Q̄γ μγ5Q|Pμ(k)〉 = i fPk
μ (9)

〈0|Q̄γ μQ|Pμ(k)〉 = i fV MV ε∗μ (10)

where k is the momentum of pseudoscalar meson, ε∗μ is the
polarization vector of meson. In the nonrelativistic limit, the
decay constants of pseudoscalar and vector mesons are given
by Van Royen-Weiskopf formula [96]

f 2
P/V = 3|RnsP/V (0)|2

πMnsP/V
C̄2(αS). (11)

Here the QCD correction factor C̄2(αS) [97,98]

C̄2(αS) = 1 − αs

π

(

δP,V − mQ − mQ̄

mQ + mQ̄
ln
mQ

mQ̄

)

. (12)

With δP = 2 and δV = 8/3. Using the above relations, we com-
pute the leptonic decay constants f p and fv for charmonia,
bottomonia and Bc mesons. The results are listed in Tables
8, 9, 10, 11, 12 and 13 in comparison with other models
including LQCD.

3.2 Annihilation widths of heavy quarkonia

Digamma, digluon and dilepton annihilation decay widths
of heavy quarkonia are very important in understanding the
dynamics of heavy quarks within the mesons. The mea-
surement of digamma decay widths provides the informa-
tion regarding the internal structure of meson. The decay
ηc → γ γ , χc0,2 → γ γ was reported by CLEO-c [103],
BABAR [104] and then BESIII [105] collaboration have
reported high accuracy data. LQCD is found to underesti-
mate the decay widths of ηc → γ γ and χc0 → γ γ when
compared to experimental data [106,107]. Other approaches
to attempt computation of annihilation rates of heavy quarko-
nia include NRQCD [108–112], relativistic quark model
[31,32], effective Lagrangian [113,114] and next-to-next-to
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Table 2 Mass spectrum of S and P-wave charmonia (in GeV)

State Present [27] [65] [67] [76] [39] [73] [59] [68] [70] LQCD [17] PDG [7]

11S0 2.989 2.981 2.984 2.925 2.979 2.980 2.980 2.982 3.088 2.979 2.884 2.984

13S1 3.094 3.096 3.097 3.113 3.097 3.097 3.097 3.090 3.168 3.096 3.056 3.097

21S0 3.602 3.635 3.637 3.684 3.623 3.597 3.633 3.630 3.669 3.600 3.535 3.639

23S1 3.681 3.685 3.679 3.676 3.673 3.685 3.690 3.672 3.707 3.680 3.662 3.686

31S0 4.058 3.989 4.004 – 3.991 4.014 3.992 4.043 4.067 4.011 – –

33S1 4.129 4.039 4.030 3.803 4.022 4.095 4.030 4.072 4.094 4.077 – 4.039

41S0 4.448 4.401 4.264 – 4.250 4.433 4.244 4.384 4.398 4.397 – –

43S1 4.514 4.427 4.281 – 4.273 4.477 4.273 4.406 4.420 4.454 – 4.421

51S0 4.799 4.811 4.459 – 4.446 – 4.440 – – – – –

53S1 4.863 4.837 4.472 – 4.463 – 4.464 – – – – –

61S0 5.124 5.155 – – 4.595 – 4.601 – – – – –

63S1 5.185 5.167 – – 4.608 – 4.621 – – – – –

13P0 3.428 3.413 3.415 3.323 3.433 3.416 3.392 3.424 3.448 3.488 3.412 3.415

13P1 3.468 3.511 3.521 3.489 3.510 3.508 3.491 3.505 3.520 3.514 3.480 3.511

11P1 3.470 3.525 3.526 3.433 3.519 3.527 3.524 3.516 3.536 3.539 3.494 3.525

13P2 3.480 3.555 3.553 3.550 3.556 3.558 3.570 3.556 3.564 3.565 3.536 3.556

23P0 3.897 3.870 3.848 3.833 3.842 3.844 3.845 3.852 3.870 3.947 – 3.918

23P1 3.938 3.906 3.914 3.672 3.901 3.940 3.902 3.925 3.934 3.972 – –

21P1 3.943 3.926 3.916 3.747 3.908 3.960 3.922 3.934 3.950 3.996 – –

23P2 3.955 3.949 3.937 – 3.937 3.994 3.949 3.972 3.976 4.021 4.066 3.927

33P0 4.296 4.301 4.146 – 4.131 – 4.192 4.202 4.214 – – –

33P1 4.338 4.319 4.192 3.912 4.178 – 4.178 4.271 4.275 – – –

31P1 4.344 4.337 4.193 – 4.184 – 4.137 4.279 4.291 – – –

33P2 4.358 4.354 4.211 – 4.208 – 4.212 4.317 4.316 – – –

43P0 4.653 4.698 – – – – – – – – – –

43P1 4.696 4.728 – – – – – – – – – –

41P1 4.704 4.744 – – – – – – – – – –

43P2 4.718 4.763 – – – – – – – – – –

53P0 4.983 – – – – – – – – – – –

53P1 5.026 – – – – – – – – – – –

51P1 5.034 – – – – – – – – – – –

53P2 5.049 – – – – – – – – – – –

leading order QCD correction to χc0,2 → γ γ in the frame-
work of nonrelativistic QCD factorization [115].

The meson decaying into digamma suggests that the spin
can never be one [116,117]. Corresponding digamma decay
width of a pseudoscalar meson in nonrelativistic limit is given
by Van Royen-Weiskopf formula [96,118]

�n1S0→γ γ = 3α2
e e

4
Q |RnsP (0)|2
m2

Q

[
1 + αs

π

(
π2 − 20

3

)]

(13)

�n3P0→γ γ = 27α2
e e

4
Q |R′

nP (0)|2
M4

Q

[
1 + αs

π

(
3π2 − 28

9

)]

(14)

�n3P2→γ γ = 36α2
e e

4
Q |R′

nP(0)|2
5M4

Q

[
1 − 16

3

αs

π

]
(15)

where the bracketed quantities are QCD next-to-leading
order radiative corrections [118,119].

Digluon annihilation of quarkonia is not directly observed
in detectors as digluonic state decays into various hadronic
states making it a bit complex to compute digluon annihila-
tion widths from nonrelativistic approximations derived from
first principles. The digluon decay width of pseudoscalar
meson along with the QCD leading order radiative correction
is given by [113,118–120]
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Table 3 Mass spectrum of D and F-wave charmonia (in GeV)

State Present [27] [65] [67] [76] [39] [73] [59] [68] [70]

13D3 3.755 3.813 3.808 3.869 3.799 3.831 3.844 3.806 3.809 3.798

11D2 3.765 3.807 3.805 3.739 3.796 3.824 3.802 3.799 3.803 3.796

13D2 3.772 3.795 3.807 3.550 3.798 3.824 3.788 3.800 3.804 3.794

13D1 3.775 3.783 3.792 – 3.787 3.804 3.729 3.785 3.789 3.792

23D3 4.176 4.220 4.112 3.806 4.103 4.202 4.132 4.167 4.167 4.425

21D2 4.182 4.196 4.108 – 4.099 4.191 4.105 4.158 4.158 4.224

23D2 4.188 4.190 4.109 – 4.100 4.189 4.095 4.158 4.159 4.223

23D1 4.188 4.105 4.095 – 4.089 4.164 4.057 4.142 4.143 4.222

33D3 4.549 4.574 4.340 – 4.331 – 4.351 – – –

31D2 4.553 3.549 4.336 – 4.326 – 4.330 – – –

33D2 4.557 4.544 4.337 – 4.327 – 4.322 – – –

33D1 4.555 4.507 4.324 – 4.317 – 4.293 – – –

43D3 4.890 4.920 – – – – 4.526 – – –

41D2 4.892 4.898 – – – – 4.509 – – –

43D2 4.896 4.896 – – – – 4.504 – – –

43D1 4.891 4.857 – – – – 4.480 – – –

13F2 3.990 4.041 – – – 4.068 – 4.029 – –

13F3 4.012 4.068 – 3.999 – 4.070 – 4.029 – –

11F3 4.017 4.071 – 4.037 – 4.066 – 4.026 – –

13F4 4.036 4.093 – – – 4.062 – 4.021 – –

23F2 4.378 4.361 – – – – – 4.351 – –

23F3 4.396 4.400 – – – – – 3.352 – –

21F3 4.400 4.406 – – – – – 4.350 – –

23F4 4.415 4.434 – – – – – 4.348 – –

33F2 4.730 – – – – – – – – –

33F3 4.746 – – – – – – – – –

31F3 4.749 – – – – – – – – –

33F4 4.761 – – – – – – – – –

�n1S0→gg = 2α2
s |RnsP (0)|2

3m2
Q

[1 + CQ(αs/π)] (16)

�n3P0→gg = 6α2
s |R′

nP(0)|2
m4

Q

[1 + C0Q(αs/π)] (17)

�n3P2→gg = 4α2
s |R′

nP(0)|2
5m4

Q

[1 + C2Q(αs/π)] (18)

Here, the coefficients in the bracket have values ofCQ = 4.8,
C0Q = 9.5,C2Q = −2.2 for the charm quark andCQ = 4.4,
C0Q = 10.0, C2Q = −0.1 for the bottom quark [118].

The vector mesons have quantum numbers 1−− and can
annihilate into dilepton. The dileptonic decay of vector
meson along with one loop QCD radiative correction is given
by [96,118]

�n3S1→�+�− = 4α2
e e

2
Q |RnsV (0)|2
M2

nsV

[
1 − 16αs

3π

]
(19)

Here, αe is the electromagnetic coupling constant, αs is the
strong running coupling constant in Eq. (4) and eQ is the
charge of heavy quark in terms of electron charge. In above
relations, |RnsP/V (0)| corresponds to the wave function of
S-wave at origin for pseudoscalar and vector mesons while
|R′

nP(0)| is the derivative of P-wave function at origin. The
annihilation rates of heavy quarkonia are listed in Tables 14,
15, 16, 17, 18 and 19.

3.3 Electromagnetic transition widths

The electromagnetic transitions can be determined broadly in
terms of electric and magnetic multipole expansions and their
study can help in understanding the non-perturbative regime
of QCD. We consider the leading order terms i.e. electric (E1)
and magnetic (M1) dipoles with selection rules �L = ±1
and �S = 0 for the E1 transitions while �L = 0 and
�S = ±1 for M1 transitions. We now employ the numerical
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Table 4 Mass spectrum of S and P-wave bottomonia (in GeV)

State Present [64] [27] [66] [67] [77] [40] [73] [69] PDG [7]

11S0 9.428 9.402 9.398 9.390 9.414 9.389 9.393 9.392 9.455 9.398

13S1 9.463 9.465 9.460 9.460 9.490 9.460 9.460 9.460 9.502 9.460

21S0 9.955 9.976 9.990 9.990 9.987 9.987 9.987 9.991 9.990 9999

23S1 9.979 10.003 10.023 10.015 10.089 10.016 10.023 10.024 10.015 10.023

31S0 10.338 10.336 10.329 10.326 – 10.330 10.345 10.323 10.330 –

33S1 10.359 10.354 10.355 10.343 10.327 10.351 10.364 10.346 10.349 10.355

41S0 10.663 10.523 10.573 10.584 – 10.595 10.623 10.558 – –

43S1 10.683 10.635 10.586 10.597 – 10.611 10.643 10.575 10.607 10.579

51S0 10.956 10.869 10.851 10.800 – 10.817 – 10.741 – –

53S1 10.975 10.878 10.869 10.811 – 10.831 – 10.755 10.818 10.876

61S0 11.226 11.097 11.061 10.997 – 11.011 – 10.892 – –

63S1 11.243 11.102 11.088 10.988 – 11.023 – 10.904 10.995 11.019

13P0 9.806 9.847 9.859 9.864 9.815 9.865 9.861 9.862 9.855 9.859

13P1 9.819 9.876 9.892 9.903 9.842 9.897 9.891 9.888 9.874 9.893

11P1 9.821 9.882 9.900 9.909 9.806 9.903 9.900 9.896 9.879 9.899

13P2 9.825 9.897 9.912 9.921 9.906 9.918 9.912 9.908 9.886 9.912

23P0 10.205 10.226 10.233 10.220 10.254 10.226 10.230 10.241 10.221 10.232

23P1 10.217 10.246 10.255 10.249 10.120 10.251 10.255 10.256 10.236 10.255

21P1 10.220 10.250 10.260 10.254 10.154 10.256 10.262 10.261 10.240 10.260

23P2 10.224 10.261 10.268 10.264 – 10.269 10.271 10.268 10.246 10.269

33P0 10.540 10.552 10.521 10.490 – 10.502 – 10.511 10.500 –

33P1 10.553 10.538 10.541 10.515 10.303 10.524 – 10.507 10.513 –

31P1 10.556 10.541 10.544 10.519 – 10.529 – 10.497 10.516 –

33P2 10.560 10.550 10.550 10.528 – 10.540 – 10.516 10.521 –

43P0 10.840 10.775 10.781 – – 10.732 – – – –

43P1 10.853 10.788 10.802 – – 10.753 – – – –

41P1 10.855 10.790 10.804 – – 10.757 – – – –

43P2 10.860 10.798 10.812 – – 10.767 – – – –

53P0 11.115 11.004 – – – 10.933 – – – –

53P1 11.127 11.014 – – – 10.951 – – – –

51P1 11.130 11.016 – – – 10.955 – – – –

53P2 11.135 11.022 – – – 10.965 – – – –

wave function for computing the electromagnetic transition
widths among quarkonia and Bc meson states in order to
test parameters used in present work. For M1 transition, we
restrict our calculations for transitions among S-waves only.
In the nonrelativistic limit, the radiative E1 and M1 widths
are given by [4,54,55,124,125]

�
(
n2S+1Li Ji → n′2S+1L f J f + γ

)

= 4αe〈eQ〉2ω3

3
(2J f + 1)SE1

i f |ME1
i f |2 (20)

�
(
n3S1 → n′1S0 + γ

)
= αeμ

2ω3

3
(2J f + 1)|MM1

i f |2
(21)

where, mean charge content 〈eQ〉 of the QQ̄ system, mag-
netic dipole moment μ and photon energy ω are given by

〈eQ〉 =
∣∣∣∣
∣
mQ̄eQ − eQ̄mQ

mQ + mQ̄

∣∣∣∣
∣

(22)

μ = eQ
mQ

− eQ̄
mQ̄

(23)

and

ω = M2
i − M2

f

2Mi
(24)
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Table 5 Mass spectrum of D and F-wave bottomonia (in GeV)

State Present [64] [27] [66] [67] [77] [40] [73] [69] PDG [7]

13D3 10.073 10.115 10.166 10.157 10.232 10.156 10.163 10.177 10.127 –

11D2 10.074 10.148 10.163 10.153 10.194 10.152 10.158 10.166 10.123 –

13D2 10.075 10.147 10.161 10.153 10.145 10.151 10.157 10.162 10.122 10.163

13D1 10.074 10.138 10.154 10.146 – 10.145 10.149 10.147 10.117 –

23D3 10.423 10.455 10.449 10.436 – 10.442 10.456 10.447 10.422 –

21D2 10.424 10.450 10.445 10.432 – 10.439 10.452 10.440 10.419 –

23D2 10.424 10.449 10.443 10.432 – 10.438 10.450 10.437 10.418 –

23D1 10.423 10.441 10.435 10.425 – 10.432 10.443 10.428 10.414 –

33D3 10.733 10.711 10.717 – – 10.680 – 10.652 – –

31D2 10.733 10.706 10.713 – – 10.677 – 10.646 – –

33D2 10.733 10.705 10.711 – – 10.676 – 10.645 – –

33D1 10.731 10.698 10.704 – – 10.670 – 10.637 – –

43D3 11.015 10.939 10.963 – – 10.886 – 10.817 – –

41D2 11.015 10.935 10.959 – – 10.883 – 10.813 – –

43D2 11.016 10.934 10.957 – – 10.882 – 10.811 – –

43D1 11.013 10.928 10.949 – – 10.877 – 10.805 – –

13F2 10.283 10.350 10.343 10.338 – – 10.353 – 10.315 –

13F3 10.287 10.355 10.346 10.340 10.302 – 10.356 – 10.321 –

11F3 10.288 10.355 10.347 10.339 10.319 – 10.356 – 10.322 –

13F4 10.291 10.358 10.349 10.340 – – 10.357 – – –

23F2 10.604 10.615 10.610 – – – 10.610 – – –

23F3 10.607 10.619 10.614 – – – 10.613 – – –

21F3 10.607 10.619 10.647 – – – 10.613 – – –

23F4 10.609 10.622 10.617 – – – 10.615 – – –

33F2 10.894 10.850 – – – – – – – –

33F3 10.896 10.853 – – – – – – – –

31F3 10.897 10.853 – – – – – – – –

33F4 10.898 10.856 – – – – – – – –

respectively. Also the symmetric statistical factor is given by

SE1
i f = max(Li , L f )

{
Ji 1 J f
L f S Li

}2

. (25)

The matrix element |Mi f | for E1 and M1 transition can be
written as

∣∣∣ME1
i f

∣∣∣ = 3

ω

〈
f
∣∣∣
ωr

2
j0

(ωr

2

)
− j1

(ωr

2

)∣∣∣ i
〉

(26)

and

∣
∣∣MM1

i f

∣
∣∣ =

〈
f
∣
∣∣ j0

(ωr

2

)∣
∣∣ i

〉
(27)

The electromagnetic transition widths are listed in Tables 20,
21, 22, 23, 24 and 25 and also compared with experimental
results as well as theoretical predictions.

3.4 Weak decays of Bc mesons

The decay modes of Bc mesons are different from charmonia
and bottomonia because of the inclusion of different flavor
quarks. Their decay properties are very important probes for
the weak interaction as Bc meson decays only through weak
decays, therefore have relatively quite long life time. The
pseudoscalar state can not decay via strong or electromag-
netic decays because of this flavor asymmetry.

In the spectator model [126], the total decay width of Bc

meson can be broadly classified into three classes. (i) Decay
of b quark considering c quark as a spectator, (ii) Decay of c
quark consideringb quark as a spectator and (iii) Annihilation
channel Bc → �+ν�. The total width is given by

�(Bc → X) = �(b → X) + �(c → X) + �(Anni) (28)

In the calculations of total width we have not considered the
interference among them as all these decays lead to different
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Table 6 Mass spectrum of S and P-wave Bc meson (in GeV)

State Present [46] [27] [63] [95] PDG [7]

11S0 6.272 6.278 6.272 6.271 6.275 6.275

13S1 6.321 6.331 6.333 6.338 6.314 –

21S0 6.864 6.863 6.842 6.855 6.838 6.842

23S1 6.900 6.873 6.882 6.887 6.850 –

31S0 7.306 7.244 7.226 7.250 – –

33S1 7.338 7.249 7.258 7.272 – –

41S0 7.684 7.564 7.585 – – –

43S1 7.714 7.568 7.609 – – –

51S0 8.025 7.852 7.928 – – –

53S1 8.054 7.855 7.947 – – –

61S0 8.340 8.120 – – – –

63S1 8.368 8.122 – – – –

13P0 6.686 6.748 6.699 6.706 6.672 –

13P1 6.705 6.767 6.750 6.741 6.766 –

11P1 6.706 6.769 6.743 6.750 6.828 –

13P2 6.712 6.775 6.761 6.768 6.776 –

23P0 7.146 7.139 7.094 7.122 6.914 –

23P1 7.165 7.155 7.134 7.145 7.259 –

21P1 7.168 7.156 7.094 7.150 7.322 –

23P2 7.173 7.162 7.157 7.164 7.232 –

33P0 7.536 7.463 7.474 – – –

33P1 7.555 7.479 7.510 – – –

31P1 7.559 7.479 7.500 – – –

33P2 7.565 7.485 7.524 – – –

43P0 7.885 – 7.817 – – –

43P1 7.905 – 7.853 – – –

41P1 7.908 – 7.844 – – –

43P2 7.915 – 7.867 – – –

53P0 8.207 – – – –

53P1 8.226 – – – –

51P1 8.230 – – – –

53P2 8.237 – – – –

channel. In the spectator approximation, the inclusive decay
width of b and c quark is given by

�(b → X) = 9G2
F |Vcb|2m5

b

192π3 (29)

�(c → X) = 9G2
F |Vcs |2m5

c

192π3 (30)

�(Anni) = G2
F

8π
|Vbc|2 f 2

BcMBcm
2
q

(

1 − m2
q

MB2
c

)2

Cq (31)

where Cq = 3|Vcs | for Ds mesons and mq is the mass of
heaviest fermions. Vcs and Vcb are the CKM matrices and
we have taken the value of CKM matrices from the PDG.
G f is the Fermi coupling constant. Here we have used the

Table 7 Mass spectrum of D and F-wave Bc meson (in GeV)

State Present [46] [27] [63] [95]

13D3 6.990 7.026 7.029 7.045 6.980

11D2 6.994 7.035 7.026 7.041 7.009

13D2 6.997 7.025 7.025 7.036 7.154

13D1 6.998 7.030 7.021 7.028 7.078

23D3 7.399 7.363 7.405 – –

21D2 7.401 7.370 7.400 – –

23D2 7.403 7.361 7,399 – –

23D1 7.403 7.365 7.392 – –

33D3 7.761 – 7.750 – –

31D2 7.762 – 7.743 – –

33D2 7.764 – 7.741 – –

33D1 7.762 – 7.732 – –

43D3 8.092 – – – –

41D2 8.093 – – – –

43D2 8.094 – – – –

43D1 8.091 – – – –

13F2 7.234 – 7.273 7.269 –

13F3 7.242 – 7.269 7.276 –

11F3 7.241 – 7.268 7.266 –

13F4 7.244 – 7.277 7.271 –

23F2 7.607 – 7.618 – –

23F3 7.615 – 7.616 – –

21F3 7.614 – 7.615 – –

23F4 7.617 – 7.617 – –

33F2 7.946 – – – –

33F3 7.954 – – – –

31F3 7.953 – – – –

33F4 7.956 – – – –

model quark masses, Bc meson mass and decay constants for
the computation of total width. Here we compute the decay
width of Bc meson using Eq. (28) and corresponding life
time. The computed life time comes out to be 0.539 × 10−12

s which is in very good agreement with the world averaged
mean life time (0.507 ± 0.009) × 10−12 s [7].

4 Numerical results and discussion

Having determined the confinement strengths and quark
masses, we are now in position to present our numerical
results. We first compute the mass spectra of heavy quarko-
nia and Bc meson. In most of the potential model compu-
tations, the confinement strength is fixed by experimental
ground state masses for cc̄, bb̄ and cb̄ independently. We
observe here that the confinement strength A for Bc meson
is arithmetic mean of those for cc̄ and bb̄ which discards the
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Table 8 Pseudoscalar decay constant of charmonia (in MeV)

State f p [52] [99] [68] LQCD [100] QCDSR [100] PDG [7]

1S 350.314 363 378 402 387(7)(2) 309 ± 39 335 ± 75

2S 278.447 275 82 240 – – –

3S 249.253 239 206 193 – – –

4S 231.211 217 87 – – – –

5S 218.241 202 – – – –

6S 208.163 197 – – – – –

Table 9 Vector decay constant of charmonia (in MeV)

State fv [52] [99] [68] LQCD [100] QCDSR [100] PDG [7]

1S 325.876 338 411 393 418(8)(5) 401 ± 46 416 ± 6

2S 257.340 254 155 293 – – 304 ± 4

3S 229.857 220 188 258 – – –

4S 212.959 200 262 – – – –

5S 200.848 186 – – – – –

6S 191.459 175 – – – – –

Table 10 Pseudoscalar decay constant of bottomonia (in MeV)

State f p [52] [99] [43] [68]

1S 646.025 744 756 711 599

2S 518.803 577 285 – 411

3S 474.954 511 333 – 354

4S 449.654 471 40 – –

5S 432.072 443 – – –

6S 418.645 422 – – –

Table 11 Vector decay constant of bottomonia (in MeV)

State fv [52] [99] [68] [101] LQCD [102] PDG [7]

1S 647.250 706 707 665 498 ± (20) 649(31) 715 ± 5

2S 519.436 547 393 475 366 ± (27) 481(39) 498 ± 8

3S 475.440 484 9 418 304 ± (27) – 430 ± 4

4S 450.066 446 20 388 259 ± (22) – 336 ± 18

5S 432.437 419 – 367 228 ± (16) – –

6S 418.977 399 – 351 – – –

Table 12 Pseudoscalar decay constant of Bc meson (in MeV)

State f p [52] [30] [22] [82] [95]

1S 432.955 465 503 460 ± (60) 500 554.125

2S 355.504 361 – – –

3S 325.659 319 – – –

4S 307.492 293 – – –

5S 294.434 275 – – –

6S 284.237 261 – – –
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Table 13 Vector decay constant of Bc meson (in MeV)

State fv [52] [30] [22] [82]

1S 434.642 435 433 460 ± (60) 500

2S 356.435 337 – – –

3S 326.374 297 – – –

4S 308.094 273 – – –

5S 294.962 256 – – –

6S 284.709 243 – – –

Table 14 Digamma decay width of S and P-wave charmonia (in keV)

State �γγ [76] [32] [68] [121] PDG [7]

11S0 7.231 8.5 5.5 7.18 7.14 ± 0.95 5.1 ± 0.4

21S0 5.507 2.4 1.8 1.71 4.44 ± 0.48 2.15 ± 1.58

31S0 4.971 0.88 – 1.21 – –

41S0 4.688 – – – – –

51S0 4.507 – – – – –

61S0 4.377 – – – – –

13P0 8.982 2.5 2.9 3.28 – 2.34 ± 0.19

13P2 1.069 0.31 0.50 – – 0.53 ± 0.4

23P0 9.111 1.7 1.9 – – –

23P2 1.084 0.23 0.52 – – –

33P0 9.104 1.2 – – – –

33P2 1.0846 0.17 – – – –

43P0 9.076 – – – – –

43P2 1.080 – – – – –

53P0 9.047 – – – – –

53P2 1.077 – – – – –

Table 15 Digamma decay width of S and P-wave bottomonia (in keV)

State �γγ [77] [62] [32] [68] [121]

11S0 0.387 0.527 0.214 0.35 0.23 0.384 ± 0.047

21S0 0.263 0.263 0.121 0.15 0.07 0.191 ± 0.025

31S0 0.229 0.172 0.906 0.10 0.04 –

41S0 0.212 0.105 0.755 – – –

51S0 0.201 0.121 – – – –

61S0 0.193 0.050 – – – –

13P0 0.0196 0.050 0.0208 0.038 – –

13P2 0.0052 0.0066 0.0051 0.008 – –

23P0 0.0195 0.037 0.0227 0.029 – –

23P2 0.0052 0.0067 0.0062 0.006 – –

33P0 0.0194 0.037 – – – –

33P2 0.0051 0.0064 – – – –

43P0 0.0192 – – – – –

43P2 0.0051 – – – – –

53P0 0.0191 – – – – –

53P2 0.0050 – – – – –
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Table 16 Digluon decay width of S and P-wave charmonia (in MeV)

State �gg [70] [121] PDG [7]

11S0 35.909 22.37 19.60 26.7 ± 3.0

21S0 27.345 16.74 12.1 14.7 ± 0.7

31S0 24.683 14.30 – –

41S0 23.281 – – –

51S0 22.379 – – –

61S0 23.736 – – –

13P0 37.919 9.45 – 10.4 ± 0.7

13P2 3.974 2.81 – 2.03 ± 0.12

23P0 38.462 10.09 – –

23P2 4.034 7.34 – –

33P0 38.433 – – –

33P2 4.028 – – –

43P0 38.315 – – –

43P2 4.016 – – –

53P0 39.191 – – –

53P2 4.003 – – –

need to introduce additional confinement strength param-
eter for computation of Bc spectra. Similar approach has
been used earlier within QCD potential model [88]. Using
model parameters and numerical wave function we com-
pute the various decay properties of heavy quarkonia and
Bc mesons namely leptonic decay constants, annihilation
widths and electromagnetic transitions. In Tables 2 and 3,
we present our result for charmonium mass spectra. We com-
pare our results with PDG data [7], lattice QCD [17] data,

Table 17 Digluon decay width of S and P-wave bottomonia (in MeV)

State �gg [47] [121] [122]

11S0 5.448 17.945 6.98 12.46

21S0 3.710 – 3.47 –

31S0 3.229 – – –

41S0 2.985 – – –

51S0 2.832 – – –

61S0 2.274 – – –

13P0 0.276 5.250 – 2.15

13P2 0.073 0.822 – 0.22

23P0 0.275 – – –

23P2 0.073 – – –

33P0 0.273 – – –

33P2 0.072 – – –

43P0 0.271 – – –

43P2 0.072 – – –

53P0 0.269 – – –

53P2 0.071 – – –

relativistic quark model [27], nonrelativistic quark model
[65,68], QCD relativistic functional approach [67], relativis-
tic potential model [39] and nonrelativistic potential models
[59,70,73,76]. Our results for S-wave are in excellent agree-
ment with the experimental data [7]. We determine the mass
difference for S-wave charmonia i.e. MJ/ψ − Mηc = 105
MeV and Mψ(2S)−Mηc(2S) = 79 MeV while that from exper-
imental data are 113 and 47 MeV respectively [7]. Our results
for P-waves are also consistent with the PDG data [7] as well

Table 18 Dilepton decay width of charmonia (in keV)

State ��+�− [73] [52] [39] [31] PDG [7]

1S 2.925 4.95 6.99 1.89 5.4 5.547 ± 0.14

2S 1.533 1.69 3.38 1.04 2.4 2.359 ± 0.04

3S 1.091 0.96 2.31 0.77 – 0.86 ± 0.07

4S 0.856 0.65 1.78 0.65 – 0.58 ± 0.07

5S 0.707 0.49 1.46 – – –

6S 0.602 0.39 1.24 – – –

Table 19 Dilepton decay width of bottomonia (in keV)

State ��+�− [73] [40] [52] [31] [123] PDG [7]

1S 1.098 1.20 1.33 1.61 1.3 0.98 1.340 ± 0.018

2S 0.670 0.52 0.62 0.87 0.5 0.41 0.612 ± 0.011

3S 0.541 0.33 0.48 0.66 – 0.27 0.443 ± 0.008

4S 0.470 0.24 0.40 0.53 – 0.20 0.272 ± 0.029

5S 0.422 0.19 – 0.44 – 0.16 –

6S 0.387 0.16 – 0.39 – 0.12 –
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Table 20 E1 transition width of charmonia (in keV)

Transition Present [39] [30] [76] [65] PDG [7]

23S1 → 13P0 21.863 45.0 51.7 74 22 29.8 ± 1.5

23S1 → 13P1 43.292 40.9 44.9 62 42 27.9 ± 1.5

23S1 → 13P2 62.312 26.5 30.9 43 38 26 ± 1.5

21S0 → 11P1 36.197 8.3 8.6 146 49 –

33S1 → 23P0 31.839 87.3 – – – –

33S1 → 23P1 64.234 65.7 – – – –

33S1 → 23P2 86.472 31.6 – – – –

31S0 → 21P1 51.917 – – – – –

33S1 → 13P0 46.872 1.2 – – – –

33S1 → 13P1 107.088 2.5 – – – –

33S1 → 13P2 163.485 3.3 – – – –

31S0 → 11P1 178.312 – – – – –

13P0 → 13S1 112.030 142.2 161 167 284 119.5 ± 8

13P1 → 13S1 146.317 287.0 333 354 306 295 ± 13

13P2 → 13S1 157.225 390.6 448 473 172 384.2 ± 16

11P1 → 11S0 247.971 610.0 723 764 361 357 ± 280

23P0 → 23S1 70.400 53.6 – 61 – –

23P1 → 23S1 102.672 208.3 – 103 – –

23P2 → 23S1 116.325 358.6 – 225 – –

21P1 → 21S0 163.646 – – 309 – –

23P0 → 13S1 173.324 20.8 – 74 – –

23P1 → 13S1 210.958 28.4 – 83 – –

23P2 → 13S1 227.915 33.2 – 101 – –

21P1 → 11S0 329.384 – – 134 – –

13D1 → 13P0 161.504 – 423 486 272 172 ± 30

13D1 → 13P1 93.775 – 142 150 138 70 ± 17

13D1 → 13P2 5.722 – 5.8 5.8 7.1 ≤ 21

13D2 → 13P1 165.176 317.3 297 342 285 –

13D2 → 13P2 50.317 65.7 62 70 91 –

13D3 → 13P2 175.212 62.7 252 284 350 –

11D2 → 11P1 205.93 – 335 575 362 –

as LQCD [17] with less than 2% deviation. Since experimen-
tal/LQCD results are not available for P-wave charmonia
beyond n = 2 states, we compare our results with the rela-
tivistic quark model [27] and it is also observed to have 1–2
% deviation throughout the spectra. For charmonia, only 1P
states are available and for 2P only one state is available
namely χc2. Our results for 1P and 2P states are also satis-
factory. We also list the mass spectra of D and F wave and
find it to be consistent with the theoretical predictions. Over-
all, computed charmonium spectra is consistent with PDG
and other theoretical models.

In Tables 4 and 5, we compare our results of bottomonium
spectra with PDG data [7], relativistic quark model [27,64],
nonrelativistic quark model [66], QCD relativistic functional

approach [67], relativistic potential model [40], nonrelativis-
tic potential models [73,77] and covariant constituent quark
model [69]. Similarly for S-wave bottomonia, up to n = 3
vector states are known experimentally and for pseudoscalar
states, only n = 1 and 2 are available. Our results for ϒ(1S)

and ϒ(3S) are in good agreement with the PDG data while
for ϒ(2S), ϒ(4S) and ϒ(5S), slight deviation (within 1%) is
observed. Our results for ηb(1S) and ηb(3S) also match well
with less than 0.5% deviation. We obtain Mϒ(1S)−Mηb = 35
MeV and for Mϒ(2S) − Mηb(2S) = 24 MeV against the PDG
data of 62 and 24 MeV respectively. For P-wave, 1P and
2P states are reported and for 3P , only χb1 is reported. Our
results for 1P bottomonia deviate by � 0.3% from the experi-
mental results but for 2P , they are quite satisfactory and devi-
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Table 21 E1 transition width of bottomonia (in keV)

Transition Present [39] [30] [77] [66] PDG [7]

23S1 → 13P0 2.377 1.15 1.65 1.67 1.09 1.22 ± 0.11

23S1 → 13P1 5.689 1.87 2.57 2.54 2.17 2.21 ± 0.19

23S1 → 13P2 8.486 1.88 2.53 2.62 2.62 2.29 ± 0.20

21S0 → 11P1 10.181 4.17 3.25 6.10 3.41 –

33S1 → 23P0 3.330 1.67 1.65 1.83 1.21 1.20 ± 0.12

33S1 → 23P1 7.936 2.74 2.65 2.96 2.61 2.56 ± 0.26

33S1 → 23P2 11.447 2.80 2.89 3.23 3.16 2.66 ± 0.27

33S1 → 13P0 0.594 0.03 0.124 0.07 0.097 0.055 ± 0.010

33S1 → 13P1 1.518 0.09 0.307 0.17 0.0005 0.018 ± 0.010

33S1 → 13P2 2.354 0.13 0.445 0.15 0.14 0.20 ± 0.03

31S0 → 11P1 3.385 0.03 0.770 1.24 0.67 –

31S0 → 21P1 13.981 – 3.07 11.0 4.25 –

13P2 → 13S1 57.530 31.2 29.5 38.2 31.8 –

13P1 → 13S1 54.927 27.3 37.1 33.6 31.9 –

13P0 → 13S1 49.530 22.1 42.7 26.6 27.5 –

11P1 → 11S0 72.094 37.9 54.4 55.8 35.8 –

23P2 → 23S1 28.848 16.8 18.8 18.8 15.5 15.1 ± 5.6

23P1 → 23S1 26.672 13.7 15.9 15.9 15.3 19.4 ± 5.0

23P0 → 23S1 23.162 9.90 11.7 11.7 14.4 –

21P1 → 21S0 35.578 – 23.6 24.7 16.2 –

23P2 → 13S1 29.635 7.74 8.41 13.0 12.5 9.8 ± 2.3

23P1 → 13S1 28.552 7.31 8.01 12.4 10.8 8.9 ± 2.2

23P0 → 13S1 26.769 6.69 7.36 11.4 5.4 –

21P1 → 11S0 34.815 – 9.9 15.9 16.1 –

13D1 → 13P0 9.670 – 24.2 23.6 19.8 –

13D1 → 13P1 6.313 – 12.9 12.3 13.3 –

13D1 → 13P2 0.394 – 0.67 0.65 1.02 –

13D2 → 13P1 11.489 19.3 24.8 23.8 21.8 –

13D2 → 13P2 3.583 5.07 6.45 6.29 7.23 –

13D3 → 13P2 14.013 21.7 26.7 26.4 32.1 –

11D2 → 11P1 14.821 – 30.2 42.3 30.3 –

ating by 0.2% only from the PDG data. Our result for ϒ(1D)

also agrees well with the experimental data with 0.8% devi-
ation. The F-wave mass spectra is also in good agreement
with the theoretical predictions. Looking at the comparison
with PDG data Ref. [7] and relativistic quark model Ref.
[27], present quarkonium mass spectra deviate less than 2%
for charmonia and less than 1% for bottomonia.

We now employ the quark masses and confinement
strengths used for computing mass spectra of quarkonia to
predict the spectroscopy of Bc mesons without introducing
any additional parameter. Our results are tabulated in Tables
6 and 7. For Bc mesons, only 0−+ states are experimentally
observed for n = 1 and 2 and our results are in very good

agreement with the experimental results with less than 0.3 %
error.

We note here that the masses of orbitally excited states
(especially n = 1 states) of charmonia are systematically
lower than the other models and experimental data. This ten-
dency decreases as one moves to higher n states. Absence of
similar trend in case of Bc and bottomonia systems suggests
that relativistic treatment might improve the results in lower
energy regime of charmonia.

Using the mass spectra of heavy quarkonia and Bc meson,
we plot the Regge trajectories in (J, M2) and (nr , M2) planes
where nr = n − 1. We use the following relations [27]

J = αM2 + α0 (32)

nr = βM2 + β0 (33)
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Table 22 E1 transition width of Bc meson (in keV)

Transition Present [30] [63] [46]

23S1 → 13P0 4.782 5.53 2.9 0.94

23S1 → 13P1 11.156 7.65 4.7 1.45

23S1 → 13P2 16.823 7.59 5.7 2.28

21S0 → 11P1 18.663 4.40 6.1 3.03

33S1 → 23P0 7.406 – – –

33S1 → 23P1 17.049 – – –

33S1 → 23P2 25.112 – – –

33S1 → 13P0 6.910 – – –

33S1 → 13P1 17.563 – – –

33S1 → 13P2 27.487 – – –

31S0 → 11P1 38.755 – – –

31S0 → 21P1 27.988 – – –

13P2 → 13S1 55.761 122 83 64.24

13P1 → 13S1 53.294 87.1 11 51.14

13P0 → 13S1 46.862 75.5 55 58.55

11P1 → 11S0 71.923 18.4 80 72.28

23P2 → 23S1 41.259 75.3 55 64.92

23P1 → 23S1 38.533 45.3 45 50.40

23P0 → 23S1 38.308 34.0 42 55.05

21P1 → 21S0 52.205 13.8 52 56.28

23P2 → 13S1 60.195 – 14 –

23P1 → 13S1 57.839 – 5.4 –

23P0 → 13S1 52.508 – 1.0 –

21P1 → 11S0 74.211 – 19 –

13D1 → 13P0 44.783 133 55 –

13D1 → 13P1 28.731 65.3 28 –

13D1 → 13P2 1.786 3.82 1.8 –

13D2 → 13P1 51.272 139 64 –

13D2 → 13P2 16.073 23.6 15 –

13D3 → 13P2 60.336 149 78 –

11D2 → 11P1 66.020 143 63 –

where α, β are slopes and α0, β0 are the intercepts that can
be computed using the methods given in Ref. [27]. In Figs.
1, 2 and 3, we plot the Regge trajectories. Regge trajectories
from present approach and relativistic quark model [27] show
similar trend i.e. for charmonium spectra, the computed mass
square fits very well to a linear trajectory and found to be
almost parallel and equidistant in both the planes. Also, for
bottomonia and Bc mesons, we observe the nonlinearity in
the parent trajectories. The nonlinearity increases as we go
from cb̄ to bb̄mesons indicating increasing contribution from
the inter-quark interaction over confinement.

According to the first principles of QCD, while the one-
gluon-exchange interaction gives rise to employment of
Coulomb potential with a strength proportional to the strong

Table 23 M1 transition width of charmonia (in keV)

Transition Present [39] [30] [65] [75] PDG [7]

13S1 → 11S0 2.722 2.7 1.05 2.39 3.28 1.58 ± 0.37

23S1 → 21S0 1.172 1.2 0.99 0.19 1.45 0.21 ± 0.15

23S1 → 11S0 7.506 0.0 0.95 7.80 – 1.24 ± 0.29

33S1 → 31S0 9.927 – – 0.088 – –

Table 24 M1 transition width of bottomonia (in eV)

Transition Present [39] [30] [66] [75] PDG [7]

13S1 → 11S0 37.668 4.0 5.8 10 15.36 –

23S1 → 21S0 5.619 0.05 1.40 0.59 1.82 –

23S1 → 11S0 77.173 0.0 6.4 66 – 12.5 ± 4.9

33S1 → 31S0 2.849 – 0.8 3.9 – –

33S1 → 21S0 36.177 – 1.5 11 – ≤ 14

33S1 → 11S0 76.990 – 10.5 71 – 10 ± 2

Table 25 M1 transition width of Bc meson (in eV)

Transition Present [30] [63] [46]

13S1 → 11S0 53.109 33 80 2.2

23S1 → 21S0 21.119 17 10 0.014

23S1 → 11S0 481.572 428 600 495

21S0 → 13S1 568.346 488 300 1092

running coupling constant at very short distances, nonpertur-
bative effect like confinement becomes prominent at larger
distances. Charmonium belongs to neither purely nonrela-
tivistic nor the relativistic regime where chiral symmetry
breaking is more significant from physics point of view.
Though Lattice QCD calculations in the quenched approx-
imation have suggested a linearly increasing potential in
the confinement range [8–18], a specific form of interac-
tion potential in the full range is not yet known. At short
distances relativistic effects are more important as they give
rise to quark-antiquark pairs from the vacuum that in turn
affect the nonrelativistic Coulomb interaction in the presence
of sea quarks. The mass spectra of quarkonia is not sensitive
to these relativistic effects at short distances. However, the
decay properties show significant difference with inclusion
of relativistic corrections. We have used the most accepted
available correction terms for computation of decay proper-
ties [113,118–120] that improves the results significantly in
most cases.

Using the potential parameters and numerical wave func-
tion, we compute the various decay properties of heavy
quarkonia. We first compute the leptonic decay constants of
pseudoscalar and vector mesons and our numerical results
are tabulated in Tables 8, 9, 10, 11, 12 and 13. For the case
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Fig. 1 Parent and daughter Regge trajectories (J, M2) for charmonia (left), bottomonia (middle) and Bc (right) mesons with natural parity
(P = (−1)J )

Fig. 2 Parent and daughter Regge trajectories (J, M2) for charmonia (left), bottomonia (middle) and Bc (right) mesons with unnatural parity
(P = (−1)J+1)

Fig. 3 Parent and daughter Regge trajectories (nr → M2) for charmonia (left), bottomonia (middle) and Bc (right) mesons

of charmonia, our results are higher than those using LQCD
and QCDSR [100]. In order to overcome this discrepancy, we
include the QCD correction factors given in Ref. [97] and the
results are tabulated in Tables 8 and 9. After introducing the
correction factors our results match with PDG, LQCD and
QCDSR [100] along with other theoretical models. We also
compute the decay constants for excited S-wave charmonia
and we found that our results are consistent with the other
theoretical predictions. We also compute the decay constants
of bottomonia and Bc mesons. In this case, our results match
with other theoretical predictions without incorporating the
relativistic corrections. In the case of vector decay constants
of bottomonia, our results are very close to experimental
results as well as those obtained in LQCD Ref. [102]. For
the decay constants of Bc mesons, we compare our results
with nonrelativistic potential models [52,95].

Next we compute the digamma, digluon and dilepton
decay widths using the relations Eqs. (13)–(16). Where the

bracketed quantities are the first order radiative corrections to
the decay widths. We compare our results with the available
experimental results. We also compare our results with the
theoretical models such as screened potential model [76,77],
Martin-like potential model [73], relativistic quark model
(RQM) [31,32], heavy quark spin symmetry [114], relativis-
tic Salpeter model [121] and other theoretical data.

Tables 14 and 15 we present our results for digamma
decay widths for charmonia and bottomonia. Our results for
�(ηc → γ γ ) and �(ηc(2S) → γ γ ) are higher than the
experimental results. Experimental observation of the two
photon decays of pseudoscalar states are considered as an
important probe for identification of flavour as well as inter-
nal structure of mesons. The first order radiative correction
[bracketed terms in Eq. (13)] was utilized to incorporate the
difference and it is observed that our results along with the
correction match with the experimental results [7]. We also
compute the digamma decay width of excited charmonia.
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Our results for P-wave charmonia are higher than that of
screened potential model [76] and relativistic quark model
[32]. Our results for �(ηb → γ γ ) match quite well with
the experimental data while computed �(ηb(2S) → γ γ )

value is overestimated when compared with the PDG data.
For the excited state of S-wave bottomonia, our results fall in
between those obtained in screened potential model [77] and
relativistic quark model with linear confinement [64]. The
scenario is similar with P-wave bottomonia and charmonia.

Di-gluon decay has substantial contribution to hadronic
decay of quarkonia below cc̄ and bb̄ threshold. In Tables
16 and 17 we represent our results for digluon decay width
of charmonia and bottomonia respectively. Our results for
�(ηc → gg) match perfectly with the PDG data [7] but in
the case of �(ηc(2S) → gg) our result is higher than the
PDG data. We also compare the results obtained with that
of the relativistic Salpeter method [121] and an approximate
potential model [70]. It is seen from Table 16 that the rela-
tivistic corrections provide better results in case of P-wave
charmonia where as that for bottomonia are underestimated
in present calculations when compared to relativistic QCD
potential model [122] and power potential model [47]. As
the experimental data of digluon annihilation of bottomonia
are not available, the validity of either of the approaches can
be validated only after observations in forthcoming experi-
ments.

We present the result of dilepton decay widths in the Tables
18 and 19 and it is observed that our results matches with the
PDG data [7] upto n = 3 for both charmonia and bottomonia.
The contribution of the correction factor is more significant
in the excited states with compared to that in the ground
states of the quarkonia, indicating different dynamics in the
intermediate quark-antiquark distance. Our results are also
in good accordance with the other theoretical models.

We present our results of E1 transitions in Tables 20, 21
and 22 in comparison with theoretical attempts such as rela-
tivistic potential model [39], quark model [30], nonrelativis-
tic screened potential model [66,76,77]. We also compare our
results of charmonia transitions with available experimental
results. Our result for �(ψ(2S) → χcJ (1P) + γ ) is in good
agreement with the experimental result for J = 0 but our
results for J = 1, 2 are higher than the PDG data. Our results
also agree well for the transition �(χc2(1P) → J/ψ + γ ).
We also satisfy the experimental constraints for the transi-
tion �(13D1 → χcJ + γ ) for J = 0, 1, 2. Our results share
the same range with the results computed in other theoretical
models. The E1 transitions of bottomonia agree fairly well
except for the channel �(ϒ(3S) → χbJ (3P)), where our
results are higher than the experimental results. The com-
parison of our results of E1 transitions in Bc mesons with
relativistic quark model [30,63] and power potential model
[46] are found to be in good agreement. In Tables 23, 24
and 25, we present our results of M1 transitions and also

compared with relativistic potential model [39], quark model
[30,64], nonrelativistic screened potential model [65,66],
power potential [46] as well as with available experimental
results. Our results of �(nψ → n′ηc + γ ) are in very good
agreement with the PDG data as well with the other theo-
retical predictions. Computed M1 transitions in Bc mesons
are also within the results obtained from theoretical predic-
tions. The computed M1 transition of bottomonia are found
to be higher than the PDG data and also theoretical predic-
tions.

5 Conclusion

In this article, we have reported a comprehensive study of
heavy quarkonia in the framework of nonrelativistic poten-
tial model considering linear confinement with least number
of free model parameters such as confinement strength and
quark mass. They are fine tuned to obtain the correspond-
ing spin averaged ground state masses of charmonia and bot-
tomonia determined from experimental data. The parameters
are then used to predict the masses of excited states. In order
to compute mass spectra of orbitally excited states, we incor-
porate contributions from the spin dependent part of confined
one gluon exchange potential perturbatively.

Our results are found to be consistent with available PDG
data, LQCD, relativistic quark model and other theoretical
potential models. We also compute the digamma, digluon
and dilepton decay widths of heavy quarkonia using nonrel-
ativistic Van-Royen Weiskopf formula. The first order radia-
tive corrections in calculation of these decays provide satis-
factory results for the charmonia while no such correction is
needed in case of bottomonia for being purely nonrelativis-
tic system. We employ our parameters in computation of Bc

spectroscopy employing the quark masses and mean value
of confinement strength of charmonia and bottomonia and
our results are also consistent with the PDG data. We also
compute the weak decays of Bc mesons and the computed
life time is also consistent with the PDG data. It is inter-
esting to note here that despite having a c quark, the non-
relativistic calculation of Bc spectroscopy is in very good
agreement with experimental and other theoretical mod-
els.
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Inspired by recent improved measurements of charm semileptonic decays at BESIII, we study a large set
of DðDsÞ-meson semileptonic decays where the hadron in the final state is one of D0, ρ, ω, ηð0Þ in the case
of Dþ decays, and D0, ϕ, K0, K�ð892Þ0, ηð0Þ in the case of Dþ

s decays. The required hadronic form factors
are computed in the full kinematical range of momentum transfer by employing the covariant confined
quark model developed by us. A detailed comparison of the form factors with those from other approaches
is provided. We calculate the decay branching fractions and their ratios, which show good agreement with
available experimental data. We also give predictions for the forward-backward asymmetry and the
longitudinal and transverse polarizations of the charged lepton in the final state.
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I. INTRODUCTION

Semileptonic DðDsÞ-meson decays provide a good plat-
form to study both the weak and strong interactions
in the charm sector (for a review, see e.g., Ref. [1]).
Measurements of their decay rates allow a direct determi-
nation of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements jVcsj and jVcdj. In particular, the average of the
measurements of BABAR [2,3], Belle [4], BESIII [5], and
CLEO [6] of the decays D → πðKÞlν was used to extract
the elements jVcdðsÞj, as recently reported by the Particle
Data Group (PDG) [7]. Such extraction of the CKM matrix
elements from experiments requires theoretical knowledge
of the hadronic form factors which take into account the
nonperturbative quantum chromodynamics (QCD) effects.

The elements jVcsj and jVcdj can also be determined
indirectly by using the unitarity constraint on the CKM
matrix. This method was very useful in the past when the
direct measurements still suffered from large uncertainties,
both experimental and theoretical. Once these matrix
elements are determined, whether directly or indirectly,
one can in reverse study the strong interaction effects in
various charm semileptonic channels to reveal the decay
dynamics. One can also test the predictions of different
theoretical approaches, such as the form factors and the
branching fractions. In this manner, the study of semi-
leptonic charm decays can indirectly contribute to a more
precise determination of other CKM matrix elements such
as jVubj, in the sense that constraints provided by charm
decays can improve the theoretical inputs needed for
extracting jVubj from exclusive charmless B semileptonic
decays.
Recent progresses in experimental facilities and theo-

retical studies have made more and more stringent tests of
the standard model (SM) available in the charm sector and
have opened a new window through which to look for
possible new physics effects beyond the SM. These tests
include the CKM matrix unitarity, charge-conjugation-
parity violation, isospin symmetry, and lepton flavor
universality (LFU). Notably, the BESIII collaboration
has reported recently measurements of many semimuonic
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charm decays [8–10], some for the first time and some with
much improved precision. This paves the way to the search
for signals of LFU violations in these channels. In addition,
the study of the decays Ds → ηð0Þlþνl provides informa-
tion about the η − η0 mixing angle and helps probe the
interesting η − η0-glueball mixing [11,12].
From the theoretical point of view, the calculation of

hadronic form factors plays a crucial role in the study of
charm semileptonic decays. This calculation is carried out
by nonperturbative methods including lattice QCD
(LQCD) [13–15], QCD sum rules [16–18], light-cone
sum rules (LCSR) [19–25], and phenomenological quark
models. Regarding the quark models used in studies of
semileptonic D decays, one can mention the Isgur-Scora-
Grinstein-Wise (ISGW) model [26] and its updated version
ISGW2 [27], the constituent quark model (CQM) [28], the
relativistic quark model based on the quasipotential
approach [29], the chiral quark model [30], the light-front
quark model (LFQM) [31–33], and the model based on the
combination of heavy meson and chiral symmetries
(HMχT) [34,35]. Several semileptonic decay channels of
the DðsÞ mesons were also studied in the large energy
effective theory [36], chiral perturbation theory [37], the so-
called chiral unitary approach (χUA) [38], and a new
approach assuming pure heavy quark symmetry [39].
Recently, a simple expression for D → K semileptonic
form factors was studied in Ref. [40]. We also mention here
early attempts to account for flavor symmetry breaking in
pseudoscalar meson decay constants by the authors of
Ref. [41]. It is worth noting that each method has only a
limited range of applicability, and their combination will
give a better picture of the underlined physics [28].
In this paper, we compute the form factors of

the semileptonic DðDsÞ decays in the framework
of the covariant confined quark model (CCQM) [42–45].
To be more specific, we study the decays Dþ→
ðD0;ρ0;ω;η;η0Þlþνl, Dþ

s →ðD0;ϕ;K0;K�ð892Þ0;η;η0Þlþνl,
and D0 → ρ−lþνl. This paper follows our previous study
[46] in which some of us have considered the decays D →
Kð�Þlþνl and D → πlþνl in great detail. Our aim is to
provide a systematic and independent study of DðsÞ semi-
leptonic channels in the same theoretical framework. This
will shed more light on the theoretical study of the charm
decays, especially on the shape of the corresponding form
factors, since the CCQM predicts the form factors in the
whole physical range of momentum transfer without using
any extrapolations. Besides, many of the studies mentioned
in the previous paragraph were done about a decade ago,
with the main focus on the branching fraction. In light of
recent data, more up-to-date predictions are necessary, not
only for the branching fraction but also for other physical
observables such as the forward-backward asymmetry and
the lepton polarization. Finally, such a systematic study is
necessary to test our model’s predictions and to better
estimate its theoretical error.

The rest of the paper is organized as follows. In Sec. II,
we briefly provide the definitions of the semileptonic
matrix element and hadronic form factors. Then we give
the decay distribution in terms of the helicity amplitudes. In
Sec. III, we introduce the essential ingredients of the
covariant confined quark model and describe in some
detail the calculation of the form factors in our approach.
Numerical results for the form factors, the decay branching
fractions, and other physical observables are presented in
Sec. IV. We compare our findings with other theoretical
approaches as well as experimental data including recent
LQCD calculations and BESIII data. Finally, the conclu-
sion is given in Sec. V.

II. MATRIX ELEMENT AND DECAY
DISTRIBUTION

Within the SM, the matrix element for semileptonic
decays of the DðsÞ meson to a pseudoscalar (P) or a vector
(V) meson in the final state is written as

MðDðsÞ → ðP;VÞlþνlÞ

¼ GFffiffiffi
2

p VcqhðP;VÞjq̄OμcjDðsÞi½lþOμνl�; ð1Þ

where Oμ ¼ γμð1 − γ5Þ, and q ¼ d, s. The hadronic part in
the matrix element is parametrized by the invariant form
factors which depend on the momentum transfer squared q2

between the two mesons as follows:

hPðp2Þjq̄OμcjDðsÞðp1Þi¼Fþðq2ÞPμþF−ðq2Þqμ;

hVðp2;ϵ2Þjq̄OμcjDðsÞðp1Þi¼
ϵ†2α

M1þM2

½−gμαPqA0ðq2Þ

þPμPαAþðq2ÞþqμPαA−ðq2Þ
þ iεμαPqVðq2Þ�; ð2Þ

where P ¼ p1 þ p2, q ¼ p1 − p2, and ϵ2 is the polariza-
tion vector of the vector meson V, so that ϵ†2 · p2 ¼ 0. The
mesons are on shell: p2

1 ¼ m2
DðsÞ ¼ M2

1, p
2
2 ¼ m2

P;V ¼ M2
2.

For later comparison of the form factors with other
studies, we relate our form factors defined in Eq. (2) to the
well-known Bauer-Stech-Wirbel (BSW) form factors [47],
namely, Fþ;0 for DðsÞ → P and A0;1;2 and V for DðsÞ → V.
Note that in Ref. [47] the notation F1 was used instead of
Fþ. The relations read

Ã2 ¼ Aþ; Ṽ ¼ V; F̃þ ¼ Fþ;

Ã1 ¼
M1 −M2

M1 þM2

A0; F̃0 ¼ Fþ þ q2

M2
1 −M2

2

F−;

Ã0 ¼
M1 −M2

2M2

�
A0 − Aþ −

q2

M2
1 −M2

2

A−

�
: ð3Þ
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Here, the BSW form factors are denoted with a tilde to
distinguish from our form factors. However, for simplicity,
we will omit the tilde in what follows. In all comparisons of
the form factors to appear below, we use the BSW ones.
Once the form factors are known, one can easily

calculate the semileptonic decay rates. However, it is more
convenient to write down the differential decay width in
terms of the so-called helicity amplitudes which are
combinations of the form factors. This is known as the
helicity technique, first described in Ref. [48] and further
discussed in our recent papers [49,50]. One has

dΓðDðsÞ→ ðP;VÞlþνlÞ
dq2

¼G2
FjVcqj2jp2jq2
96π3M2

1

�
1−

m2
l

q2

�
2

×

��
1þm2

l

2q2

�
ðjHþj2þjH−j2þjH0j2Þþ

3m2
l

2q2
jHtj2

�
; ð4Þ

where jp2j ¼ λ1=2ðM2
1;M

2
2; q

2Þ=2M1 is the momentum of
the daughter meson in the rest frame of the parent meson.
Here, the helicity amplitudes for the decays DðsÞ → Vlþνl
are defined as

H� ¼ 1

M1 þM2

ð−PqA0 � 2M1jp2jVÞ;

H0 ¼
1

M1 þM2

1

2M2

ffiffiffiffiffi
q2

p ½−PqðM2
1 −M2

2 − q2ÞA0

þ 4M2
1jp2j2Aþ�;

Ht ¼
1

M1 þM2

M1jp2j
M2

ffiffiffiffiffi
q2

p ½Pqð−A0 þ AþÞ þ q2A−�: ð5Þ

In the case of the decays DðsÞ → Plþνl one has

H� ¼ 0; H0 ¼
2M1jp2jffiffiffiffiffi

q2
p Fþ;

Ht ¼
1ffiffiffiffiffi
q2

p ðPqFþ þ q2F−Þ: ð6Þ

In order to study the lepton-mass effects, one can define
several physical observables such as the forward-backward
asymmetry Al

FBðq2Þ and the longitudinal Pl
Lðq2Þ and

transverse Pl
Tðq2Þ polarization of the charged lepton in

the final state. This requires the angular decay distribution,
which was described elsewhere [50]. In short, one can write
down these observables in terms of the helicity amplitudes
as follows:

Al
FBðq2Þ ¼ −

3

4

jHþj2 − jH−j2 þ 4δlH0Ht

ð1þ δlÞ
P jHnj2 þ 3δljHtj2

; ð7Þ

Pl
Lðq2Þ ¼ −

ð1 − δlÞ
P jHnj2 − 3δljHtj2

ð1þ δlÞ
P jHnj2 þ 3δljHtj2

; ð8Þ

Pl
Tðq2Þ ¼ −

3π

4
ffiffiffi
2

p
ffiffiffiffiffi
δl

p ðjHþj2 − jH−j2 − 2H0HtÞ
ð1þ δlÞ

P jHnj2 þ 3δljHtj2
; ð9Þ

where δl ¼ m2
l=2q

2 is the helicity-flip factor, and the index
n runs through (þ, −, 0). The average of these observables
over the q2 range is better suited for experimental mea-
surements with low statistics. To calculate the average one
has to multiply the numerator and denominator of e.g.,
Eq. (7) by the phase-space factor Cðq2Þ ¼ jp2jðq2 −
m2

lÞ2=q2 and integrate them separately. These observables
are sensitive to contributions of physics beyond the SM and
can be used to test LFU violations [51–57].

III. FORM FACTORS IN THE COVARIANT
CONFINED QUARK MODEL

In this study, the semileptonic form factors are calculated
in the framework of the CCQM [42,43]. The CCQM is an
effective quantum field approach to the calculation of
hadronic transitions. The model is built on the assumption
that hadrons interact via constituent quark exchange only.
This is realized by adopting a relativistic invariant
Lagrangian that describes the coupling of a hadron to its
constituent quarks. This approach can be used to treat not
only mesons [58–62], but also baryons [63–65], tetraquarks
[66–68], and other multiquark states [69] in a consistent
way. For a detailed description of the model and the
calculation techniques we refer the reader to the references
mentioned above. We list below only several key features
of the CCQM for completeness.
For the simplest hadronic system, i.e., a meson M, the

interaction Lagrangian is given by

Lint ¼ gMMðxÞ
Z

dx1dx2FMðx; x1; x2Þ

× q̄2ðx2ÞΓMq1ðx1Þ þ H:c:; ð10Þ
where gM is the quark-meson coupling and ΓM is the Dirac
matrix. For a pseudoscalar (vector) meson ΓM ¼ γ5
(ΓM ¼ γμ). The vertex function FMðx; x1; x2Þ effectively
describes the quark distribution in the meson and is given by

FMðx; x1; x2Þ ¼ δ

�
x −

X2
i¼1

wixi

�
·ΦMððx1 − x2Þ2Þ; ð11Þ

where wqi ¼ mqi=ðmq1 þmq2Þ such that w1 þ w2 ¼ 1. The
function ΦM depends on the effective size of the meson. In
order to avoid ultraviolet divergences in the quark loop
integrals, it is required that the Fourier transform of ΦM has
an appropriate falloff behavior in the Euclidean region. Since
the final results are not sensitive to the specific form of ΦM,
for simplicity, we choose a Gaussian form as follows:
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Φ̃Mð−p2Þ ¼
Z

dxeipxΦMðx2Þ ¼ ep
2=Λ2

M ; ð12Þ

where the parameter ΛM characterizes the finite size of
the meson.
The coupling strength gM is determined by the compos-

iteness condition ZM ¼ 0 [70], where ZM is the wave
function renormalization constant of the meson. This
condition ensures the absence of any bare quark state in
the physical mesonic state and, therefore, helps avoid
double counting and provides an effective description of
a bound state.
In order to calculate the form factors, one first writes

down the matrix element of the hadronic transition. In the
CCQM, the hadronic matrix element is described by the
one-loop Feynman diagram depicted in Fig. 1 and is
constructed from the convolution of quark propagators
and vertex functions as follows:

hPðp2Þjq̄OμcjDðsÞðp1Þi ¼ NcgDðsÞgP

Z
d4k

ð2πÞ4i Φ̃DðsÞ ð−ðkþ w13p1Þ2ÞΦ̃Pð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞγ5S2ðkþ p2Þ�; ð13Þ

hVðp2; ϵ2Þjq̄OμcjDðsÞðp1Þi ¼ NcgDðsÞgV

Z
d4k

ð2πÞ4i Φ̃DðsÞ ð−ðkþ w13p1Þ2ÞΦ̃Vð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞ=ϵ†2S2ðkþ p2Þ�; ð14Þ

where Nc ¼ 3 is the number of colors, wij ¼
mqj=ðmqi þmqjÞ, and S1;2 are quark propagators, for which
we use the Fock-Schwinger representation

SiðkÞ ¼ ðmqi þ =kÞ
Z

∞

0

dαi exp½−αiðm2
qi − k2Þ�: ð15Þ

It should be noted that all loop integrations are carried out
in Euclidean space.
Using various techniques described in our previous

papers, a form factor F can be finally written in the form
of a threefold integral

F ¼ NcgDðsÞgðP;VÞ

Z
1=λ2

0

dtt
Z

1

0

dα1

×
Z

1

0

dα2δð1 − α1 − α2Þfðtα1; tα2Þ; ð16Þ

where fðtα1; tα2Þ is the resulting integrand corresponding
to the form factor F, and λ is the so-called infrared cutoff
parameter, which is introduced to avoid the appearance of
the branching point corresponding to the creation of free
quarks and taken to be universal for all physical processes.
The model parameters, namely, the meson size param-

eters, the constituent quark masses, and the infrared cutoff
parameter are determined by fitting the radiative and
leptonic decay constants to experimental data or LQCD
calculations. The model parameters required for the cal-
culation in this paper are listed in Tables I and II. Other
parameters such as the mass and lifetime of mesons and
leptons, the CKM matrix elements, and physical constants
are taken from the recent report of the PDG [7]. In
particular, we adopt the following values for the CKM
matrix elements: jVcdj ¼ 0.218 and jVcsj ¼ 0.997.
Once the model parameters are fixed, the form factors are

obtained by calculating the threefold integral in Eq. (16).

FIG. 1. Quark model diagram for the DðsÞ-meson semileptonic
decay.

TABLE I. Meson size parameters in GeV.

ΛD ΛDs
ΛK ΛK� Λϕ Λρ Λω Λqq̄

η Λss̄
η Λqq̄

η0 Λss̄
η0

1.600 1.750 1.014 0.805 0.880 0.610 0.488 0.881 1.973 0.257 2.797
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This is done by using MATHEMATICA as well as FORTRAN

code. In the CCQM, the form factors are calculable in
the entire range of momentum transfer. The calculated
form factors are very well represented by the double-pole
parametrization

Fðq2Þ ¼ Fð0Þ
1 − aŝþ bŝ2

; ŝ ¼ q2

m2
DðsÞ

: ð17Þ

Our results for the parameters Fð0Þ, a, and b appearing in
the parametrization Eq. (17) are given in Table III.
It is worth noting here that in the calculation of the

DðsÞ → ηð0Þ form factors one has to take into account the
mixing of the light and the s-quark components. By
assuming mu ¼ md ≡mq, the quark content can be written
as

�
η

η0

�
¼ −

�
sin δ cos δ

− cos δ sin δ

��
qq̄

ss̄

�
;

qq̄≡ uūþ dd̄ffiffiffi
2

p : ð18Þ

The angle δ is defined by δ ¼ θP − θI, where θI ¼
arctanð1= ffiffiffi

2
p Þ is the ideal mixing angle. We adopt the

value θP ¼ −15.4° from Ref. [71].

IV. RESULTS AND DISCUSSION

A. Form factors

In this subsection, we compare our form factors with
those from other theoretical approaches and from exper-
imental measurements. For convenience, we relate all form
factors from different studies to the BSW form factors, as
mentioned in Sec. II. In the SM, the hadronic matrix
element between two mesons is parametrized by two form
factors (Fþ and F0) for the P → P0 transition and four form
factors (A0;1;2 and V) for the P → V one. However, in
semileptonic decays of D and Ds mesons, the form factors
F0 and A0 are less interesting because their contributions to
the decay rate vanish in the zero lepton-mass limit (the tau
mode is kinematically forbidden). Therefore, we focus
more on the form factors Fþ, A1, A2, and V. We note that
the uncertainties of our form factors mainly come from the
errors of the model parameters. These parameters are
determined from a least-squares fit to available experimen-
tal data and some lattice calculations. We have observed
that the errors of the fitted parameters are within 10%. We
then calculated the propagation of these errors on the form
factors and found the uncertainties on the form factors
to be of order 20% at small q2 and 30% at high q2. At
maximum recoil q2 ¼ 0, the form factor uncertainties are of
order 15%.
We start with the DðsÞ → P transition form factor

Fþðq2Þ. In Table IV, we compare the maximum-recoil
values Fþðq2 ¼ 0Þ with other theoretical approaches. It is
observed that our results are in good agreement with other
quark models, especially with the CQM [28] and the
LFQM [32]. Besides, quark model predictions for Fþð0Þ
of the DðsÞ → ηð0Þ channels are in general higher than those
obtained by LCSR [22,24] and LQCD [14]. This suggests
that more studies of these form factors are needed. For
example, a better LQCD calculation of Fþð0Þ is expected.
Note that the authors of Ref. [14] considered their LQCD
calculation as a pilot study rather than a conclusive one.
Regarding the DðsÞ → V transition form factors A1, A2,

and V, it is more interesting to compare their ratios at
maximum recoil. The ratios are defined as follows:

r2 ¼
A2ðq2 ¼ 0Þ
A1ðq2 ¼ 0Þ ; rV ¼ Vðq2 ¼ 0Þ

A1ðq2 ¼ 0Þ : ð19Þ

In Table V, we compare these ratios with the world average
given by the PDG [7] and with other theoretical results
obtained in CQM [28], LFQM [32], HMχT [35], and
LQCD [13]. Our results for the form factor ratios r2 and rV
agree well with the PDG data within uncertainty except for
the ratio rVðDþ

s → ϕÞ, for which our prediction is much
lower than that from PDG. Note that our prediction
rVðDþ

s → ϕÞ ¼ 1.34 is close to the value 1.42 from the
LFQM [32]. It is also seen that for most cases, the HMχT
predictions [35] for the ratios at q2 ¼ 0 are largely different

TABLE II. Quark masses and infrared cutoff parameter in GeV.

mu=d ms mc mb λ

0.241 0.428 1.672 5.05 0.181

TABLE III. Parameters of the double-pole parametrization
Eq. (17) for the form factors.

F Fð0Þ a b F Fð0Þ a b

AD→ρ
þ 0.57 0.96 0.15 AD→ρ

− −0.74 1.11 0.22
AD→ρ
0 1.47 0.47 −0.10 VD→ρ 0.76 1.13 0.23

AD→ωþ 0.55 1.01 0.17 AD→ω
− −0.69 1.17 0.26

AD→ω
0 1.41 0.53 −0.10 VD→ω 0.72 1.19 0.27

ADs→ϕ
þ 0.67 1.06 0.17 ADs→ϕ

− −0.95 1.20 0.26
ADs→ϕ
0 2.13 0.59 −0.12 VDs→ϕ 0.91 1.20 0.25

ADs→K�
þ 0.57 1.13 0.21 ADs→K�

− −0.82 1.32 0.34
ADs→K�
0 1.53 0.61 −0.11 VDs→K�

0.80 1.32 0.33
FD→η
þ 0.67 0.93 0.12 FD→η

− −0.37 1.02 0.18
FD→η0
þ 0.76 1.23 0.23 FD→η0

− −0.064 2.29 1.71
FD→D0

þ 0.91 5.88 4.40 FD→D0

− −0.026 6.32 8.37
FDs→η
þ 0.78 0.69 0.002 FDs→η

− −0.42 0.74 0.008
FDs→η0
þ 0.73 0.88 0.018 FDs→η0

− −0.28 0.92 0.009
FDs→K
þ 0.60 1.05 0.18 FDs→K

− −0.38 1.14 0.24
FDs→D0

þ 0.92 5.08 2.25 FDs→D0

− −0.34 6.79 8.91
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from the PDG values, demonstrating the fact that this
model is more suitable for the high q2 region.
In order to have a better picture of the form factors in the

whole q2 range 0 ≤ q2 ≤ q2max ¼ ðmDðsÞ −mP=VÞ2 we plot
in Figs. 2–5 their q2 dependence from various studies. It is
very interesting to note that, in all cases, our form factors
are close to those obtained in the covariant LFQM [32], and
this is not for the first time such a good agreement is
observed. In a previous study of the semileptonic decays
Bc → J=ψðηcÞlν [72] it was seen that the corresponding
form factors agree very well between our model and the

covariant LFQM [73]. This suggests that a comparison of
the two models in more detail may be fruitful. It is also
worth noting that the HMχT [35] prediction for the form
factor A0ðq2Þ is systematically much higher than that from
other theoretical calculations.
Very recently, the ETM collaboration has provided the

lattice determination [75] for the full set of the form factors
characterizing the semileptonic D → πðKÞlν and rare
D → πðKÞll decays within and beyond the SM, when
an additional tensor coupling is considered. As mentioned
before, the decays D → πðKÞlν have been studied in our
model already [46]. However, we compute the D →
πðKÞlν form factors including the tensor one in this paper,
in order to compare with the recent ETM results. This
demonstrates the fidelity of the CCQM predictions for the
hadronic form factors and helps us better estimate the
theoretical uncertainties of our model. Moreover, the tensor
and scalar form factors are essential for the study of
possible new physics in these decays [for more detail we
refer to a similar calculation of the full set of B → Dð�Þ and
B → πðρÞ form factors in our model [76,77]].
The new tensor form factor is defined by

hPðp2Þjq̄σμνð1 − γ5ÞcjDðp1Þi

¼ iFTðq2Þ
M1 þM2

ðPμqν − Pνqμ þ iεμνPqÞ: ð20Þ

Note that we obtained F0ðq2Þ by using the form factors
Fþðq2Þ and F−ðq2Þ defined in Eq. (2), with the help of the
relation

TABLE IV. Comparison of Fþð0Þ for DðsÞ → P transitions.

D → η D → η0 Ds → η Ds → η0 Ds → K0

Present 0.67� 0.10 0.76� 0.11 0.78� 0.12 0.73� 0.11 0.60� 0.09
CQM [28] � � � � � � 0.78 0.78 0.72
LFQM [32] 0.71 � � � 0.76 � � � 0.66
LQCDMπ¼470 MeV[14] � � � � � � 0.564(11) 0.437(18) � � �
LQCDMπ¼370 MeV[14] � � � � � � 0.542(13) 0.404(25) � � �
LCSR [22] 0.552� 0.051 0.458� 0.105 0.432� 0.033 0.520� 0.080 � � �
LCSR [24] 0.429þ0.165

−0.141 0.292þ0.113
−0.104 0.495þ0.030

−0.029 0.558þ0.047
−0.045 � � �

TABLE V. Ratios of the DðsÞ → V transition form factors at maximum recoil.

Channel Ratio Present PDG [7] LQCD [13] CQM [28] LFQM [32] HMχT [35]

D → ρ r2 0.93� 0.19 0.83� 0.12 � � � 0.83 0.78 0.51
rV 1.26� 0.25 1.48� 0.16 � � � 1.53 1.47 1.72

Dþ → ω r2 0.95� 0.19 1.06� 0.16 � � � � � � 0.84 0.51
rV 1.24� 0.25 1.24� 0.11 � � � � � � 1.47 1.72

Dþ
s → ϕ r2 0.99� 0.20 0.84� 0.11 0.74(12) 0.73 0.86 0.52

rV 1.34� 0.27 1.80� 0.08 1.72(21) 1.72 1.42 1.80
Dþ

s → K�0 r2 0.99� 0.20 � � � � � � 0.74 0.82 0.55
rV 1.40� 0.28 � � � � � � 1.82 1.55 1.93

FIG. 2. Form factor Fþðq2Þ forDþ
s → K0 in our model, LFQM

[32], LCSR [20], and CQM [28].
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F0ðq2Þ ¼ Fþðq2Þ þ
q2

M2
1 −M2

2

F−ðq2Þ: ð21Þ

Meanwhile, the ETM collaboration directly calculated the
scalar matrix element hPðp2Þjq̄cjDðp1Þi and then deter-
mined F0ðq2Þ using the equation of motion. In this way, the
final result becomes sensitive to the quark mass difference.
In Fig. 6 we compare the form factors F0ðq2Þ, Fþðq2Þ,

and FTðq2Þ of the D → πðKÞlν transitions with those
obtained by the ETM collaboration. It is seen that our
F0ðq2Þ agrees well with the ETM only in the low q2 region.
However, our results for Fþðq2Þ are very close to those of
the ETM. Note that the determination of Fþðq2Þ by the
ETM is dependent on F0ðq2Þ. It is interesting that the
tensor form factors between the two studies are in perfect
agreement. Even though this form factor does not appear
within the SM, this agreement has an important meaning
because, in both approaches, the tensor form factor is
determined directly from the corresponding matrix element
without any additional assumptions. In Table VI, we
present the values of the form factors and their ratios at

maximum recoil. One sees that our results agree with the
ETM calculation within uncertainty.

B. Branching fractions and other observables

In Tables VII and VIII, we summarize our predictions for
the semileptonic branching fractions of the D and Ds
mesons, respectively. For comparison, we also list results of
other theoretical calculations and the most recent exper-
imental data given by the CLEO and BESIII collaborations.
Note that the uncertainties of our predictions for the
branching fractions and other polarization observables
are of order 50%, taking into account only the main source
of uncertainties related to the form factors.
In general, our results for the branching fractions are

consistent with experimental data as well as with other
theoretical calculations. It is worth mentioning that,
for such a large set of decays considered in this study,
our branching fractions agree very well with all available
experimental data except for one channel, the
Dþ

s → K0lþνl. In this case, our prediction is nearly twice

FIG. 3. Form factor Fþðq2Þ for Dþ
ðsÞ → ηð0Þ in our model, LCSR [20,22,24], and CQM [28].
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FIG. 4. Form factors for Dþ
s → ϕ (left) and Dþ

s → K�ð892Þ0 (right) in our model, LFQM [32], HMχT [35], and CQM [28].
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FIG. 5. Form factors for D → ρ (left) and Dþ → ω (right) in our model, LFQM [32], HMχT [35], CQM [28], and CLEO data [74].
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as small as the CLEO central value [83] and about 30%
smaller than the LFQM prediction [33].
We also give prediction for the ratio ΓðD0 →

ρ−eþνeÞ=2ΓðDþ → ρ0eþνeÞ which should be equal to
unity in the SM, assuming isospin invariance. Our

calculation yields 0.98, in agreement with CLEO’s result
of 1.03� 0.09þ0.08

−0.02 [74]. Besides, our ratio of branching
fractions BðDþ

s → η0eþνeÞ=BðDþ
s → ηeþνeÞ ¼ 0.37 coin-

cides with the result 0.36� 0.14 obtained by CLEO [85]
and the more recent value 0.40� 0.14 by BESIII [84].

FIG. 6. D → πðKÞlν form factors obtained in our model (solid lines) and in lattice calculation (dots with error bars) by the ETM
collaboration [75].

TABLE VI. D → πðKÞlν form factors and their ratios at q2 ¼ 0.

fDπþ ð0Þ fDKþ ð0Þ fDπ
T ð0Þ fDK

T ð0Þ fDπ
T ð0Þ=fDπþ ð0Þ fDK

T ð0Þ=fDKþ ð0Þ
Present 0.63 0.78 0.53 0.70 0.84 0.90
ETM [75] 0.612(35) 0.765(31) 0.506(79) 0.687(54) 0.827(114) 0.898(50)
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TABLE VII. Branching fractions of DþðD0Þ-meson semileptonic decays.

Channel Unit Present Other Reference Data Reference

D0 → ρ−eþνe 10−3 1.62 1.97 χUA [38] 1.445� 0.058� 0.039 BESIII [78]
1.749þ0.421

−0.297 � 0.006 LCSR [25] 1.77� 0.12� 0.10 CLEO [74]
2.0 HMχT [35]

D0 → ρ−μþνμ 10−3 1.55 1.84 χUA [38]

Dþ → ρ0eþνe 10−3 2.09 2.54 χUA [38] 1.860� 0.070� 0.061 BESIII [78]
2.217þ0.534

−0.376 � 0.015 LCSR [25] 2.17� 0.12þ0.12
−0.22 CLEO [74]

2.5 HMχT [35]
Dþ → ρ0μþνμ 10−3 2.01 2.37 χUA [38] 2.4� 0.4 PDG [7]

Dþ → ωeþνe 10−3 1.85 2.46 χUA [38] 1.63� 0.11� 0.08 BESIII [79]
2.5 HMχT [35] 1.82� 0.18� 0.07 CLEO [74]

2.1� 0.2 LFQM [33]
Dþ → ωμþνμ 10−3 1.78 2.29 χUA [38]

2.0� 0.2 LFQM [33]

Dþ → ηeþνe 10−4 9.37 12� 1 LFQM [33] 10.74� 0.81� 0.51 BESIII [80]
24.5� 5.26 LCSR [22] 11.4� 0.9� 0.4 CLEO [81]

14.24� 10.98 LCSR [24]
Dþ → ημþνμ 10−4 9.12 12� 1 LFQM [33]

Dþ → η0eþνe 10−4 2.00 1.8� 0.2 LFQM [33] 1.91� 0.51� 0.13 BESIII [80]
3.86� 1.77 LCSR [22] 2.16� 0.53� 0.07 CLEO [81]
1.52� 1.17 LCSR [24]

Dþ → η0μþνμ 10−4 1.90 1.7� 0.2 LFQM [33]

TABLE VIII. Branching fractions of Ds-meson semileptonic decays (in %).

Channel Present Other Reference Data Reference

Dþ
s → ϕeþνe 3.01 2.12 χUA [38] 2.26� 0.45� 0.09 BESIII [9]

3.1� 0.3 LFQM [33] 2.61� 0.03� 0.08� 0.15 BABAR [82]
2.4 HMχT [35] 2.14� 0.17� 0.08 CLEO [83]

Dþ
s → ϕμþνμ 2.85 1.94 χUA [38]

2.9� 0.3 LFQM [33] 1.94� 0.53� 0.09 BESIII [9]

Dþ
s → K0eþνe 0.20 0.27� 0.02 LFQM [33] 0.39� 0.08� 0.03 CLEO [83]

Dþ
s → K0μþνμ 0.20 0.26� 0.02 LFQM [33]

Dþ
s → K�0eþνe 0.18 0.202 χUA [38] 0.18� 0.04� 0.01 CLEO [83]

0.19� 0.02 LFQM [33]
0.22 HMχT [35]

Dþ
s → K�0μþνμ 0.17 0.189 χUA [38]

0.19� 0.02 LFQM [33]

Dþ
s → ηeþνe 2.24 2.26� 0.21 LFQM [33] 2.30� 0.31� 0.08 BESIII [84]

2.00� 0.32 LCSR [22] 2.28� 0.14� 0.19 CLEO [83]
2.40� 0.28 LCSR [24]

Dþ
s → ημþνμ 2.18 2.22� 0.20 LFQM [33] 2.42� 0.46� 0.11 BESIII [9]

Dþ
s → η0eþνe 0.83 0.89� 0.09 LFQM [33] 0.93� 0.30� 0.05 BESIII [84]

0.75� 0.23 LCSR [22] 0.68� 0.15� 0.06 CLEO [83]
0.79� 0.14 LCSR [24]

Dþ
s → η0μþνμ 0.79 0.85� 0.08 LFQM [33] 1.06� 0.54� 0.07 BESIII [9]
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Finally, we predict BðDþ → η0eþνeÞ=BðDþ → ηeþνeÞ ¼
0.21, which agrees very well with the values 0.19� 0.05
and 0.18� 0.05 we got from experimental data by CLEO
[81] and BESIII [80], respectively. It is worth mentioning
here that very recently, the BESIII collaboration has
reported their measurement of BðD0 → K−μþνμÞ [86] with
significantly improved precision. In their paper, they also
approved the prediction of our model for the ratio BðD0 →
K−μþνμÞ=BðD0 → K−eþνeÞ provided in Ref. [46].
In Table IX, we present our results for the semileptonic

decays Dþ
ðsÞ → D0eþνe, which are rare in the SM due to

phase-space suppression. These decays are of particular
interest since they are induced by the light quark decay,
while the heavy quark acts as the spectator. Besides, the
small phase space helps reduce the theoretical errors. The
first experimental constraint on the branching fraction
BðDþ → D0eþνeÞ was recently obtained by the BESIII
collaboration [87]. However, the experimental upper limit
is still far above the SM predictions. The branching
fractions obtained in our model are comparable with other
theoretical calculations using the flavor SU(3) symmetry in
the light quark sector [88,89].
Finally, in Table X we list our predictions for the

forward-backward asymmetry hAl
FBi, the longitudinal

polarization hPl
Li, and the transverse polarization hPl

Ti
of the charged lepton in the final state. It is seen that, for the
P → V transitions, the lepton-mass effect in hAl

FBi is small,
resulting in a difference of only 10%–15% between the
corresponding electron and muon modes. For the P → P0
transitions, hAμ

FBi are about 104 times larger than hAe
FBi.

This is readily seen from Eq. (7): for P → P0 transitions the

two helicity amplitudes H� vanish and the forward-back-
ward asymmetry is proportional to the lepton mass squared.
Regarding the longitudinal polarization, the difference
between hPμ

Li and hPe
Li is 10%–30%. One sees that the

lepton-mass effect in the transverse polarization is much
more significant than that in the longitudinal one. This is
true for both P → P0 and P → V transitions. Note that the
values of hAe

FBi and hPe
LðTÞi for the rare decays Dþ

ðsÞ →
D0eþνe are quite different in comparison with other P →
P0 transitions due to their extremely small kinematical
regions.

V. SUMMARY AND CONCLUSION

We have presented a systematic study of the D and Ds
semileptonic decays within the framework of the CCQM.
All the relevant form factors are calculated in the entire
range of momentum transfer squared. We have also
provided a detailed comparison of the form factors with
other theoretical predictions and, in some cases, with
available experimental data. In particular, we have observed
a good agreement with the form factors obtained in the
covariant LFQM, for all decays. It is worth noting that our
tensor form factors for the D → πðKÞlν decays are in
perfect agreement with the recent LQCD calculation by the
ETM collaboration [75].
We have given our predictions for the semileptonic

branching fractions and their ratios. In general, our results
are in good agreement with other theoretical approaches
and with recent experimental data obtained by BABAR,
CLEO, and BESIII. In all cases, our predictions for the

TABLE X. Forward-backward asymmetry and lepton polarization components.

hAe
FBi hAμ

FBi hPe
Li hPμ

Li hPe
Ti hPμ

Ti
D0 → ρ−lþνl 0.21 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ρ0lþνl 0.22 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ωlþνl 0.21 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ηlþνl −6.4 × 10−6 −0.06 −1.00 −0.83 2.8 × 10−3 0.44
Dþ → η0lþνl −13.0 × 10−6 −0.10 −1.00 −0.70 4.2 × 10−3 0.59
Dþ → D0lþνl −0.10 � � � −0.72 � � � 0.56 � � �
Dþ

s → ϕlþνl 0.18 0.15 −1.00 −0.91 1.5 × 10−3 0.23
Dþ

s → K�0lþνl 0.22 0.20 −1.00 −0.92 1.4 × 10−3 0.22
Dþ

s → K0lþνl −5.0 × 10−6 −0.05 −1.00 −0.86 2.4 × 10−3 0.39
Dþ

s → ηlþνl −6.0 × 10−6 −0.06 −1.00 −0.84 2.7 × 10−3 0.42
Dþ

s → η0lþνl −11.2 × 10−6 −0.09 −1.00 −0.75 3.8 × 10−3 0.54
Dþ

s → D0lþνl −7.37 × 10−4 � � � −1.00 � � � 0.038 � � �

TABLE IX. Semileptonic branching fractions for Dþ
ðsÞ → D0lþνl.

Channel Present Other Reference Data Reference

Dþ → D0eþνe 2.23 × 10−13 2.78 × 10−13 [88] < 1.0 × 10−4 BESIII [87]
2.71 × 10−13 [89]

Dþ
s → D0eþνe 2.52 × 10−8 ð2.97� 0.03Þ × 10−8 [88] � � � � � �

3.34 × 10−8 [89]
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branching fractions agree with experimental data within
10%, except for the Dþ

s → K0lþνl channel. Our predic-
tions for the ratios of branching fractions are in full
agreement with experimental data. To conclude, we have
provided the first ever theoretical predictions for the
forward-backward asymmetries and lepton longitudinal
and transverse polarizations, which are important for future
experiments.

ACKNOWLEDGMENTS

J. N. P. acknowledges financial support from University
Grants Commission of India under Major Research Project
F.No. 42-775/2013(SR). P. S. acknowledges support from
Istituto Nazionale di Fisica Nucleare, I. S. QFT_HEP. M.
A. I., J. G. K., and C. T. T. thank Heisenberg-Landau Grant
for providing support for their collaboration. M. A. I.
acknowledges financial support of PRISMA Cluster of
Excellence at University of Mainz. N. R. S. thanks
Bogoliubov Laboratory of Theoretical Physics, Joint
Institute for Nuclear Research for warm hospitality during
Helmholtz-DIAS International Summer School “Quantum

Field Theory at the Limits: from Strong Field to Heavy
Quarks” where this work was initiated. C. T. T. acknowl-
edges support from Duy Tan University during the begin-
ning stage of this work. M. A. I. and C. T. T. appreciate
warm hospitality of Mainz Institute for Theoretical Physics
at University of Mainz, where part of this work was done.

Note added.—Recently, we became aware of the paper [90]
where the BESIII collaboration reported their new mea-
surements of the branching fractions for the decays
Dþ

s → K0eþνe and Dþ
s → K�0eþνe with improved preci-

sion. They also obtained for the first time the values of the
form factors at maximum recoil. Our predictions for the
branching fraction BðDþ

s → K�0eþνeÞ as well as the form
factor parameters fDsKþ ð0Þ, rDsK�

V ð0Þ, and rDsK�
2 ð0Þ agree

with the new BESIII results. Regarding their result
BðDþ

s → K0eþνeÞ ¼ ð3.25� 0.41Þ × 10−3, the central
value is closer to our prediction, in comparison with the
CLEO result [83]. However, the BESIII result is still at 1σ
larger than ours.
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Introduction 
 

We employ non-relativistic treatment with the help of 
Schrödinger equation in order to study the Bc 
spectroscopy. The Schrödinger equation for the 
bound state of Bc system is solved using numerical 
integration together with convexity arguments and 
nodal theorem for wave function [1]. The pure-
leptonic decays of heavy mesons are very interesting 
from theoretical as well as experimental point of 
view [2,3]. In the present paper we have studied the 
decay constants and the leptonic decay width using 
the non-relativistic treatment. 

 

Methodology 

 

We solve the Schrödinger Equation numerically with 
the quark-antiquark potential of the form [4-6], 
 

ܸሺݎሻ ൌ െ
௞ఈೞ
௥
൅  జ +VSD                                       (1)ݎܣ

 
Where A is the potential parameter,	߭ is a general 
potential index corresponding to the confining part of 
the potential. For present computation of masses and 
decay properties, we have taken as ߭ ൌ  is the	௦ߙ		.1
strong running coupling coefficient which can be 
determined from  
 

αୱሺMଶሻ ൌ ସ஠

ቀଵଵିమ
య
୬౜ቁ୪୬

౉మశ౉ౘ
మ

∧మ

                               (2) 

 

Where the scale is taken as M=2݉ொ݉௤ത ሺ݉ொ ൅݉௤തሻ⁄ , 

Mb=0.95 GeV, ∧=413 MeV. We fit the values of k 

and A for ground state of bbത using experimental value 
of b quark mass and then determine the c quark mass 
by fitting ccത ground state mass [7]. We choose the 
scale for the Bc system as ߙ௦ = 0.255. The obtained 
values for k = 1.173, A = 0.17, mb = 4.66 GeV and mc 

= 1.275 GeV are employed for further computation. 
VSD is the spin dependent part of the potential [8]. 
 

VSD = ୗܸୗሺ୰ሻ ቂܵሺܵ ൅ 1ሻ െ
ଷ

ଶ
	ቃ ൅ ௅ܸௌሺݎሻ൫ܮሬԦ. Ԧܵ൯ ൅

														்ܸ ሺݎሻ	ቂܵሺܵ ൅ 1ሻ െ
ଷ൫ௌԦ.௥Ԧ൯	൫ௌԦ.௥Ԧ൯	

௥మ
ቃ                    (3) 

 

The spin-orbit term containing ௅ܸௌሺݎሻ and the tensor 
term VT(r) describe the fine structure of the meson 
state, while the spin-spin term containing VSS(r) 

proportional to 2(ܵ௤ሬሬሬሬԦ. ܵ௤തሬሬሬሬԦ)=S(S+1)–3/2. The coefficient 

of these spin-dependent terms of Eq.3 can be written 
in terms of the vector and scalar parts of the static 
potential as [8] 
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The Bc mass spectroscopy is computed with these 
parameters and the result is given in Table 1. 
 
TABLE I: Masses of Bc Meson (GeV) 

State 
n 2S+1LJ 

Present [9] [10] [11] 

1 1S0 6.293 6.270 6.349 6.264 
1 3S1 6.317 6.332 6.373 6.337 
2 1S0 6.777 6.835 6.821 6.856 
2 3S1 6.811 6.881 6.855 6.899 
3 1S0 7.152 7.193 7.125 7.244 
3 3S1 7.187 7.235 7.210 7.280 

 
 

Decay Constants 

 

The pseudoscalar and vector decay constants are 
computed using the Van Royen Weisskopf formula 
for color are zero separation between the constituent 
quarks in ground state [12]  

fp = ට
ଷ

గெ೛
		ܴଵௌሺ0ሻ ; fv = ට

ଷ

గெೡ
		ܴଵௌሺ0ሻ                (5) 

Mp and Mv are the masses of the pseudoscalar and 
vector meson respectively. The values of fp and fV are 
given in the Table II with the charge radii of the S-
wave Bc mesons. 
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TABLE II: pseudoscalar and vector decay constants 

State 
Decay constant (MeV) 

Present [14] [16] [17] [18] 
1 1S0 412 350 360 456 607 
1 3S1 411 -- -- -- 604 

 
Radiative Leptonic Decay Width 

 

In this section, we compute the radiative decay width 
using the relation [13] 
 

ܿܤሺ߁ → തതതሻ߭ߛ݈ ൌ
ிܩ
ଶ| ௖ܸ௕|ଶ

ଶߨ8
	 ஻݂௖

ଶ ݉஻௖	
ଷ ݉௟

ଶ

݉஻௖
ଶ 	ሺ	1 െ
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ଶ

݉஻௖
ଶ ሻ

	ଶ 

 

As the mass of the lepton is very low compared to the 
Bc meson, the decays of pseudoscalar mesons into 
light lepton pairs are helicity suppressed, i.e. their 
decay widths are suppressed ݉௟

ଶ ݉஻௖
ଶ⁄ , therefore the 

above formula becomes 
 

ܿܤሺ߁ → ሻݒ݈̅ߛ ൌ
ఈீಷ

మ|௏೎್|మ

ଶହଽଶగమ
	 ஻݂௖

ଶ ݉஻௖
ଷ ሾݔ௕ ൅                         ௖ሿ   (6)ݔ

Where ߙ ൌ 1/137 is the electromagnetic coupling 
constant, GF Fermi coupling constant = 1.66×10-5, 
| ௖ܸ௕|=0.044 [13] is the CKM matrix element. ݔ௕ and 
 :௖ is given byݔ
 

௕ݔ ൌ 	 ቀ3 െ
௠ಳ೎

௠್
ቁ
ଶ
  and    ݔ௖ ൌ 	 ቀ3 െ 2	

௠ಳ೎

௠್
ቁ
ଶ
           (7) 

The computed radiative leptonic decay width for      
S-wave Bc mesons is 1.59 × 10–17 GeV which is 
comparable in order with 6.44 × 10–17 GeV as 
obtained by C. Cheng et al. [16].  

Summary 

The results from Table (I) suggests that our results 
for the Bc meson S-wave masses are in good 
agreement with that by D. Ebert et al [9] with small 
deviation from other references. It is also evident 
from Table II that the decay constants are in tune 
with other theoretical models too. As the 
experimental results for the same are not available, 
we compare the outcome of the present work with 
existing phenomenological models. It is found that 
the present non-relativistic computation can provide 
good framework to study Bc meson as both the 
quarks can be treated non-relativistically. Further 
study on the decay properties using fine-tuned 
parameters is underway. 
 
 
 

Acknowledgement 

 

This work is supported by the University Grants 
Commission of India under Major Research Project 
F.No.42-775/2013(SR) 
  
Reference 

 

[1]  Wolfgung LUCHA, Franz F. SCHOBERL, 
arXiv: hep-ph/9811453v2 9 Jan 1999, HEPHY-
PUB 703/98 UWThPh-1998-58 October 1998 

[2]  C.-H. Chang and Y.-Q. Chen, Phys. Rev. D49 
(1994) 3399. 

[3]  D.-S. Du, H.-Y. Jin and Y.-D. Yang, preprint 
BIHEP-Th/97-007, hep-ph/9705261 

[4] A. K. Rai, R. H. Parmar, and P. C.           
Vinodkumar, J. Phys. G: Nucl. Part. Phys. 28, 
2275 (2002),  

[5]   A. K. Rai, J. N. Pandya, and P. C. Vinodkumar, 
J. Phys. G: Nucl. Part. Phys. 31, 1453 (2005), 

[6]   A. K. Rai, B. Patel, and P. C. Vinodkumar, Phys. 
Rev. C 78, 055202 (2008). 

[7]   Particle Data Group, J. Beringer et al. (PR D86, 
010001 (2012). 

[8]   Voloshin M B, Prog. Part. Nucl. Phys. 61, 455 
(2008);arXiv:hep-ph/0711.4556v3. 

[9]  D Ebert, R N Faustov and V O Galkin, Phys. 
Rev. D67, 014027 (2003) 

[10] A.K.Rai, P.C.Vinodkumar Pramana J. Phys., 
Vol. 66, No. 5, May 2006 

[11] V. O. Galkin, A. Yu. Mishurov and R. N. 
Faustov, Yad. Fiz. 55, 2175 (1992) [Sov. J. 
Nucl. Phys. 55, 1207 (1992)]. 

[12] E J Eichten and C Quigg, Phys. Rev. D49, 5845 
(1994) 

[13] Chao-Hsi Chang, Jian-Ping Cheng and Cai-Dian 
L¨u arXiv:hep-ph/9712325v2 21 Jan 1998, 
DESY 97-246 AS-ITP-97-027 December, 1997 

[14] T.M. Aliev, M.Savci, Phys. Letts. B434 (1998) 
358, hep-ph/9804407. 

[15] C.-H. Chang, J-P Cheng and C-D L¨u, Phys. 
Letts. B425 (1998) 166, hep-ph/9712325. 

[16] Chao-hsi Chang, Cai-Dian Lu, Guo-Li Wang, 
Hong-Shi Zong, Phys. Rev. D 60 (1999) 114013 

[17]  S S Gershtein, V V Kiselev, A K Likhoded and A V 
Tkabladze, Phys. Rev. D51 (1995) 3613 

[18]  J N Pandya and P C Vinodkumar, Pramana J. Phys. 
57(4) (2001) 821 

 

Proceedings of the DAE Symp. on Nucl. Phys. 58 (2013) 675

Available online at www.sympnp.org/proceedings



Semi-leptonic and pionic decays of Doubly Strange
baryons

N R Soni
∗

and J N Pandya
Applied Physics Department, Faculty of Technology and Engineering,

The M S University of Baroda, Vadodara, Gujarat, INDIA.

Introduction

The doubly strange b-baryon Ω
−

b was re-
ported by D0 [1] and CDF [2] Collabora-

tion through the channel Ω
−

b → J/ψΩ− at√
1.96 TeV. Doubly strange c-baryon Ω

0

c was
observed by E687 [3] significantly in the chan-

nel of Ω0

c → Σ
+
K

−

K
−π+ and later was con-

firmed by other groups [4]. We employ the ex-
tended harmonic confinement model in order
to understand semi leptonic and pionic decay
modes of these states to compute their masses
and decay widths.

Methodology

The mass of baryon in the N energy eigen-
state and J spin state can be computed as[5]

MJ
N =

3
∑

i=1

ǫN(qi)conf +
3

∑

i<j=1

ǫ(qi, qj)coul

+

3
∑

i<j=1

ǫJN(qi, qj)S.D. (1)

where the first term is the confinement part,
second term is due to the Coulomb interaction
between the constituent quarks and the third
term corresponds to the spin-dependent inter-
actions.
The confinement energy of the baryonic sys-
tem is given by [6],

ǫ(q)conf =

√

√

√

√

√

(2N + 3)ΩN(q) +M2
q − 3Mq

3
∑

i=1

Mqi

∗
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where the size parameter, ΩN (q) of RHM ra-
dial wave function is energy dependent and is
given by

ΩN (q) = A
√

EN +Mq (2)

Mq is the constituent quark mass. The
Coulomb of eq. 1 can be computed as

ǫ(q1, q2)coul =

〈

NS

∣

∣

∣

∣

∣

kαeff
s

r

∣

∣

∣

∣

∣

NS

〉

(3)

where αeff
s is the strong running coupling co-

efficient. The spin-spin interaction is com-
puted using the spin hyperfine interaction of
the residual confined one gluon exchange po-
tential [5–9]

Vσi·σj
=

αs(µ)N
2
i N

2
j

4

λiλj
[Ei +mi][Ej +mj ]

×
[

4πδ3(r) − C4r2D1(r)
]

(

−2

3
σiσj

)

where Ni/j is the normalization constant, C is
the confinement strength of the gluon, r is the
inter-quark distance, λiλj is the spin factor,
D1(r) is the confined gluon propagator and

can be fitted to ∼ k1

r exp(−C
2r2/2) [7, 8].

ǫJN(qi, qj)S.D. = 〈NS|VSD|NS〉 (4)

Here we have used mb = 4829 MeV, mc =
1479 MeV and ms = 410 MeV. The poten-
tial parameters k, k1 and C are fine tuned
to obtain the experimental mass of Ω−. The
parameters used in this computation are k =
0.006, k1 = 21.36 and C = 100 MeV.

Decay of Doubly strange baryons

In this section we compute the decay of Ω0

c

and Ω
−

B baryon. The general definition for the
semi-electronic decay width is given by [10]
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dΓ

dw
=
G2

fM
5

192π3
|VCKM |2

√

w2 − 1P (w) (5)

where P (w) contains the hadronic and lep-
tonic tensor. After evaluating the integration
over w = 1 in the hadronic form factors one
will get the following relation for the decay
width for electronic (1/2)+ → (1/2)+ transi-
tion [10]

Γ
Ω

0/−

c/b
→Ξ

+/0

c/b
e
−
ν
=
G2

f |VCKM |2

15π3
(M −m)5 (6)

where Gf is the Fermi coupling constant. The
pionic decay width using the transition ampli-
tude is computed using [10]

Γ
Ω

−

b →Ξ
0

bπ
− =

(∆M)
3
2

192πM7
|A((ss)1 → (us)0π

−)|2

here ∆M = [M2−(m−mπ)
2][M2−(m+mπ)

2]
and the weak di-quark decay amplitude can be
approximated with |aweak| ∼ (1...2)× 10−6 as
[10]

A((ss)1 → (us)0π
−) ∼ 2MVusV

∗

udaweak

Where Vus and Vud are the CKM matrices.
We compute the semi-leptonic and pionic de-
cay widths of Ω0

c and Ω
−

b without any addi-
tional parameters and the results are given in
the table II.

Conclusion

The ground state masses of Ω0

c and Ω
−

b are
computed using the methodology explained in
the first section and compared with the ex-
perimental data. We also compute the semi-
leptonic and pionic decay widths of Ω

0

c and

Ω
−

b . It is observed from table II that our re-
sults are well within the range as proposed by
[10].
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TABLE I: ground state masses in MeV

State quark content present [11]

Ω
0

c
css 2694.63 2695.2 ± 1.7

Ω
−

b
bss 6049.58 6048.8 ± 3.2

TABLE II: baryonic decay widths in GeV

mode of decay present [10]

Ω
0

c
→ Ξ

+

c e
−

ν 9.05 × 10
−18

2.6× 10
−18

Ω
0

c
→ Ξ

′+

c
e
−

ν 3.65 × 10
−19

3.63× 10
−19

Ω
0

b → Ξ
0

be
−

ν 16.17 × 10
−18

4.05× 10
−18

Ω
−

b
→ Ξ

0

b
π
−

0.93 × 10
−18

(0.7...2.6) × 10
−18

Ω
−

b
→ Ξ

−

b
π
0

0.91 × 10
−18

(0.3...1.3) × 10
−18
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Introduction

Doubly heavy baryons are composed of two
heavy quarks (b and/or c) and one light quark
(u, d or s). There have been many theo-
retical attempts to compute masses of these
states [1]. Experimental observation of such
heavy resonances are expected from the facil-
ities such as LHCb and Bell II. We employ
the extended relativistic harmonic confine-
ment model (ERHM) to compute the masses
of doubly heavy baryons. The magnetic mo-
ments of heavy flavour baryons are also com-
puted using the spin-flavour wave functions
of the constituent quarks and their effective
masses within the baryon.

Theoretical framework

In the relativistic harmonic confinement
model (RHM) with scalar plus vector po-
tential for the quark confinement, coloured
quarks in a hadron are confined through the
action of a Lorentz scalar plus a vector har-
monic oscillator type of potential. The RHM
has been extended to accommodate multi-
quark states from lighter to heavier flavour
sectors with unequal quark masses [2]. The
mass of baryon in the N energy eigenstate and
J spin state can be computed as [2, 3]

MJ
N =

3
∑

i=1

ǫN(qi)conf +

3
∑

i<j=1

ǫ(qi, qj)coul

+

3
∑

i<j=1

ǫJN(qi, qj)S.D. (1)

∗
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in

First term is confinement energy of the con-
stituent quarks inside the baryon; second term
is the residual colour coulomb interaction be-
tween confined quarks and the third term cor-
responds to the spin-dependent interactions.
The colour coulomb interaction energy is com-
puted using the residual coulomb potential

Vcoul(qiqj) = kαs(µ)
ωnr

. Where ωn is the state

dependent colour dielectric coefficient [2]. It
is also the measure of confinement strength
through the non- perturbative contributions
to the confinement scale at the respective
threshold energy of the quark- antiquark exci-
tations.
The wave function for the baryons are con-

structed through the single particle wave func-
tion but with the three particle size param-
eters [2, 3]. The spin averaged mass of the
doubly heavy baryons are obtained using the
model parameters k = 0.37, confinement pa-

rameter A = 2166 MeV3/2, quark masses
mu = 240 MeV, md = 243 MeV, ms = 450
MeV, mc = 1275 MeV, mb = 4660 MeV.
The octet and decuplet masses are computed
by considering the residual two body chromo-
magnetic interaction through the spin depen-
dent term of confined one gluon exchange po-
tential perturbatively.

Magnetic Moment

Considering the mass of bound quark inside
the baryon as effective mass, the magnetic mo-
ment is computed using [4]

meff
i = mi

(

1 +
〈H〉

∑

i mi

)

(2)

such that the mass of the bayron is

MB =

3
∑

i

meff
i (3)
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TABLE I: Masses of doubly heavy baryons in MeV

Baryon quark content present [4] [5] [6] [7] [8]

Ξ
++
cc

ccu 3542 3439 3612 3620 3532

Ξ
∗++
cc

ccu 3677 3516 3706 3727 3623

Ξ
+
cc

ccd 3544 3440 3605 3620 3537 3520

Ξ
∗+
cc

ccd 3677 3518 3685 3727 3629

Ω
+
cc

ccs 3644 3479 3702 3778 3667

Ω
∗+
cc

ccs 3717 3559 3783 3872 3758

Ξ
+
bc

bcu 6928 6834 6919 6933 6988

Ξ
∗+
bc

bcu 6990 6865 6986 6980 7083

Ξ
0
bc

bcd 6929 6838 6820 6933 –

Ξ
∗0
bc

bcd 6990 6870 —- 6980 –

Ω
0
bc

bcs 7012 6893 6986 7088 7103

Ω
∗0
bc

bcs 7045 6936 7046 7130 7200

Ξ
0
bb

bbu 10257 10114 10197 10202 10344

Ξ
∗0
bb

bbu 10289 10165 10236 10237 10431

Ξ
−

bb
bbd 10257 10117 10197 10202 –

Ξ
∗−

bb
bbd 10289 10170 10236 10237 –

Ω
−

bb
bbs 10333 10164 10260 10359 10397

Ω
∗−

bb
bbs 10350 10236 10297 10389 10495

∗ indicates J
P
= 3

2

+
state

Here the magnetic moment is obtained in
terms of its constituent quarks as

µB =
∑

i

〈φsf |µi ~σi|φsf 〉 (4)

where µi = ei/2m
eff
i . ei and σi shows the

charge and spin of the quark constituting the
baryonic state and |φsf 〉 represents the spin
flavor wave function of the respective baryonic
state. [10].

Results and Discussion

We have employed ERHM to compute
masses of baryons double heavy quarks. The
computed mass spectra is found to be match-
ing with available results from other theoret-
ical approaches and are listed with them in
table I. The magnetic moments are computed
without introducing any extra parameters or
correction to the wave function and are found
in agreement with other theoretical calcula-
tions. It is observed that presence of b quark in
the baryons raises the magnitude of the mag-
netic moments by a factor. This suggests that
inclusion of some relativistic corrections and
use of other suggested approaches for compu-
tation of magnetic moments may improve the
results.

TABLE II: Magnetic moments in µN

Baryon present [4] [5] RQM [11] NRQM [11] [9]

Ξ
++
cc

-0.169 -0.137 -0.208 -0.130 -0.010

Ξ
∗++
cc

2.72 2.749 2.670 – – 2.59

Ξ
+
cc

0.853 0.859 0.785 0.720 0.740

Ξ
∗+
cc

-0.23 -0.168 -0.311 – – -0.20

Ω
+
cc

0.74 0.783 0.635 0.670 0.670

Ω
∗+
cc

0.16 0.121 0.139 – – 0.12

Ξ
+
bc

-0.52 -0.400 -0.475 -0.120 -0.290 -0.387

Ξ
∗+
bc

2.68 2.052 2.27 – – 2.011

Ξ
0
bc

0.63 0.476 0.518 0.420 0.460 0.499

Ξ
∗0
bc

-0.76 -0.567 -0.712 – – -0.551

Ω
0
bc

0.49 0.396 0.368 0.450 0.390 0.399

Ω
∗0
bc

-0.32 -0.316 -0.261 – – -0.279

Ξ
0
bb

-0.89 -0.656 -0.742 -0.530 -0.580 -0.665

Ξ
∗0
bb

2.30 1.576 1.870 – – 1.596

Ξ
−

bb
0.32 0.190 0.251 0.180 0.189 0.208

Ξ
∗−

bb
-1.32 -0.951 -1.11 – – -0.984

Ω
−

bb
0.16 0.109 0.101 0.040 0.100 0.111

Ω
∗−

bb
-0.86 -0.711 -0.662 – – -0.703

∗ indicates J
P
= 3

2

+
state
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Introduction

The fact that the energy scales of dou-
bly heavy baryons are much larger in com-
parison to strong interaction scale ΛQCD,
makes study of their spectroscopy an impor-
tant tool for testing quantum chromodynam-
ics [1, 2]. We employ extended relativistic har-

monic model for computing the masses of Ω+

cc

baryon. Though this state is yet to be ob-
served experimentally, many theoretical mod-
els have computed their mass spectra and de-
cay modes. We compute masses and radia-
tive decay widths using the model parame-
ters along with spin-flavor wave functions and
compare the results with the available theo-
retical predictions.

Methodology

For computation of bound state masses of
baryon, we use the relativistic harmonic con-
finement model in which the quarks are con-
fined through the Lorentz scalar plus vector
potential of the form

Vconf =
1

2
(1 + γ0)A

2
r
2 (1)

Where A is the confinement strength mean
field parameter and γ0 is the Dirac matrix.
The non relativistic reduction of the Dirac
equation is performed for the potential Eq.
(1) and the energy eigen values (ǫconf) are ob-
tained. We perturbatively add the Columb
potential along with state dependent colour

∗
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TABLE I: Masses of Ω
+
cc baryon in MeV

State Present [4] [5] [6] [7] [8]

Ω
+
cc 3769.91 3770 3747 3713 3738 3650

Ω
∗+
cc 3835.3 3824 3819 3785 3822 3810

∗ indicates J
P
= 3

2

+
state

dielectric coefficient (ωn) given by [3]

Vcoul =
kαs(µ)

ωnr
(2)

Where αs(µ) is the strong runing coupling
constant. The mass of baryon in the differ-

ent n
2S+1

LJ state acording to different J
PC

can be written as [3]

M
J
N =

3∑

i=1

ǫN (qi)conf +

3∑

i<j=1

ǫ(qi, qj)coul

+

3∑

i<j=1

ǫ
J
N (qi, qj)S.D. (3)

where the last term corresponds to the expec-
tation value of spin dependent part of confined
one gluon exchange potential.
The potential parameters used in computa-

tion of octet and decuplet masses of Ω+

cc are
as follows: k = 0.37, confinement mean field

parameter A = 2166 MeV3/2, quark masses:
mc = 1315 MeV and ms = 470 MeV.

Radiative decays

The radiative decay width can be expressed
in terms of transition magnetic moment (in
nuclear magneton µN ) as [9]

ΓB
∗

→Bγ =
ω
3

4π

2

2J + 1

e
2

m
2

p

µ
2

B
∗

→Bγ (4)
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TABLE II: Radiative transition magnetic moment
in µN and radiative decay width in keV

Present [10] [11] [4] [12] [13]
µ
Ω

∗+
cc

→Ω
+
cc

γ
-0.877 1.54 0.789 – – -0.89

Γ
Ω

∗+
cc

→Ω
+
cc

γ
0.89 9.45 0.949 8.61 6.93 –

where, mp is the mass of proton, µ is the tran-
sition magnetic moment that can be written
in terms of magnetic moment of constituent
quark of final and initial state of baryons as
µB

∗

→Bγ = 〈B|µ̂B
∗

z|B
∗〉.

Result and discussion

We employed the extended relativistic har-
monic model (ERHM) for computing the

masses of doubly heavy Ω+

cc baryon and our re-
sults are tabulated in Table I. Since no exper-
imental results are available for these state we
compare our results with theoretical predic-
tions such as relativistic quark model [4], hy-
percentral model [8] as well with lattice QCD
[5–7]. Our results deviate by less than 2 %
from those obtained using lattice QCD as well
as relativistic quark model.
Next we compute the radiative transition

width of Ω+

cc baryons. The decay rate is ex-
pressed in terms of transition magnetic mo-
ment. Considering the masses of confined
quarks as the effective mass, the magnetic mo-
ments are obtained using the spin flavor struc-
ture of constituent quarks. The computed re-
sults are tabulated in Table II and compared
with the other theoretical predictions. Our
results for transition magnetic moments are
matching well with modified Bag model [11]
and chiral constituent quark model [13]. We
also compare our result for radiative decay
width with modified Bag model [11], chiral
constituent quark model [13] along with re-
cent papers on chiral quark model [10] and
relativistic quark model [4]. We observe that
our results match very well with modified Bag
model.

Conclusion

Employing extended relativistic harmonic
confinement model, we compute the mass of

doubly heavy Ω+

cc baryon which are matching
well with lattice QCD results. The computed
radiative transition magneic moment and de-
cay width are lower than the recent theoreti-
cal predictions. However, due to the fact that
the results from lattice calculations and exper-
imental results are still awaited, the present
results might be of interest as they are in tune
with chiral constituent quark model and mod-
ified Bag model. Further study on the radia-
tive decay properties of doubly heavy baryons
is underway.
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Chapter 174
Mass and Hadronic Decay Widths of Z
States as Di-meson Molecule

N. R. Soni , R. R. Chaturvedi , A. K. Rai and J. N. Pandya

After the discovery of Z+
c and Z+

b hadronic states by BESIII [1] and BELLE [2]
collaborations respectively, there have been many attempts to describe these states
either as tetra quark states or as hadronic molecules. The charged states and the
masses of these exotic states are nearer to the threshold of D+ D̄∗ and B B̄∗ and
respectively suggesting them to be di-mesonic molecular states. We treat them as
hadronic molecules of D+ D̄∗ mesons and B B̄∗ mesons. We consider the interaction
between the constituent mesons of the type modified Woods-Saxon plus Coulomb
repulsive terms of the form [3]

V (r) = V0

1 + Exp
[ r−R0

a

] + CExp
[ r−R0

a

]

(
1 + Exp

[ r−R0
a

])2 − b

r
(174.1)

where the potential parameters are the strength of the potential V0 = 15 MeV ,
b = 0.08, size of the hadron R0 = 1.75 fm, diffuseness of the surface of the molecule
a = –0.51 fm. C determines the depth of the potential (0 < C < 150MeV) [3]. For
computation of binding energy, we solve the Schrödinger equation numerically for
the interaction potential defined in Eq.174.1. Binding energy and thus the di-mesonic
molecular masses are given in Table174.1.
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Table 174.1 Masses of Z+
c (D+ D̄∗) and Z+

b (B B̄∗) molecular states (in MeV) with the variation
in potential depth C (in MeV)

C D+ D̄∗ B B̄∗

Binding energy Mass Binding energy Mass

0 11.82 3864.74 5.58 10598.9

50 11.96 3864.61 7.05 10597.4

100 12.07 3864.5 8.04 10596.4

150 12.15 3864.42 8.72 10595.7

PDG [5] 3883.9±4.5 10607.2±2.0

Table 174.2 Decay widths of Z+
c and Z+

b molecular states (in MeV)

Decay mode Decay width

C = 0 C = 50 C = 100 C = 50 Exp [6] [4]

Z+
c → ψ(1s) + π 11.7202 11.7553 11.7849 11.8064 – 10.43–23.89

Z+
c → ψ(2s) + π 2.1166 2.1146 2.1127 2.1114 – 1.28–2.94

Z+
b → ϒ(1s)+π 22.8443 22.9280 22.9998 23.0567 22.9±7.3 13.3–30.8

Z+
b → ϒ(2s)+π 26.9257 26.9858 27.0443 27.0930 21.1±4.0 15.4–35.7

We employ the method of Phenomenological Lagrangian mechanism developed
by Y. Dong et al. [4] to compute hadronic decay widths. The corresponding two body
decay widths for Z+

c and Z+
b can be written as [4]

�Z+
c →�(ns)π+ � g2Zc�(ns)π

96πM3
Zc

λ3/2(M2
Zc

, M2
ψ(ns), M

2
π)

(

1 + M2
ψ(ns)

2M2
Zc

)

(174.2)

�Z+
b →ϒ(ns)π � g2Zbϒ(ns)π

16πMZb

λ1/2(M2
Zb

, M2
ϒ(ns), M

2
π) (174.3)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källen function, g′s are
the coupling constant corresponds to the coupling between hadron to its constituent
mesons. The computed decay widths are given in Table174.2.
Result and Conclusion

The masses of Z+
c and Z+

b considering them as molecular states of D+ D̄∗ and
B B̄∗ respectively are found to be below the mass of their resonance. We have anal-
ysed the nature of potential with the parameters such as diffuseness and depth of the
potential.We have also computed the hadronic decaywidths of these states in formal-
ism of interaction Lagrangian mechanism and compare with the experiments. Our
predictions of decay widths are in good agreement with the data from experiments.
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Introduction

The doubly heavy baryons are among the
best tools to understand the quantum chro-
modynamics and heavy quark effective theory.
Using weak decays of doubly heavy baryons,
one can determine the elements of CKM ma-
trix that help to understand quark mixing
angle. The first doubly heavy baryon Ξ+

cc

was discovered by SLEX collaboration [1, 2]
and recently LHCb have discovered the doubly
charmed Ξ++

cc in the Λ+
c K

−π+π− mass spec-
trum at

√
s = 13 TeV [3]. There are many

theoretical approaches in literature to com-
pute the mass spectra and decay properties.
The models based on lattice QCD [7], QCD
sum rules [8] relativistic quark model (RQM)
[9], hypercentral constituent quark model [10]
and many more.

In this article we compute the mass of
doubly heavy Ξ++

cc in the extended version
of relativistic harmonic confinement model
(ERHM). The spin dependent part of the con-
fined one gluon exchange interaction is em-
ployed to compute the mass of excited state.
Using the potential parameters and spin fla-
vor wave-functions, we compute the transi-
tion magnetic moments between 3/2+ → 1/2+

states. We also compare our findings with the
available experimental data and other theoret-

∗
Electronic address: angadaria-apphy@msubaroda.

ac.in
†
Electronic address: nrsoni-apphy@msubaroda.ac.in

‡
Electronic address: jnpandya-apphy@msubaroda.ac.

in

ical predictions.

Formulation

We employ the extended relativistic har-
monic confinement model (ERHM) to com-

pute the masses of Ξ++

cc baryon. In ERHM,
the quarks are confined through in the Lorentz
scalar with vector harmonic oscillator poten-
tial of the form[4, 5].

Vconf =
1

2
(1 + γ0)A

2r2 (1)

We employ the nonrelativistic reduction of
Dirac equation to compute the bound state
masses of the doubly heavy baryons for the
potential Eq. (1). In above equation A is the
confinement mean field parameter and γ0 is
the Dirac matrix. Using the wave function,
we incorporate the Coulomb potential with
color dielectric coefficient perturbatively. The
Coulomb potential is given by

Vcoul =
kαs

ωr
(2)

Here, in this equation ω is the state dependent
color dielectric coefficient and αs is the strong
running coupling constant. We also include
the spin dependent part of confined one gluon
exchange potential perturbatively to compute
the mass of excited state. We assume here
that the light quark interacts with both the
heavy quarks separately (three body descrip-
tion) and not with a heavy diquark as pro-
posed by other theoretical approach [6] as that
causes increase in the baryon mass as a con-
sequence. The mass of baryonic system in the
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TABLE I: Masses of Ξ
++

cc baryon in MeV

State Present [9] [10] [7]

Ξ
++

cc 3620.75 3620 3511 3610 (23) (22)

Ξ
∗++

cc 3752.28 3727 3687 3692 (28) (21)

∗ indicates J
P
= 3

2

+
state

different n2S+1LJ state can be written as

MJ
N =

3∑

i=1

ǫN(qi)conf +

3∑

i<j=1

ǫ(qi, qj)coul

+
3∑

i<j=1

ǫJN(qi, qj)S.D. (3)

The potential parameters are: Coulomb inter-
action strength k = 0.37, the mean field pa-

rameter A = 2166 MeV3/2 and quark masses
mc = 1315 MeV and mu = 240 MeV. The
computed masses of Ξ++

cc is tabulated in Tab.
I

Transition Magnetic Moment

The radiative transition magnetic moment
in terms of nuclear magneton (µN ) is com-
puted using

µB
∗

→Bγ = 〈B|µ̂B
∗

z |B
∗〉 (4)

where B and B′ represents the constituent
quarks of parent and daughter baryon respec-
tively. We obtain the following result

µ
Ξ

∗++

cc
→Ξ

++

cc

= 1.564 µN

Our results are in good agreement with the
other theoretical approaches such as χCQM
[11] and the model based on effective mass
scheme [12].

Conclusion

We have computed the masses of doubly
heavy baryons employing the extended version
of relativistic harmonic confinement model
and the results are tabulated in Tab I in com-
parison with results from LQCD [7], relativis-
tic quark model [9] and hypercentral quark

model [10]. Our results are in good agreement
with LQCD and RQM. We have also com-
puted the weak transition magnetic moment
and it is in compliance with the other theo-
retical predictions. We notice that the three
body description of the double heavy baryons
provide better mass spectra without addition
of correction terms. The study on compu-
tation of weak decay properties and lifetimes
of differently charged states of doubly heavy
baryons are underway.
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Study of Decay Properties of Heavy Flavor and Exotic Hadrons

Abstract

In this thesis, we study the mass spectra and decay properties of heavy quarkonia, doubly

heavy baryons, exotic states and open flavor mesons using different approaches. For heavy

quarkonia, we employ Cornell potential and the ground state energy is obtained by solv-

ing the Schrödinger equation numerically. Using the potential parameters and numerical

solution of wave-function, we study the decay properties of charmonia, bottomonia and Bc

mesons. The computation of excited state masses and decay properties are then performed

without additional parameters. For doubly heavy baryons, we employ the relativistic har-

monic confinement potential and ground state energy is obtained using the non-relativistic

reduction of Dirac equation. The exotic states are investigated using the modified Woods-

Saxon potential by solving the Schrödinger equation numerically. We also compute the

leptonic and semileptonic branching fractions of D and Ds mesons in Covariant Confined

Quark Model based on the effective field theory formalism.

Organization of the thesis:

The thesis entitled “Study of Decay Properties of Heavy Flavor and Exotic Hadrons” has

been organized in total 6 chapters. A chapter-wise brief description of the work done is as

follows.

Chapter 1: Theoretical Developments in Particle Physics

This chapter introduces the field of particle physics and its key aspects. Some major exper-

iments in hadron physics and theoretical approaches are outlined. This chapter provides

the motivation and objectives of the present work.

Chapter 2: Heavy Quarkonium Spectroscopy

This chapter corresponds to the spectroscopy of heavy quarkonia that includes charmonia

(cc̄), bottomonia (bb̄) and Bc (cb̄) mesons. We have reported a comprehensive study of

heavy quarkonia in the framework of nonrelativistic potential model considering the Cornell

potential with least possible number of free model parameters such as confinement strength

and quark masses. We predict the masses of excited states including spin dependent part

of confined one gluon exchange potential perturbatively. The potential parameters and

numerical solution of wave-function are then used to study various decay properties. It is

observed that the nonrelativistic treatment for heavy quarkonium gives very good agreement

1



with experimental data and other theoretical approaches.

Chapter 3: Decay Properties of Heavy Baryons

In this chapter, we compute the masses of heavy flavour baryons using confinement scheme

based on harmonic approximation with Lorentz scalar plus vector character. The residual

two body coulomb interaction is included to compute the spin average masses. The spin

hyperfine interaction of confined one gluon exchange potential is added to the confinement

energy to get the masses of baryons. The mass spectra of baryons are computed using spin-

flavour wave function for constituent quarks. The magnetic moments in all systems are

then computed without additional parameters. We also compute the radiative transition

(3/2+ → 1/2+) widths of these states. The computed masses, magnetic moments and decay

widths are compared with the experimental data and results of other theoretical models.

Chapter 4: Study of Exotic States as Dimesonic Molecules

This chapter is dedicated to the study of newly observed states that require consideration of

physics beyond the Standard Model, the exotic states. These are multiquark or hybrid states

other than familiar mesons and baryons. We study the tetra-quark Z states considering

them as dimesonic molecules employing modified Woods-Saxon plus Coulomb potential

for interaction between the constituent mesons. We compute the bound state masses of

the exotic states by solving the Schrödinger equation numerically. We also compute the

hadronic two body decay width using the Phenomenological Lagrangian mechanism.

Chapter 5: Weak Decays of Open Flavor Mesons

In this chapter, the leptonic and semileptonic decays of charmed meson (D(s) → ℓ+νℓ
and D(s) → (P, V )ℓ+νℓ) are computed in the Covariant Confined Quark Model (CCQM)

formalism with the built-in infrared confinement within the Standard Model framework.

Here P and V correspond to pseudoscalar and vector mesons respectively. The CCQM is an

effective quantum field approach for the hadronic interaction based on effective Lagrangian

of hadrons interacting with the constituent quarks. The required form factors are computed

in the entire range of momentum transfer and used to determine semileptonic branching

fractions.

Chapter 6: Conclusion and Future Scopes

This chapter is an accomplishment of the work done in the thesis. Along with that, we

also discuss the future prospects of research in the area of weak decays using the covariant

quark model.
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Study of Decay Properties of Heavy Flavor and Exotic Hadrons

One of the most challenging task in particle physics is to encompass the diversity and the

complexity observed in the decay modes and the fractions of particles. For example, there

are twenty-two quantitative modes and total forty-nine decays modes of K±, and ratio of

highest to lowest of these fractions amounts to 1011. The spectroscopy and decay rates of

various hadronic states are quite important to study due to huge amount of high precession

data acquired using large number of experimental facilities viz. BESIII at the Beijing

Electron Positron Collider (BEPC), E835 at Fermilab and CLEO at the Cornell Electron

Storage Ring (CESR), the B-meson factories, BaBar at PEP-II, Belle at KEKB, the CDF

and D0 experiments at Fermilab, the Selex experiment at Fermilab, ZEUS and H1 at DESY,

PHENIX and STAR at RHIC, NA60 and LHCb at CERN and new future facility PANDA

at FAIR, GSI. The plethora of observations from these facilities offer greater challenges

and opportunities in theoretical high energy physics. The hadronic states are not only

identified with their masses but also with their various decay rates. All the hadronic states

along with experimentally identified decay channels are reported in Particle Data Group

(PDG) [1]. Decay properties of these sates are of special interest because they provide the

further insight into the dynamics of these states. For example, the semileptonic decays of

D and B mesons give the accurate determination of Cabibbo-Kobayashi-Maskawa (CKM)

matrix since they involve strong as well as weak interaction. Heavy quarkonium states have

very rich spectroscopy with narrow experimentally characterized states and the interaction

potential is of prime importance for analysis of underlying physics of strong interaction.

Also, a large number of exotic hadronic states have been observed in the heavy flavor

sector that do not fit into the conventional mesonic or baryonic states. Quite a few of

these newly observed states are above the DD̄ and BB̄ threshold. There are variety of

theoretical models available in the literature to study the production and decays of these

states. The most successful theories are based on the first principle such as lattice quantum

chromodynamics (LQCD) [2, 3] and QCD sum rules (QCDSR) [4]. Other attempts are

based are QCD, perturbative QCD [5], effective field theory [6], Bethe-Salpeter approach

[7, 8], quark models [9, 10]. There are nonrelativistic models such as nonrelativistic QCD

(NRQCD) [11, 12], perturbative nonrelativistic QCD (pNRQCD) [13] and models based

on phenomenological potential such as relativistic potential model [14] and nonrelativistic

potential models [15, 16, 17] to study these hadronic states. Many of these approaches

sometimes precisely explain the masses of hadrons but not the decay properties and vice-

versa. A comprehensive review of experimental and theoretical status and challenges in

study of hadronic decays are found in the literature [18, 19, 20, 21, 22].
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In 2003, the Belle Collaboration [23] discovered a new exotic particle named X(3872) in the

B → K(π+π−J/ψ) channel followed by its repeated observations in different channels at

other experimental facilities [24]. Later, several other resonances were also discovered near

and above the first open flavor threshold region of cc̄ and bb̄. Several theoretical attempts

have been made to understand exotic hadrons and their decay properties. Since they are

not the part of standard model and Quark Model also fails to explain these states, these

states are claimed to be a cluster of four quarks or multi-quark states, hydrocharmonium

states, composition of hadronic molecules such as di-mesonic molecule, diquark-diantiquark

molecule or qq̄g hybrid states according to the Quantum Chromodynamics [25, 26, 27].

Organization of the thesis:

The thesis entitled “Study of Decay Properties of Heavy Flavor and Exotic Hadrons has

been organized in total 6 chapters. A chapter-wise brief description of the work done is as

follows.

Chapter 1: Theoretical Developments in Particle Physics

This chapter introduces the field of particle physics and its key aspects. Some major exper-

iments in hadron physics and theoretical approaches are outlined. This chapter provides

the motivation and objectives of the present work.

Chapter 2: Heavy Quarkonium Spectroscopy

This chapter comprises of calculations for the mass spectra of heavy quarkonia in nonrela-

tivistic quark-antiquark Cornell potential model. We have employed the numerical solution

of Schrödinger equation to obtain their mass spectra using least number of parameters. The

spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are

computed perturbatively to determine the mass spectra of excited S, P , D and F states.

The mass spectra and numerical solution of wave-function are then used to compute various

decay properties such as decay constants, digamma, digluon and dilepton annihilation rates.

We also compute the electromagnetic dipole transition rates between the S and P waves.

The mass spectra, decay modes and the life time of the B+
c meson are also computed without

introducing any new parameter and the results are consistent with available experimental

data and other theoretical studies. The outcome of this study has been published in [28, 29].

Chapter 3: Decay Properties of Heavy Baryons

We compute the masses of heavy flavour baryons using confinement scheme based on har-

monic approximation with Lorentz scalar plus vector character. The residual two body

coulomb interaction is included to compute the spin average masses. The spin hyperfine in-
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teraction of confined one gluon exchange potential is added to the confinement energy to get

the masses of baryons. The mass spectra of baryons are computed using spin-flavour wave

function for constituent quarks. The magnetic moments in all systems are then computed

without additional parameters. We also compute the radiative transition (3/2+ → 1/2+)

widths of these states. The computed masses, magnetic moments and decay widths are

compared with the experimental data other theoretical models.

Chapter 4: Study of Exotic States as a Dimesonic Molecules

This chapter dedicate to the study of newly observed state which was not explained by

the Standard Model, the exotic states. The exotic states are multiquark or hybrid states

other than familiar mesons and baryons. In PDG, there are more than 25 exotic states

reported by the experimental facilities world wide. We study the tetra quark states (X,

Y and Z) considering a them as dimesonic molecules employing modified Woods-Saxon

plus Coulomb potential for interaction between the constituent mesons. We compute the

bound state masses of the exotic states by solving the Schrödinger equation numerically.

We also compute the hadronic two body decay width using the method of Phenomenological

Lagrangian mechanism.

Chapter 5: Weak Decays of Open Flavor Mesons

In this chapter we present the leptonic and semileptonic decays of charmed meson (D(s) →

ℓ+νℓ and D(s) → (P, V )ℓ+νℓ) in the Covariant Quark Model (CQM) formalism with the

built-in infrared confinement within the Standard Model framework.

Here P and V corresponds to pseudoscalar and vector mesons respectively. The CQM is an

effective quantum field approach for the hadronic interaction based on effective Lagrangian

of hadrons interacting with the constituent quarks. The required form factors are computed

in the entire range of momentum transfer and used to determine semileptonic branching

fractions. Our findings have been published in PRD [30] and they are presented here along

with the experimental, LQCD and other theoretical data.

Chapter 6: Conclusion and Future Scopes

This chapter is an accomplishment of the work done in the thesis. Along with that, we

also discuss the future prospects of research in the area of weak decays using the covariant

quark model.
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