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Abstract

The standard inflationary paradigm typically places the reheating period strictly after the slow-
roll regime of the inflaton field comes to an end. Several proposals for particle production
mechanisms during the slow-roll phase have appeared over the years, one argument in their
favour being the possibility of having observable signatures of those particles in the Cosmic
Microwave Background (CMB) spectrum. In this thesis, we develop and analyse a novel mecha-
nism that allows for production of scalar particles y during the slow-roll regime due to a narrow
parametric resonance found in the equation of motion for the Fourier modes of their associated
quantum field. Approximate analytical expressions for the comoving number density and the
physical energy density of the produced particles are obtained. The backreaction on the classi-
cal inflaton and on its quantum fluctuations is obtained using the Hartree approximation, and
its effects on the curvature power spectrum, the scalar spectral index and the tensor-to-scalar
ratio are computed. We then perform a numerical analysis of the model including backreac-
tion, considering in particular the efficiency of the particle production process and the effects
on the inflaton field and on the CMB observables. We also compare a few analytical results to
numerical simulations. We show that an appreciable energy density of x particles can be gener-
ated through this mechanism without it becoming the dominant contribution to the Friedmann
equation, thus preserving the underlying inflationary paradigm. We also show that under these
conditions we obtain a modification of the curvature power spectrum which includes features

that may fall within the range of future observations.

Keywords: Cosmology, Inflation, Inflationary Epoch, Particle Production, Parametric Reso-

nance.
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Resumo

Tipicamente, o paradigma inflacionario padrao coloca o periodo de reheating estritamente apés
o término do regime de slow-roll do inflatdo. Varias propostas de mecanismos de produgao
de particulas durante a fase de slow-roll tém surgido ao longo dos anos, sendo um argumento
em seu favor a possibilidade de ter assinaturas observaveis dessas particulas no espetro da
Radiagdo Césmica de Fundo (CMB, do inglés Cosmic Microwave Background). Nesta tese, é
desenvolvido e analisado um novo mecanismo que possibilita a produgao de particulas escalares
x durante o regime de slow-roll devido a uma ressonancia paramétrica estreita (narrow em
inglés) encontrada na equagao de movimento dos modos de Fourier do campo quintico a elas
associado. Sao obtidas expressoes analiticas aproximadas para a densidade comével de niimero e
para a densidade fisica de energia das particulas produzidas. A backreaction no inflatdao classico
e nas suas flutuacées quanticas é obtida usando a aproximacio de Hartree, e os seus efeitos no
curvature power spectrum, no scalar spectral index e no tensor-to-scalar ratio sdo determinados.
E depois realizada uma analise numérica do modelo incluindo backreaction, considerando em
particular a eficiéncia do processo de producdo de particulas e os efeitos no inflatdo e nos
observaveis do CMB. Alguns resultados analiticos sdo também comparados com simulacoes
numéricas. E mostrado que através deste mecanismo é possivel gerar uma densidade de energia
apreciavel de particulas y sem que esta se torne a contribuicdo dominante para a equacao
de Friedmann, assim preservando o paradigma inflaciondrio subjacente. E mostrado também
que, sob estas condigoes, sdo obtidas modificagdes ao curvature power spectrum que podem ser

observadas futuramente.

Palavras-chave:  Cosmologia, Inflacio, Epoca Inflaciondria, Producio de Particulas,

Ressonancia Paramétrica.
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There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced

by something even more bizarre and inexplicable.

There is another which states that this has already happened.

— Douglas Adams
The Restaurant at the End of the Universe
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1 Introduction

The inception of modern Cosmology in the early 20th century, greatly motivated by the obser-
vations of Edwin Hubble — namely the discovery of galaxies and of the expansion of the Universe
— and by the newly established theory of general relativity, led to a drastic shift on our under-
standing of the Universe and its evolution. In little more than a century, we have gone from
the idea of a static, scarcely populated Universe, to the notion of a rather crowded one, that is

expanding at an accelerated rate [1, 3].

In fact, over the years, our models for cosmological evolution have seen countless updates
based on new experimental evidence, as well as new theoretical tools and frameworks. Current
models usually involve the placement of cosmological fluids (with both quantum and thermal
properties) in a geometrical background in order to determine how both those fluids and that
background behave and evolve in time, and thus require the combination of concepts and tech-
niques from general relativity (GR), thermodynamics and statistical mechanics, and quantum
field theory (QFT) [1, 3]. These models are then tested against data from experiments like
the European Space Agency’s satellite observatory Planck [4], in order to, for instance, set

constraints on theoretical parameters and provide evidence for hypothesised phenomena.

One thing, however, that has remained more or less unchanged between cosmological models
is the notion that the Universe is homogeneous and isotropic on large scales, which is otherwise
known as the cosmological principle. This statement was initially a mere approximation in or-
der to simplify theoretical calculations, but was later found to be well-founded, as observations
showed, for example, that the temperature of the Cosmic Microwave Background (CMB) ra-
diation displays fluctuations of just O(107° K) around its average value of 2.73 K, making it
an extremely uniform spectrum [1, 3]. We will soon find that facing trouble explaining these

particular observations is also a common factor to several cosmological models.



1.1 The Hot Big Bang model

Currently, the standard model of Cosmology is the Lambda Cold Dark Matter (ACDM) model
[1, 5], whose designation will be clarified by the end of § 1.1.1. Nonetheless, we shall refer to
it simply as the Hot Big Bang (HBB) model, in keeping with its theorised hot beginning [3].
Its theoretical predictions on cosmic evolution have been tested to be valid up to about 1072
seconds after the Big Bang, but sensible speculations can be made for earlier times also, as long
as some kind of extension to the Standard Model of Particle Physics (SM) is assumed [3]. In
the following subsection, we establish the tools used by this paradigm and mention some of its

greatest successes.

1.1.1 Overview and main results

We shall start by reviewing some of the fundamental equations of the HBB model, namely
Einstein’s field equations (EFEs) from GR [1]. These can be compactly written as a tensor

equation

G/u/ :MEQT,uua (111)

where G, = Ry, — %ng is the Einstein tensor (R,, and R being the Ricci tensor and
scalar, respectively), T},, is an energy-momentum (or stress-energy) tensor, which may include
a contribution from a cosmological constant A (T;i\u = M3 A g,), and Mp is the reduced Planck
mass. This set of equations establishes a relation between the geometry of spacetime, described
by G, and the energy content of the Universe, encoded into T},,,.

The metric g, that describes a homogeneous, isotropic and expanding Universe is the max-

imally symmetric Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, for which the line

element ds? can be written in spherical coordinates as

dr?
1 — kr2

ds* = dt* — a*(t) yij da'da? = dt* — a*(t) l + r2dQ2] , (1.1.2)
where the scale factor a(t) accounts for the expansion of space, and where k denotes the local
spatial curvature of spacetime: in particular, the local geometry of the Universe would be
hyperbolic (or open) for k < 0, Euclidean (or flat) for £ = 0 and spherical (or closed) for k£ > 0.
The spatial coordinates appearing in this definition are known as comowving coordinates, while
the time coordinate is called physical or cosmic time, and these are the coordinates measured

by an observer moving together with the expansion. Sometimes, it proves useful to instead

2



work in conformal time, dr = dt/a(t), in which case the general FLRW metric simply becomes
a conformal transformation of the non-expanding case (for k& = 0, it becomes a conformal
transformation of the Minkowski metric).

Due to the cosmological principle and the maximally symmetric metric associated with it,
the only properties of the various constituents of the Universe (i.e. different types of matter,
radiation, ...) that are required to specify a stress-energy tensor (SET) are the mean energy
density p and the pressure p. This means that the universal constituents can effectively be

modelled as perfect (cosmological) fluids, which are described by the equation of state (EoS)
p=wp, (1.1.3)
with constant w, and have a SET given in a general frame by
™ = (p+p) uu” — pg"”, (1.1.4)

where u* is the four-velocity of the fluid. This expression results in 7% = p, T% = 7% = 0 and
T% = pa~2~+% in the fluid’s rest frame, where u* = (1,0,0,0). Examples of cosmological fluids
include pressureless matter (w = 0), radiation (w = %) and a cosmological constant (w = —1).
Note that pressureless matter includes any type of non-relativistic massive particles (e.g. baryons
and cold! dark matter), while radiation refers to both photons and any other (ultra)relativistic
species (e.g. neutrinos and hot? dark matter).

Using the metric (1.1.2) and the rest-frame version of (1.1.4), the 00 component of (1.1.1)

becomes

a\ 2 1 k
H=(Z) = —p— — 1.1.
(a) 3M3 P (1.1.5)

which is known as the Friedmann equation. Here, H = % is the Hubble parameter, and p is the
total energy density of the Universe (including A contributions). The term proportional to k
can itself be absorbed into p, in which case it is interpreted as the fraction of the energy density
that is linked to the curvature of spacetime. The Friedmann equation is of major importance in
the context of Cosmology, as it establishes a direct relation between the energy content of the

Universe and the latter’s rate of expansion.

!Here, “cold” means that the species is heavier than the temperature scale of the Universe, m > T.
2Similarly, “hot” refers to particles lighter than the temperature scale, m < T.

3



Another equation of great use is obtained using the ij components of (1.1.1) and the Fried-
mann equation, as well as T% = pa?~%¥ and is known as the Raychaudhuri (or acceleration)

equation

o _6]\1@(%3@, (1.1.6)
which in particular shows that to a positive value of A corresponds a positive energy density py =
M}% A and a negative pressure pp = —pa, leading to a positive contribution to the acceleration:
this result is what motivates the argument that the observed accelerated expansion of spacetime
is due to a cosmological constant?®.

From the covariant conservation of the energy-momentum tensor (EMT), TH,, = 0, one

finds, for the = 0 component, the following conservation equation

DI

with solution

a(t)> R (1.1.8)

ao

plt) = po (

where pg = p(to) and ag = a(tg), for some pivot ¢y which is usually taken to be the present
time. This allows us to conclude that, given an EoS (i.e. a certain value of w), we find different
scaling behaviours of p with respect to a: in other words, distinct fluids should evolve differently
throughout the cosmic history, as they become diluted by different powers of the scale factor.
For instance, the energy density of pressureless matter scales with a~3, whereas for radiation
the scaling is with a=* (the additional factor of = is interpreted as coming from the redshift of
the wavelength); in turn, the cosmological constant has a constant energy density, in accordance
with the definition of its SET.

We may also plug Eq. (1.1.8) into the flat Friedmann equation and integrate it to get

2
a(t) = (tto) F for w1, (1.1.9)

where ty contains all multiplicative factors. This expression shows how the scale factor behaves

in time for flat Universes dominated by different kinds of cosmological fluids. The particular

3 A Universe whose energy density is dominated by that of a positive cosmological constant driving accelerated

expansion is described by the de Sitter metric and may be called a de Sitter Universe [6, 7].
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case of k = 0 is interesting because observations strongly suggest that our Universe is itself flat,
which as we will see in § 1.1.2 is a troublesome detail for standard cosmology.
The above equations are sometimes expressed in terms of (time-dependent) dimensionless

density parameters ), given by

o) = 20 (1.1.10)

s}
2]
]
—
o~
~—

where the subscript s refers to the different species that populate the Universe (photons, elec-
trons, neutrons, ...), and where p,(t) is the critical density at time ¢, which is defined by setting
k=0 in Eq. (1.1.5), giving pe:(t) = 3 MAH?(t). That is, per is the value of p corresponding to
a flat, Euclidean Universe. The total density parameter € is simply given by the sum of the {4
for all particle species.

The field equations can also be found from an action formalism [6], which is often useful,

especially when dealing with matter fields. This is achieved by defining the action

M2
S = Sgug + Sy = —7P/d4$\/—gR + Swu, (1.1.11)
where Sgy is known as the Einstein-Hilbert action, with /—g = /| det(g,.)|, and Sys is the

action for matter fields. We may vary S with respect to g in order to obtain Eq. (1.1.1),
which reduce to the vacuum EFEs when Sj; = 0, using also the following definition for the

stress-energy tensor

2 Sy

T = — —— —— |
\Vaut') 5g;w

(1.1.12)

It is important to note that Eq. (1.1.4) is related only to the macroscopic properties of the
cosmological fluids. However, it is the microscopic particle dynamics that dictate the average
behaviour of the fluid, and so these must be taken into consideration. The link between these two
scales comes from statistical mechanics, for both equilibrium and out-of-equilibrium states. The
equilibrium behaviour of the SM particle species is well studied [1, 8, 9] and it has been found

that particles of a certain species s in thermal equilibrium at a temperature 7" are distributed

in energy E(p) = /p? + m? according to

[s[E(D)] = 50— (1.1.13)
e- T *1
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where p is the chemical potential of the species, and + and — refer to fermions and bosons,
respectively, making the distribution function either a Fermi-Dirac or a Bose-Einstein distribu-
tion. These functions can be used to express quantities like the number density ng, the energy

density ps or the pressure ps, written here for a gas of free particles with degeneracy g

3

ns = g/ (if;g fs[E(p)] (1.1.14a)
3

po = [ o HE@)EG) (1.1.14b)
3 2

ps = g/ (;iﬂp;g [s[E(p)] 35([)) , (1.1.14c)

which are then expressed in terms of the equilibrium temperature 7. This temperature can be
related with the cosmic time ¢ via the conservation equation (1.1.7)*. In particular, it can be
shown that the number density is diluted by the expansion of the Universe as ngy o< a™>. As
stated before, these results describe species in thermal equilibrium and can be used to determine,
for instance, the epoch at which the energy densities of two of those species are equal, the most
notable one being the matter-radiation equality, found to have occurred at about zeq ~ 3000
(z being the redshift parameter), which has strong implications in the generation of large-scale
structure [1, §].

However, particles interact with each other and are not always in a state of equilibrium.

These out-of-equilibrium interactions are described by the Boltzmann equation

dng(t) B d3p
B —|—3Hns(t)—/(27r)3 L1, (1.1.15)

which is reminiscent of a conservation equation, giving the time evolution of the particle number
density for each species s. The right-hand side of the equation is a collision term, containing
information on any type of physical process that the particles may undergo, namely scattering,
pair creation, annihilation and particle decay. When this term is zero, the solution for ns simply
scales as a~2 due to the expansion, in accordance with the equilibrium theory. Collision terms
are normally related with the cross sections of the processes that generate them and thus with
the rate I' at which they occur. In particular, there exists a competition between the interaction
rate I' and the expansion rate H: if I' > H, thermal equilibrium can be reached via interactions,

whereas if I' < H, the expansion does not allow thermal equilibrium to be attained [1, 8].

4This equation also implies that the entropy density of the Universe s(T) = # o« a”? satisfies s(T)a® =

const., which states that the entropy in a comoving volume S o s(T") a® is conserved.
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Using the toolkit described above, the HBB paradigm has provided us with several inter-
esting and successful results. To begin with, as was mentioned before, the observed accelerated
expansion of the Universe is accounted for by means of a cosmological constant A, which is
interpreted within this paradigm as an unidentified form of energy known as dark energy, which
makes up about 68% of the total energy density of today’s observable Universe [1, 3, 5]; this,
together with the fact that currently the second most abundant form of energy in the observ-
able Universe (at about 26% of the total density) is the also unidentified cold dark matter [5],
motivates the designation of the standard cosmological model as ACDM. Prior to the current
A-dominated era, the ACDM model predicts that two other eras have taken place in cosmic
history, as is summarised in Figure 1.1.1: the radiation-dominated era, shortly after the Big
Bang, and the matter-dominated era, situated between the other two, and from which we have
“Just” exited [1, 3, 8]. Moreover, the Big Bang nucleosynthesis described by this model correctly
predicts the measured primordial mass abundances of light-element nuclei, namely a mass abun-
dance of ~ 25% for *He [1, 3]. The model also accurately predicts the existence of the CMB,
which should have had its origin during the matter-dominated era, while also predicting some
of its observed characteristics, in particular its black-body spectrum, average temperature and
polarisation [1, 3]. Other successes include the prediction of the observed large-scale structure
of the Universe, i.e. the observed statistical distribution of galaxies and other large-scale bodies,

and of the existence of the baryon acoustic oscillations [1, 3, 8].

1.1.2 Shortcomings of the Hot Big Bang model

In spite of the substantial amount of observational data from our Universe that the HBB model
is able to adequately predict and describe, there are a few aspects that it fails to properly

explain, which we shall now present with some detail.

The flatness problem

One of the conundrums that the HBB model fails to tackle is known as the flatness problem
[2, 3, 10, 11]. Tt conmsists in the fact that the current energy density of the Universe, po, is
measured to be very close to the current critical density, per0, which is the energy density in
the case of a flat Universe, thus resulting in a total density parameter Qg = pfﬁ ~ 1. This of

course means that the Universe is essentially flat. Using the Friedmann equation, it is possible

to show that
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Figure 1.1.1: Evolution of the energy density (normalised against the current critical density, as
per Eq. (1.1.8)) for different constituents of the Universe: pressureless matter (o< a=3), radiation
(o a™*) and a cosmological constant (o< a). The matter-radiation equality and the matter-A

equality are identified with aeq and ay, respectively. Taken from Ref. [1].

3MEk
Qtl-1 =" (1.1.16)
pa?(t)
so that, for matter- and radiation-dominated Universes (p o< a2 and p o a~*, respectively),

deviations from unity in the value of €} grow with the scale factor, whose value increases over
time. Hence, in order for 25 ~ 1 to be true, one can show that we must have, for example,
1Q—1] £ O(107%9) at the Planck scale, at about 10~*3 seconds after the Big Bang [3], which
means that the initial value of 2 has to be markedly fine-tuned. In summary, the observed
flatness of the Universe appears to exist only through a delicate arrangement of parameters in
the early stages of the cosmological evolution, which surely is a bothersome prediction of the

working paradigm.

The horizon problem

Another noteworthy issue with the HBB model is dubbed the horizon problem [2, 3, 10, 11].
As stated before, the CMB spectrum has been found to be very uniform, with all the radiation
being in thermal equilibrium, having in principle attained it by means of causal processes (e.g.
Compton scattering). Since their emission at the time of last scattering, the CMB photons have

moved freely across the Universe, which implies that all points in the last scattering surface
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must have been in thermal equilibrium too. If that were the case, at the time of emission, all
regions of the last scattering surface from which we receive CMB radiation at a = a(tg) ought
to be in causal contact with each other. In particular, the separation distance at the time of

emission

a(to) da/

dsep(te) = a(te)/a(t) A (1.1.17)

between two regions in opposite points in the sky from which we receive CMB radiation must

be smaller than the physical causal horizon distance at that time, dg(te), with [1, 10]

di(t) = a(t) /a(t)d“, (1.1.18)
= ey P H@) -

where H(a) = % and ¢; marks the Big Bang singularity. Working in the HBB paradigm, one
can show that the ratio between these two distances is given in terms of the redshift parameter

z by

dsep (te)
dp(te)

=2(1+2)2-1), (1.1.19)

with z ~ 1000 at the time of emission, making dsep(te) > dp(te). Hence, according to the HBB
model, at the time of recombination there were regions in the last scattering surface that were
not in causal contact, but were necessarily in thermal equilibrium with one another. There are
no physical processes that could lead to the observed thermal homogeneity between causally
disconnected regions, so the Universe must have been thermally homogeneous already at the

Big Bang, which is again indicative of a fine-tuned Universe.

Other problems

In addition to these two problems, one may point out several more, albeit of less importance,
e.g. the predicted existence of unobserved topological defects (like magnetic monopoles) by some
Grand Unified Theories (GUTs), which the HBB model has no mechanism to dispose of, and
also the origin and structure of the CMB temperature anisotropies, which the HBB model fails

to explain satisfactorily [1-3, 7, 8, 11].



1.2 The inflationary solution

A possible solution to the aforementioned problems is found by modifying the HBB model to
include a period of accelerated expansion just before the radiation-dominated era, dubbed the
inflationary epoch [1-3, 7, 8, 11-16].

It is straightforward to see, looking at the Raychaudhuri equation (1.1.6), that an accelerated

1

expansion corresponds to w < —3. Since p a3

1+w) " as was shown using the conservation
equation (1.1.7), we conclude that in Eq. (1.1.16), for w < —%, we have pa? x a 30T g2 x o7,
with r» > 0, so that deviations from flatness would be smoothed out in a period of accelerated
expansion, thereby solving the flatness problem [3].

Furthermore, if a oc P, we have H = £ a~1/P. The physical causal horizon distance
in Eq. (1.1.18) thus diverges if p > 1, which, from d@ oc p(p — 1)tP2, is also the condition for
accelerated expansion. Hence, such a period would be associated with an infinite causal horizon,
so that during it all regions could be in causal contact with each other, thus being allowed to
reach thermal equilibrium through conventional physical processes. In a posterior epoch, the
causal horizon can eventually become finite, thereby removing the causal connection between
some of these regions, which, however, will all remain in thermal equilibrium. In other words,
we have successfully solved the horizon problem [1].

Additionally, a period of accelerated expansion would cause the topological defects predicted
by the GUTs to dilute away, thereby explaining their observational absence (provided no others
would be produced after this period ends) [3]. Similarly, other issues with the HBB model can
be solved by postulating the existence of this period of cosmological inflation — in particular, we
shall see that quantum effects linked to inflation generate a solution to the CMB anisotropies
[3, 7].

The duration of inflation can be quantified using the number of e-folds, defined as

N.=l%, (1.2.1)
a;

where a; and ay are the values of the scale factor at the beginning and at the end of inflation,
respectively. Throughout this text, we will use N, to designate both the e-folds variable and the
duration of inflation in that variable. In order to solve the flatness and the horizon problems, it
is possible to show that N, should be around 50-60, which we shall treat as the reference range
for the duration of inflation [3, 7].

We shall now initiate a brief exploration of the main concepts within this paradigm.
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1.2.1 Standard picture of inflation

Inflationary models are based in QFT. However, if we neglect quantum fluctuations, we may
consider a classical description of the inflaton field, which is then modelled as a real scalar
field, ¢(t,x). The discussion contained in this section is primarily based on [2, 3, 7, 11]. The
inflaton is usually modelled as a scalar field because scalar fields are invariant under Lorentz
transformations, which means that even if they attain a non-zero (classical) vacuum expectation
value the local Lorentz invariance of the vacuum [17, 18] is maintained, which would not happen
for spinor and vector fields”; moreover, scalar fields are the simplest to treat mathematically, so
it is only logical to try and devise a mechanism based on one. In this work, we will assume a

single-field inflation scenario [22].

The classical inflaton

Following an action formalism, we write a Lagrangian density and an action for ¢(¢,x), from
which we can obtain the equation of motion (EoM) and the stress-energy tensor. Using the

latter, we can determine the energy density, py, and the pressure, py, of the field

1., 1(Vo¢)?

o= §¢2 + 2% + V(o) (1.2.2a)
1., 1(Ve)?

Ps = §¢2 _ 6( a2> —V(¢), (1.2.2b)

where we have introduced a potential energy V' (¢) for the inflaton. From (1.2.2), py and py
do not seem to be related by the equation of state (1.1.3), with w < —% in order to get an

accelerated expansion. However, if the potential energy dominates, we have indeed py ~ —py,

1

so that w ~ —1 < —3,

in which case the inflaton field approximately mimics a cosmological
constant; as such, during inflation, the Universe exists in a quasi-de Sitter space [1, 2, 7]. From
equation (1.1.7), it is clear that py is approximately constant in time and in this case, if we take

it to dominate the energy density of the Universe, we may write the Friedmann equation as

1 a 1 [ps
2 = — —_ = = — —d) ~
H? = 3M1% Py = ” H V3 const. , (1.2.3)

where we have already assumed a flat Universe (i.e. £ = 0), which we will continue to assume

for the remainder of this text. From (1.2.3), it follows that the scale factor grows at an almost

®In spite of this, inflationary scenarios where the inflaton is modelled either as a fermion field [19] or as a

vector field [20, 21] have been proposed.

11



exponential rate, being given by a(t) = ag eflt with H ~ const. while inflation lasts. Hence,
(Vo)?

a2

we may consider that the term is quickly diluted away, which is equivalent to saying that
the inflaton field is in fact homogeneous and thus exclusively time-dependent, ¢ = ¢(t). With
this, in order to have py ~ —pys we just need to ensure that %¢2 < V(¢), which translates
into saying that the inflaton is rolling slowly (or slow-rolling) down its potential, which is then

approximately flat (constant). This is what we shall dub the first slow-roll condition.

Figure 1.2.1: Generic representation of an inflationary potential V' (¢), down which the field ¢ is
slow-rolling with velocity ¢. The right part of the potential is explained in § 1.2.2. Taken from
Ref. [2].

Moreover, neglecting gradients, the equation of motion for the inflaton is a Klein-Gordon

equation (KGE) given by

¢+3Hp+ Vy(p) =0, (1.2.4)

which we can use to establish a second slow-roll condition: ¢ < 3H¢. This one ensures that
the first condition is verified for a long enough time to allow inflation to solve the flatness and
the horizon problems.

In the slow-roll regime, the Friedmann equation (1.2.3) and the Klein-Gordon equation

(1.2.4) can thus be rewritten, respectively, as

3MAH? ~ V(o) (1.2.5a)

3Hd ~ —Vy(9). (1.2.5b)

We may rephrase the two slow-roll conditions in terms of two slow-roll parameters, ey and

Nv, which we shall define as

12



502 < V(9) v = §M3E (5

—
. . V
91 < 3H|9| Inv] = | M%) | < 1

) <! (1.2.6)

so that inflation ends once ey ~ 1 (and |npy| ~ 1). These quantities can be thought of as a
measure of how much the Universe departs from an exact de Sitter space during inflation [1].
Alternative ways to express the slow-roll parameters are often found in the literature: one that

only depends on the Hubble parameter H is given by

H
1 éy 1 H
=2y — — = R e— 1.2.7b
NH €H 2en H € SHH’ ( 7 )

which can be shown to be equivalent to the parameters in Eq. (1.2.6) in the slow-roll regime
(i.e. when all parameters are small). The first Hubble slow-roll parameter ey is always defined
in the same manner, but there exist different conventions for the second parameter ny. We
chose this definition for ng in order to make it coincide with the definition of 7y (i.e. we simply
rewrote 7y solely in terms of H), which is not the most common convention; for instance, in
Refs. [2, 7, 11, 23], the parameter 7y is actually defined as ng = 2ep —|— 77+ While in Ref. [24]
it is given by ng = —(;LH, with the exact relation ﬁ] = %HHH

It is also useful to express the number of e-folds in terms of the potential V(¢), so that we
are able to compare different inflationary models in this domain; an approximate expression one
Hit

can arrive at using Eq. (1.2.1) and a(t) = age™" is

“ L4 V()
N, = [ Hdt ~ — | 222 g4. (1.2.8)

where ¢; and ¢ are the values of the inflaton field at the beginning and at the end of inflation,
respectively. From this relation, we also conclude that dN. = H dt, which is quite a useful

with the prime denoting differen-

relation. This last result implies in particular that ey = —?{ ,

tiation with respect to N, which shows that H varies very little during inflation, since ey < 1

then. In fact, within an e-fold and during slow-roll, we have

H(N, +1) = H(N,) e~ JndNe & F(N,) e~ ~ H(N,) (1 — eg) ~ H(N,), (1.2.9)
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where we used the fact that ey varies little during slow-roll, as per %‘ = 2|ng —2ey| < 1,
which is obtained directly from Eq. (1.2.7b).

Choosing a potential V' (¢) allows us to calculate explicit expressions for the slow-roll param-
eters and for the number of e-folds, to which we can apply, respectively, the slow-roll conditions
and the reference range of values, and thereby estimate the values for which quantities like ¢;
and ¢ the chosen potential may be an interesting candidate to describe the dynamics of the
inflaton field. Common choices for V(¢) include the family of monomial potentials V' (¢) = A¢"™
and the family of hilltop potentials V(¢) = V) {1 - = (Mi;)n}, but other possibilities are also
widely found in the literature [3, 22].

It is pertinent to point out that the derivative V() is often associated with the squared
mass of the inflaton field, mi, meaning that the second slow-roll condition, |ny| < 1, can give

information on the value of that quantity: in particular, it bounds the inflaton mass from above,

since, using the Friedmann equation (1.2.5a),

2V,¢¢(¢>)‘ - 1“/,¢¢(¢)
PV (9) 3| H?2

Inv|= ’ ‘ <1 = my< H, (1.2.10)

which, thinking of the solution to equation (1.2.4) in the case where V4 (¢) ~ miqﬁ, translates to
the inflaton field behaving as an over-damped harmonic oscillator, whose damping is due to the
expansion of the Universe, accounted for in H. The condition mg < H can also be interpreted

as the inflaton being a light scalar field.

The quantum inflaton

Now, so far we have only concerned ourselves with the classical description of the inflaton field.
If we introduce quantum fluctuations into the mix, the field may be described as ¢(t,x) =
&(t) + ©(t,x), where ¢(t) designates the classical inflaton field we have been working with. The

fluctuations are described to linear order by the equation

Op=—V4(d) . (1.2.11)
which, in the case of a light inflaton field (V’(gq; ~ mz—) < H?), may be simplified to

. I G

<,0+3H90—§V p=0, (1.2.12)

i.e. a homogeneous wave equation in FLRW spacetime. This equation may be rewritten in

conformal time 7 (with ¢ » = ¢') as
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/
g0"+2%<p'—v2g0:0, (1.2.13)

the solution of which can be expressed in operator form as a sum of Fourier modes ¢y (7,x) =

o (7) %%, leading to

R Bk1 g, e
<,0(T,)():/(27T)3 E {akgpg(ﬂ e’k —}—a;r(gpk (r)e k }, (1.2.14)

where k = |k|, with k being the comoving 3-momentum, and @i (1) = ﬁﬂ (1 ¥ k’—T) e*". The
operators dy and &L are the creation and annihilation operators, respectively. The Bunch-Davies
vacuum state [2, 7, 11] is defined as ax|0) = 0.

Each Fourier mode has a corresponding physical wavelength given by Ay phys(t) = 2%a(t),
which of course grows quasi-exponentially with expansion. If the physical wavelength associated
with a certain mode k becomes larger than the Hubble horizon H~!, that mode will become
causally disconnected and so its amplitude will freeze, since no physical process will be able to
alter it then. The amplitude of a superhorizon mode is constant and is given by ]golf\ R~ %
Upon exiting the horizon and freezing in amplitude, the fluctuation associated with the £ mode
will then be stretched to macroscopic scales by expansion.

If we calculate the vacuum expectation value of the variance of the field fluctuations at x = 0,

(0[@%(r,0)]0), we get

2 2
(0]¢2(7,0)[0) = /dlnk (;) ~ (;) N, (1.2.15)
where we regularised the integral by considering only super-horizon modes and used the fact
that at horizon-crossing k¥ = aH. This result indicates that the average amplitude of the infla-
ton fluctuations grows as inflation progresses, specifically with the square-root of the number of
e-folds. Moreover, each logarithmic momentum scale contributes with the same factor (%)2 to
the integral, making this spectrum of fluctuations scale-invariant; rigorously, the scale-invariance
is only approximate, since H varies adiabatically in time due to slow-roll [3]. These quantum
fluctuations of the inflaton induce perturbations in its stress-energy tensor, which in turn induce
scalar perturbations in the metric tensor and the curvature of spacetime, as described by Ein-
stein’s field equations, ¢ being the dominant fluid in the Universe during the inflationary epoch
[7]. These metric and curvature perturbations act as inhomogeneities in the fabric of spacetime

and will be subject to the same process as the inflaton fluctuations: upon horizon-crossing, their

amplitudes will freeze and they will be stretched to macroscopic sizes, thus becoming observable
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(Figure 1.2.2). These inhomogeneities will then be passed on to the fluids that at some point will
fill the Universe, thus providing the seeds to the observed large-scale structure. In particular,
they will be the origin of the temperature fluctuations encountered in the CMB, whose structure
the inflationary paradigm is able to satisfactorily account for as well, thereby solving yet another

conundrum of the HBB model [1, 2, 7, 11].

comoving scales

A
(aH)™ Inflation Hot Big Bang

sub—ht& super-horizon A—horizon
k—l

zero-point
fluctuations

today

CMB
recombinantion

reheating

horizon-crossing horizon re-entry time
k=aH

Figure 1.2.2: Diagrammatic illustration of the evolution of a perturbation during and after
inflation. The perturbation freezes in amplitude and is stretched to macroscopic sizes once
the corresponding mode becomes superhorizon. When inflation ends and standard cosmology

ensues, the Hubble horizon grows and the perturbation reenters it. Image adapted from [2].

The perturbations of the inflaton are normally described by the power spectrum P, (k),
defined from Eq. (1.2.15) as [1]

3 2
(0[¢*(r,0)|0) = /(;Tk)?)??@(k) = P@(k):%, (1.2.16)

which in turn habilitates the definition of the dimensionless power spectrum of inflaton fluctu-

ations

k3 H\?
2 _
which of course is the nearly scale-invariant spectrum appearing in the variance integral (notice
that we are keeping the momentum scale k in the argument of A?p precisely to highlight the
slight scale dependence of this quantity). We will understand the importance of this spectrum

shortly.
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As mentioned earlier, the quantum fluctuations of the inflaton field are able to source scalar
perturbations of the metric. To see how this occurs in practice, we start by perturbing Einstein’s
field equations to some order in perturbation theory. Working in first-order, the perturbed metric

Guv = Guv + hyw, assuming |hy, | < |guw|, may be written as

Goo(t,x) = +1 + hoo(t, x) (1.2.18a)
Goi(t,x) = a(t) hoi(t,x) = a(t) hio(t,x) (1.2.18b)
gij (t, X) = —aQ(t) [513 + hij (t, X)] , (1.2.18C)

with h;; = hj;. The perturbation components are decomposed according to their behaviour

under spatial rotations, as per the scalar-vector-tensor decomposition [1, 7, 8, 25, 26|

hgo =2A (1219a)
hoi = hio = —B,; — B; (1.2.19b)
hij = 2D6i; — 2E 5+ Vi j + Vi + hij" (1.2.19¢)

where A, B, D and F are 3-scalars, B; and V; are divergenceless 3-vectors (BZZ =V i=M = 0),

t T Ox'
TT 6hE'T 35 1. TT . . .
and h;;* is a transverse (—4- = 0) and traceless (¢"/h;;7 = 0) tensor, typically identified

with gravitational waves (GWs). Likewise, the energy-momentum tensor for a perfect fluid (cf.

Eq. (1.1.4)) may also be perturbed to first-order [1, 8, 25, 20]

0Ty = —phoo + (5p (1220&)
§Ti0 = pahio — (p+p) (5u,2~ + 5u}’) (1.2.20b)
0T;j = a” [p hij + 035 0p + T, + ITY; + T0); + H?j] : (1.2.20¢)

where dut = d(¢g""u,) is the velocity perturbation, whose spatial components are decomposed
as du; = du; + 6u), with du being the velocity potential (a 3-scalar) and du) denoting a
divergenceless 3-vector, while the terms denoted with a IT are the components of the anisotropic
stress, which is absent in an unperturbed perfect fluid (these quantities satisfy a set of conditions

that is detailed in Ref. [8]). Plugging these decompositions into Eq. (1.1.1), one is able to find
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that, at linear order, the scalar, vector and tensor perturbations of the metric satisfy decoupled
differential equations and so evolve independently [1, 7], which greatly simplifies the calculations.

When working with these decompositions, however, one must be wary, as they depend on
the choice of coordinates. Hence, we must define gauge-invariant combinations of the above
quantities in order to link them with observables. A useful choice, as we will see in a moment,
is called the comoving curvature perturbation, which normally appears expressed in conformal-
Newtonian gauge variables, under which A = ® and D = —V are the only non-vanishing
components of the perturbation and are respectively the Newtonian gravitational potential and
a local curvature perturbation [1, 2, 7, 8, 11]. Using this gauge, the gauge-invariant comoving

curvature perturbation is then written as
= -V + Hdu, (1.2.21)

where during inflation du = % and V is negligible compared to the other term. This quantity
is of course defined using both the metric perturbations and the perturbations of the energy-
momentum tensor, and acts as a measure of how much the curvature of spacetime is deformed,
in this case due to the fluctuations of the inflaton field. Considering an expansion of R in

Fourier modes, we thus have

2
(R?) — /dlnk (Z) A2(k) = /dlnk AZ (k) (1.2.22a)

2 2
A%(MZ(E) (Z) , (1.2.22b)

where A%(k) is the dimensionless power spectrum of the curvature perturbations and is thus
aptly called the dimensionless curvature power spectrum, with the quantity Pr (k) = Qki; A% (k)
being the curvature power spectrum; however, henceforth we shall refer to A%(k) simply as the
curvature power spectrum. Like A?o(k:), the curvature power spectrum is also a nearly scale-

invariant quantity; its slight scale dependence is found to described by the power law [1, 2, 7, 11]

k

9 a2 k ns—1
AR (k) = A (k) <k> : (1.2.23)

where k. is a pivot comoving momentum scale at which the amplitude A% (k) is defined and

ng is called the scalar spectral index. The latter satisfies

®The evolution of R is described by the Mukhanov-Sasaki equation [8, 27, 28].
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_ dIn A% (k)

ng—1=—7 "k (1.2.24)

and characterises how the curvature power spectrum deviates from scale-invariance, which would
be attained at ng = 1. For ng > 1, the spectrum would be blue tilted, as there would be more
power on higher momenta, whereas for ns < 1 it would be red tilted, as the power would be
concentrated in lower momenta.

The power spectrum of curvature perturbations has been observed by satellites such as Planck
[4], by analysing the spectrum of CMB temperature fluctuations. The power law behaviour
predicted by Eq. (1.2.23) has been identified and the observables A% (k) (usually denoted by
As) and ng have been measured at the CMB scales, corresponding to modes that exited the
horizon during a period of about 8 to 10 e-folds, placed 50 to 60 e-folds before the end of
inflation [3], and with one of which k., is identified; note that to these modes correspond the
largest length scales observable in the CMB, as they were stretched for almost the entirety of
the inflationary epoch. At k, = 0.05 Mpc~!, these observables were found to assume the values

[29)°

1n(1010 AS) = 3.044 £ 0.014 (1.2.25a)

ns = 0.9649 + 0.0042 (1.2.25b)

making the curvature power spectrum very slightly red tilted.

Within single-field inflation, the amplitude A% (k.), which is defined by evaluating

2
Eq. (1.2.22b) at the pivot scale, i.e. A%(k*) = (Z:) (gf;) , can be approximated during

slow-roll by
1 V(gs) 1

A2 ~ - 1.2.26

where ey, is obtained by evaluating Eq. (1.2.6) at ¢,. This last expression is important since
it can be used to constrain parameters of the inflationary potential via the measured value for
the amplitude, Eq. (1.2.25a), thereby allowing us to scrap candidate functions that violate those

constraints [1, 3]. Moreover, using Eq. (1.2.24), one can show that during slow-roll

ns—1 =~ 2ny — bey, (1.2.27)

"For the Planck likelihood TT,TE,EE+lowE-+lensing and at 68% C.L..
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which is valid for all single-field inflation models [2, 7, 11].

Although scalar curvature perturbations are the only ones induced by the inflaton fluctua-
tions (at least in first-order perturbation theory [25, 26, 30, 31]), it is pertinent to also investigate
other types of metric perturbations. In particular, it can be shown that quantum vacuum fluc-

tuations of the gravitational field generate a stochastic spectrum of gravitational waves; let us

briefly see how. The transverse-traceless (TT) component of the metric perturbation, h};T, can
be found to obey a first-order EoM that is identical to the one satisfied by inflaton fluctuations,

Eq. (1.2.11), in the homogeneous limit® [2, 7, 11, 25, 26, 31, 32]
OnriT =0, (1.2.28)

which allows us to reuse the results previously obtained for ¢; we need only take into account
a relative normalisation between the two quantities, as can be understood from the action in
Eq. (1.1.11), as well as the existence of two possible polarisations for h;g-T.g In fact, we could
have obtained Eq. (1.2.28) directly from the Einstein-Hilbert action by perturbing the latter to
first-order and then variating it with respect to h};T [26]. Hence, the variances of }ALET and ¢ are

related by
STT\2 2 \?
() = 2% (51) @7, (122
leading to the definition of the dimensionless power spectrum of tensor perturbations

2 H?
2 _
for which we have used Egs. (1.2.16) and (1.2.17). Like the previous spectra, this one is nearly

scale-invariant as well and, despite not having been observed yet, it is expected to follow a

similar power law, for which we may write the following ansatz

k

AF (k) = AF (k) (k>m , (1.2.31)

where the tensor spectral index n; satisfies

8In first-order perturbation theory, perfect fluids (like the inflaton) do not generate anisotropic stress, and so

hET

ij » which would act as a

they do not lead to the appearance of a term on the right-hand side of the EoM for

classical source of gravitational waves.
9Note that this does not mean that the tensor perturbations are induced by ¢ (which is entirely not the case),

only that the equations of motion followed by the two quantities are the same.
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= — -t (1.2.32)

As stated before, neither A?(k,) nor n; have been measured, but some bounds have been set on
both of these parameters, in particular via another CMB parameter called the tensor-to-scalar

ratio [2, 7, 11, 29]

A7 (k)
(k)

(1.2.33)

which relates the weight or power contained in the tensor and in the scalar perturbations of the
CMB spectrum. The current bounds on rg g2 (corresponding to k, = 0.002 Mpc~!) and on the

derived parameter n¢ o1 are [29]'"

r0.002 < 0.044 (1.2.34a)

—0.55 < 1¢,0.01 < 2.54 , (1.2.34b)

which means that there is considerably more power on scalar perturbations and that true scale-
invariance (n; = 0) appears to still be compatible with observations, as does a red titled (n; < 0)
or a blue tilted (n; > 0) spectrum. It is interesting to note that an accurate measurement of the

amplitude of the power spectrum of tensor perturbations would directly allow us to obtain an

2 HP
2 ME,

experimental value for H during inflation (since A?(k,) = ) and thus discover the energy

scale of this process, which is currently unknown; nonetheless, an upper bound may be imposed

on H using Eq. (1.2.34a)

0.044
H < mMp\|=5—A% gy ~ 10" GeV, (1.2.35)

where A%,0.002 = A% (k. = 0.002 Mpc ') was computed using Egs. (1.2.23) and (1.2.25).

An expression for r in terms of the field velocity dT‘i can be found by dividing Eq. (1.2.22D)

by Eq. (1.2.30), giving

-\ 2
8 [ do
- ° 1.2.
v (dNe> ’ (1.2.36)

OFor the Planck TT,TE,EE+lowE-+lensing+BK15 likelihood and at 95% C.L. for 79.002, and at 95% C.L. for

the derived parameter n¢,0.01.
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where the derivative is to be evaluated at k.. Moreover, from Eqs. (1.2.30) and (1.2.32), it can

be found that during single-field slow-roll inflation

ng ~ —2ey (1.2.37a)

r o~ 16ey, (1.2.37D)

which indicates that n; < 0, making the power spectrum of tensor perturbations red tilted, and

from where we also find the following bound on ey

ey < 3x1073, (1.2.38)

making it a small value, as expected. Moreover, Eq. (1.2.37) leads to the well-known consistency

relation of single-field inflation'!

r o~ —8ny, (1.2.39)

which is deemed to be the ultimate test (the smoking gun) of the theory: if both r and n; are
measured accurately and are found to satisfy Eq. (1.2.39), inflation will then likely be confirmed

[2, 7, 11].

1.2.2 Pre-heating and reheating

Inflation ends when the slow-roll conditions stop being verified, at which point the solution to
equation (1.2.4) describes under-damped oscillations near the minimum of V'(¢), since H would
have decreased considerably by then, as per |ny| 2 1; the classical inflaton thus behaves as
pressureless matter [2, 11]. After inflation, standard cosmology must be recovered. This means
that the energy lost by the inflaton field must ultimately be converted into the familiar SM
particles, allowing the usual cosmological evolution to proceed. This is accomplished by means
of a reheating period [2, 11, 33-35].

The process of reheating is typically divided into three stages. In the first one, dubbed
pre-heating, the inflaton field decays into scalar particles due to parametric resonance, normally
of the broad (explosive) kind. In general, this process is incomplete, as the resonance eventually

becomes narrow and inefficient. Moreover, the particles that result from it are far from thermal

" Other inflationary paradigms (e.g. multi-field inflation) lead to different consistency relations [22].
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equilibrium and have large occupation numbers. The second stage of reheating is the decay of
the previously produced particles and of the part of the inflaton field that survived pre-heating.
The third and final stage is the thermalisation of the newly produced particles, by which they
reach a state of thermal equilibrium [33].
In the stage of pre-heating, the classical inflaton field ¢, which is oscillating with a decreasing
amplitude ®(t), couples with e.g. a quantum scalar field ¥, thus introducing an oscillatory mass
1

term for these particles. For a quadratic inflationary potential V(¢) ~ $m?*(¢ — o)? (here

written in a way to allow spontaneous symmetry breaking), an interaction term —% g>¢*x? and

neglecting expansion (i.e. setting a = 1), the equation of motion for a mode xx(z), with z = ”;t,
can then be written as a Mathieu equation [33, 36—39]
Ak o 4 k2+920.2
- 2
Xi(2) + [Ax — 2q cos(22)] xx(2) = 0, , " . (1.2.40)
g =152

This equation is notable for the fact that its solutions develop parametric resonances (which
can either be narrow, for ¢ < 1, or broad, for ¢ > 1) in the form of exponential instabilities

z)z

xk(z) oc e (%) 2 the instability being attained when sy (z) is real [33, 36-40]. Using these
unstable solutions, one can obtain the number of produced particles with momentum & (denoted

ng), as well as the total number density of produced particles (denoted n, ), since [33]

Cowr [ Xl 2| 1
m_2<%4wﬂ 5 (1.2.41a)
3k

with w?(t) = k% + g%0? + 2¢%0® sin(mt), so that the exponential growth can be interpreted in
this context as explosive particle production (rigorously, the production is explosive only in the
case of a broad resonance). A thorough account of the theory of pre-heating can be found in
[33]. Note that preheating is not limited to the decay of the inflaton field into other scalar fields:
for example, a theory of preheating with fermions was developed in [41] and one with Abelian
gauge fields was proposed in [42].

The subsequent decay of the particles produced during pre-heating and of the remaining
inflaton field, as well as the thermalisation of their decay products, is described by methods
similar to those used in the elementary theory of reheating [2, 11, 33, 43, 44]. Let us briefly
explore this theory using a phenomenological description, in the particular case where the rapidly

oscillating inflaton couples with a scalar field y and a spinor field ¢, considering also a quadratic
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inflationary potential and recovering the expansion of space. The effects of these interactions
can be encompassed in a friction term I'$ that is added to the EoM for ¢, Eq. (1.2.4) [45], whose

solution then becomes
B(t) = B(t)e™ ~ e e 3 BGHITIE (1.2.42)

where I' = I'(¢p — xx) + ['(¢ — 91)) is the total decay rate of the inflaton, which coincides
with its flat-space limit. Thus, the damping of the oscillations of ¢ can be attributed to both
the expansion of the Universe and particle production due to the decay of the inflaton. In fact,
given that py = %\¢|2 + 3m?(¢|? ~ Lm2®? (for m® > H?, which is true at the end of inflation,
and m? > I'?| which is verified as well since at this stage H > I') and ng = py/m, and since the
solution in Eq. (1.2.42) obeys
%(ai”@?) = Td®d?, (1.2.43)
we find that the comoving energy density ~ a® ps decays exponentially with I', as does the co-
moving number density ~ a3ng4. Moreover, if we multiply Eq. (1.2.4) (with the added friction
term) by $, we obtain a conservation equation like Eq. (1.1.7) but with a decay term propor-
tional to I' on the right-hand side; the particles produced during reheating then follow a similar
conservation equation, but with a flipped-sign on the right-hand side term, ensuring that the
total energy density is conserved during this stage. Thus, reheating can be described by the

following set of differential equations

P +3H(py +ps) = —Tpg (1.2.44a)
pm +3H (py +pu) = Tpg (1.2.44D)
SMBH? = py+ pum (1.2.44c)

which reproduces the same behaviour for a3p¢ x e 1" when Py ~ 0, while also predicting the
evolution of pys for different types of fluid (the subscript M refers to “matter” of any kind and
so it can include radiation, which is particularly important in order to obtain the radiation-
dominated era after inflation) [3, 8.

Particle production ends (and so reheating stops) when H becomes smaller than the decay

rate [, allowing thermalisation to occur; this defines a reheating temperature, which can be found
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to be T, ~ 0.2y/I'Mp if the decay products of ¢ are ultra-relativistic and if thermal equilibrium
is achieved rapidly after reheating completes [33].

After these processes, standard cosmology ensues and the HBB model can be applied.

1.3 Particle production during inflation

Apart from the usual models of pre-heating and reheating discussed in § 1.2.2, in which particle
production occurs strictly after inflation ends, there have been several proposals of mechanisms
for production of particles during the slow-roll phase of inflation [46-51]. These models are
interesting and may have a few advantages over the standard paradigm of reheating for a number
of reasons.

The most important one is the fact that these models can give rise to observational data in
the CMB, as they may introduce features in the otherwise nearly scale-invariant curvature power
spectrum, A%, and they may provide a contribution to the power spectrum of tensor perturba-
tions, A?. The presence of these additional fields during inflation should in principle cause some
backreaction on the dynamics of the classical inflaton and of its quantum fluctuations, both of
which are intimately related to the curvature power spectrum, as we saw in § 1.2.1. Hence, if
the inflaton acquires some signatures due to the particles produced throughout inflation, some
information about the latter may very well be imprinted on the CMB and thus be observable
and/or measurable. Something similar does not happen in the usual picture of post-inflation re-
heating, as the perturbations generated then do not grow to macroscopic sizes. Additionally, the
produced particles may generate tensor perturbations of their own, leading to a stochastic GW
spectrum that will contribute to AZ; moreover, this spectrum might eventually be detectable by
current or future GW interferometers [25, 26, 32, 47].

A second advantage is the fact that if particle production during inflation is efficient enough,
we may have the energy density of the inflaton field be fully converted to that of the produced
field by the end of inflation, thereby eliminating the need for a post-inflation reheating period.
In this case, the recovering of the HBB model should be attained through the decay of the
produced field into other particles.

Lastly, a third advantage is the possibility that the produced particles lead to the appearance
of a friction term in the equation of motion for the inflaton, which translates into a relaxation
of the constraints on the slow-roll parameters and an eventual modification of the inflaton per-
turbation spectrum. This is the basis of warm inflation models [52-55], so that this mechanism

can in fact have a double application (and importance) within the theory of inflation. However,
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we will not be exploring this possibility in this work.

It is clear that this type of model has an additional complication, since we must not allow
the production of particles to be too efficient to the point where the energy density of the newly
produced particles dominates over that of the inflaton field during the slow-roll regime, in which
case we would effectively be breaking inflation. Hence, the production must be quite controlled,
meaning that some type of compromise in its magnitude and effectiveness has to be attained
in order for these models to generate measurable signals whilst not destroying the underlying

inflationary mechanism.

1.4 Outline

In the following chapters, we will present and explore the theoretical model developed throughout
the duration of this research paper. Our goal is to establish and analyse a mechanism of resonant
production of scalar particles, x, during the inflationary epoch. We intend to check whether
this production can be efficient enough to allow the existence of some observational signature of
these particles, without them becoming the dominant contribution to the energy density of the
Universe, thus forcing inflation to end prematurely.

The outline of the upcoming chapters is as follows. In Chapter 2, we begin in § 2.1.1 by
introducing and motivating the Lagrangian for this theoretical model, which we will then use
in § 2.1.2 to obtain and discuss the equation of motion for the x field. In § 2.2 and § 2.3,
we calculate the comoving number density and the physical energy density, respectively, of the
produced x particles. In § 2.4, we deal with the backreaction of the x particles on the inflaton
field: the effect on the classical inflaton is discussed in § 2.4.1, while the effect on its quantum
fluctuations is discussed in § 2.4.2. In § 2.4.3, we analyse the impact of the backreaction on
several CMB observables. In Chapter 3, we start by analysing the parameter space of our model
and performing numerical simulations of solutions to the equation of motion of the x modes, in
§§ 3.1 and 3.2, respectively. Then, in § 3.3, we test our theoretical results against observational
data, for several choices of the inflationary potential V(¢). Chapter 4 will be dedicated to the
overarching discussion of the derived results, featuring also the concluding remarks regarding
the proposed mechanism. Three appendices, §§ A to C, are included as well, where we walk

through a few useful calculations in some detail.
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2 Resonant particle production during

inflation

The following sections will be dedicated to the exploration of our particular model of reso-
nant production of scalar particles during inflation. We shall discover whether the conditions
for an efficient production of these particles can be met without breaking inflation, and what

observational signatures are possible to obtain then.

2.1 The model

As we shall find shortly, the mechanism presented here is motivated by Warm Little Inflaton
scenarios [55—61], which in turn are inspired by Little Higgs models [62—64].
2.1.1 The Lagrangian

Consider the Lagrangian
1
£@::(DMQQTQyﬂh)+(DM@gTUY@h)—ZP@J”W—NVUQHJQﬂ), (2.1.1)

where ®1 o are complex scalar fields, A, is the (massless) U(1) gauge field, D, = 0,, —ieA, is
the gauge covariant derivative and F,, = 0,4, — 0, A, is the gauge field strength tensor (the
fields @ 2 are assumed to have the same charge e).

The potential ¥ (|®1],|P2]) is the sum of two Higgs potentials (one for each field) and is
given by

2 2
A M? A M?
vwm@m=i(mﬁ—2>+50%ﬁ—2>. (2.1.2)

This Lagrangian has a U(1) gauge invariance, granted the fields transform as
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(I)l — eiozq)l
Dy — 1D, : (2.1.3)

A, —>AL :Au—l—éﬁua

where o = «a(z#) (the transformation is local). The potential reaches its minimum # = 0 at

1 0+
(I)? = —\/Miez M @(1) = —\]/wiez M

. — P (2.1.4)
(Pg = —\/Mﬁelﬁ (I)g = —%617

where ¢1, ¢o, 6 and ¢ are real scalar fields, the latter being a relative phase between ®{ and
®J. We can add radial perturbations, hy and hg, to these solutions to get an approximate form
of the fields near the potential minimum. Additionally, if we set a = —% in (2.1.3) we can
eliminate 6 (a Goldstone boson) from the Lagrangian, in which case we will be working in the

unitary gauge or unitarity gauge [55, 62—66]. In this case, we can write the fields as

M+hy id
V2 (2.1.5)
®y = M%zh?e_i%

Here, h1 and ho are also real scalar fields, each describing a Higgs-like particle. Furthermore,
unlike 0, the relative phase ¢ is a physical degree of freedom, which is not absorbed by the unitary
gauge; in fact, it is a U(1) gauge-invariant quantity that we identify with the inflaton field [55]. It
is simple to show that, in the unitary gauge, the gauge field A, acquires a mass m, = V2eM and
the Higgs-like fields h; and hg acquire masses mp, = \/);1 M and mp, = \/)‘2Z M, respectively.

We can now introduce a third scalar field, y, which describes the particles we intend to
produce. We take it to be real, so that the coupling between x and the fields ®; and ®4 is
of the form %gz@l — ®5)?x2, where g is a dimensionless coupling constant that we shall take
to be smaller than unity. Since the y field does not transform under the U(1) group (it being
U(1)-neutral), we may add to (2.1.1) the also U(1)-invariant Lagrangian

1

1
EX‘P = B uX ox — 592@1 - (I)2|2X2 ) (2.1.6)

which allows us to define the full Lagrangian of our model

1 1
L =(D,®)" (D"®)) + (D, ®2)" (D"®y) + SOuX "X = JFu P
1 (2.1.7)
= V(|®1],[P2]) — 592|<1>1 — Do\,
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where the coupling constant g and the mass scale M are free parameters of the model.

Using (2.1.5), the last term in (2.1.7) can be written as

L, 2.2 _ 19 2[ (2¢>} 2
59 | P — Do x* = 59 M= |1 — cos 27 ) | X + ...
X

1
=3 x 2g%M? sin? (]ﬁ[)

2.1.

24 , (2.1.8)
~—

higher order terms

mg
which in turn gives to leading order in y and excluding all other fields and interactions (in this
paper we are only concerned with analysing x production, so that we may ignore hy 2 and A,

assuming they are heavier than y and so should not influence the inflationary dynamics)
1 " 1 5 4
Ly = 5(9”)(8 X = 5’ (2.1.9)

For the time being, we shall ignore any backreaction on ¢ due to x. Hence, we shall consider
¢ to be well described by its free field solution, which can be found independently, and whose
value must depend solely on time, as we saw in § 1.2.1. Notice that we did not include a potential
term for ¢ in the original Lagrangian; such a term would in fact be allowed by the U(1) gauge

symmetry of our theory, given that the inflaton is a relative phase, and so gauge-invariant, and

2

so we could (and should) have included it. Furthermore, note also that my

is a function of ¢

(and thus of time), so that the Lagrangian (2.1.9) simply describes a free real scalar field x with

2

an oscillating mass m}

(t). Production of x particles is a consequence of this time-varying mass,
as we shall find later on. Hence, since the fields h; 2 and A, do not have oscillating masses, but
constant ones, there will be no production of particles in their case, which is another argument

we can use to neglect them.

We can define an effective action for x as

Sy = /d4x V=g (;aﬂx oMy — %mi xz) , (2.1.10)
with g, = diag(+1, —a?, —a?, —a?), making v/—g = /| det g,| = a3, where a = a(t) x et is
the scale factor. Note that we are considering a flat FLRW metric, as is customary in inflation-
related research (we follow in particular Ref. [33]), and that the inflaton energy density is
dominant, so that the scale factor does grow quasi-exponentially. In the ensuing discussion,
we take H to be constant, which we shall see is a good approximation in the context of x

production; recall, however, that in reality H varies adiabatically due to the slow-roll dynamics

29



of ¢, although its variation within an e-fold is quite small, cf. Eq. (1.2.9). Setting to zero its

variation with respect to x, one arrives at the equation of motion for yx
. . i 2 2.
X +3Hx QQV X +myx =0. (2.1.11)

We can also vary S, with respect to the metric and thus find the stress-energy tensor and

the energy density for y, respectively given by

2 68 1 1
T = -~ X — g (8 9% — =m?> 2> oHx o 2.1.12
X Tg00m 9 30X TN = g ) + X O (2.1.12)
and
1., 1]Vx]?* 1
— 00 __ 2 2.2
px =Ty = Xt 5o +§mxx. (2.1.13)

2.1.2 The equation of motion

We now turn our attention to equation (2.1.11). We can write its solution as a sum of Fourier

modes Yy (t,%) = xx(t) e, with k = |k|, and promote y to an operator ¥, which gives

> d?’k ~ 1k-x N * —ik-x
X(t,x):/w[am(t)ek +af () e ] (2.1.14)

where ay and dL are annihilation and creation operators, respectively, satisfying the canonical

commutation relations

e, ] = (27)7 8% (k — K) (2.1.15a)

i, ane) = [af, aly] = 0. (2.1.15b)

We may define the conjugate momentum of x as

it = JWIE) _ mas s = a3 it x) (2.1.16)
ox(t,x)

and impose that the commutators of x and 7, satisfy the equal-time relations
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R(EX), A (Ly)] = =83 (x—y) = —— 0% (x—y) (2.1.17a)

[)A((tvx)v X(ta}’)] = [ﬁx(tvx)’ ﬁx(ta}’)] =0, (2'1'17b)

which indeed occurs only if the following Wronskian normalisation condition for the mode func-

tions yg(t) is verified

YO k() — X0 Xwlt) = s = (2.1.18)

Let us now return to the study of the EoM. Inserting the expression for x(¢,x) in equation

(2.1.11), we arrive at

) K
X+ BH X + 3k + mixe =0, (2.1.19)

where kphys = £ is the physical momentum of each mode k. We define wy(t) = aé“—é) +mi(t)

to be the energy associated with each mode, such that equation (2.1.19) may be rewritten as
¥e + 3H X +wi(t)xx =0, (2.1.20)

which greatly resembles the equation of motion for a damped harmonic oscillator with a time-
varying frequency, where the damping is due to the expansion of the Universe (accounted for in
H). Hence, we now see that each mode in the Fourier expansion (2.1.14) actually behaves like
a damped harmonic oscillator with a time-varying frequency.

Since we want to study particle production during inflation, we should consider ¢ to be in
the slow-roll regime. In this regime, the time derivatives of ¢ get successively smaller as their
order increases, so that we may perform a Taylor expansion of ¢ around some instant fy and

keep only the first two terms, that is until the first derivative of the field

d(t) = d(to) + d(to)(t —to) = Pt + 0. (2.1.21)

Using mi = 2¢°M?sin® (%) ~ 2¢°>M? sin® (%) (where we have set 6 = 0 to simplify the
calculations, since a phase factor should not impact the underlying physics) and substituting in

equation (2.1.19), we get
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Xt + 3Hxr + Xt =0. (2.1.22)

K bt
o) + 2¢% M? sin? (j\})

In order to simplify the equation by removing the effects of the expansion of the Universe
(i.e. the 3Hx; factor) we may define a new function X = a2y, (its Wronskian condition
being X,j Xi — X} X = ia~3) and substitute x, in (2.1.22), which leads to

]{32

> 9 0 22 o Ot _
X+ LlQ 4H + 2¢g“M* sin % X, =0, (2.1.23)

where a change of variable t — 2z = %t can be done, allowing us to write

M 2 2 M 2
() (l; —|—92M2 _ 9H2> _ () 92M2 COS(QZ)] X, =0, (2.1.24)

X7+
o 4 o)

where the primes denote derivatives with regard to z, which is dimensionless, and where we used
the fact that the above equations are invariant under a sign change in ¢. This equation can be

rewritten as

X} + [Ak(2) — 2qcos(22)] Xk =0, (2.1.25)
with
MN*( K* 9 _,
Ap(z) = (¢> <a2(z) - ) +2 (2.1.268)

2
]Z) g*M? . (2.1.26b)

Equation (2.1.26) is a Mathieu-like equation with a variable parameter Ag(z) [36-39]. Rig-
orously, both A, and ¢ vary in time (and so both should be functions of z), since ¢ is itself a
time-varying quantity; however, since we are in the slow-roll regime, we may neglect the vari-
ation of ¢ when compared with the variation of the scale factor, a(z), which is approximately
exponential. In this case, we may take ¢ to be a constant and Ax(z) to vary solely due to a(z).

For the theory of Mathieu equations used here, in particular the application of Floquet theory
and of Floquet’s Theorem, see [2, 33, 36-39]. It should be noted that this theory assumes both
parameters A, and ¢ to be constant in time; we can, however, employ it to some extent even

if Ay = Ai(z) and/or g = ¢(z), as long as we ensure that the variation of these parameters is
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slow (or adiabatic) [40]. The variation of ¢ due to the slow-roll dynamics can be shown to be in
fact slow (see § 3.3 and Appendix A). The variation of Ay(z) is trickier to analyse; nonetheless,
we shall see in a few paragraphs that under some conditions it is also adiabatic. Therefore, we
may safely apply the theory of Mathieu equations to (2.1.25).

The main characteristic of these equations is the existence of parametric resonance bands for
some values of the parameters A; and q. We shall only consider the case of a narrow resonance
(¢ < 1), for which the resonance bands occur for Ay ~ n?, with n a positive integer. In a narrow
resonance, particle production is more contained than in a broad resonance (¢ 2 1), thereby
being more likely not to break the underlying inflationary mechanism, which assumes the ¢ field
to be dominant. We shall also restrict ourselves to the first (A; ~ 1) and most important of
these bands, which occurs for 1 — ¢ < A <1+ ¢ [36].

Let us briefly focus on the parameter Ag(z). Since we expect the modes being produced,
which are the ones inside the resonance band, to be causally connected (i.e. subhorizon), we

must impose that for those modes % > H, such that

Ap(2) ~ (M)Q (’;)2 +2g, (2.1.27)

(2.1.28)

Since at the center of the resonance band (which is where the modes are while they are being

produced), we have Ay ~ 1, it follows from (2.1.28) that

kla\? 1 1
M) 1 —>1 2.1.29
(9M> 2q 2q > ( )

given that, for a narrow resonance, ¢ < 1. This means that, for all significant modes (i.e. the

k

2
ones being produced), we have (E) > ¢?M?. Since (m?

Y1) = g>M? is the average value of the

oscillating squared mass of the y field, we may use this quantity to define an effective mass for
the x particles, (m,) = gM. Equation (2.1.29) then implies that the x modes are relativistic
while they are being produced, which is an important result of our model. Using the same

relation, Eq. (2.1.28) becomes

kla\? MZ2k>

A ~2q|— ) = . 2.1.

W)~ 20 (7) ceay (2.1.30)
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which results in

Ap(z) ~ QL (k’)z( M )2 (2.1.31a)
‘= 4; <9;j‘[4>2 (;‘jp)z , (2.1.31b)

where we have also used the relation ¢? = 2ey MZH?, obtained using Egs. (1.2.5) and (1.2.6).
Going back to our main discussion, Floquet’s Theorem states that in the presented case
(a narrow resonance, ¢ < 1, within the first resonance band, Ai(z) ~ 1) the solution of the

Mathieu equation evolves as X (z) o< e#+(9) 2 where pu,(2) is the Floquet exponent and is given

by

1(2) = %\/qQ [An(z) — 12, (2.1.32)

Reverting momentarily to the time variable ¢, inside the first resonance band, j(t) is real (and
positive), such that a mode with comoving momentum & enters the band when A (t1) = 14+q and
exits it once Ag(t2) = 1 — ¢ (notice that Ay (t) decreases as inflation progresses). As mentioned

before, at the centre of this band Ay (z) ~ 1 (making py, = pp®™* = 1), so that, using (2.1.31),

k V2eyMpH — gM
kc,phys =\—- - -

i NGT = const. , (2.1.33)

which tells us that the modes that are at the center of the resonance band at any time t or z
all share the same physical momentum k. phys (of course this constancy is only approximate,
since ¢ actually varies a little due to the slow-roll dynamics). Moreover, in § 2.2 we shall see
that the physical momenta of all modes being produced at a certain time z (i.e. those that are
inside the resonance band at a certain time) are in fact very close to kc phys, which means that
the momentum distribution of the x particles being produced should be close to a Dirac delta
function centered at k. phys, thus being the same at all times. Note that it is only the physical
momentum that is a constant: in principle, every comoving momentum k will be produced at
some time t., given by

te=t.(k) = H 'ln V24 k : (2.1.34)

gM ag

where ap = a(t = 0). We may equivalently consider that at every instant ¢ a mode with a certain

comoving momentum k. is being produced, this momentum being given by
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_gM

ke =kelt) = T

a(t) . (2.1.35)

It is also easy to show, using Ag(t1) =1+ ¢ and Ag(t2) = 1 — g, that

ti(k) = te(k) = 5 (1 +q) = te(k) — 55

ta(k) = te(k) — 57 In(1—q) ~ te(k) + 54

, (2.1.36)

considering that ¢ < 1, such that the time spent inside the resonance band by each mode is

simply

At=ty—t; =qH ", (2.1.37)

or in terms of e-folds

N, =HAt =g, (2.1.38)

which means that each mode spends a short period of time (less than one e-fold) inside the
resonance band (and every mode spends roughly the same time there as well). This result
validates the constant-H approximation we did in § 2.1.1: since each k& mode spends much less
than one e-fold in the resonance band, during that period H is in fact constant to a very good
approximation, given that H(N, + q) ~ H(Ne) (1 — egq), as per Eq. (1.2.9). Surely, throughout
inflation, different modes experience different values of H during their passage through the
resonance band, but for each individual mode that value is essentially the same for the entire
passage. Moreover, we shall see shortly that the result from Eq. (2.1.38) is an important factor
to ensure that Ag(t) varies adiabatically.

Looking at Eq. (2.1.34), we conclude that a mode with comoving momentum k will be inside
the resonance band for a short time interval At = gH ! centered around t.(k), so that for these
modes we may Taylor expand the scale factor a(t) around t.(k) and discard second order and

higher order terms

at) = ace?™t) ~ a1+ H(t —t.)]. (2.1.39)

We may do the same to the Ag(t) parameter, which results in

Ap(t) = 1 =2H[t — t.(k)] <= Ap(z) =1 —~v[z — z.(k)], (2.1.40)
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where

2 M H

=2 — 9 /20— 2.1.41
¥ o p V IR ( )

must ideally be a small quantity in order for the variation of Ax(z) to be adiabatic, as was
stated before; in § 3.3, we arrive at the conclusion that in fact v < 1 in the interesting region
of parameter space for all considered inflationary models, so that the adiabaticity is secured.
Notice that, since ey < 1, this condition implies that M < Mp, which means that the mass

scale of the x particles ((m,) = gM) is subplanckian. With this, we may rewrite the Floquet

exponent in (2.1.32) as

1

wi(z) = 5\/q2 — 2z — z.(K)]?, (2.1.42)

which allows us to easily calculate the values of z when a mode k enters (z1) and leaves (z3) the

resonance band

pe(2) = 0 = ak) = 2olk) = , (2.1.43)

zo(k) = zc(k) +

2

2

with z.(k) = %ln (ﬁ %), which is consistent with the result from Eq. (2.1.36), and from where

we conclude that Az = 29 — 21 = %. It is also useful to rewrite k. phys in terms of ¢ and +,

which simply becomes

2H
kc,phys = - (2144)

Y
At this point, it is important to check if the frequency of oscillation of m, () is larger than
H, which is equivalent to saying that the period of the mass oscillations is less than one Hubble
time, H~!. This translates into ensuring that m, () oscillates as least once within one e-fold
of inflation (recall that N, ~ HAt), which is a necessity if we intend to have efficient particle
production during inflation. From (2.1.22), we see that m, (t) = v/2gM sin (%t), so that the

frequency indeed verifies
¢l _ gM 2H

ol _ oy 2.1.45
M \/% ¢,phys ~y > ) ( )

where Eqgs. (2.1.26b), (2.1.33) and (2.1.44) were used, as well as v < 1. Note that k. phys =

(E) > H is precisely the condition that the k mode that is being produced at a certain
(&

a
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time must verify in order to be subhorizon and thus be causally connected, which is of course
a necessity. Also note that the frequency at which the mass m,(t) oscillates is essentially
equal to the frequency associated with the particles being produced, since for those particles
wi(t) = aé% + mi(t) ~ (%)C = % = %; this result is in line with other common resonant
systems, where the resonances arise precisely from the proximity or equality between two differ-
ent frequencies, one inherent to the system and one imposed on it (w; and %, respectively, in
the case of the x particles).

We must also ensure that the mass m, (t) completes at least one oscillation while each mode
is inside the resonance band, which occurs during an interval At = gH !, cf. (2.1.37). This
condition is required so that we can attain a good parametric resonance in the solutions of our
Mathieu equation (2.1.25): this is easily verifiable using numerical simulations such as the ones
shown later in Figure 3.2.1. This translates into
2H

Wy

1 q
gH™ > 21 = -=>m, (2.1.46
M 5 )

which is not straightforward to estimate. In § 3.3, however, we shall discover that this condition
holds in a significant region of the allowed parameter space for all inflationary models considered
in this work.

Furthermore, it is useful to establish that (m,) > H, this restriction being due to the fact
that x is a scalar field and therefore is subject to quantum corrections of O(H) that may greatly
increase its mass [2, 66]: by enforcing that (m,) > H, we can essentially ignore this effect.
Recall that the specific value of H during inflation is currently unknown, and that different
inflationary models predict distinct values for this quantity, so that we may obtain various lower
bounds for (m,) (cf. § 3.3). Together with the subplanckian condition, (m,) < Mp, we have

effectively set a range for (m,) = gM

H < (my) < Mp. (2.1.47)

2.2 Comoving particle number density

Resonant production of particles occurs while a mode is inside the resonance band. We saw in
the previous section that the theory of Mathieu equations [2, 33, 36, 37] can be approximately
applied to Eq. (2.1.25), so that, from Floquet’s theorem, the solution to this equation can be
written approximately as the product of a periodic function P(z) by an exponential ehn(2) 2

. . . ’Y .
which, using ¢ = 572, we can approximate as
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Xp(2) = P(2) e )* ~ O eTwrzgz ghi(2) 2 oy Xi(t) ~ O eFieont e%“k(t)t, (2.2.1)

where, for the first resonance band (A & 1) and for a narrow resonance (¢ < 1), we have

max q

p(t) = 31/q> — [A,(t) — 1]2, which takes its maximum value, '™ = £, at Ay = 1.

At a time t = tg, we have

Xi(to) ~ € e(Ek T2 m)t0 (2.2.2a)

. . 2H
Xk(to) ~ (izwg + 7”2) Xk(t()) , (2.2.2b)

where w) = wy(tp) and uf = ux(to). For modes inside the resonance band (or close to entering
or exiting it), the value of wy is comparable to %, while p, is of order 4, which means that for
these modes Xy (tg) =~ C eFieito and X, (to) = iw) Xi(to), comparing the absolute value of the
terms inside the parentheses in (2.2.2).

We may now define the comoving energy of the k-momentum particles as [33]

1, . 1 1
pr = = | Xp|? + zwi | Xi]? = wp (nk + > : (2.2.3)
2 2 2
where w(t) = aé“—(i) +m2(t) and 7y is the comoving (occupation) number of k-momentum

particles. If we consider that no particles have been produced at t = ty just before the mode k

enters the resonance band (i.e. ng(tg) = 0), we may write
L 2 L. oy 2 _ Wy
§’Xk(t0)| + 5(“%) | Xk (to)|” = 5 (2.2.4)

so that, substituting the expressions obtained above,

1
C*wp)® + (W)*C* =wp = Cj = , (2.2.5)
1/2(.02
assuming C' = C}, to be real. Xj(z) is thus given by
Xp(2) = eTiRTE? ghh(2) 2 (2.2.6)

-

0
2wy,

with w,g ~
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We can obtain the expression for n;(z) by inverting (2.2.3)

11X 2\ 1
=_ X?) - =, 2.2.7
i = 5 ( o + wi [ X 5 (2.2.7)
- - 1wt 2 ()t
which upon using Xy (t) ~ S ¢ e leads to
“k
1 4H 1 1
TOES 2“”“ v“k(t”—§ = (z) ~ 2“”“ IR (2.2.8)
wp W)

where we assumed that Xj(t) ~ +iwpXp(t) ~ i\;% eFiont o5 “’“(t)t, due to the discussion
following (2.2.2). Note that we did not do any approximations in the exponent in order to keep
some form of time-dependence, which would otherwise disappear as we got rid of the leading-
order term.

In particular, if a mode k is inside the resonance band, in an interval dz the function X

in (2.2.6) will be amplified by a factor e##(*)4% 5o that between two instants z, and z. the

amplification of X will be of a factor e#**, where

iz = / e : / V@ =72z — (k)] d, (2.2.9)

1
A /2w2

k-momentum particles produced between zs and z. is simply

making Xi(zs — z¢) &~ eFrar? ek 2 [40]. Hence, from (2.2.7), the comoving number of

1w 1
fin(zs = 2e) ~ 5 w’“ e — (2.2.10)
k

Integrating (2.2.9) gives

2 2y (ze — zc)\/l - (Z)2 (2e — 20)?

gl
q
— arcsin B(zS — zc)] - g(zs — zc)\/l — (Z)z (zs — Zc)2} +1In (;Zg) )

which attains its maximum value of TL- —Hn (5’3) when z; = z1(k) and z. = 29(k), correspond-
Wk

1 2
In (7 (2s = 2e) + } = q{arcsin [fy(ze — zc)} +
q

(2.2.11)

ing to a mode k that has been through the entire resonance band (note that if z5 < z1(k) and/or
ze > z9(k) the integral would no longer be real-valued). In § 3.2, we compare this analytical

approximation with an analogue obtained by numerically solving Eq. (2.1.25).
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The total comoving particle number density, 7, (zs — 2.), is then obtained by integrating

(2.2.10) for all k¥ modes

1 (o¢]
fir (25 — 2¢) = ok /fzk(zs — 20) A3k = 27r2/0 k% (25 — 20) dc. (2.2.12)

It is easy to see that when the expression for fig(zs — 2¢) is inserted into (2.2.12) a k2
term appears in the integrand function, which upon integration leads to an infinite value. This
factor and thus this divergence are related to the energy content of the vacuum and can be
dealt with through renormalisation techniques. However, given the fact that we are concerned
only with the number of x particles that are produced during inflation (and so with the energy
that is added to that of the vacuum by said particles), we may neglect that part of the integral
altogether, which is what we will do henceforth. The expression for the integrand function then
simply becomes %k2%§ e2HZ

In order to calculate (2.2.12), we must distinguish between different regimes under which
the £ modes may be produced and divide the integral accordingly. If we consider the particles
produced between the start of particle production at z; (which we take to be very early in infla-

tion, even earlier than 60 e-folds before the end of the accelerated expansion) and some posterior

instant z, we have three possibilities, which are represented diagrammatically in Figure 2.2.1:

(A) modes that at the beginning of particle production were already inside the resonance band

and exited it at a later instant (which we shall consider to be prior to z);

(B) modes that entered the resonance band after the beginning of particle production and

exited it before z;

(C) modes that entered the resonance band after the beginning of particle production and are

currently (i.e. at z) inside it.

A B C

e — e

(k) (k) (k) (k) z(k) z z(k)

Figure 2.2.1: Diagrammatic illustration of the three regimes under which y production may

undergo. The shaded regions represent the resonance band.

We will now explore all three regimes.
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2.2.1 Regime A

In this case, the modes of momentum & have entered the resonance band before the actual start
of particle production at z;, so that z1(k) < z;. We must also impose that the modes exit the
resonance band after particle production begins, which translates to zo(k) > z;. Combining

these two conditions

21(]43) S Z § ZQ(]{Z) (2.2.13)

and using (2.1.43) we arrive at an equivalent interval for the £ modes that are produced in this

regime

kq = 26 a; 6_% = Kmin
ko < k <k, where 7 , (2.2.14)
ky = 2 q; 2

and where a; = a(z;) = ag e%Zi, which allows us to conclude that the smallest mode that is
produced is k = 0 only if z; = —co. Additionally, we are going to assume that z > z; and also
that z > z2(ky), the latter being the instant at which the last (and largest) mode produced in
this regime exits the resonance band (note that the maximum value of za(kp) is z; + %) Note
that neither k, phys = % nor Ky phys = % are close to ke phys = % at z > z;, as one would
expect, since at that time those modes are already far from the resonance band and so are no
longer being produced and their physical momenta have been redshifted away; therefore, their
momentum distribution is no longer approximately a Dirac delta function centred at k. phys, but
at ke phys % & kephys (recall that the discussion from § 2.1.2 in this regard only referred to the
modes inside the resonance band at a time z). We may estimate an approximate width for this
distribution: using (2.2.14), it is simply kp phys — Ka,phys = 2Ke,phys % sinh (4) < ke phys %
Moreover, for modes in this regime, wy =~ gM, such that, for wg R %, we find Z—ﬁ ~ 1/2q.
k

Considering all this, it is clear that for this regime the limits of integration in (2.2.11) should

be zs = z; and z, = 22(k), resulting in

) q¢ J& | [ v 7\?
g (2 — 2(k)) = 5 exp{27 5 — arcsin {q(zi - zc)] - E(ZZ - zc)\/l - (q) (2 — 2¢)? } .
(2.2.15)

Since all calculations are done inside the resonance band, whose center at z.(k) depends on

the modes being produced, we can simplify the exponent by performing a Taylor expansion in
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z; around z.(k) and keep only first-order terms, since z; ~ z.(k) for all significant values of k,

see (2.2.14). With the approximate exponent, (2.2.15) becomes

7'l'q2

g (2 — z(k)) ~ ge}><p{4’y —q(z — zc)} = \/ngQ’Yq , (2.2.16)

2q

)
with ¢ = eir (ﬁ) " and where we have used the expression for z.(k) defined after (2.1.43).

We can now calculate the comoving number density for particles produced in this regime, ﬁ%,

whose limits of integration must be k, = ki and kp, that is

1 Ky 3424 3429
W= o R G— a) dk x (7T i) e2an)
272 i, 2v/2 2 (3 1 %)

which, using (2.2.14) and the fact that k, = ky e~ 9, we can rewrite as

A 4y2qH? , =z Sinh [% (34_%‘1”
N T G 5. % : (2.2.18)

which shows, as we would expect, that the comoving number density of particles produced in

this regime is independent of z (recall that we are considering z > za(ky)).

2.2.2 Regime B

In this regime, we will be considering the modes of momentum k that have entered the resonance
band at some point after particle production began, so that z;(k) > z;, and have exited it at
some point prior to z, that is z9(k) < z. In other words, these modes will have been through
the entirety of the resonance band by z.

Once again, we can combine these two conditions
z1(k) = zi N z9(k) < z (2.2.19)

to find, using (2.1.43), that
ky <k < ki(z), where 7 : (2.2.20)

From this, we see that k; is the smallest mode that has been through the entire resonance

band, while k;(z) is the mode that has just exited the resonance band at instant z.
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For the limits of integration in (2.2.11), we must then pick z; = z1(k) and z. = 22(k), which

expectedly leads to the maximum value of the expression
Ap(z1(k) = 22(k)) = =—we2 ~ ¢ 2, (2.2.21)

where we anticipate that the modes closer to k;l((zz)) ~ %for which wj, = %

= wg, dominate the
three-momentum integration.
Calculating ﬁ? is then straightforward, as (2.2.21) does not depend on k. The limits of

integration for the integral are of course kj, and k;(z), such that

5 1 ki(z) B e 2v
() = 55 5 KA1 (k) = z2(k) dk = 155 (ki) — k3) (2.2.22)
which we can simplify using (2.2.20) and the fact that ky, = ki(2)e?e 25 %) <« ki(2) (recall

that we are considering z > z;), leading to
—— d®(z) e 29, (2.2.23)

2.2.3 Regime C

The modes of momentum k produced in this regime have entered the resonance band at some
point after the beginning of particle production and therefore verify z1 (k) > z;, as in the previous
case; but, unlike in the B regime, at a time z these modes have not yet exited the band, but are
still inside it, so the condition z3(k) > z must also be verified. These two conditions, however,
are insufficient to define an interval in k, as they only bound this quantity from below. The
missing condition is achieved by imposing z; (k) < z, so that we can also guarantee to have some
particle production in this regime at a time z.

Putting both conditions together,
z1(k) < z < z9(k), (2.2.24)

we readily arrive at the interval for the k values, once again by using (2.1.43),

k1(z) < k < ka(z), where K . (2.2.25)



We see that the largest £ mode that is produced depends on the instant z that we are

ki1(z)

considering, as one would expect. Also, we see that both as) = k1 phys = ke phys e 3

~ kc,phys

and ’22((;)) = k2 phys = ke phys €3 ~ e phys, as ¢ < 1, so that the modes being produced at a
time z, i.e. those in (2.2.25), indeed have physical momenta close to k. phys, just as we had
stated previously in § 2.1.2; hence, the momentum distribution of the particles being produced
is in fact approximately a Dirac delta function centered at k. pnys. The rough width of the
approximate Dirac peak is then simply kg phys — K1,phys = 2Kk phys sinh (%) < kephys. Notice
that this distribution is severely non-thermal [67]. For modes in this regime, it is clear that
z—’é ~ 1.

The limits of integration we must use in (2.2.11) for this regime are z; = z1(k) and z, = z,

which results in

g + arcsin D(z — Zc)} + g(z — zc)\/l — (Z)Q (z — Zc)2] } }

(2.2.26)

-C 1 q2
A = 2) = ge{ £

Similarly to what we did in the A regime, we can simplify the exponent by Taylor expanding
it in z around z.(k), keeping only the first-order terms, since z ~ z.(k) for all significant values
of k, cf. (2.2.25). This results in

2

A (z1(k) = 2) ~ 3 exp{tﬁy +q(z— zc)} = —¢(2) k7, (2.2.27)

- _2q
with ¢(z) = iy (%) 7, where we have used the usual expression for z.(k). We may now

calculate the comoving number density for particles produced in this regime, ﬁg, by setting the

limits of integration as kj(z) and ka(2) = kmax, making

ka(z) _2q _2g
W) = RSy s dk D (k;’ T -k (z)) . (2.2.28)
212 Jhi (2 4n? (3 2)

which can be simplified taking into account (2.2.14) and the fact that ko(z) = ki(z2) e?

i (z) ~ (2.2.29)

3 . inh | 4 3_@
iig a3(z)e4%2 sin [§E27q v)}

The total comoving number density of particles produced from z; to z is then given by
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My (zi = 2) = iy (2) = 7t + ab(2) + nl(2), (2.2.30)

but we can readily make a simplification by noting that for z > z;, we have a3(z) > a3 = a3(%),

meaning that ﬁ;? < ﬁg(z), fzg(z), so that

For all considered inflationary models (cf. § 3.3), it was found that in the significant re-
gions of the parameter space (g, M) we have ﬁg (2) > fzg(z), meaning that we may make the

approximation

ix(2) ~ 3(z) e % 20 2.2.32
() ~ ol 3(a) E R, (2.2.32)

which is the final expression for the comoving number density of particles produced since the
beginning of inflation at z; until a time z > z;.

Notice that in Eq. (2.2.30) the full integral is from k, to ka(z), and not strictly from 0 to
0o. This is of course due to the fact that some comoving momenta may not be produced by
this mechanism. The vacuum part of the original integral, however, keeps its integration limits
from 0 to oo, as all scales should contribute to the vacuum. We could eventually integrate out
the portion between k, and k2(z), in which case Egs. (2.2.16), (2.2.21), (2.2.27) and (2.2.32)
would all get additional finite terms due to the vacuum. However, this would not be particularly
useful, as at least one of the remaining integrals would still be divergent; hence, we prefer to
keep the vacuum part separated as a whole and work only with the part linked to the resonant

production of particles.

2.3 Physical energy density

We will now look more deeply at expression (2.1.13), while considering also the Fourier mode

expansion (2.1.14), both of which we present here once again:

1. 1|VX|2
X Ty g2

1
Py = - imif (2.3.1)

and
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A d3k A ik-x AT % —ik-x
X(t,x) = /(23 [aka(t)e + a, x5 (t) e } , (2.3.2)

)

where wy(t) =/ aé“(zt) +m2(t). For simplicity, we shall assume that m?( (t) = 292 M? sin? (%t) ~

2

Y1) = g>M? = (m,)?, where the average is computed over a period of the oscillation.

(m
The x field is here interpreted as an operator X, as we had previously seen. The value of
the physical energy density can thus be obtained by calculating the vacuum expectation value

of the operator p,. We again define the Bunch-Davies vacuum state [2, 7] as
ax|0) =0, (2.3.3)
so that the vacuum expectation value of p, is given by
() = (0134]0) = 5{015210) + 55 0] [V [0) + 5m? (0] &2 [0). (23.4)

Using the canonical commutation relation [ay, dT] = (27)% 03(k — K') and Eq. (2.3.2), it is

simple to prove that

: x L[5
() = 01%210) = 55 [ K Dl ak (2.3.50)
. I
(VX = OTR210) = 55 [~k pal? d (23.50)
. 1o
08) = 018210) = 55 [ K o d. (2.3.50)

Expression (2.3.4) then takes the following form

1

(px) = 2

00 1,. k2 1 1 [
/0 k2 (2’Xk|2+M‘Xk’2+2mi‘Xk’2> dk = 277@/0 K p dk, (2.3.6)

where pj = %\XHQ + %|Xk|2 + %mi|xlf|2 is the total physical energy for each k£ mode. We then

define the physical particle number for each mode as [2, 33]

1 Pk 1
= — | «— = — — = 2.3.7
Pk = Wi (nk + 2) ng o 2’ ( )

with wg = wg(t), such that wy is the physical energy per k-momentum y particle, so that
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(ox) = 55 / K wi (nk+ )dk (2.3.8)

We must now relate the comoving quantities calculated in the previous section to these newly

defined physical quantities. It is possible to show (see Appendix C.1) that

+1N1<~ -|-1> (2.3.9)
ng 9 ~ a3 ng 9 y 0.
making
( )~1/°ok2 ( +1>d/-c (2.3.10)
Px) =~ om2a3 0 WE | Nk 9 . 0.

Recalling that ny = %Z—g ez — L (cf. Eq. (2.2.10)), we may insert it in (2.3.10), thus
eliminating the factor from the integrand function, which would otherwise lead to an infinite
integral. Note that both this factor and the one in the expression for 7, have the same origin,
arising from the existence of a vacuum energy, which we had already stumbled upon in (2.2.12).

As before, we were able to rid ourselves of the infinity without using renormalisation techniques.

The integrand function thus becomes 2k2wk 2k 62'“’“2 Redefining 7y, as ng = %i—’g e2HkZ as it is
k
useful notation-wise, we are left with
() ~ 27T2a3 / k2 oy 7ig dk (2.3.11)

which we must divide accordingly to what we did in §§ 2.2.1 to 2.2.3, leading to

(px) = (p2) + () + (p%)

k1(2) ka(z) (2312)

zi k% wp, il dk + k% wy, 2B dk + k2w, 7l dk S .
2%a3 (2 {/ o o o e

Note that we have been omitting the z dependence in 7, and in (py) in order to simplify the

notation. Let us calculate each one of the three integrals.

2.3.1 Regime A

In this case, every physical mode ( j that contributes to the integral verifies, cf. (2.2.14),

2H(Li q
_ e 2 = <

T ) : (2.3.13)



so that for z > z; (and ¢ < 1) we have a]zi)’ % <L ke phys = %, which means that at a time

z the modes produced near the beginning of particle production have a physical momentum

much smaller than when they were produced, as it was decreased by the expansion of the

kc,phys

Universe, as expected. From (2.1.33), we have that A= ﬁ, so that for a narrow resonance

ke phys > gM = (m, ), meaning that the modes are relativistic while they are being produced. If

we take z to be sufficiently larger than z; to make a’?‘;) and % small enough, we may consider

ﬁ < (my), so that wy, = (m,) = gM for all significant k modes; i.e. in this regime, the modes

were produced as relativistic, with physical momentum %, but by a time z > z; they have
become non-relativistic.

Hence, the first integral in (2.3.12) is simply

(M~ M/kb bk — g (2.3.14)
>~ n = J.
Px 212a3(2) g ke k g ad(z)’
from where, using (2.2.18),
inh |2 2q
(o) ~ V2LIME (o )3 s [3 3+ %) (2.3.15)
X 7243 a(z) 34 2 ; 9

which, as we can see, varies in time due to the expansion of the Universe (i.e. it is diluted away

by the expansion).

2.3.2 Regime B

From (2.2.20), we see that 121((:)) > % for z > z; (and ¢ < 1), so that at a time z > z; modes

closer to ki(z) should dominate the integral in this regime. The physical momentum associated

with these dominating modes is of course ]2((;)) = %

_ g .
€ 2 ~ kephys = % > gM, which means

that the modes that have just left the resonance band at a time z are relativistic, as we already

knew. Hence, for the significant (dominating) k£ modes we can take wy(z) ~ ﬁ, making

7rq2

1

k1(z) e 2v
By o =~ 3=-B _ &7 (14 74
W)~ /k SRR = s (ki(2) k) . (2.3.16)

where (2.2.21) was used. Recalling (2.2.20) and once again using the fact that ki(z) > ky for

z > z;, this results in

2
(py) = ez 1 (2.3.17)



which interestingly is approximately constant (only approximately, since H, ¢ and ~ actually
vary slowly due to the slow-roll dynamics, cf. § 1.2.1 and Appendix A). Note that the constancy
of this quantity does not mean that no particles are being produced; it rather means that in

this regime the production of the x particles is perfectly compensated by their dilution.

2.3.3 Regime C

As we saw in the previous section, for a narrow resonance the modes near kj(z) are relativistic
at all times. In § 2.2.3, we arrived at the relation ko(z) = k1(2) e? ~ ki(2) for ¢ < 1, so that
the ka(z) modes are also relativistic at any time z. This of course means that we can write
wi(z) ~ % for all values of k such that ki(z) < k < k2(2). The third integral in (2.3.12) is
then, making use of (2.2.27),

1 ka(z) f(z) 4_ 24 424

C 3 ~C v v
p %7/ k°ng dk ~ (k: z)—k z), 2.3.18
Y 212a*(2) Jry(2) g 4m2a(2) (47 Qq) 2 () 1) ( )

(2.3.19)

which, similarly to <p§>, is an approximately constant value (again, H, ¢ and v are in fact
time-varying quantities, albeit slowly-varying, cf. § 1.2.1 and Appendix A), meaning that the

production of the x particles in this regime is again perfectly compensated by their dilution.

The total physical energy density is now simple to calculate, but before we do so there is a
useful approximation we can make. Comparing expressions (2.3.15), (2.3.17) and (2.3.19), it is
clear that for z > z; we have <p§) < <p§>, (pg> Indeed, as time progresses, the physical energy
density of the modes produced near the beginning of particle production (regime A) is diluted
due to expansion, while that of the modes produced in regimes B and C (specifically, that of

the modes within or just outside the resonance band) remains constant. We then have

. 2q

HY [ =, =2 sinh |2 (4 — =2

(px) = (py) + (p5) = 7r274{em 94 8¢ [4E2q ”)] : (2.3.20)
Y

As in the previous section, it was found for all considered inflationary models (§ 3.3) that in

the interesting regions of the parameter space (g, M) we have (p%) > <pg>, so that
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HY =2,
px = (px) = Weh 1 (2.3.21)

which is the final expression for the physical energy density of particles produced since the
beginning of particle production at z; until a time z > z;. Note that, building on what was
stated before, the constancy of this value is due to there being a balance between the rate of x
particle production and the rate of their dilution due to the expansion of the Universe; in fact,
at every time z there is always a mode k that is inside the resonance band and is thus leading to
the production of x particles, which exactly compensates the dilution of the pre-existing ones,
as the total energy density of the produced particles is calculated to be proportional to a*, while
their dilution goes with a~*, them being relativistic, so that the two effects essentially cancel
one another. Additionally, as was seen, p, is only approximately constant; in fact it varies
adiabatically due to the slow-roll dynamics, as analysed in § 3.3 and Appendix A.

Since during inflation the energy density of the Universe must be dominated by that of the
inflaton field, we must ensure that the relation p, < py holds at least until near the end of the
inflationary epoch. We will see in Chapter 3 that this is indeed true in a significant region of
the parameter space (g, M) for all considered inflationary models.

Before advancing, let us note that

7Tq2

5527

(2.3.22)
is a quantity that keeps showing in our expressions, appearing in particular in Eq. (2.2.21) as the
argument of the exponential factor. If we recall that the expression in Eq. (2.2.21) is actually
given by ﬁ% R~ %eé — %, where we recovered the vacuum term that we had previously dropped,
we see that for £ = 0 no y quanta are produced in this regime (nor in the remaining regimes'?,
since a vanishing ¢ implies a vanishing ¢). We then see that the larger ¢ is, the more quanta
we are able to produce, so that we may use this quantity as a measure of the efficiency of the
resonance. In particular, we might expect that in order to have a very efficient production of
particles we would have to require that ﬁg > 1, which would be attained by imposing e > 1.
Let us see if this is really the case. First, note that the quantities denoted by fLE need not be
integers, as one might expect due to their interpretation as particle numbers; the reason for this

lies in Eq. (2.3.10), where we see that these objects are defined via a vacuum expectation value,

meaning that they are actually averaged quantities, and so can in principle take any real value

12YWe are focusing the discussion on the B regime, since it is the most relevant one, but these considerations

remain mostly valid in the other regimes, save for a few small adaptations.
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(in fact, sz is often defined using Bogolyubov coefficients [2, 33, 68], which are complex-valued
quantities; we shall make use of this alternative definition in § 2.4.1). This implies that we may
only require that ﬁE be positive-valued, in which case e¢ > 1, which is of course always true.
Notice then that sz can be quite small, while both 7, from Eq. (2.2.32) and p, from Eq. (2.3.21)
can simultaneously be quite large, in particular due to the y~3 and v~ factors coming from the
momentum integrations. This means that, while very few particles may be produced at each
comoving momentum k, our phase space is quite big, so that we have lots of comoving momenta
being produced, each contributing with some amount to the total comoving particle density and
the total physical energy density. Hence, we may still have quite an efficient resonance, in spite
of a small number of particles produced at each momentum k, due to phase space effects. We
shall see this numerically in § 3.3, for various inflationary potentials. However, we will also find
that in order to have an eventually detectable effect of the resonance, the lower bound we have

just imposed is not enough, and we will need to go to higher values of ¢ (and hence €f).

2.4 Backreaction on the inflaton

It is now time to account for the backreaction of the produced y particles on the inflaton field
[33]. We shall split its effect into two parts: the backreaction on the classical, homogeneous
inflaton, and the backreaction on the quantum fluctuations of the inflaton. These will be dealt
with independently and so any kind of interference between the two shall be neglected as a

higher-order correction. Let us start with the classical case.

2.4.1 Effect on the classical inflaton

We start by writing the full Lagrangian of our model, previously defined in (2.1.7), as

£ = (Du®1)] (D"01) + (D) (D"02) + 0,0 — P
(2.4.1)

1

= V([P |D2]) - 592@1 — Bo*x* = V(9),

where, as permitted by the U(1) gauge symmetry of £, we have now explicitly included a
potential V(¢) for the inflaton, since we will now be dealing directly with effects on the dynamics
of this field. Choosing the unitary gauge and excluding terms containing fields other than ¢ or

X (asin § 2.1.1), we may define the following Lagrangian

1 1 1
Lon = 50u00"6 + S0x "X — 5m3(9) X" = V(9). (24.2)
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where, as before, mi(d)) = 2¢?>M?sin? (%), allowing us to define the action functional

Slo, x| = /d4m —g Ly - (2.4.3)

In Appendix B, we show using an effective action formalism [18, 66, 69-72] that the effective
EoM for the inflaton field receives two contributions: a Coleman-Weinberg (CW) term [55, 70, 73]
and a term proportional to 7y [33], which are written in Eq. (B.15) as a trace in momentum
space. The CW term can be integrated and renormalised using the MS renormalisation scheme

[55, 74], leading to a contribution to the effective EoM given by

e 9 2
AViw(9) = QST sin? (X;) sin (ﬁ) In (%) . (2.4.4)

X

where 1 is the MS renormalisation scale. We immediately see that if we select u = m,, this
contribution vanishes altogether. Nonetheless, let us compare it with the one proportional to 7.
For this, we anticipate an upcoming result (also obtained in Appendix B): that the remaining

contribution to the EoM is given by
M (H\? =_ 2
AVip(d) = L= <> ¢ % gin (¢) . (2.4.5)

where the subscript indicates that this quantity is related to () particle production. In spite of
the clear suppression due to an additional g2 factor in Eq. (2.4.4), these two contributions are
not straightforward to compare using only their analytical expressions. Numerically, however,
we found that for a renormalisation scale H < p < Mp the CW term is subleading relative to
AV{p for all inflationary models we considered in this work; hence, we may neglect the former
in our computations and consider only the contribution coming from particle production.

In fact, this amounts to using the Hartree approximation'® for the backreaction on the
inflaton field [33, 73]. Neglecting for now the quantum fluctuations of the inflaton, such that

¢~ ¢ =¢ (ie. ¢ now refers only to the backreacted'* classical and homogeneous inflaton, and

13T Ref. [33], some additional contributions are shown to be subdominant relative to the Hartree approxima-
tion. In the present work, we will not perform such an analysis and will consider exclusively this approximation,
which will in principle be able to capture the main behaviour of the backreaction; however, a more rigorous study

of this system is certainly of interest, as we will discuss in Chapter 4.
4 Henceforth, we shall refer to quantities of which we consider the backreaction as backreacted, corrected or

effective, whereas quantities without backreaction shall be referred to as uncorrected.

92



not to the full corrected field), the EoM for ¢ can be obtained simply by replacing x? with its
vacuum expectation value (x?) in the Lagrangian (2.4.2) and varying (2.4.3) with respect to ¢'°

O¢+ V' + %(mi)’ (x* =0, (2.4.6)

where V = V(¢) and mi = mi(gf)) and where the primes now denote derivatives with respect

to ¢. The expectation value (x?) is simply given by equation (2.3.5¢), which we rewrite here

3
0 = [ s ol (2.4.7

In order to compute the integrand in (2.4.7), we write the solution of equation (2.1.20), the
EoM of xx = xx(t), in terms of (complex) Bogoliubov coefficients oy = ax(t) and Br = Bk (t)
2, 33, 68]

Xk(t) _ a_3/2(t) C;/;(k% e—ifwk(t) dt + \/% eifwk(t) dt 7 (248)

with the normalisation condition |y ()|? — |Bx(t)|> = 1 and the relation

b = kb 2 [undt g (2.4.92)
2w

B = 72% e fwndt o, (2.4.9b)
Wk

which is obtained when we impose that X (t) = a®/2(t) xx(t), with xx(t) given by (2.4.8), be a
solution to Eq. (2.1.23).

This definition leads to

el = ik = 5— [lowl? + |8kl + 2Re (o B e )] ~
(2.4.10)

%
|

(1 +2 ’5k\2> ;

where we dropped the high-frequency term (as it should provide a subdominant contribution
[33]) and used the normalisation condition. Moreover, using Eqs. (2.2.7), (2.4.8) and (2.4.9) it

can be easily shown that || = fig, so that

50ne could equally vary (2.4.3) with respect to ¢ and then take the expectation value of the EoM, taking

(¢) = ¢, as is true for a classical field.
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[ e
ad ) (27)%  wp

(2.4.11)

Similarly to what we did in § 2.2 and § 2.3, we must divide this integral into three parts, each
corresponding to a regime (A, B and C) under which the y particles may be produced. The
calculations are essentially analogous to the ones done previously. Using Eq. (2.2.10), we find

that once again the B regime dominates, leaving us with

1 Bk ez 1 ki1(z) 1 e
2\ ~ ~ 2 2
) =~ ﬁ/ (27m)3 200 7 272 a3 /kb Wk kja’ (24.12)

where we used the fact that w) ~ wy, ~ % for the modes of interest (i.e. the ones that dominate

the integration). This leads to an effective EoM for ¢ that reads'®

2 2 L2
O¢+ V' + 92 ‘]\24 (H) e%_q sin (?\?) =0, (2.4.13)
T Y

in accordance with the result we anticipated in Eq. (2.4.5).

At this point, we note that the Hartree contribution to the backreaction may be entirely
removed if instead of considering a single scalar field xy whose quanta are produced via parametric
resonance we consider two scalar fields x1 and 2, whose interaction terms with the fields ®1 » are
written as —3¢%®1 — ®o|?x7 — 39?|®1 4+ ®2|%x3, making the Lagrangian in Eq. (2.4.1) invariant
under the simultaneous interchange ®; <> i®3 A x1 <> x2, if furthermore Ay = Ay in ¥/ (|®1], |P2|)
[55, 57]. The effective oscillating masses for each field x; 2 will then be different; in particular,
My, o< sin (%) and m,, o cos (%) However, the quanta of each field x12 are produced via
the same process as described for y, leading to variances (x?) = (x3) = (x?), which means that
in the Hartree approximation the contributions of each field xi2 would cancel each other, cf.

Eq. (2.4.6), leaving us only with the subleading CW term (notice that this says nothing about

the backreaction beyond the Hartree approximation, which may still contribute as well).

Returning to our main discussion, before we attempt to solve Eq. (2.4.13), it is useful to

define an effective inflaton potential, as well as its derivatives with respect to ¢,

16 A similar result would be obtained if we had directly used for Egs. (2.4.7) and (2.4.10) the approximate
—3/2 )
expression xi(z) & ai(;) eFir() T e olh® | with w) & % for the modes of interest.
2wk
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V() =V(9) — gi%z <5)2 6%7 cos (jj) (2.4.14a)
V() = V() + 9227?24 <Ij>2 5 sin Gﬁ) (2.4.14b)
V'"(¢) =V"(d) + f; (Z)z e%_q cos (ij) . (2.4.14c)

Notice that we are not considering the ¢-dependence of the oscillation amplitude when computing
the derivatives, as its contribution is sub-leading when compared to the one coming from the
actual oscillating part — the variation of the amplitude is due to the slow-roll dynamics of the
inflaton. In particular, H? o V(¢), in the uncorrected slow-roll approximation, and so the
derivative of H? with respect to ¢ is (H?)" = \/2ey H?/Mp < 2H?/M. Hence, in the following,
we will take V(o) to be

2
V(o) ~ V(g) + Al eos (37) (2.4.15)
2 x
where A = —9i%2 (%) ¢ 27 7 varies adiabatically due to slow-roll dynamics, and so is taken

to be approximately constant throughout inflation (this means that, as before, time derivatives

of A* will be neglected, but we will consider its time dependence when relevant, e.g. in § 3.3).

Inflationary potentials with oscillatory modulations are a well-known class of models, some
of which with ties to axion monodromy in string theory [22, 23, 29, 75-79]. These modulations
may arise either due to corrections of some sort, as in our case, or by construction, as in models
of axion monodromy inflation [29, 76-79], and they can lead to features on the curvature power
spectrum, which may be eventually be observable [23, 29, 76-78]. We may denote the correction

to the n-th derivative of the potential by AV = Y™ — v () and in Appendix C.2 we show

, where the subscript “max” means that
max

< |8

"
< [

in particular that ’%

max max

we are only considering the amplitude of the oscillating term. Moreover, we anticipate that in

§ 3.3 we find that in general ‘A?V’ < ‘A?V

< 1, in accordance with the results found in Refs.
max

[29, 76, 77] by analysis of observational data on the curvature power spectrum. In Ref. [76], for

is & < 3 x 1075, obtained for axion monodromy inflation.
max

instance, the bound on o« = ‘A?V
We shall also define a new pair of slow-roll parameters to replace those in (1.2.6), using the

potential V and its derivatives,
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/ 2
ey = %Mf; <];((£))> (2.4.16a)
ny = M2 Z;((f)) : (2.4.16b)

as well as new Hubble slow-roll parameters as in Eq. (1.2.7), using the effective Hubble parameter

H, defined by the Friedmann equation V(¢) = 3M3H?

(2.4.17a)

9 1 éy
=2ey — = .
=25 o H

(2.4.17D)

We may now try to find an analytical solution to Eq. (2.4.13), now rewritten as O¢+V'(¢) =
0, with V(¢) given by Eq. (2.4.15) and where the d’Alembertian is now defined using H, rather
than H. This allows us to follow Ref. [23] somewhat closely.!” As such, we start by expanding
the field as

d=co+ o1+, (2.4.18)

where ¢q is simply the uncorrected, homogeneous inflaton, and ¢; is the first-order correction
(linear in A*) due to the backreaction of y. Hence, the EoM for ¢q is just Eq. (1.2.4), which
during slow-roll can be approximated as Eq. (1.2.5b); combined with the Friedmann equation

(1.2.5a), it leads to

¢20 — M, ‘/#250 (¢0)

" VBV (o)

(2.4.19)

which can of course be solved independently of ¢;.

With this, we need only find an EoM for ¢; alone. We thus expand V(¢) as a function of ¢;

V(¢) = V(do+o1+:---)

) (2.4.20)
= V() + Vo (60) 61 + 5 Vioan(d0) 61 + -

17 Accounting for the time-dependence of A* in these calculations would require a more complicated treatment,
which we will not consider here. We will, however, consider the adiabatic variation of this and other quantities

when working out the numerical treatment of our model in § 3.3.
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and we do the same with H(¢)

V(o + o1 +--+)
302

H(p) = H(¢o+¢1+--+) = \/

V(o) 1 A 2¢q 1V 4,(%0)
3013 [1 + 3t = (30) + 31 0t 1 (2.4.21)
HEH()

= Ho+ H + -,

where we performed a Taylor expansion of the square root, taking into account that ‘%‘ <1
and ’v‘?‘()(;f)o ) (;51’ < 1, the latter being shown in Appendix C.2.
We then substitute (2.4.18), (2.4.20) and (2.4.21) in O¢ + V'(¢) = 0, where now V'(¢) =

V g1 (1), leading to

. ) . 2 /2

¢1 + 3(H0 +H1)¢1 + 3H1¢0 + V7¢0¢0<¢0) ¢1 = MA4 S1n (]d\;o) s (2.4.22)
where we used Eq. (1.2.4) once again. It is useful to convert the cosmic time derivatives of ¢;
into derivatives with respect to ¢p; this can be achieved using ¢; = % $o and Eq. (2.4.19).
Assuming that |¢1| < ¥ (which we shall see is the case), and given that |[A*| < ‘% V%((bo)‘
(cf. Appendix § C.2), we arrive, after some algebra and keeping only terms linear in ¢, at the

following equation

31 3 (v ) 3N <2¢o>
R / Mo _q) ¢ = =% 2.4.23
S VAN TG TV (WO o= oot S \ar ) (24.23)

where the primes now denote derivatives with respect to ¢g, and where €y, and 7y, are given by
(1.2.6), using the potential V(¢g) = Vp.

In order to solve Eq. (2.4.23), we need to make a further approximation: following [23], we
shall replace ¢y by a pivot value ¢, (taken to be the value of ¢y at the CMB pivot scale k)
everywhere except in the argument of the sine on the right-hand side of the equation. This step
basically assumes that the dynamics of ¢1 are predominantly described by the oscillatory part
of the equation, such that the coefficients of every term may be taken to be constant. Thus, the

equation becomes

3 1 3 (. ) 3AT <2¢o<t)>
2 / - 1 - 2.4.24
L7 My VZer o+ 20 (m 2 v V.M S\ T ) ( )
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where we have made explicit the time-dependence of ¢y, which is given by Eq. (2.4.19). Setting

A= —Mip \/2167, B= 2]\341% (Z“Z — 1) and C = Wf‘/)jM, this equation has a general solution
é1(t) = o3 (—A—VAZ—4B) ¢o(t) T o o3 (—A+VAZ—AB) ¢o(t)

o[ () A Yo () 5 (5]
2+ 2 (42 2B+ AVAZ—4B)| [2+ M (A2 2B - AVAZ—4B)|’
(2.4.25)

Since ¢; must vanish if A* = 0 (and so C' = 0), we readily conclude that a; = ay = 0,
meaning that only the particular solution to the equation is important (the exponentials being
solutions to the homogeneous equation). Moreover, it can be shown that |A %| <1, |B MTZ| <1

and A2 > |B| (cf. Appendix C.2), and so this solution is well approximated by

~ M?  (2¢0(t)\  3A*M . (2¢0(t)
p1(t) =~ _CT sm( % ) AT sm( i ), (2.4.26)

at which point we may notice that this amounts to integrating Eq. (2.4.24) with vanishing

coefficients for ¢} and ¢1. The full analytical solution for the backreacted field ¢ is then

4
6t) = dolt) — AM (2%(”) . (2.4.27)

e Vi M

The amplitude of the sine term is found to generally be quite small compared to ¢g, which

is typically O(Mp) at CMB scales, while EV’:4V* < 1 (cf. § 3.3), which furthermore shows that
indeed |¢1| < % In fact, plotting this solution against the uncorrected one for various families
of potentials would reveal that the two follow each other exceedingly closely.'® However, if we
plug this solution into either (2.4.16) or (2.4.17) and we plot the resulting expression for the same
potentials, we find that the slow-roll parameters have large oscillation amplitudes (see § 3.3).
We could then be led to conclude that it should be impossible to a attain slow-roll evolution.
Oddly, this is not what we observe in the numerical solution (see § 3.3), which retains its slow-roll
behaviour even if including backreaction. This may be attributed to the very large frequency of
2Hq

the oscillation (f ~ T)’ such that only the average value of each slow-roll parameter has any

impact on the field dynamics. This type of behaviour has also been encountered in Ref. [58]. If

8Both the analytical and the numerical solutions for the backreacted field follow the uncorrected full solution
(i.e. without the slow-roll approximation) during the entirety of inflation, and these three solutions start to

deviate from the uncorrected slow-roll one only in the last few e-folds.
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we solve Eq. (2.4.13) numerically and use that solution to determine the slow-roll parameters, the
results are exactly the same. It appears that having an inflationary potential with a sinusoidal
modulation does not have a great impact in the slow-roll dynamics — we will see in § 3.3 that in
some situations this is not entirely true.

We may then follow a similar procedure to that in Ref. [58] and compute the average values
of ey and ny within an oscillation (in principle, it would be equally valid to use €y and ny). For

this, we will not be using the expansion of Eq. (2.4.21) to compute #, but rather

P IO R )N
(o) = dt( 3M3) = o 9
2.4.28
v12(g) e

(Voo (00) + AV (90)) (do+ 1)

%

24/3 M3

where we have taken V™1/2(¢) = V7Y2(¢) and V4(p) =~ Vy,(¢0), since A* < V(¢g) and
¢ ~ ¢o. We shall also replace e, and V in (2.4.27) by ey, and Vo = V(¢o), respectively, to
a good approximation (these quantities are slow-varying), which will allow us to simplify the

calculation. After some algebra, the resulting expression for ey is found to be

e = em + sg(00) A* [4 sin (2%) + 3 cos <2¢0> - GV?’M in (4%)] , (2.4.29)

S
2V(go) |7 M M V(¢o) v M
where we have used gbo = sgn(q'ﬁo) v2ev, MpHy and where 7 = %MMP Moreover, the potential
0

V(¢o) is equal to 3 MEHZ, as given by the uncorrected Friedmann equation. The first term
inside the square brackets probably provides the dominant contribution, but we will keep all
three terms and compute the average value of each of them separately. Considering the first

term, let us define the quantity

1 _ 2AY . [2¢0(t)
‘(Aegqg):r‘ = ‘<V(¢o)’ysm< ]?4 >>T

where we may approximate ¢g(t) ~ ¢o(t;)+do(t;) (t—t;) = do+do (t—t;), making T = 2|¢5i7|r/M =

% the oscillation period (the quantities in this definition are to be evaluated at t;). Notice that

, (2.4.30)

this approximation for the field is indeed valid for ¢ € [ti — %, t; + %}, given that 7' < Hy L

Using the expression for A%, we find

1 1 gM 2
| = ¢ (WMP)

§—q 4H,
(S5 sin <0t + a> )| (2.4.31)
v v T
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where again the quantities in the argument of the sine are to be evaluated at t;, while the ones

2 e )
outside remain functions of ¢t. Defining Fi(t) = % (f]%)) ei—gq ~ Ei(t;) + E1(t;) (t — t;), the

average can be computed as

1 /ti+§
max T ti—L

E(t) [(tits
— 1(1)/ Qtsin(%t—i-a) dt
T )i ¥

Ey(t;) + Ey(t;) (t — t;) sin (41;10 t+ a)] dt

max

_T
vo2 max

’y .
— LB
4H0‘1( )

i

1 [ gM \?eé 4
= ﬂ <7r]\4p> 72 ‘5 (377\/0 - 2€V0) —2q ("7\/0 - 6V()) -3 (77V0 - 26‘/0)

(2.4.32)

where the last line was obtained by computing the time derivative using the expressions from
Appendix A, and where the subscript “max” is included so that we may drop a cosine factor
associated with a phase. Once again, all quantities are to be evaluated at ¢;. A similar procedure

can be followed for the two remaining terms, leading to'”

2 1 [ gM \%eé 4
adiie] e~ 35 () Srle@m =260 =20 0m =) = 2(my —2610)| (2439
Ar] e ™ o5 | amar | o [26Gma = 260) — 4 mo — ev) = 3 (ms — 2evs)|

(2.4.34)

Each of these terms can be plotted as a function of ¢; (or equivalently as a function of the
corresponding N, ), in which case we discover that their values are generally smaller than eg, for
whatever instant we centre our average on, cf. § 3.3; that is, when we take averages, the large
oscillations of €y become quite suppressed, such that their effective effect on the field dynamics

is negligible. We can define a maximum average correction to e, as

: (2.4.35)

max

3 .
[(Aerig) Tl = Y [(Acf)r
=1

which is generally smaller than ep,. Also in § 3.3, we show that using the condition e, +
|(A€H,)T] hax ~ 1 as a replacement for ey, ~ 1 to determine when inflation ends when including

backreaction only very slightly anticipates that event.

9Notice that we may use the same period T = % for the two remaining calculations, despite the third term

inside the brackets in Eq. (2.4.29) having twice the frequency and so half the period of the other ones.
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Now turning to 7y, we start by using Eq. (2.4.29) to define Aep, = ey — €n,, where Aep,

is taken to be smaller than eg. In this case, we find

63{0 + Ae}lo
2 (fHo + AeHO)
€, + Ay, (1 B AeHO)
2ep, €H,

M = 2(€H0 +A6H0) -

Q

2(6H0+A6H0)* (2436)

~ NH, -+ (4—77HO> AEHO —

where the primes now denote derivatives with respect to N, (we are once again considering
‘H ~ Hjp, which as we have seen is a good approximation), and where we discarded a term of

O(Ae%{O) in order to get the last line. The quantity Ae}{O is readily computed as

/ _ Sgn(éﬁo) A? / é 2;% _ . % B & @
o T Vi(go) M % lV o ( M) Jsn ( M) wVido)r ( M )1

= V?Q;/S”Y [jcos(??) — 38111(2]\@3()) — %COS(%H )

where we only considered the derivatives of the oscillatory functions (which provide the dominant

(2.4.37)

contribution). We also used the fact that sgn(do) ¢ = Hy ' |do| = Hy* |¢T/°[| M = % This
means that we must compute six averages: three due to the Aep, term, which have been mostly
obtained already, and three due to the Ae}lo term, which can be obtained in a similar way. The

resulting expressions are

2 o&—q
1) 1 ne, | [ gM \" e
‘<A77H0>T max 94 ‘4 - THZ (ﬂMp) ~2 ‘5(377‘/0 —2ey) —2q (M, — €vy) — 3 (M — 2 €1p)
(2.4.38)
2 o€—q
) 1 N, | ( 9M \" e
‘<A77H0>T max 39 ‘4 - % (7TMP> ~2 ‘5(377‘/0 - 26Vo) —2q (77V0 - EVO) -2 (77V0 - 26Vo)
(2.4.39)
27 \? ¢ 2(6-9)
(3) L nm | [ 9g°M )\ e _ B N _
(Anghr| =~ =68 ‘4 e <7T2 Mp) " 2¢ (3mi—2 €vi) —4a (s —ev5) =3 (v, —2 e1;)
(2.4.40)
2 o€—q
(4) 1 gM e
el ~ o (G5 S leBme-2a0)-200m —a) =4 tmo~2a)] @2441)
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1 gM \? et 1
max 16eg <7TMP) ,72 ‘5(377V0_26V0)_2q(nVO_EVo)_S(nVo_26V0)
0

(2.4.42)

Q

)

2
max 3846[—[0 <7T2MP> ,}/3 ‘26 (3/)7VO_26V0>_4q(77VO_EVO)_4(77VO_2€VO)
(2.4.43)

where the first three are related to each term of Aeg, (in order), and the last three are related

to each term of A€y (also in order). Defining

6 .
(AT e = D [(Anfi )7
=1

, (2.4.44)

max

we find in § 3.3 that the condition |ng,| + [(ANw,) 7| ~ 1 is generally also a suitable replace-

max

ment for ng, ~ 1 in the scenario including backreaction.

2.4.2 Effect on inflaton fluctuations

We may now turn to the effect of the backreaction in the quantum fluctuations of the inflaton
field. Recovering the Lagrangian (2.4.2), we write the full backreacted inflaton field as ¢ = ¢+,
where the behaviour of ¢ has been determined in § 2.4.1 to be given by Eq. (2.4.27), and where
i describes the fluctuations of the inflaton including backreaction. In this section, however, we
will ignore the backreaction on the classical field in order to focus on the leading order effect
of x on the inflaton fluctuations alone. The Lagrangian then becomes (expanding mi(gg) and

V(¢) to second order in ¢)

11 . 1
Lox = 500006 + 50,000 + 060" + S0ux "X

5 [mE - eade + mEG] e e

[\

- V@ + Va@e + 3V

Inserting this into the action (2.4.3) and replacing x? by (x?), in accordance with the Hartree
approximation [33, 73], we may vary Sy, with respect to ¢ and use Eq. (2.4.6) to find the EoM

Op + Vi@ + 5m2) 556 e = 0, (2.4.46)

which can effectively be rewritten as
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Ue=-V3s3 (9) v, (2.4.47)

which is of course very reminiscent of Eq. (1.2.11).

Expanding the fluctuations in Fourier modes

3 . )
P(t,x) = / (;l;;g [ i (t) € + af pi(t) e ™ (2.4.48)

where the operator @y annihilates the Bunch-Davis vacuum |0) [2, 7], we find that each mode
function uy(t) = a®/%(t) @i (t) satisfies an equation of motion
K29

5 - H V,asgs(@] up = 0, (2.4.49)

ug + 1

which, changing the time variable to z = % t= % t, becomes

wp + [Ar(2) = 2gpco8(22)] up = 0, (2.4.50)

where the primes denote derivatives with respect to z and where

2 2 2
_ (2 B 9%y |~ (K
Ap(z) = (2H) Lﬂ(z) A +V,¢¢(¢)] ~ (2H/7 (2.4.51a)
2 2 2
q 9 g —
go=LyeF = Lo, (2.4.51b)

We recognize Eq. (2.4.50) as being a Mathieu-like equation, with parameters given by (2.4.51). In
particular, we identify the parameter Ay (z) from (2.4.51a) as being equal (in the approximation
regime we are considering) to the corresponding parameter (2.1.31a) from the Mathieu equation
for the x mode functions, whereas the parameter ¢, depends exponentially on both £ and ¢. It
is then clear that resonant production of quanta of the inflaton field (i.e. inflatons) can be a
consequence of the backreaction. In order to obtain Eq. (2.4.51), we have taken into account
that the inflaton is a light field (V&;(gg) ~ mi—) < H?) and that the produced u; modes must be

subhorizon (% > H) while inside the resonance band, as noted in §§ 1.2.1 and 2.1.2, respectively,
k

resulting in (E) > mg (i.e. the inflaton particles are relativistic while they are being produced);
(&
moreover, we have dropped a minus sign in the definition of q,, as it can be absorbed as a phase

on the cosine which we eliminate via a change of variable.
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Due to these similarities, the ensuing discussion is entirely analogous to the one in §§ 2.1.2
and 2.2. We shall once again consider a narrow resonance (g, < 1), which we shall see in § 3.3
is not difficult to ensure, in spite of the exponential factor in the definition, and focus on the
first resonance band (Ay(z) ~ 1), in which case we need only replace g by ¢, in the expression

for the Floquet exponent (2.1.32), which becomes

i (2) = %\/qu — [Ar(z) — 12, (2.4.52)

as well as in subsequent quantities (e.g. At = g,H!). Notice, however, that we need not
replace ¢ in quantities like k. pnys or z.(k), since these depend only on Aj(z), which remains the
same — in fact, these quantities can be written entirely in terms of 7 (the adiabatic coefficient
in the expansion of Ag(z)), which does not explicitly depend on g. Using this, we rewrite the

Floquet exponent as

W) = o\~ A — =, (2.4.53)

from where it follows that we can recycle the results previously obtained for the x field. In
particular, from Floquet’s theorem, the solutions to Eq. (2.4.50) are the mode functions

1

we(z) ~ eEiwon () gz oy’ (2) 2 (2.4.54)

ﬁ

0
ka

where w,g = 1/% + m% a5 ﬁ = ko phys is now the frequency of the inflaton fluctuations at
a time zg just before the mode k enters the resonance band (note that zy need not be z = 0 and
so a(zp) need not be a(z = 0)). Notice that the mode functions are essentially plane waves with
an additional exponential factor accounting for the parametric resonance. In fact, just like in
§ 2.2, if a mode k is inside the resonance band between two instants z; and z., the corresponding
mode function is amplified as

up(z) ~ etibpnes ()25 7 o2 (2.4.55)

0
2wy,

-

where pj?z = [ oy 111? (2) dz accounts for the cumulative effect of the resonance.
One could now compute the comoving number density of the produced inflatons 7, as well
as their contribution p, to the total physical energy density of the inflaton field py, in a similar

fashion to what was done in §§ 2.2 and 2.3. However, these contributions should be subdominant,
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as they are generated by a secondary resonance, of which the g, parameter is suppressed by a
factor of g2. In fact, we shall see in § 3.3 that despite the exponential factor in the definition
of g, a narrow resonance regime for x typically implies a narrower resonance for ¢, at least in
the regions of the parameter space (g, M) we are concerned with. Since the energy density of
X should be subdominant relative to that of the inflaton field (which we shall see also in § 3.3
is indeed the case), the contribution of ¢ to the inflaton energy density should be even less
relevant. As such, we refrain from performing these computations here and simply assume that
their effect is negligible. In any case, we may concern ourselves with a deeper analysis of this in
future work.

We are, however, interested in the effect of this secondary resonance on the variance of the
inflaton field, previously computed in Eq. (1.2.15). Now, using Eq. (2.4.48) and Eq. (2.4.55), we
find

(2.4.56)

where ﬁ@(k) is the backreacted power spectrum of inflaton fluctuations (as indicated by the
tilde?"). As in §§ 2.2, 2.3 and 2.4.1, we may consider three regimes (A, B and C) under which
the resonance occurs, depending on when each mode k enters the resonance band. However,
since we will ultimately be concerned with quantities at horizon-crossing, when k£ = aH, and
modes cross the resonance band when k ~ % a > aH, we expect the second regime (B), which
corresponds to modes that at a certain instant have already crossed the entirety of the resonance
band, to be the one of interest. The modes from regime C are still a long way from crossing
the horizon and so are not interesting at this stage, whereas the modes from regime A, despite
having already exited the horizon, have physical momenta that have been severely redshifted by
the expansion of the Universe, making them inaccessible by observations (we are assuming that
z > z;, with z; again marking the start of particle production, early in inflation).

We may nonetheless compute the power spectrum for all three regimes and then select the
most suitable one. For this, we start by recognising, following arguments similar to those in § 2.2,

that -1y €24k * = —L - (ﬁ@(z) + l) where 71} is the comoving number of produced inflatons
2w wi(2) k 2 ) k g

20Henceforth, backreacted quantities (mainly observables) are denoted using a tilde, while quantities without
backreaction maintain their usual symbols. We must not confuse this notation with the one used for comoving
quantities, which also employs a tilde; in any case, the latter is used only for occupation numbers, number

densities, energies and energy densities, for which we do not consider a backreaction.
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with comoving momentum k and wy(z) ~ a(kz - Taking our previous expressions for the comoving

number of particles in each regime, Eqgs. (2.2.16), (2.2.21) and (2.2.27), we find (omitting the z

dependence in the argument of the power spectrum)

~ a 2(z) . _
Bty = S @ag(z) +1)
T2 (hja()
VEZieT (MEEt) T kg < k<K (2.4.57)
a”*(2) ma}
= o X\e” . kP <k <Ek{(2) )
T (ha()) "R
e (%52) 7, k() <k<KS(2)

where kZ, ki, k{(z) and k¥ (z) are obtained by replacing ¢ by g, in Eqgs. (2.2.14), (2.2.20) and

(2.2.25), respectively. We readily conclude that at horizon-crossing (a(z) = %) the only suitable

modes are those contained between k; and k{(z), since the ones contained between k{ (z) and
k . 2H

k3 (z) verify ¢ ~ B and those between k¢ and k; indeed have too small physical momenta to

be observationally relevant. Hence, at horizon-crossing, the power spectrum becomes simply

- H? =% H?
f— — p— —_— 5
(k) = 573 © Y = 573 © e, (2.4.58)
which we recognise as the spectrum obtained in (1.2.15) multiplied by a factor coming from the
resonance, whose effect is then simply an exponential amplification of the amplitude (as we have

stated before, this is only approximately true, since there is also some additional k-dependence

due to the temporal variation of .

2.4.3 Effect on CMB observables

As we have alluded to in § 1.2.1, currently the best experimental probe for the inflationary
epoch is the CMB radiation. The effect of the backreaction on CMB observables can be split
into two contributions: those coming from the corrections to the classical inflaton (§ 2.4.1), and
those coming from the corrections to the inflaton quantum fluctuations (§ 2.4.2). As in those
subsections, we shall deal with each contribution separately and treat any interference between
the two as a higher-order effect, which we will neglect. We shall focus on the backreaction on
the dimensionless curvature power spectrum A%(k:) and related quantities, namely the scalar
spectral index ng and the tensor-to-scalar ratio r. Note that the power spectrum of tensor

perturbations is not altered due to the backreaction of the inflaton, but may receive contributions
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from x directly via gravitational wave generation [25, 26, 47], which is an effect we will not

consider in this work (but intend to compute and analyse in the future).

Classical contribution to A% (k)

Let us focus on the classical contribution first, ignoring the correction on the fluctuations. We
shall use the notation employed in § 2.4.1. In order to determine this effect, Ref. [23] can be
followed once more, in which case A%(k) is obtained by solving the Mukhanov-Sasaki equation
[8, 27, 28] for the mode functions of the backreacted (gauge-invariant) comoving curvature
perturbation R, whose uncorrected version we defined in § 1.2.1, Eq. (1.2.21). This derivation,
however, is too lengthy to include here and moreover it is well detailed in Ref. [23], so we merely

quote the final result, which is

~ 4 i
A% (k) = A% (k) [1 + j/AV;\/ZCOS (2%[{))1 : (2.4.59)

ns—1 2 2
where A% (k) = A% (k) (%) , with A% (k) = ({;) (12{”) during inflation, is the usual

power law from Eq. (1.2.23), ¢o(k) is the value of the uncorrected inflaton field when the mode

with comoving momentum k exits the causal horizon and v, = %MMP Thus, the effect of

the “classical backreaction” on the curvature power spectrum is the introduction of features
29, 80], in particular a fixed-amplitude sinusoidal oscillation.?! It has been shown [29, 76, 77]

that in order for a correction of this type to be compatible with current CMB data for the

3A* [om
v Ve Vo vs

curvature power spectrum, the amplitude dngs = (following the notation used in the
literature) must verify |dns| < 107! for axion monodromy inflation (see in particular Ref. [29]).
In § 3.3, we shall see that this condition is possible to attain in our case for all considered
inflationary potentials, roughly corresponding to the alternative condition ‘A%’ < 1075, which
in general requires that the resonances be not too efficient at the start of inflation, although we
have encountered some cases (namely, hilltop potentials [22, 81-83]) that seem to allow both an
initially efficient resonance for x (and to some extent for ¢) and an agreement with observational
data for all the CMB observables we considered (see § 3.3.2).

One might wonder whether we could simply have taken the uncorrected expression of the

curvature power spectrum and substituted Hy and éo by the first order expansions of H and ®,

respectively; following this less rigorous procedure would lead to a result similar to Eq. (2.4.59),

21Recall that in deriving Eq. (2.4.59) we took A* to be constant, which is of course an approximation. For a
more general treatment taking into account the time-dependence of A*, which we will not consider in this work,

one could follow Ref. [79].
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but without the factor %’r This is because the Mukhanov-Sasaki equation itself is altered
by the presence of the sinusoidal modulation of the potential, in particular via the slow-roll
parameters, as can be understood from Ref. [23].

Furthermore, it is pertinent to find whether the scalar spectral index suffers any alteration

due to this contribution. Using Eq. (1.2.24) as the definition of 715, we find that

_ dIn A% (k)
=l = ik
. 2 sin 2 ¢o (k)
= (=D - %evv*Mv* ( MQ?zﬁo(k)
0 =% ﬁ—i-cos( i )
= (ns—1) — -

ev, Vi « 2 k
351 \/ 9% + cos (LJ‘\)} ))

sin ,
Ve M

Q

(ns—1) —

where ng is the uncorrected scalar spectral index and where we have used the fact that during

inflation and at horizon-crossing ﬁ = (apHy) m ~ ag % = HLO% = %ﬁ, with ag
efot We have also set vy = %MMP as before (notice that we absorbed a factor sgn(¢g) as
0

a phase in the sine, which we readily discarded). In the last equality we used the fact that

Eij’/fé* \/iz*r = 0ns S 107! and we approximated v & 7x, since all the quantities in Eq. (2.4.60)
are to be evaluated near the CMB pivot scale k.. We clearly see that the scalar spectral index
acquires a sinusoidal modulation around its uncorrected value. The amplitude of this oscillation
is approximately constant and can be quite large (due to the ;! factor). However, due to the
large frequency of the oscillation, it is likely that only the average value of nz — 1 is relevant,
similarly to what we concluded in § 2.4.1 regarding the backreacted slow-roll parameters, where

we followed Ref. [58]. Proceeding similarly, we obtain (for a positive index), using the triangle

inequality,

3
V372 4372 EBnv —2ev) —2q(nv —ev) — 5 (nv — 2ev)|,  (2.4.61)

o = |» < _J
Rs = [ns| 5 s + 2 (21 2

where all quantities are to be evaluated at some time ; near the CMB scale. This expression
is not straightforward to evaluate, but it is clear that the average effect of the “classical back-
reaction” on the scalar spectral index, and thus on the tilt of the curvature power spectrum,
can still be non-negligible. We can also follow an alternative numerical approach where we plot

the natural logarithm of Eq. (2.4.59) as a function of N, sample a sufficient number of points
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and perform a linear fit, the slope of which we may take to be g — 1. The results of this
procedure can be shown to be consistent with the ones obtained via the analytical approach
leading to Eq. (2.4.61) for several choices of potential V' (¢p). It can also be shown that in some
situations (i.e. for some potentials V(¢¢) and some values of the free parameters g and M) the
effect of this backreaction can indeed significantly alter the uncorrected value of ng, which may,
for instance, cause problems in inflationary models for which this value is already compatible
with observations. However, we shall see in § 3.3 that the effect of the “quantum backreaction”
computed in the following subsection can compensate the one derived here and lead to some
interesting results.

Moreover, one could try to analyse the impact of the “classical backreaction” on the running
of ns, but we have not considered this this in the present work. We will also not concern ourselves
with the impact of this backreaction on the tensor-to-scalar ratio r, although this would also
be interesting to analyse. In principle, the tensor-to-scalar ratio 7 could eventually remain
essentially unaltered and thus equal to r, since it only depends on the amplitudes of the power
spectra at horizon-crossing: in the case of A% we may take the amplitude to be approximately
given by an average of Eq. (2.4.59) over a period of the oscillation, similarly to what we did for
the effective slow-roll parameters in § 2.4.1, which we found leads to a suppressed effect of the

backreaction. Sure enough, a more rigorous treatment of this would be required.

Quantum contribution to A% (k)

We may now study how the backreaction on the inflaton fluctuations affects the curvature power
spectrum. For this, we shall ignore the backreaction on the classical inflaton field ¢ (in keeping
with the notation used in § 2.4.2). In the backreacted case, the relation between the power
spectra of curvature perturbations and of inflaton fluctuations at horizon-crossing is again given

~ 2 ~
by Pr(k) = (g) P,(k), which leads to

2
R = 2 Pk = <H> <H>2 efe — AZ(k)ebe, (2.4.62)

where A% (k) contains the observed power law behaviour. Thus, we have found that the back-

reaction only introduces an exponential factor on the amplitude of the power spectrum.

The scalar spectral index is also affected by the backreaction on the fluctuations. Using the

same definition for ns as before, we readily find
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dlnA%(l{:)
dlnk
= (n,—1) + Lt

dNe

(2.4.63)

= (ns—1) + &£ [26Bnv —2ev) —4g(ny —ev) — (nv — 2ev)],

d .. 1d _ d . _ . .
where we used g1 = ~ 741 = e (at horizon-crossing), as well as the results from Appendix A.

Like Eq. (2.4.61), this expression is not straightforward to evaluate, and in principle it allows
both an increase and a decrease of the scalar spectral index. A numerical approach analogous
to the one described in the previous subsection may be followed as well, leading to a result for
ns compatible with the one obtained in Eq. (2.4.63), but we will not present it in this work.
If we take Eq. (2.4.63) and use for ng the “classically corrected” value that can be obtained
numerically, we are able to define a “globally corrected” scalar spectral index: this is done
in § 3.3 for several potentials V(&), where it is shown that this quantity is compatible with
the measured value of this index [29]. We shall not concern ourselves with the impact of the
“quantum backreaction” either on the running of n.

We may now briefly evaluate the effect of this backreaction on the tensor-to-scalar ratio,
which is a rather straightforward computation. Since the power spectrum of tensor perturbations
suffers no alteration due to either backcreation on ¢, we immediately conclude from Eq. (2.4.62)
that the tensor-to-scalar ratio acquires an exponential suppression due to the “quantum back-

reaction”

_ Ak ARk
T ARk AR(K)

et = re b, (2.4.64)

with r as defined in Eq. (1.2.33), and where we considered that the exponential factor integrates
the amplitude of the corrected curvature power spectrum. Moreover, recall that this result
was obtained after ignoring the “classical backreaction” on the tensor-to-scalar ratio, meaning
that this quantity could be further altered by effects linked to the former. As was mentioned
previously, we will not concern ourselves with that computation, but such a study would certainly

be of interest.

For completeness, the full backreaction on the curvature power spectrum is thus obtained

by combining Egs. (2.4.59) and (2.4.62), resulting in

< B 3AY [2r 2 ¢o (k) ’
A% (k) = AL (k) [1 + €V*Vk\/;cos< i )] et (2.4.65)




where A% (k) = A% (k) (%)ns_l, with A% (k) = (5:)2 (57:)2 during inflation. In § 3.3,
we plot this expression and its natural logarithm as functions of N, for various uncorrected
potentials and do a linear fit of the latter, thus finding a numerical “globally corrected” value
of nng. For some of the inflationary models considered, this value is found to be consistent with

the semi-analytical one mentioned earlier in this subsection, and with the measured value of the

scalar spectral index [29].
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3 Numerical Results and Simulations

This chapter is concerned with the numerical study of our model. In it, we shall test its theoret-
ical results for a selection of common inflationary models and compare them with observational
data, primarily from the Planck Collaboration [4, 29]. All numerical computations were done

using the software Wolfram Mathematica 12.0 [84].

3.1 General considerations

Before advancing into this study, however, we should note that during the construction and
exploration of our mechanism, we imposed a few conditions on some quantities. We shall now
list and review those conditions, so that we can figure out what restrictions they impose on our
model’s free parameters, g and M. Whenever possible, we will use experimental results to limit
our parameter space; otherwise, we will employ theoretical predictions from each inflationary
model we test, with the caveat that they may not be entirely consistent with observations.
The first condition we imposed was that of a narrow resonance on the EoM for X} (z) modes,

2 2
ie. g <1 (cf. §2.1.2). Since q = ﬁ (%) (MMP) , wWe may write

1
JIM < et J2MpH ~ \/%%mmgz(k*) Mp | (3.1.1)

_ 1
ALk’

Egs. (1.2.30), (1.2.33) and (1.2.39)). Computing A% (k. = 0.002Mpc™') via Egs. (1.2.23) and

where we used r ~ 16ey and r = %A}% as obtained for single-field inflation (cf.
P

(1.2.25), and using the current upper bound on the tensor-to-scalar ratio, rggp2 < 0.044, we

obtain

VIM 5 10" Gev, (3.1.2)

which is compatible with the condition (2.1.47) on (m,) = gM. We shall take these two
conditions into account when selecting ranges or specific values for g and M in order to obtain

our plots.
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Later on, in the same subsection, we assumed an adiabatic behaviour for the Mathieu pa-

rameter Ag(z), leading to the condition v < 1, which, using v = %Mﬂp, we may rewrite
as
M < ,/%VMP ~ 275 r Mp S 10 GeV, (3.1.3)

where we used r ~ 16¢€y and rggp2 < 0.044 again. We see that this condition can be easily
verified if the condition for a narrow resonance, Eq. (3.1.2), is imposed.

We then imposed that these two quantities, ¢ and -, should be related by the inequality

q

5 > in order to ensure that the mass m,(t) completes at least one oscillation inside the

resonance band. This condition is easily shown to be equivalent to

1

g5 M > 2% . /ev (A} (k)5 Mp, (3.1.4)

which is difficult to evaluate, since we only have an upper bound for r ~ 16¢y,. Thus, we
will postpone this evaluation to the sections where we deal with specific inflationary potentials
(§§ 3.3.1 and 3.3.2), so we can directly use the values for ey predicted by each model and
with those determine in which regions of our parameter space (g, M) the above condition holds.
Notice that these regions are not be static, as €y varies throughout inflation.

Lastly, in § 2.4.1, we imposed the condition |¢1| < %, establishing our expectation that the
scale of the backreaction on the field solution be small compared to the scale of the oscillation
frequency of the modulation. This condition can be rewritten using the analytical solution for
é1, given by Eq. (2.4.26), and the definition A* = —% (%)265_(1 (where we evaluate all
quantities at the CMB pivot scale), leading to

1672

et < 2 (3.1.5)

which sets an upper limit on the strength of our resonance, in particular on the number of x
particles that are produced via our mechanism, as per the discussion at the end of § 2.3, where
we had already examined the lower bound on e in order to have efficient y production and/or
detectable signs of its existence. Notice that the value on the right-hand side of the inequality
can be rather large, as we are taking g < 1. However, in §§ 3.3.1 and 3.3.2, it can be seen that
the above relation is generally true for all considered inflationary potentials. Moreover, we note
that an almost identical condition would be attained by imposing that the Floquet solutions for

. 2 p—
the ¢ modes undergo a narrow resonance, i.e. ¢, = ¢ et 1< 1.
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Apart from these conditions, there are a few approximations that must be checked, namely
that the B regime dominates 7, py and (x?), as stated in §§ 2.2, 2.3 and 2.4.1, respectively.
Moreover, we must verify whether the energy density of the Universe is dominated by pg until
the end of inflation, i.e. whether the condition ps > p, holds during the entire inflationary
epoch (or at least until near its end). Since these relations depend on the inflationary model we
select, we need also defer their testing to §§ 3.3.1 and 3.3.2. There, we find that our parameter
space (g, M) becomes restricted to smaller values of both g and M when we impose pg > py,
and conclude that the B regime indeed dominates the three aforementioned quantities in the
acceptable region of the parameter space.

Furthermore, given that all quantities vary due to slow-roll dynamics, we should ensure that
the conditions we have set remain valid during the entire inflationary period. However, since
the variation due to slow-roll is quite limited (cf. Appendix A), this will generally not be a
problem. For instance, taking the narrow resonance condition for the xy modes as an example,
one may produce plots similar to those in §§ 3.3.1 and 3.3.2 to see that even for inflaton models
in which ¢ grows, in the majority of the interesting regions of parameter space the value of ¢
remains smaller than unity throughout inflation.

Now that we have established most conditions on our free parameters, we can start dealing

with the actual numerical computations.

3.2 Numerical solution of the Mathieu equation

We may compare our analytical expression in Eq. (2.2.11) with an equivalent expression obtained
by numerically solving the Mathieu equation from (2.1.25). This procedure produces a numerical

solution X (z) that can be used to calculate a numerical version of In [274(2) + 1], through

]{J2
In [274(2) 4+ 1] = In | 222 | X7 (2) 2 + wy, | Xe(2) 2] (3.2.1)
Wk

where the primes denote differentiation with respect to z = %t, and where we used Eq. (2.2.7)
and the fact that X = %X ,’g = ke phys X ,’c In fact, inside the resonance band the modes are
relativistic and wy =~ %, but we will not make this approximation in the present numerical
treatment.

For the analytical approximation, we shall consider the case where z; = z1(k) and 2z, = z, so

that (2.2.11) becomes
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q2
In [274(2) + 1] = N

g + arcsin B(z - Zc):| + g(z - Zc)\/l - <7>2 (2 — 20)2} ) (3.2.2)

q

where in this case we have indeed set the factor %
k

to unity, since this expression describes k
modes that have entered the resonance band at z;(k) and will exit it at z9(k), between which
instants wy, ~ w)) = % and the right-hand side of (3.2.2) is real.

The plot in Figure 3.2.1 was obtained for a mode with k& = 10?2 GeV and having considered
a quartic hilltop inflationary potential with ¢; = 7 Mp and k = 10~ (see § 3.3.2 for details).
We considered €y = 0.0007, which is the value of this parameter at the start of inflation under
the specified conditions. Moreover, we chose g = 0.25 and M = 1.3 x 10" GeV, so that we
consider this case to represent an efficient resonance (cf. § 3.3.2, in particular Figure 3.3.18a).
Similar plots can be obtained for other values of these quantities, but we show this particular

case since the resonance attained here was quite marked. The initial values of X} and X, are

and X,;(Z = z1(k)) = _\/ﬁ’

given by Eq. (2.2.2), resulting in X;(z = z1(k)) = \/Qk%
c,phys

20 " if we employ the approximations suggested in that appendix.

with kc,phys =5

In2ny + 1)

10 -

. "

440 460 480 500 520 540

Figure 3.2.1: Graphical representation of the numerical (solid blue line) and approximate analyt-
ical (dashed magenta line) solutions to the Mathieu equation (2.1.25) for a mode with comoving
momentum k = 10?2 GeV, considering an efficient resonance, i.e. for ¢ = 0.25 and M = 1.3x10%
GeV. The shaded region represents the period this mode is inside the first resonance band, with

the vertical dashed lines being placed at z1(k) and zo(k).

Analysing the plot from Figure 3.2.1, we can see the evolution of the comoving particle
number 7 (z) for a certain mode k as it crosses the entire first resonance band. Before entering

the band, the comoving particle number obtained numerically oscillates near 7 = 0, since
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no x particles have been produced by the resonance by then; notice that in the analytical
approximation the oscillation is absent, as X (z) assumes a simple plane wave solution during
that time. When the mode enters the resonance band at z;(k), the solution for X (z) acquires
a non-oscillating exponential factor, due to the Floquet exponent from Eq. (2.1.32) becoming
real-valued. Thus, from z1 (k) to z2(k), the comoving particle number grows rapidly from 7 = 0
to some non-zero value, where it stabilises as the mode exits the resonance band and the Floquet
exponent becomes imaginary again, causing the regular oscillatory behaviour of Xy (z) to resume
(the oscillation being again absent in the analytical case).

Moreover, it appears that the approximate analytical expression is consistent with the one
resulting from the numerical solution of the Mathieu equation while the mode is inside the reso-
nance band, although the analytical approximation slightly overestimates the solution obtained
numerically. Once the mode exits the band, however, our analytical estimate becomes less ac-
curate and leads to a more significant underestimation of the numerical solution, although the
difference between the two (in terms of their orders of magnitude) is still not very large. We may
thus consider the analytical approximation to be successful in describing the main behaviour of
the true solution. This was attained for a specific inflationary model, but proceeding similarly
for other models (in particular, the ones considered in § 3.3) produced equally reasonable results.

We could follow a similar procedure for the backreacted quantum fluctuations of the inflaton
field, which also obey a Mathieu equation, as we derived in § 2.4.2. In general, a less pronounced
resonance should be attained for the same sets of parameters used for the y case, since, as we

shall see in § 3.3, the resonance for ¢ tends to be narrower.

3.3 Probing specific inflationary potentials

In order to further illustrate and explore the dynamics of our model, we will now consider
specific inflaton models to work with. We shall see that different choices for V(¢) will produce
distinct effects and signals. We will focus on two of the simplest families of potentials (monomial
potentials and hilltop potentials), but many other selections are also possible (see e.g. [22,
85]). The majority of the following is dedicated to numerical computations, whose results are
compared to their analytical counterparts whenever possible, but some model-specific theoretical
computations are also included. In this study, two types of plots were used: region plots of our
parameter space (g, M), and plots displaying the time evolution of physical quantities during
inflation.

The region plots were produced by imposing some of the conditions listed in § 3.1, and while
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the range for g is always taken to be [0, 1], the chosen range for M will not be the same for all
families of potentials (as can be understood from Eq. (2.1.47)). Moreover, we compute these
plots in two distinct times, in order to capture how they change throughout inflation.

In order to determine how the relevant physical quantities evolve in time for each choice of
potential, we numerically solved Eqgs. (2.4.13) and (1.2.4) for the dynamics of the inflaton field
with and without backreaction, respectively; in both cases, we performed a change of variable
from t to N, and considered the full inflaton (and so time) dependence of all participating
quantities, namely H = H(¢) and A* = A*(¢). The solutions to these two equations were
then plugged into the ¢-dependent expressions for each relevant quantity, which were then
plotted against N.. With this procedure, we were able to account for and analyse the adiabatic
variation of quantities like H, ¢, ¢ and A%, among others, which up to this point had for the
most part been considered constant when doing calculations. Although we do not show it here
explicitly, the solutions obtained analytically for these equations (most importantly the solution
of Eq. (2.4.27)) very closely match the ones computed numerically, which further proves that
the adiabatic approximations we considered for some quantities are perfectly valid.

In the following, the subscripts ¢ and f refer to quantities evaluated at the beginning and
at the end of inflation, respectively (in our numerical computations, we set inflation to begin at
N, = 0). Moreover, note that we use the same initial conditions for both the uncorrected and
the backreacted EoM. Since we are dealing with second-order ordinary differential equations,
we require two initial conditions per equation. In particular, the initial condition on the field
derivatives depends on the selected inflationary model and can be expressed using the uncor-
rected Klein-Gordon equation in the slow-roll approximation, Eq. (1.2.5b), here re-derived in

terms of IV,

a2 Veldi)
P V(g)

ES
I
o
=
I
e

(3.3.1)

where the prime denotes differentiation with respect to N, and ¢; = ¢(IN, = 0) is set by the
initial condition on the fields, which is chosen to produce the required number of e-folds of

accelerated expansion in the case without backreaction.

3.3.1 Monomial potentials (large-field models)

Let us then consider the class of one-parameter, large-field models defined by potentials of the

form [22]
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V(g) = Ao", (3.3.2)

which are the canonical example of the chaotic inflation paradigm [3, 13, 16, 22]. Note that
even though we refer to these potentials as monomials, we may not restrict ourselves to integer

values of n. It is possible to show [22] that in this scenario we have

oot ()’ 530
nv =mn(n—1) (]\jf)Q (3.3.3b)
and
1 $i \° o5\
wom [y () 330
O _ 1 (3.3.4b)

Mp /2’

where Eq. (3.3.4a) is the duration of inflation in e-folds, computed using Eq. (1.2.8), and
Eq. (3.3.4b) is the solution to ey = 1.
Applying Eq. (3.3.3) to the results of Appendix A, we find

‘é’ —n(n—2) (%)2 (3.3.52)
YY' - (J‘ipf (3.3.5b)
’i ~ on(n— g) (J‘ff (3.3.5¢)

We see that, for all non-negative values of n, « decreases during inflation, ensuring that the
variation of A (z) stays adiabatic. However, only when n < 2 does ¢ decrease or remain constant
during inflation (assuming n to be positive), the equality being achieved for the quadratic
potential; this means that for some monomial potentials (for n > 2) the value of ¢ increases
throughout inflation, possibly leading to a broad resonance regime, in which case our analysis
ceases to be valid. For £, we must ensure that n > % for it to increase or remain constant during
inflation, thus maintaining the effectiveness of the resonance. Nonetheless, the values of the

three quantities in Eq. (3.3.5) are small, meaning that ¢, v and £ vary little during inflation.
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Accordingly, even if ¢ does increase in that time, we may not necessarily enter a broad resonance
regime, invalidating our results. Likewise, even if & does decrease during inflation, this may not
inevitably lead to a regime of inefficient resonance and therefore negligible particle production
(recall the discussion at the end of § 2.3). Thus, these seemingly counterproductive cases may
not be troublesome for our model in the end.

As we saw in § 1.2.1, the CMB observables ns and r acquire simple approximate expressions
in terms of the potential slow-roll parameters ey and 7y evaluated at the beginning of inflation,
near the CMB pivot scale, cf. Eqs. (1.2.27) and (1.2.37b). In this class of models, using
Eq. (3.3.3), we may obtain alternative expressions, now in terms of the number of e-folds from

Eq. (3.3.4a)

24 n
2 N,

ng—1~ —

(3.3.6a)

roR

4n
ﬁe , (3.3.6D)

which immediately allows us to conclude that the predicted values for r are at least O(1071),
and so are too large to be compatible with observations [29]. This overestimation of the value of
r is a common feature of this class of models, and is the main reason why these have been mostly
abandoned as potential choices for V(¢). In spite of this, and given the historical importance of
this family of potentials, we shall explore the results of our theory for a few values of n, primarily
as instructive examples. In particular, we will focus on the two cases of greatest importance,

the quadratic potential (n = 2) and the quartic potential (n = 4)%2.

In the ensuing numerical treatment, the value of the coupling A is set by the measured

L and use

amplitude of the curvature power spectrum A% (k) (we will consider k, = 0.05 Mpc™
the value for the power spectrum quoted in Ref. [29] for this pivot scale (see also Eq. (1.2.25a)),
A% (k. = 0.05 Mpc™!) = 2.099 x 107?), which is related to the value of the inflaton field at k.

(cf. Eq. (1.2.26)), which we take to be ¢;; the resulting expression for \ is then

Mg

A = 120272 A% (k) gl

(3.3.7)

22The limiting case for which ¢ is constant, the potential with n = %, would also be interesting to explore, but

since it produces similar results we refrain from including it here.
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Quadratic monomial potential (n = 2)

Since its introduction as a candidate for V(¢) within the single-field inflation paradigm [22, 86],
the quadratic potential was able to remain somewhat undisturbed in the spotlight of inflationary
research, both due to its naturalness and simplicity (surely, it corresponds to a simple scalar
mass term), and to its ability to align with CMB data for the scalar spectral index ng, for which
it predicts a range of values perfectly consistent with observations [29]. However, its failure in
predicting the value of the tensor-to-scalar ratio r, greatly overestimating its magnitude, like
all monomial potentials, has driven physicists away from it. Its remaining hope would be to
somehow reduce the weight of tensor perturbations, or equivalently increase the weight of scalar
perturbations, leading to a smaller value for r. If we take a look at Eq. (2.4.64), we see that with
our model we might be able to attain this desired behaviour, and thus bring quadratic monomial
inflation back to the table, as long as the ¢ resonance parameter £, is large enough to allow this.
However, since a GW spectrum is also expected to be generated by the y particles [25, 26, 47],
the weight of tensor perturbations and consequently the predicted value of r should increase even
more. Moreover, while the “classical backreaction” on r, which we did not account for, could
eventually improve this prediction, it is unlikely that it will be sufficient for the quadratic model
to match observations. In any case, we shall test our theoretical results using this potential
choice.

For this model, considering ¢; = 15 Mp, the region plots were computed in the range 0 < g <
1 and 10" GeV < M < 10'6 GeV at two different times, corresponding to two distinct values
of the slow-roll parameter €y, which were taken to be ey ~ 0.009 (which is the initial value of
this parameter for ¢; = 15 Mp) and ey = 0.5 (which is attained at a later stage of slow-roll
evolution). The obtained plots can be found in Figure 3.3.1.

The shaded areas correspond to regions of parameter space that were excluded due to sat-
isfying either of the conditions % < mor py > py. The condition v > 1 was found to be
non-restrictive, in accordance with Eq. (3.1.3), while ¢ > 1 coincides almost perfectly with
py > pg and so was not plotted. Contour lines for the x resonance parameter § are also drawn
(for 0 < & < 15). We thus see that there exists a significant region of parameter space where
all the required conditions are met. Moreover, it was found (but is not included here) that in
roughly the entirety of this acceptable region, the B regime dominates 7, p, and (x?), mean-

ing that the approximations done in §§ 2.2, 2.3 and 2.4.1 are valid?®>. We also note that from

ey ~ 0.009 to ey = 0.5 the acceptable region slightly shifted towards smaller values of g and

Z3Even in the regions of parameter space where the B regime does not dominate, its contributions are comparable

to those of regime C, so that the error we incur on is negligible.
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Figure 3.3.1: Parameter space (g, M) for the quadratic monomial potential with ¢; = 15 Mp,
for two values of the slow-roll parameter ey: (a) ey =~ 0.009 and (b) ey = 0.5. The acceptable
region not excluded by the conditions % < 7 (orange) and py, > py (blue) is shown in white.
Contour lines (as well as some values) for the resonance parameter ¢ (for 0 < £ < 15) are shown

in green.

M, meaning that we must be careful when picking values for these parameters, so as to avoid
entering excluded regions as inflation progresses: for instance, if we start inflation within the
acceptable region, eventually the condition p, < pgs might cease to be verified, as we enter the
region where p, > pg (which is not necessarily problematic if it occurs sufficiently late in the
slow-roll regime, as we shall discover).

We may now proceed to the time evolution plots. We again take ¢; = 15 Mp, allowing us to
get about 56 e-folds of uncorrected inflation, leading to ns ~ 0.9643 and r ~ 0.143, the former
being compatible with CMB data, see Egs. (1.2.25b) and (1.2.34a), and Ref. [29]. We also
choose the values g = 0.33 and M = 3 x 10'® GeV for our free parameters, which, as we can see
in Figure 3.3.1a, are acceptable at the start of inflation.

In Figure 3.3.2, we show how the quantities ¢, v and & evolve throughout inflation, as well
as the energy densities of ¢ and x (the latter being given by Eq. (2.3.21)).

As per Eq. (3.3.5a), g assumes a constant value and verifies the narrow resonance condition.
Moreover, the v parameter indeed decreases and is much smaller than unity throughout inflation,
thus verifying the adiabaticity condition, while the £ parameter is large enough to ensure a
rather efficient resonance, in fact increasing during inflation, as expected. The energy density

of the inflaton strictly decreases as inflation develops, while that of the x field strictly increases,
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Figure 3.3.2: Evolution of the parameters (a) ¢, (b) v and (c) &, and of (d) the energy densities
py and py for the quadratic monomial potential with ¢; = 15 Mp and model parameters g = 0.33
and M = 3 x 10 GeV.

becoming comparable to ps by the end of inflation. This points to a possible graceful exit
from inflation, where the accelerated expansion is terminated naturally as the energy density is

overtaken by another field, in this case y, also a scalar.

In Figure 3.3.3a, we plot the classical inflaton field solution in the uncorrected and in the
backreacted case. We immediately see that the backreacted field solution appears to perfectly
follow the uncorrected solution, as we expected from Eq. (2.4.27). Moreover, in Figure 3.3.3b,
we display the effective inflaton potential as a function of the field solution, as defined in
Eq. (2.4.14a). As inflation progresses and the inflaton field takes smaller and smaller values,

it rolls down its potential curve, eventually reaching the region where the oscillations become

AV’
Y

)
max

non-negligible. Additionally, in Figure 3.3.3c we plot the ratios ’A—VV

1"
and ‘ 4

max max

as functions of the number of e-folds, whereby we conclude that the relation derived in Appendix

C.2 is indeed verified numerically. Moreover, the bounds on ’%

from Refs. [29, 76, 77]

max
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are indeed verified at horizon-crossing of CMB scales, in particular the most constraining one,

A —_
AV <3 x 107°, from Ref. [76].
V max ~ ’
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Figure 3.3.3: Evolution of (a) the corrected and uncorrected ¢ field solutions and of (c) the

ratios

AV ‘ , as well as (b) the corrected and uncorrected potentials plotted as functions of

V(n) max
¢, for the quadratic monomial potential with ¢; = 15 Mp and model parameters g = 0.33 and

M =3 x 10¥ GeV.

Let us now see what happens to the slow-roll parameters, in particular to ey and |ng|
(which, as we know, are equal to ey and ny during slow-roll). In Figures 3.3.4a and 3.3.4b,
we simultaneously show the uncorrected and the effective Hubble slow-roll parameters, while in
Figures 3.3.4c and 3.3.4d we display the average effect of the correction on those parameters,
computed using Eqs. (2.4.35) and (2.4.44).

We observe that the backreaction introduces large-amplitude oscillations on both slow-roll
parameters, which, as we mentioned before, clashes with the unchanged behaviour of the backre-
acted inflaton seen in Figure 3.3.3a. However, as seen in the plots above, the average behaviour
of the correction on the slow-roll parameters, in particular on €g, is quite suppressed, thus

explaining the minimal alteration observed on the field solution. Furthermore, the analysis of

84



Corrected

il 104 L
C ted
orrected A3 B Uncorrected

----- Uncorrected 1000 ¢

100 ¢

= 0100k I I 0l
0.010 § pupiy B
0.10L
0.001
0.01L
0 10 20 30 40 50 0 10 20 30 40 50
N, N,
(a) (b)
B e T 2 o A
0.50 + ] 100 b
£ £ 10l
g 010 )
v y 1L
+ 0.05f hd
& =
0.10
0.01 - 3 0.01 L
Il L L L L L ] : 1 1 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50
N, N
(c) (d)

Figure 3.3.4: Evolution of the corrected and uncorrected Hubble slow-roll parameters (a) ep
and (b) |nm| = nm, as well as their average corrections (c) eg + |[(Aem) 1| a a0d (d) [na| +
[{ANH)T |,y Plotted as functions of the average centre N, ;, for the quadratic monomial potential

with ¢; = 15 Mp and model parameters ¢ = 0.33 and M = 3 x 10'° GeV.

these plots allows us to conclude that, for the chosen values of g, M and ¢;, we get roughly the
same 56 e-folds of inflation in the case with backreaction (i.e. the backreaction does not seem
to lead to a premature ending of inflation; there is, of course, a slight anticipation, since the
average correction added to either slow-roll parameter is non-zero).

In Figure 3.3.5, we show the temporal evolution of the ¢ resonance parameters g, and &,
where we see that they are clearly suppressed relative to their analogues ¢ and £ (notice that
this may not always be the case, as g, depends exponentially on the value of &).

Moreover, in Figure 3.3.6a, we plot the curvature power spectra defined by Egs. (1.2.22D)
and (2.4.59), respectively the uncorrected spectrum and the fully corrected spectrum (the plots
are over the first 10 e-folds of inflation, which is roughly the interval of relevance for CMB
observables). The amplitude of the oscillating part is consistent with the bounds from Refs.

AV

[29, 76, 77], imposed on ‘? Since the definition of the scalar spectral index assumes a

max
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Figure 3.3.5: Evolution of the ¢ resonance parameters (a) g, and (b) &, for the quadratic

monomial potential with ¢; = 15 Mp and model parameters g = 0.33 and M = 3 x 10 GeV.

power law behaviour for the power spectrum, we may determine its value by performing a linear
fit to the natural logarithm of the power spectrum and retrieving the resulting slope, as shown

in Figure 3.3.6b.

This procedure results in a value for the backreacted scalar spectral index, 1y ~ 0.9612,
that is also consistent with observations, see Eq. (1.2.25b) and Ref. [29]; in fact, this value is
quite close to the uncorrected ngs, meaning that the overall backreaction produces little effect
on this observable (in particular, both the y and the ¢ resonance parameters are quite small),
which can bee seen in Figure 3.3.6b by the fact that the linear fit and the uncorrected spectrum
coincide almost perfectly. Other values for ¢;, ¢ and M produce equally good predictions for
the scalar spectral index. As for the tensor-to-scalar ratio, in Figure 3.3.6¢ we plot (also over
the first 10 e-folds of inflation) the “quantum-backreacted” version 7 from Eq. (2.4.64) against
the uncorrected version r, given by Eq. (1.2.33), and confirm that the two are essentially equal
and so incompatible with observations (cf. Eq. (1.2.34a)), as expected from the smallness of the
 resonance parameters; thus, the effect of the y particles appears to be insufficient to make
the quadratic model’s prediction for the tensor-to scalar ratio align with experimental data. We
may try to increase the values of ¢;, g and M so as to get a larger number of e-folds of inflation
(making r decrease) and a smaller exponential e~ suppressing 7. However, we find that for
some larger values of g and M the backreacted inflaton field solution becomes constant a certain
number of e-folds before N, (given by Eq. (3.3.4a)), that number growing with the magnitudes
of g and M ; this can be seen in the plots from Figures 3.3.7a and 3.3.7b, which were computed
using g = 0.4 and g = 0.45, while keeping all other parameters the same, and were plotted until

the condition ex + [(A€p) 1|, = 1 was verified in each case.

This unexpected behaviour can be understood by looking at Figures 3.3.7c and 3.3.7d, which

86



22x1077 f!

-20.0f

fi = 0.9612

2.0x1077 -

-20.1f
1.8x107°f [

NS
In Ag?

® Sampled points

-20.2}
9 [ (corrected)
1.6 x1077 Corrected
Linear model

----- Uncorrected -203}
[ (R? = 0.94)

|~ == Uncorrected

-9 | [
1.4x10 a0l

0.170 -

Corrected

0.165-  |==-=-=- Uncorrected

0.160

0.155

0.150

0.145

Figure 3.3.6: Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a) A%
and (c) 7 (both their corrected and uncorrected versions) for the quadratic monomial potential
with ¢; = 15 Mp and model parameters g = 0.33 and M = 3 x 10* GeV. In (b) we perform a

linear fit to In A% and display the obtained R? coefficient, as well as the obtained value for 7.

show the effective potential as a function of ¢ for the two alternative parameter values, g = 0.4
and g = 0.45. We see that the field rolls down its potential, driving accelerated expansion, until it
reaches a region where the oscillations become non-negligible. If the oscillations are small enough
to allow the inflaton to climb the potential wall they induce, then inflation is able to continue; if,
instead, the oscillations are too large (~ O(¢?)), the inflaton’s kinetic energy may be insufficient
to overcome the potential wall and the field gets stuck in a local minimum, assuming a constant
value. We must be wary of this result, however: as the inflaton gets stuck and its value stops
changing, the ¢-dependent mass of the x field, m, (t) o sin (%t)), stops oscillating and so the
parametric resonance driving x production terminates. Since this resonant phenomenon is what
originates the correction to the inflaton potential, which would then be absent, and since this
correction is responsible for the apparent constancy of ¢, we must conclude that this behaviour

is fictitious and does not have any physical significance; that is, our model breaks down and
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max
solutions for (a) g = 0.4 and (c) g = 0.45, as well as the corresponding corrected and uncorrected
potentials as functions of the field value ¢, respectively (b) and (d). Obtained for the quadratic

monomial potential with ¢; = 15 Mp and model parameter M = 3 x 10 GeV.

loses its validity before the end of inflation.”* Perhaps some kind of modification could alleviate
this effect, but we have yet to research this matter. Furthermore, note that this effect does not
arise when the approximate analytical expression for ¢, Eq. (2.4.27), is plotted, in which case
the uncorrected solution is closely followed for the entirety of inflation. However, this result is
of course unphysical, since by conservation of energy the field should not be able to reach the
region where the oscillations become ~ (’)((;.52). Clearly, this means that the average corrections
on the slow-roll parameters, computed using Eq. (2.4.27), also cease to be valid after the field
gets stuck.

As it is, we have found that no combination of values for g, M and ¢; that avoids ¢ getting

stuck produces a pair (7i5,7) consistent with observational data, meaning that the quadratic

Z4Notice that this may also render invalid the correction to |nx| attained by the end of inflation in Figure 3.3.4d,

which was in fact still quite substantial.
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monomial potential should remain excluded.

Quartic monomial potential (n = 4)

The quartic monomial has also been extensively studied as an inflationary potential, correspond-
ing to a common interaction term used in QFT [18, 66]. Unlike in the quadratic model, the
predicted values for ng are too small to be compatible with CMB data, while r is too large
as well. These aspects have also made it an inadequate candidate for V(¢). A large enough
backreaction on the curvature power spectrum would thus be required to potentially increase
the value of ng, as well as decrease the value of the tensor-to-scalar ratio r.

For this potential, taking ¢; = 22 Mp, the region plots were also computed in the range
0<g<1land10' GeV < M < 1016 GeV at two different moments: ey ~ 0.017 (corresponding
to the value of this parameter at ¢; = 22 Mp) and ey = 0.2 (attained later in slow-roll). The

results are displayed in Figure 3.3.8.
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Figure 3.3.8: Parameter space (g, M) for the quartic monomial potential with ¢; = 22 Mp, for
two values of the slow-roll parameter ey: (a) ey =~ 0.017 and (b) ey = 0.2. The acceptable
region not excluded by the conditions % < 7 (orange) and p, > pe (blue) is shown in white.
Contour lines (as well as some values) for the resonance parameter £ (for 0 < £ < 15) are shown

in green.

Once again, the shaded areas correspond to regions of parameter space that were excluded
due to satisfying either % < m or py, > pg, while the conditions v > 1 and ¢ > 1 are not

plotted for the same reasons as in the quadratic potential. Contour lines for the y resonance
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parameter ¢ are shown (for 0 < £ < 15). As before, we see that there exists a significant region
of parameter space where all the required conditions are met and in roughly the entirety of this
region, the B regime again dominates 7, p, and (x%). We clearly see that from ey =~ 0.017
to ey = 0.2 the shift of the acceptable region towards smaller values of g and M is much more
drastic than in the previous case, which means that, for some initially acceptable pair (g, M),
we may eventually enter the excluded region where p, > py quite early in inflation (which can

in fact be problematic).

For the time evolution plots, we also take ¢; = 22 Mp, leading to around 60 e-folds of accel-
erated expansion in the uncorrected regime, resulting in ng ~ 0.9497 and r ~ 0.268 (compare
with Eqgs. (1.2.25b) and (1.2.34a)). We also pick g = 0.7 and M = 2 x 10'® GeV. Notice that
these values do not verify the condition % > 7 in the first few e-folds of inflation, as can be seen
in Figure 3.3.8a; we shall understand the reason for this choice soon. The time evolution of ¢,
v and § is shown in Figure 3.3.9, together with the evolution of the energy densities p, and pg.
There, we see that ¢ is no longer constant, but increases during inflation, while the remaining
quantities maintain their behaviour. However, we readily notice that £ grows much quicker than

in the quadratic case, due to the also-increasing ¢? in its definition, Eq. (2.3.22).

This fast growth of £ is problematic, as it causes ¢ to get stuck in a local minimum of
V(¢) rather early in inflation, even when we start with small values of £&. This can be seen in
Figure 3.3.10a, displaying the inflaton field solutions as functions of the number of e-folds, and
Figure 3.3.10b, displaying the effective inflaton potential V(¢) as a function of ¢. Like in the
quadratic case, the field rolls down its potential until it reaches the region where the amplitude
of the oscillations becomes large enough to prevent it from climbing the induced potential wall,
causing the field to get stuck, only this occurs faster than for the quadratic monomial, due to
the faster-growing £. Had we picked smaller values for g and/or M, this behaviour would be
attenuated and the field would not get stuck, but simultaneously we would be delving deeper
into the region of parameter space where the condition % > 7 is not realised, leading to a meagre
resonance, which is also undesirable. On the other hand, selecting larger values for g and/or
M would cause the field to get stuck too early in inflation, causing our model to lose physical

significance.

The results for the remaining plots are quite similar to those obtained in the previous section.
We include only in Figure 3.3.11 the plot for the “globally corrected” curvature power spectrum
from Eq. (2.4.65), containing also the numerically-obtained scalar spectral index, n; ~ 0.9462, as
well as the plot for the “quantum-backreacted” tensor-to-scalar ratio from Eq. (2.4.64). Although

we do not show the plot for the ratios ’%’ , the results obtained here are also compatible
max

90



0.0225 '
0.20 |
0.0200 |
0.15 -
0.0175
o 0.10 - .. 0.0150 |
0.0125 |
0.05 -
0.0100 |
0\ 1\0\ ‘2‘0‘ \3\0\ L L \4\0\ L L L d 0 10 20 30 40
N, N,
(a) (b)
104 ET
- e
108 |77 Pe ) AR
2+ P, *~~~
%
w1 $ 109k
0.5
10°' ¢
0.2}
L L L P T IS MY 1 L - L 1
0 10 20 30 40 0 10 20 30 40
N, N,
() (d)
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with the bounds on ’A—Vv‘max from Refs. [29, 76, 77]. However, we see that the values obtained
for s and 7 are incompatible with observations [29], as expected from the small values of the
resonance parameters at the start of inflation (once again, the linear fit to In A% follows the
uncorrected curve exceedingly close). If we try to increase the magnitudes of either g or M so
as to get larger initial values for ¢, &, ¢, and &, and thus an appropriate pair (s, 7), we find
that the only combinations which could achieve that cause ¢ to get stuck too early in inflation,
rendering our model useless. Hence, we conclude that our mechanism is unable to modify the

predictions of the quartic potential in a way to make them agree with experimental data.
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Figure 3.3.11: Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a) A%
and (c) r (both their corrected and uncorrected versions) for the quartic monomial potential
with ¢; = 22 Mp and model parameters g = 0.7 and M = 2 x 10'5 GeV. In (b) we perform a

linear fit to In A% and display the obtained R? coefficient, as well as the obtained value for 7.

3.3.2 Hilltop potentials (small-field models)

We may now consider another class of potentials, in this case that of two-parameter, small-field

models [22, 81-83], which we can generally write as
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k[ ¢ \""
V() = Vo {1 - (Mp> ] , (3.3.8)
with n > 2 and 2" = 7 (A%)n < 1, making the second term in the brackets subdominant
(we will consider k < 1 in order to attain this). Moreover, henceforth we shall always consider
m = 1. These typically arise in the study of spontaneous symmetry breaking, in particular in
the Abelian Higgs model [18, 66, 74]. Using the definitions of the potential slow-roll parameters,
Eq. (1.2.6), one can show that [22, 81-83]

€y = ? {1 - % (Mi;)n}z (3.3.9&)
5\ 2

nv = —k(n—1) l(ﬂip()d))n . (3.3.9b)
— 5 (2

Since ey > 0 and ny < 0 for all accepted values of n, it is easy to see from (A.5), (A.7)
and (A.8) that all three quantities %/, 77/ and %l are negative, meaning that ¢, v and £ all
decrease during inflation. This is not inherently problematic and does not immediately force
us to conclude that an appreciable resonance cannot be attained. For instance, this behaviour
still allows for a resonance that is rather strong at the start of inflation but gets gradually less
efficient as slow-roll develops. In fact, we will see that it is precisely this behaviour that leads

to some very interesting results for our model.

The duration of inflation in e-folds and the field value at e,y = 1 are given by [81]

N, = , , . . (3.3.10a)
)" (0] + ot ()" - G)] e
J(Zn:QZ\/l+i+2/£+:% % (3.3.10b)

where Eq. (3.3.10b) was obtained using the full expression for ey. The value of XZ,—’; for the
remaining choices for n must be obtained by solving ey = 1 numerically.

As for the CMB observables, one can obtain [81]
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1y 2 @,
r o~ 8n207%) ka i (3.3.11b)
(1 —=7)
where 7! = = (%)n Some of these expressions are not straightforward to evaluate, and so we

cannot easily determine whether the hilltop models predict values for these quantities that are
compatible with observations [29]. We shall obtain numerical values for them in the following
portion of this work. We will be focusing our upcoming analysis and discussion on the two
cases that are arguably the best motivated in terms of spontaneous symmetry breaking and the
Abelian Higgs mechanism [18, 66, 74]: the quadratic hilltop potential (n = 2) and the quartic
hilltop potential (n = 4).

As mentioned before, the hilltop family of potentials is defined by two parameters, V{ and
k. In the following, the former is set by the measured amplitude of the curvature power spec-
trum A% (k.), which we will again consider to be A% (k. = 0.05 Mpc™!) = 2.099 x 107 (cf.
Eq. (1.2.25a) and Ref. [29]), leading to (cf. Eq. (1.2.26))

()
Vo = 1272 A% (k) MA k2 | M: T )n]3 (3.3.12)
T n \ Mp

On the other hand, k is a free parameter for this class of potentials, whose value we must choose

in order to get ¢¢, as well as an adequate duration for inflation, cf. Eq. (3.3.10); there will exist,

of course, an interplay between x and ¢; in order to attain a proper value for Ne.

Quadratic hilltop potential (n = 2)

The first particular realisation of the hilltop potential we will test is the quadratic case, which
corresponds to the mass term in the Abelian Higgs potential [18, 66, 74], which is the dominant
contribution, considering x> = g(Mi;)Q < 1. The uncorrected version of this potential is
already able to produce values for the CMB observables ns and r that agree with measurements
[29]. Surely, we would like to avoid losing this, and we shall see that for an appreciable range
of values for the pair (g, M) this agreement can indeed be maintained even with non-negligible
resonances for y and .

For this model, setting ¢; = 5 Mp and x = 10~2, we computed the region plots in the range

0<g<1and 10" GeV < M < 6 x 10'> GeV (the upper limit of M was chosen to improve
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visibility for the analysis, but we could have gone up to M < 10'6 GeV) again at two different
stages of inflation: ey &~ 0.002 (corresponding to the initial value of this parameter for ¢; = 5 Mp

and k = 1072) and ey = 0.5 (attained later). In Figure 3.3.12, we display the resulting plots.
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Figure 3.3.12: Parameter space (g, M) for the quadratic hilltop potential with ¢; = 5 Mp and
k = 1072, for two values of the slow-roll parameter ey: (a) ey &~ 0.002 and (b) ey = 0.5. The
acceptable region not excluded by the conditions % < m (orange) and py > pg (blue) is shown
in white. Contour lines (as well as some values) for the resonance parameter £ (for 0 < £ < 15)

are shown in green.

The shaded areas again correspond to regions excluded due to the conditions % < 7 or
py > pg being verified there, and the conditions v > 1 and ¢ > 1 are not plotted since they are
non-restrictive and redundant, respectively. In Figure 3.3.12b, we also do not show an additional
region where p, > pg, as it is fully contained in the region % < m, which is already excluded. The
contour lines for 0 < & < 15 are also drawn. We observe that there exists a significant region of
parameter space where all the required conditions are met, in this case that region being in fact
larger than the one obtained for the two monomial cases we studied. Furthermore, we found
that in this region the B regime dominates 7, p, and (x?), again ensuring the validity of the
approximations used in §§ 2.2, 2.3 and 2.4.1. We note that for this model, from ey ~ 0.002 to
ey = 0.5, the acceptable region became broader and shifted slightly upwards, allowing larger
values of g and M. Thus, if we start inflation within the acceptable region, we might eventually
enter the region where % < m, which is somewhat expected, since the resonance does become
less efficient as inflation progresses, as we concluded earlier; note, however, that this is not

necessarily troublesome if it happens towards the end of inflation, which is found to generally
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be the case.

Let us now analyse the time evolution plots. As before, we take ¢; = 5 Mp and xk = 1072,
which allows us to get about 62 e-folds of inflation neglecting backreaction. This yields a scalar
spectral index ng ~ 0.9673 and a tensor-to-scalar ratio r = 0.026, both compatible with Planck
data, cf. Egs. (1.2.25b) and (1.2.34a), and Ref. [29]. Additionally, considering the results from
Figure 3.3.12a, we choose g = 0.2 and M = 2 x 10'® GeV for our free parameters.

In Figure 3.3.13, we show the time evolution of the quantities ¢, v and & throughout inflation,

as well as the energy densities of ¢ and .
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Figure 3.3.13: Evolution of the parameters (a) ¢, (b) v and (c) &, and of (d) the energy densities
py and pg for the quadratic hilltop potential with ¢; = 5 Mp and k = 1072, and model parame-
ters g = 0.2 and M = 2 x 10'5 GeV.

We see that ¢, v and £ indeed behave as we had predicted based on Appendix A and
Eq. (3.3.9), i.e. they all decrease during inflation, and ¢ and 7 indeed verify the narrow resonance
and the adiabaticity conditions, respectively. Looking at Figure 3.3.13c in particular, we find
that the resonance is quite large at the beginning of inflation, since £ 2 1, and gradually becomes

less and less efficient as time goes on. However, considering now Figure 3.3.13d, this does not
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make the energy density of x decrease throughout inflation, which might seem slightly counter-
intuitive. The explanation lies in the phase space effects we described at the end of § 2.3.
In spite of the decreasing value of £ and it becoming sub-unity, leading to a small number of
particles being produced at each comoving momentum k, a large interval of comoving momenta
provide contributions to p,; since the comoving momentum of the x modes being produced
grows as inflation develops (k.(t) o a(t), cf. Eq. (2.1.35)), so does their respective phase space
contribution, making p, increase, as per Eq. (2.3.11). Since the energy density of the inflaton
strictly decreases as inflation develops, we see in this particular case that p, becomes less than
two orders of magnitude smaller than py, by the end of inflation, which may also point to a
graceful exit from inflation, although in this situation the final energy density of the x field is

not sufficient to completely overtake that of the inflaton.

In Figure 3.3.14, we plot the inflaton field solution in the uncorrected and in the backreacted

case, the effective and the uncorrected potentials as functions of ¢, as defined in Eq. (2.4.14a),

AV (™)
v (n)

and the ratios ‘ as functions of N,.
X

Like for the monomial potentials, the backreacted field solution perfectly follows the uncor-
rected solution; however, in the present case, the effective potential also appears to follow the
uncorrected curve, since the oscillatory correction to the potential is quite small compared to

AV -5
‘7 S3X1O s

max

V(¢), as we can see in Figure 3.3.14c, which shows in particular that indeed

in accordance with the bounds obtained in Refs. [29, 76, 77].

Considering now the Hubble slow-roll parameters, we show in Figures 3.3.15a and 3.3.15b
their uncorrected and effective versions, while in Figures 3.3.15¢ and 3.3.15d we display the
average effect of the correction. The results are similar to those obtained for the monomial family:
the backreaction again introduces large-amplitude oscillations on both slow-roll parameters,
despite the field solution appearing unaltered, which is explained by the average effect of the
backreaction on €y and |ng| being quite suppressed. Additionally, this allows us to get roughly 61
e-folds of inflation in the quantum-corrected scenario, which then manifests a slight anticipation
of the ending of inflation relative to the uncorrected case, due to a non-zero average correction

on €.

The time evolution of the ¢ resonance parameters g, and &, is shown in Figures 3.3.16a
and 3.3.16b, where we find that their orders of magnitude are smaller than those of ¢ and &,
respectively. However, both parameters still assume large enough values to generate a somewhat

efficient resonance for ¢, leading to some interesting observational effects.

These effects can be seen in Figure 3.3.17a, where we plot the curvature power spectra

defined by Egs. (1.2.22b) and (2.4.59), respectively the uncorrected spectrum and the fully
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Figure 3.3.14: Evolution of (a) the corrected and uncorrected ¢ field solutions and of (c) the
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of ¢, for the quadratic hilltop potential with ¢; = 5 Mp and x = 1072, and model parameters

g=0.2and M =2 x 1015 GeV.

corrected spectrum. We again determine the value of 715 by performing a linear fit to the natural
logarithm of the corrected power spectrum and taking the resulting slope as 7is—1, as is shown in
Figure 3.3.17b. For the selected values of the parameters, the value we obtain for the backreacted
scalar spectral index, 75 ~ 0.9658 is also consistent with observations, cf. Eq. (1.2.25b) and Ref.
[29], and moreover it is remarkably close to the uncorrected one (as is the linear model to the
uncorrected curve), in spite of the substantial values of the resonance parameters, both for x and
. Like we had hinted at before, the effects of the “quantum” and the “classical backreactions”
have compensated each other, leaving us with an almost unaltered scalar spectral index. In
fact, had we taken only one of these backreaction effects into account, we would have obtained
quite different predictions for 71y due to each of them, with the “classical” one being above the
measured value and the “quantum” one being below. Other values for ¢;, x and for the pair

(g, M) produce equally good predictions for the scalar spectral index. Furthermore, the results
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Figure 3.3.15: Evolution of the corrected and uncorrected Hubble slow-roll parameters (a) ex
and (b) |nm/|, as well as their average corrections (c¢) e+ [(A€p) 1| a0d () [nH |+ [{ANH) 7] hax

plotted as functions of the average centre N, ;, for the quadratic hilltop potential with ¢; = 5 Mp
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Figure 3.3.16: Evolution of the ¢ resonance parameters (a) g, and (b) &, (the tildes are omitted
in the plots) for the quadratic hilltop potential with ¢; = 5Mp and x = 1072, and model
parameters g = 0.2 and M = 2 x 10'® GeV.
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for the tensor-to-scalar ratio are plotted in Figure 3.3.17¢, where we see that the already-small
value predicted by the uncorrected model suffers almost no alteration due to the “quantum
backreaction” described by Eq. (2.4.64), and so remains within the acceptable range from Ref.
[29], quoted in Eq. (1.2.34a). This behaviour was verified also for other values of the parameters

¢i, K and (g, M).
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Figure 3.3.17: Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a)
A% and (c) r (both their corrected and uncorrected versions) for the quadratic hilltop potential
with ¢; = 5 Mp and x = 1072, and model parameters ¢ = 0.2 and M = 2 x 10" GeV. In (b)
we perform a linear fit to In A% and display the obtained R? coefficient, as well as the obtained

value for 7.

The results of this section seem to show that our model is compatible with the quadratic
hilltop potential, producing acceptable values for the considered CMB observables while still
allowing for an appreciable production of y particles, as well as suggesting a graceful exit from

inflation.
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Quartic hilltop potential (n = 4)

The quartic hilltop potential arises from the second-largest contribution to the Abelian Higgs
potential [18, 66, 74], corresponding to a ¢*-type interaction.

Similarly to the quadratic hilltop, this model allows values for ns; and r that are simultane-
ously compatible with experimental data [29], which once again is a feature we would like to
conserve.

In this case, for ¢; = 7 Mp and k = 1074, we select the ranges 0 < g < 1 and 10" GeV <
M < 6 x 10% GeV (the latter being due to the same reasons as in the quadratic hilltop case)
and obtain the parameter space at the two instants ey =~ 0.0007 (corresponding to the value of
this parameter at ¢; = 7 Mp and k = 10~%) and ey = 0.5 (attained later in slow-roll). The plots

are displayed in Figure 3.3.18.
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Figure 3.3.18: Parameter space (g, M) for the quartic hilltop potential with ¢; = 7 Mp and
k = 1074, for two values of the slow-roll parameter ey: (a) ey =~ 0.0007 and (b) ey = 0.5. The
acceptable region not excluded by the conditions % < m (orange) and py, > py (blue) is shown
in white. Contour lines (as well as some values) for the resonance parameter £ (for 0 < £ < 15)

are shown in green.

The excluded (shaded) regions refer either to % < T or py > pg, while the conditions v > 1
and ¢ > 1 are again not shown. Contour lines for 0 < £ < 15 are included. Similarly to the
quadratic hilltop case, we see that there exists a significant region of parameter space where all
the required conditions are met, including the dominance of the B regime in 7, p, and ),

which, as we go from ey = 0.0007 to e,y = 0.5, gets broader and shifts towards larger values of g
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and M. In this case also, we find that if we select a point (g, M) contained within the acceptable
region at the start of inflation, as slow-roll develops we may move towards and eventually enter

the region where 3 < m, which is found to generally occur late enough to not invalidate our
results (as we saw before, the resonance is efficient only at the beginning of inflation).

As for the time evolution plots, we also take ¢; = 7 Mp and x = 1074, leading to around 58
e-folds of accelerated expansion in the uncorrected case, resulting in ng = 0.9647 and r ~ 0.011
(compare with Egs. (1.2.25b) and (1.2.34a)). We also pick g = 0.2 and M = 1.3 x 10'® GeV.
The results for this potential are quite similar to those obtained for n = 2.

We again obtain decreasing ¢, v and &, with the latter starting inflation with values larger
than unity and evolving to smaller values as slow-roll develops, as can be seen in Figure 3.3.19,
where we also see that the energy density of the x field again increases throughout inflation,

becoming, by the end of it, smaller than pys by just one order of magnitude.
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Figure 3.3.19: Evolution of the parameters (a) ¢, (b) v and (c) &, and of (d) the energy densities
py and pg for the quartic hilltop potential with ¢; = 7 Mp and x = 10~*, and model parameters
g=0.2and M = 1.3 x 10! GeV.

Like in the quadratic hilltop case, the corrected and uncorrected inflaton field solutions
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follow each other closely, as do the corrected and uncorrected potentials, cf. Figures 3.3.20a

and 3.3.20b. The ratios ‘A‘Xg) are also plotted in Figure 3.3.20c as functions of N.; the
max
agreement with Refs. [29, 76, 77| is clear, since indeed ‘A—VV’ < 3 x 107°. We are able to
max
improve this accordance by lowering either g or M, while remaining inside the acceptable region

of the parameter space.
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Figure 3.3.20: Evolution of (a) the corrected and uncorrected ¢ field solutions and of (c¢) the
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ratios , as well as (b) the corrected and uncorrected potentials plotted as functions of
max
¢, for the quartic hilltop potential with ¢; = 7 Mp and k = 10~%, and model parameters g = 0.2

and M = 1.3 x 10'® GeV.

The effective Hubble slow-roll parameters and their respective average corrections are also
plotted in Figure 3.3.21, with the latter allowing us to conclude that inflation is once again not
ended prematurely due to the backreaction.

The “globally corrected” curvature power spectrum from Eq. (2.4.65) is plotted in Fig-
ure 3.3.22a, together with its uncorrected version. The corrected scalar spectral index 7 is
obtained as the slope of a linear fit on In A%, cf. Figure 3.3.22b, the latter following the uncor-

rected curve very closely, as in the previous cases. The value obtained for the index, n; ~ 0.9626,
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Figure 3.3.21: Evolution of the corrected and uncorrected Hubble slow-roll parameters (a) ep
and (b) |nm/|, as well as their average corrections (c¢) e+ [(A€) 1|0y a0d (d) [nH|+[{ANH) T ] pax

plotted as functions of the average centre N, ;, for the quartic hilltop potential with ¢; = 7 Mp
and k£ = 1074, and model parameters g = 0.2 and M = 1.3 x 10" GeV.

is consistent with data from Ref. [29], and it is close to the uncorrected one, indicating again
that the effects of the “quantum” and the “classical backreactions” have balanced each other
out (although for the selected set of parameters neither of these backreaction effects produced
excluded values for s when acting isolatedly). In any case, other values for ¢;, x and for the pair
(g, M) have been found to produce equally good predictions for the “globally corrected” scalar
spectral index. Lastly, the tensor-to-scalar ratio, plotted in Figure 3.3.22c¢, is also predicted to
attain a “quantum-backreacted” value (cf. Eq. (2.4.64)) compatible with the bounds from Ref.
[29], that value being essentially equal to the one predicted by the uncorrected model. As before,
this was also verified for other values of ¢;, k, g and M.

The results obtained here also point to our model being compatible with the quartic hilltop
potential, since we were able to obtain good values for CMB observables, while allowing for a

substantial resonance for the x particles, with a possible graceful exit from inflation due to it.
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4 Discussion and Conclusion

In this work, we have developed a model for scalar particle production due to a narrow parametric
resonance during the inflationary epoch. We checked whether this particle production process
can be appreciable while still maintaining the inflaton as the dominant fluid in the Universe,
even when the effects of a backreaction are taken into account. There are several conclusions
we may draw from our study.

First and foremost, we concluded in § 2.1.2 that the x particles are relativistic while they are

being produced (i.e. while their respective k modes are inside the resonance band), since at such

2
a time their squared physical momentum is essentially equal to kg,phys = <W§’;> > (mx>2, if the
resonance is narrow. The fact that all physical momenta of the particles in production at a time
z is close to k¢ phys, as seen in § 2.2, also allowed us to conclude that the momentum distribution

of the x particles is non-thermal, approximately resembling a Dirac delta function centered at

ke phys, the width of which is roughly 2k phys sinh (4). Moreover, since ke phys = <\72iq> = %

varies only due to the slow-roll dynamics, cf. Appendix A, the momentum distribution does not
change much in time; rather, it remains roughly the same throughout inflation. In summary,
this mechanism leads to the production of relativistic particles with a rather specific value of
physical momentum (dependent on the energy scale of inflation via H), which remains essentially
unchanged in time.

In §§ 2.2 and 2.3, respectively, we calculated the comoving number density of the x particles

2H3
3m2y

q> 3
to be given by 7, (z) ~ 5 a3(2) ¢27 3% and their physical energy density to be p, =~

In the latter case, we concluded that the energy density of the y particles is
essentially constant in time, only varying adiabatically due to the slow-roll dynamics, and that
this was a result of there being an equilibrium between the rate of production and the rate of
dilution of these particles, which is a notorious result of our model.

We also concluded (§ 2.4) that the backreaction of the x particles on the classical inflaton
field leads to the appearance of a sinusoidal modulation in the latter’s potential, which eventu-
ally leads to a similar profile for the classical field solution and (although a little more involved)

for the slow-roll parameters. We concluded, however, that despite the large amplitude predicted
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for the modulations of, in particular, the backreacted Hubble slow-roll parameters, the backre-
acted classical inflaton displayed very little change relative to its uncorrected counterpart and
was thus able to maintain slow-roll evolution; we explained this phenomenon by the fact that
the oscillations of the slow-roll parameters occur very rapidly, so that only the value of these
quantities averaged within a period of the oscillation (which we saw led to a great suppression
of their amplitudes) would affect the dynamics of the inflaton. Regarding the backreaction on
the quantum fluctuations of the inflaton, we concluded that a possible effect was a resonant
production of inflaton particles, due to a parametric resonance similar to the one encountered
for the y particles, although typically narrower. We also found the appearance of an additional
exponential factor in the power spectrum of the inflaton quantum fluctuations. These effects
on the inflaton field induced changes on several CMB observables. In particular, the curvature
power spectrum saw the appearance of sinusoidal features and of an exponential factor in its
amplitude, with the scalar spectral index and the tensor-to-scalar ratio also being altered due

to that (for instance, the latter received an exponential suppression).

In § 3.3, we concluded for three of the four different inflationary potentials we tested (namely,
the quadratic monomial and the two hilltop models) that indeed there is a rather significant
portion of parameter space that allows us to have an appreciable production of y particles due
to this process of narrow parametric resonance, without this leading to an inevitable dissolution
of the underlying inflationary mechanism, i.e. maintaining p, < p, for the entire slow-roll phase
(with an eventual graceful exit from inflation appearing to be possible); on the other hand, the
behaviour of the quartic monomial potential did not allow us to draw a suitable conclusion on this
regard. Moreover, we found that the resonance is more efficient later in inflation for monomial
potentials, whereas for hilltop models this takes place during the first few e-folds. Furthermore,
we were able to verify that for the two hilltop models we tested, the predicted values for the
considered CMB observables remain compatible with the most recent measurements, even in
situations where both the x and the ¢ resonances may be considered efficient; however, this
agreement was not encountered for the two monomial models. The features on the curvature
power spectrum due to the backreaction were also shown to be consistent with current bounds
on their amplitude for all considered models. Hence, although the coexistence of our mechanism
with the standard inflationary paradigm depends on the inflaton potential we select (with the
hilltops displaying the best results), it appears to be plausible, so that our model can be deemed

successful in this regard.

Despite the apparently promising results, this model is not a complete description of this

system and so we may further improve and refine it. For instance, the full computation of the
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effects of the backreaction on the quantum inflaton, including the contribution of the produced
inflatons to the energy density, is due. We may too consider the effect of the “classical back-
reaction” on the value of the tensor-to-scalar ratio, which may either improve or worsen our
results, as well as the effect of the backreaction on the running of the scalar spectral index.
Moreover, although we mentioned its possible existence, we did not compute the GW spectrum
generated by the y particles [25, 26, 32, 47], whose contribution to the tensor-to-scalar ratio
may allow us to restrict even more our parameter space; in fact, this work is currently undergo-
ing and results are expected soon. We can consider as well the possibility of having x particle
production during inflation due to a broad resonance instead and evaluate whether this scenario
would ruin inflation or not, as the particle production would surely be more efficient in this case
than in the narrow one. Another possibility is the inclusion of additional interaction terms in
the Lagrangian from Eq. (2.1.9), for example higher-order terms, interactions with other fields
and self-interactions of the y field, all of which we neglected in our computation; the latter, in
particular, allows us to describe the thermal properties of the x field, including its thermalisa-
tion (recall that the momentum distribution of the y particles is anything but thermal). One
can also study the possibility that the particle production during inflation gives rise to a warm
inflation regime [52-55], which would surely be an interesting feature of this mechanism if true.
All of the obtained results may also be tested for other choices of the inflationary potential.

Additionally, it is important to note that the description of the backreaction via the Hartree
approximation is not final. A more rigorous treatment of this, for example more akin to the one
done in Refs. [33, 48, 87], is likely required, since other effects which we did not account for
may be present (for instance, the appearance of non-local terms in the backreacted EoM [33]).

Another interesting line of work would be to try and devise and analyse an analogous mecha-
nism for other types of fields and particles (vector, spinor, ...), and investigate the repercussions
the production of those particles could have for inflation. In particular, it could be of interest to
analyse whether standard cosmology can be fully recovered exclusively through particle produc-
tion during inflation (be it only of scalar particles or of other types as well), or if a post-inflation
reheating period is always required, in which case a review of it is relevant. In whichever case,
though, a thorough investigation of the thermal properties of the produced fields is also due.
Likewise, the decay paths of the produced particles must be investigated in light of the SM; i.e.
a theory akin to the elementary theory of reheating [2, 43, 44] must be devised for the particles
produced during inflation.

We expect to lead some of these advances ourselves, but we also hope that our results can

motivate others to contribute and expand on our work.

109



110



Appendices

111






Appendix A

Time derivatives during inflation

In this appendix, we estimate the time dependence of a few quantities related to our mechanism.
For this, we shall consider in particular the derivatives %l, 77/ and %, where the primes denote
differentiation with respect to the number of e-folds, N, and £ = g—‘f. These quantities thus
represent the e-fold variation of ¢, v and £ per unit of ¢, v and &, respectively.

Let us start by determining %. From (2.1.31), we have ¢ = WC#, where Cj is a constant.

Differentiating with respect to N., we get

H q €y
q q<EV + q 6VH+ v, ( )

where dN, = Hdt and —ey =~ % = —ep were used. The latter can be obtained by differentiation

of the slow-roll Friedmann equation (1.2.5a) with respect to time

. Vo) V(o) H
OHH ~ ¢() %—[ (25( )] — mz_

M2
3ME IMEH P

I8MZH* ~ 2

Vo)l 1 <V,¢(¢)

where we also used the slow-roll Klein-Gordon equation (1.2.5b), and where the penultimate
expression was obtained using the Friedmann equation again. We take the opportunity to show
also that ng ~ ny, with ngy defined by Eq. (1.2.7b). Since ey ~ €y, we may use the definition
of ey from Eq. (1.2.6) and write

AN 4 ()

= - — -2 R~ A.
2oy 2V TRV, ) TRV R A

nNH ~ 2€V—

where we arrived at the second equality by computing the e-fold derivative and using the defini-

tions from Eq. (1.2.6), while the third equality was obtained by using Eqs. (1.2.5a) and (1.2.5D).
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Returning to the original derivation, we may thus calculate éy ~ éx by using directly the

definition of ny from Eq. (1.2.7b), leading to*’

€y
evH

—2(nv — 2ev) , (A.4)

where we used the fact that ng ~ ny, so that

/

% =2(nv —ev) . (A.5)

It is pertinent to note that, since in most inflationary models (and certainly in the ones
considered in this work) ey is strictly increasing during inflation, its growth translating the
transition from the slow-roll regime to the post-inflationary period, a relation between 7y and

ey can readily be found by setting éy > 0

nv < 2ey, (A.6)

which should thus be valid for most inflaton potentials.

N

For —Z;, taking into account the definition of this quantity v = Cve‘_/ , we have
1 _3 _ ")// 1 éV
! . 1
——Cue ey H W — =—— =ny — 2ey, AT
7 9 YV v ey H VTV (A7)

where C. is a constant and using (A.4). From (A.6), we immediately see that « strictly decreases
during inflation for the majority of inflationary models.

For %, it’s simple to show that

¢ (7;7‘12)' J A
= = WZQ =25L — L =3ny — 2. (A.8)
L q
Often, these quantities appear in the form f = € i;ﬁq, whose time derivative is then
f/
T =alBny —2ev)+28q(ny —ev) — 6 (ny — 2ey). (A.9)
Furthermore, considering (2.3.21), we find
P ™
b Aev —mv) +2q (ev —nv) + 5E By —2ev) (A.10)
X

25Tt not difficult to show that the usual definition of ey produces the same result.
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such that p, may either decrease or increase during inflation. Likewise, considering the Fried-
mann equation (1.2.3), we see that

/

Po

2 = 2ey <0, (A.11)
Py

from which pg always decreases during inflation.
Since the slow-roll parameters are small during inflation, we see that none of these quantities

should vary considerably in this period.
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Appendix B

Derivation of the Hartree approximation

for the backreaction

In this appendix we go through a brief and simple derivation of the effective equation of motion
for ¢, i.e. the classical and homogeneous part of the inflaton, due to (cf. §2.4.1). This is by no
means a rigorous calculation, but merely serves as an accurate-enough motivation for the Hartree
approximation, i.e. setting x?> — (x?) in the action (2.4.3), although similar methods can be
used to obtain a more thorough description of the backreacted system [33, 71, 73, 87, 88]; we will
not concern ourselves with such an analysis here, but some possible paths to follow are briefly
discussed in Chapter 4. In order to compute the effects of y production on the background
inflaton field, one may resort to the effective action functional approach, established within
the path integral formulation of QFT [18, 66, 69-72]. This functional may be computed by the
method due to Jackiw, which uses a saddle-point evaluation in the path integral of the generating
functional Z[J], as described in Refs. [18, 66, 69, 87-90], or equivalently by Weinberg’s tadpole
method [73, 87, 91]. We will consider the former.

We again define the action functional for ¢ and y as in Eq. (2.4.3),
Sl¢,x] = /d4w V=9 Loy, (B.1)
where the Lagrangian is given by Eq. (2.4.2) as

Loy = % 0 0" + %({%X X — %mi(qﬁ) x> = V(9). (B.2)

Using integration by parts, it is simple to show that
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S0 == [ dlav=g 5606+ sxOx+gmi@* + V)| . (B3

where we discarded a surface integral (obtained using a 4-dimensional version of the divergence
theorem) on the assumption that the fields vanish at infinity [18, 66].

We may now define the generating functional of the sources J4 and J,
Z[Jg, Jy /qu Dy €' [5[¢,x}+(J¢,¢)+(Jx,X)] (B.4)

where (f1, fo) = [d*z\/—g fi(z) fo(x) is the inner product on the spacetime defined by the
metric g, [88]. In the saddle point approximation, we write the full inflaton field as ¢ = b+,
as we did before, but we now consider the classical background inflaton ¢ to be a stationary

point of the integral in Eq. (B.4); that is

= 0. (B.5)

= o
I

O

With this, we Taylor expand S[¢, x] in the exponent of Eq. (B.4) around ¢ = ¢ and to second-

order in ¢ and x (we consider the background value of x to be zero), leading to

_ 5S[6, X 55
S+ U )+ () = S0+ [ oS08 ol + [ die ¢:¢_)x(-’11)
x=0 x=0
1 5259, x|
525’
/ d'z / dly — e ) - x(x) x(y)
x=0
+ (Jg )+ (Js,9) + (i, X) »
(B.6)

where we did not include terms with mixed derivatives, as they vanish upon considering the
condition x = 0. Moreover, we see from Eq. (B.5) that the second and third terms of Eq. (B.6)
cancel the last two, respectively, while the remaining terms, upon computing the second-order

functional derivatives, eventually lead to the following expression for the generating functional
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20y = ei[S[&OH(%v@]/Dsoe*%fd4ws0[i\/fg(ﬂ+‘7”)]w/pxe*%fd‘*wX[ng(mmi)]x
(B.7)

_ i[SI6.01+(J5.9)] [det (\/Tg (D + V”))}_% [det (\/Tg (D * mi)ﬂ ’

[NIE

where we set D¢ — Dy; the bars indicate that the functionals and functions are to be evaluated
at the classical, homogeneous inflaton field ¢, and the primes denote derivatives with respect to
that field. Notice that we have removed the source .J, from the argument of the functional, since
we no longer have such a dependence (at least explicitly). Moreover, to obtain the second line
we used the path integral definition of the functional determinant (see Refs. [18, 66, 88]), which
allowed us to cast our generating functional in a more compact and useful form. Taking into

Trin A

account the relation det A = e and the definitions of the connected generating functional,

WJg] = —iln Z[Jy], and of the effective action, I'[¢] = W[Jy] — (Jy, ¢), it is simple to see that
[18, 66, 88]

Tl¢] = S[4,0] + %Trln (O+m2)+ %Trln (O+v7), (B.8)

up to an additive constant in ¢; this result is known as the one-loop effective action, due to
it being computable via Feynman diagrams with a single loop [18, 70, 87, 88]. This quantity,
which is a Legendre transformation of the connected generating functional, is itself a functional
of the classical background field ¢, which allows us to obtain its equation of motion taking into
account quantum corrections [18, 66, 70, 87, 88]. Since we are only interested in the correction
due to x, we may drop the third term in the expression altogether.

The effective equation of motion for ¢ is then obtained via the condition

ST [¢]
Llel _ B.9
531) B9
resulting in
Oué+ V' + %Try {(mi)’ (O, +m2)" \/Lg 5 — y)} 0, (B.10)

which was computed via the limit definition of the functional derivative [18, 66].

~1
Since the propagator of the field x is defined as iA, (z —y) = (Dy + mi) \/%79 i0*(z — y),

we can rewrite the equation as

O, + V' + %Try [(m2)iAy(z —y)] =0. (B.11)
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The Hartree approximation can be obtained if we assume that the trace satisfies
Tr, {(fni)'iAX(x - y)} ~ (m2) Try[iAy(z —y)].*° Since the Fourier transform is a unitary
transformation, under which the trace is invariant, we may go to momentum space, where we
compute the trace as a sum (in this case, an integral) of the eigenvalues of the propagator

transform in that space, which are given by [33]

—4

e i(l 77?/]{; h _9
iA (KF) = +2m — S(KP™SEE, —m2) (B.12)
X hys — 3 B phys X/
k™ k’ghys —m2 a
where k* = (k°, k) is the comoving 4-momentum, ]%” = kghys = (kghys, Kphys) is the physical
4-momentum and k:ﬁhysk‘ghys = (k:ghys)2 - kghys, with kghys = |kphys|?>. The quantity 7, is just

the comoving occupation number of k-momentum x particles. We see that two terms appear
to contribute to the propagator, the first term is the CW term [70], corresponding to the usual
vacuum propagator for scalar fields, while the second term corresponds to the excitations of the
x field from its vacuum state, i.e. to the produced x particles (notice that if 1y = 0, we are
left with the vacuum propagator only). The expression in Eq. (B.12) can be obtained from the
following definition of the real-space propagator iA, (z — 2’), which uses the Fourier expansion

of X from Eq. (2.1.14),

iA(m,7) = (0| T{R(@) R(=)}]0)

3
— 0 — 1) / TE () () ) (B.13)

where T is a time-ordering operator and 6(t — t') is a Heaviside step function [66], and by using
the expansion of the field modes xx(t) in terms of Bogoliubov coefficients (see Eq. (2.4.8)).
Usually, this definition of A, (z,2’) refers to the vacuum propagator; however, the usage of
a Bogoliubov expansion for the mode functions allows us to extend this definition to out-of-
vacuum (i.e. excited) states. We consider that the interval |t — ¢| is small enough to allow us
to approximate a(t) ~ a(t') and so wy(t) = wg(t'), which greatly simplifies the yj(¢) expansion;
moreover, we identify 7, = |S5|? as in § 2.4.1. Using contour integration techniques [66] and the
properties of the Dirac delta function, it is then possible to show that the real-space propagator

can be written as

26Tn principle, a more rigorous treatment should then require the computation of the full trace from Eq. (B.11).
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A N _ d'k ia”* o0r 5 kphysk 2 —ik-(z—a')
? X(x7 T ) - (271')4 k?physk?'u 2 + a3 ( phys mx) €
phys X (B.14)
d*k - » /
_ Rty ik ()
_/(271')4 iA (k') e ,

from where Eq. (B.12) follows directly. Hence, the momentum space trace simply becomes

(277)4 kphys B w2 phys X

~ 4 -
Ty |14, (k)] = / Tk [ . +2m 5(kphysk —m2)] : (B.15)
phys X

where the integration is, as usual, done on the comoving momentum. We readily identify the
same two terms as in Eq. (B.12): the first one is the CW term, and it corresponds to the vacuum
contribution to the trace of propagator; the second term is the contribution of the produced x
particles to this trace. As was stated in the main text, upon MS renormalisation [55, 74] of
the CW term, we found that its contribution to the trace in Eq. (B.15) is subdominant for
all the inflationary models we considered, with the term containing 7 providing the leading
contribution; hence, the CW term may be neglected. Moreover, we also ignore the vacuum
subtraction coming from the expression f, = = :}”“ e2Hkz %, so that we are left only with the

k
exponential contribution, in which case Eq. (B.15) may be further simplified by performing the

Kk integration (considering that k:physk‘phys = (kphys) k‘phys = (k:phys) — wi +m2), ridding it
of the delta function and thus resulting in
< 1 A3k e2Hk2
) H _ — _ = 2
Ty [iB (k)] = = / G = ) (B.16)
Equation (B.11) thus becomes
- = 1
Oo+ V' + 5(mi)’ (x*) =0, (B.17)

just as we had obtained in Eq. (2.4.6) under the Hartree approximation.
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Appendix C

Approximations

C.1 Variation of X(t) = a®?(t) xx(t)

In this appendix, we shall demonstrate relation (2.3.9) from § 2.3. We start by writing py as we

did in (2.3.6)
1 2 k2 2 1 2 2
= —|v — — . 1
e = SIXnl™ + 55wl + gmy ol (C.1)

If we use xi(t) = Xi(t) a=3/2(t), we can easily arrive at y; = (Xk - %HXk) a=%/2, where

H = % With this, we can calculate
) 9 )
el = a™ |+ TGP - 3H Re(0X) (C2)

Substituting in (C.1) and using w,% = ’;—3 + mi, we get

-3
a . 9 C s
= [|Xk|2 +wp [Xel* + JH X — 3H %e(Xka] : (C.3)
We may use (2.2.6) and estimate wy ~ % and pg(z) ~ pP** = 2 for modes near the
resonance band, making
Xp(t) e_i“kte%“’“(t)t ~ e(_i%Jr%q)t ~ e_i%t, (C.4)

where the last approximation is attained by comparing the absolute value of each term inside

the parentheses and by taking ¢ < 1 and v < 1. This means that X}, ~ —%X &, and so
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) 2H\ 2
mﬁ~(7)|&? (C.50)

2H\?
RIXP~ (7)1 (C.5b)
6 H?

T|Xk\2a (C.5¢)

. 2H
3H Re(Xp X}) ~ —3H—|xi|* = —
~
such that | X;|? and w? | X|? dominate over SH?| Xi|* and 3H Re( X, X;). Hence,
-3
a .
pr~ o (Xl + e [X0) - (C.6)

As in Eq. (2.2.3), we define the comoving energy of the k£ modes, g, as

(%[ + wF 1 Xk?) (C.7)

N

Pk =

and the comoving particle number, iy, as

~ . 1 5 pr 1
= — | = == — = C.8
Pk = Wk (nk + 2) ng w2 (C.8)
which of course allows us to write
Pk
~ = C.9
PE~ (C.9)
and, using prp = wg (nk + %),
1 1 1
—~ —|n — . .10
nk+2 e (nk+2) (C.10)

C.2 Backreacted potential and equation of motion

In this appendix, we demonstrate some relations used or mentioned when discussing the back-

reaction on the classical inflaton, in § 2.4.1.

< ‘AV—‘{,N , where AV = p®) _ y)

max

AV’
< ‘7

: AV
We start by showing that ‘7

max max

with V given by Eq. (2.4.15), and where V' is written using the uncorrected slow-roll Friedmann
equation (1.2.5a). The primes denote derivatives with respect to the uncorrected classical infla-
ton, with which we will work in this appendix. We denote this field as ¢g and the uncorrected

Hubble parameter as H. From the definitions of ey and ny in Eq. (1.2.6), we readily find
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v 2ey

V| = 1% C.1la

V=55 (C.11a)
v

V" = V. (C.11b)
Mg

Moreover, since we are assuming A* to vary adiabatically, we neglect its derivatives (as per the

discussion following Eq. (2.4.14)), which leads to

2 n
(n) ~
av o~ (M) AV, (C.12)
from where
AV! 2 Mp |AV AV
~ 4 — — | — —_— 1
‘ |4 max (74 M V max > Vv max (C 33)
AV 4 (Mp\?|AV AV’ AV
—_— ~ — | — —_— _— —_— C.13b
‘ V” max ‘77V| <M> V max >> ‘ V, max >> V max ’ ( )

assuming that M < Mp (which is indeed verified, cf. in particular § 3.1), proving our claim.

Next, we briefly show that ‘VV, ¢1’ < 1 and ]A4] < ‘% V'|. For the former, using the above

relations, it is simple to see that

1% V'| + |AV| VZey (2 |AV
— ¢ < ———— < =) == .
v ¢1‘ < V] I b VA <M) v 1] < 1, (C.14)

since |¢1| < & and ’%

< 1, as we know from §§ 2.4.1 and 3.3. The latter relation is not

ma:

as straightforward to prove; considering the quantity

Mp AV
2ey | V

; (C.15)

max

A4
2

it is not immediately clear whether it is smaller than % However, we show in § 3.3 that for

~ 1077, in agreement with the bounds encountered by
max

all tested inflationary potentials ‘A—VV

Refs. [29, 76, 77] (the most stringent one being ’%‘ < 3 x107°, from Ref. [76]), whereas
max

ey is usually greater than O(10~2) during inflation. Thus,

A M
| 0 M S o, (C.16)
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considering the typical ranges for M (cf. § 3.3).

Lastly, we show that [AY| < 1, |B MTQ| < 1 and A2 > |B|, with A = —3- —— and
P 4/2

B=3 ("V* — 1). Starting with the first relation, we have

T 2ME \ev,

M 1 M
’Az\: :

_—— — K 1, C.17
2v/2 \fev, Mp ( )

given that ey, > 1073 for most inflationary models and Mﬂp < 1073, For the second expression,

we find

M2
|B

iz 1' <M>2 <1, (C.18)

3
8 (37 Mp

4

since for the models we are considering ’% — 1’ <103 (cf. § 3.3 and references therein). Lastly,

for the third expression we obtain

9 1 1 9 1 1
A2:§m;>>§ﬁl%;mv*—ﬁv*\N’B|- (Clg)

* *
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