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Abstract

The standard inflationary paradigm typically places the reheating period strictly after the slow-

roll regime of the inflaton field comes to an end. Several proposals for particle production

mechanisms during the slow-roll phase have appeared over the years, one argument in their

favour being the possibility of having observable signatures of those particles in the Cosmic

Microwave Background (CMB) spectrum. In this thesis, we develop and analyse a novel mecha-

nism that allows for production of scalar particles χ during the slow-roll regime due to a narrow

parametric resonance found in the equation of motion for the Fourier modes of their associated

quantum field. Approximate analytical expressions for the comoving number density and the

physical energy density of the produced particles are obtained. The backreaction on the classi-

cal inflaton and on its quantum fluctuations is obtained using the Hartree approximation, and

its effects on the curvature power spectrum, the scalar spectral index and the tensor-to-scalar

ratio are computed. We then perform a numerical analysis of the model including backreac-

tion, considering in particular the efficiency of the particle production process and the effects

on the inflaton field and on the CMB observables. We also compare a few analytical results to

numerical simulations. We show that an appreciable energy density of χ particles can be gener-

ated through this mechanism without it becoming the dominant contribution to the Friedmann

equation, thus preserving the underlying inflationary paradigm. We also show that under these

conditions we obtain a modification of the curvature power spectrum which includes features

that may fall within the range of future observations.

Keywords: Cosmology, Inflation, Inflationary Epoch, Particle Production, Parametric Reso-

nance.
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Resumo

Tipicamente, o paradigma inflacionário padrão coloca o periodo de reheating estritamente após

o término do regime de slow-roll do inflatão. Várias propostas de mecanismos de produção

de partículas durante a fase de slow-roll têm surgido ao longo dos anos, sendo um argumento

em seu favor a possibilidade de ter assinaturas observáveis dessas partículas no espetro da

Radiação Cósmica de Fundo (CMB, do inglês Cosmic Microwave Background). Nesta tese, é

desenvolvido e analisado um novo mecanismo que possibilita a produção de partículas escalares

χ durante o regime de slow-roll devido a uma ressonância paramétrica estreita (narrow em

inglês) encontrada na equação de movimento dos modos de Fourier do campo quântico a elas

associado. São obtidas expressões analíticas aproximadas para a densidade comóvel de número e

para a densidade física de energia das partículas produzidas. A backreaction no inflatão clássico

e nas suas flutuações quânticas é obtida usando a aproximação de Hartree, e os seus efeitos no

curvature power spectrum, no scalar spectral index e no tensor-to-scalar ratio são determinados.

É depois realizada uma análise numérica do modelo incluindo backreaction, considerando em

particular a eficiência do processo de produção de partículas e os efeitos no inflatão e nos

observáveis do CMB. Alguns resultados analíticos são também comparados com simulações

numéricas. É mostrado que através deste mecanismo é possível gerar uma densidade de energia

apreciável de partículas χ sem que esta se torne a contribuição dominante para a equação

de Friedmann, assim preservando o paradigma inflacionário subjacente. É mostrado também

que, sob estas condições, são obtidas modificações ao curvature power spectrum que podem ser

observadas futuramente.

Palavras-chave: Cosmologia, Inflação, Época Inflacionária, Produção de Partículas,

Ressonância Paramétrica.
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There is a theory which states that if ever anyone discovers exactly what the

Universe is for and why it is here, it will instantly disappear and be replaced

by something even more bizarre and inexplicable.

There is another which states that this has already happened.

— Douglas Adams
The Restaurant at the End of the Universe
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3.3.7 Evolution (until ϵH + |⟨∆ϵH⟩T |max = 1) of the corrected and uncorrected ϕ field

solutions for (a) g = 0.4 and (c) g = 0.45, as well as the corresponding corrected

and uncorrected potentials as functions of the field value ϕ, respectively (b) and

(d). Obtained for the quadratic monomial potential with ϕi = 15MP and model

parameter M = 3 × 1015 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiv



3.3.8 Parameter space (g,M) for the quartic monomial potential with ϕi = 22MP, for

two values of the slow-roll parameter ϵV : (a) ϵV ≈ 0.017 and (b) ϵV = 0.2. The

acceptable region not excluded by the conditions q
γ < π (orange) and ρχ > ρϕ

(blue) is shown in white. Contour lines (as well as some values) for the resonance

parameter ξ (for 0 ⩽ ξ ⩽ 15) are shown in green. . . . . . . . . . . . . . . . . . . 89

3.3.9 Evolution of the parameters (a) q, (b) γ and (c) ξ, and of (d) the energy densi-

ties ρχ and ρϕ for the quartic monomial potential with ϕi = 22MP and model

parameters g = 0.7 and M = 2 × 1015 GeV. . . . . . . . . . . . . . . . . . . . . . 91

3.3.10 Evolution of (a) the corrected and uncorrected ϕ field solutions in e-folds and of

(b) the corrected and uncorrected potentials plotted as functions of ϕ, for the

quartic monomial potential with ϕi = 22MP and model parameters g = 0.7 and

M = 2 × 1015 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.11 Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a)

∆2
R and (c) r (both their corrected and uncorrected versions) for the quartic

monomial potential with ϕi = 22MP and model parameters g = 0.7 and M =

2 × 1015 GeV. In (b) we perform a linear fit to ln ∆2
R and display the obtained

R2 coefficient, as well as the obtained value for ñs. . . . . . . . . . . . . . . . . . 92
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1 Introduction

The inception of modern Cosmology in the early 20th century, greatly motivated by the obser-

vations of Edwin Hubble – namely the discovery of galaxies and of the expansion of the Universe

– and by the newly established theory of general relativity, led to a drastic shift on our under-

standing of the Universe and its evolution. In little more than a century, we have gone from

the idea of a static, scarcely populated Universe, to the notion of a rather crowded one, that is

expanding at an accelerated rate [1, 3].

In fact, over the years, our models for cosmological evolution have seen countless updates

based on new experimental evidence, as well as new theoretical tools and frameworks. Current

models usually involve the placement of cosmological fluids (with both quantum and thermal

properties) in a geometrical background in order to determine how both those fluids and that

background behave and evolve in time, and thus require the combination of concepts and tech-

niques from general relativity (GR), thermodynamics and statistical mechanics, and quantum

field theory (QFT) [1, 3]. These models are then tested against data from experiments like

the European Space Agency’s satellite observatory Planck [4], in order to, for instance, set

constraints on theoretical parameters and provide evidence for hypothesised phenomena.

One thing, however, that has remained more or less unchanged between cosmological models

is the notion that the Universe is homogeneous and isotropic on large scales, which is otherwise

known as the cosmological principle. This statement was initially a mere approximation in or-

der to simplify theoretical calculations, but was later found to be well-founded, as observations

showed, for example, that the temperature of the Cosmic Microwave Background (CMB) ra-

diation displays fluctuations of just O(10−5 K) around its average value of 2.73 K, making it

an extremely uniform spectrum [1, 3]. We will soon find that facing trouble explaining these

particular observations is also a common factor to several cosmological models.
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1.1 The Hot Big Bang model

Currently, the standard model of Cosmology is the Lambda Cold Dark Matter (ΛCDM) model

[1, 5], whose designation will be clarified by the end of § 1.1.1. Nonetheless, we shall refer to

it simply as the Hot Big Bang (HBB) model, in keeping with its theorised hot beginning [3].

Its theoretical predictions on cosmic evolution have been tested to be valid up to about 10−2

seconds after the Big Bang, but sensible speculations can be made for earlier times also, as long

as some kind of extension to the Standard Model of Particle Physics (SM) is assumed [3]. In

the following subsection, we establish the tools used by this paradigm and mention some of its

greatest successes.

1.1.1 Overview and main results

We shall start by reviewing some of the fundamental equations of the HBB model, namely

Einstein’s field equations (EFEs) from GR [1]. These can be compactly written as a tensor

equation

Gµν = M−2
P Tµν , (1.1.1)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor (Rµν and R being the Ricci tensor and

scalar, respectively), Tµν is an energy-momentum (or stress-energy) tensor, which may include

a contribution from a cosmological constant Λ (TΛ
µν ≡ M2

P Λ gµν), and MP is the reduced Planck

mass. This set of equations establishes a relation between the geometry of spacetime, described

by Gµν , and the energy content of the Universe, encoded into Tµν .

The metric gµν that describes a homogeneous, isotropic and expanding Universe is the max-

imally symmetric Friedmann-Lemaître-Robertson-Walker (FLRW) metric, for which the line

element ds2 can be written in spherical coordinates as

ds2 = dt2 − a2(t) γij dx
idxj = dt2 − a2(t)

[
dr2

1 − kr2 + r2dΩ2
]
, (1.1.2)

where the scale factor a(t) accounts for the expansion of space, and where k denotes the local

spatial curvature of spacetime: in particular, the local geometry of the Universe would be

hyperbolic (or open) for k < 0, Euclidean (or flat) for k = 0 and spherical (or closed) for k > 0.

The spatial coordinates appearing in this definition are known as comoving coordinates, while

the time coordinate is called physical or cosmic time, and these are the coordinates measured

by an observer moving together with the expansion. Sometimes, it proves useful to instead
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work in conformal time, dτ = dt/a(t), in which case the general FLRW metric simply becomes

a conformal transformation of the non-expanding case (for k = 0, it becomes a conformal

transformation of the Minkowski metric).

Due to the cosmological principle and the maximally symmetric metric associated with it,

the only properties of the various constituents of the Universe (i.e. different types of matter,

radiation, ...) that are required to specify a stress-energy tensor (SET) are the mean energy

density ρ and the pressure p. This means that the universal constituents can effectively be

modelled as perfect (cosmological) fluids, which are described by the equation of state (EoS)

p = wρ , (1.1.3)

with constant w, and have a SET given in a general frame by

Tµν = (ρ+ p)uµuν − pgµν , (1.1.4)

where uµ is the four-velocity of the fluid. This expression results in T 00 = ρ, T 0i = T i0 = 0 and

T ij = p a−2 γij in the fluid’s rest frame, where uµ = (1, 0, 0, 0). Examples of cosmological fluids

include pressureless matter (w = 0), radiation (w = 1
3) and a cosmological constant (w = −1).

Note that pressureless matter includes any type of non-relativistic massive particles (e.g. baryons

and cold1 dark matter), while radiation refers to both photons and any other (ultra)relativistic

species (e.g. neutrinos and hot2 dark matter).

Using the metric (1.1.2) and the rest-frame version of (1.1.4), the 00 component of (1.1.1)

becomes

H2 ≡
(
ȧ

a

)2
= 1

3M2
P
ρ− k

a2 , (1.1.5)

which is known as the Friedmann equation. Here, H ≡ ȧ
a is the Hubble parameter, and ρ is the

total energy density of the Universe (including Λ contributions). The term proportional to k

can itself be absorbed into ρ, in which case it is interpreted as the fraction of the energy density

that is linked to the curvature of spacetime. The Friedmann equation is of major importance in

the context of Cosmology, as it establishes a direct relation between the energy content of the

Universe and the latter’s rate of expansion.
1Here, “cold” means that the species is heavier than the temperature scale of the Universe, m ≫ T .
2Similarly, “hot” refers to particles lighter than the temperature scale, m ≪ T .

3



Another equation of great use is obtained using the ij components of (1.1.1) and the Fried-

mann equation, as well as T ij = p a2 γij , and is known as the Raychaudhuri (or acceleration)

equation

ä

a
= − 1

6M2
P

(ρ+ 3p) , (1.1.6)

which in particular shows that to a positive value of Λ corresponds a positive energy density ρΛ =

M2
P Λ and a negative pressure pΛ = −ρΛ, leading to a positive contribution to the acceleration:

this result is what motivates the argument that the observed accelerated expansion of spacetime

is due to a cosmological constant3.

From the covariant conservation of the energy-momentum tensor (EMT), Tµν
;ν = 0, one

finds, for the µ = 0 component, the following conservation equation

ρ̇

ρ
= −3 ȧ

a
(1 + w) , (1.1.7)

with solution

ρ(t) = ρ0

(
a(t)
a0

)−3 (1+w)
, (1.1.8)

where ρ0 = ρ(t0) and a0 = a(t0), for some pivot t0 which is usually taken to be the present

time. This allows us to conclude that, given an EoS (i.e. a certain value of w), we find different

scaling behaviours of ρ with respect to a: in other words, distinct fluids should evolve differently

throughout the cosmic history, as they become diluted by different powers of the scale factor.

For instance, the energy density of pressureless matter scales with a−3, whereas for radiation

the scaling is with a−4 (the additional factor of a−1 is interpreted as coming from the redshift of

the wavelength); in turn, the cosmological constant has a constant energy density, in accordance

with the definition of its SET.

We may also plug Eq. (1.1.8) into the flat Friedmann equation and integrate it to get

a(t) =
(
t

t0

) 2
3 (1+w)

for w ̸= −1 , (1.1.9)

where t0 contains all multiplicative factors. This expression shows how the scale factor behaves

in time for flat Universes dominated by different kinds of cosmological fluids. The particular
3A Universe whose energy density is dominated by that of a positive cosmological constant driving accelerated

expansion is described by the de Sitter metric and may be called a de Sitter Universe [6, 7].

4



case of k = 0 is interesting because observations strongly suggest that our Universe is itself flat,

which as we will see in § 1.1.2 is a troublesome detail for standard cosmology.

The above equations are sometimes expressed in terms of (time-dependent) dimensionless

density parameters Ωs, given by

Ωs(t) ≡ ρs(t)
ρcr(t)

, (1.1.10)

where the subscript s refers to the different species that populate the Universe (photons, elec-

trons, neutrons, ...), and where ρcr(t) is the critical density at time t, which is defined by setting

k = 0 in Eq. (1.1.5), giving ρcr(t) ≡ 3M2
PH

2(t). That is, ρcr is the value of ρ corresponding to

a flat, Euclidean Universe. The total density parameter Ω is simply given by the sum of the Ωs

for all particle species.

The field equations can also be found from an action formalism [6], which is often useful,

especially when dealing with matter fields. This is achieved by defining the action

S = SEH + SM = −M2
P

2

∫
d4x

√
−g R + SM , (1.1.11)

where SEH is known as the Einstein-Hilbert action, with √
−g ≡

√
| det(gµν)|, and SM is the

action for matter fields. We may vary S with respect to gµν in order to obtain Eq. (1.1.1),

which reduce to the vacuum EFEs when SM = 0, using also the following definition for the

stress-energy tensor

Tµν ≡ − 2√
−g

δSM

δgµν
. (1.1.12)

It is important to note that Eq. (1.1.4) is related only to the macroscopic properties of the

cosmological fluids. However, it is the microscopic particle dynamics that dictate the average

behaviour of the fluid, and so these must be taken into consideration. The link between these two

scales comes from statistical mechanics, for both equilibrium and out-of-equilibrium states. The

equilibrium behaviour of the SM particle species is well studied [1, 8, 9] and it has been found

that particles of a certain species s in thermal equilibrium at a temperature T are distributed

in energy E(p) =
√
p2 +m2 according to

fs[E(p)] = 1
e

E(p)−µs
T ± 1

, (1.1.13)
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where µ is the chemical potential of the species, and + and − refer to fermions and bosons,

respectively, making the distribution function either a Fermi-Dirac or a Bose-Einstein distribu-

tion. These functions can be used to express quantities like the number density ns, the energy

density ρs or the pressure ps, written here for a gas of free particles with degeneracy g

ns = g

∫
d3p

(2π)3 fs[E(p)] (1.1.14a)

ρs = g

∫
d3p

(2π)3 fs[E(p)]E(p) (1.1.14b)

ps = g

∫
d3p

(2π)3 fs[E(p)] p2

3E(p) , (1.1.14c)

which are then expressed in terms of the equilibrium temperature T . This temperature can be

related with the cosmic time t via the conservation equation (1.1.7)4. In particular, it can be

shown that the number density is diluted by the expansion of the Universe as ns ∝ a−3. As

stated before, these results describe species in thermal equilibrium and can be used to determine,

for instance, the epoch at which the energy densities of two of those species are equal, the most

notable one being the matter-radiation equality, found to have occurred at about zeq ∼ 3000

(z being the redshift parameter), which has strong implications in the generation of large-scale

structure [1, 8].

However, particles interact with each other and are not always in a state of equilibrium.

These out-of-equilibrium interactions are described by the Boltzmann equation

dns(t)
dt

+ 3H ns(t) =
∫

d3p

(2π)3 C[fs] , (1.1.15)

which is reminiscent of a conservation equation, giving the time evolution of the particle number

density for each species s. The right-hand side of the equation is a collision term, containing

information on any type of physical process that the particles may undergo, namely scattering,

pair creation, annihilation and particle decay. When this term is zero, the solution for ns simply

scales as a−3 due to the expansion, in accordance with the equilibrium theory. Collision terms

are normally related with the cross sections of the processes that generate them and thus with

the rate Γ at which they occur. In particular, there exists a competition between the interaction

rate Γ and the expansion rate H: if Γ ≳ H, thermal equilibrium can be reached via interactions,

whereas if Γ ≲ H, the expansion does not allow thermal equilibrium to be attained [1, 8].
4This equation also implies that the entropy density of the Universe s(T ) ≡ ρ+p

T
∝ a−3 satisfies s(T ) a3 =

const., which states that the entropy in a comoving volume S ∝ s(T ) a3 is conserved.
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Using the toolkit described above, the HBB paradigm has provided us with several inter-

esting and successful results. To begin with, as was mentioned before, the observed accelerated

expansion of the Universe is accounted for by means of a cosmological constant Λ, which is

interpreted within this paradigm as an unidentified form of energy known as dark energy, which

makes up about 68% of the total energy density of today’s observable Universe [1, 3, 5]; this,

together with the fact that currently the second most abundant form of energy in the observ-

able Universe (at about 26% of the total density) is the also unidentified cold dark matter [5],

motivates the designation of the standard cosmological model as ΛCDM. Prior to the current

Λ-dominated era, the ΛCDM model predicts that two other eras have taken place in cosmic

history, as is summarised in Figure 1.1.1: the radiation-dominated era, shortly after the Big

Bang, and the matter-dominated era, situated between the other two, and from which we have

“just” exited [1, 3, 8]. Moreover, the Big Bang nucleosynthesis described by this model correctly

predicts the measured primordial mass abundances of light-element nuclei, namely a mass abun-

dance of ∼ 25% for 4He [1, 3]. The model also accurately predicts the existence of the CMB,

which should have had its origin during the matter-dominated era, while also predicting some

of its observed characteristics, in particular its black-body spectrum, average temperature and

polarisation [1, 3]. Other successes include the prediction of the observed large-scale structure

of the Universe, i.e. the observed statistical distribution of galaxies and other large-scale bodies,

and of the existence of the baryon acoustic oscillations [1, 3, 8].

1.1.2 Shortcomings of the Hot Big Bang model

In spite of the substantial amount of observational data from our Universe that the HBB model

is able to adequately predict and describe, there are a few aspects that it fails to properly

explain, which we shall now present with some detail.

The flatness problem

One of the conundrums that the HBB model fails to tackle is known as the flatness problem

[2, 3, 10, 11]. It consists in the fact that the current energy density of the Universe, ρ0, is

measured to be very close to the current critical density, ρcr,0, which is the energy density in

the case of a flat Universe, thus resulting in a total density parameter Ω0 = ρ0
ρcr,0

≈ 1. This of

course means that the Universe is essentially flat. Using the Friedmann equation, it is possible

to show that
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Figure 1.1.1: Evolution of the energy density (normalised against the current critical density, as

per Eq. (1.1.8)) for different constituents of the Universe: pressureless matter (∝ a−3), radiation

(∝ a−4) and a cosmological constant (∝ a0). The matter-radiation equality and the matter-Λ

equality are identified with aeq and aΛ, respectively. Taken from Ref. [1].

Ω−1 − 1 = − 3M2
Pk

ρ a2(t) , (1.1.16)

so that, for matter- and radiation-dominated Universes (ρ ∝ a−3 and ρ ∝ a−4, respectively),

deviations from unity in the value of Ω grow with the scale factor, whose value increases over

time. Hence, in order for Ω0 ≈ 1 to be true, one can show that we must have, for example,

|Ω − 1| ≲ O(10−60) at the Planck scale, at about 10−43 seconds after the Big Bang [3], which

means that the initial value of Ω has to be markedly fine-tuned. In summary, the observed

flatness of the Universe appears to exist only through a delicate arrangement of parameters in

the early stages of the cosmological evolution, which surely is a bothersome prediction of the

working paradigm.

The horizon problem

Another noteworthy issue with the HBB model is dubbed the horizon problem [2, 3, 10, 11].

As stated before, the CMB spectrum has been found to be very uniform, with all the radiation

being in thermal equilibrium, having in principle attained it by means of causal processes (e.g.

Compton scattering). Since their emission at the time of last scattering, the CMB photons have

moved freely across the Universe, which implies that all points in the last scattering surface
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must have been in thermal equilibrium too. If that were the case, at the time of emission, all

regions of the last scattering surface from which we receive CMB radiation at a = a(t0) ought

to be in causal contact with each other. In particular, the separation distance at the time of

emission

dsep(te) = a(te)
∫ a(t0)

a(te)

da′

a′2H(a′) , (1.1.17)

between two regions in opposite points in the sky from which we receive CMB radiation must

be smaller than the physical causal horizon distance at that time, dH(te), with [1, 10]

dH(t) ≡ a(t)
∫ a(t)

a(ti)

da′

a′2H(a′) , (1.1.18)

where H(a) = ȧ
a and ti marks the Big Bang singularity. Working in the HBB paradigm, one

can show that the ratio between these two distances is given in terms of the redshift parameter

z by

dsep(te)
dH(te) = 2

(
(1 + z)1/2 − 1

)
, (1.1.19)

with z ∼ 1000 at the time of emission, making dsep(te) ≫ dH(te). Hence, according to the HBB

model, at the time of recombination there were regions in the last scattering surface that were

not in causal contact, but were necessarily in thermal equilibrium with one another. There are

no physical processes that could lead to the observed thermal homogeneity between causally

disconnected regions, so the Universe must have been thermally homogeneous already at the

Big Bang, which is again indicative of a fine-tuned Universe.

Other problems

In addition to these two problems, one may point out several more, albeit of less importance,

e.g. the predicted existence of unobserved topological defects (like magnetic monopoles) by some

Grand Unified Theories (GUTs), which the HBB model has no mechanism to dispose of, and

also the origin and structure of the CMB temperature anisotropies, which the HBB model fails

to explain satisfactorily [1–3, 7, 8, 11].
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1.2 The inflationary solution

A possible solution to the aforementioned problems is found by modifying the HBB model to

include a period of accelerated expansion just before the radiation-dominated era, dubbed the

inflationary epoch [1–3, 7, 8, 11–16].

It is straightforward to see, looking at the Raychaudhuri equation (1.1.6), that an accelerated

expansion corresponds to w < −1
3 . Since ρ ∝ a−3(1+w), as was shown using the conservation

equation (1.1.7), we conclude that in Eq. (1.1.16), for w < −1
3 , we have ρa2 ∝ a−3(1+w)a2 ∝ ar,

with r > 0, so that deviations from flatness would be smoothed out in a period of accelerated

expansion, thereby solving the flatness problem [3].

Furthermore, if a ∝ tp, we have H = p
t ∝ a−1/p. The physical causal horizon distance

in Eq. (1.1.18) thus diverges if p > 1, which, from ä ∝ p(p − 1)tp−2, is also the condition for

accelerated expansion. Hence, such a period would be associated with an infinite causal horizon,

so that during it all regions could be in causal contact with each other, thus being allowed to

reach thermal equilibrium through conventional physical processes. In a posterior epoch, the

causal horizon can eventually become finite, thereby removing the causal connection between

some of these regions, which, however, will all remain in thermal equilibrium. In other words,

we have successfully solved the horizon problem [1].

Additionally, a period of accelerated expansion would cause the topological defects predicted

by the GUTs to dilute away, thereby explaining their observational absence (provided no others

would be produced after this period ends) [3]. Similarly, other issues with the HBB model can

be solved by postulating the existence of this period of cosmological inflation – in particular, we

shall see that quantum effects linked to inflation generate a solution to the CMB anisotropies

[3, 7].

The duration of inflation can be quantified using the number of e-folds, defined as

Ne = ln af

ai
, (1.2.1)

where ai and af are the values of the scale factor at the beginning and at the end of inflation,

respectively. Throughout this text, we will use Ne to designate both the e-folds variable and the

duration of inflation in that variable. In order to solve the flatness and the horizon problems, it

is possible to show that Ne should be around 50-60, which we shall treat as the reference range

for the duration of inflation [3, 7].

We shall now initiate a brief exploration of the main concepts within this paradigm.
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1.2.1 Standard picture of inflation

Inflationary models are based in QFT. However, if we neglect quantum fluctuations, we may

consider a classical description of the inflaton field, which is then modelled as a real scalar

field, ϕ(t,x). The discussion contained in this section is primarily based on [2, 3, 7, 11]. The

inflaton is usually modelled as a scalar field because scalar fields are invariant under Lorentz

transformations, which means that even if they attain a non-zero (classical) vacuum expectation

value the local Lorentz invariance of the vacuum [17, 18] is maintained, which would not happen

for spinor and vector fields5; moreover, scalar fields are the simplest to treat mathematically, so

it is only logical to try and devise a mechanism based on one. In this work, we will assume a

single-field inflation scenario [22].

The classical inflaton

Following an action formalism, we write a Lagrangian density and an action for ϕ(t,x), from

which we can obtain the equation of motion (EoM) and the stress-energy tensor. Using the

latter, we can determine the energy density, ρϕ, and the pressure, pϕ, of the field

ρϕ = 1
2 ϕ̇

2 + 1
2

(∇ϕ)2

a2 + V (ϕ) (1.2.2a)

pϕ = 1
2 ϕ̇

2 − 1
6

(∇ϕ)2

a2 − V (ϕ) , (1.2.2b)

where we have introduced a potential energy V (ϕ) for the inflaton. From (1.2.2), ρϕ and pϕ

do not seem to be related by the equation of state (1.1.3), with w < −1
3 in order to get an

accelerated expansion. However, if the potential energy dominates, we have indeed pϕ ≈ −ρϕ,

so that w ≈ −1 < −1
3 , in which case the inflaton field approximately mimics a cosmological

constant; as such, during inflation, the Universe exists in a quasi-de Sitter space [1, 2, 7]. From

equation (1.1.7), it is clear that ρϕ is approximately constant in time and in this case, if we take

it to dominate the energy density of the Universe, we may write the Friedmann equation as

H2 = 1
3M2

P
ρϕ =⇒ ȧ

a
= H = 1

MP

√
ρϕ

3 ≈ const. , (1.2.3)

where we have already assumed a flat Universe (i.e. k = 0), which we will continue to assume

for the remainder of this text. From (1.2.3), it follows that the scale factor grows at an almost
5In spite of this, inflationary scenarios where the inflaton is modelled either as a fermion field [19] or as a

vector field [20, 21] have been proposed.
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exponential rate, being given by a(t) = a0 e
Ht, with H ≈ const. while inflation lasts. Hence,

we may consider that the term (∇ϕ)2

a2 is quickly diluted away, which is equivalent to saying that

the inflaton field is in fact homogeneous and thus exclusively time-dependent, ϕ = ϕ(t). With

this, in order to have pϕ ≈ −ρϕ we just need to ensure that 1
2 ϕ̇

2 ≪ V (ϕ), which translates

into saying that the inflaton is rolling slowly (or slow-rolling) down its potential, which is then

approximately flat (constant). This is what we shall dub the first slow-roll condition.

Figure 1.2.1: Generic representation of an inflationary potential V (ϕ), down which the field ϕ is

slow-rolling with velocity ϕ̇. The right part of the potential is explained in § 1.2.2. Taken from

Ref. [2].

Moreover, neglecting gradients, the equation of motion for the inflaton is a Klein-Gordon

equation (KGE) given by

ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0 , (1.2.4)

which we can use to establish a second slow-roll condition: ϕ̈ ≪ 3Hϕ̇. This one ensures that

the first condition is verified for a long enough time to allow inflation to solve the flatness and

the horizon problems.

In the slow-roll regime, the Friedmann equation (1.2.3) and the Klein-Gordon equation

(1.2.4) can thus be rewritten, respectively, as

3M2
PH

2 ≈ V (ϕ) (1.2.5a)

3Hϕ̇ ≈ −V,ϕ(ϕ) . (1.2.5b)

We may rephrase the two slow-roll conditions in terms of two slow-roll parameters, ϵV and

ηV , which we shall define as
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
1
2 ϕ̇

2 ≪ V (ϕ)

|ϕ̈| ≪ 3H|ϕ̇|
⇐⇒


ϵV ≡ 1

2M
2
P

(
V,ϕ(ϕ)
V (ϕ)

)2
≪ 1

|ηV | ≡
∣∣∣M2

P
V,ϕϕ(ϕ)

V (ϕ)

∣∣∣ ≪ 1
, (1.2.6)

so that inflation ends once ϵV ∼ 1 (and |ηV | ∼ 1). These quantities can be thought of as a

measure of how much the Universe departs from an exact de Sitter space during inflation [1].

Alternative ways to express the slow-roll parameters are often found in the literature: one that

only depends on the Hubble parameter H is given by

ϵH ≡ − Ḣ

H2 (1.2.7a)

ηH ≡ 2ϵH − 1
2

ϵ̇H
ϵH H

= ϵH − 1
2
Ḧ

ḢH
, (1.2.7b)

which can be shown to be equivalent to the parameters in Eq. (1.2.6) in the slow-roll regime

(i.e. when all parameters are small). The first Hubble slow-roll parameter ϵH is always defined

in the same manner, but there exist different conventions for the second parameter ηH . We

chose this definition for ηH in order to make it coincide with the definition of ηV (i.e. we simply

rewrote ηV solely in terms of H), which is not the most common convention; for instance, in

Refs. [2, 7, 11, 23], the parameter ηH is actually defined as ηH ≡ 2ϵH + 2ϕ̈

ϕ̇H
, while in Ref. [24]

it is given by ηH ≡ − ϕ̈

ϕ̇H
, with the exact relation ϕ̈

ϕ̇H
= 1

2
Ḧ

ḢH
.

It is also useful to express the number of e-folds in terms of the potential V (ϕ), so that we

are able to compare different inflationary models in this domain; an approximate expression one

can arrive at using Eq. (1.2.1) and a(t) = a0 e
Ht is

Ne =
∫ te

ti

H dt ≈ − 1
M2

P

∫ ϕf

ϕi

V (ϕ)
V,ϕ(ϕ) dϕ , (1.2.8)

where ϕi and ϕf are the values of the inflaton field at the beginning and at the end of inflation,

respectively. From this relation, we also conclude that dNe = H dt, which is quite a useful

relation. This last result implies in particular that ϵH = −H′

H , with the prime denoting differen-

tiation with respect to Ne, which shows that H varies very little during inflation, since ϵH ≪ 1

then. In fact, within an e-fold and during slow-roll, we have

H(Ne + 1) = H(Ne) e−
∫

ϵH dNe ≈ H(Ne) e−ϵH ≈ H(Ne) (1 − ϵH) ≈ H(Ne) , (1.2.9)
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where we used the fact that ϵH varies little during slow-roll, as per
∣∣∣ ϵ′

H
ϵH

∣∣∣ = 2 |ηH − 2ϵH | ≪ 1,

which is obtained directly from Eq. (1.2.7b).

Choosing a potential V (ϕ) allows us to calculate explicit expressions for the slow-roll param-

eters and for the number of e-folds, to which we can apply, respectively, the slow-roll conditions

and the reference range of values, and thereby estimate the values for which quantities like ϕi

and ϕf the chosen potential may be an interesting candidate to describe the dynamics of the

inflaton field. Common choices for V (ϕ) include the family of monomial potentials V (ϕ) = λϕn

and the family of hilltop potentials V (ϕ) = V0
[
1 − κ

n

(
ϕ

MP

)n]
, but other possibilities are also

widely found in the literature [3, 22].

It is pertinent to point out that the derivative V,ϕϕ(ϕ) is often associated with the squared

mass of the inflaton field, m2
ϕ, meaning that the second slow-roll condition, |ηV | ≪ 1, can give

information on the value of that quantity: in particular, it bounds the inflaton mass from above,

since, using the Friedmann equation (1.2.5a),

|ηV | =
∣∣∣∣M2

P
V,ϕϕ(ϕ)
V (ϕ)

∣∣∣∣ ≈ 1
3

∣∣∣∣V,ϕϕ(ϕ)
H2

∣∣∣∣ ≪ 1 =⇒ mϕ ≪ H , (1.2.10)

which, thinking of the solution to equation (1.2.4) in the case where V,ϕ(ϕ) ≈ m2
ϕϕ, translates to

the inflaton field behaving as an over-damped harmonic oscillator, whose damping is due to the

expansion of the Universe, accounted for in H. The condition mϕ ≪ H can also be interpreted

as the inflaton being a light scalar field.

The quantum inflaton

Now, so far we have only concerned ourselves with the classical description of the inflaton field.

If we introduce quantum fluctuations into the mix, the field may be described as ϕ(t,x) =

ϕ̄(t) +φ(t,x), where ϕ̄(t) designates the classical inflaton field we have been working with. The

fluctuations are described to linear order by the equation

□φ = −V,ϕ̄ϕ̄ (ϕ̄) φ , (1.2.11)

which, in the case of a light inflaton field (V,ϕ̄ϕ̄ ∼ m2
ϕ̄

≪ H2), may be simplified to

φ̈+ 3H φ̇− 1
a2 ∇2φ = 0 , (1.2.12)

i.e. a homogeneous wave equation in FLRW spacetime. This equation may be rewritten in

conformal time τ (with φ,τ ≡ φ′) as
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φ′′ + 2 a
′

a
φ′ − ∇2φ = 0 , (1.2.13)

the solution of which can be expressed in operator form as a sum of Fourier modes φk(τ,x) =

φk(τ) eik·x, leading to

φ̂(τ,x) =
∫

d3k

(2π)3
1√
2k

[
âk φ

+
k (τ) eik·x + â†

k φ
−
k (τ) e−ik·x

]
, (1.2.14)

where k = |k|, with k being the comoving 3-momentum, and φ±
k (τ) = 1

a(τ)

(
1 ∓ i

kτ

)
eikτ . The

operators âk and â†
k are the creation and annihilation operators, respectively. The Bunch-Davies

vacuum state [2, 7, 11] is defined as âk|0⟩ ≡ 0.

Each Fourier mode has a corresponding physical wavelength given by λk,phys(t) = 2π
k a(t),

which of course grows quasi-exponentially with expansion. If the physical wavelength associated

with a certain mode k becomes larger than the Hubble horizon H−1, that mode will become

causally disconnected and so its amplitude will freeze, since no physical process will be able to

alter it then. The amplitude of a superhorizon mode is constant and is given by |φ±
k | ≈ H

k .

Upon exiting the horizon and freezing in amplitude, the fluctuation associated with the k mode

will then be stretched to macroscopic scales by expansion.

If we calculate the vacuum expectation value of the variance of the field fluctuations at x = 0,

⟨0|φ̂2(τ, 0)|0⟩, we get

⟨0|φ̂2(τ, 0)|0⟩ =
∫
d ln k

(
H

2π

)2
≈
(
H

2π

)2
Ne , (1.2.15)

where we regularised the integral by considering only super-horizon modes and used the fact

that at horizon-crossing k = aH. This result indicates that the average amplitude of the infla-

ton fluctuations grows as inflation progresses, specifically with the square-root of the number of

e-folds. Moreover, each logarithmic momentum scale contributes with the same factor
(

H
2π

)2
to

the integral, making this spectrum of fluctuations scale-invariant; rigorously, the scale-invariance

is only approximate, since H varies adiabatically in time due to slow-roll [3]. These quantum

fluctuations of the inflaton induce perturbations in its stress-energy tensor, which in turn induce

scalar perturbations in the metric tensor and the curvature of spacetime, as described by Ein-

stein’s field equations, ϕ being the dominant fluid in the Universe during the inflationary epoch

[7]. These metric and curvature perturbations act as inhomogeneities in the fabric of spacetime

and will be subject to the same process as the inflaton fluctuations: upon horizon-crossing, their

amplitudes will freeze and they will be stretched to macroscopic sizes, thus becoming observable
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(Figure 1.2.2). These inhomogeneities will then be passed on to the fluids that at some point will

fill the Universe, thus providing the seeds to the observed large-scale structure. In particular,

they will be the origin of the temperature fluctuations encountered in the CMB, whose structure

the inflationary paradigm is able to satisfactorily account for as well, thereby solving yet another

conundrum of the HBB model [1, 2, 7, 11].

comoving scales

horizon-crossing

sub-horizon

Inflation Hot Big Bang

sub-horizon

 zero-point
fluctuations

super-horizon

horizon re-entry

(aH)−1

k−1

k = aH time

reheating

      CMB
recombinantion

today

Figure 1.2.2: Diagrammatic illustration of the evolution of a perturbation during and after

inflation. The perturbation freezes in amplitude and is stretched to macroscopic sizes once

the corresponding mode becomes superhorizon. When inflation ends and standard cosmology

ensues, the Hubble horizon grows and the perturbation reenters it. Image adapted from [2].

The perturbations of the inflaton are normally described by the power spectrum Pφ(k),

defined from Eq. (1.2.15) as [1]

⟨0|φ̂2(τ, 0)|0⟩ ≡
∫

d3k

(2π)3 Pφ(k) ⇒ Pφ(k) = H2

2k3 , (1.2.16)

which in turn habilitates the definition of the dimensionless power spectrum of inflaton fluctu-

ations

∆2
φ(k) ≡ k3

2π2 Pφ(k) =
(
H

2π

)2
, (1.2.17)

which of course is the nearly scale-invariant spectrum appearing in the variance integral (notice

that we are keeping the momentum scale k in the argument of ∆2
φ precisely to highlight the

slight scale dependence of this quantity). We will understand the importance of this spectrum

shortly.
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As mentioned earlier, the quantum fluctuations of the inflaton field are able to source scalar

perturbations of the metric. To see how this occurs in practice, we start by perturbing Einstein’s

field equations to some order in perturbation theory. Working in first-order, the perturbed metric

g̃µν = gµν + hµν , assuming |hµν | ≪ |gµν |, may be written as

g̃00(t,x) = +1 + h00(t,x) (1.2.18a)

g̃0i(t,x) = a(t)h0i(t,x) = a(t)hi0(t,x) (1.2.18b)

g̃ij(t,x) = −a2(t) [δij + hij(t,x)] , (1.2.18c)

with hij = hji. The perturbation components are decomposed according to their behaviour

under spatial rotations, as per the scalar-vector-tensor decomposition [1, 7, 8, 25, 26]

h00 = 2A (1.2.19a)

h0i = hi0 = −B,i −Bi (1.2.19b)

hij = 2Dδij − 2E,ij + Vi,j + Vj,i + hTT
ij , (1.2.19c)

where A, B, D and E are 3-scalars, Bi and Vi are divergenceless 3-vectors (B ,i
i = V ,i

i ≡ ∂Vi
∂xi = 0),

and hTT
ij is a transverse (∂hTT

ij

∂xi = 0) and traceless (gijhTT
ij = 0) tensor, typically identified

with gravitational waves (GWs). Likewise, the energy-momentum tensor for a perfect fluid (cf.

Eq. (1.1.4)) may also be perturbed to first-order [1, 8, 25, 26]

δT00 = −ρ h00 + δρ (1.2.20a)

δTi0 = p a hi0 − (ρ+ p)
(
δu,i + δuV

i

)
(1.2.20b)

δTij = a2
[
p hij + δij δp+ ΠS

,ij + ΠV
i,j + ΠV

j,i + ΠT
ij

]
, (1.2.20c)

where δuµ ≡ δ(gµνuν) is the velocity perturbation, whose spatial components are decomposed

as δui = δu,i + δuV
i , with δu being the velocity potential (a 3-scalar) and δuV

i denoting a

divergenceless 3-vector, while the terms denoted with a Π are the components of the anisotropic

stress, which is absent in an unperturbed perfect fluid (these quantities satisfy a set of conditions

that is detailed in Ref. [8]). Plugging these decompositions into Eq. (1.1.1), one is able to find
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that, at linear order, the scalar, vector and tensor perturbations of the metric satisfy decoupled

differential equations and so evolve independently [1, 7], which greatly simplifies the calculations.

When working with these decompositions, however, one must be wary, as they depend on

the choice of coordinates. Hence, we must define gauge-invariant combinations of the above

quantities in order to link them with observables. A useful choice, as we will see in a moment,

is called the comoving curvature perturbation, which normally appears expressed in conformal-

Newtonian gauge variables, under which A ≡ Φ and D ≡ −Ψ are the only non-vanishing

components of the perturbation and are respectively the Newtonian gravitational potential and

a local curvature perturbation [1, 2, 7, 8, 11]. Using this gauge, the gauge-invariant comoving

curvature perturbation is then written as

R ≡ −Ψ +H δu , (1.2.21)

where during inflation δu = φ
˙̄ϕ

and Ψ is negligible compared to the other term. This quantity

is of course defined using both the metric perturbations and the perturbations of the energy-

momentum tensor, and acts as a measure of how much the curvature of spacetime is deformed,

in this case due to the fluctuations of the inflaton field.6 Considering an expansion of R in

Fourier modes, we thus have

⟨R2⟩ =
∫
d ln k

(
H
˙̄ϕ

)2

∆2
φ(k) ≡

∫
d ln k ∆2

R(k) (1.2.22a)

∆2
R(k) =

(
H
˙̄ϕ

)2 (
H

2π

)2
, (1.2.22b)

where ∆2
R(k) is the dimensionless power spectrum of the curvature perturbations and is thus

aptly called the dimensionless curvature power spectrum, with the quantity PR(k) ≡ 2π2

k3 ∆2
R(k)

being the curvature power spectrum; however, henceforth we shall refer to ∆2
R(k) simply as the

curvature power spectrum. Like ∆2
φ(k), the curvature power spectrum is also a nearly scale-

invariant quantity; its slight scale dependence is found to described by the power law [1, 2, 7, 11]

∆2
R(k) = ∆2

R(k∗)
(
k

k∗

)ns−1
, (1.2.23)

where k∗ is a pivot comoving momentum scale at which the amplitude ∆2
R(k∗) is defined and

ns is called the scalar spectral index. The latter satisfies
6The evolution of R is described by the Mukhanov-Sasaki equation [8, 27, 28].
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ns − 1 = d ln ∆2
R(k)

d ln k (1.2.24)

and characterises how the curvature power spectrum deviates from scale-invariance, which would

be attained at ns = 1. For ns > 1, the spectrum would be blue tilted, as there would be more

power on higher momenta, whereas for ns < 1 it would be red tilted, as the power would be

concentrated in lower momenta.

The power spectrum of curvature perturbations has been observed by satellites such as Planck

[4], by analysing the spectrum of CMB temperature fluctuations. The power law behaviour

predicted by Eq. (1.2.23) has been identified and the observables ∆2
R(k∗) (usually denoted by

As) and ns have been measured at the CMB scales, corresponding to modes that exited the

horizon during a period of about 8 to 10 e-folds, placed 50 to 60 e-folds before the end of

inflation [3], and with one of which k∗ is identified; note that to these modes correspond the

largest length scales observable in the CMB, as they were stretched for almost the entirety of

the inflationary epoch. At k∗ = 0.05 Mpc−1, these observables were found to assume the values

[29]7

ln
(
1010As

)
= 3.044 ± 0.014 (1.2.25a)

ns = 0.9649 ± 0.0042 , (1.2.25b)

making the curvature power spectrum very slightly red tilted.

Within single-field inflation, the amplitude ∆2
R(k∗), which is defined by evaluating

Eq. (1.2.22b) at the pivot scale, i.e. ∆2
R(k∗) =

(
H∗
˙̄ϕ∗

)2 (
H∗
2π

)2
, can be approximated during

slow-roll by

∆2
R(k∗) ≈ 1

24π2
V (ϕ̄∗)
M4

P

1
ϵV∗

, (1.2.26)

where ϵV∗ is obtained by evaluating Eq. (1.2.6) at ϕ̄∗. This last expression is important since

it can be used to constrain parameters of the inflationary potential via the measured value for

the amplitude, Eq. (1.2.25a), thereby allowing us to scrap candidate functions that violate those

constraints [1, 3]. Moreover, using Eq. (1.2.24), one can show that during slow-roll

ns − 1 ≈ 2ηV − 6ϵV , (1.2.27)
7For the Planck likelihood TT,TE,EE+lowE+lensing and at 68% C.L..
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which is valid for all single-field inflation models [2, 7, 11].

Although scalar curvature perturbations are the only ones induced by the inflaton fluctua-

tions (at least in first-order perturbation theory [25, 26, 30, 31]), it is pertinent to also investigate

other types of metric perturbations. In particular, it can be shown that quantum vacuum fluc-

tuations of the gravitational field generate a stochastic spectrum of gravitational waves; let us

briefly see how. The transverse-traceless (TT) component of the metric perturbation, hTT
ij , can

be found to obey a first-order EoM that is identical to the one satisfied by inflaton fluctuations,

Eq. (1.2.11), in the homogeneous limit8 [2, 7, 11, 25, 26, 31, 32]

□hTT
ij = 0 , (1.2.28)

which allows us to reuse the results previously obtained for φ; we need only take into account

a relative normalisation between the two quantities, as can be understood from the action in

Eq. (1.1.11), as well as the existence of two possible polarisations for hTT
ij .9 In fact, we could

have obtained Eq. (1.2.28) directly from the Einstein-Hilbert action by perturbing the latter to

first-order and then variating it with respect to hTT
ij [26]. Hence, the variances of ĥTT

ij and φ̂ are

related by

⟨(ĥTT
ij )2⟩ = 2 ×

( 2
MP

)2
⟨φ̂2⟩ , (1.2.29)

leading to the definition of the dimensionless power spectrum of tensor perturbations

∆2
t (k) = 2

π2
H2

M2
P
, (1.2.30)

for which we have used Eqs. (1.2.16) and (1.2.17). Like the previous spectra, this one is nearly

scale-invariant as well and, despite not having been observed yet, it is expected to follow a

similar power law, for which we may write the following ansatz

∆2
t (k) = ∆2

t (k∗)
(
k

k∗

)nt

, (1.2.31)

where the tensor spectral index nt satisfies
8In first-order perturbation theory, perfect fluids (like the inflaton) do not generate anisotropic stress, and so

they do not lead to the appearance of a term on the right-hand side of the EoM for hTT
ij , which would act as a

classical source of gravitational waves.
9Note that this does not mean that the tensor perturbations are induced by φ (which is entirely not the case),

only that the equations of motion followed by the two quantities are the same.
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nt = d ln ∆2
t (k)

d ln k . (1.2.32)

As stated before, neither ∆2
t (k∗) nor nt have been measured, but some bounds have been set on

both of these parameters, in particular via another CMB parameter called the tensor-to-scalar

ratio [2, 7, 11, 29]

r ≡ ∆2
t (k∗)

∆2
R(k∗) , (1.2.33)

which relates the weight or power contained in the tensor and in the scalar perturbations of the

CMB spectrum. The current bounds on r0.002 (corresponding to k∗ = 0.002 Mpc−1) and on the

derived parameter nt,0.01 are [29]10

r0.002 < 0.044 (1.2.34a)

− 0.55 < nt,0.01 < 2.54 , (1.2.34b)

which means that there is considerably more power on scalar perturbations and that true scale-

invariance (nt = 0) appears to still be compatible with observations, as does a red titled (nt < 0)

or a blue tilted (nt > 0) spectrum. It is interesting to note that an accurate measurement of the

amplitude of the power spectrum of tensor perturbations would directly allow us to obtain an

experimental value for H during inflation (since ∆2
t (k∗) = 2

π2
H2

∗
M2

P
) and thus discover the energy

scale of this process, which is currently unknown; nonetheless, an upper bound may be imposed

on H using Eq. (1.2.34a)

H < πMP

√
0.044

2 ∆2
R,0.002 ∼ 1013 GeV , (1.2.35)

where ∆2
R,0.002 ≡ ∆2

R(k∗ = 0.002 Mpc−1) was computed using Eqs. (1.2.23) and (1.2.25).

An expression for r in terms of the field velocity dϕ̄
dNe

can be found by dividing Eq. (1.2.22b)

by Eq. (1.2.30), giving

r = 8
M2

P

(
dϕ̄

dNe

)2

, (1.2.36)

10For the Planck TT,TE,EE+lowE+lensing+BK15 likelihood and at 95% C.L. for r0.002, and at 95% C.L. for

the derived parameter nt,0.01.
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where the derivative is to be evaluated at k∗. Moreover, from Eqs. (1.2.30) and (1.2.32), it can

be found that during single-field slow-roll inflation

nt ≈ −2 ϵV (1.2.37a)

r ≈ 16 ϵV , (1.2.37b)

which indicates that nt < 0, making the power spectrum of tensor perturbations red tilted, and

from where we also find the following bound on ϵV

ϵV ≲ 3 × 10−3 , (1.2.38)

making it a small value, as expected. Moreover, Eq. (1.2.37) leads to the well-known consistency

relation of single-field inflation11

r ≈ −8nt , (1.2.39)

which is deemed to be the ultimate test (the smoking gun) of the theory: if both r and nt are

measured accurately and are found to satisfy Eq. (1.2.39), inflation will then likely be confirmed

[2, 7, 11].

1.2.2 Pre-heating and reheating

Inflation ends when the slow-roll conditions stop being verified, at which point the solution to

equation (1.2.4) describes under-damped oscillations near the minimum of V (ϕ), since H would

have decreased considerably by then, as per |ηV | ≳ 1; the classical inflaton thus behaves as

pressureless matter [2, 11]. After inflation, standard cosmology must be recovered. This means

that the energy lost by the inflaton field must ultimately be converted into the familiar SM

particles, allowing the usual cosmological evolution to proceed. This is accomplished by means

of a reheating period [2, 11, 33–35].

The process of reheating is typically divided into three stages. In the first one, dubbed

pre-heating, the inflaton field decays into scalar particles due to parametric resonance, normally

of the broad (explosive) kind. In general, this process is incomplete, as the resonance eventually

becomes narrow and inefficient. Moreover, the particles that result from it are far from thermal
11Other inflationary paradigms (e.g. multi-field inflation) lead to different consistency relations [22].
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equilibrium and have large occupation numbers. The second stage of reheating is the decay of

the previously produced particles and of the part of the inflaton field that survived pre-heating.

The third and final stage is the thermalisation of the newly produced particles, by which they

reach a state of thermal equilibrium [33].

In the stage of pre-heating, the classical inflaton field ϕ, which is oscillating with a decreasing

amplitude Φ(t), couples with e.g. a quantum scalar field χ̂, thus introducing an oscillatory mass

term for these particles. For a quadratic inflationary potential V (ϕ) ∼ 1
2 m

2(ϕ − σ)2 (here

written in a way to allow spontaneous symmetry breaking), an interaction term −1
2g

2ϕ2χ2 and

neglecting expansion (i.e. setting a = 1), the equation of motion for a mode χk(z), with z = m t
2 ,

can then be written as a Mathieu equation [33, 36–39]

χ′′
k(z) + [Ak − 2q cos(2z)] χk(z) = 0 ,


Ak = 4 k2+g2σ2

m2

q = 4g2σΦ
m2

. (1.2.40)

This equation is notable for the fact that its solutions develop parametric resonances (which

can either be narrow, for q ≪ 1, or broad, for q ≫ 1) in the form of exponential instabilities

χk(z) ∝ eµk(z) z, the instability being attained when µk(z) is real [33, 36–40]. Using these

unstable solutions, one can obtain the number of produced particles with momentum k (denoted

nk), as well as the total number density of produced particles (denoted nχ), since [33]

nk = ωk

2

(
|χ̇k|2

ω2
k

+ |χk|2
)

− 1
2 (1.2.41a)

nχ =
∫

d3k

(2π)3 nk , (1.2.41b)

with ω2
k(t) = k2 + g2σ2 + 2g2σΦ sin(mt), so that the exponential growth can be interpreted in

this context as explosive particle production (rigorously, the production is explosive only in the

case of a broad resonance). A thorough account of the theory of pre-heating can be found in

[33]. Note that preheating is not limited to the decay of the inflaton field into other scalar fields:

for example, a theory of preheating with fermions was developed in [41] and one with Abelian

gauge fields was proposed in [42].

The subsequent decay of the particles produced during pre-heating and of the remaining

inflaton field, as well as the thermalisation of their decay products, is described by methods

similar to those used in the elementary theory of reheating [2, 11, 33, 43, 44]. Let us briefly

explore this theory using a phenomenological description, in the particular case where the rapidly

oscillating inflaton couples with a scalar field χ and a spinor field ψ, considering also a quadratic
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inflationary potential and recovering the expansion of space. The effects of these interactions

can be encompassed in a friction term Γϕ̇ that is added to the EoM for ϕ, Eq. (1.2.4) [45], whose

solution then becomes

ϕ(t) = Φ(t) eimt ≈ ϕ0 e
imt e− 1

2 (3H+Γ)t , (1.2.42)

where Γ = Γ(ϕ → χχ) + Γ(ϕ → ψψ) is the total decay rate of the inflaton, which coincides

with its flat-space limit. Thus, the damping of the oscillations of ϕ can be attributed to both

the expansion of the Universe and particle production due to the decay of the inflaton. In fact,

given that ρϕ = 1
2 |ϕ̇|2 + 1

2m
2|ϕ|2 ≈ 1

2m
2Φ2 (for m2 ≫ H2, which is true at the end of inflation,

and m2 ≫ Γ2, which is verified as well since at this stage H > Γ) and nϕ = ρϕ/m, and since the

solution in Eq. (1.2.42) obeys

d

dt
(a3Φ2) = −Γ a3Φ2 , (1.2.43)

we find that the comoving energy density ∼ a3ρϕ decays exponentially with Γ, as does the co-

moving number density ∼ a3nϕ. Moreover, if we multiply Eq. (1.2.4) (with the added friction

term) by ϕ̇, we obtain a conservation equation like Eq. (1.1.7) but with a decay term propor-

tional to Γ on the right-hand side; the particles produced during reheating then follow a similar

conservation equation, but with a flipped-sign on the right-hand side term, ensuring that the

total energy density is conserved during this stage. Thus, reheating can be described by the

following set of differential equations

ρ̇ϕ + 3H(ρϕ + pϕ) = −Γρϕ (1.2.44a)

ρ̇M + 3H(ρM + pM ) = Γρϕ (1.2.44b)

3M2
PH

2 = ρϕ + ρM , (1.2.44c)

which reproduces the same behaviour for a3ρϕ ∝ e−Γt when pϕ ≈ 0, while also predicting the

evolution of ρM for different types of fluid (the subscript M refers to “matter” of any kind and

so it can include radiation, which is particularly important in order to obtain the radiation-

dominated era after inflation) [3, 8].

Particle production ends (and so reheating stops) when H becomes smaller than the decay

rate Γ, allowing thermalisation to occur; this defines a reheating temperature, which can be found
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to be Tr ≈ 0.2
√

ΓMP if the decay products of ϕ are ultra-relativistic and if thermal equilibrium

is achieved rapidly after reheating completes [33].

After these processes, standard cosmology ensues and the HBB model can be applied.

1.3 Particle production during inflation

Apart from the usual models of pre-heating and reheating discussed in § 1.2.2, in which particle

production occurs strictly after inflation ends, there have been several proposals of mechanisms

for production of particles during the slow-roll phase of inflation [46–51]. These models are

interesting and may have a few advantages over the standard paradigm of reheating for a number

of reasons.

The most important one is the fact that these models can give rise to observational data in

the CMB, as they may introduce features in the otherwise nearly scale-invariant curvature power

spectrum, ∆2
R, and they may provide a contribution to the power spectrum of tensor perturba-

tions, ∆2
t . The presence of these additional fields during inflation should in principle cause some

backreaction on the dynamics of the classical inflaton and of its quantum fluctuations, both of

which are intimately related to the curvature power spectrum, as we saw in § 1.2.1. Hence, if

the inflaton acquires some signatures due to the particles produced throughout inflation, some

information about the latter may very well be imprinted on the CMB and thus be observable

and/or measurable. Something similar does not happen in the usual picture of post-inflation re-

heating, as the perturbations generated then do not grow to macroscopic sizes. Additionally, the

produced particles may generate tensor perturbations of their own, leading to a stochastic GW

spectrum that will contribute to ∆2
t ; moreover, this spectrum might eventually be detectable by

current or future GW interferometers [25, 26, 32, 47].

A second advantage is the fact that if particle production during inflation is efficient enough,

we may have the energy density of the inflaton field be fully converted to that of the produced

field by the end of inflation, thereby eliminating the need for a post-inflation reheating period.

In this case, the recovering of the HBB model should be attained through the decay of the

produced field into other particles.

Lastly, a third advantage is the possibility that the produced particles lead to the appearance

of a friction term in the equation of motion for the inflaton, which translates into a relaxation

of the constraints on the slow-roll parameters and an eventual modification of the inflaton per-

turbation spectrum. This is the basis of warm inflation models [52–55], so that this mechanism

can in fact have a double application (and importance) within the theory of inflation. However,
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we will not be exploring this possibility in this work.

It is clear that this type of model has an additional complication, since we must not allow

the production of particles to be too efficient to the point where the energy density of the newly

produced particles dominates over that of the inflaton field during the slow-roll regime, in which

case we would effectively be breaking inflation. Hence, the production must be quite controlled,

meaning that some type of compromise in its magnitude and effectiveness has to be attained

in order for these models to generate measurable signals whilst not destroying the underlying

inflationary mechanism.

1.4 Outline

In the following chapters, we will present and explore the theoretical model developed throughout

the duration of this research paper. Our goal is to establish and analyse a mechanism of resonant

production of scalar particles, χ, during the inflationary epoch. We intend to check whether

this production can be efficient enough to allow the existence of some observational signature of

these particles, without them becoming the dominant contribution to the energy density of the

Universe, thus forcing inflation to end prematurely.

The outline of the upcoming chapters is as follows. In Chapter 2, we begin in § 2.1.1 by

introducing and motivating the Lagrangian for this theoretical model, which we will then use

in § 2.1.2 to obtain and discuss the equation of motion for the χ field. In § 2.2 and § 2.3,

we calculate the comoving number density and the physical energy density, respectively, of the

produced χ particles. In § 2.4, we deal with the backreaction of the χ particles on the inflaton

field: the effect on the classical inflaton is discussed in § 2.4.1, while the effect on its quantum

fluctuations is discussed in § 2.4.2. In § 2.4.3, we analyse the impact of the backreaction on

several CMB observables. In Chapter 3, we start by analysing the parameter space of our model

and performing numerical simulations of solutions to the equation of motion of the χ modes, in

§§ 3.1 and 3.2, respectively. Then, in § 3.3, we test our theoretical results against observational

data, for several choices of the inflationary potential V (ϕ). Chapter 4 will be dedicated to the

overarching discussion of the derived results, featuring also the concluding remarks regarding

the proposed mechanism. Three appendices, §§ A to C, are included as well, where we walk

through a few useful calculations in some detail.
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2 Resonant particle production during

inflation

The following sections will be dedicated to the exploration of our particular model of reso-

nant production of scalar particles during inflation. We shall discover whether the conditions

for an efficient production of these particles can be met without breaking inflation, and what

observational signatures are possible to obtain then.

2.1 The model

As we shall find shortly, the mechanism presented here is motivated by Warm Little Inflaton

scenarios [55–61], which in turn are inspired by Little Higgs models [62–64].

2.1.1 The Lagrangian

Consider the Lagrangian

LΦ = (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) − 1
4FµνF

µν − V (|Φ1|, |Φ2|) , (2.1.1)

where Φ1,2 are complex scalar fields, Aµ is the (massless) U(1) gauge field, Dµ ≡ ∂µ − ieAµ is

the gauge covariant derivative and Fµν = ∂µAν − ∂νAµ is the gauge field strength tensor (the

fields Φ1,2 are assumed to have the same charge e).

The potential V (|Φ1|, |Φ2|) is the sum of two Higgs potentials (one for each field) and is

given by

V (|Φ1|, |Φ2|) = λ1
4

(
|Φ1|2 − M2

2

)2

+ λ2
4

(
|Φ2|2 − M2

2

)2

. (2.1.2)

This Lagrangian has a U(1) gauge invariance, granted the fields transform as
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
Φ1 −→ eiαΦ1

Φ2 −→ eiαΦ2

Aµ −→ A′
µ = Aµ + 1

e∂µα

, (2.1.3)

where α ≡ α(xµ) (the transformation is local). The potential reaches its minimum V = 0 at


Φ0

1 = M√
2e

i
ϕ1
M

Φ0
2 = M√

2e
i

ϕ2
M

⇐⇒


Φ0

1 = M√
2e

i θ+ϕ
M

Φ0
2 = M√

2e
i θ−ϕ

M

, (2.1.4)

where ϕ1, ϕ2, θ and ϕ are real scalar fields, the latter being a relative phase between Φ0
1 and

Φ0
2. We can add radial perturbations, h1 and h2, to these solutions to get an approximate form

of the fields near the potential minimum. Additionally, if we set α = − θ
M in (2.1.3) we can

eliminate θ (a Goldstone boson) from the Lagrangian, in which case we will be working in the

unitary gauge or unitarity gauge [55, 62–66]. In this case, we can write the fields as


Φ1 = M+h1√

2 ei ϕ
M

Φ2 = M+h2√
2 e−i ϕ

M

. (2.1.5)

Here, h1 and h2 are also real scalar fields, each describing a Higgs-like particle. Furthermore,

unlike θ, the relative phase ϕ is a physical degree of freedom, which is not absorbed by the unitary

gauge; in fact, it is a U(1) gauge-invariant quantity that we identify with the inflaton field [55]. It

is simple to show that, in the unitary gauge, the gauge field Aµ acquires a mass mA =
√

2 eM and

the Higgs-like fields h1 and h2 acquire masses mh1 =
√

λ1
2 M and mh2 =

√
λ2
2 M , respectively.

We can now introduce a third scalar field, χ, which describes the particles we intend to

produce. We take it to be real, so that the coupling between χ and the fields Φ1 and Φ2 is

of the form 1
2g

2|Φ1 − Φ2|2χ2, where g is a dimensionless coupling constant that we shall take

to be smaller than unity. Since the χ field does not transform under the U(1) group (it being

U(1)-neutral), we may add to (2.1.1) the also U(1)-invariant Lagrangian

LχΦ = 1
2∂µχ∂

µχ− 1
2g

2|Φ1 − Φ2|2χ2 , (2.1.6)

which allows us to define the full Lagrangian of our model

L = (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) + 1
2∂µχ∂

µχ− 1
4FµνF

µν

− V (|Φ1|, |Φ2|) − 1
2g

2|Φ1 − Φ2|2χ2 ,
(2.1.7)
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where the coupling constant g and the mass scale M are free parameters of the model.

Using (2.1.5), the last term in (2.1.7) can be written as

1
2g

2|Φ1 − Φ2|2χ2 = 1
2g

2M2
[
1 − cos

(2ϕ
M

)]
χ2 + ...

= 1
2 × 2g2M2 sin2

(
ϕ

M

)
︸ ︷︷ ︸

m2
χ

χ2 + ...︸︷︷︸
higher order terms

, (2.1.8)

which in turn gives to leading order in χ and excluding all other fields and interactions (in this

paper we are only concerned with analysing χ production, so that we may ignore h1,2 and Aµ,

assuming they are heavier than χ and so should not influence the inflationary dynamics)

Lχ = 1
2∂µχ∂

µχ− 1
2m

2
χχ

2. (2.1.9)

For the time being, we shall ignore any backreaction on ϕ due to χ. Hence, we shall consider

ϕ to be well described by its free field solution, which can be found independently, and whose

value must depend solely on time, as we saw in § 1.2.1. Notice that we did not include a potential

term for ϕ in the original Lagrangian; such a term would in fact be allowed by the U(1) gauge

symmetry of our theory, given that the inflaton is a relative phase, and so gauge-invariant, and

so we could (and should) have included it. Furthermore, note also that m2
χ is a function of ϕ

(and thus of time), so that the Lagrangian (2.1.9) simply describes a free real scalar field χ with

an oscillating mass m2
χ(t). Production of χ particles is a consequence of this time-varying mass,

as we shall find later on. Hence, since the fields h1,2 and Aµ do not have oscillating masses, but

constant ones, there will be no production of particles in their case, which is another argument

we can use to neglect them.

We can define an effective action for χ as

Sχ =
∫
d4x

√
−g

(1
2∂µχ∂

µχ− 1
2m

2
χ χ

2
)
, (2.1.10)

with gµν = diag(+1,−a2,−a2,−a2), making √
−g ≡

√
| det gµν | = a3, where a = a(t) ∝ eHt is

the scale factor. Note that we are considering a flat FLRW metric, as is customary in inflation-

related research (we follow in particular Ref. [33]), and that the inflaton energy density is

dominant, so that the scale factor does grow quasi-exponentially. In the ensuing discussion,

we take H to be constant, which we shall see is a good approximation in the context of χ

production; recall, however, that in reality H varies adiabatically due to the slow-roll dynamics
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of ϕ, although its variation within an e-fold is quite small, cf. Eq. (1.2.9). Setting to zero its

variation with respect to χ, one arrives at the equation of motion for χ

χ̈+ 3Hχ̇− 1
a2 ∇2χ+m2

χχ = 0 . (2.1.11)

We can also vary Sχ with respect to the metric and thus find the stress-energy tensor and

the energy density for χ, respectively given by

Tµν
χ = − 2√

−g
δSχ

δgµν
= −gµν

(1
2∂αχ∂

αχ− 1
2m

2
χχ

2
)

+ ∂µχ∂νχ (2.1.12)

and

ρχ ≡ T 00
χ = 1

2 χ̇
2 + 1

2
|∇χ|2

a2 + 1
2m

2
χχ

2. (2.1.13)

2.1.2 The equation of motion

We now turn our attention to equation (2.1.11). We can write its solution as a sum of Fourier

modes χk(t,x) = χk(t) eik·x, with k = |k|, and promote χ to an operator χ̂, which gives

χ̂(t,x) =
∫

d3k

(2π)3

[
âkχk(t) eik·x + â†

kχ
∗
k(t) e−ik·x

]
, (2.1.14)

where âk and â†
k are annihilation and creation operators, respectively, satisfying the canonical

commutation relations

[
âk, â

†
k′

]
= (2π)3 δ3 (k − k′) (2.1.15a)

[âk, âk′ ] =
[
â†

k, â
†
k′

]
= 0 . (2.1.15b)

We may define the conjugate momentum of χ̂ as

π̂χ(t,x) ≡ ∂ (√−gLχ)
∂ ˙̂χ(t,x)

=
√

−g ˙̂χ(t,x) = a3(t) ˙̂χ(t,x) (2.1.16)

and impose that the commutators of χ̂ and π̂χ satisfy the equal-time relations
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[χ̂(t,x), π̂χ(t,y)] = i√
−g

δ3 (x − y) = i

a3(t) δ
3 (x − y) (2.1.17a)

[χ̂(t,x), χ̂(t,y)] = [π̂χ(t,x), π̂χ(t,y)] = 0 , (2.1.17b)

which indeed occurs only if the following Wronskian normalisation condition for the mode func-

tions χk(t) is verified

χ̇∗
k(t)χk(t) − χ∗

k(t) χ̇k(t) = i

(√−g)2 = i

a6(t) . (2.1.18)

Let us now return to the study of the EoM. Inserting the expression for χ̂(t,x) in equation

(2.1.11), we arrive at

χ̈k + 3Hχ̇k + k2

a2χk +m2
χχk = 0 , (2.1.19)

where kphys = k
a is the physical momentum of each mode k. We define ωk(t) =

√
k2

a2(t) +m2
χ(t)

to be the energy associated with each mode, such that equation (2.1.19) may be rewritten as

χ̈k + 3Hχ̇k + ω2
k(t)χk = 0 , (2.1.20)

which greatly resembles the equation of motion for a damped harmonic oscillator with a time-

varying frequency, where the damping is due to the expansion of the Universe (accounted for in

H). Hence, we now see that each mode in the Fourier expansion (2.1.14) actually behaves like

a damped harmonic oscillator with a time-varying frequency.

Since we want to study particle production during inflation, we should consider ϕ to be in

the slow-roll regime. In this regime, the time derivatives of ϕ get successively smaller as their

order increases, so that we may perform a Taylor expansion of ϕ around some instant t0 and

keep only the first two terms, that is until the first derivative of the field

ϕ(t) ≈ ϕ(t0) + ϕ̇(t0)(t− t0) ≡ ϕ̇t+ δ . (2.1.21)

Using m2
χ = 2g2M2 sin2

(
ϕ
M

)
≈ 2g2M2 sin2

(
ϕ̇t
M

)
(where we have set δ = 0 to simplify the

calculations, since a phase factor should not impact the underlying physics) and substituting in

equation (2.1.19), we get
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χ̈k + 3Hχ̇k +
[
k2

a2 + 2g2M2 sin2
(
ϕ̇t

M

)]
χk = 0 . (2.1.22)

In order to simplify the equation by removing the effects of the expansion of the Universe

(i.e. the 3Hχ̇k factor) we may define a new function Xk = a3/2χk (its Wronskian condition

being Ẋ∗
k Xk − X∗

k Ẋk = ia−3) and substitute χk in (2.1.22), which leads to

Ẍk +
[
k2

a2 − 9
4H

2 + 2g2M2 sin2
(
ϕ̇t

M

)]
Xk = 0 , (2.1.23)

where a change of variable t −→ z = |ϕ̇|
M t can be done, allowing us to write

X ′′
k +

[(
M

ϕ̇

)2
(
k2

a2 + g2M2 − 9
4H

2
)

−
(
M

ϕ̇

)2
g2M2 cos(2z)

]
Xk = 0 , (2.1.24)

where the primes denote derivatives with regard to z, which is dimensionless, and where we used

the fact that the above equations are invariant under a sign change in ϕ̇. This equation can be

rewritten as

X ′′
k + [Ak(z) − 2q cos(2z)]Xk = 0 , (2.1.25)

with

Ak(z) =
(
M

ϕ̇

)2
(

k2

a2(z) − 9
4H

2
)

+ 2q (2.1.26a)

q = 1
2

(
M

ϕ̇

)2
g2M2 . (2.1.26b)

Equation (2.1.26) is a Mathieu-like equation with a variable parameter Ak(z) [36–39]. Rig-

orously, both Ak and q vary in time (and so both should be functions of z), since ϕ̇ is itself a

time-varying quantity; however, since we are in the slow-roll regime, we may neglect the vari-

ation of ϕ̇ when compared with the variation of the scale factor, a(z), which is approximately

exponential. In this case, we may take q to be a constant and Ak(z) to vary solely due to a(z).

For the theory of Mathieu equations used here, in particular the application of Floquet theory

and of Floquet’s Theorem, see [2, 33, 36–39]. It should be noted that this theory assumes both

parameters Ak and q to be constant in time; we can, however, employ it to some extent even

if Ak = Ak(z) and/or q = q(z), as long as we ensure that the variation of these parameters is
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slow (or adiabatic) [40]. The variation of q due to the slow-roll dynamics can be shown to be in

fact slow (see § 3.3 and Appendix A). The variation of Ak(z) is trickier to analyse; nonetheless,

we shall see in a few paragraphs that under some conditions it is also adiabatic. Therefore, we

may safely apply the theory of Mathieu equations to (2.1.25).

The main characteristic of these equations is the existence of parametric resonance bands for

some values of the parameters Ak and q. We shall only consider the case of a narrow resonance

(q ≪ 1), for which the resonance bands occur for Ak ∼ n2, with n a positive integer. In a narrow

resonance, particle production is more contained than in a broad resonance (q ≳ 1), thereby

being more likely not to break the underlying inflationary mechanism, which assumes the ϕ field

to be dominant. We shall also restrict ourselves to the first (Ak ∼ 1) and most important of

these bands, which occurs for 1 − q ≲ Ak ≲ 1 + q [36].

Let us briefly focus on the parameter Ak(z). Since we expect the modes being produced,

which are the ones inside the resonance band, to be causally connected (i.e. subhorizon), we

must impose that for those modes k
a(z) ≫ H, such that

Ak(z) ≈
(
M

ϕ̇

)2 (k
a

)2
+ 2q , (2.1.27)

which, using (2.1.26b), is readily written as

Ak(z) ≈ 2q
[(

k/a

gM

)2
+ 1

]
. (2.1.28)

Since at the center of the resonance band (which is where the modes are while they are being

produced), we have Ak ≈ 1, it follows from (2.1.28) that

(
k/a

gM

)2
≈ 1

2q − 1 ≈ 1
2q ≫ 1 , (2.1.29)

given that, for a narrow resonance, q ≪ 1. This means that, for all significant modes (i.e. the

ones being produced), we have
(

k
a

)2
≫ g2M2. Since ⟨m2

χ(t)⟩ = g2M2 is the average value of the

oscillating squared mass of the χ field, we may use this quantity to define an effective mass for

the χ particles, ⟨mχ⟩ ≡ gM . Equation (2.1.29) then implies that the χ modes are relativistic

while they are being produced, which is an important result of our model. Using the same

relation, Eq. (2.1.28) becomes

Ak(z) ≈ 2q
(
k/a

gM

)2
= M2k2

a2ϕ̇2 , (2.1.30)
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which results in

Ak(z) ≈ 1
2ϵV

(
k

a(z)

)2 ( M

MPH

)2
(2.1.31a)

q = 1
4ϵV

(
gM

H

)2 ( M

MP

)2
. (2.1.31b)

where we have also used the relation ϕ̇2 = 2ϵV M2
PH

2, obtained using Eqs. (1.2.5) and (1.2.6).

Going back to our main discussion, Floquet’s Theorem states that in the presented case

(a narrow resonance, q ≪ 1, within the first resonance band, Ak(z) ∼ 1) the solution of the

Mathieu equation evolves as Xk(z) ∝ eµk(z) z, where µk(z) is the Floquet exponent and is given

by

µk(z) = 1
2

√
q2 − [Ak(z) − 1]2 . (2.1.32)

Reverting momentarily to the time variable t, inside the first resonance band, µk(t) is real (and

positive), such that a mode with comoving momentum k enters the band when Ak(t1) = 1+q and

exits it once Ak(t2) = 1 − q (notice that Ak(t) decreases as inflation progresses). As mentioned

before, at the centre of this band Ak(z) ≈ 1 (making µk = µmax
k = q

2), so that, using (2.1.31),

kc,phys ≡
(
k

a

)
c

=
√

2ϵV MPH

M
= gM√

2q = const. , (2.1.33)

which tells us that the modes that are at the center of the resonance band at any time t or z

all share the same physical momentum kc,phys (of course this constancy is only approximate,

since q actually varies a little due to the slow-roll dynamics). Moreover, in § 2.2 we shall see

that the physical momenta of all modes being produced at a certain time z (i.e. those that are

inside the resonance band at a certain time) are in fact very close to kc,phys, which means that

the momentum distribution of the χ particles being produced should be close to a Dirac delta

function centered at kc,phys, thus being the same at all times. Note that it is only the physical

momentum that is a constant: in principle, every comoving momentum k will be produced at

some time tc, given by

tc = tc(k) = H−1 ln
√

2q k
gM a0

, (2.1.34)

where a0 = a(t = 0). We may equivalently consider that at every instant t a mode with a certain

comoving momentum kc is being produced, this momentum being given by
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kc = kc(t) = gM√
2q a(t) . (2.1.35)

It is also easy to show, using Ak(t1) = 1 + q and Ak(t2) = 1 − q, that


t1(k) = tc(k) − 1

2H ln(1 + q) ≈ tc(k) − q
2H

t2(k) = tc(k) − 1
2H ln(1 − q) ≈ tc(k) + q

2H

, (2.1.36)

considering that q ≪ 1, such that the time spent inside the resonance band by each mode is

simply

∆t = t2 − t1 = qH−1 , (2.1.37)

or in terms of e-folds

Ne = H∆t = q , (2.1.38)

which means that each mode spends a short period of time (less than one e-fold) inside the

resonance band (and every mode spends roughly the same time there as well). This result

validates the constant-H approximation we did in § 2.1.1: since each k mode spends much less

than one e-fold in the resonance band, during that period H is in fact constant to a very good

approximation, given that H(Ne + q) ≈ H(Ne) (1 − ϵHq), as per Eq. (1.2.9). Surely, throughout

inflation, different modes experience different values of H during their passage through the

resonance band, but for each individual mode that value is essentially the same for the entire

passage. Moreover, we shall see shortly that the result from Eq. (2.1.38) is an important factor

to ensure that Ak(t) varies adiabatically.

Looking at Eq. (2.1.34), we conclude that a mode with comoving momentum k will be inside

the resonance band for a short time interval ∆t = qH−1 centered around tc(k), so that for these

modes we may Taylor expand the scale factor a(t) around tc(k) and discard second order and

higher order terms

a(t) = ac e
H(t−tc) ≈ ac [1 +H(t− tc)] . (2.1.39)

We may do the same to the Ak(t) parameter, which results in

Ak(t) ≈ 1 − 2H[t− tc(k)] ⇐⇒ Ak(z) ≈ 1 − γ[z − zc(k)] , (2.1.40)
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where

γ =
√

2
ϵV

M

MP
= 2

√
2q H
gM

, (2.1.41)

must ideally be a small quantity in order for the variation of Ak(z) to be adiabatic, as was

stated before; in § 3.3, we arrive at the conclusion that in fact γ ≪ 1 in the interesting region

of parameter space for all considered inflationary models, so that the adiabaticity is secured.

Notice that, since ϵV ≲ 1, this condition implies that M ≪ MP, which means that the mass

scale of the χ particles (⟨mχ⟩ = gM) is subplanckian. With this, we may rewrite the Floquet

exponent in (2.1.32) as

µk(z) = 1
2

√
q2 − γ2[z − zc(k)]2 , (2.1.42)

which allows us to easily calculate the values of z when a mode k enters (z1) and leaves (z2) the

resonance band

µk(z) = 0 =⇒


z1(k) = zc(k) − q

γ

z2(k) = zc(k) + q
γ

, (2.1.43)

with zc(k) = 2
γ ln

(
γ

2a0
k
H

)
, which is consistent with the result from Eq. (2.1.36), and from where

we conclude that ∆z = z2 − z1 = 2q
γ . It is also useful to rewrite kc,phys in terms of q and γ,

which simply becomes

kc,phys = 2H
γ
. (2.1.44)

At this point, it is important to check if the frequency of oscillation of mχ(t) is larger than

H, which is equivalent to saying that the period of the mass oscillations is less than one Hubble

time, H−1. This translates into ensuring that mχ(t) oscillates as least once within one e-fold

of inflation (recall that Ne ≈ H∆t), which is a necessity if we intend to have efficient particle

production during inflation. From (2.1.22), we see that mχ(t) =
√

2 gM sin
(

ϕ̇
M t
)
, so that the

frequency indeed verifies

|ϕ̇|
M

= gM√
2q = kc,phys = 2H

γ
≫ H , (2.1.45)

where Eqs. (2.1.26b), (2.1.33) and (2.1.44) were used, as well as γ ≪ 1. Note that kc,phys =(
k
a

)
c

≫ H is precisely the condition that the k mode that is being produced at a certain
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time must verify in order to be subhorizon and thus be causally connected, which is of course

a necessity. Also note that the frequency at which the mass mχ(t) oscillates is essentially

equal to the frequency associated with the particles being produced, since for those particles

ωk(t) =
√

k2

a2(t) +m2
χ(t) ≈

(
k
a

)
c

= 2H
γ = |ϕ̇|

M ; this result is in line with other common resonant

systems, where the resonances arise precisely from the proximity or equality between two differ-

ent frequencies, one inherent to the system and one imposed on it (ωk and |ϕ̇|
M , respectively, in

the case of the χ particles).

We must also ensure that the mass mχ(t) completes at least one oscillation while each mode

is inside the resonance band, which occurs during an interval ∆t = qH−1, cf. (2.1.37). This

condition is required so that we can attain a good parametric resonance in the solutions of our

Mathieu equation (2.1.25): this is easily verifiable using numerical simulations such as the ones

shown later in Figure 3.2.1. This translates into

|ϕ̇|
M

∆t = 2H
γ
qH−1 > 2π ⇐⇒ q

γ
> π , (2.1.46)

which is not straightforward to estimate. In § 3.3, however, we shall discover that this condition

holds in a significant region of the allowed parameter space for all inflationary models considered

in this work.

Furthermore, it is useful to establish that ⟨mχ⟩ > H, this restriction being due to the fact

that χ is a scalar field and therefore is subject to quantum corrections of O(H) that may greatly

increase its mass [2, 66]: by enforcing that ⟨mχ⟩ > H, we can essentially ignore this effect.

Recall that the specific value of H during inflation is currently unknown, and that different

inflationary models predict distinct values for this quantity, so that we may obtain various lower

bounds for ⟨mχ⟩ (cf. § 3.3). Together with the subplanckian condition, ⟨mχ⟩ ≪ MP, we have

effectively set a range for ⟨mχ⟩ = gM

H < ⟨mχ⟩ ≪ MP . (2.1.47)

2.2 Comoving particle number density

Resonant production of particles occurs while a mode is inside the resonance band. We saw in

the previous section that the theory of Mathieu equations [2, 33, 36, 37] can be approximately

applied to Eq. (2.1.25), so that, from Floquet’s theorem, the solution to this equation can be

written approximately as the product of a periodic function P (z) by an exponential eµk(z) z,

which, using t = γ
2H z, we can approximate as
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Xk(z) = P (z) eµk(z)z ≈ C e±iωk
γ

2H
z eµk(z) z ⇐⇒ Xk(t) ≈ C e±iωkt e

2H
γ

µk(t) t
, (2.2.1)

where, for the first resonance band (Ak ≈ 1) and for a narrow resonance (q ≪ 1), we have

µk(t) = 1
2
√
q2 − [Ak(t) − 1]2, which takes its maximum value, µmax

k = q
2 , at Ak = 1.

At a time t = t0, we have

Xk(t0) ≈ C e
(

±iω0
k+ 2H

γ
µ0

k

)
t0 (2.2.2a)

Ẋk(t0) ≈
(

±iω0
k + 2H

γ
µ0

k

)
Xk(t0) , (2.2.2b)

where ω0
k = ωk(t0) and µ0

k = µk(t0). For modes inside the resonance band (or close to entering

or exiting it), the value of ωk is comparable to 2H
γ , while µk is of order q

2 , which means that for

these modes Xk(t0) ≈ C e±iω0
kt0 and Ẋk(t0) ≈ ± iω0

k Xk(t0), comparing the absolute value of the

terms inside the parentheses in (2.2.2).

We may now define the comoving energy of the k-momentum particles as [33]

ρ̃k ≡ 1
2 |Ẋk|2 + 1

2ω
2
k |Xk|2 ≡ ωk

(
ñk + 1

2

)
, (2.2.3)

where ωk(t) =
√

k2

a2(t) +m2
χ(t) and ñk is the comoving (occupation) number of k-momentum

particles. If we consider that no particles have been produced at t = t0 just before the mode k

enters the resonance band (i.e. ñk(t0) = 0), we may write

1
2 |Ẋk(t0)|2 + 1

2(ω0
k)2 |Xk(t0)|2 = ω0

k

2 , (2.2.4)

so that, substituting the expressions obtained above,

C2(ω0
k)2 + (ω0

k)2C2 = ω0
k =⇒ Ck = 1√

2ω0
k

, (2.2.5)

assuming C ≡ Ck to be real. Xk(z) is thus given by

Xk(z) ≈ 1√
2ω0

k

e±iωk
γ

2H
z eµk(z) z , (2.2.6)

with ω0
k ≈ 2H

γ .
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We can obtain the expression for ñk(z) by inverting (2.2.3)

ñk ≡ 1
2

(
|Ẋk|2

ωk
+ ωk |Xk|2

)
− 1

2 , (2.2.7)

which upon using Xk(t) ≈ 1√
2ω0

k

e±iωkt e
2H
γ

µk(t) t leads to

ñk(t) ≈ 1
2
ωk

ω0
k

e
4H
γ

µk(t) t − 1
2 ⇐⇒ ñk(z) ≈ 1

2
ωk

ω0
k

e2µk(z) z − 1
2 , (2.2.8)

where we assumed that Ẋk(t) ≈ ±iωkXk(t) ≈ ± iωk√
2ω0

k

e±iωkt e
2H
γ

µk(t) t, due to the discussion

following (2.2.2). Note that we did not do any approximations in the exponent in order to keep

some form of time-dependence, which would otherwise disappear as we got rid of the leading-

order term.

In particular, if a mode k is inside the resonance band, in an interval dz the function Xk

in (2.2.6) will be amplified by a factor eµk(z) dz, so that between two instants zs and ze the

amplification of Xk will be of a factor eµkz, where

µkz ≡
∫ ze

zs

µk(z) dz = 1
2

∫ ze

zs

√
q2 − γ2[z − zc(k)]2 dz , (2.2.9)

making Xk(zs → ze) ≈ 1√
2ω0

k

e±iωk
γ

2H
z eµk z [40]. Hence, from (2.2.7), the comoving number of

k-momentum particles produced between zs and ze is simply

ñk(zs → ze) ≈ 1
2
ωk

ω0
k

e2µkz − 1
2 . (2.2.10)

Integrating (2.2.9) gives

ln
[
ñk(zs → ze) + 1

2

]
= q2

2γ

{
arcsin

[
γ

q
(ze − zc)

]
+ γ

q
(ze − zc)

√
1 −

(
γ

q

)2
(ze − zc)2

− arcsin
[
γ

q
(zs − zc)

]
− γ

q
(zs − zc)

√
1 −

(
γ

q

)2
(zs − zc)2

}
+ ln

(
1
2
ωk

ω0
k

)
,

(2.2.11)

which attains its maximum value of πq2

2γ +ln
(

1
2

ωk

ω0
k

)
when zs = z1(k) and ze = z2(k), correspond-

ing to a mode k that has been through the entire resonance band (note that if zs < z1(k) and/or

ze > z2(k) the integral would no longer be real-valued). In § 3.2, we compare this analytical

approximation with an analogue obtained by numerically solving Eq. (2.1.25).
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The total comoving particle number density, ñχ(zs → ze), is then obtained by integrating

(2.2.10) for all k modes

ñχ(zs → ze) = 1
(2π)3

∫
ñk(zs → ze) d3k = 1

2π2

∫ ∞

0
k2 ñk(zs → ze) dk . (2.2.12)

It is easy to see that when the expression for ñk(zs → ze) is inserted into (2.2.12) a 1
2k

2

term appears in the integrand function, which upon integration leads to an infinite value. This

factor and thus this divergence are related to the energy content of the vacuum and can be

dealt with through renormalisation techniques. However, given the fact that we are concerned

only with the number of χ particles that are produced during inflation (and so with the energy

that is added to that of the vacuum by said particles), we may neglect that part of the integral

altogether, which is what we will do henceforth. The expression for the integrand function then

simply becomes 1
2k

2 ωk

ω0
k
e2µkz.

In order to calculate (2.2.12), we must distinguish between different regimes under which

the k modes may be produced and divide the integral accordingly. If we consider the particles

produced between the start of particle production at zi (which we take to be very early in infla-

tion, even earlier than 60 e-folds before the end of the accelerated expansion) and some posterior

instant z, we have three possibilities, which are represented diagrammatically in Figure 2.2.1:

(A) modes that at the beginning of particle production were already inside the resonance band

and exited it at a later instant (which we shall consider to be prior to z);

(B) modes that entered the resonance band after the beginning of particle production and

exited it before z;

(C) modes that entered the resonance band after the beginning of particle production and are

currently (i.e. at z) inside it.

C

z1(k) zi zz2(k) z1(k) z2(k) z1(k) z2(k)

A B

Figure 2.2.1: Diagrammatic illustration of the three regimes under which χ production may

undergo. The shaded regions represent the resonance band.

We will now explore all three regimes.
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2.2.1 Regime A

In this case, the modes of momentum k have entered the resonance band before the actual start

of particle production at zi, so that z1(k) ⩽ zi. We must also impose that the modes exit the

resonance band after particle production begins, which translates to z2(k) ⩾ zi. Combining

these two conditions

z1(k) ⩽ zi ⩽ z2(k) (2.2.13)

and using (2.1.43) we arrive at an equivalent interval for the k modes that are produced in this

regime

ka ⩽ k ⩽ kb , where


ka = 2H

γ ai e
− q

2 = kmin

kb = 2H
γ ai e

q
2

, (2.2.14)

and where ai = a(zi) = a0 e
γ
2 zi , which allows us to conclude that the smallest mode that is

produced is k = 0 only if zi = −∞. Additionally, we are going to assume that z ≫ zi and also

that z > z2(kb), the latter being the instant at which the last (and largest) mode produced in

this regime exits the resonance band (note that the maximum value of z2(kb) is zi + 2q
γ ). Note

that neither ka,phys = ka
a(z) nor kb,phys = kb

a(z) are close to kc,phys = 2H
γ at z ≫ zi, as one would

expect, since at that time those modes are already far from the resonance band and so are no

longer being produced and their physical momenta have been redshifted away; therefore, their

momentum distribution is no longer approximately a Dirac delta function centred at kc,phys, but

at kc,phys
ai

a(z) ≪ kc,phys (recall that the discussion from § 2.1.2 in this regard only referred to the

modes inside the resonance band at a time z). We may estimate an approximate width for this

distribution: using (2.2.14), it is simply kb,phys − ka,phys = 2kc,phys
ai

a(z) sinh
( q

2
)

≪ kc,phys
ai

a(z) .

Moreover, for modes in this regime, ωk ≈ gM , such that, for ω0
k ≈ 2H

γ , we find ωk

ω0
k

≈
√

2q.

Considering all this, it is clear that for this regime the limits of integration in (2.2.11) should

be zs = zi and ze = z2(k), resulting in

ñA
k (zi → z2(k)) =

√
q

2 exp
{
q2

2γ

π
2 − arcsin

[
γ

q
(zi − zc)

]
− γ

q
(zi − zc)

√
1 −

(
γ

q

)2
(zi − zc)2

} .
(2.2.15)

Since all calculations are done inside the resonance band, whose center at zc(k) depends on

the modes being produced, we can simplify the exponent by performing a Taylor expansion in
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zi around zc(k) and keep only first-order terms, since zi ∼ zc(k) for all significant values of k,

see (2.2.14). With the approximate exponent, (2.2.15) becomes

ñA
k (zi → z2(k)) ≈

√
q

2 exp
{
πq2

4γ − q(zi − zc)
}

=
√
q

2 ζ k
2q
γ , (2.2.16)

with ζ = e
πq2
4γ

(
γ

2Hai

) 2q
γ and where we have used the expression for zc(k) defined after (2.1.43).

We can now calculate the comoving number density for particles produced in this regime, ñA
χ ,

whose limits of integration must be ka = kmin and kb, that is

ñA
χ = 1

2π2

∫ kb

ka

k2 ñA
k (zi → z2(k)) dk ≈

ζ
√
q

2
√

2π2
(
3 + 2q

γ

) (k3+ 2q
γ

b − k
3+ 2q

γ
a

)
, (2.2.17)

which, using (2.2.14) and the fact that ka = kb e
−q, we can rewrite as

ñA
χ ≈ 4

√
2q H3

π2γ3 a3
i e

πq2
4γ

sinh
[

q
2

(
3 + 2q

γ

)]
3 + 2q

γ

, (2.2.18)

which shows, as we would expect, that the comoving number density of particles produced in

this regime is independent of z (recall that we are considering z > z2(kb)).

2.2.2 Regime B

In this regime, we will be considering the modes of momentum k that have entered the resonance

band at some point after particle production began, so that z1(k) ⩾ zi, and have exited it at

some point prior to z, that is z2(k) ⩽ z. In other words, these modes will have been through

the entirety of the resonance band by z.

Once again, we can combine these two conditions

z1(k) ⩾ zi ∧ z2(k) ⩽ z (2.2.19)

to find, using (2.1.43), that

kb ⩽ k ⩽ k1(z) , where


kb = 2H

γ ai e
q
2

k1(z) = 2H
γ a(z) e− q

2

. (2.2.20)

From this, we see that kb is the smallest mode that has been through the entire resonance

band, while k1(z) is the mode that has just exited the resonance band at instant z.
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For the limits of integration in (2.2.11), we must then pick zs = z1(k) and ze = z2(k), which

expectedly leads to the maximum value of the expression

ñB
k (z1(k) → z2(k)) = 1

2
ωk

ω0
k

e
πq2
2γ ≈ 1

2e
πq2
2γ , (2.2.21)

where we anticipate that the modes closer to k1(z)
a(z) ∼ 2H

γ for which ωk ≈ 2H
γ ≈ ω0

k, dominate the

three-momentum integration.

Calculating ñB
χ is then straightforward, as (2.2.21) does not depend on k. The limits of

integration for the integral are of course kb and k1(z), such that

ñB
χ(z) = 1

2π2

∫ k1(z)

kb

k2 ñB
k (z1(k) → z2(k)) dk = e

πq2
2γ

12π2

(
k3

1(z) − k3
b

)
, (2.2.22)

which we can simplify using (2.2.20) and the fact that kb = k1(z) eq e− γ
2 (z−zi) ≪ k1(z) (recall

that we are considering z ≫ zi), leading to

ñB
χ(z) ≈ 2H3

3π2γ3 a3(z) e
πq2
2γ

− 3
2 q
. (2.2.23)

2.2.3 Regime C

The modes of momentum k produced in this regime have entered the resonance band at some

point after the beginning of particle production and therefore verify z1(k) ⩾ zi, as in the previous

case; but, unlike in the B regime, at a time z these modes have not yet exited the band, but are

still inside it, so the condition z2(k) ⩾ z must also be verified. These two conditions, however,

are insufficient to define an interval in k, as they only bound this quantity from below. The

missing condition is achieved by imposing z1(k) ⩽ z, so that we can also guarantee to have some

particle production in this regime at a time z.

Putting both conditions together,

z1(k) ⩽ z ⩽ z2(k) , (2.2.24)

we readily arrive at the interval for the k values, once again by using (2.1.43),

k1(z) ⩽ k ⩽ k2(z) , where


k1(z) = 2H

γ a(z) e− q
2

k2(z) = 2H
γ a(z) e

q
2 = kmax

. (2.2.25)
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We see that the largest k mode that is produced depends on the instant z that we are

considering, as one would expect. Also, we see that both k1(z)
a(z) = k1,phys = kc,phys e

− q
2 ∼ kc,phys

and k2(z)
a(z) = k2,phys = kc,phys e

q
2 ∼ kc,phys, as q ≪ 1, so that the modes being produced at a

time z, i.e. those in (2.2.25), indeed have physical momenta close to kc,phys, just as we had

stated previously in § 2.1.2; hence, the momentum distribution of the particles being produced

is in fact approximately a Dirac delta function centered at kc,phys. The rough width of the

approximate Dirac peak is then simply k2,phys − k1,phys = 2kc,phys sinh
( q

2
)

≪ kc,phys. Notice

that this distribution is severely non-thermal [67]. For modes in this regime, it is clear that
ωk

ω0
k

≈ 1.

The limits of integration we must use in (2.2.11) for this regime are zs = z1(k) and ze = z,

which results in

ñC
k (z1(k) → z) = 1

2 exp
{
q2

2γ

π
2 + arcsin

[
γ

q
(z − zc)

]
+ γ

q
(z − zc)

√
1 −

(
γ

q

)2
(z − zc)2

} .
(2.2.26)

Similarly to what we did in the A regime, we can simplify the exponent by Taylor expanding

it in z around zc(k), keeping only the first-order terms, since z ∼ zc(k) for all significant values

of k, cf. (2.2.25). This results in

ñC
k (z1(k) → z) ≈ 1

2 exp
{
πq2

4γ + q(z − zc)
}

= 1
2 ς(z) k

− 2q
γ , (2.2.27)

with ς(z) = e
πq2
4γ

(
γ

2Ha(z)

)− 2q
γ , where we have used the usual expression for zc(k). We may now

calculate the comoving number density for particles produced in this regime, ñC
χ , by setting the

limits of integration as k1(z) and k2(z) = kmax, making

ñC
χ (z) = 1

2π2

∫ k2(z)

k1(z)
k2 ñC

k (z1(k) → z) dk ≈ ς(z)
4π2

(
3 − 2q

γ

) (k3− 2q
γ

2 (z) − k
3− 2q

γ

1 (z)
)
, (2.2.28)

which can be simplified taking into account (2.2.14) and the fact that k2(z) = k1(z) eq

ñC
χ (z) ≈ 4H3

π2γ3 a3(z) e
πq2
4γ

sinh
[

q
2

(
3 − 2q

γ

)]
3 − 2q

γ

. (2.2.29)

The total comoving number density of particles produced from zi to z is then given by
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ñχ(zi → z) ≡ ñχ(z) = ñA
χ + ñB

χ(z) + ñC
χ (z) , (2.2.30)

but we can readily make a simplification by noting that for z ≫ zi, we have a3(z) ≫ a3
i = a3(zi),

meaning that ñA
χ ≪ ñB

χ(z), ñC
χ (z), so that

ñχ(z) ≈ ñB
χ(z) + ñC

χ (z) ≈ 2H3

π2γ3 a3(z)
{

1
3 e

πq2
2γ

− 3
2 q + 2 e

πq2
4γ

sinh
[

q
2

(
3 − 2q

γ

)]
3 − 2q

γ

}
. (2.2.31)

For all considered inflationary models (cf. § 3.3), it was found that in the significant re-

gions of the parameter space (g,M) we have ñB
χ(z) ≫ ñC

χ (z), meaning that we may make the

approximation

ñχ(z) ≈ 2H3

3π2γ3 a3(z) e
πq2
2γ

− 3
2 q

, (2.2.32)

which is the final expression for the comoving number density of particles produced since the

beginning of inflation at zi until a time z ≫ zi.

Notice that in Eq. (2.2.30) the full integral is from ka to k2(z), and not strictly from 0 to

∞. This is of course due to the fact that some comoving momenta may not be produced by

this mechanism. The vacuum part of the original integral, however, keeps its integration limits

from 0 to ∞, as all scales should contribute to the vacuum. We could eventually integrate out

the portion between ka and k2(z), in which case Eqs. (2.2.16), (2.2.21), (2.2.27) and (2.2.32)

would all get additional finite terms due to the vacuum. However, this would not be particularly

useful, as at least one of the remaining integrals would still be divergent; hence, we prefer to

keep the vacuum part separated as a whole and work only with the part linked to the resonant

production of particles.

2.3 Physical energy density

We will now look more deeply at expression (2.1.13), while considering also the Fourier mode

expansion (2.1.14), both of which we present here once again:

ρχ = 1
2 χ̇

2 + 1
2

|∇χ|2

a2 + 1
2m

2
χχ

2 (2.3.1)

and
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χ̂(t,x) =
∫

d3k

(2π)3

[
âkχk(t) eik·x + â†

kχ
∗
k(t) e−ik·x

]
, (2.3.2)

where ωk(t) =
√

k2

a2(t) +m2
χ(t). For simplicity, we shall assume that m2

χ(t) = 2g2M2 sin2
(

ϕ̇
M t
)

≈

⟨m2
χ(t)⟩ = g2M2 ≡ ⟨mχ⟩2, where the average is computed over a period of the oscillation.

The χ field is here interpreted as an operator χ̂, as we had previously seen. The value of

the physical energy density can thus be obtained by calculating the vacuum expectation value

of the operator ρ̂χ. We again define the Bunch-Davies vacuum state [2, 7] as

âk|0⟩ = 0 , (2.3.3)

so that the vacuum expectation value of ρ̂χ is given by

⟨ρχ⟩ ≡ ⟨0|ρ̂χ|0⟩ = 1
2⟨0| ˙̂χ2 |0⟩ + 1

2a2 ⟨0| |∇χ̂|2 |0⟩ + 1
2m

2
χ⟨0| χ̂2 |0⟩ . (2.3.4)

Using the canonical commutation relation [âk′ , â†
k] = (2π)3 δ3(k − k′) and Eq. (2.3.2), it is

simple to prove that

⟨χ̇2⟩ ≡ ⟨0| ˙̂χ2 |0⟩ = 1
2π2

∫ ∞

0
k2 |χ̇k|2 dk (2.3.5a)

⟨|∇χ|2⟩ ≡ ⟨0| |∇χ̂|2 |0⟩ = 1
2π2

∫ ∞

0
k4 |χk|2 dk (2.3.5b)

⟨χ2⟩ ≡ ⟨0| χ̂2 |0⟩ = 1
2π2

∫ ∞

0
k2 |χk|2 dk . (2.3.5c)

Expression (2.3.4) then takes the following form

⟨ρχ⟩ = 1
2π2

∫ ∞

0
k2
(

1
2 |χ̇k|2 + k2

2a2 |χk|2 + 1
2m

2
χ|χk|2

)
dk ≡ 1

2π2

∫ ∞

0
k2ρk dk , (2.3.6)

where ρk ≡ 1
2 |χ̇k|2 + k2

2a2 |χk|2 + 1
2m

2
χ|χk|2 is the total physical energy for each k mode. We then

define the physical particle number for each mode as [2, 33]

ρk ≡ ωk

(
nk + 1

2

)
⇐⇒ nk ≡ ρk

ωk
− 1

2 , (2.3.7)

with ωk = ωk(t), such that ωk is the physical energy per k-momentum χ particle, so that
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⟨ρχ⟩ ≡ 1
2π2

∫ ∞

0
k2 ωk

(
nk + 1

2

)
dk . (2.3.8)

We must now relate the comoving quantities calculated in the previous section to these newly

defined physical quantities. It is possible to show (see Appendix C.1) that

nk + 1
2 ≈ 1

a3

(
ñk + 1

2

)
, (2.3.9)

making

⟨ρχ⟩ ≈ 1
2π2a3

∫ ∞

0
k2 ωk

(
ñk + 1

2

)
dk . (2.3.10)

Recalling that ñk = 1
2

ωk

ω0
k
e2µkz − 1

2 (cf. Eq. (2.2.10)), we may insert it in (2.3.10), thus

eliminating the 1
2 factor from the integrand function, which would otherwise lead to an infinite

integral. Note that both this factor and the one in the expression for ñk have the same origin,

arising from the existence of a vacuum energy, which we had already stumbled upon in (2.2.12).

As before, we were able to rid ourselves of the infinity without using renormalisation techniques.

The integrand function thus becomes 1
2k

2ωk
ωk

ω0
k
e2µkz. Redefining ñk as ñk ≡ 1

2
ωk

ω0
k
e2µkz, as it is

useful notation-wise, we are left with

⟨ρχ⟩ ≈ 1
2π2a3

∫ ∞

0
k2 ωk ñk dk , (2.3.11)

which we must divide accordingly to what we did in §§ 2.2.1 to 2.2.3, leading to

⟨ρχ⟩ = ⟨ρA
χ ⟩ + ⟨ρB

χ⟩ + ⟨ρC
χ ⟩

≈ 1
2π2a3(z)

{∫ kb

ka

k2 ωk ñ
A
k dk +

∫ k1(z)

kb

k2 ωk ñ
B
k dk +

∫ k2(z)

k1(z)
k2 ωk ñ

C
k dk

}
.

(2.3.12)

Note that we have been omitting the z dependence in ñk and in ⟨ρχ⟩ in order to simplify the

notation. Let us calculate each one of the three integrals.

2.3.1 Regime A

In this case, every physical mode k
a(z) that contributes to the integral verifies, cf. (2.2.14),

2H
γ

ai

a(z) e
− q

2 = ka

a(z) ⩽
k

a(z) ⩽
kb

a(z) = 2H
γ

ai

a(z) e
q
2 , (2.3.13)
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so that for z ≫ zi (and q ≪ 1) we have ka
a(z) ,

kb
a(z) ≪ kc,phys = 2H

γ , which means that at a time

z the modes produced near the beginning of particle production have a physical momentum

much smaller than when they were produced, as it was decreased by the expansion of the

Universe, as expected. From (2.1.33), we have that kc,phys
gM = 1√

2q
, so that for a narrow resonance

kc,phys ≫ gM = ⟨mχ⟩, meaning that the modes are relativistic while they are being produced. If

we take z to be sufficiently larger than zi to make ka
a(z) and kb

a(z) small enough, we may consider
k

a(z) ≪ ⟨mχ⟩, so that ωk ≈ ⟨mχ⟩ = gM for all significant k modes; i.e. in this regime, the modes

were produced as relativistic, with physical momentum 2H
γ , but by a time z ≫ zi they have

become non-relativistic.

Hence, the first integral in (2.3.12) is simply

⟨ρA
χ ⟩ ≈ 1

2π2a3(z) gM
∫ kb

ka

k2 ñA
k dk = gM

ñA
χ

a3(z) , (2.3.14)

from where, using (2.2.18),

⟨ρA
χ ⟩ ≈ 4

√
2q gMH3

π2γ3

(
ai

a(z)

)3
e

πq2
4γ

sinh
[

q
2

(
3 + 2q

γ

)]
3 + 2q

γ

, (2.3.15)

which, as we can see, varies in time due to the expansion of the Universe (i.e. it is diluted away

by the expansion).

2.3.2 Regime B

From (2.2.20), we see that k1(z)
a(z) ≫ kb

a(z) for z ≫ zi (and q ≪ 1), so that at a time z ≫ zi modes

closer to k1(z) should dominate the integral in this regime. The physical momentum associated

with these dominating modes is of course k1(z)
a(z) = 2H

γ e− q
2 ∼ kc,phys = 2H

γ ≫ gM , which means

that the modes that have just left the resonance band at a time z are relativistic, as we already

knew. Hence, for the significant (dominating) k modes we can take ωk(z) ≈ k
a(z) , making

⟨ρB
χ⟩ ≈ 1

2π2a4(z)

∫ k1(z)

kb

k3 ñB
k dk = e

πq2
2γ

16π2a4(z)
(
k4

1(z) − k4
b

)
, (2.3.16)

where (2.2.21) was used. Recalling (2.2.20) and once again using the fact that k1(z) ≫ kb for

z ≫ zi, this results in

⟨ρB
χ⟩ ≈ H4

π2γ4 e
πq2
2γ

−2q
, (2.3.17)
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which interestingly is approximately constant (only approximately, since H, q and γ actually

vary slowly due to the slow-roll dynamics, cf. § 1.2.1 and Appendix A). Note that the constancy

of this quantity does not mean that no particles are being produced; it rather means that in

this regime the production of the χ particles is perfectly compensated by their dilution.

2.3.3 Regime C

As we saw in the previous section, for a narrow resonance the modes near k1(z) are relativistic

at all times. In § 2.2.3, we arrived at the relation k2(z) = k1(z) eq ∼ k1(z) for q ≪ 1, so that

the k2(z) modes are also relativistic at any time z. This of course means that we can write

ωk(z) ≈ k
a(z) for all values of k such that k1(z) ⩽ k ⩽ k2(z). The third integral in (2.3.12) is

then, making use of (2.2.27),

⟨ρC
χ ⟩ ≈ 1

2π2a4(z)

∫ k2(z)

k1(z)
k3 ñC

k dk ≈ ξ(z)
4π2a4(z)

(
4 − 2q

γ

) (k4− 2q
γ

2 (z) − k
4− 2q

γ

1 (z)
)
, (2.3.18)

which is easily simplifiable using (2.2.25), resulting in

⟨ρC
χ ⟩ ≈ 8H4

π2γ4 e
πq2
4γ

sinh
[

q
2

(
4 − 2q

γ

)]
4 − 2q

γ

, (2.3.19)

which, similarly to ⟨ρB
χ⟩, is an approximately constant value (again, H, q and γ are in fact

time-varying quantities, albeit slowly-varying, cf. § 1.2.1 and Appendix A), meaning that the

production of the χ particles in this regime is again perfectly compensated by their dilution.

The total physical energy density is now simple to calculate, but before we do so there is a

useful approximation we can make. Comparing expressions (2.3.15), (2.3.17) and (2.3.19), it is

clear that for z ≫ zi we have ⟨ρA
χ ⟩ ≪ ⟨ρB

χ⟩, ⟨ρC
χ ⟩. Indeed, as time progresses, the physical energy

density of the modes produced near the beginning of particle production (regime A) is diluted

due to expansion, while that of the modes produced in regimes B and C (specifically, that of

the modes within or just outside the resonance band) remains constant. We then have

⟨ρχ⟩ ≈ ⟨ρB
χ⟩ + ⟨ρC

χ ⟩ ≈ H4

π2γ4

{
e

πq2
2γ

−2q + 8 e
πq2
4γ

sinh
[

q
2

(
4 − 2q

γ

)]
4 − 2q

γ

}
. (2.3.20)

As in the previous section, it was found for all considered inflationary models (§ 3.3) that in

the interesting regions of the parameter space (g,M) we have ⟨ρB
χ⟩ ≫ ⟨ρC

χ ⟩, so that
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ρχ ≡ ⟨ρχ⟩ ≈ H4

π2γ4 e
πq2
2γ

−2q
, (2.3.21)

which is the final expression for the physical energy density of particles produced since the

beginning of particle production at zi until a time z ≫ zi. Note that, building on what was

stated before, the constancy of this value is due to there being a balance between the rate of χ

particle production and the rate of their dilution due to the expansion of the Universe; in fact,

at every time z there is always a mode k that is inside the resonance band and is thus leading to

the production of χ particles, which exactly compensates the dilution of the pre-existing ones,

as the total energy density of the produced particles is calculated to be proportional to a4, while

their dilution goes with a−4, them being relativistic, so that the two effects essentially cancel

one another. Additionally, as was seen, ρχ is only approximately constant; in fact it varies

adiabatically due to the slow-roll dynamics, as analysed in § 3.3 and Appendix A.

Since during inflation the energy density of the Universe must be dominated by that of the

inflaton field, we must ensure that the relation ρχ < ρϕ holds at least until near the end of the

inflationary epoch. We will see in Chapter 3 that this is indeed true in a significant region of

the parameter space (g,M) for all considered inflationary models.

Before advancing, let us note that

ξ ≡ πq2

2γ (2.3.22)

is a quantity that keeps showing in our expressions, appearing in particular in Eq. (2.2.21) as the

argument of the exponential factor. If we recall that the expression in Eq. (2.2.21) is actually

given by ñB
k ≈ 1

2 e
ξ − 1

2 , where we recovered the vacuum term that we had previously dropped,

we see that for ξ = 0 no χ quanta are produced in this regime (nor in the remaining regimes12,

since a vanishing ξ implies a vanishing q). We then see that the larger ξ is, the more quanta

we are able to produce, so that we may use this quantity as a measure of the efficiency of the

resonance. In particular, we might expect that in order to have a very efficient production of

particles we would have to require that ñB
k ≫ 1, which would be attained by imposing eξ ≫ 1.

Let us see if this is really the case. First, note that the quantities denoted by ñB
k need not be

integers, as one might expect due to their interpretation as particle numbers; the reason for this

lies in Eq. (2.3.10), where we see that these objects are defined via a vacuum expectation value,

meaning that they are actually averaged quantities, and so can in principle take any real value
12We are focusing the discussion on the B regime, since it is the most relevant one, but these considerations

remain mostly valid in the other regimes, save for a few small adaptations.
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(in fact, ñB
k is often defined using Bogolyubov coefficients [2, 33, 68], which are complex-valued

quantities; we shall make use of this alternative definition in § 2.4.1). This implies that we may

only require that ñB
k be positive-valued, in which case eξ ⩾ 1, which is of course always true.

Notice then that ñB
k can be quite small, while both ñχ from Eq. (2.2.32) and ρχ from Eq. (2.3.21)

can simultaneously be quite large, in particular due to the γ−3 and γ−4 factors coming from the

momentum integrations. This means that, while very few particles may be produced at each

comoving momentum k, our phase space is quite big, so that we have lots of comoving momenta

being produced, each contributing with some amount to the total comoving particle density and

the total physical energy density. Hence, we may still have quite an efficient resonance, in spite

of a small number of particles produced at each momentum k, due to phase space effects. We

shall see this numerically in § 3.3, for various inflationary potentials. However, we will also find

that in order to have an eventually detectable effect of the resonance, the lower bound we have

just imposed is not enough, and we will need to go to higher values of ξ (and hence eξ).

2.4 Backreaction on the inflaton

It is now time to account for the backreaction of the produced χ particles on the inflaton field

[33]. We shall split its effect into two parts: the backreaction on the classical, homogeneous

inflaton, and the backreaction on the quantum fluctuations of the inflaton. These will be dealt

with independently and so any kind of interference between the two shall be neglected as a

higher-order correction. Let us start with the classical case.

2.4.1 Effect on the classical inflaton

We start by writing the full Lagrangian of our model, previously defined in (2.1.7), as

L = (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) + 1
2∂µχ∂

µχ− 1
4FµνF

µν

− V (|Φ1|, |Φ2|) − 1
2g

2|Φ1 − Φ2|2χ2 − V (ϕ) ,
(2.4.1)

where, as permitted by the U(1) gauge symmetry of L, we have now explicitly included a

potential V (ϕ) for the inflaton, since we will now be dealing directly with effects on the dynamics

of this field. Choosing the unitary gauge and excluding terms containing fields other than ϕ or

χ (as in § 2.1.1), we may define the following Lagrangian

Lϕχ = 1
2∂µϕ∂

µϕ+ 1
2∂µχ∂

µχ− 1
2m

2
χ(ϕ)χ2 − V (ϕ) , (2.4.2)
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where, as before, m2
χ(ϕ) = 2 g2M2 sin2

(
ϕ
M

)
, allowing us to define the action functional

S[ϕ, χ] =
∫
d4x

√
−g Lϕχ . (2.4.3)

In Appendix B, we show using an effective action formalism [18, 66, 69–72] that the effective

EoM for the inflaton field receives two contributions: a Coleman-Weinberg (CW) term [55, 70, 73]

and a term proportional to ñk [33], which are written in Eq. (B.15) as a trace in momentum

space. The CW term can be integrated and renormalised using the MS renormalisation scheme

[55, 74], leading to a contribution to the effective EoM given by

∆V ′
CW(ϕ) ≡ g4M3

8π2 sin2
(
ϕ

M

)
sin
(2ϕ
M

)
ln
(
µ2

m2
χ

)
. (2.4.4)

where µ is the MS renormalisation scale. We immediately see that if we select µ = mχ this

contribution vanishes altogether. Nonetheless, let us compare it with the one proportional to ñk.

For this, we anticipate an upcoming result (also obtained in Appendix B): that the remaining

contribution to the EoM is given by

∆V ′
PP(ϕ) ≡ g2M

2π2

(
H

γ

)2
e

πq2
2γ

−q sin
(2ϕ
M

)
. (2.4.5)

where the subscript indicates that this quantity is related to (χ) particle production. In spite of

the clear suppression due to an additional g2 factor in Eq. (2.4.4), these two contributions are

not straightforward to compare using only their analytical expressions. Numerically, however,

we found that for a renormalisation scale H < µ < MP the CW term is subleading relative to

∆V ′
PP for all inflationary models we considered in this work; hence, we may neglect the former

in our computations and consider only the contribution coming from particle production.

In fact, this amounts to using the Hartree approximation13 for the backreaction on the

inflaton field [33, 73]. Neglecting for now the quantum fluctuations of the inflaton, such that

ϕ ≈ ϕ̄ ≡ ϕ (i.e. ϕ now refers only to the backreacted14 classical and homogeneous inflaton, and

13In Ref. [33], some additional contributions are shown to be subdominant relative to the Hartree approxima-

tion. In the present work, we will not perform such an analysis and will consider exclusively this approximation,

which will in principle be able to capture the main behaviour of the backreaction; however, a more rigorous study

of this system is certainly of interest, as we will discuss in Chapter 4.
14Henceforth, we shall refer to quantities of which we consider the backreaction as backreacted, corrected or

effective, whereas quantities without backreaction shall be referred to as uncorrected.
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not to the full corrected field), the EoM for ϕ can be obtained simply by replacing χ2 with its

vacuum expectation value ⟨χ2⟩ in the Lagrangian (2.4.2) and varying (2.4.3) with respect to ϕ15

□ϕ+ V ′ + 1
2(m2

χ)′ ⟨χ2⟩ = 0 , (2.4.6)

where V ≡ V (ϕ) and m2
χ ≡ m2

χ(ϕ) and where the primes now denote derivatives with respect

to ϕ. The expectation value ⟨χ2⟩ is simply given by equation (2.3.5c), which we rewrite here

⟨χ2⟩ =
∫

d3k

(2π)3 |χk|2 . (2.4.7)

In order to compute the integrand in (2.4.7), we write the solution of equation (2.1.20), the

EoM of χk = χk(t), in terms of (complex) Bogoliubov coefficients αk = αk(t) and βk = βk(t)

[2, 33, 68]

χk(t) = a−3/2(t)
[

αk(t)√
2ωk(t)

e−i
∫

ωk(t) dt + βk(t)√
2ωk(t)

ei
∫

ωk(t) dt

]
, (2.4.8)

with the normalisation condition |αk(t)|2 − |βk(t)|2 = 1 and the relation

α̇k = ω̇k

2ωk
e2i
∫

ωk dt βk (2.4.9a)

β̇k = ω̇k

2ωk
e−2i

∫
ωk dt αk , (2.4.9b)

which is obtained when we impose that Xk(t) = a3/2(t)χk(t), with χk(t) given by (2.4.8), be a

solution to Eq. (2.1.23).

This definition leads to

|χk|2 = χ∗
k χk = a−3

2ωk

[
|αk|2 + |βk|2 + 2Re

(
αk β

∗
k e

−2i
∫

ωk dt
)]

≈

≈ a−3

2ωk

(
1 + 2 |βk|2

)
,

(2.4.10)

where we dropped the high-frequency term (as it should provide a subdominant contribution

[33]) and used the normalisation condition. Moreover, using Eqs. (2.2.7), (2.4.8) and (2.4.9) it

can be easily shown that |βk|2 = ñk, so that
15One could equally vary (2.4.3) with respect to ϕ and then take the expectation value of the EoM, taking

⟨ϕ⟩ = ϕ, as is true for a classical field.
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⟨χ2⟩ ≈ 1
a3

∫
d3k

(2π)3
ñk + 1

2
ωk

. (2.4.11)

Similarly to what we did in § 2.2 and § 2.3, we must divide this integral into three parts, each

corresponding to a regime (A, B and C) under which the χ particles may be produced. The

calculations are essentially analogous to the ones done previously. Using Eq. (2.2.10), we find

that once again the B regime dominates, leaving us with

⟨χ2⟩ ≈ 1
a3

∫
d3k

(2π)3
e2µkz

2ω0
k

≈ 1
2π2 a3

∫ k1(z)

kb

k2 dk
1
2 e

ξ

k/a
, (2.4.12)

where we used the fact that ω0
k ≈ ωk ≈ k

a for the modes of interest (i.e. the ones that dominate

the integration). This leads to an effective EoM for ϕ that reads16

□ϕ+ V ′ + g2M

2π2

(
H

γ

)2
e

πq2
2γ

−q sin
(2ϕ
M

)
= 0 , (2.4.13)

in accordance with the result we anticipated in Eq. (2.4.5).

At this point, we note that the Hartree contribution to the backreaction may be entirely

removed if instead of considering a single scalar field χ whose quanta are produced via parametric

resonance we consider two scalar fields χ1 and χ2, whose interaction terms with the fields Φ1,2 are

written as −1
2g

2|Φ1 − Φ2|2χ2
1 − 1

2g
2|Φ1 + Φ2|2χ2

2, making the Lagrangian in Eq. (2.4.1) invariant

under the simultaneous interchange Φ1 ↔ iΦ2 ∧χ1 ↔ χ2, if furthermore λ1 = λ2 in V (|Φ1|, |Φ2|)

[55, 57]. The effective oscillating masses for each field χ1,2 will then be different; in particular,

mχ1 ∝ sin
(

ϕ
M

)
and mχ2 ∝ cos

(
ϕ
M

)
. However, the quanta of each field χ1,2 are produced via

the same process as described for χ, leading to variances ⟨χ2
1⟩ = ⟨χ2

2⟩ = ⟨χ2⟩, which means that

in the Hartree approximation the contributions of each field χ1,2 would cancel each other, cf.

Eq. (2.4.6), leaving us only with the subleading CW term (notice that this says nothing about

the backreaction beyond the Hartree approximation, which may still contribute as well).

Returning to our main discussion, before we attempt to solve Eq. (2.4.13), it is useful to

define an effective inflaton potential, as well as its derivatives with respect to ϕ,

16A similar result would be obtained if we had directly used for Eqs. (2.4.7) and (2.4.10) the approximate

expression χk(z) ≈ a−3/2(z)√
2ω0

k

e±iωk(z) γ
2H

z eµkz, with ω0
k ≈ k

a
for the modes of interest.
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V(ϕ) = V (ϕ̃) − g2M2

4π2

(
H

γ

)2
e

πq2
2γ

−q cos
(2ϕ
M

)
(2.4.14a)

V ′(ϕ) = V ′(ϕ̃) + g2M

2π2

(
H

γ

)2
e

πq2
2γ

−q sin
(2ϕ
M

)
(2.4.14b)

V ′′(ϕ) = V ′′(ϕ̃) + g2

π2

(
H

γ

)2
e

πq2
2γ

−q cos
(2ϕ
M

)
. (2.4.14c)

Notice that we are not considering the ϕ-dependence of the oscillation amplitude when computing

the derivatives, as its contribution is sub-leading when compared to the one coming from the

actual oscillating part – the variation of the amplitude is due to the slow-roll dynamics of the

inflaton. In particular, H2 ∝ V (ϕ), in the uncorrected slow-roll approximation, and so the

derivative of H2 with respect to ϕ is (H2)′ =
√

2ϵV H2/MP ≪ 2H2/M . Hence, in the following,

we will take V(ϕ) to be

V(ϕ) ≈ V (ϕ) + Λ4 cos
(2ϕ
M

)
, (2.4.15)

where Λ4 ≡ −g2M2

4π2

(
H
γ

)2
e

πq2
2γ

−q varies adiabatically due to slow-roll dynamics, and so is taken

to be approximately constant throughout inflation (this means that, as before, time derivatives

of Λ4 will be neglected, but we will consider its time dependence when relevant, e.g. in § 3.3).

Inflationary potentials with oscillatory modulations are a well-known class of models, some

of which with ties to axion monodromy in string theory [22, 23, 29, 75–79]. These modulations

may arise either due to corrections of some sort, as in our case, or by construction, as in models

of axion monodromy inflation [29, 76–79], and they can lead to features on the curvature power

spectrum, which may be eventually be observable [23, 29, 76–78]. We may denote the correction

to the n-th derivative of the potential by ∆V (n) ≡ V (n) − V (n), and in Appendix C.2 we show

in particular that
∣∣∣∆V

V

∣∣∣
max

≪
∣∣∣∆V ′

V ′

∣∣∣
max

≪
∣∣∣∆V ′′

V ′′

∣∣∣
max

, where the subscript “max” means that

we are only considering the amplitude of the oscillating term. Moreover, we anticipate that in

§ 3.3 we find that in general
∣∣∣∆V

V

∣∣∣ ⩽ ∣∣∣∆V
V

∣∣∣
max

≪ 1, in accordance with the results found in Refs.

[29, 76, 77] by analysis of observational data on the curvature power spectrum. In Ref. [76], for

instance, the bound on α ≡
∣∣∣∆V

V

∣∣∣
max

is α ≲ 3 × 10−5, obtained for axion monodromy inflation.

We shall also define a new pair of slow-roll parameters to replace those in (1.2.6), using the

potential V and its derivatives,
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ϵV ≡ 1
2M

2
P

(V ′(ϕ)
V(ϕ)

)2
(2.4.16a)

ηV ≡ M2
P
V ′′(ϕ)
V(ϕ) , (2.4.16b)

as well as new Hubble slow-roll parameters as in Eq. (1.2.7), using the effective Hubble parameter

H, defined by the Friedmann equation V(ϕ) ≡ 3M2
PH2

ϵH ≡ − Ḣ
H2 (2.4.17a)

ηH ≡ 2 ϵH − 1
2

ϵ̇H
ϵH H . (2.4.17b)

We may now try to find an analytical solution to Eq. (2.4.13), now rewritten as □ϕ+V ′(ϕ) =

0, with V(ϕ) given by Eq. (2.4.15) and where the d’Alembertian is now defined using H, rather

than H. This allows us to follow Ref. [23] somewhat closely.17 As such, we start by expanding

the field as

ϕ̃ = ϕ0 + ϕ1 + · · · , (2.4.18)

where ϕ0 is simply the uncorrected, homogeneous inflaton, and ϕ1 is the first-order correction

(linear in Λ4) due to the backreaction of χ. Hence, the EoM for ϕ0 is just Eq. (1.2.4), which

during slow-roll can be approximated as Eq. (1.2.5b); combined with the Friedmann equation

(1.2.5a), it leads to

ϕ̇0 = −MP
V,ϕ0(ϕ0)√

3V (ϕ0)
, (2.4.19)

which can of course be solved independently of ϕ1.

With this, we need only find an EoM for ϕ1 alone. We thus expand V(ϕ) as a function of ϕ1

V(ϕ) = V(ϕ0 + ϕ1 + · · · )

= V(ϕ0) + V,ϕ0(ϕ0)ϕ1 + 1
2 V,ϕ0ϕ0(ϕ0)ϕ2

1 + · · · ,
(2.4.20)

17Accounting for the time-dependence of Λ4 in these calculations would require a more complicated treatment,

which we will not consider here. We will, however, consider the adiabatic variation of this and other quantities

when working out the numerical treatment of our model in § 3.3.
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and we do the same with H(ϕ)

H(ϕ) = H(ϕ0 + ϕ1 + · · · ) =
√
V(ϕ0 + ϕ1 + · · · )

3M2
P

≈
√
V (ϕ0)
3M2

P︸ ︷︷ ︸
H≡H0

[
1 + 1

2
Λ4

V (ϕ0) cos
(2ϕ0
M

)
+ 1

2
V,ϕ0(ϕ0)
V (ϕ0) ϕ1 + · · ·

]

≡ H0 + H1 + · · · ,

(2.4.21)

where we performed a Taylor expansion of the square root, taking into account that
∣∣∣ Λ4

V (ϕ0)

∣∣∣ ≪ 1

and
∣∣∣V,ϕ0 (ϕ0)

V (ϕ0) ϕ1
∣∣∣ ≪ 1, the latter being shown in Appendix C.2.

We then substitute (2.4.18), (2.4.20) and (2.4.21) in □ϕ + V ′(ϕ) = 0, where now V ′(ϕ) ≡

V,ϕ1(ϕ1), leading to

ϕ̈1 + 3 (H0 +H1) ϕ̇1 + 3H1ϕ̇0 + V,ϕ0ϕ0(ϕ0)ϕ1 = 2
M

Λ4 sin
(2ϕ0
M

)
, (2.4.22)

where we used Eq. (1.2.4) once again. It is useful to convert the cosmic time derivatives of ϕ1

into derivatives with respect to ϕ0; this can be achieved using ϕ̇1 = dϕ1
dϕ0

ϕ̇0 and Eq. (2.4.19).

Assuming that |ϕ1| ≪ M
2 (which we shall see is the case), and given that

∣∣Λ4∣∣ ≪
∣∣∣M2 V,ϕ0(ϕ0)

∣∣∣
(cf. Appendix § C.2), we arrive, after some algebra and keeping only terms linear in ϕ1, at the

following equation

ϕ′′
1 − 3

MP

1√2ϵV0
ϕ′

1 + 3
2M2

P

(
ηV0

ϵV0
− 1

)
ϕ1 = 3 Λ4

ϵV0V0M
sin
(2ϕ0
M

)
, (2.4.23)

where the primes now denote derivatives with respect to ϕ0, and where ϵV0 and ηV0 are given by

(1.2.6), using the potential V (ϕ0) ≡ V0.

In order to solve Eq. (2.4.23), we need to make a further approximation: following [23], we

shall replace ϕ0 by a pivot value ϕ∗ (taken to be the value of ϕ0 at the CMB pivot scale k∗)

everywhere except in the argument of the sine on the right-hand side of the equation. This step

basically assumes that the dynamics of ϕ1 are predominantly described by the oscillatory part

of the equation, such that the coefficients of every term may be taken to be constant. Thus, the

equation becomes

ϕ′′
1 − 3

MP

1√2ϵV∗
ϕ′

1 + 3
2M2

P

(
ηV∗

ϵV∗
− 1

)
ϕ1 = 3 Λ4

ϵV∗V∗M
sin
(2ϕ0(t)

M

)
, (2.4.24)
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where we have made explicit the time-dependence of ϕ0, which is given by Eq. (2.4.19). Setting

A = − 3
MP

1√
2ϵV∗

, B = 3
2M2

P

(
ηV∗
ϵV∗

− 1
)

and C = 3 Λ4

ϵV∗ V∗M , this equation has a general solution

ϕ1(t) = α1 e
1
2 (−A−

√
A2−4B) ϕ0(t) + α2 e

1
2 (−A+

√
A2−4B) ϕ0(t)

−
CM2

[
sin
(

2 ϕ0(t)
M

)
+A M

2 cos
(

2 ϕ0(t)
M

)
−B M2

4 sin
(

2 ϕ0(t)
M

)]
[
2 + M2

4

(
A2 − 2B +A

√
A2 − 4B

)] [
2 + M2

4

(
A2 − 2B −A

√
A2 − 4B

)] .
(2.4.25)

Since ϕ1 must vanish if Λ4 = 0 (and so C = 0), we readily conclude that α1 = α2 = 0,

meaning that only the particular solution to the equation is important (the exponentials being

solutions to the homogeneous equation). Moreover, it can be shown that |A M
2 | ≪ 1, |B M2

4 | ≪ 1

and A2 ≫ |B| (cf. Appendix C.2), and so this solution is well approximated by

ϕ1(t) ≈ −C
M2

4 sin
(2ϕ0(t)

M

)
= − 3 Λ4M

4 ϵV∗V∗
sin
(2ϕ0(t)

M

)
, (2.4.26)

at which point we may notice that this amounts to integrating Eq. (2.4.24) with vanishing

coefficients for ϕ′
1 and ϕ1. The full analytical solution for the backreacted field ϕ is then

ϕ(t) = ϕ0(t) − 3 Λ4M

4 ϵV∗V∗
sin
(2ϕ0(t)

M

)
. (2.4.27)

The amplitude of the sine term is found to generally be quite small compared to ϕ0, which

is typically O(MP) at CMB scales, while Λ4

ϵV∗ V∗
≪ 1 (cf. § 3.3), which furthermore shows that

indeed |ϕ1| ≪ M
2 . In fact, plotting this solution against the uncorrected one for various families

of potentials would reveal that the two follow each other exceedingly closely.18 However, if we

plug this solution into either (2.4.16) or (2.4.17) and we plot the resulting expression for the same

potentials, we find that the slow-roll parameters have large oscillation amplitudes (see § 3.3).

We could then be led to conclude that it should be impossible to a attain slow-roll evolution.

Oddly, this is not what we observe in the numerical solution (see § 3.3), which retains its slow-roll

behaviour even if including backreaction. This may be attributed to the very large frequency of

the oscillation (f ∼ 2H0
γ ), such that only the average value of each slow-roll parameter has any

impact on the field dynamics. This type of behaviour has also been encountered in Ref. [58]. If
18Both the analytical and the numerical solutions for the backreacted field follow the uncorrected full solution

(i.e. without the slow-roll approximation) during the entirety of inflation, and these three solutions start to

deviate from the uncorrected slow-roll one only in the last few e-folds.
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we solve Eq. (2.4.13) numerically and use that solution to determine the slow-roll parameters, the

results are exactly the same. It appears that having an inflationary potential with a sinusoidal

modulation does not have a great impact in the slow-roll dynamics – we will see in § 3.3 that in

some situations this is not entirely true.

We may then follow a similar procedure to that in Ref. [58] and compute the average values

of ϵH and ηH within an oscillation (in principle, it would be equally valid to use ϵV and ηV). For

this, we will not be using the expansion of Eq. (2.4.21) to compute Ḣ, but rather

Ḣ(ϕ) = d

dt

(√
V(ϕ)
3M2

P

)
= V−1/2(ϕ)

2
√

3M2
P

V,ϕ(ϕ) ϕ̇

≈ V −1/2(ϕ)
2
√

3M2
P

(
V,ϕ0(ϕ0) + ∆V,ϕ0(ϕ0)

) (
ϕ̇0 + ϕ̇1

)
,

(2.4.28)

where we have taken V−1/2(ϕ) ≈ V −1/2(ϕ) and V,ϕ(ϕ) ≈ V,ϕ0(ϕ0), since Λ4 ≪ V (ϕ0) and

ϕ ≈ ϕ0. We shall also replace ϵ∗ and V∗ in (2.4.27) by ϵV0 and V0 = V (ϕ0), respectively, to

a good approximation (these quantities are slow-varying), which will allow us to simplify the

calculation. After some algebra, the resulting expression for ϵH is found to be

ϵH = ϵH0 + sgn(ϕ̇0) Λ4

2V (ϕ0)

[
4
γ

sin
(2ϕ0
M

)
+ 3 cos

(2ϕ0
M

)
− 3 Λ4

ϵV0V (ϕ0) γ sin
(4ϕ0
M

)]
, (2.4.29)

where we have used ϕ̇0 = sgn(ϕ̇0) √2ϵV0 MPH0 and where γ =
√

2
ϵV0

M
MP

. Moreover, the potential

V (ϕ0) is equal to 3M2
PH

2
0 , as given by the uncorrected Friedmann equation. The first term

inside the square brackets probably provides the dominant contribution, but we will keep all

three terms and compute the average value of each of them separately. Considering the first

term, let us define the quantity

∣∣∣⟨∆ϵ(1)
H0

⟩T

∣∣∣ ≡
∣∣∣∣∣〈 2 Λ4

V (ϕ0) γ sin
(2ϕ0(t)

M

)〉
T

∣∣∣∣∣ , (2.4.30)

where we may approximate ϕ0(t) ≈ ϕ0(ti)+ϕ̇0(ti) (t−ti) ≡ ϕ0+ϕ̇0 (t−ti), making T = 2π
2|ϕ̇0|/M

=
πγ

2H0
the oscillation period (the quantities in this definition are to be evaluated at ti). Notice that

this approximation for the field is indeed valid for t ∈
[
ti − T

2 , ti + T
2

]
, given that T ≪ H−1

0 .

Using the expression for Λ4, we find

∣∣∣⟨∆ϵ(1)
H0

⟩T

∣∣∣ = 1
6

(
gM

πMP

)2
∣∣∣∣∣〈e ξ−q

γ3 sin
(4H0

γ
t+ α

)〉
T

∣∣∣∣∣ , (2.4.31)
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where again the quantities in the argument of the sine are to be evaluated at ti, while the ones

outside remain functions of t. Defining E1(t) ≡ 1
6

(
gM

πMP

)2
e ξ−q

γ3 ≈ E1(ti) + Ė1(ti) (t − ti), the

average can be computed as

∣∣∣⟨∆ϵ(1)
H0

⟩T

∣∣∣
max

≈
∣∣∣∣∣ 1T
∫ ti+ T

2

ti− T
2

[
E1(ti) + Ė1(ti) (t− ti) sin

(4H0
γ

t+ α

)]
dt

∣∣∣∣∣
max

=
∣∣∣∣∣Ė1(ti)

T

∫ ti+ T
2

ti− T
2

t sin
(4H0

γ
t+ α

)
dt

∣∣∣∣∣
max

= γ

4H0
|Ė1(ti)|

= 1
24

(
gM

πMP

)2 e ξ−q

γ2

∣∣∣ξ (3 ηV0 − 2 ϵV0) − 2q (ηV0 − ϵV0) − 3 (ηV0 − 2 ϵV0)
∣∣∣ ,

(2.4.32)

where the last line was obtained by computing the time derivative using the expressions from

Appendix A, and where the subscript “max” is included so that we may drop a cosine factor

associated with a phase. Once again, all quantities are to be evaluated at ti. A similar procedure

can be followed for the two remaining terms, leading to19

∣∣∣⟨∆ϵ(2)
H0

⟩T

∣∣∣
max

≈ 1
32

(
gM

πMP

)2 e ξ−q

γ2

∣∣∣ξ (3 ηV0 − 2 ϵV0) − 2q (ηV0 − ϵV0) − 2 (ηV0 − 2 ϵV0)
∣∣∣ (2.4.33)

∣∣∣⟨∆ϵ(3)
H0

⟩T

∣∣∣
max

≈ 1
768

(
g2M

π2MP

)2
e 2(ξ−q)

γ2

∣∣∣2ξ (3 ηV0 − 2 ϵV0) − 4q (ηV0 − ϵV0) − 3 (ηV0 − 2 ϵV0)
∣∣∣ .

(2.4.34)

Each of these terms can be plotted as a function of ti (or equivalently as a function of the

corresponding Ne), in which case we discover that their values are generally smaller than ϵH0 for

whatever instant we centre our average on, cf. § 3.3; that is, when we take averages, the large

oscillations of ϵH become quite suppressed, such that their effective effect on the field dynamics

is negligible. We can define a maximum average correction to ϵH0 as

|⟨∆ϵH0⟩T |max ≡
3∑

i=1

∣∣∣⟨∆ϵ(i)H0
⟩T

∣∣∣
max

, (2.4.35)

which is generally smaller than ϵH0 . Also in § 3.3, we show that using the condition ϵH0 +

|⟨∆ϵH0⟩T |max ∼ 1 as a replacement for ϵH0 ∼ 1 to determine when inflation ends when including

backreaction only very slightly anticipates that event.
19Notice that we may use the same period T = πγ

2H0
for the two remaining calculations, despite the third term

inside the brackets in Eq. (2.4.29) having twice the frequency and so half the period of the other ones.

60



Now turning to ηH, we start by using Eq. (2.4.29) to define ∆ϵH0 ≡ ϵH − ϵH0 , where ∆ϵH0

is taken to be smaller than ϵH . In this case, we find

ηH = 2 (ϵH0 + ∆ϵH0) −
ϵ′H0

+ ∆ϵ′H0

2 (ϵH0 + ∆ϵH0)

≈ 2 (ϵH0 + ∆ϵH0) −
ϵ′H0

+ ∆ϵ′H0

2 ϵH0

(
1 − ∆ϵH0

ϵH0

)

≈ ηH0 +
(

4 − ηH0

ϵH0

)
∆ϵH0 −

∆ϵ′H0

2 ϵH0︸ ︷︷ ︸
≡∆ηH0

,

(2.4.36)

where the primes now denote derivatives with respect to Ne (we are once again considering

H ≈ H0, which as we have seen is a good approximation), and where we discarded a term of

O(∆ϵ2H0
) in order to get the last line. The quantity ∆ϵ′H0

is readily computed as

∆ϵ′H0 = sgn(ϕ̇0) Λ4

V (ϕ0)M ϕ′
0

[
4
γ

cos
(2ϕ0
M

)
− 3 sin

(2ϕ0
M

)
− 6 Λ4

ϵV0V (ϕ0) γ cos
(4ϕ0
M

)]

= 2 Λ4

V (ϕ0) γ

[
4
γ

cos
(2ϕ0
M

)
− 3 sin

(2ϕ0
M

)
− 6 Λ4

ϵV0V (ϕ0) γ cos
(4ϕ0
M

)]
,

(2.4.37)

where we only considered the derivatives of the oscillatory functions (which provide the dominant

contribution). We also used the fact that sgn(ϕ̇0)ϕ′
0 = H−1

0 |ϕ̇0| = H−1
0

|ϕ̇0|
M M = 2M

γ . This

means that we must compute six averages: three due to the ∆ϵH0 term, which have been mostly

obtained already, and three due to the ∆ϵ′H0
term, which can be obtained in a similar way. The

resulting expressions are

∣∣∣⟨∆η(1)
H0

⟩T

∣∣∣
max

≈ 1
24

∣∣∣∣4 − ηH0

ϵH0

∣∣∣∣ ( gM

πMP

)2 e ξ−q

γ2

∣∣∣ξ (3 ηV0 − 2 ϵV0) − 2q (ηV0 − ϵV0) − 3 (ηV0 − 2 ϵV0)
∣∣∣

(2.4.38)

∣∣∣⟨∆η(2)
H0

⟩T

∣∣∣
max

≈ 1
32

∣∣∣∣4 − ηH0

ϵH0

∣∣∣∣ ( gM

πMP

)2 e ξ−q

γ2

∣∣∣ξ (3 ηV0 − 2 ϵV0) − 2q (ηV0 − ϵV0) − 2 (ηV0 − 2 ϵV0)
∣∣∣

(2.4.39)

∣∣∣⟨∆η(3)
H0

⟩T

∣∣∣
max

≈ 1
768

∣∣∣∣4 − ηH0

ϵH0

∣∣∣∣
(
g2M

π2MP

)2
e 2(ξ−q)

γ2

∣∣∣2ξ (3 ηV0−2 ϵV0)−4q (ηV0−ϵV0)−3 (ηV0−2 ϵV0)
∣∣∣

(2.4.40)

∣∣∣⟨∆η(4)
H0

⟩T

∣∣∣
max

≈ 1
12 ϵH0

(
gM

πMP

)2 e ξ−q

γ3

∣∣∣ξ (3 ηV0 −2 ϵV0)−2q (ηV0 −ϵV0)−4 (ηV0 −2 ϵV0)
∣∣∣ (2.4.41)
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∣∣∣⟨∆η(5)
H0

⟩T

∣∣∣
max

≈ 1
16 ϵH0

(
gM

πMP

)2 e ξ−q

γ2

∣∣∣ξ (3 ηV0 −2 ϵV0)−2q (ηV0 −ϵV0)−3 (ηV0 −2 ϵV0)
∣∣∣ (2.4.42)

∣∣∣⟨∆η(6)
H0

⟩T

∣∣∣
max

≈ 1
384 ϵH0

(
g2M

π2MP

)2
e 2(ξ−q)

γ3

∣∣∣2ξ (3 ηV0 − 2 ϵV0) − 4q (ηV0 − ϵV0) − 4 (ηV0 − 2 ϵV0)
∣∣∣ ,

(2.4.43)

where the first three are related to each term of ∆ϵH0 (in order), and the last three are related

to each term of ∆ϵ′H0
(also in order). Defining

|⟨∆ηH0⟩T |max ≡
6∑

i=1

∣∣∣⟨∆η(i)
H0

⟩T

∣∣∣
max

, (2.4.44)

we find in § 3.3 that the condition |ηH0 | + |⟨∆ηH0⟩T |max ∼ 1 is generally also a suitable replace-

ment for ηH0 ∼ 1 in the scenario including backreaction.

2.4.2 Effect on inflaton fluctuations

We may now turn to the effect of the backreaction in the quantum fluctuations of the inflaton

field. Recovering the Lagrangian (2.4.2), we write the full backreacted inflaton field as ϕ = ϕ̄+φ,

where the behaviour of ϕ̄ has been determined in § 2.4.1 to be given by Eq. (2.4.27), and where

φ describes the fluctuations of the inflaton including backreaction. In this section, however, we

will ignore the backreaction on the classical field in order to focus on the leading order effect

of χ on the inflaton fluctuations alone. The Lagrangian then becomes (expanding m2
χ(ϕ̄) and

V (ϕ̄) to second order in φ)

Lϕχ = 1
2 ∂µϕ̄ ∂

µϕ̄ + 1
2∂µφ∂

µφ + ∂µϕ̄ ∂
µφ + 1

2∂µχ∂
µχ

− 1
2

[
m2

χ(ϕ̄) + (m2
χ),ϕ̄(ϕ̄)φ + 1

2 (m2
χ),ϕ̄ϕ̄(ϕ̄)φ2

]
χ2

−
[
V (ϕ̄) + V,ϕ̄(ϕ̄)φ + 1

2 V,ϕ̄ϕ̄(ϕ̄)φ2
]
,

(2.4.45)

Inserting this into the action (2.4.3) and replacing χ2 by ⟨χ2⟩, in accordance with the Hartree

approximation [33, 73], we may vary Sϕχ with respect to φ and use Eq. (2.4.6) to find the EoM

□φ + V,ϕ̄ϕ̄(ϕ̄)φ + 1
2 (m2

χ),ϕ̄ϕ̄(ϕ̄) ⟨χ2⟩φ = 0 , (2.4.46)

which can effectively be rewritten as
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□φ = −V,ϕ̄ϕ̄ (ϕ̄) φ , (2.4.47)

which is of course very reminiscent of Eq. (1.2.11).

Expanding the fluctuations in Fourier modes

φ̂(t,x) =
∫

d3k

(2π)3

[
âk φk(t) eik·x + â†

k φ
∗
k(t) e−ik·x

]
, (2.4.48)

where the operator âk annihilates the Bunch-Davis vacuum |0⟩ [2, 7], we find that each mode

function uk(t) = a3/2(t)φk(t) satisfies an equation of motion

ük +
[
k2

a2 − 9
4 H

2 + V,ϕ̄ϕ̄(ϕ̄)
]
uk = 0 , (2.4.49)

which, changing the time variable to z =
∣∣ ˙̄ϕ
∣∣

M t = 2H
γ t, becomes

u′′
k + [Ak(z) − 2 qφ cos(2z)] uk = 0 , (2.4.50)

where the primes denote derivatives with respect to z and where

Ak(z) =
(
γ

2H

)2
[
k2

a2(z) − 9
4H

2 + V,ϕ̄ϕ̄(ϕ̄)
]

≈
(
k/a

2H/γ

)2
(2.4.51a)

qφ = g2

8π2 e
πq2
2γ

−q = g2

8π2 e
ξ−q . (2.4.51b)

We recognize Eq. (2.4.50) as being a Mathieu-like equation, with parameters given by (2.4.51). In

particular, we identify the parameter Ak(z) from (2.4.51a) as being equal (in the approximation

regime we are considering) to the corresponding parameter (2.1.31a) from the Mathieu equation

for the χ mode functions, whereas the parameter qφ depends exponentially on both ξ and q. It

is then clear that resonant production of quanta of the inflaton field (i.e. inflatons) can be a

consequence of the backreaction. In order to obtain Eq. (2.4.51), we have taken into account

that the inflaton is a light field (V,ϕ̄ϕ̄(ϕ̄) ∼ m2
ϕ̄

≪ H2) and that the produced uk modes must be

subhorizon (k
a > H) while inside the resonance band, as noted in §§ 1.2.1 and 2.1.2, respectively,

resulting in
(

k
a

)
c

≫ mϕ̄ (i.e. the inflaton particles are relativistic while they are being produced);

moreover, we have dropped a minus sign in the definition of qφ, as it can be absorbed as a phase

on the cosine which we eliminate via a change of variable.
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Due to these similarities, the ensuing discussion is entirely analogous to the one in §§ 2.1.2

and 2.2. We shall once again consider a narrow resonance (qφ ≪ 1), which we shall see in § 3.3

is not difficult to ensure, in spite of the exponential factor in the definition, and focus on the

first resonance band (Ak(z) ∼ 1), in which case we need only replace q by qφ in the expression

for the Floquet exponent (2.1.32), which becomes

µ
qφ

k (z) = 1
2
√
q2

φ − [Ak(z) − 1]2 , (2.4.52)

as well as in subsequent quantities (e.g. ∆t = qφH
−1). Notice, however, that we need not

replace q in quantities like kc,phys or zc(k), since these depend only on Ak(z), which remains the

same – in fact, these quantities can be written entirely in terms of γ (the adiabatic coefficient

in the expansion of Ak(z)), which does not explicitly depend on q. Using this, we rewrite the

Floquet exponent as

µ
qφ

k (z) = 1
2
√
q2

φ − γ2[z − zc(k)]2 , (2.4.53)

from where it follows that we can recycle the results previously obtained for the χ field. In

particular, from Floquet’s theorem, the solutions to Eq. (2.4.50) are the mode functions

uk(z) ≈ 1√
2ω0

k

e±iωk(z) γ
2H

z eµ
qφ
k

(z) z , (2.4.54)

where ω0
k ≡

√
k2

a2(z0) +m2
ϕ̄

≈ k
a(z0) ≡ k0,phys is now the frequency of the inflaton fluctuations at

a time z0 just before the mode k enters the resonance band (note that z0 need not be z = 0 and

so a(z0) need not be a(z = 0)). Notice that the mode functions are essentially plane waves with

an additional exponential factor accounting for the parametric resonance. In fact, just like in

§ 2.2, if a mode k is inside the resonance band between two instants zs and ze, the corresponding

mode function is amplified as

uk(z) ≈ 1√
2ω0

k

e±ikphys(z) γ
2H

z eµ
qφ
k

z , (2.4.55)

where µqφ

k z ≡
∫ ze

zs
µ

qφ

k (z) dz accounts for the cumulative effect of the resonance.

One could now compute the comoving number density of the produced inflatons ñφ, as well

as their contribution ρφ to the total physical energy density of the inflaton field ρϕ, in a similar

fashion to what was done in §§ 2.2 and 2.3. However, these contributions should be subdominant,
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as they are generated by a secondary resonance, of which the qφ parameter is suppressed by a

factor of g2. In fact, we shall see in § 3.3 that despite the exponential factor in the definition

of qφ a narrow resonance regime for χ typically implies a narrower resonance for φ, at least in

the regions of the parameter space (g,M) we are concerned with. Since the energy density of

χ should be subdominant relative to that of the inflaton field (which we shall see also in § 3.3

is indeed the case), the contribution of φ to the inflaton energy density should be even less

relevant. As such, we refrain from performing these computations here and simply assume that

their effect is negligible. In any case, we may concern ourselves with a deeper analysis of this in

future work.

We are, however, interested in the effect of this secondary resonance on the variance of the

inflaton field, previously computed in Eq. (1.2.15). Now, using Eq. (2.4.48) and Eq. (2.4.55), we

find

⟨0|φ̂2(z, 0)|0⟩ = 1
a3(z)

∫
d3k

(2π)3 |uk(z)|2 = 1
a3(z)

∫
d3k

(2π)3
e2µ

qφ
k

z

2ω0
k

≡
∫

d3k

(2π)3 P̃φ(k) ,

(2.4.56)

where P̃φ(k) is the backreacted power spectrum of inflaton fluctuations (as indicated by the

tilde20). As in §§ 2.2, 2.3 and 2.4.1, we may consider three regimes (A, B and C) under which

the resonance occurs, depending on when each mode k enters the resonance band. However,

since we will ultimately be concerned with quantities at horizon-crossing, when k = aH, and

modes cross the resonance band when k ∼ 2H
γ a ≫ aH, we expect the second regime (B), which

corresponds to modes that at a certain instant have already crossed the entirety of the resonance

band, to be the one of interest. The modes from regime C are still a long way from crossing

the horizon and so are not interesting at this stage, whereas the modes from regime A, despite

having already exited the horizon, have physical momenta that have been severely redshifted by

the expansion of the Universe, making them inaccessible by observations (we are assuming that

z ≫ zi, with zi again marking the start of particle production, early in inflation).

We may nonetheless compute the power spectrum for all three regimes and then select the

most suitable one. For this, we start by recognising, following arguments similar to those in § 2.2,

that 1
2ω0

k
e2µ

qφ
k

z = 1
ωk(z)

(
ñφ

k (z) + 1
2

)
, where ñφ

k is the comoving number of produced inflatons

20Henceforth, backreacted quantities (mainly observables) are denoted using a tilde, while quantities without

backreaction maintain their usual symbols. We must not confuse this notation with the one used for comoving

quantities, which also employs a tilde; in any case, the latter is used only for occupation numbers, number

densities, energies and energy densities, for which we do not consider a backreaction.
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with comoving momentum k and ωk(z) ≈ k
a(z) . Taking our previous expressions for the comoving

number of particles in each regime, Eqs. (2.2.16), (2.2.21) and (2.2.27), we find (omitting the z

dependence in the argument of the power spectrum)

P̃φ(k) = a−2(z)
2k

(
2 ñφ

k (z) + 1
)

= a−2(z)
2k ×



√
2q e

πq2
φ

4γ

(
k/a(zi)
2H/γ

) 2qφ
γ , kφ

a < k < kφ
b

e
πq2

φ
2γ , kφ

b < k < kφ
1 (z)

e
πq2

φ
4γ

(
k/a(z)
2H/γ

)− 2qφ
γ , kφ

1 (z) < k < kφ
2 (z)

,

(2.4.57)

where kφ
a , kφ

b , kφ
1 (z) and kφ

2 (z) are obtained by replacing q by qφ in Eqs. (2.2.14), (2.2.20) and

(2.2.25), respectively. We readily conclude that at horizon-crossing (a(z) = k
H ) the only suitable

modes are those contained between kφ
b and kφ

1 (z), since the ones contained between kφ
1 (z) and

kφ
2 (z) verify k

a ∼ 2H
γ , and those between kφ

a and kφ
b indeed have too small physical momenta to

be observationally relevant. Hence, at horizon-crossing, the power spectrum becomes simply

P̃φ(k) = H2

2k3 e
πq2

φ
2γ ≡ H2

2k3 e
ξφ , (2.4.58)

which we recognise as the spectrum obtained in (1.2.15) multiplied by a factor coming from the

resonance, whose effect is then simply an exponential amplification of the amplitude (as we have

stated before, this is only approximately true, since there is also some additional k-dependence

due to the temporal variation of ξφ.

2.4.3 Effect on CMB observables

As we have alluded to in § 1.2.1, currently the best experimental probe for the inflationary

epoch is the CMB radiation. The effect of the backreaction on CMB observables can be split

into two contributions: those coming from the corrections to the classical inflaton (§ 2.4.1), and

those coming from the corrections to the inflaton quantum fluctuations (§ 2.4.2). As in those

subsections, we shall deal with each contribution separately and treat any interference between

the two as a higher-order effect, which we will neglect. We shall focus on the backreaction on

the dimensionless curvature power spectrum ∆2
R(k) and related quantities, namely the scalar

spectral index ns and the tensor-to-scalar ratio r. Note that the power spectrum of tensor

perturbations is not altered due to the backreaction of the inflaton, but may receive contributions
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from χ directly via gravitational wave generation [25, 26, 47], which is an effect we will not

consider in this work (but intend to compute and analyse in the future).

Classical contribution to ∆2
R(k)

Let us focus on the classical contribution first, ignoring the correction on the fluctuations. We

shall use the notation employed in § 2.4.1. In order to determine this effect, Ref. [23] can be

followed once more, in which case ∆̃2
R(k) is obtained by solving the Mukhanov-Sasaki equation

[8, 27, 28] for the mode functions of the backreacted (gauge-invariant) comoving curvature

perturbation R̃, whose uncorrected version we defined in § 1.2.1, Eq. (1.2.21). This derivation,

however, is too lengthy to include here and moreover it is well detailed in Ref. [23], so we merely

quote the final result, which is

∆̃2
R(k) = ∆2

R(k)
[
1 + 3 Λ4

ϵV∗V∗

√
2π
γ∗

cos
(2ϕ0(k)

M

)]
, (2.4.59)

where ∆2
R(k) = ∆2

R(k∗)
(

k
k∗

)ns−1
, with ∆2

R(k∗) =
(

H∗
ϕ̇∗

)2 (
H∗
2π

)2
during inflation, is the usual

power law from Eq. (1.2.23), ϕ0(k) is the value of the uncorrected inflaton field when the mode

with comoving momentum k exits the causal horizon and γ∗ =
√

2
ϵV∗

M
MP

. Thus, the effect of

the “classical backreaction” on the curvature power spectrum is the introduction of features

[29, 80], in particular a fixed-amplitude sinusoidal oscillation.21 It has been shown [29, 76, 77]

that in order for a correction of this type to be compatible with current CMB data for the

curvature power spectrum, the amplitude δns ≡ 3 Λ4

ϵV∗ V∗

√
2π
γ∗

(following the notation used in the

literature) must verify |δns| ≲ 10−1 for axion monodromy inflation (see in particular Ref. [29]).

In § 3.3, we shall see that this condition is possible to attain in our case for all considered

inflationary potentials, roughly corresponding to the alternative condition
∣∣∣Λ4

V∗

∣∣∣ ≲ 10−5, which

in general requires that the resonances be not too efficient at the start of inflation, although we

have encountered some cases (namely, hilltop potentials [22, 81–83]) that seem to allow both an

initially efficient resonance for χ (and to some extent for φ) and an agreement with observational

data for all the CMB observables we considered (see § 3.3.2).

One might wonder whether we could simply have taken the uncorrected expression of the

curvature power spectrum and substituted H0 and ϕ̇0 by the first order expansions of H and ϕ̇,

respectively; following this less rigorous procedure would lead to a result similar to Eq. (2.4.59),
21Recall that in deriving Eq. (2.4.59) we took Λ4 to be constant, which is of course an approximation. For a

more general treatment taking into account the time-dependence of Λ4, which we will not consider in this work,

one could follow Ref. [79].
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but without the factor
√

2π
γ∗

. This is because the Mukhanov-Sasaki equation itself is altered

by the presence of the sinusoidal modulation of the potential, in particular via the slow-roll

parameters, as can be understood from Ref. [23].

Furthermore, it is pertinent to find whether the scalar spectral index suffers any alteration

due to this contribution. Using Eq. (1.2.24) as the definition of ñs, we find that

ñs − 1 ≡ d ln ∆̃2
R(k)

d ln k

= (ns − 1) − ϕ̇0
H0

2
M sin

(
2 ϕ0(k)

M

)
ϵV∗ V∗
3 Λ4

√
γ∗
2π + cos

(
2 ϕ0(k)

M

)

= (ns − 1) −
4
γ sin

(
2 ϕ0(k)

M

)
ϵV∗ V∗
3 Λ4

√
γ∗
2π + cos

(
2 ϕ0(k)

M

)
≈ (ns − 1) − 4 δns

γ∗
sin
(2ϕ0(k)

M

)
,

(2.4.60)

where ns is the uncorrected scalar spectral index and where we have used the fact that during

inflation and at horizon-crossing d
d ln k = (a0H0) d

d(a0H0) ≈ a0
d

da0
= 1

H0
d
dt = ϕ̇0

H0
d

dϕ0
, with a0 ∝

eH0t. We have also set γ =
√

2
ϵV0

M
MP

as before (notice that we absorbed a factor sgn(ϕ̇0) as

a phase in the sine, which we readily discarded). In the last equality we used the fact that
3 Λ4

ϵV∗ V∗

√
2π
γ∗

≡ δns ⪅ 10−1 and we approximated γ ≈ γ∗, since all the quantities in Eq. (2.4.60)

are to be evaluated near the CMB pivot scale k∗. We clearly see that the scalar spectral index

acquires a sinusoidal modulation around its uncorrected value. The amplitude of this oscillation

is approximately constant and can be quite large (due to the γ−1
∗ factor). However, due to the

large frequency of the oscillation, it is likely that only the average value of ñs − 1 is relevant,

similarly to what we concluded in § 2.4.1 regarding the backreacted slow-roll parameters, where

we followed Ref. [58]. Proceeding similarly, we obtain (for a positive index), using the triangle

inequality,

ñs = |ñs| ⪅ ns + g2

2 (2π)3/2
eξ−q

γ3/2

∣∣∣∣ξ (3ηV − 2ϵV ) − 2q (ηV − ϵV ) − 3
2 (ηV − 2ϵV )

∣∣∣∣ , (2.4.61)

where all quantities are to be evaluated at some time ti near the CMB scale. This expression

is not straightforward to evaluate, but it is clear that the average effect of the “classical back-

reaction” on the scalar spectral index, and thus on the tilt of the curvature power spectrum,

can still be non-negligible. We can also follow an alternative numerical approach where we plot

the natural logarithm of Eq. (2.4.59) as a function of Ne, sample a sufficient number of points
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and perform a linear fit, the slope of which we may take to be ñs − 1. The results of this

procedure can be shown to be consistent with the ones obtained via the analytical approach

leading to Eq. (2.4.61) for several choices of potential V (ϕ0). It can also be shown that in some

situations (i.e. for some potentials V (ϕ0) and some values of the free parameters g and M) the

effect of this backreaction can indeed significantly alter the uncorrected value of ns, which may,

for instance, cause problems in inflationary models for which this value is already compatible

with observations. However, we shall see in § 3.3 that the effect of the “quantum backreaction”

computed in the following subsection can compensate the one derived here and lead to some

interesting results.

Moreover, one could try to analyse the impact of the “classical backreaction” on the running

of ns, but we have not considered this this in the present work. We will also not concern ourselves

with the impact of this backreaction on the tensor-to-scalar ratio r, although this would also

be interesting to analyse. In principle, the tensor-to-scalar ratio r̃ could eventually remain

essentially unaltered and thus equal to r, since it only depends on the amplitudes of the power

spectra at horizon-crossing: in the case of ∆̃2
R, we may take the amplitude to be approximately

given by an average of Eq. (2.4.59) over a period of the oscillation, similarly to what we did for

the effective slow-roll parameters in § 2.4.1, which we found leads to a suppressed effect of the

backreaction. Sure enough, a more rigorous treatment of this would be required.

Quantum contribution to ∆2
R(k)

We may now study how the backreaction on the inflaton fluctuations affects the curvature power

spectrum. For this, we shall ignore the backreaction on the classical inflaton field ϕ̄ (in keeping

with the notation used in § 2.4.2). In the backreacted case, the relation between the power

spectra of curvature perturbations and of inflaton fluctuations at horizon-crossing is again given

by P̃R(k) =
(

H
˙̄ϕ

)2
P̃φ(k), which leads to

∆̃2
R(k) ≡ k3

2π2 P̃R(k) =
(
H
˙̄ϕ

)2 (
H

2π

)2
e ξφ = ∆2

R(k) e ξφ , (2.4.62)

where ∆2
R(k) contains the observed power law behaviour. Thus, we have found that the back-

reaction only introduces an exponential factor on the amplitude of the power spectrum.

The scalar spectral index is also affected by the backreaction on the fluctuations. Using the

same definition for ns as before, we readily find
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ñs − 1 ≡ d ln ∆̃2
R(k)

d ln k
= (ns − 1) + dξφ

dNe

= (ns − 1) + ξφ [2ξ (3ηV − 2ϵV ) − 4q (ηV − ϵV ) − (ηV − 2ϵV )] ,

(2.4.63)

where we used d
d ln k ≈ 1

H
d
dt = d

dNe
(at horizon-crossing), as well as the results from Appendix A.

Like Eq. (2.4.61), this expression is not straightforward to evaluate, and in principle it allows

both an increase and a decrease of the scalar spectral index. A numerical approach analogous

to the one described in the previous subsection may be followed as well, leading to a result for

ñs compatible with the one obtained in Eq. (2.4.63), but we will not present it in this work.

If we take Eq. (2.4.63) and use for ns the “classically corrected” value that can be obtained

numerically, we are able to define a “globally corrected” scalar spectral index: this is done

in § 3.3 for several potentials V (ϕ̄), where it is shown that this quantity is compatible with

the measured value of this index [29]. We shall not concern ourselves with the impact of the

“quantum backreaction” either on the running of ns.

We may now briefly evaluate the effect of this backreaction on the tensor-to-scalar ratio,

which is a rather straightforward computation. Since the power spectrum of tensor perturbations

suffers no alteration due to either backcreation on ϕ, we immediately conclude from Eq. (2.4.62)

that the tensor-to-scalar ratio acquires an exponential suppression due to the “quantum back-

reaction”

r̃ ≡ ∆2
t (k∗)

∆̃2
R(k∗)

= ∆2
t (k∗)

∆2
R(k∗) e

−ξφ = r e−ξφ , (2.4.64)

with r as defined in Eq. (1.2.33), and where we considered that the exponential factor integrates

the amplitude of the corrected curvature power spectrum. Moreover, recall that this result

was obtained after ignoring the “classical backreaction” on the tensor-to-scalar ratio, meaning

that this quantity could be further altered by effects linked to the former. As was mentioned

previously, we will not concern ourselves with that computation, but such a study would certainly

be of interest.

For completeness, the full backreaction on the curvature power spectrum is thus obtained

by combining Eqs. (2.4.59) and (2.4.62), resulting in

∆̃2
R(k) = ∆2

R(k)
[
1 + 3 Λ4

ϵV∗V∗

√
2π
γ∗

cos
(2ϕ0(k)

M

)]
e ξφ , (2.4.65)
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where ∆2
R(k) = ∆2

R(k∗)
(

k
k∗

)ns−1
, with ∆2

R(k∗) =
(

H∗
ϕ̇∗

)2 (
H∗
2π

)2
during inflation. In § 3.3,

we plot this expression and its natural logarithm as functions of Ne for various uncorrected

potentials and do a linear fit of the latter, thus finding a numerical “globally corrected” value

of ñs. For some of the inflationary models considered, this value is found to be consistent with

the semi-analytical one mentioned earlier in this subsection, and with the measured value of the

scalar spectral index [29].
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3 Numerical Results and Simulations

This chapter is concerned with the numerical study of our model. In it, we shall test its theoret-

ical results for a selection of common inflationary models and compare them with observational

data, primarily from the Planck Collaboration [4, 29]. All numerical computations were done

using the software Wolfram Mathematica 12.0 [84].

3.1 General considerations

Before advancing into this study, however, we should note that during the construction and

exploration of our mechanism, we imposed a few conditions on some quantities. We shall now

list and review those conditions, so that we can figure out what restrictions they impose on our

model’s free parameters, g and M . Whenever possible, we will use experimental results to limit

our parameter space; otherwise, we will employ theoretical predictions from each inflationary

model we test, with the caveat that they may not be entirely consistent with observations.

The first condition we imposed was that of a narrow resonance on the EoM for Xk(z) modes,

i.e. q < 1 (cf. § 2.1.2). Since q = 1
4ϵV

(
gM
H

)2 (
M

MP

)2
, we may write

√
gM < ϵ

1
4
V

√
2MPH ≈

√
π

2
√

2
r
√

∆2
R(k∗) MP , (3.1.1)

where we used r ≈ 16 ϵV and r = 2
π2

H2

M2
P

1
∆2

R(k∗) , as obtained for single-field inflation (cf.

Eqs. (1.2.30), (1.2.33) and (1.2.39)). Computing ∆2
R(k∗ = 0.002 Mpc−1) via Eqs. (1.2.23) and

(1.2.25), and using the current upper bound on the tensor-to-scalar ratio, r0.002 < 0.044, we

obtain

√
gM ⪅ 1015 GeV , (3.1.2)

which is compatible with the condition (2.1.47) on ⟨mχ⟩ = gM . We shall take these two

conditions into account when selecting ranges or specific values for g and M in order to obtain

our plots.
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Later on, in the same subsection, we assumed an adiabatic behaviour for the Mathieu pa-

rameter Ak(z), leading to the condition γ ≪ 1, which, using γ =
√

2
ϵV

M
MP

, we may rewrite

as

M ≪
√
ϵV
2 MP ≈ 2− 5

2
√
rMP ⪅ 1016 GeV , (3.1.3)

where we used r ≈ 16 ϵV and r0.002 < 0.044 again. We see that this condition can be easily

verified if the condition for a narrow resonance, Eq. (3.1.2), is imposed.

We then imposed that these two quantities, q and γ, should be related by the inequality
q
γ > π, in order to ensure that the mass mχ(t) completes at least one oscillation inside the

resonance band. This condition is easily shown to be equivalent to

g
2
3 M > 2

13
6 π

√
ϵV (∆2

R(k∗))
1
3 MP , (3.1.4)

which is difficult to evaluate, since we only have an upper bound for r ≈ 16 ϵV . Thus, we

will postpone this evaluation to the sections where we deal with specific inflationary potentials

(§§ 3.3.1 and 3.3.2), so we can directly use the values for ϵV predicted by each model and

with those determine in which regions of our parameter space (g,M) the above condition holds.

Notice that these regions are not be static, as ϵV varies throughout inflation.

Lastly, in § 2.4.1, we imposed the condition |ϕ1| ≪ M
2 , establishing our expectation that the

scale of the backreaction on the field solution be small compared to the scale of the oscillation

frequency of the modulation. This condition can be rewritten using the analytical solution for

ϕ1, given by Eq. (2.4.26), and the definition Λ4 ≡ −g2M2

4π2

(
H
γ

)2
e ξ−q (where we evaluate all

quantities at the CMB pivot scale), leading to

e ξ−q ≪ 16π2

g2 , (3.1.5)

which sets an upper limit on the strength of our resonance, in particular on the number of χ

particles that are produced via our mechanism, as per the discussion at the end of § 2.3, where

we had already examined the lower bound on e ξ in order to have efficient χ production and/or

detectable signs of its existence. Notice that the value on the right-hand side of the inequality

can be rather large, as we are taking g < 1. However, in §§ 3.3.1 and 3.3.2, it can be seen that

the above relation is generally true for all considered inflationary potentials. Moreover, we note

that an almost identical condition would be attained by imposing that the Floquet solutions for

the φ modes undergo a narrow resonance, i.e. qφ = g2

8π2 e
ξ−q ≪ 1.
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Apart from these conditions, there are a few approximations that must be checked, namely

that the B regime dominates ñχ, ρχ and ⟨χ2⟩, as stated in §§ 2.2, 2.3 and 2.4.1, respectively.

Moreover, we must verify whether the energy density of the Universe is dominated by ρϕ until

the end of inflation, i.e. whether the condition ρϕ > ρχ holds during the entire inflationary

epoch (or at least until near its end). Since these relations depend on the inflationary model we

select, we need also defer their testing to §§ 3.3.1 and 3.3.2. There, we find that our parameter

space (g,M) becomes restricted to smaller values of both g and M when we impose ρϕ > ρχ,

and conclude that the B regime indeed dominates the three aforementioned quantities in the

acceptable region of the parameter space.

Furthermore, given that all quantities vary due to slow-roll dynamics, we should ensure that

the conditions we have set remain valid during the entire inflationary period. However, since

the variation due to slow-roll is quite limited (cf. Appendix A), this will generally not be a

problem. For instance, taking the narrow resonance condition for the χ modes as an example,

one may produce plots similar to those in §§ 3.3.1 and 3.3.2 to see that even for inflaton models

in which q grows, in the majority of the interesting regions of parameter space the value of q

remains smaller than unity throughout inflation.

Now that we have established most conditions on our free parameters, we can start dealing

with the actual numerical computations.

3.2 Numerical solution of the Mathieu equation

We may compare our analytical expression in Eq. (2.2.11) with an equivalent expression obtained

by numerically solving the Mathieu equation from (2.1.25). This procedure produces a numerical

solution Xk(z) that can be used to calculate a numerical version of ln [2ñk(z) + 1], through

ln [2ñk(z) + 1] ≡ ln
[
k2

c,phys
ωk

|X ′
k(z)|2 + ωk |Xk(z)|2

]
, (3.2.1)

where the primes denote differentiation with respect to z = 2H
γ t, and where we used Eq. (2.2.7)

and the fact that Ẋk = 2H
γ X ′

k = kc,physX
′
k. In fact, inside the resonance band the modes are

relativistic and ωk ≈ 2H
γ , but we will not make this approximation in the present numerical

treatment.

For the analytical approximation, we shall consider the case where zs = z1(k) and ze = z, so

that (2.2.11) becomes
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ln [2ñk(z) + 1] = q2

2γ

π
2 + arcsin

[
γ

q
(z − zc)

]
+ γ

q
(z − zc)

√
1 −

(
γ

q

)2
(z − zc)2

 , (3.2.2)

where in this case we have indeed set the factor ωk

ω0
k

to unity, since this expression describes k

modes that have entered the resonance band at z1(k) and will exit it at z2(k), between which

instants ωk ≈ ω0
k = 2H

γ and the right-hand side of (3.2.2) is real.

The plot in Figure 3.2.1 was obtained for a mode with k = 1022 GeV and having considered

a quartic hilltop inflationary potential with ϕi = 7MP and κ = 10−4 (see § 3.3.2 for details).

We considered ϵV ≈ 0.0007, which is the value of this parameter at the start of inflation under

the specified conditions. Moreover, we chose g = 0.25 and M = 1.3 × 1015 GeV, so that we

consider this case to represent an efficient resonance (cf. § 3.3.2, in particular Figure 3.3.18a).

Similar plots can be obtained for other values of these quantities, but we show this particular

case since the resonance attained here was quite marked. The initial values of Xk and X ′
k are

given by Eq. (2.2.2), resulting in Xk(z = z1(k)) = 1√
2kc,phys

and X ′
k(z = z1(k)) = − i√

2kc,phys
,

with kc,phys = 2H
γ , if we employ the approximations suggested in that appendix.
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Figure 3.2.1: Graphical representation of the numerical (solid blue line) and approximate analyt-

ical (dashed magenta line) solutions to the Mathieu equation (2.1.25) for a mode with comoving

momentum k = 1022 GeV, considering an efficient resonance, i.e. for g = 0.25 and M = 1.3×1015

GeV. The shaded region represents the period this mode is inside the first resonance band, with

the vertical dashed lines being placed at z1(k) and z2(k).

Analysing the plot from Figure 3.2.1, we can see the evolution of the comoving particle

number ñk(z) for a certain mode k as it crosses the entire first resonance band. Before entering

the band, the comoving particle number obtained numerically oscillates near ñk = 0, since
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no χ particles have been produced by the resonance by then; notice that in the analytical

approximation the oscillation is absent, as Xk(z) assumes a simple plane wave solution during

that time. When the mode enters the resonance band at z1(k), the solution for Xk(z) acquires

a non-oscillating exponential factor, due to the Floquet exponent from Eq. (2.1.32) becoming

real-valued. Thus, from z1(k) to z2(k), the comoving particle number grows rapidly from ñk = 0

to some non-zero value, where it stabilises as the mode exits the resonance band and the Floquet

exponent becomes imaginary again, causing the regular oscillatory behaviour of Xk(z) to resume

(the oscillation being again absent in the analytical case).

Moreover, it appears that the approximate analytical expression is consistent with the one

resulting from the numerical solution of the Mathieu equation while the mode is inside the reso-

nance band, although the analytical approximation slightly overestimates the solution obtained

numerically. Once the mode exits the band, however, our analytical estimate becomes less ac-

curate and leads to a more significant underestimation of the numerical solution, although the

difference between the two (in terms of their orders of magnitude) is still not very large. We may

thus consider the analytical approximation to be successful in describing the main behaviour of

the true solution. This was attained for a specific inflationary model, but proceeding similarly

for other models (in particular, the ones considered in § 3.3) produced equally reasonable results.

We could follow a similar procedure for the backreacted quantum fluctuations of the inflaton

field, which also obey a Mathieu equation, as we derived in § 2.4.2. In general, a less pronounced

resonance should be attained for the same sets of parameters used for the χ case, since, as we

shall see in § 3.3, the resonance for φ tends to be narrower.

3.3 Probing specific inflationary potentials

In order to further illustrate and explore the dynamics of our model, we will now consider

specific inflaton models to work with. We shall see that different choices for V (ϕ) will produce

distinct effects and signals. We will focus on two of the simplest families of potentials (monomial

potentials and hilltop potentials), but many other selections are also possible (see e.g. [22,

85]). The majority of the following is dedicated to numerical computations, whose results are

compared to their analytical counterparts whenever possible, but some model-specific theoretical

computations are also included. In this study, two types of plots were used: region plots of our

parameter space (g,M), and plots displaying the time evolution of physical quantities during

inflation.

The region plots were produced by imposing some of the conditions listed in § 3.1, and while
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the range for g is always taken to be [0, 1], the chosen range for M will not be the same for all

families of potentials (as can be understood from Eq. (2.1.47)). Moreover, we compute these

plots in two distinct times, in order to capture how they change throughout inflation.

In order to determine how the relevant physical quantities evolve in time for each choice of

potential, we numerically solved Eqs. (2.4.13) and (1.2.4) for the dynamics of the inflaton field

with and without backreaction, respectively; in both cases, we performed a change of variable

from t to Ne and considered the full inflaton (and so time) dependence of all participating

quantities, namely H = H(ϕ) and Λ4 = Λ4(ϕ). The solutions to these two equations were

then plugged into the ϕ-dependent expressions for each relevant quantity, which were then

plotted against Ne. With this procedure, we were able to account for and analyse the adiabatic

variation of quantities like H, q, ξ and Λ4, among others, which up to this point had for the

most part been considered constant when doing calculations. Although we do not show it here

explicitly, the solutions obtained analytically for these equations (most importantly the solution

of Eq. (2.4.27)) very closely match the ones computed numerically, which further proves that

the adiabatic approximations we considered for some quantities are perfectly valid.

In the following, the subscripts i and f refer to quantities evaluated at the beginning and

at the end of inflation, respectively (in our numerical computations, we set inflation to begin at

Ne = 0). Moreover, note that we use the same initial conditions for both the uncorrected and

the backreacted EoM. Since we are dealing with second-order ordinary differential equations,

we require two initial conditions per equation. In particular, the initial condition on the field

derivatives depends on the selected inflationary model and can be expressed using the uncor-

rected Klein-Gordon equation in the slow-roll approximation, Eq. (1.2.5b), here re-derived in

terms of Ne

ϕ′
i ≡ ϕ′(Ne = 0) = −M2

P
V,ϕ(ϕi)
V (ϕi)

, (3.3.1)

where the prime denotes differentiation with respect to Ne and ϕi ≡ ϕ(Ne = 0) is set by the

initial condition on the fields, which is chosen to produce the required number of e-folds of

accelerated expansion in the case without backreaction.

3.3.1 Monomial potentials (large-field models)

Let us then consider the class of one-parameter, large-field models defined by potentials of the

form [22]
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V (ϕ) = λϕn , (3.3.2)

which are the canonical example of the chaotic inflation paradigm [3, 13, 16, 22]. Note that

even though we refer to these potentials as monomials, we may not restrict ourselves to integer

values of n. It is possible to show [22] that in this scenario we have

ϵV = n2

2

(
MP
ϕ

)2
(3.3.3a)

ηV = n(n− 1)
(
MP
ϕ

)2
(3.3.3b)

and

Ne ≈ 1
2n

[(
ϕi

MP

)2
−
(
ϕf

MP

)2]
(3.3.4a)

ϕf

MP
= n√

2
, (3.3.4b)

where Eq. (3.3.4a) is the duration of inflation in e-folds, computed using Eq. (1.2.8), and

Eq. (3.3.4b) is the solution to ϵV = 1.

Applying Eq. (3.3.3) to the results of Appendix A, we find

q′

q
= n(n− 2)

(
MP
ϕ

)2
(3.3.5a)

γ′

γ
= −n

(
MP
ϕ

)2
(3.3.5b)

ξ′

ξ
= 2n(n− 3

2)
(
MP
ϕ

)2
. (3.3.5c)

We see that, for all non-negative values of n, γ decreases during inflation, ensuring that the

variation of Ak(z) stays adiabatic. However, only when n ⩽ 2 does q decrease or remain constant

during inflation (assuming n to be positive), the equality being achieved for the quadratic

potential; this means that for some monomial potentials (for n > 2) the value of q increases

throughout inflation, possibly leading to a broad resonance regime, in which case our analysis

ceases to be valid. For ξ, we must ensure that n ⩾ 3
2 for it to increase or remain constant during

inflation, thus maintaining the effectiveness of the resonance. Nonetheless, the values of the

three quantities in Eq. (3.3.5) are small, meaning that q, γ and ξ vary little during inflation.
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Accordingly, even if q does increase in that time, we may not necessarily enter a broad resonance

regime, invalidating our results. Likewise, even if ξ does decrease during inflation, this may not

inevitably lead to a regime of inefficient resonance and therefore negligible particle production

(recall the discussion at the end of § 2.3). Thus, these seemingly counterproductive cases may

not be troublesome for our model in the end.

As we saw in § 1.2.1, the CMB observables ns and r acquire simple approximate expressions

in terms of the potential slow-roll parameters ϵV and ηV evaluated at the beginning of inflation,

near the CMB pivot scale, cf. Eqs. (1.2.27) and (1.2.37b). In this class of models, using

Eq. (3.3.3), we may obtain alternative expressions, now in terms of the number of e-folds from

Eq. (3.3.4a)

ns − 1 ≈ −2 + n

2Ne
(3.3.6a)

r ≈ 4n
Ne

, (3.3.6b)

which immediately allows us to conclude that the predicted values for r are at least O(10−1),

and so are too large to be compatible with observations [29]. This overestimation of the value of

r is a common feature of this class of models, and is the main reason why these have been mostly

abandoned as potential choices for V (ϕ). In spite of this, and given the historical importance of

this family of potentials, we shall explore the results of our theory for a few values of n, primarily

as instructive examples. In particular, we will focus on the two cases of greatest importance,

the quadratic potential (n = 2) and the quartic potential (n = 4)22.

In the ensuing numerical treatment, the value of the coupling λ is set by the measured

amplitude of the curvature power spectrum ∆2
R(k∗) (we will consider k∗ = 0.05 Mpc−1 and use

the value for the power spectrum quoted in Ref. [29] for this pivot scale (see also Eq. (1.2.25a)),

∆2
R(k∗ = 0.05 Mpc−1) = 2.099 × 10−9), which is related to the value of the inflaton field at k∗

(cf. Eq. (1.2.26)), which we take to be ϕi; the resulting expression for λ is then

λ = 12n2π2 ∆2
R(k∗) M6

P
ϕn+2

i

. (3.3.7)

22The limiting case for which ξ is constant, the potential with n = 3
2 , would also be interesting to explore, but

since it produces similar results we refrain from including it here.
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Quadratic monomial potential (n = 2)

Since its introduction as a candidate for V (ϕ) within the single-field inflation paradigm [22, 86],

the quadratic potential was able to remain somewhat undisturbed in the spotlight of inflationary

research, both due to its naturalness and simplicity (surely, it corresponds to a simple scalar

mass term), and to its ability to align with CMB data for the scalar spectral index ns, for which

it predicts a range of values perfectly consistent with observations [29]. However, its failure in

predicting the value of the tensor-to-scalar ratio r, greatly overestimating its magnitude, like

all monomial potentials, has driven physicists away from it. Its remaining hope would be to

somehow reduce the weight of tensor perturbations, or equivalently increase the weight of scalar

perturbations, leading to a smaller value for r. If we take a look at Eq. (2.4.64), we see that with

our model we might be able to attain this desired behaviour, and thus bring quadratic monomial

inflation back to the table, as long as the φ resonance parameter ξφ is large enough to allow this.

However, since a GW spectrum is also expected to be generated by the χ particles [25, 26, 47],

the weight of tensor perturbations and consequently the predicted value of r should increase even

more. Moreover, while the “classical backreaction” on r, which we did not account for, could

eventually improve this prediction, it is unlikely that it will be sufficient for the quadratic model

to match observations. In any case, we shall test our theoretical results using this potential

choice.

For this model, considering ϕi = 15MP, the region plots were computed in the range 0 < g <

1 and 1015 GeV < M < 1016 GeV at two different times, corresponding to two distinct values

of the slow-roll parameter ϵV , which were taken to be ϵV ≈ 0.009 (which is the initial value of

this parameter for ϕi = 15MP) and ϵV = 0.5 (which is attained at a later stage of slow-roll

evolution). The obtained plots can be found in Figure 3.3.1.

The shaded areas correspond to regions of parameter space that were excluded due to sat-

isfying either of the conditions q
γ < π or ρχ > ρϕ. The condition γ > 1 was found to be

non-restrictive, in accordance with Eq. (3.1.3), while q > 1 coincides almost perfectly with

ρχ > ρϕ and so was not plotted. Contour lines for the χ resonance parameter ξ are also drawn

(for 0 ⩽ ξ ⩽ 15). We thus see that there exists a significant region of parameter space where

all the required conditions are met. Moreover, it was found (but is not included here) that in

roughly the entirety of this acceptable region, the B regime dominates ñχ, ρχ and ⟨χ2⟩, mean-

ing that the approximations done in §§ 2.2, 2.3 and 2.4.1 are valid23. We also note that from

ϵV ≈ 0.009 to ϵV = 0.5 the acceptable region slightly shifted towards smaller values of g and

23Even in the regions of parameter space where the B regime does not dominate, its contributions are comparable

to those of regime C, so that the error we incur on is negligible.
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Figure 3.3.1: Parameter space (g,M) for the quadratic monomial potential with ϕi = 15MP,

for two values of the slow-roll parameter ϵV : (a) ϵV ≈ 0.009 and (b) ϵV = 0.5. The acceptable

region not excluded by the conditions q
γ < π (orange) and ρχ > ρϕ (blue) is shown in white.

Contour lines (as well as some values) for the resonance parameter ξ (for 0 ⩽ ξ ⩽ 15) are shown

in green.

M , meaning that we must be careful when picking values for these parameters, so as to avoid

entering excluded regions as inflation progresses: for instance, if we start inflation within the

acceptable region, eventually the condition ρχ < ρϕ might cease to be verified, as we enter the

region where ρχ > ρϕ (which is not necessarily problematic if it occurs sufficiently late in the

slow-roll regime, as we shall discover).

We may now proceed to the time evolution plots. We again take ϕi = 15MP, allowing us to

get about 56 e-folds of uncorrected inflation, leading to ns ≈ 0.9643 and r ≈ 0.143, the former

being compatible with CMB data, see Eqs. (1.2.25b) and (1.2.34a), and Ref. [29]. We also

choose the values g = 0.33 and M = 3 × 1015 GeV for our free parameters, which, as we can see

in Figure 3.3.1a, are acceptable at the start of inflation.

In Figure 3.3.2, we show how the quantities q, γ and ξ evolve throughout inflation, as well

as the energy densities of ϕ and χ (the latter being given by Eq. (2.3.21)).

As per Eq. (3.3.5a), q assumes a constant value and verifies the narrow resonance condition.

Moreover, the γ parameter indeed decreases and is much smaller than unity throughout inflation,

thus verifying the adiabaticity condition, while the ξ parameter is large enough to ensure a

rather efficient resonance, in fact increasing during inflation, as expected. The energy density

of the inflaton strictly decreases as inflation develops, while that of the χ field strictly increases,
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Figure 3.3.2: Evolution of the parameters (a) q, (b) γ and (c) ξ, and of (d) the energy densities

ρχ and ρϕ for the quadratic monomial potential with ϕi = 15MP and model parameters g = 0.33

and M = 3 × 1015 GeV.

becoming comparable to ρϕ by the end of inflation. This points to a possible graceful exit

from inflation, where the accelerated expansion is terminated naturally as the energy density is

overtaken by another field, in this case χ, also a scalar.

In Figure 3.3.3a, we plot the classical inflaton field solution in the uncorrected and in the

backreacted case. We immediately see that the backreacted field solution appears to perfectly

follow the uncorrected solution, as we expected from Eq. (2.4.27). Moreover, in Figure 3.3.3b,

we display the effective inflaton potential as a function of the field solution, as defined in

Eq. (2.4.14a). As inflation progresses and the inflaton field takes smaller and smaller values,

it rolls down its potential curve, eventually reaching the region where the oscillations become

non-negligible. Additionally, in Figure 3.3.3c we plot the ratios
∣∣∣∆V

V

∣∣∣
max

,
∣∣∣∆V ′

V ′

∣∣∣
max

and
∣∣∣∆V ′′

V ′′

∣∣∣
max

as functions of the number of e-folds, whereby we conclude that the relation derived in Appendix

C.2 is indeed verified numerically. Moreover, the bounds on
∣∣∣∆V

V

∣∣∣
max

from Refs. [29, 76, 77]
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are indeed verified at horizon-crossing of CMB scales, in particular the most constraining one,∣∣∣∆V
V

∣∣∣
max

≲ 3 × 10−5, from Ref. [76].
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Figure 3.3.3: Evolution of (a) the corrected and uncorrected ϕ field solutions and of (c) the

ratios
∣∣∣∆V (n)

V (n)

∣∣∣
max

, as well as (b) the corrected and uncorrected potentials plotted as functions of

ϕ, for the quadratic monomial potential with ϕi = 15MP and model parameters g = 0.33 and

M = 3 × 1015 GeV.

Let us now see what happens to the slow-roll parameters, in particular to ϵH and |ηH |

(which, as we know, are equal to ϵV and ηV during slow-roll). In Figures 3.3.4a and 3.3.4b,

we simultaneously show the uncorrected and the effective Hubble slow-roll parameters, while in

Figures 3.3.4c and 3.3.4d we display the average effect of the correction on those parameters,

computed using Eqs. (2.4.35) and (2.4.44).

We observe that the backreaction introduces large-amplitude oscillations on both slow-roll

parameters, which, as we mentioned before, clashes with the unchanged behaviour of the backre-

acted inflaton seen in Figure 3.3.3a. However, as seen in the plots above, the average behaviour

of the correction on the slow-roll parameters, in particular on ϵH , is quite suppressed, thus

explaining the minimal alteration observed on the field solution. Furthermore, the analysis of
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Figure 3.3.4: Evolution of the corrected and uncorrected Hubble slow-roll parameters (a) ϵH
and (b) |ηH | = ηH , as well as their average corrections (c) ϵH + |⟨∆ϵH⟩T |max and (d) |ηH | +

|⟨∆ηH⟩T |max plotted as functions of the average centre Ne,i, for the quadratic monomial potential

with ϕi = 15MP and model parameters g = 0.33 and M = 3 × 1015 GeV.

these plots allows us to conclude that, for the chosen values of g, M and ϕi, we get roughly the

same 56 e-folds of inflation in the case with backreaction (i.e. the backreaction does not seem

to lead to a premature ending of inflation; there is, of course, a slight anticipation, since the

average correction added to either slow-roll parameter is non-zero).

In Figure 3.3.5, we show the temporal evolution of the φ resonance parameters qφ and ξφ,

where we see that they are clearly suppressed relative to their analogues q and ξ (notice that

this may not always be the case, as qφ depends exponentially on the value of ξ).

Moreover, in Figure 3.3.6a, we plot the curvature power spectra defined by Eqs. (1.2.22b)

and (2.4.59), respectively the uncorrected spectrum and the fully corrected spectrum (the plots

are over the first 10 e-folds of inflation, which is roughly the interval of relevance for CMB

observables). The amplitude of the oscillating part is consistent with the bounds from Refs.

[29, 76, 77], imposed on
∣∣∣∆V

V

∣∣∣
max

. Since the definition of the scalar spectral index assumes a
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Figure 3.3.5: Evolution of the φ resonance parameters (a) qφ and (b) ξφ for the quadratic

monomial potential with ϕi = 15MP and model parameters g = 0.33 and M = 3 × 1015 GeV.

power law behaviour for the power spectrum, we may determine its value by performing a linear

fit to the natural logarithm of the power spectrum and retrieving the resulting slope, as shown

in Figure 3.3.6b.

This procedure results in a value for the backreacted scalar spectral index, ñs ≈ 0.9612,

that is also consistent with observations, see Eq. (1.2.25b) and Ref. [29]; in fact, this value is

quite close to the uncorrected ns, meaning that the overall backreaction produces little effect

on this observable (in particular, both the χ and the φ resonance parameters are quite small),

which can bee seen in Figure 3.3.6b by the fact that the linear fit and the uncorrected spectrum

coincide almost perfectly. Other values for ϕi, g and M produce equally good predictions for

the scalar spectral index. As for the tensor-to-scalar ratio, in Figure 3.3.6c we plot (also over

the first 10 e-folds of inflation) the “quantum-backreacted” version r̃ from Eq. (2.4.64) against

the uncorrected version r, given by Eq. (1.2.33), and confirm that the two are essentially equal

and so incompatible with observations (cf. Eq. (1.2.34a)), as expected from the smallness of the

φ resonance parameters; thus, the effect of the χ particles appears to be insufficient to make

the quadratic model’s prediction for the tensor-to scalar ratio align with experimental data. We

may try to increase the values of ϕi, g and M so as to get a larger number of e-folds of inflation

(making r decrease) and a smaller exponential e−ξφ suppressing r̃. However, we find that for

some larger values of g and M the backreacted inflaton field solution becomes constant a certain

number of e-folds before Ne (given by Eq. (3.3.4a)), that number growing with the magnitudes

of g and M ; this can be seen in the plots from Figures 3.3.7a and 3.3.7b, which were computed

using g = 0.4 and g = 0.45, while keeping all other parameters the same, and were plotted until

the condition ϵH + |⟨∆ϵH⟩T |max = 1 was verified in each case.

This unexpected behaviour can be understood by looking at Figures 3.3.7c and 3.3.7d, which
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Figure 3.3.6: Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a) ∆2
R

and (c) r (both their corrected and uncorrected versions) for the quadratic monomial potential

with ϕi = 15MP and model parameters g = 0.33 and M = 3 × 1015 GeV. In (b) we perform a

linear fit to ln ∆2
R and display the obtained R2 coefficient, as well as the obtained value for ñs.

show the effective potential as a function of ϕ for the two alternative parameter values, g = 0.4

and g = 0.45. We see that the field rolls down its potential, driving accelerated expansion, until it

reaches a region where the oscillations become non-negligible. If the oscillations are small enough

to allow the inflaton to climb the potential wall they induce, then inflation is able to continue; if,

instead, the oscillations are too large (∼ O(ϕ̇2)), the inflaton’s kinetic energy may be insufficient

to overcome the potential wall and the field gets stuck in a local minimum, assuming a constant

value. We must be wary of this result, however: as the inflaton gets stuck and its value stops

changing, the ϕ-dependent mass of the χ field, mχ(t) ∝ sin
(

ϕ(t)
M

)
, stops oscillating and so the

parametric resonance driving χ production terminates. Since this resonant phenomenon is what

originates the correction to the inflaton potential, which would then be absent, and since this

correction is responsible for the apparent constancy of ϕ, we must conclude that this behaviour

is fictitious and does not have any physical significance; that is, our model breaks down and
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Figure 3.3.7: Evolution (until ϵH + |⟨∆ϵH⟩T |max = 1) of the corrected and uncorrected ϕ field

solutions for (a) g = 0.4 and (c) g = 0.45, as well as the corresponding corrected and uncorrected

potentials as functions of the field value ϕ, respectively (b) and (d). Obtained for the quadratic

monomial potential with ϕi = 15MP and model parameter M = 3 × 1015 GeV.

loses its validity before the end of inflation.24 Perhaps some kind of modification could alleviate

this effect, but we have yet to research this matter. Furthermore, note that this effect does not

arise when the approximate analytical expression for ϕ, Eq. (2.4.27), is plotted, in which case

the uncorrected solution is closely followed for the entirety of inflation. However, this result is

of course unphysical, since by conservation of energy the field should not be able to reach the

region where the oscillations become ∼ O(ϕ̇2). Clearly, this means that the average corrections

on the slow-roll parameters, computed using Eq. (2.4.27), also cease to be valid after the field

gets stuck.

As it is, we have found that no combination of values for g, M and ϕi that avoids ϕ getting

stuck produces a pair (ñs, r̃) consistent with observational data, meaning that the quadratic

24Notice that this may also render invalid the correction to |ηH | attained by the end of inflation in Figure 3.3.4d,

which was in fact still quite substantial.
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monomial potential should remain excluded.

Quartic monomial potential (n = 4)

The quartic monomial has also been extensively studied as an inflationary potential, correspond-

ing to a common interaction term used in QFT [18, 66]. Unlike in the quadratic model, the

predicted values for ns are too small to be compatible with CMB data, while r is too large

as well. These aspects have also made it an inadequate candidate for V (ϕ). A large enough

backreaction on the curvature power spectrum would thus be required to potentially increase

the value of ns, as well as decrease the value of the tensor-to-scalar ratio r.

For this potential, taking ϕi = 22MP, the region plots were also computed in the range

0 < g < 1 and 1015 GeV < M < 1016 GeV at two different moments: ϵV ≈ 0.017 (corresponding

to the value of this parameter at ϕi = 22MP) and ϵV = 0.2 (attained later in slow-roll). The

results are displayed in Figure 3.3.8.
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Figure 3.3.8: Parameter space (g,M) for the quartic monomial potential with ϕi = 22MP, for

two values of the slow-roll parameter ϵV : (a) ϵV ≈ 0.017 and (b) ϵV = 0.2. The acceptable

region not excluded by the conditions q
γ < π (orange) and ρχ > ρϕ (blue) is shown in white.

Contour lines (as well as some values) for the resonance parameter ξ (for 0 ⩽ ξ ⩽ 15) are shown

in green.

Once again, the shaded areas correspond to regions of parameter space that were excluded

due to satisfying either q
γ < π or ρχ > ρϕ, while the conditions γ > 1 and q > 1 are not

plotted for the same reasons as in the quadratic potential. Contour lines for the χ resonance
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parameter ξ are shown (for 0 ⩽ ξ ⩽ 15). As before, we see that there exists a significant region

of parameter space where all the required conditions are met and in roughly the entirety of this

region, the B regime again dominates ñχ, ρχ and ⟨χ2⟩. We clearly see that from ϵV ≈ 0.017

to ϵV = 0.2 the shift of the acceptable region towards smaller values of g and M is much more

drastic than in the previous case, which means that, for some initially acceptable pair (g,M),

we may eventually enter the excluded region where ρχ > ρϕ quite early in inflation (which can

in fact be problematic).

For the time evolution plots, we also take ϕi = 22MP, leading to around 60 e-folds of accel-

erated expansion in the uncorrected regime, resulting in ns ≈ 0.9497 and r ≈ 0.268 (compare

with Eqs. (1.2.25b) and (1.2.34a)). We also pick g = 0.7 and M = 2 × 1015 GeV. Notice that

these values do not verify the condition q
γ > π in the first few e-folds of inflation, as can be seen

in Figure 3.3.8a; we shall understand the reason for this choice soon. The time evolution of q,

γ and ξ is shown in Figure 3.3.9, together with the evolution of the energy densities ρχ and ρϕ.

There, we see that q is no longer constant, but increases during inflation, while the remaining

quantities maintain their behaviour. However, we readily notice that ξ grows much quicker than

in the quadratic case, due to the also-increasing q2 in its definition, Eq. (2.3.22).

This fast growth of ξ is problematic, as it causes ϕ to get stuck in a local minimum of

V(ϕ) rather early in inflation, even when we start with small values of ξ. This can be seen in

Figure 3.3.10a, displaying the inflaton field solutions as functions of the number of e-folds, and

Figure 3.3.10b, displaying the effective inflaton potential V(ϕ) as a function of ϕ. Like in the

quadratic case, the field rolls down its potential until it reaches the region where the amplitude

of the oscillations becomes large enough to prevent it from climbing the induced potential wall,

causing the field to get stuck, only this occurs faster than for the quadratic monomial, due to

the faster-growing ξ. Had we picked smaller values for g and/or M , this behaviour would be

attenuated and the field would not get stuck, but simultaneously we would be delving deeper

into the region of parameter space where the condition q
γ > π is not realised, leading to a meagre

resonance, which is also undesirable. On the other hand, selecting larger values for g and/or

M would cause the field to get stuck too early in inflation, causing our model to lose physical

significance.

The results for the remaining plots are quite similar to those obtained in the previous section.

We include only in Figure 3.3.11 the plot for the “globally corrected” curvature power spectrum

from Eq. (2.4.65), containing also the numerically-obtained scalar spectral index, ñs ≈ 0.9462, as

well as the plot for the “quantum-backreacted” tensor-to-scalar ratio from Eq. (2.4.64). Although

we do not show the plot for the ratios
∣∣∣∆V (n)

V (n)

∣∣∣
max

, the results obtained here are also compatible
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Figure 3.3.9: Evolution of the parameters (a) q, (b) γ and (c) ξ, and of (d) the energy densities

ρχ and ρϕ for the quartic monomial potential with ϕi = 22MP and model parameters g = 0.7

and M = 2 × 1015 GeV.
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Figure 3.3.10: Evolution of (a) the corrected and uncorrected ϕ field solutions in e-folds and of

(b) the corrected and uncorrected potentials plotted as functions of ϕ, for the quartic monomial

potential with ϕi = 22MP and model parameters g = 0.7 and M = 2 × 1015 GeV.
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with the bounds on
∣∣∣∆V

V

∣∣∣
max

from Refs. [29, 76, 77]. However, we see that the values obtained

for ñs and r̃ are incompatible with observations [29], as expected from the small values of the

resonance parameters at the start of inflation (once again, the linear fit to ln ∆̃2
R follows the

uncorrected curve exceedingly close). If we try to increase the magnitudes of either g or M so

as to get larger initial values for q, ξ, qφ and ξφ and thus an appropriate pair (ñs, r̃), we find

that the only combinations which could achieve that cause ϕ to get stuck too early in inflation,

rendering our model useless. Hence, we conclude that our mechanism is unable to modify the

predictions of the quartic potential in a way to make them agree with experimental data.
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Figure 3.3.11: Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a) ∆2
R

and (c) r (both their corrected and uncorrected versions) for the quartic monomial potential

with ϕi = 22MP and model parameters g = 0.7 and M = 2 × 1015 GeV. In (b) we perform a

linear fit to ln ∆2
R and display the obtained R2 coefficient, as well as the obtained value for ñs.

3.3.2 Hilltop potentials (small-field models)

We may now consider another class of potentials, in this case that of two-parameter, small-field

models [22, 81–83], which we can generally write as
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V (ϕ) = V0

[
1 − κ

n

(
ϕ

MP

)n]m

, (3.3.8)

with n ⩾ 2 and xn ≡ κ
n

(
ϕi

MP

)n
≪ 1, making the second term in the brackets subdominant

(we will consider κ ≪ 1 in order to attain this). Moreover, henceforth we shall always consider

m = 1. These typically arise in the study of spontaneous symmetry breaking, in particular in

the Abelian Higgs model [18, 66, 74]. Using the definitions of the potential slow-roll parameters,

Eq. (1.2.6), one can show that [22, 81–83]

ϵV = κ2

2

(
ϕ

MP

)2(n−1)

[
1 − κ

n

(
ϕ

MP

)n]2 (3.3.9a)

ηV = −κ(n− 1)

(
ϕ

MP

)n−2

1 − κ
n

(
ϕ

MP

)n . (3.3.9b)

Since ϵV > 0 and ηV < 0 for all accepted values of n, it is easy to see from (A.5), (A.7)

and (A.8) that all three quantities q′

q , γ′

γ and ξ′

ξ are negative, meaning that q, γ and ξ all

decrease during inflation. This is not inherently problematic and does not immediately force

us to conclude that an appreciable resonance cannot be attained. For instance, this behaviour

still allows for a resonance that is rather strong at the start of inflation but gets gradually less

efficient as slow-roll develops. In fact, we will see that it is precisely this behaviour that leads

to some very interesting results for our model.

The duration of inflation in e-folds and the field value at ϵV = 1 are given by [81]

Ne ≈


1
κ ln

(
ϕf

ϕi

)
+ 1

4

[(
ϕi

MP

)2
−
(

ϕf

MP

)2
]
, n = 2

1
2n

[(
ϕi

MP

)2
−
(

ϕf

MP

)2
]

+ 1
κ(n−2)

[(
ϕi

MP

)2−n
−
(

ϕf

MP

)2−n
]
, n > 2

(3.3.10a)

ϕf

MP

∣∣∣
n=2

=
√

1 + 2
κ

+ 2√
κ

+
√
κ

4 ≈
√

2
κ
, (3.3.10b)

where Eq. (3.3.10b) was obtained using the full expression for ϵV . The value of ϕf

MP
for the

remaining choices for n must be obtained by solving ϵV = 1 numerically.

As for the CMB observables, one can obtain [81]
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ns − 1 ≈ −n1− 2
n κ

2
n

2(n− 1) + (n+ 2)xn
i

(xn
i − 1)2 xn−2

i (3.3.11a)

r ≈ 8n2(1− 1
n ) κ

2
n
x

2(1− 1
n )

i

(1 − xn
i )2 , (3.3.11b)

where xn
i ≡ κ

n

(
ϕi

MP

)n
. Some of these expressions are not straightforward to evaluate, and so we

cannot easily determine whether the hilltop models predict values for these quantities that are

compatible with observations [29]. We shall obtain numerical values for them in the following

portion of this work. We will be focusing our upcoming analysis and discussion on the two

cases that are arguably the best motivated in terms of spontaneous symmetry breaking and the

Abelian Higgs mechanism [18, 66, 74]: the quadratic hilltop potential (n = 2) and the quartic

hilltop potential (n = 4).

As mentioned before, the hilltop family of potentials is defined by two parameters, V0 and

κ. In the following, the former is set by the measured amplitude of the curvature power spec-

trum ∆2
R(k∗), which we will again consider to be ∆2

R(k∗ = 0.05 Mpc−1) = 2.099 × 10−9 (cf.

Eq. (1.2.25a) and Ref. [29]), leading to (cf. Eq. (1.2.26))

V0 = 12π2 ∆2
R(k∗)M4

P κ
2

(
ϕi

MP

)2(n−1)

[
1 − κ

n

(
ϕi

MP

)n]3 (3.3.12)

On the other hand, κ is a free parameter for this class of potentials, whose value we must choose

in order to get ϕf , as well as an adequate duration for inflation, cf. Eq. (3.3.10); there will exist,

of course, an interplay between κ and ϕi in order to attain a proper value for Ne.

Quadratic hilltop potential (n = 2)

The first particular realisation of the hilltop potential we will test is the quadratic case, which

corresponds to the mass term in the Abelian Higgs potential [18, 66, 74], which is the dominant

contribution, considering x2 ≡ κ
2

(
ϕ

MP

)2
≪ 1. The uncorrected version of this potential is

already able to produce values for the CMB observables ns and r that agree with measurements

[29]. Surely, we would like to avoid losing this, and we shall see that for an appreciable range

of values for the pair (g,M) this agreement can indeed be maintained even with non-negligible

resonances for χ and φ.

For this model, setting ϕi = 5MP and κ = 10−2, we computed the region plots in the range

0 < g < 1 and 1014 GeV < M < 6 × 1015 GeV (the upper limit of M was chosen to improve
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visibility for the analysis, but we could have gone up to M < 1016 GeV) again at two different

stages of inflation: ϵV ≈ 0.002 (corresponding to the initial value of this parameter for ϕi = 5MP

and κ = 10−2) and ϵV = 0.5 (attained later). In Figure 3.3.12, we display the resulting plots.
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Figure 3.3.12: Parameter space (g,M) for the quadratic hilltop potential with ϕi = 5MP and

κ = 10−2, for two values of the slow-roll parameter ϵV : (a) ϵV ≈ 0.002 and (b) ϵV = 0.5. The

acceptable region not excluded by the conditions q
γ < π (orange) and ρχ > ρϕ (blue) is shown

in white. Contour lines (as well as some values) for the resonance parameter ξ (for 0 ⩽ ξ ⩽ 15)

are shown in green.

The shaded areas again correspond to regions excluded due to the conditions q
γ < π or

ρχ > ρϕ being verified there, and the conditions γ > 1 and q > 1 are not plotted since they are

non-restrictive and redundant, respectively. In Figure 3.3.12b, we also do not show an additional

region where ρχ > ρϕ, as it is fully contained in the region q
γ < π, which is already excluded. The

contour lines for 0 ⩽ ξ ⩽ 15 are also drawn. We observe that there exists a significant region of

parameter space where all the required conditions are met, in this case that region being in fact

larger than the one obtained for the two monomial cases we studied. Furthermore, we found

that in this region the B regime dominates ñχ, ρχ and ⟨χ2⟩, again ensuring the validity of the

approximations used in §§ 2.2, 2.3 and 2.4.1. We note that for this model, from ϵV ≈ 0.002 to

ϵV = 0.5, the acceptable region became broader and shifted slightly upwards, allowing larger

values of g and M . Thus, if we start inflation within the acceptable region, we might eventually

enter the region where q
γ < π, which is somewhat expected, since the resonance does become

less efficient as inflation progresses, as we concluded earlier; note, however, that this is not

necessarily troublesome if it happens towards the end of inflation, which is found to generally
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be the case.

Let us now analyse the time evolution plots. As before, we take ϕi = 5MP and κ = 10−2,

which allows us to get about 62 e-folds of inflation neglecting backreaction. This yields a scalar

spectral index ns ≈ 0.9673 and a tensor-to-scalar ratio r ≈ 0.026, both compatible with Planck

data, cf. Eqs. (1.2.25b) and (1.2.34a), and Ref. [29]. Additionally, considering the results from

Figure 3.3.12a, we choose g = 0.2 and M = 2 × 1015 GeV for our free parameters.

In Figure 3.3.13, we show the time evolution of the quantities q, γ and ξ throughout inflation,

as well as the energy densities of ϕ and χ.
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Figure 3.3.13: Evolution of the parameters (a) q, (b) γ and (c) ξ, and of (d) the energy densities

ρχ and ρϕ for the quadratic hilltop potential with ϕi = 5MP and κ = 10−2, and model parame-

ters g = 0.2 and M = 2 × 1015 GeV.

We see that q, γ and ξ indeed behave as we had predicted based on Appendix A and

Eq. (3.3.9), i.e. they all decrease during inflation, and q and γ indeed verify the narrow resonance

and the adiabaticity conditions, respectively. Looking at Figure 3.3.13c in particular, we find

that the resonance is quite large at the beginning of inflation, since ξ ≳ 1, and gradually becomes

less and less efficient as time goes on. However, considering now Figure 3.3.13d, this does not
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make the energy density of χ decrease throughout inflation, which might seem slightly counter-

intuitive. The explanation lies in the phase space effects we described at the end of § 2.3.

In spite of the decreasing value of ξ and it becoming sub-unity, leading to a small number of

particles being produced at each comoving momentum k, a large interval of comoving momenta

provide contributions to ρχ; since the comoving momentum of the χ modes being produced

grows as inflation develops (kc(t) ∝ a(t), cf. Eq. (2.1.35)), so does their respective phase space

contribution, making ρχ increase, as per Eq. (2.3.11). Since the energy density of the inflaton

strictly decreases as inflation develops, we see in this particular case that ρχ becomes less than

two orders of magnitude smaller than ρϕ by the end of inflation, which may also point to a

graceful exit from inflation, although in this situation the final energy density of the χ field is

not sufficient to completely overtake that of the inflaton.

In Figure 3.3.14, we plot the inflaton field solution in the uncorrected and in the backreacted

case, the effective and the uncorrected potentials as functions of ϕ, as defined in Eq. (2.4.14a),

and the ratios
∣∣∣∆V (n)

V (n)

∣∣∣
max

as functions of Ne.

Like for the monomial potentials, the backreacted field solution perfectly follows the uncor-

rected solution; however, in the present case, the effective potential also appears to follow the

uncorrected curve, since the oscillatory correction to the potential is quite small compared to

V (ϕ), as we can see in Figure 3.3.14c, which shows in particular that indeed
∣∣∣∆V

V

∣∣∣
max

≲ 3×10−5,

in accordance with the bounds obtained in Refs. [29, 76, 77].

Considering now the Hubble slow-roll parameters, we show in Figures 3.3.15a and 3.3.15b

their uncorrected and effective versions, while in Figures 3.3.15c and 3.3.15d we display the

average effect of the correction. The results are similar to those obtained for the monomial family:

the backreaction again introduces large-amplitude oscillations on both slow-roll parameters,

despite the field solution appearing unaltered, which is explained by the average effect of the

backreaction on ϵH and |ηH | being quite suppressed. Additionally, this allows us to get roughly 61

e-folds of inflation in the quantum-corrected scenario, which then manifests a slight anticipation

of the ending of inflation relative to the uncorrected case, due to a non-zero average correction

on ϵH .

The time evolution of the φ resonance parameters qφ and ξφ is shown in Figures 3.3.16a

and 3.3.16b, where we find that their orders of magnitude are smaller than those of q and ξ,

respectively. However, both parameters still assume large enough values to generate a somewhat

efficient resonance for φ, leading to some interesting observational effects.

These effects can be seen in Figure 3.3.17a, where we plot the curvature power spectra

defined by Eqs. (1.2.22b) and (2.4.59), respectively the uncorrected spectrum and the fully
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Figure 3.3.14: Evolution of (a) the corrected and uncorrected ϕ field solutions and of (c) the

ratios
∣∣∣∆V (n)

V (n)

∣∣∣
max

, as well as (b) the corrected and uncorrected potentials plotted as functions

of ϕ, for the quadratic hilltop potential with ϕi = 5MP and κ = 10−2, and model parameters

g = 0.2 and M = 2 × 1015 GeV.

corrected spectrum. We again determine the value of ñs by performing a linear fit to the natural

logarithm of the corrected power spectrum and taking the resulting slope as ñs−1, as is shown in

Figure 3.3.17b. For the selected values of the parameters, the value we obtain for the backreacted

scalar spectral index, ñs ≈ 0.9658 is also consistent with observations, cf. Eq. (1.2.25b) and Ref.

[29], and moreover it is remarkably close to the uncorrected one (as is the linear model to the

uncorrected curve), in spite of the substantial values of the resonance parameters, both for χ and

φ. Like we had hinted at before, the effects of the “quantum” and the “classical backreactions”

have compensated each other, leaving us with an almost unaltered scalar spectral index. In

fact, had we taken only one of these backreaction effects into account, we would have obtained

quite different predictions for ñs due to each of them, with the “classical” one being above the

measured value and the “quantum” one being below. Other values for ϕi, κ and for the pair

(g,M) produce equally good predictions for the scalar spectral index. Furthermore, the results
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Figure 3.3.15: Evolution of the corrected and uncorrected Hubble slow-roll parameters (a) ϵH
and (b) |ηH |, as well as their average corrections (c) ϵH +|⟨∆ϵH⟩T |max and (d) |ηH |+|⟨∆ηH⟩T |max

plotted as functions of the average centre Ne,i, for the quadratic hilltop potential with ϕi = 5MP

and κ = 10−2, and model parameters g = 0.2 and M = 2 × 1015 GeV.
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Figure 3.3.16: Evolution of the φ resonance parameters (a) qφ and (b) ξφ (the tildes are omitted

in the plots) for the quadratic hilltop potential with ϕi = 5MP and κ = 10−2, and model

parameters g = 0.2 and M = 2 × 1015 GeV.
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for the tensor-to-scalar ratio are plotted in Figure 3.3.17c, where we see that the already-small

value predicted by the uncorrected model suffers almost no alteration due to the “quantum

backreaction” described by Eq. (2.4.64), and so remains within the acceptable range from Ref.

[29], quoted in Eq. (1.2.34a). This behaviour was verified also for other values of the parameters

ϕi, κ and (g,M).
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Figure 3.3.17: Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a)

∆2
R and (c) r (both their corrected and uncorrected versions) for the quadratic hilltop potential

with ϕi = 5MP and κ = 10−2, and model parameters g = 0.2 and M = 2 × 1015 GeV. In (b)

we perform a linear fit to ln ∆2
R and display the obtained R2 coefficient, as well as the obtained

value for ñs.

The results of this section seem to show that our model is compatible with the quadratic

hilltop potential, producing acceptable values for the considered CMB observables while still

allowing for an appreciable production of χ particles, as well as suggesting a graceful exit from

inflation.
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Quartic hilltop potential (n = 4)

The quartic hilltop potential arises from the second-largest contribution to the Abelian Higgs

potential [18, 66, 74], corresponding to a ϕ4-type interaction.

Similarly to the quadratic hilltop, this model allows values for ns and r that are simultane-

ously compatible with experimental data [29], which once again is a feature we would like to

conserve.

In this case, for ϕi = 7MP and κ = 10−4, we select the ranges 0 < g < 1 and 1015 GeV <

M < 6 × 1015 GeV (the latter being due to the same reasons as in the quadratic hilltop case)

and obtain the parameter space at the two instants ϵV ≈ 0.0007 (corresponding to the value of

this parameter at ϕi = 7MP and κ = 10−4) and ϵV = 0.5 (attained later in slow-roll). The plots

are displayed in Figure 3.3.18.
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Figure 3.3.18: Parameter space (g,M) for the quartic hilltop potential with ϕi = 7MP and

κ = 10−4, for two values of the slow-roll parameter ϵV : (a) ϵV ≈ 0.0007 and (b) ϵV = 0.5. The

acceptable region not excluded by the conditions q
γ < π (orange) and ρχ > ρϕ (blue) is shown

in white. Contour lines (as well as some values) for the resonance parameter ξ (for 0 ⩽ ξ ⩽ 15)

are shown in green.

The excluded (shaded) regions refer either to q
γ < π or ρχ > ρϕ, while the conditions γ > 1

and q > 1 are again not shown. Contour lines for 0 ⩽ ξ ⩽ 15 are included. Similarly to the

quadratic hilltop case, we see that there exists a significant region of parameter space where all

the required conditions are met, including the dominance of the B regime in ñχ, ρχ and ⟨χ2⟩,

which, as we go from ϵV ≈ 0.0007 to ϵV = 0.5, gets broader and shifts towards larger values of g
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and M . In this case also, we find that if we select a point (g,M) contained within the acceptable

region at the start of inflation, as slow-roll develops we may move towards and eventually enter

the region where q
γ < π, which is found to generally occur late enough to not invalidate our

results (as we saw before, the resonance is efficient only at the beginning of inflation).

As for the time evolution plots, we also take ϕi = 7MP and κ = 10−4, leading to around 58

e-folds of accelerated expansion in the uncorrected case, resulting in ns ≈ 0.9647 and r ≈ 0.011

(compare with Eqs. (1.2.25b) and (1.2.34a)). We also pick g = 0.2 and M = 1.3 × 1015 GeV.

The results for this potential are quite similar to those obtained for n = 2.

We again obtain decreasing q, γ and ξ, with the latter starting inflation with values larger

than unity and evolving to smaller values as slow-roll develops, as can be seen in Figure 3.3.19,

where we also see that the energy density of the χ field again increases throughout inflation,

becoming, by the end of it, smaller than ρϕ by just one order of magnitude.
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Figure 3.3.19: Evolution of the parameters (a) q, (b) γ and (c) ξ, and of (d) the energy densities

ρχ and ρϕ for the quartic hilltop potential with ϕi = 7MP and κ = 10−4, and model parameters

g = 0.2 and M = 1.3 × 1015 GeV.

Like in the quadratic hilltop case, the corrected and uncorrected inflaton field solutions
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follow each other closely, as do the corrected and uncorrected potentials, cf. Figures 3.3.20a

and 3.3.20b. The ratios
∣∣∣∆V (n)

V (n)

∣∣∣
max

are also plotted in Figure 3.3.20c as functions of Ne; the

agreement with Refs. [29, 76, 77] is clear, since indeed
∣∣∣∆V

V

∣∣∣
max

≲ 3 × 10−5. We are able to

improve this accordance by lowering either g or M , while remaining inside the acceptable region

of the parameter space.
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Figure 3.3.20: Evolution of (a) the corrected and uncorrected ϕ field solutions and of (c) the

ratios
∣∣∣∆V (n)

V (n)

∣∣∣
max

, as well as (b) the corrected and uncorrected potentials plotted as functions of

ϕ, for the quartic hilltop potential with ϕi = 7MP and κ = 10−4, and model parameters g = 0.2

and M = 1.3 × 1015 GeV.

The effective Hubble slow-roll parameters and their respective average corrections are also

plotted in Figure 3.3.21, with the latter allowing us to conclude that inflation is once again not

ended prematurely due to the backreaction.

The “globally corrected” curvature power spectrum from Eq. (2.4.65) is plotted in Fig-

ure 3.3.22a, together with its uncorrected version. The corrected scalar spectral index ñs is

obtained as the slope of a linear fit on ln ∆̃2
R, cf. Figure 3.3.22b, the latter following the uncor-

rected curve very closely, as in the previous cases. The value obtained for the index, ñs ≈ 0.9626,
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Figure 3.3.21: Evolution of the corrected and uncorrected Hubble slow-roll parameters (a) ϵH
and (b) |ηH |, as well as their average corrections (c) ϵH +|⟨∆ϵH⟩T |max and (d) |ηH |+|⟨∆ηH⟩T |max

plotted as functions of the average centre Ne,i, for the quartic hilltop potential with ϕi = 7MP

and κ = 10−4, and model parameters g = 0.2 and M = 1.3 × 1015 GeV.

is consistent with data from Ref. [29], and it is close to the uncorrected one, indicating again

that the effects of the “quantum” and the “classical backreactions” have balanced each other

out (although for the selected set of parameters neither of these backreaction effects produced

excluded values for ñs when acting isolatedly). In any case, other values for ϕi, κ and for the pair

(g,M) have been found to produce equally good predictions for the “globally corrected” scalar

spectral index. Lastly, the tensor-to-scalar ratio, plotted in Figure 3.3.22c, is also predicted to

attain a “quantum-backreacted” value (cf. Eq. (2.4.64)) compatible with the bounds from Ref.

[29], that value being essentially equal to the one predicted by the uncorrected model. As before,

this was also verified for other values of ϕi, κ, g and M .

The results obtained here also point to our model being compatible with the quartic hilltop

potential, since we were able to obtain good values for CMB observables, while allowing for a

substantial resonance for the χ particles, with a possible graceful exit from inflation due to it.
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Figure 3.3.22: Evolution (over the initial 10 e-folds of inflation) of the CMB observables (a) ∆2
R

and (c) r (both their corrected and uncorrected versions) for the quartic hilltop potential with

ϕi = 7MP and κ = 10−4, and model parameters g = 0.2 and M = 1.3 × 1015 GeV. In (b) we

perform a linear fit to ln ∆2
R and display the obtained R2 coefficient, as well as the obtained

value for ñs.

105



106



4 Discussion and Conclusion

In this work, we have developed a model for scalar particle production due to a narrow parametric

resonance during the inflationary epoch. We checked whether this particle production process

can be appreciable while still maintaining the inflaton as the dominant fluid in the Universe,

even when the effects of a backreaction are taken into account. There are several conclusions

we may draw from our study.

First and foremost, we concluded in § 2.1.2 that the χ particles are relativistic while they are

being produced (i.e. while their respective k modes are inside the resonance band), since at such

a time their squared physical momentum is essentially equal to k2
c,phys = ⟨mχ⟩2

2q ≫ ⟨mχ⟩2, if the

resonance is narrow. The fact that all physical momenta of the particles in production at a time

z is close to kc,phys, as seen in § 2.2, also allowed us to conclude that the momentum distribution

of the χ particles is non-thermal, approximately resembling a Dirac delta function centered at

kc,phys, the width of which is roughly 2kc,phys sinh
( q

2
)
. Moreover, since kc,phys = ⟨mχ⟩√

2q
= 2H

γ

varies only due to the slow-roll dynamics, cf. Appendix A, the momentum distribution does not

change much in time; rather, it remains roughly the same throughout inflation. In summary,

this mechanism leads to the production of relativistic particles with a rather specific value of

physical momentum (dependent on the energy scale of inflation via H), which remains essentially

unchanged in time.

In §§ 2.2 and 2.3, respectively, we calculated the comoving number density of the χ particles

to be given by ñχ(z) ≈ 2H3

3π2γ3 a
3(z) e

πq2
2γ

− 3
2 q and their physical energy density to be ρχ ≈

H4

π2γ4 e
πq2
2γ

−2q. In the latter case, we concluded that the energy density of the χ particles is

essentially constant in time, only varying adiabatically due to the slow-roll dynamics, and that

this was a result of there being an equilibrium between the rate of production and the rate of

dilution of these particles, which is a notorious result of our model.

We also concluded (§ 2.4) that the backreaction of the χ particles on the classical inflaton

field leads to the appearance of a sinusoidal modulation in the latter’s potential, which eventu-

ally leads to a similar profile for the classical field solution and (although a little more involved)

for the slow-roll parameters. We concluded, however, that despite the large amplitude predicted

107



for the modulations of, in particular, the backreacted Hubble slow-roll parameters, the backre-

acted classical inflaton displayed very little change relative to its uncorrected counterpart and

was thus able to maintain slow-roll evolution; we explained this phenomenon by the fact that

the oscillations of the slow-roll parameters occur very rapidly, so that only the value of these

quantities averaged within a period of the oscillation (which we saw led to a great suppression

of their amplitudes) would affect the dynamics of the inflaton. Regarding the backreaction on

the quantum fluctuations of the inflaton, we concluded that a possible effect was a resonant

production of inflaton particles, due to a parametric resonance similar to the one encountered

for the χ particles, although typically narrower. We also found the appearance of an additional

exponential factor in the power spectrum of the inflaton quantum fluctuations. These effects

on the inflaton field induced changes on several CMB observables. In particular, the curvature

power spectrum saw the appearance of sinusoidal features and of an exponential factor in its

amplitude, with the scalar spectral index and the tensor-to-scalar ratio also being altered due

to that (for instance, the latter received an exponential suppression).

In § 3.3, we concluded for three of the four different inflationary potentials we tested (namely,

the quadratic monomial and the two hilltop models) that indeed there is a rather significant

portion of parameter space that allows us to have an appreciable production of χ particles due

to this process of narrow parametric resonance, without this leading to an inevitable dissolution

of the underlying inflationary mechanism, i.e. maintaining ρχ < ρϕ for the entire slow-roll phase

(with an eventual graceful exit from inflation appearing to be possible); on the other hand, the

behaviour of the quartic monomial potential did not allow us to draw a suitable conclusion on this

regard. Moreover, we found that the resonance is more efficient later in inflation for monomial

potentials, whereas for hilltop models this takes place during the first few e-folds. Furthermore,

we were able to verify that for the two hilltop models we tested, the predicted values for the

considered CMB observables remain compatible with the most recent measurements, even in

situations where both the χ and the φ resonances may be considered efficient; however, this

agreement was not encountered for the two monomial models. The features on the curvature

power spectrum due to the backreaction were also shown to be consistent with current bounds

on their amplitude for all considered models. Hence, although the coexistence of our mechanism

with the standard inflationary paradigm depends on the inflaton potential we select (with the

hilltops displaying the best results), it appears to be plausible, so that our model can be deemed

successful in this regard.

Despite the apparently promising results, this model is not a complete description of this

system and so we may further improve and refine it. For instance, the full computation of the
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effects of the backreaction on the quantum inflaton, including the contribution of the produced

inflatons to the energy density, is due. We may too consider the effect of the “classical back-

reaction” on the value of the tensor-to-scalar ratio, which may either improve or worsen our

results, as well as the effect of the backreaction on the running of the scalar spectral index.

Moreover, although we mentioned its possible existence, we did not compute the GW spectrum

generated by the χ particles [25, 26, 32, 47], whose contribution to the tensor-to-scalar ratio

may allow us to restrict even more our parameter space; in fact, this work is currently undergo-

ing and results are expected soon. We can consider as well the possibility of having χ particle

production during inflation due to a broad resonance instead and evaluate whether this scenario

would ruin inflation or not, as the particle production would surely be more efficient in this case

than in the narrow one. Another possibility is the inclusion of additional interaction terms in

the Lagrangian from Eq. (2.1.9), for example higher-order terms, interactions with other fields

and self-interactions of the χ field, all of which we neglected in our computation; the latter, in

particular, allows us to describe the thermal properties of the χ field, including its thermalisa-

tion (recall that the momentum distribution of the χ particles is anything but thermal). One

can also study the possibility that the particle production during inflation gives rise to a warm

inflation regime [52–55], which would surely be an interesting feature of this mechanism if true.

All of the obtained results may also be tested for other choices of the inflationary potential.

Additionally, it is important to note that the description of the backreaction via the Hartree

approximation is not final. A more rigorous treatment of this, for example more akin to the one

done in Refs. [33, 48, 87], is likely required, since other effects which we did not account for

may be present (for instance, the appearance of non-local terms in the backreacted EoM [33]).

Another interesting line of work would be to try and devise and analyse an analogous mecha-

nism for other types of fields and particles (vector, spinor, ...), and investigate the repercussions

the production of those particles could have for inflation. In particular, it could be of interest to

analyse whether standard cosmology can be fully recovered exclusively through particle produc-

tion during inflation (be it only of scalar particles or of other types as well), or if a post-inflation

reheating period is always required, in which case a review of it is relevant. In whichever case,

though, a thorough investigation of the thermal properties of the produced fields is also due.

Likewise, the decay paths of the produced particles must be investigated in light of the SM; i.e.

a theory akin to the elementary theory of reheating [2, 43, 44] must be devised for the particles

produced during inflation.

We expect to lead some of these advances ourselves, but we also hope that our results can

motivate others to contribute and expand on our work.
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Appendix A

Time derivatives during inflation

In this appendix, we estimate the time dependence of a few quantities related to our mechanism.

For this, we shall consider in particular the derivatives q′

q , γ′

γ and ξ′

ξ , where the primes denote

differentiation with respect to the number of e-folds, Ne, and ξ ≡ πq2

2γ . These quantities thus

represent the e-fold variation of q, γ and ξ per unit of q, γ and ξ, respectively.

Let us start by determining q′

q . From (2.1.31), we have q = Cq

ϵV H2 , where Cq is a constant.

Differentiating with respect to Ne, we get

q′ = −Cq

(
ϵ′V

ϵ2V H
2 + 2 H ′

ϵV H3

)
=⇒ q′

q
= − ϵ̇V

ϵV H
+ 2ϵV , (A.1)

where dNe = Hdt and −ϵV ≈ Ḣ
H2 = −ϵH were used. The latter can be obtained by differentiation

of the slow-roll Friedmann equation (1.2.5a) with respect to time

2HḢ ≈ V,ϕ(ϕ) ϕ̇
3M2

P
≈ − [V,ϕ(ϕ)]2

9M2
PH

=⇒ Ḣ

H2 ≈ − [V,ϕ(ϕ)]2

18M2
PH

4 ≈ −1
2M

2
P

(
V,ϕ(ϕ)
V (ϕ)

)2
= −ϵV , (A.2)

where we also used the slow-roll Klein-Gordon equation (1.2.5b), and where the penultimate

expression was obtained using the Friedmann equation again. We take the opportunity to show

also that ηH ≈ ηV , with ηH defined by Eq. (1.2.7b). Since ϵH ≈ ϵV , we may use the definition

of ϵV from Eq. (1.2.6) and write

ηH ≈ 2ϵV − ϵ′V
2ϵV

= 2ϵV − ϕ′

M2
P

V (ϕ)
V,ϕ(ϕ) (ηV − 2ϵV ) ≈ ηV , (A.3)

where we arrived at the second equality by computing the e-fold derivative and using the defini-

tions from Eq. (1.2.6), while the third equality was obtained by using Eqs. (1.2.5a) and (1.2.5b).
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Returning to the original derivation, we may thus calculate ϵ̇V ≈ ϵ̇H by using directly the

definition of ηH from Eq. (1.2.7b), leading to25

ϵ̇V
ϵV H

= −2 (ηV − 2ϵV ) , (A.4)

where we used the fact that ηH ≈ ηV , so that

q′

q
= 2 (ηV − ϵV ) . (A.5)

It is pertinent to note that, since in most inflationary models (and certainly in the ones

considered in this work) ϵV is strictly increasing during inflation, its growth translating the

transition from the slow-roll regime to the post-inflationary period, a relation between ηV and

ϵV can readily be found by setting ϵ̇V > 0

ηV < 2 ϵV , (A.6)

which should thus be valid for most inflaton potentials.

For γ′

γ , taking into account the definition of this quantity γ = Cγϵ
− 1

2
V , we have

γ′ = −1
2Cγϵ

− 3
2

V ϵ̇V H
−1 =⇒ γ′

γ
= −1

2
ϵ̇V
ϵV H

= ηV − 2ϵV , (A.7)

where Cγ is a constant and using (A.4). From (A.6), we immediately see that γ strictly decreases

during inflation for the majority of inflationary models.

For ξ′

ξ , it’s simple to show that

ξ′

ξ
=

(
πq2

2γ

)′

πq2

2γ

= 2 q
′

q
− γ′

γ
= 3ηV − 2ϵV . (A.8)

Often, these quantities appear in the form f ≡ eα ξ+β q

γδ , whose time derivative is then

f ′

f
= α ξ (3ηV − 2ϵV ) + 2β q (ηV − ϵV ) − δ (ηV − 2ϵV ) . (A.9)

Furthermore, considering (2.3.21), we find

ρ′
χ

ρχ
= 4(ϵV − ηV ) + 2q (ϵV − ηV ) + π

2 ξ (3ηV − 2ϵV ) , (A.10)

25It not difficult to show that the usual definition of ϵV produces the same result.
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such that ρχ may either decrease or increase during inflation. Likewise, considering the Fried-

mann equation (1.2.3), we see that

ρ′
ϕ

ρϕ
= −2ϵV < 0 , (A.11)

from which ρϕ always decreases during inflation.

Since the slow-roll parameters are small during inflation, we see that none of these quantities

should vary considerably in this period.
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Appendix B

Derivation of the Hartree approximation

for the backreaction

In this appendix we go through a brief and simple derivation of the effective equation of motion

for ϕ̄, i.e. the classical and homogeneous part of the inflaton, due to χ (cf. § 2.4.1). This is by no

means a rigorous calculation, but merely serves as an accurate-enough motivation for the Hartree

approximation, i.e. setting χ2 → ⟨χ2⟩ in the action (2.4.3), although similar methods can be

used to obtain a more thorough description of the backreacted system [33, 71, 73, 87, 88]; we will

not concern ourselves with such an analysis here, but some possible paths to follow are briefly

discussed in Chapter 4. In order to compute the effects of χ production on the background

inflaton field, one may resort to the effective action functional approach, established within

the path integral formulation of QFT [18, 66, 69–72]. This functional may be computed by the

method due to Jackiw, which uses a saddle-point evaluation in the path integral of the generating

functional Z[J ], as described in Refs. [18, 66, 69, 87–90], or equivalently by Weinberg’s tadpole

method [73, 87, 91]. We will consider the former.

We again define the action functional for ϕ and χ as in Eq. (2.4.3),

S[ϕ, χ] =
∫
d4x

√
−g Lϕχ , (B.1)

where the Lagrangian is given by Eq. (2.4.2) as

Lϕχ = 1
2∂µϕ∂

µϕ+ 1
2∂µχ∂

µχ− 1
2m

2
χ(ϕ)χ2 − V (ϕ) . (B.2)

Using integration by parts, it is simple to show that
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S[ϕ, χ] = −
∫
d4x

√
−g

[1
2 ϕ□ϕ+ 1

2 χ□χ+ 1
2m

2
χ(ϕ)χ2 + V (ϕ)

]
. (B.3)

where we discarded a surface integral (obtained using a 4-dimensional version of the divergence

theorem) on the assumption that the fields vanish at infinity [18, 66].

We may now define the generating functional of the sources Jϕ and Jχ

Z[Jϕ, Jχ] ≡
∫

DϕDχ ei[S[ϕ,χ]+(Jϕ,ϕ)+(Jχ,χ)] , (B.4)

where (f1, f2) ≡
∫
d4x

√
−g f1(x) f2(x) is the inner product on the spacetime defined by the

metric gµν [88]. In the saddle point approximation, we write the full inflaton field as ϕ = ϕ̄+φ,

as we did before, but we now consider the classical background inflaton ϕ̄ to be a stationary

point of the integral in Eq. (B.4); that is

δ (S[ϕ, χ] + (Jϕ, ϕ) + (Jχ, χ))
δϕ(x)

∣∣∣∣∣
ϕ=ϕ̄
χ=0

= 0 . (B.5)

With this, we Taylor expand S[ϕ, χ] in the exponent of Eq. (B.4) around ϕ = ϕ̄ and to second-

order in φ and χ (we consider the background value of χ to be zero), leading to

S[ϕ, χ] + (Jϕ, ϕ) + (Jχ, χ) = S[ϕ̄, 0] +
∫
d4x

δS[ϕ, χ]
δϕ(x)

∣∣∣∣∣
ϕ=ϕ̄
χ=0

φ(x) +
∫
d4x

δS[ϕ, χ]
δχ(x)

∣∣∣∣∣
ϕ=ϕ̄
χ=0

χ(x)

+ 1
2

∫
d4x

∫
d4y

δ2S[ϕ, χ]
δϕ(x)δϕ(y)

∣∣∣∣∣
ϕ=ϕ̄
χ=0

φ(x)φ(y)

+ 1
2

∫
d4x

∫
d4y

δ2S[ϕ, χ]
δχ(x)δχ(y)

∣∣∣∣∣
ϕ=ϕ̄
χ=0

χ(x)χ(y)

+ (Jϕ, ϕ̄) + (Jϕ, φ) + (Jχ, χ) ,

(B.6)

where we did not include terms with mixed derivatives, as they vanish upon considering the

condition χ = 0. Moreover, we see from Eq. (B.5) that the second and third terms of Eq. (B.6)

cancel the last two, respectively, while the remaining terms, upon computing the second-order

functional derivatives, eventually lead to the following expression for the generating functional
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Z[Jϕ] = ei[S[ϕ̄,0]+(Jϕ,ϕ̄)]
∫

Dφe− 1
2

∫
d4x φ[i√−g(□+V̄ ′′)] φ

∫
Dχ e− 1

2

∫
d4x χ[i√−g(□+m̄2

χ)] χ

= ei[S[ϕ̄,0]+(Jϕ,ϕ̄)] [det
(√

−g
(
□ + V̄ ′′

))]− 1
2
[
det

(√
−g

(
□ + m̄2

χ

))]− 1
2 ,

(B.7)

where we set Dϕ → Dφ; the bars indicate that the functionals and functions are to be evaluated

at the classical, homogeneous inflaton field ϕ̄, and the primes denote derivatives with respect to

that field. Notice that we have removed the source Jχ from the argument of the functional, since

we no longer have such a dependence (at least explicitly). Moreover, to obtain the second line

we used the path integral definition of the functional determinant (see Refs. [18, 66, 88]), which

allowed us to cast our generating functional in a more compact and useful form. Taking into

account the relation detA = eTr ln A and the definitions of the connected generating functional,

W [Jϕ] = −i lnZ[Jϕ], and of the effective action, Γ[ϕ̄] = W [Jϕ] − (Jϕ, ϕ̄), it is simple to see that

[18, 66, 88]

Γ[ϕ̄] = S[ϕ̄, 0] + i

2 Tr ln
(
□ + m̄2

χ

)
+ i

2 Tr ln
(
□ + V̄ ′′

)
, (B.8)

up to an additive constant in ϕ̄; this result is known as the one-loop effective action, due to

it being computable via Feynman diagrams with a single loop [18, 70, 87, 88]. This quantity,

which is a Legendre transformation of the connected generating functional, is itself a functional

of the classical background field ϕ̄, which allows us to obtain its equation of motion taking into

account quantum corrections [18, 66, 70, 87, 88]. Since we are only interested in the correction

due to χ, we may drop the third term in the expression altogether.

The effective equation of motion for ϕ̄ is then obtained via the condition

δΓ[ϕ̄]
δϕ̄(x)

= 0 , (B.9)

resulting in

□xϕ̄+ V̄ ′ + i

2 Try

[
(m̄2

χ)′
(
□y + m̄2

χ

)−1 1√
−g

δ4(x− y)
]

= 0 , (B.10)

which was computed via the limit definition of the functional derivative [18, 66].

Since the propagator of the field χ is defined as i∆χ(x− y) =
(
□y + m̄2

χ

)−1 1√
−g
iδ4(x− y),

we can rewrite the equation as

□xϕ̄+ V̄ ′ + 1
2 Try

[
(m̄2

χ)′i∆χ(x− y)
]

= 0 . (B.11)
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The Hartree approximation can be obtained if we assume that the trace satisfies

Try

[
(m̄2

χ)′i∆χ(x− y)
]

≈ (m̄2
χ)′ Try [i∆χ(x− y)].26 Since the Fourier transform is a unitary

transformation, under which the trace is invariant, we may go to momentum space, where we

compute the trace as a sum (in this case, an integral) of the eigenvalues of the propagator

transform in that space, which are given by [33]

i∆̃χ(kµ) = ia−4

kphys
µ kµ

phys − m̄2
χ

+ 2π ñk

a3 δ(k
phys
µ kµ

phys − m̄2
χ) , (B.12)

where kµ = (k0, k) is the comoving 4-momentum, k̃µ

a ≡ kµ
phys = (k0

phys, kphys) is the physical

4-momentum and kphys
µ kµ

phys = (k0
phys)2 − k2

phys, with k2
phys = |kphys|2. The quantity ñk is just

the comoving occupation number of k-momentum χ particles. We see that two terms appear

to contribute to the propagator, the first term is the CW term [70], corresponding to the usual

vacuum propagator for scalar fields, while the second term corresponds to the excitations of the

χ field from its vacuum state, i.e. to the produced χ particles (notice that if ñk = 0, we are

left with the vacuum propagator only). The expression in Eq. (B.12) can be obtained from the

following definition of the real-space propagator i∆χ(x− x′), which uses the Fourier expansion

of χ̂ from Eq. (2.1.14),

i∆χ(x, x′) = ⟨0|T{χ̂(x) χ̂(x′)} |0⟩

= θ(t− t′)
∫

d3k

(2π)3 χk(t)χ∗
k(t′) eik·(x−x′)

+ θ(t′ − t)
∫

d3k

(2π)3 χk(t′)χ∗
k(t) e−ik·(x−x′) ,

(B.13)

where T is a time-ordering operator and θ(t− t′) is a Heaviside step function [66], and by using

the expansion of the field modes χk(t) in terms of Bogoliubov coefficients (see Eq. (2.4.8)).

Usually, this definition of i∆χ(x, x′) refers to the vacuum propagator; however, the usage of

a Bogoliubov expansion for the mode functions allows us to extend this definition to out-of-

vacuum (i.e. excited) states. We consider that the interval |t − t′| is small enough to allow us

to approximate a(t) ≈ a(t′) and so ωk(t) ≈ ωk(t′), which greatly simplifies the χk(t) expansion;

moreover, we identify ñk = |βk|2 as in § 2.4.1. Using contour integration techniques [66] and the

properties of the Dirac delta function, it is then possible to show that the real-space propagator

can be written as
26In principle, a more rigorous treatment should then require the computation of the full trace from Eq. (B.11).
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i∆χ(x, x′) =
∫

d4k

(2π)4

 ia−4

kphys
µ kµ

phys − m̄2
χ

+ 2π ñk

a3 δ(k
phys
µ kµ

phys − m̄2
χ)

 e−ik·(x−x′)

≡
∫

d4k

(2π)4 i∆̃χ(kµ) e−ik·(x−x′) ,

(B.14)

from where Eq. (B.12) follows directly. Hence, the momentum space trace simply becomes

Trk

[
i∆̃χ(kµ)

]
=
∫

d4k

(2π)4

 ia−4

kphys
µ kµ

phys − m̄2
χ

+ 2π ñk

a3 δ(k
phys
µ kµ

phys − m̄2
χ)

 , (B.15)

where the integration is, as usual, done on the comoving momentum. We readily identify the

same two terms as in Eq. (B.12): the first one is the CW term, and it corresponds to the vacuum

contribution to the trace of propagator; the second term is the contribution of the produced χ

particles to this trace. As was stated in the main text, upon MS renormalisation [55, 74] of

the CW term, we found that its contribution to the trace in Eq. (B.15) is subdominant for

all the inflationary models we considered, with the term containing ñk providing the leading

contribution; hence, the CW term may be neglected. Moreover, we also ignore the vacuum

subtraction coming from the expression ñk = 1
2

ωk

ω0
k
e2µkz − 1

2 , so that we are left only with the

exponential contribution, in which case Eq. (B.15) may be further simplified by performing the

k0 integration (considering that kphys
µ kµ

phys = (k0
phys)2 − k2

phys = (k0
phys)2 − ω2

k + m̄2
χ), ridding it

of the delta function and thus resulting in

Trk

[
i∆̃χ(kµ)

]
= 1
a3

∫
d3k

(2π)3
e2µkz

2ωk
= ⟨χ2⟩ . (B.16)

Equation (B.11) thus becomes

□ϕ̄+ V̄ ′ + 1
2(m̄2

χ)′ ⟨χ2⟩ = 0 , (B.17)

just as we had obtained in Eq. (2.4.6) under the Hartree approximation.
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Appendix C

Approximations

C.1 Variation of Xk(t) = a3/2(t) χk(t)

In this appendix, we shall demonstrate relation (2.3.9) from § 2.3. We start by writing ρk as we

did in (2.3.6)

ρk ≡ 1
2 |χ̇k|2 + k2

2a2 |χk|2 + 1
2m

2
χ|χk|2 . (C.1)

If we use χk(t) = Xk(t) a−3/2(t), we can easily arrive at χ̇k =
(
Ẋk − 3

2HXk

)
a−3/2, where

H = ȧ
a . With this, we can calculate

|χ̇k|2 = a−3
[
|Ẋk|2 + 9

4H
2|Xk|2 − 3H Re(ẊkX

∗
k)
]
. (C.2)

Substituting in (C.1) and using ω2
k = k2

a2 +m2
χ, we get

ρk ≡ a−3

2

[
|Ẋk|2 + ω2

k |Xk|2 + 9
4H

2|Xk|2 − 3H Re(ẊkX
∗
k)
]
. (C.3)

We may use (2.2.6) and estimate ωk ∼ 2H
γ and µk(z) ∼ µmax

k = q
2 for modes near the

resonance band, making

Xk(t) ∝ e−iωkt e
2H
γ

µk(t) t ∼ e
(

−i 2H
γ

+ H
γ

q
)

t ≈ e
−i 2H

γ
t
, (C.4)

where the last approximation is attained by comparing the absolute value of each term inside

the parentheses and by taking q ≪ 1 and γ ≪ 1. This means that Ẋk ∼ −2H
γ Xk, and so
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|Ẋk|2 ∼
(2H
γ

)2
|Xk|2 (C.5a)

ω2
k |Xk|2 ∼

(2H
γ

)2
|Xk|2 (C.5b)

3H Re(ẊkX
∗
k) ∼ −3H 2H

γ
|χk|2 = −6H2

γ
|χk|2 , (C.5c)

such that |Ẋk|2 and ω2
k |Xk|2 dominate over 9

4H
2|Xk|2 and 3H Re(ẊkX

∗
k). Hence,

ρk ≈ a−3

2
(
|Ẋk|2 + ω2

k |Xk|2
)
. (C.6)

As in Eq. (2.2.3), we define the comoving energy of the k modes, ρ̃k, as

ρ̃k ≡ 1
2
(
|Ẋk|2 + ω2

k |Xk|2
)
, (C.7)

and the comoving particle number, ñk, as

ρ̃k ≡ ωk

(
ñk + 1

2

)
⇐⇒ ñk ≡ ρ̃k

ωk
− 1

2 , (C.8)

which of course allows us to write

ρk ≈ ρ̃k

a3 (C.9)

and, using ρk ≡ ωk

(
nk + 1

2

)
,

nk + 1
2 ≈ 1

a3

(
ñk + 1

2

)
. (C.10)

C.2 Backreacted potential and equation of motion

In this appendix, we demonstrate some relations used or mentioned when discussing the back-

reaction on the classical inflaton, in § 2.4.1.

We start by showing that
∣∣∣∆V

V

∣∣∣
max

≪
∣∣∣∆V ′

V ′

∣∣∣
max

≪
∣∣∣∆V ′′

V ′′

∣∣∣
max

, where ∆V (n) ≡ V (n) − V (n),

with V given by Eq. (2.4.15), and where V is written using the uncorrected slow-roll Friedmann

equation (1.2.5a). The primes denote derivatives with respect to the uncorrected classical infla-

ton, with which we will work in this appendix. We denote this field as ϕ0 and the uncorrected

Hubble parameter as H. From the definitions of ϵV and ηV in Eq. (1.2.6), we readily find
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|V ′| =
√

2ϵV
MP

V (C.11a)

|V ′′| = |ηV |
M2

P
V . (C.11b)

Moreover, since we are assuming Λ4 to vary adiabatically, we neglect its derivatives (as per the

discussion following Eq. (2.4.14)), which leads to

∣∣∣∆V (n)
∣∣∣
max

≈
( 2
M

)n

|∆V |max , (C.12)

from where

∣∣∣∣∆V ′

V ′

∣∣∣∣
max

≈
√

2
ϵV

MP
M

∣∣∣∣∆VV
∣∣∣∣
max

≫
∣∣∣∣∆VV

∣∣∣∣
max

(C.13a)

∣∣∣∣∆V ′′

V ′′

∣∣∣∣
max

≈ 4
|ηV |

(
MP
M

)2 ∣∣∣∣∆VV
∣∣∣∣
max

≫
∣∣∣∣∆V ′

V ′

∣∣∣∣
max

≫
∣∣∣∣∆VV

∣∣∣∣
max

, (C.13b)

assuming that M < MP (which is indeed verified, cf. in particular § 3.1), proving our claim.

Next, we briefly show that
∣∣∣V ′

V ϕ1
∣∣∣ ≪ 1 and

∣∣Λ4∣∣ ≪
∣∣∣M2 V ′

∣∣∣. For the former, using the above

relations, it is simple to see that

∣∣∣∣V ′

V
ϕ1

∣∣∣∣ ⩽ |V ′| + |∆V ′|
|V |

|ϕ1| ⩽

[√
2ϵV
MP

+
( 2
M

) ∣∣∣∣∆VV
∣∣∣∣
max

]
|ϕ1| ≪ 1 , (C.14)

since |ϕ1| ≪ M
2 and

∣∣∣∆V
V

∣∣∣
max

≪ 1, as we know from §§ 2.4.1 and 3.3. The latter relation is not

as straightforward to prove; considering the quantity

∣∣∣∣∣Λ4

V ′

∣∣∣∣∣ = MP√
2ϵV

∣∣∣∣∆VV
∣∣∣∣
max

, (C.15)

it is not immediately clear whether it is smaller than M
2 . However, we show in § 3.3 that for

all tested inflationary potentials
∣∣∣∆V

V

∣∣∣
max

∼ 10−5, in agreement with the bounds encountered by

Refs. [29, 76, 77] (the most stringent one being
∣∣∣∆V

V

∣∣∣
max

≲ 3 × 10−5, from Ref. [76]), whereas

ϵV is usually greater than O(10−3) during inflation. Thus,

∣∣∣∣∣Λ4

V ′

∣∣∣∣∣ ⪅ 10−4MP ≲
M

2 , (C.16)
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considering the typical ranges for M (cf. § 3.3).

Lastly, we show that |A M
2 | ≪ 1, |B M2

4 | ≪ 1 and A2 ≫ |B|, with A = − 3
MP

1√
2ϵV∗

and

B = 3
2M2

P

(
ηV∗
ϵV∗

− 1
)
. Starting with the first relation, we have

∣∣∣∣A M

2

∣∣∣∣ = 3
2
√

2
1

√
ϵV∗

M

MP
≪ 1 , (C.17)

given that ϵV∗ ≳ 10−3 for most inflationary models and M
MP

≲ 10−3. For the second expression,

we find

∣∣∣∣∣B M2

4

∣∣∣∣∣ = 3
8

∣∣∣∣ηV∗

ϵV∗
− 1

∣∣∣∣ ( M

MP

)2
≪ 1 , (C.18)

since for the models we are considering
∣∣∣ηV∗

ϵV∗
− 1

∣∣∣ ≲ 103 (cf. § 3.3 and references therein). Lastly,

for the third expression we obtain

A2 = 9
2

1
M2

P

1
ϵV∗

≫ 9
2

1
M2

P

1
ϵV∗

|ηV∗ − ϵV∗ | ∼ |B| . (C.19)
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