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Abstract

This thesis explores the construction and phenomenology of models based on
domain-wall branes in five and six dimensions. In these models, the extra
dimensions are infinite. In 5D, we explore how a model with a single domain-
wall brane can account for the fermion mass spectra. In 6D, we construct
a model with intersecting domain-wall branes and show how we can localize
scalars, fermions and gauge bosons.

We first analyze the fermion mass hierarchy problem as well as the prob-
lems of generating quark and lepton mixing in the context of the 4+1-
dimensional SU(5) domain-wall brane model first proposed by Davies, George
and Volkas. We exploit the split-fermion mechanism which naturally arises
in the model to show that the fermion mass hierarchy as well as the Cabibbo-
Kobayashi-Maskawa (CKM) mixing angles can be accounted for naturally.
We later suggest that the same mechanism cannot be used to generate ac-
ceptable lepton mixing.

We then modify the original SU(5) model by including a discrete A4 flavor
symmetry. The SM fermions and scalars are then assigned to appropriate
SU(5) x Ay representations and we give an example parameter choice for
which the fermion mass hierarchy and the CKM mixing angles are generated
by the split fermion mechanism while realistic, large lepton mixing angles
are produced from the special properties of A;. We show that the splitting
of scalars in the extra dimension can solve the vacuum alignment problem
inherent to most models with discrete flavor symmetries.

In the second half of the thesis, we deal with models in six dimensions.
We show that a Zy x Zs-invariant scalar field theory with four scalar fields
can generate two intersecting domain walls, with two of the fields condensing
in the interiors of the walls to form ‘lumps’. We show that for a special
parameter choice, one can obtain analytic solutions. We also discuss how the
same mechanisms used to localize fermions and scalars in five-dimensional
models can be used to localize these fields to the domain-wall intersection.

Lastly, we deal with how to trap gauge fields to the domain-wall inter-
section in the previous six-dimensional model. We achieve this by giving
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the fields that form ‘lumps’ gauge charges, so that a confining, non-Abelian
gauge group G is spontaneously broken to subgroups H; and Hs, localiz-
ing the associated gauge fields to the respective walls by the Dvali-Shifman
mechanism. On the intersection there is a further breaking to H; N H, and
we then outline the conditions under which gauge fields are then localized
to the intersection. We show that this mechanism can localize the Standard
Model gauge fields starting from an SU(7) theory.

We thus find that the domain-wall brane model-building framework rep-
resents an interesting approach to reproducing the essential components of
the Standard Model. We also find that this framework is very flexible, with
the possibility to extend it with additional extra dimensions, as well as with
larger gauge groups as previously shown.
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Preface

Chapter 2 is based on the publication [I] by Callen and Volkas which ap-
peared in Physical Review D. The contributions from the author include all
the calculations. Some of the work in Chapter 2 contributed to the author’s
Honours thesis; this includes the mass fitting for the one-generation case, the
general way to split the fermion profiles to get hierarchical fermion masses,
and the generation of Majorana masses for the neutrinos in the model. The
analysis for the three-generation case without mixing as well as the analysis
for fitting the Cabibbo angle in the two-generation case is new work. Please
note that the analysis in which it is shown that the profiles for the Higgs
boson and its Kaluza-Klein modes satisfy Schrodinger’s equation with a hy-
perbolic Scarf potential is original work and initially appeared in [I], but in
this thesis we give that analysis in the introduction for the convenience of
the reader and to avoid repetition.

Chapter 3 is based on the publication [2] which appeared in Physical
Review D. The idea of adding a discrete A4 flavor symmetry was initially
proposed by Volkas and the author chose the SU(5) x A, representations
and completed all the subsequent calculations.

Chapter 4 is based on the publication [3] which appeared in Physical Re-
view D. Although somewhat similar and inspired from the work in Nadine
Pesor’s Honours thesis [4], the model with four fields that the author con-
structed and treated in the above paper is different and the nature of the
intersecting domain-wall solution is different. The author constructed an an-
alytic, intersecting domain-wall solution, showed that scalars and fermions
could be localized to the particular solution and calculated their profiles.
Volkas suggested the importance of checking whether solutions for which the
angle of intersection between the domain walls is less than ninety degrees are
energy degenerate with the desired perpendicular solution, and we address
this in Chapter 4.
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Chapter 5 is based on the publication [5] which appeared in Physical
Review D. It is a completely original idea proposed by the author and the
author also constructed the various toy models based on the gauge group
SU(7), some of which lead to a Standard Model gauge group localized to the
domain-wall intersection.
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Chapter 1

Introduction

Extra dimensions of spacetime have been of interest to physics since the
original models of Kaluza [6] and Klein[7]. These models proposed that at
short distances, there existed a tiny, circular fifth dimension at each point of
four-dimensional spacetime in which gravity propagates. Upon dimensional
reduction, five-dimensional (5D) general relativity then reduces to ordinary
4D general relativity together with electromagnetism, yielding an early ex-
ample of unification of these two important theories. Furthermore, adding
additional dimensions with non-trivial compact topologies can yield 4D gen-
eral relativity along with a non-Abelian Yang-Mills gauge theory [8], O]; for
example, adding three extra dimensions with the topology of a 3-sphere yields
an SU(2) gauge group in the dimensionally reduced theory.

String theory has extensively used the Kaluza-Klein idea to achieve com-
pactification of the extra dimensions. In string theory, particles are proposed
to be extended one-dimensional objects called strings at high energies. Gen-
erally, there exist anomalies in such a theory and to cancel them out requires
the addition of six new dimensions compactified into a Calabi-Yau manifold
[10]. Strings can be closed, where they form closed loops, or open where
two ends of a string are detached. In 1989, Dai, Leigh and Polchinski [11]
discovered that ends of open strings in general had to end on dynamical ob-
jects called D-branes, which can be thought of as special types of p-branes
which are extended p-dimensional objects. Polchinski further elaborated that
D-branes were in fact fundamental objects in string theory [12].

D-branes present an alternative method of compactification to the Kaluza-
Klein idea. This idea of having our visible universe confined to such an object
(in many cases, a 3-brane) is known as the ‘braneworld” scenario. Embed-
ding the Standard Model in higher dimensions in this way can solve many
problems. In the original large extra dimensional model of Arkani-Hamed,
Dimopoulos and Dvali [I3], the Standard Model fields are confined to a 3-

1



brane embedded in a spacetime with a number of compact extra dimen-
sions of radius R while gravity is allowed to propagate in all the dimensions.
They found that for two or more extra dimensions that the ordinary four-
dimensional Planck scale of order 10 GeV could be reproduced even with an
extra-dimensional Planck scale as low as 1 TeV provided R < 1mm, solving
the Hierarchy problem.

Later, Randall and Sundrum showed that a model, the Randall-Sundrum
type 1 model (RS1), with two branes situated at the two ends of a slice of
five-dimensional Anti-de Sitter space (AdSs) could also solve the Hierarchy
problem [I4]. In this scenario a positive tension brane, the UV brane, lo-
calizes gravity while the Standard Model fields are confined to a negative
tension brane, the IR brane, at the other end where gravity is exponentially
suppressed by a warp factor. Later, it was shown that if the IR brane was
taken to infinity and the SM fields localized to the UV brane that one obtains
a new model, the Randall-Sundrum type 2 model (RS2) [15], for which the
extra-dimension is in fact infinite!

Large extra-dimensional models as well as the Randall-Sundrum models
can solve some problems in the quark and lepton sectors. It was found that
by allowing fermions to propagate into the bulk that the masses of the SM
fermions, which spans twelve orders of magnitude, could be generated nat-
urally [16, 17, 18]. Arkani-Hamed and Schmaltz proposed the split fermion
mechanism [19] as a way to solve the fermion mass hierarchy problem in
the ADD and RS2 models. In this scenario, fermions are given different 5D
bulk masses which shift their localization centers and lead to them being
split. Upon dimensional reduction, Yukawa coupling constants depend on
overlap integrals of the fermion profiles which are exponentially sensitive to
the bulk masses and so in this way, not only can the fermion mass hierar-
chy be solved, but proton decay in Grand Unified Theories (GUTSs) can be
suppressed naturally.

At this point, it is worth considering what types of branes we can use
in the braneworld scenario. In all the above mentioned braneworld mod-
els, the branes used are introduced into the theory fundamentally by hand,
breaking translational invariance along the extra dimension explicitly. This
motivates the question of whether a brane may be generated dynamically in-
stead, breaking translational invariance spontaneously. A natural candidate
for a dynamically generated brane is a topological soliton.

There are many different kinds of topological solitons. They are stable
solitary wave solutions to non-linear equations of scalar field theories which
belong to non-trivial homotopy classes of mappings between a subspace (usu-
ally a boundary) of spacetime to the moduli space of vacua of the theory.
The simplest type is a domain wall which maps the endpoints of spatial in-
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finity along one dimension to two distinct, degenerate vacua of a scalar field.
Strings are non-trivial mappings of the subset of spacetime with the topology
of a circle to the moduli space; that is they belong to non-trivial homotopy
classes of 71 (M), where M denotes the moduli space. Further, monopoles
and instantons belong to non-trivial classes of mo (M) and 73( M) respectively.

Naturally, one wishes to first consider domain walls; as prototype branes
they are the simplest type of topological defect. Using a domain wall in this
way is in fact a very old idea first proposed by Rubakov and Shaposhnikov
[20]. To reproduce a 3+1D theory on the domain wall it is necessary to lo-
calize scalars, fermions, gauge fields and gravity onto the wall dynamically.
Fermions are localized by Yukawa coupling them to the background scalar
field forming the domain wall [21]. Scalars are similarly localized through
quartic interactions. Gravity can also be successfully localized [22]. Localiz-
ing gauge bosons is notoriously difficult; the only plausible way conjectured
to work is the Dvali-Shifman mechanism, whereby a non-Abelian gauge group
G which is respected and confining in the bulk is broken to a subgroup H on
the domain wall by another scalar field, thereby localizing the gauge fields of
H by a dual Meissner effect.

Davies, George and Volkas put forward a model combining all of the
physics described in the above paragraph based on the grand unification
group SU(5) in 441D spacetime [23]. In this model, a singlet scalar field
generates the domain-wall kink while the component proportional to hyper-
charge of an adjoint scalar field attains a lump-like profile to break SU(5) to
the Standard Model, thus localizing SM gauge fields by the Dvali-Shifman
mechanism. Quarks and leptons are embedded in SU(5) multiplets in the
usual way and when coupled to both background scalar fields one finds that
a split fermion mechanism arises naturally in the model. A Higgs doublet
(embedded in an SU(5) quintet) is localized to the wall and a tachyonic
mass generated for it so that electroweak symmetry is broken on the wall.
Fermions are then Yukawa coupled to the Higgs in the usual way.

In this thesis, we examine the phenomenology and construction of several
domain-wall brane models in five and six dimensions. In Chapter [2| we first
analyze the problem of generating the fermion mass hierarchy, quark mixing
and lepton mixing naturally via the split fermion mechanism in the model
proposed in Ref. [23]. We show that the fermion mass hierarchy problem can
be solved along with generation of the Cabibbo angle, while sufficient lepton
mixing cannot be generated by this mechanism (while maintaining the other
desirable phenomenology). In Chapter , we analyze a modified version of the
SU(5) model in which a discrete A4 flavor symmetry is added and scalars and
fermions are assigned appropriate A, representations. We show that lepton
mixing can be generated in this model while also generating the fermion
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mass hierarchy and quark mixing. We show that a splitting mechanism for
scalars can also resolve the vacuum alignment problem so common in models
with discrete flavor symmetries. In Chapter 4] we look at constructing a
general model in six-dimensional flat spacetime in which a 34+1D-universe is
constructed on the intersection of two perpendicular domain walls. We find
analytic solutions for a very special parameter choice and we calculate the
profiles of the Kaluza-Klein spectrum for fermions and scalars localized to
the wall. In Chapter [3, we propose a realization of the Clash-of-Symmetries
mechanism [24, 25] whereby a gauge group G is broken to two different
subgroups H and H' on each wall, which in turn induces a further breaking
to HNH' on the intersection of the domain walls. Chapter[6]is our conclusion.

Before we initiate our discussion of the works of this thesis we shall discuss
the necessary background knowledge in greater detail in this introductory
chapter. In Section [I.I], we elaborate our discussion of Kaluza-Klein theory,
extra dimensions, string theory and branes. In Section we discuss the
ADD model. Section [L.3 discusses further the Randall-Sundrum models. We
then discuss topological defects in Section In Section [I.5, we introduce
domain-wall brane models of a single, infinite extra dimension, discussing
all the mechanisms for the localization of fermions, scalars, gauge bosons as
well as gravity, and in Section we discuss how all the essential compo-
nents of the framework are put together to yield the 4+1-dimensional SU(5)
domain-wall brane model proposed by Davies, George and Volkas. In Section
[1.7, we discuss the fermion mass hierarchy problem. In Section [1.8 we give
an overview of neutrino masses and the see-saw mechanism and, in Section
1.9] we review quark and lepton mixing. In Section gives a review of
discrete flavor symmetries. Section gives a review of extra-dimensional
approaches generating the fermion mass hierarchy as well as quark and lepton
mixing, including approaches which combine extra dimensions with discrete
flavor symmetries. Section discusses some models generating two per-
pendicular domain walls, some with nested domain walls and others with
intersecting domain walls. In Section [I.13] we give a full, detailed outline for
the arguments of this thesis.

1.1 Extra Dimensions and Branes

1.1.1 Kaluza-Klein Theory

Unification of the fundamental forces of nature has always been an ideal that
has motivated theoretical physicists. By 1915, with Einstein’s construction
of general relativity, there were two theories which seemed to describe all that
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was known about the laws of physics. Einstein’s theory described gravitation
as a curvature of spacetime. Maxwell’s equations described the behavior of
electric and magnetic fields in the presence of electric charges and currents.
As Maxwell’s equations had led to a unified description of electricity and
magnetism, it was only natural to speculate on a possible description unifying
electromagnetism and general relativity.

Nordstrom was the first to notice that the electromagnetic field strength
tensor of electromagnetism in its formulation in special relativity and the
four-vector representing gravity in scalar gravity could be embedded into the
field strength tensor of a five-dimensional electromagnetic theory [26] 27, 28].
Ordinary four-dimensional electromagnetism along with gravity as repre-
sented by Poisson’s equation are reproduced when the constraint that the
derivative of all components of the five-component gauge field with respect
to the fifth coordinate vanish. Kaluza and Klein did a similar embedding
within the context of 5D general relativity [0, [7]. The two of them inde-
pendently proposed that the fifth dimension was compactified on a circle so
that the underlying spacetime manifold was M, x S, where M, denotes 4D
Minkowski space. They recognized that the 5D metric would contain a field
transforming as a vector under 4D Lorentz transformations as well as an ad-
ditional scalar called the dilaton. In quoting the basic results of Kaluza-Klein
theory, we follow closely the treatise given by Bailin and Love [8]. Another
useful overview is given by Duff [9].

In five dimensions, we may write the metric in the form

(g (,0) — A (z,0) A, (2,0)D(2,0) LA, (z,0)D(z,0)
GMN@aﬁ-—(g 52(%eﬁxge> " —d(x,0) )‘
(1.1)

Here, = denotes the usual coordinates of My and 0 < 6 = y/R < 2,
where y is the fifth coordinate and R is the compactification radius of the fifth
dimension. Also, k? = 167G with G being Newton’s constant of gravitation.
Local transformations of the 6 coordinate of the form

00 =0+ —e(x), (1.2)
R
yield, working from the standard general coordinate transformations
0z'F 02’
Gun =Gpog— = 1.3

the following transformation for the field A,

Ay — A=A, +0ue. (1.4)
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This transformation is the usual gauge transformation of an Abelian gauge

field. Hence, gauge invariance is realized as a spacetime symmetry in this

theory as one might suspect, as a subset of general coordinate invariance.
We start from the five-dimensional Einstein action

1
167TG5

S5D = — /d5l’|d€t(GMN)|1/2R5 (15)
where we denote (G5 as the five-dimensional Newton’s constant and R as
the five-dimensional Ricci scalar. Noting that in this coordinate system, the
ground state metric is just the flat metric

ds® = ndatda” — R*d6?, (1.6)

if we suppress the dynamics of the dilaton field by using its ground state value
® = R?, we can show that the effective action describing solely the gravita-
tional and vector sectors yields 4D general relativity and electromagnetism.
This effective action is

2TR
_ daldet(DY2R, —
g [ daldet(o) 2R,

167G 27 R
4 167TG5

/ dhx\det(g)[ /2 o ™. (1.7)

This yields the correct actions for 4D general relativity and electromagnetism
if we identify the usual 4D Newton constant G with the 5D one G5 as
Gs
G=—-. 1.8
2R (18)
If we consider a 5D massless scalar field W(z, ), given that the modes
of this field propagating through the circular extra dimension must satisfy
periodic boundary conditions, one can try expanding ¥ as

V(. 0) =Y e hp(x) =Y ™ (2), (1.9)
nez nez

where n is an index running over the set of integers Z. Substituting this into
the 5D Klein-Gordon equation

2 1 d?
Osp¥(z,y) = [Oap — d—yQ}‘I’(-’Ea?J) = [Oup — ﬁﬁ]‘l’(%@% (1.10)

one finds that the above equation reduces to a set of 4D Klein-Gordon equa-
tions for the 4D modes ¢, ()

[0+ m2 ], (z) =0, (1.11)
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where

2
2 n

n ﬁ

Finally, one notes by inspection that the general coordinate transforma-
tion in Eq.[I.2] which corresponds to the usual Abelian gauge transformation,
requires that the charges ¢, of the 4D modes 9, (x) are given as

m (1.12)

nK
=~ (1.13)
The above two results regarding the masses and electric charges of the
resultant 4D modes derived from the massless 5D scalar field present some
obvious problems for the Kaluza-Klein theory for unifying electromagnetism
and general relativity. Firstly, the modes with electric charges are the modes
with n # 0. This means that we cannot have the zero mode as a particle
with the same charge as an electron, and if we included a fermionic field we
could not use the analogous mode as our candidate electron. Secondly, if we
suppose that the quantized charges of the massive modes are separated by
gaps of order the electron charge e, then this implies due to Eq. that
the square of the radius of the extra dimension is of order
R /<;_2 _ 256G

> R (1.14)

from which one can deduce that R is of order the Planck scale. So not only
are all charged particles massive, if they have charges of order the electron
charge they have masses of order the Planck mass. This is obviously phe-
nomenologically disallowed.

The above treatment of a 5D massless scalar field in the presence of grav-
ity in the spacetime with the topology proposed by Kaluza and Klein, as
well as the reduction of the original 5D Einstein-Hilbert action to the 4D
Einstein-Hilbert action plus the 4D action for the free electromagnetic field
are important examples of dimensional reduction. In most extra-dimensional
theories, we are ultimately interested in the physics at low energies and long
distances. In such an approach based on effective field theory, one normally
describes 5D fields as a tower of 4D modes, each with a characteristic profile
depending solely on the extra-dimensional coordinate(s). The phase factors
dependent on € (or y) in the expansion of ¥ are examples of extra-dimensional
profiles. These profiles are rather like wavefunctions in that they tell you
where a particle belonging to a particular mode is likely to be found in the
extra dimension if you could measure the extra-dimensional coordinate. Fur-
thermore, the effective coupling constants of non-trivial interactions amongst
modes of different fields resulting from an initial interaction of the 5D fields
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will depend on overlap integrals of the products of these profiles. In effect,
what we are doing when we do this is averaging the physics in the hidden
dimension(s) to give the relevant, effective quantities (coupling constants,
masses, etc...) in the 4D low energy effective field theory.

1.1.2 String Theory and Branes

String theory is currently the most popular approach to an acceptable, renor-
malizable unification of general relativity with quantum theory and the strong
and electroweak interactions of the Standard Model. It traces its origins to
work by Veneziano and was considered as an alternative approach to Quan-
tum Chromodynamics (QCD) for explaining the particle zoo of hadrons and
mesons that appeared at particle colliders in the 1960’s, an application of
string theory known as the dual resonance model. In string theory, at short
distances fundamental particles are really not the point particles they are
treated as in quantum field theory but rather tiny, vibrating, one-dimensional
extended objects known as strings. Strings can be either closed, like circular
elastic bands, or open, where there are two ends which are not connected,
like a string on a guitar.

Eventually, it was realized in the mid-1970’s that QCD was the correct
theory describing the strong interaction and that string theory had a number
of theoretical and phenomenological problems. The first was that the dual
resonance model first proposed by Veneziano contained a tachyon. Secondly,
the theory was generally anomalous. In the original bosonic string theory,
it was found that the theory was anomaly free and consistent only when
spacetime had the critical number of dimensions, which turned out to be 26.

To introduce fermions in string theory, it is necessary to introduce su-
persymmetry and formulate the theory in terms of superstrings rather than
bosonic strings. For any supersymmetric theory containing more than 32
supercharges, any supersymmetric multiplet is guaranteed to contain parti-
cles with spins higher than two, whose actions are very difficult to formulate
consistently. Supersymmetry with 32 supercharges corresponds to N = 8
supersymmetry in four dimensions and to minimal N = 1 supersymmetry in
eleven dimensions. Since the dimensionality of a Dirac spinor has more than
32 components in any spacetime with more than eleven dimensions, the max-
imum dimensionality that could be considered for a supersymmetric string
theory was eleven. In 1984, Michael Green and John Schwarz showed that
the set of gauge and gravitational anomalies exactly cancelled in a particular
string theory known as Type I superstring theory in ten dimensions with
either an SO(32) or Eg x Eg gauge group [10]. They not only showed that
the critical dimension for a theory based on superstrings was ten, but that
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the choice of gauge group was restricted to the two previously mentioned
groups.

It was initially thought that strings were the only fundamental objects in
string theory. However, when one looks a bit more carefully at the Nambu-
Goto action for open strings, one finds that for the action to be consistent
there must be some boundary conditions imposed on the ends of the open
strings. For instance, let’s look at the action for an open bosonic string. The
action, following [29, [30], in conformal gauge is given by

S = —Z/ dodT0, X" 0, X, (1.15)
2 Ju

where M denotes the manifold of the string parametrized by a temporal
coordinate 7 and spatial coordinate 0 < ¢ < m, T is the string tension,
the lower case Roman index a denotes world-sheet indices representing 7
and o, the lower case Greek index p denotes spacetime indices and X*(7, o)
represents the spacetime coordinate of the point of the string parametrized
by (1,0). By performing the variation X# — X* 4+ §X*#, one finds that the
variation in the action after integrating by parts is

8 = T / dodroX*0OX, + T / do6X"0,X,, (1.16)
M oM

where the 0, denotes the derivative normal to the boundary of the string
OM . Both terms in the above variation must vanish. The first term vanishing
yields the wave equation for a string. For the second term, which represents
a term on the boundary of the open string, to vanish it must be necessary
that

0, X" =0, (1.17)

This is a Neumann boundary condition, and it is the only condition which
preserves Poincaré invariance. Since the Dirichlet condition where the string
coordinate X* is constant on the boundary also satisfies the above condi-
tion, one could also consider imposing Dirichlet boundary conditions instead.
Unlike the Neumann boundary condition, X*# = constant explicitly breaks
Poincaré invariance. Hence, for much of String Theory’s history, before 1989,
Dirichlet boundary conditions were not considered.

However, there is an alternative interpretation. One could interpret the
spaces defined by the Dirichlet condition X* = constant as extended objects
on which open strings end. In 1989, Dai, Leigh and Polchinski [IT] found that
under a T-duality transformation, a theory containing open oriented strings
satisfying the Neumann condition plus closed oriented strings was actually
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D-brane 1 D-brane 2

Figure 1.1: Open strings beginning and ending on D-branes. Strings be-
ginning on one D-brane and ending on another will always be massive if
the branes are separated by a non-zero distance. (This figure was originally
used in the review article “Gauge/String Duality, Hot QCD and Heavy Ion
Collisions” by Jorge Casalderrey-Solana, Hong Liu, David Mateos, Krishna
Rajagopal, and Urs Achim Wiedemann (Reference: CERN-PH-TH-2010-316,
MIT-CTP-4198, ICCUB-10-202).)

dual to another theory with open strings satisfying Dirichlet boundary con-
ditions. Furthermore, they showed that the hyperplane on which these open
strings ended coupled to closed strings in the dual theory. This showed, since
T-duality is an essential feature of string theory, that the existence of these
hyperplanes suggested by imposing Dirichlet boundary conditions on open
strings was unavoidable and furthermore that these hyperplanes were in fact
dynamical objects. This new type of object was termed a Dirichlet-brane or
D-brane.

D-branes belong to a general class of objects called p-branes. A p-brane is
a higher dimensional generalization of a string which extends in p dimensions
and a p-brane which is also a D-brane is also known as a Dp-brane. A DO-
brane is just a point particle, a D1-brane is a string, a D2-brane is a two-
dimensional membrane and one can have D3-branes, D4-branes and so on
up to p =9 in 10-dimensional string theory. The dynamics of open strings
which begin and end on D-branes are localized to those same D-branes. A
graph of this is shown in Fig. . Furthermore [I1], 30], it turns out that
on a single D-brane there always exists a massless state corresponding to a
string with both ends terminating on the same D-brane and this massless
mode corresponds to a photon of a U(1) gauge theory localized on the D-
brane. Hence, a D-brane is a natural candidate for the localization of fields
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and gauge dynamics.

1.2 Large Extra Dimensions and The ADD
Model

Supersymmetry is a necessary part of string theory since it is needed to
introduce fermions into the theory. However, for supersymmetry to be a
part of nature it is necessary that it is broken at some energy scale. A big
problem with string theory was the breaking mechanism for space-time su-
persymmetry (that is, supersymmetry of the full higher dimensional space in
which strings and branes propagate). Naturally, with the extra-dimensions
compactified at the Planck scale, the scale of supersymmetry breaking is
typically of the order the Planck scale, which is a problem if one insists
that supersymmetry solves the Hierarchy problem since to do this the su-
persymmetry breaking must happen at the electroweak scale. In Ref. [31],
Antoniadis proposed a solution to this problem. He considered a model with
a large, compact extra dimension of the order of a few inverse TeV (or TeV ™)
and argued that it was consistent with perturbative string theory.

With D-branes now considered to be interesting dynamical objects prop-
agating in a higher dimensional space on which gauge fields and matter can
be localized, it was natural to consider whether the physics of our 3+1-
dimensional universe could be reproduced on a D3-brane. When one intro-
duces extra dimensions, gravity must necessarily propagate in all dimensions.
In light of the result of Ref. [31], where the scale of supersymmetry breaking
was reduced from the Planck scale by making an extra dimension of order
TeV~!, one can naturally wonder if the Standard Model fields could be lo-
calized to a D3-brane propagating in a higher dimensional space in which
the compact extra dimensions are large, rather than of the order the Planck
scale, so that gravity is diluted in these extra dimensions to the extent that
it becomes naturally as weak as it appears in comparison to the other funda-
mental forces of nature. This is precisely what Arkani-Hamed, Dimopoulos
and Dvali proposed and they showed that this was an alternative solution to
the Hierarchy problem [32]. This model is known as the ADD model (after
the authors).

In the ADD model [32], spacetime is taken to be (44n)-dimensional with
the topology of My xT,, where M, is the usual 3+1-dimensional Minkowskian
manifold and 7,, is some compact manifold of dimension n of typical length R
and volume R". The SM fields are taken to be localized to 3+1D submanifold
while gravity propagates in all dimensions. In this model, the 4D Planck mass
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Mpy, is not the fundamental scale of gravity in the theory but rather that
role is played by the (4+n)-dimensional Planck mass Mpj44r). The authors
argued that for two test masses m; and ms placed within a radius r < R
that the effective gravitational potential between the masses is

mimeo
~ M H2pPi(atn) pntl’

V(r) (r < R), (1.18)
since by Gauss’s law the volume containing these masses will be some (4+4n)-
dimensional subspace of radius r. However, if the masses are placed at a
distance much larger than R, then the volume enclosing the volume of my,
for example, will have fully enclosed the portion of 7T, between m; and ms
and thus can only extend further along the non-compact dimensions, leading
to a gravitational potential of the form
mqme 1

V(T> ~ M T2Pian) R ;’ (T > R> (1'19>

Arkani-Hamed, Dimopoulos and Dvali used the gravitational potential in
these two limits to argue that the effective 4D Planck mass reproduced on
the 4D-submanifold where the Standard Model fields reside is related to the
extra-dimensional Planck mass and the extra-dimensional scale R as

Mg, ~ MG, R™ (1.20)

If one wishes to use the model to solve the Hierarchy problem, then one re-
quires that the extra-dimensional Planck mass is of the order the electroweak
scale mgy . If we demand that this is so, then R must be of order

1TeV 142

30
R~ 10" em x (
mew

(1.21)

For a single extra dimension, R is of the order 10*3cm, and thus the extra
dimension is roughly the size of the solar system and clearly in conflict with
experiment. However, for the case n = 2, one finds that R is of the order
of Imm! At the time, this did not conflict with experiment. This implied
that models with a brane-localized Standard Model embedded in a higher
dimensional universe, which not only evaded the current experimental limits
but could also be feasibly tested in the future, could be constructed. This is
not the case in String Theory for which the extra-dimensional behaviour is
only apparent at Planckian energies. This naturally led to other approaches
for which the extra-dimensional physics could become apparent at low energy
scales. The Randall-Sundrum Type I model (RS1) also resolves the Hierarchy
problem as well as containing a KK spectrum for which the typical mass gap
between the modes is of the order of a TeV. We discuss this model as well as
the RS2 model in the next section.
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1.3 The Randall-Sundrum Models

Randall and Sundrum proposed an alternative to the ADD model which
employed a higher dimensional spacetime with non-factorizable geometry
[14]. The ADD model resolved the hierarchy between the Planck scale and
the electroweak scale at the cost of introducing a new one, namely that
between the electroweak scale and the compactification scale. Furthermore,
generically there would be Kaluza-Klein modes that would be excited at
very low energies, since the compactification scale is much lower than the
electroweak scale. Randall and Sundrum were able to get around these issues
with the construction of a five-dimensional model in a slice of Anti-de Sitter
space.

In the Randall-Sundrum type I model (RS1), the fifth dimension para-
metrized by the coordinate ¢ is actually taken to have the geometry of the
orbifold S'/Z, where (x, —¢) is identified with (z,¢), where z denotes the
ordinary 3+1D coordinates z#. This orbifold has two fixed points at ¢ = 0
and ¢ = m. These fixed points are identified with the positions of two 3-
branes: the UV brane at ¢ = 0 and the IR brane at ¢ = 7. In the RS1
model, the Standard Model is taken to be localized on one of these branes,
namely the IR brane. Hence, the action may be written a priori as

S = Sgrav + Sm's + Shid7 (122)

where Sg,q, is just the ordinary 44-1D Einstein-Hilbert action
Sgrav = / d'z / dov/—G(—A + 2M°R), (1.23)

and S,;s and Sy are the brane-localized actions to the IR and UV branes
respectively,

Svis = /d4$d¢v _gmsé(¢ - ﬂ—) (‘Cvis - %is)»

(1.24)
Shid = /d4xd¢v —91id0(P)(Lnia — Vhia)-
Here, V,;s and Vj,;4 are the vacuum energies of the respective branes.
To construct a solution which respects 34+1D Pioncaré invariance, Ran-
dall and Sundrum assumed that the background solution to the 5D Einstein
equations took the form

ds* = e 2Dy, do'da” + r2de?, (1.25)
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where 7. is the compactification length scale, and o is some function depend-
ing on the extra-dimensional coordinate ¢.

Upon substituting the ansatz metric into the 5D Einstein field equations,
one finds that the resultant equations for o are

60'/2 —A 30" Vhid

= = 6
r2 AM3’ 12 AM3r, (#) +

‘/vis
AM3r,

5(¢p — 7). (1.26)

The solution to the former which respects the orbifold symmetry ¢ — — ¢ is

o =r.|d| (1.27)

—A
24M3
Immediately, we see from the above equation that for there to be a consistent
solution, the cosmological constant must be negative. This implies that the
5D bulk encased by the branes is a slice of five-dimensional Anti-de Sitter
spacetime (AdSs).

For the solution to be consistent over the whole orbifold S;/Z5, o must
be periodic in ¢. Differentiating twice the solution in Eq. [1.27] we obtain

" —A
o’ = 2r, ST [6(¢) — 6(¢ — m)]. (1.28)

Thus, to be consistent with the latter equation in Eq. [1.26] the following
condition must be imposed for some energy scale k,

Viid = —Vais = 24M°k, A = —24M>K>. (1.29)

This is the famous Randall-Sundrum fine-tuning condition. This condition

is required to ensure that not only do we have a solution to the 5D Einstein

field equations but also that the solution respects 4D Poincaré invariance.
The resultant metric may be thus written

ds? = e 2reldly | daida? + r2de?. (1.30)

To work out the physical consequences of this warped geometry, we need
to perturb about this background solution and work out the effective 4D
gravitational action. Hence, we need to promote the 5D metric to

ds* = e H*T@0N |+ R, )dotde” — T (x)de?. (1.31)

Here, T'(x) represents a scalar field whose vacuum expectation value is 7.
and thus also contains perturbations about this compactification radius scale.
The field h,, represents perturbations to the background 4D Minkowskian



15 CHAPTER 1. INTRODUCTION

metric. Upon dimensional reduction, one can determine the effective 4D
Planck scale by inspection of the effective action under the 4D background
metric. When one does this, one finds that the 4D Planck scale is related to
the 5D Planck scale M, compactification radius r. and k as

M3
M3, = 7(1 — g7 2kremy, (1.32)

This equation tells us that the compactification radius has little effect on
the effective Planck scale due to the exponential sensitivity in the limit
that kr, >> 1. This is rather unlike the ADD scenario where the extra-
dimensional radius had a very demonstrable effect.

Now let’s analyze the action for a Higgs field localized on the IR brane.
On the UV brane, one can see that the localized 4D metric is precisely
Ghidyw = G,,- On the IR brane the the metric picks up a warp factor with
Guisyw = e_%“”ﬁw,. Thus, if we have a Higgs field H localized to the IR
brane, then the action on the IR brane S,;; contains a piece

Suis D /d:BA‘\/—gm (¢h D, H'D,H — X(|H|> — v3)?), (1.33)
which upon substituting g,;s for e‘meﬂgw and performing the wave-function
renormalization H — e*"<" H may be rewritten

Syis D /dx‘&/—g(ng“HTD,,H — M|H? — e 2m05)?). (1.34)

From the above equation, we determine that the bare vacuum expectation
value vy on the IR brane from the fundamental higher dimensional theory
corresponds to a scale

—krem

Vo, (1.35)

in the low energy 4D effective field theory. It turns out that it is only nec-
essary to take kr, ~ 12.5 to yield a warp factor of e 2"™ ~ 10717 so that
in taking vy ~ M ~ k ~ Mp; = 102 GeV we get a resultant effective elec-
troweak scale of v ~ 102 GeV, which is the correct order-of-magnitude result.
Thus, RS1 solves the Hierarchy problem, and we can naturally produce the
correct electroweak scale physics with a small dimension of roughly ten times
the Planck length.

A remarkable thing that Randall and Sundrum noticed about the physics
of this warped background geometry was that it could lead to a second type
of model, known as the Randall-Sundrum type II model (RS2), where the
extra dimension is in fact infinite [I5]. Notice that in taking the limit r. —
0o, we are taking the IR brane out to infinity and effectively removing it

vV=¢€
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so that all the Standard Model fields must now reside on the UV brane,
an important corollary from which is that this model no longer solves the
Hierarchy problem.

If one looks at the relationship between the 5D Planck mass, the com-
pactification radius, k and the effective 4D Planck mass given in Eq. one
notes that the piece proportional to the warp factor goes to zero in the limit
that the compactification radius goes to infinity. Thus, the Planck scale does
not blow up or go to infinity in the infinite radius limit but rather gives a
finite result that can be meaningful. Randall and Sundrum provided this as a
first clue that a meaningful 4D gravitational theory could still be reproduced
in the infinite radius limit.

To show that 4D gravity is reproduced, we must show that there exists a
graviton zero mode localized to the brane as well as the excited modes. All
of these modes will contribute to fluctuations about the background so to
calculate their profiles we perturb the background metric by promoting the
background metric ds? = e=2*vly,, —dy? to ds?* = e~ %W [n,,+h,, (z,y)]—dy?,
determine the resulting dynamical equation for h,,(x,y) and then expand
it as a tower of solutions. Before we perform the expansion and solve for
the modes, we fix the gauge by choosing the traceless transverse condition
O"h,,, = 0 and hf; = 0. This choice of gauge makes all the components of
hu(z,y) equal so that we may drop the indices and simply write h(z,y). We
then expand h(x,y) as

Wz, y) =Y tm(y)e™, (1.36)

where obviously p?> = m? and m denotes the masses of the modes. The
resulting equation as determined from the Einstein field equations is

m® oyl _ Lo 2
[ - e - §8y — 2k6(y) + 2k%] ¥ (y) = 0. (1.37)

By making a change of variables to z = sgn(y)(e"¥l — 1) /k,
Um(2) = Y (y)eFWV2 h(x, ), the above equation may be rewritten as

1 N .
[ 202+ V(D) dhnlz) = m2dha2), (1.38)
where the potential V'(z) is given by

15k? 3k

V(z) = NEEESE 7(5(2) (1.39)

The above potential is sometimes referred to as a 'volcano’ potential since
there is an infinitely deep, point-source potential well at z = 0 generated by
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the Dirac delta function and the potential decreases to zero on either side of
the well after attaining a maximum. There is just a single bound, localized
mode for which m = 0 and thus this mode is interpreted precisely as the
4D graviton! Since the potential decays to zero at infinity, the KK spectrum
forms a continuum and there is a mode for all m > 0. The KK modes
also asymptote to plane waves at infinity and to enter the region around
the potential well, these plane waves need to overcome the potential barriers
around the maxima of this volcano potential. Therefore, the KK modes
contribute very minimally to the effective theory of gravity localized to the
brane.

One can calculate the resultant modified gravitational force law between
masses m; and my separated by a distance r by integrating all the contribu-
tions from the modes

‘/grav(r) =GN 7 (140)

k r k

miMms Gy mimee ™ m
r 0

The first term is the usual Newtonian gravitation potential and it comes from
the bound zero mode graviton. The second term with the integral is a sum of
the contributions of the KK modes, which have a suppression factor of e=™"
due to Yukawa’s law for forces mediated by massive bosons. There is also
an additional suppression factor of m/k due to the fact that the KK modes
are suppressed by the potential barriers around the well at y = 0. When
one performs the integration, one finds that the gravitational potential is
precisely .
mime

(1+ yE ).
Hence, we have reproduced an effective 3+1D gravity theory from a 4+1D
one. At distances r >> % the correction contained inside the parentheses of
Eq. , 1/7?k?, is much smaller than one and therefore at large distances
the usual Newtonian law of gravitation is reproduced. For distances roughly
equal to or smaller than r ~ 1/k, the correction obviously becomes important
and in this limit the correction dominates, yielding an inverse cubic law for
the gravitational potential. In the Randall-Sundrum models, particularly
in RS2 in which gravity is localized to one brane and thus its scale must
be Planckian, k is expected to be of order the Planck scale so in this way
experimental limits due to the correction term are easily avoided.

The RS2 model is a fascinating one since all extra-dimensional models up
to its inception contained only compact extra dimensions. For the first time,
it was shown that this need not be the case and a realistic effective 3+1D
theory could be reproduced from a 441D one in which the extra dimension is
in fact infinite. Arkani-Hamed, Dimopoulos, Dvali and Kaloper showed later

Vgraw(r) = Gy (1.41)
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that the number of infinite extra dimensions can be arbitrary by extending
the RS2 framework to 34+n+1D spacetime with an effective 3+1D gravity
theory reproduced on the intersection of n fundamental branes [33]. One
could also think of using a thick brane or domain wall instead of a funda-
mental brane to reproduce the same physics. As we will see later, the RS2
model provides a model for how to trap gravity on domain-wall branes.

1.4 Topological Defects

In this section we will discuss topological defects. Topological defects are
solutions to non-linear differential equations which map a subset of spacetime
(usually a boundary) to a moduli space under a non-trivial homotopy class.
The simplest type of topological soliton is a domain wall.

Domain walls appear naturally in quartic scalar field theories. They are
mappings between two energy degenerate, stable minima of a scalar potential.
Let 1 be a real scalar field in 14 1D spacetime, where the spatial coordinate
is y, with the potential

Vi(n) = %A(n2 —v*)?, (1.42)

This potential has minima at the values n = £v. To find a domain wall
solution, we require a solution to the Euler-Lagrange equations for n subject
to the boundary conditions

n(+o0) = +v. (1.43)

Proposing that 7 solely depends on the spatial coordinate y, the Euler-
Lagrange equation is thus

d2
— d_yz + A(n* —v*)n = 0. (1.44)

One can then easily show that the desired solution for 7 is
n(y) = vtanh (ky), (1.45)

where k% = A\v?/2. A graph of the domain wall is shown in Fig.
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n(y)

Figure 1.2: A graph of the domain-wall solution given in Eq. |1.45]

The trivial solution where 7 is constant and settles into one of the min-
ima has a lower energy density than the above configuration in which 7 is
a map associating the different ends at spatial infinity along y. However, to
deform the latter into the former, one would have to take n along one entire
domain and have its values in that domain switch over from the correspond-
ing vacuum to that of the other domain. Since there are infinitely many
points, this transformation requires an infinite amount of energy, and thus
the solitonic solution is stable. This stability is ultimately due to the fact
that the homotopy group 7y of the vacuum manifold is non-trivial: it is pre-
cisely a set of two discrete, disconnected vacua related by the Z, symmetry.

For 7y, there exists two homotopy classes: one which maps both y = —o0
and y = 400 to one point, which describes the situation when 7 settles ho-
mogeneously and isotropically to one vacuum, and one which maps y = —oo

and y = +oo to the two different points, which describes the domain wall
situation. Mappings belonging to different homotopy classes cannot be con-
tinuously deformed into each other. Hence, domain walls of the form given
in Eq. are said to be topologically stable.

Another way to see this topological stability is by noticing that there
is a corresponding conserved topological charge [34]. Omne can define the
topological current to be

JE = e",n. (1.46)

Due to the anti-symmetric properties of the alternating tensor, it is obvious
that this current satisfies the continuity equation and is conserved. The
corresponding topological charge is

Q= /dyJO =n(y = +00) — n(y = —c0). (1.47)
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For the solution where 1 settles into a constant vacuum () vanishes but for
the domain wall () = 2v. Hence, due to the conservation of this charge, the
domain wall cannot evolve to the constant vacuum solution.

The energy of the domain wall solution is given by

1 2
7= [ary(GL2 4 Vi) = i, (1.48)

Domain walls are based on non-trivial mappings under the homotopy
group mo(M), where here M denotes the moduli space of the theory. One
can also form topologically stable solitons based on higher homotopy groups
and more complicated moduli spaces. The next most simplest example is
that of strings. Strings, also known as vortices, are based on mapping a
boundary of spacetime with the topology of the circle S to M which belong
to non-trivial homotopy classes of the fundamental group 71 (M). If we write
down a 241D theory with a complex scalar ® with the potential

V(®) = %)\(@ch —v?)? (1.49)
one can easily see that for this theory that any element of M must take
the form ® = ey and thus M ~ S'. Hence, the fundamental group in
this case will be m (M) ~ m(S') ~ Z. The integers of this Z group are
called winding numbers. One can now look for solutions in terms polar
coordinates (r, ) for which ® — ve? as r — co. This boundary condition is
an example of a mapping from the circle at infinity to the vacuum manifold
with a winding number of 1, and a solution satisfying this boundary condition
cannot decay into the trivial vacuum since the topological charge associated
with the winding number is conserved. Similarly, solutions for which & —
ve™® as r — oo have a winding number of n, and these solutions cannot decay
or morph into either the vacuum solution or any solution with a different
winding number.

Yet another example in 341D spacetime is that of a monopole. Monopoles
are based on the second homotopy group m(M ), and the most famous, simple
example where they occur is a Higgs model with an SO(3) gauge group, with
a Higgs field in the fundamental representation. Here, the vacuum manifold
M ~ §?, breaking SO(3) to SO(2) ~ U(1), and thus my(M) ~ 7,(S?) ~ Z.
This case is particularly interesting, given that under the remaining U(1)
theory, one can calculate the magnetic flux of the resulting solitonic solutions
and one finds that it is non-zero and related to the winding numbers coming
from 79 (M), hence the name monopoles.

One can still go further in constructing topological solitons. Generically,
whenever the nth homotopy group of the moduli space of a theory, , (M),
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is non-trivial we can construct stable, solitonic solutions which non-trivially
map an n-sphere at infinity to M. In the special case when M =~ S" this
means that the boundary conditions satisfied by solitonic solutions need to
at least be a sphere of dimensions n since 7,,(S™) is trivial for all m < 0 and
m(S") ~ Z.

1.5 Domain-Wall Braneworlds

Having laid out the basics of domain walls and of the Randall-Sundrum mod-
els, we are now ready to outline the domain-wall braneworld construction in
441D spacetime. In domain-wall braneworld models, one must reproduce an
effective 341D field theory on the world volume of the domain wall. This
involves localizing the Standard Model field content as well as gravity. There-
fore, one must have at the very least a mechanism for the localization of scalar
fields, fermions, gauge bosons and gravitons. The cases for the first two are
relatively straightforward and we will attend to those first. Localization of
fermions is simply achieved by Yukawa coupling them to the background
scalar fields [2I]. Scalars are localized through quartic scalar interactions
with the background fields.

The localization of gauge bosons is highly non-trivial and in our frame-
work we invoke the Dvali-Shifman mechanism, which is quite different from
the mechanisms used to localize scalars and fermions. This mechanism relies
on confinement dynamics to localize the gauge bosons of a subgroup H of
a non-Abelian group G which is unbroken and in confinement phase in the
bulk.

When one couples the background scalar fields to 4+1D gravity by writ-
ing down the appropriate 4+1D Einstein-Hilbert action with a cosmological
constant, one finds that there still exists a localized graviton zero mode on
the wall, reproducing a 3+1D gravitational theory. A fine-tuning condition
analogous to the Randall-Sundrum fine-tuning condition must be imposed,
and the background geometry is thus very similar to the RS2 model. There
is a continuum of KK graviton modes and their contribution yields an inverse
cubic correction at high energies to the ordinary 341D Newtonian Law for
gravitational force.

1.5.1 Fermion Localization

The localization of chiral fermionic zero modes to a domain wall was first
shown by Jackiw and Rebbi [21]. In the full analysis of fermion localization,
we also follow closely Ref. [35]. Consider the domain wall solution in Eq.
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of the previous section in 4+1D flat Minkowskian spacetime. Note that in
4+1D spacetime, the Clifford algebra consists of five Gamma matrices, with
the first four being simply the same ones as for 3+1D I'* = ~4* for u = 0,1,2,3
and the fifth gamma matrix being I'> = —i~ys where 75 is the 3+1D chirality
operator. Dirac spinors in 441D still have four components but all fermions
are now Dirac: there exist no Weyl or Majorana representations. Noting
this, we may write down the Yukawa interaction coupling a 4+1D fermionic
field ¥ to the scalar field n generating the domain walls

— hUUy. (1.50)

Including this Yukawa interaction in the full 441D action, the resultant 4+1D
Dirac equation for the fermion field W is

iTM Oy U — hp¥ = 0. (1.51)

Let’s first look for a solution of the form W(x,y) = f(y)i(x), where 1) satisfies
the massless 341D Dirac equation i7*d,¢» = 0. Making this ansatz and
multiplying from the left by v5 reduces Eq. to

L (y) = hn(y) f(y) sl = 0. (1.52)

If we now assume v is a Weyl spinor without assuming left or right chirality
for the moment, denoting the ~5 eigenvalue of ¢ as Cy, = 1, we find that
the solution for the profile f(y) is

fly) = Nehe it as

)

_ N€+hcw JJ vtanh (ky') dy’ (153)

Y

= N sech (ky) "/*,

where N is just a normalization factor. From this, we see that if h > 0,
then if C)y = 41 and ¢ is right-chiral, f(y) is proportional to some positive
power of cosh (ky) and thus diverges at infinity, whereas if Cy = —1 and
¥ is left-chiral, f(y) is some positive power of sech (ky) and decays to zero
at infinity. This means that the right-chiral solution is non-normalizable
and thus unphysical whereas the left-chiral solution is normalizable and thus
a physical solution. If h < 0, then the right-chiral solution becomes the
physical one and the left-chiral solution is unphysical. Furthermore, in both
cases the physical solution has f(y) being maximized about y = 0 in the
center of the domain wall.

Thus, if we Yukawa couple the 441 fermion field ¥ to the domain wall, a
single 3+1D chiral zero mode is produced and localized to the domain wall.
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This is very important since one must worry about reproducing chirality in
the effective field theory since the original 441D theory is vector-like and the
Standard Model which we ultimately wish to localize to the wall is a chiral
theory. These chiral zero modes will be our candidates for the Standard
Model fermions. It is also important that we have produced a massless
chiral zero mode since we wish that the Standard Model particles originally
be massless prior to electroweak symmetry breaking which we achieve later
through localizing a scalar field corresponding to the Higgs doublet.

Having described the chiral zero modes, one may wonder what other
physical modes exist. After all, we are dealing with an extra-dimensional
theory for which Kaluza-Klein modes are common, and naturally if we embed
an electron inside a 441D field, we expect there to be KK electrons with
higher masses. This is indeed the case and to do the required analysis we
need to make a full expansion of ¥ of the form

U= T+ fRUR, (1.54)

where the 3+1D chiral modes 7'y satisfy the 3+1D Dirac equation
YrOur,r = mp. We assume, without loss of generality, that for the
analysis below h > 0. Substituting this expansion into Eq. yields the
respective equations for the profiles of the chiral modes

CZ_F =mfg(y) — n(y) 1 (v),
df@{n (1.55)
d_fy% = —mf7'(y) + hn(y) f7 ()

Doing some algebra by using the first of these equations to substitute for
fi in the second and vice versa for f;* in the first, as well as substituting
n(y) = na(y) = vtanh (ky), we obtain the following Schrédinger equations
for the left-chiral and right-chiral profiles respectively

[- j— + h(h + 1) tanh® (§) — B f'(5) = m*f7(7),
# (1.56)

[ &, h(h — 1) tanh® (§) + h) f7(§) = m* i (),

where the tilded quantities are the dimensionless quantities y = ky, h = hv /k
and m = m/k.

The potentials in Eq. are Poshl-Teller potentials. The eigenvalues,
which are exactly equal to the dimensionless squared masses in this case,
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are well known [36, 37, 138 39, 40]. The resultant squared masses for the
left-chiral modes are

m? = (2nh — n®)k?, = 2nhk — n%k? (1.57)

for n=0,1,..., | h).

The masses for the right-chiral modes are the same as in Eq. except
that n is in the range n = 1,2, ..., ULJ with the n = 0 mode absent (since
there is no right-chiral zero mode). Given that the respective Poshl-Teller
potentials in Eq. are examples of shape-invariant potentials which can
be generated by a superpotential [39] [40], we can easily compute the profiles
for all the localized modes once we know the ground states for both potentials
by applying the appropriate ladder operator. Figure [1.3| shows plots of the
first few localized left-chiral and right-chiral modes including the zero mode.
If change h so that it is negative rather than positive, it is the right-chiral
modes which have a localized KK tower starting from a zero mode and all
the left-chiral modes are massive.

f1,, profile fr, profile

[EEN
o
T

relative mode energy

oON M O

3210123 3-2-10123
extra dimension y extra dimension y

Figure 1.3: A plot of the tower of the first few localized left-chiral and right-
chiral modes. (This plot is originally from Damien George’s PhD thesis [41].)

Beyond the localized modes, there are also delocalized continuum modes
which have energies above the highest mass localized mode. They behave
like 441D fermions and are able to propagate through the entire bulk.

1.5.2 Scalar Localization

In describing scalar localization, we again follow closely Ref. [35]. To localize
a scalar field to the domain wall, we need to introduce quartic interactions
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between the background scalar field n and a scalar field ® which is to con-
tain our candidate localized scalar. The interaction potential containing the
coupling ® to the background as well as the self-interactions for & is

1

1 1
Vq> = 5 —)\q>q)4 + —Mé (158)

Awqt ¥+ 4 2

Assuming that any vacuum expectation values for the modes of ® are negli-
gible in comparison to the vacua of the background field 7, we can ignore the
self-interaction term for ® in determining the modes. We therefore compute
the profiles for the modes by considering the 4+1D Klein-Gordon equation

OP + Agyn°® + 13 ® = 0. (1.59)

We expand & as a series of modes,

O(z,y) = > pm(y)dm(x), (1.60)

where the fields ¢,, satisfy 3+1D Klein-Gordon equations with mass m,

Os1¢m = —m2¢,,. Substituting this expansion and ansatz as well as the

classical solution for 7 into Eq. [1.59, we find that, like the chiral fermion

modes before, the profiles for the scalar modes satisfy Poshl-Teller equations
d2

[ - d_gg + d(d + 1) tanh2 (g) - d}pm(g) = Ampm(g)a (1'61)

where here d = \/:\@7 +1/4-1/2, 5\@7 = Apyv?/k? and the eigenvalues \,,pp,

given in terms of d, A, and the masses m are

2 2
He T
)\m: _ﬁ_‘_ﬁ_d' (1.62)

There are [d] localized modes indexed by an integer n = 0, 1,2, ..., |d], and
their eigenvalues are
N = 2nd — n?. (1.63)

Thus, the squared masses for the localized modes are given by
m2 = pug + [(2n + 1)d — n?| k. (1.64)

The squared mass for the lowest energy mode, the n = 0 mode, is m =
p2 + d. Hence the lowest energy localized mode for a scalar field has a non-
zero squared mass unlike the chiral zero mode for a fermionic field which was
massless. We also have the freedom to make m$ = u2 + d tachyonic so that
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k, profile
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Figure 1.4: A plot of the n = 0, n = 1 and n = 2 modes for the discrete
spectrum embedded in ®. In the plot above, d = 3. (This plot is originally
from Damien George’s PhD thesis [41].)

this mode, ¢q, acquires a non-zero vacuum expectation value. If the VEV is
small enough, we can ignore backreactions on the background fields and can
just simply treat ¢y as a Higgs field localized to the domain wall. Thus it is
possible to localize the electroweak Higgs sector of the Standard Model if we
attempt to construct a realistic model.

For the scalars, there is a single tower of localized modes and we can
utilize the relevant ladder operator for the given Poshl-Teller potential, just
as we did with the fermions. One finds that the (non-dimensionalized) profile
for the lowest energy mode is

Po(7) = Cosech’(7). (1.65)

A plot of this zero mode profile as well as the profiles for the n = 1 and n = 2
excited modes is given in Fig. [I.4]

1.5.3 The Split Fermion Mechanism

Before we move on to all the other localization mechanisms, let us mention
the split fermion mechanism first proposed by Arkani-Hamed and Schmaltz
[19]. Let’s consider the same 441D fermionic field ¥ Yukawa coupled to
the scalar field n generating the domain wall, but this time with a 441D
bulk mass M. Although this bulk mass breaks the discrete Z5 symmetry,
it is possible in principle to choose parameters such that the domain wall
is meta-stable with a very long lifetime. The 441D Dirac equation then
becomes

iTM Oy U — ¥ — MW = 0. (1.66)
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Let us just analyze the chiral zero mode. Without loss of generality, let
us choose h positive so that the zero mode is left-chiral. We find the profile
by simply looking for a solution to the above equation of the form f(y)u(x)
where 759 = —¢ and iy*0,1 = 0. In doing this we find that the equation
for the profile of the zero mode becomes

L' (y) + hn(y) f(y) + M f(y)]y = 0. (1.67)

Therefore, the new solution for f(y) with the addition of the bulk mass may
be written
f(y) = N sech (ky)"/*e=Mv. (1.68)

f(y)

20

1'57,'~

Figure 1.5: A plot of the non-dimensionalized profile f(3) = k'2f(y) in
terms of y = ky for some example parameter choices. Here, the solid black
line represents the choice with h = hv/k = 9 and M = M/k = 4, the dotted
line is for h = 15, M = —2 and the dashed line is for h = 15, M = —8.

A plot of the profile for some example parameter choices is given in Fig.
LAl The effect of the bulk mass term is to shift the localization center of
the chiral zero mode away from y = 0. Instead, the chiral fermion is now
localized around y = —(M/hv)/k, or in dimensionless units §j = —(M/h)
(M = M/k). This is important since in this scenario different fermions will
not in general share the same bulk mass and thus will not share the same
localization centers.

Let 1) be a 341D fermion in which the left and right-chiral components
are embedded as chiral zero modes in the 441D fermionic fields ¥,, and
Wy, respectively and let a 3+1D Higgs field ¢ be embedded in the 441D

R
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scalar ®. Upon dimensional reduction of a Yukawa interaction of the form
YWy, Uy ®, where Y, denotes the bulk Yukawa coupling, the effective 3+1D
Yukawa coupling y,, for ¢ will take the form

Yp =Yy / Jur W) fur(Y)pe(y) dy. (1.69)

Not only does the 3+1D Yukawa coupling depend on a bulk Yukawa coupling
constant but it also depends crucially on an overlap integral of the product
of the profiles of the three particle species involved in the interaction. Thus,
different fermions will have different masses. The more closely bunched the
localization centers of fy,, fy, and p, are and the more they overlap, the
higher the effective Yukawa coupling constant and thus fermion mass will be.
Given that the profiles f,, and f,, depend exponentially on the couplings to
the domain wall and the bulk masses, there is the potential to solve problems
like the fermion mass hierarchy problem. In particular, one could explain
why the quarks in each generation are more massive then the leptons by
splitting them so that the quarks are closer to the localization center of the
Higgs. If one goes to multiple generations of fermions, one can also promote
M to a more general mass matrix and if it is taken to not commute with
the analogous matrix for the couplings to n (which we can assume to be
diagonal by choice of basis) then the different zero modes corresponding to
each generation will mix, and once dimensional reduction is done, an average
mixing is produced. This latter scenario is called the twisted split fermion
scenario [42], 43].

1.5.4 Adding Gravity

The localization of gravity obviously involves successfully coupling the back-
ground scalar field configuration to 441D gravity. This problem has been
solved many times already [44] [45] 46|, [47), 48|, [49], 50]. For a simple example,
we will closely follow Ref. [50], under the unit and parameter conventions
given in the overview of the same model by Ref. [22]. Let us write down
the action for a single scalar field n coupled to gravity with a cosmological
constant as

S = /d%/dy@[ —2M*R — A + %GMN(?MnONn —V(n)]. (1.70)

We wish to solve the resultant dynamical equations by making the usual
Randall-Sundrum ansatz for a warped metric, ds® = e~2Wy,, drtdx” — dy?
and making sure that for such a solution o(y) decays to zero at infinity.
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Let the potential, V(n), be defined by
V(n) = 3ak®> M2, (1 + 4a) cos2(%), (1.71)

where D = 6aM2,, M;sp is the 4+1D Planck mass, a is a dimensionless free

parameter and £ is a free parameter with the dimension of an inverse length.

This potential has a countably infinite set of vacua as well as a Z5 symmetry.
One can show that

o(y) = alog [ cosh (ky)],

n(y) = D arctan [sinh (ky)], (1.72)

is a solution to the Einstein and Einstein-Klein-Gordon equations with the
cosmological constant set to A = —6a?k? (which is the usual Randall-Sundrum
fine-tuning condition). The effective 4D Planck scale reproduced on the wall

is
M} A
ap, = M V), (1.73)
k A(a + 5)

In the limit that a tends to zero, M3, behaves asymptotically as M2, ~
M2, /ka while in the limit a — oo, the asymptotic behaviour is M3, ~
M3,/ /k+/a. Thus the weak gravity limit corresponds to the limit where a
is small.

The above solution requires that the cosmological constant A be set to
A = —24M2 a2 (1.74)

Taking the thin brane limit a — 0, [ — oo while keeping al finite reduces
the model to the original RS2 model. From the above formula for the cos-
mological constant, one can identify k = al, where k is the parameter from
the RS2 model.

To show that gravity is localized, we show that there is a localized graviton
zero mode and that the physics of these modes reduces to 4D gravity at low
energies. Omne can solve the relevant dynamical equations analytically in
the special case that a = 1. To solve the equations it is easiest to shift to
conformal coordinates with extra-dimensional coordinate z = f(y) defined
such that dy? = e~ 2°®dz2. In this case the volcano potential is simply

I 15 3
2)=—"= (—(12)2 — —). (1.75)
(1+ (12)?) 4 2
One can show that the normalized profile 1y (2) for the graviton zero mode
1s

Yo(z) = \/2(1 + (12)%) 73/, (1.76)
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which is square integrable and decays to zero as z — 4 oo as required,
implying that the massless graviton is localized to the wall. Like the volcano
potential of the RS2 model, V(z) also decays to zero out at infinity, which
implies that the KK spectrum is continuous and is analogous to that of the
RS2 model. This implies that we obtain a 34+1D gravitational theory on the
domain wall with a small correction at high energies, which is the same result
as for the RS2 model.

We have now shown that fermions, scalars and gravity can be localized
on a domain wall. We next turn to the localization of gauge bosons.

1.5.5 The Dvali-Shifman Mechanism

Having described the localization mechanisms for scalars, fermions and gravi-
tons above, we now turn to the localization of gauge bosons. This turns out
to be a highly non-trivial task. In localizing gauge bosons from a higher
dimensional theory, obviously the higher dimensional theory should contain
a 4-+1D Yang-Mills gauge theory containing these gauge fields.

One might first consider a similar approach as for fermions, scalars and
gravity by directly coupling the gauge fields to the domain wall. This ap-
proach does not lead to a phenomenologically acceptable localization for
massless gauge bosons [51]. The easiest way to see why this is not accept-
able is to analyze the effective 341D couplings to the gauge bosons for the
different fermion species. Consider a 441D gauge interaction for a fermion,
gs UM AU, where Ay is the gauge field and g5 the bulk coupling constant.
If 4 is the chiral zero mode of ¥ and A,; contains a zero mode corresponding
to a 34+1D gauge boson a,, then after performing dimensional reduction on
this gauge interaction one can see that the effective gauge coupling constant,
g4, for v is given by

91 = 05 / dy F2(y)Pa, (), (1.77)

where as usual fy(y) denotes the profile for the chiral zero mode ¢ and p,,, (y)
is the profile of the gauge boson. We have seen in previous sections that
different species of fermion will in general couple differently to the domain
wall and will have different bulk masses if we include them, leading them
to have different profiles. This means that they will have different effective
gauge couplings to a,, which is disastrous if a, is to be a non-Abelian gauge
boson, since this means we lose gauge charge universality.

The mechanism that Dvali and Shifman proposed [52] to get around this
problem, and the one which we invoke in our domain-wall braneworld mod-
els, relies on the non-perturbative physics of confinement. They originally
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considered a simple model with an SU(2) gauge theory, a real scalar field n
and an SU(2)-adjoint scalar field y with the potential

1
Vin,x) = ZM(HQ —0?)? + A (* = 0*) T[] + i Trx]

(1.78)
AT
The parameter conditions
Ap >0, A >0, Apo®>pl, (1.79)

are imposed so that the potential is bounded from below and so that y attains
a tachyonic mass in the center of the defect. Thus, we expect a component
of x to condense on the wall and so we take this component to be that
proportional to the isospin generator o, and we will label this component ;.
After choosing the boundary conditions

n(y = £o0) = =+,

1.80
Yy = £00) = 0, (1:80)
one can show that under the special parameter choice
212 (A — Ay) + (A — A2 )0* = 0, (1.81)
the solution to the Euler-Lagrange equations is
= vtanh (ky),
n(y) (ky) (1.82)
x1(y) = Asech (ky),
where £ = p,i and A? = W A plot of this solution is shown in

Fig. [1.6]

We can see that the SU(2) gauge theory is left unbroken towards both
positive and negative infinity and it is spontaneously broken to U(1) on
the wall by x. In this original 3+1D toy model, Dvali and Shifman took
the SU(2) theory to be in confinement phase. Therefore, in the bulk, all
the gauge bosons, including the U(1) photon which is left massless on the
wall, must coexist in a massive SU(2)-glueball state. For the U(1) photon,
this means that there is an energy cost to propagating in the bulk since
it is massless on the domain wall. The Dvali-Shifman proposal seeks to
generalize this mass gap to the case where the SU(2) group is replaced by
a larger non-Abelian gauge group G and the U(1) is replaced by a subgroup
of G, H, which is in general semi-simple and can be non-Abelian or contain
non-Abelian factors. The extension of the mass gap argument is then that
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field profile

extradimensiony

Figure 1.6: A plot of the profiles for n and y;. (This plot is originally from
Damien George’s PhD thesis [41].)

the confinement scale of GG in the bulk is larger than the confinement scale of
H (or any of the confinement scales of its non-Abelian factors) on the wall.

The Dvali-Shifman proposal is also augmented by the dual superconduc-
tor model of confinement first proposed by 't Hooft and Mandelstam [53] [54].
Under this picture, confinement arises due to a condensate being formed
from magnetic monopoles. These magnetic monopoles can be constructed as
solitons arising in a spontaneously broken non-Abelian gauge theory. This
condensate is analogous to the condensates formed by Cooper pairs inside a
superconductor, and given that its components are magnetically charged, it
should under electromagnetic duality expel electric fields by a dual Meissner
effect, hence the name dual superconductor. If we now place quarks in-
side this dual superconducting condensate, they will form flux strings whose
potential grows linearly with distance, leading to quarks being confined in
colorless mesons and baryons. One can now understand the Dvali-Shifman
mechanism in terms of this picture, since if the bulk is confining it should
under duality behave as a dual superconductor under this picture. Hence, if
we go back to the case with G = SU(2) and H = U(1), the electric field lines
of the Abelian group on the wall will be repelled by the dual superconducting
bulk and will be forced to diverge out solely parallel to the world volume of
the wall. Even if we place a test charge in the bulk, the lines of its electric
field will form a flux string on to the wall and then diverge out, behaving as
if the test charge was actually on the wall [51) [55]! Again, under the general
Dvali-Shifman conjecture this is thought to extend to the case for general
G and H. Given that the properties of the field lines of a test charge do
not behave significantly differently when put in the bulk rather than on the
wall, the way the test charge couples to other charged particles as well as



33 CHAPTER 1. INTRODUCTION

the localized gauge bosons is independent of the position of the test charge.
Therefore, regardless of their localization profiles, all quarks will couple to
gluons with equal strength if we localize the SU(3) subgroup and therefore
the Dvali-Shifman mechanism protects gauge charge universality if it works.

There are a couple of caveats we should take before proceeding with the
assumption that the Dvali-Shifman mechanism traps gauge bosons to the
domain wall. The first is that it has not been proven even in the original
model in 3+1D spacetime. To this, we note that there is at least some
numerical evidence from lattice gauge theory [56] that this mechanism works
in 241D. The second point is that we ultimately wish to localize 3+1D gauge
fields initially belonging to a higher dimensional Yang-Mills gauge theory. It
is not strictly known whether 5D field theories are confining and furthermore
5D Yang-Mills gauge theories are known to be non-renormalizable. Given the
non-renormalizability, we have to impose a cut-off A\ and be content that
there is a confining phase at energies below this cut-off if it exists. Creutz
showed in Ref. [57] using lattice simulations that a confining phase does in
fact exist in an SU(2) gauge theory in 441D spacetime. A similar analysis
was done for SU(5) in Ref. [41] with the same result.

Having given some details as to why the two aforementioned difficulties
can be overcome, we will proceed assuming the Dvali-Shifman mechanism
successfully traps gauge bosons on to the interior of a domain wall. We are
now ready to delve into model building and we give an overview of the 441D
domain-wall brane model proposed by Davies, George and Volkas for which
G =SU(5) and H = SU(3) x SU(2) x U(1).

1.6 Putting it all together: The 441D SU(5)
Domain-Wall Brane Model

Now that we have covered the essential components for constructing a domain-
wall brane model, we will give an overview of the simplest such model, the
4+1D SU(5) domain-wall brane model first proposed by Davies, George and
Volkas, as it was described with one generation of SM fermions in the origi-
nal paper [23]. Here, SU(5) will be broken to SU(3) x SU(2) x U(1) by an
adjoint scalar y attaining a lump-like VEV profile in the usual hypercharge
component. We will also find that the profiles for the fermions and scalars
are split in general.
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The scalar fields in the model are

n~1, (1.83)
X ~ 24, (1.84)
® ~ 5. (1.85)

Here, 7 is the field that will generate the domain-wall, x will be the field
condensing in the interior to break SU(5) to the Standard Model and ¢ will
contain the electroweak Higgs doublet which is to be dynamically localized
to the wall.

The fermion content of the theory consists of one generation of the SM
fermions. The SM fermions are placed into the following SU(5) representa-
tions,

W5 ~ 5%, (1.86)
11110 ~ 10, (187)

The field U5 contains the charge conjugate of the right-chiral down quark
and the left-chiral lepton doublet, and W', contains the left-chiral quark
doublet and the charge conjugates of the right-chiral up quark and the right-
chiral electron.

The background domain wall configuration is formed from a self-consistent
classical solution for the coupled fields n and y. The relevant part of the ac-
tion for describing the dynamics of the background is [23],

S = /d%(T —Vin), (1.88)

where T contains all the SU(5) gauge-covariant kinetic terms for all the fields.
Vo is the part of Higgs potential containing the quartic potentials for n and
X, with

Vix = (en® = p)Tr(x*) + anTr(x*) + M[Tr(3)? + ATr(x') +1(n° = v*)°.

(1.89)

We want y to break SU(5) to the SM on the domain wall, while having

the bulk respect the original gauge symmetry. We do this in the standard

way by giving the component y; associated with the hypercharge generator

Y anon zero value on the brane, and having all the other components vanish.
Thus the potential reduces to

A 1 /1 1
Vin = 70+ U0 =) = 3y gpamd + S (en” = p)xa, (1.90)
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where A = AL+ %.
To find the background configuration, we need to solve the Euler-Lagrange
equations for  and y; subject to the boundary conditions

n(y = £o0) = +v, (1.91)
X1(y = £00) =0, (1.92)

which are degenerate global minima of V,,. For the sake of simplicity, we
choose to impose the constraints

212 (c— A) + (2eh — 41X — P)o® = 0, (1.93)
a=0, (1.94)

yielding the analytic solutions,

n(y) = vtanh (ky),

X1(y) = Asech (ky), (1.95)

2#3(—61}2

where k? = cv? — ,ui, and A% = —5— We should stress that the above
conditions are not fine-tuning conditions, and they are chosen simply so
that the background fields obtain analytic forms. To find solutions, these
conditions need not be imposed, and for a finite range of parameters we can
always find numerical solutions which are kink-like for 7 and lump-like for x
[23]. The graphs of these solutions for  and y; are shown in Figures [L.7)(a)

and [L.7(b) respectively.

) x1(Y)

-V

(a) (b)

Figure 1.7: (a) The kink n and (b) x; as functions of the extra-dimensional
coordinate y
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To preserve the topological stability of the domain wall, a spontaneously
broken Z, reflection symmetry must be introduced. Under this discrete sym-
metry transformation,

y— -y,

— =1,
T (1.96)
X = =X

S bl
\1[5,10 — \115,10.

The SM fermions now also couple to the field y as well as . Hence the
background Yukawa potential, for one generation becomes,

Ypw = h5n$5‘115?7 + h5X§5X‘I/5 + hwnTT(@lo‘Pw)'f} — 2h10XT7’<§10X\II10)-

(1.97)
The resulting 5D Dirac equation, for the charged fermions, is
M 3Y
00 Wy (@, y) = P (y) Vay (2,9) =4[ = 5 x1(y) Wy (2,y) = 0, 7 =5,10.

(1.98)

Just as before, to find the zero modes, it is enough to look for solutions

for each charged fermion of the form U,y (x,y) = fu.y(y)¥ny(x) where the

Uy (z) are 3-+1D massless, left-chiral spinor fields. Substituting this into the
above Dirac equations yields the solutions for the profiles,

fay (y) = Crye™ by (W) forn = 1,5, 10, (1.99)

where the C),y are normalization constants, and

by () = By log (cosh (ky)) + Y\/gﬁnx arctan (tanh (%)),

oy — hm]v’ (1.100)
k

. Py A

o = =5

To meaningfully describe the localization of the fermions in terms of num-
bers, we need to describe them in terms of dimensionless variables. The non-
dimensionalized domain-wall Yukawa couplings hm] hnx have already been
defined in Eq. [I.100] and so we just need to non-dimensionalize the profiles.
Defining the non-dimensionalized extra-dimensional coordinate, ¢, as

7= ky, (1.101)
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and changing variables, we see that the normalization condition for the pro-
files becomes

/ Fur (3 Fuy () i = . (1.102)

Hence, in order to use functions which are normalized to one over ¢, we define
the non-dimensionalized profiles, f,y(7), as

Fav (@) = k72 fuy (3). (1.103)

We can see from above that the couplings to the lump generated by x
depend on the hypercharge. Firstly, the coupling to this lump shifts the
minima of the localization potentials away from y = 0, which means that the
localization centers of the fermions are also shifted from y = 0. Secondly,
since the different SM components embedded in the SU(5) multiplets have
different hypercharges, the localization centers of different SM components
embedded in the same SU(5) multiplet have different localization centers. In
other words, the split fermion mechanism is naturally realized in this model.
We give example profiles for the right-chiral down quark and lepton doublet,
which are embedded in the quintet, in Fig. and for the right-chiral up
quark, right-chiral electron and quark doublet, which are embedded in the
decuplet, in Fig. [I.9) We will describe more details of fermion localization,
in particular the case with multiple generations and the localization of right-
chiral neutrinos, in the subsequent chapters.

fay(Y)
2'5f

osf |

\
1 n L 1 L L L S [ n n n n \\\ n n n 1
-10 -05 00 05 10

Figure 1.8: The profiles for the localized lepton doublet L and right-chiral
down-type quark Dy arising from an arbitrary fermion quintet W5 for the
parameter choice hs, = 100 and hs, = —100.
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2'0 [ ! \
151 | |
10 / \

051 I \

L

-10 -05 0.0 0.5

Figure 1.9: Profiles for a right-chiral electron-type lepton Er, quark doublet
() and a right-chiral up-type quark Ug arising from an arbitrary fermion
decuplet Wy, for the parameter choice hyg, = 100 and hiq, = 100.

The electroweak Higgs doublet is also embedded in a quintet and thus
also couples to y. Just like the fermions, there also turns out to be a ’split
scalar’ mechanism since the couplings to x depend on the hypercharges of the
different SU(3). x SU(2); x U(1)y-invariant components. The localization
potential for ®, which contains the electroweak Higgs, simply becomes

Vo = p2 ®T 04 \3(0T D)2+ 0, 0T D1 +2X B 0T 7 [} 2]+ X6 @ (X ) 2D+ N DTy T @1
(1.104)

To find the profiles of the electroweak Higgs doublet, ®,,, and the colored
Higgs triplet, ®., embedded in the quintet ®, we search for solutions of the

form,

CI)W,C('Tv y) = pw,c(y>¢w,0<x>7 (1105)

where the p,, . are the respective profiles, and ¢,, . satisfy the Klein-Gordon
equations,

O 3+1dPw.c = My Pure + - - (1.106)

where m,, . are the masses of the lowest energy modes for ®,, .. Substituting
this ansatz into the 44+1d KG equation with the potential Vg, one obtains

the equations for the profiles

d*Puc
dy?

+ Wy ()pue(y) = M0, Pue(y), (1.107)
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where

2 2 s, Y2, 3Y
Wy (y) = g + ™ + Aaxi + 55-Aexi + [ Z 5 Axa- (1.108)
Changing variables to the dimensionless coordinate y defined in Eq.[1.101},

the potentials of the above Schrodinger equations can be rewritten as shifted
hyperbolic Scarf potentials, that is we can write them in the form

[— % + A2 + (B2 — A2 — Ay)sech ()

+ By (2Ay + 1) sech () tanh (g )]pwc( ) = Aw.cPuwc() (1.109)

where
_1“‘\/2 )\5+3Y2)\6 )\4__> +£A2>%—25\5—%5\6+25\4+%
Ay = 7
2
3Y\Y
BY = \/;EA’F ,

V205 + 5558 — A — )2+ 2232)5 — 2%, — 256 4 2, + 1
(1.110)
and the non-dimensionalized Higgs parameters and masses are defined as

N )\41)2
)\4 = ?7
< A5 A2
=T
5 2
R = oA
k2
A (1.111)
>\7 - k,’2 Y
2
P
Hé::E§7
2
~2 mw7c
mw,c - k2 ’

and A, =2, — i3 — Ay + A} are the eigenvalues of the equations for the
electroweak Higgs and the colored Higgs hyperbolic Scarf potentials.

The hyperbolic Scarf potential has been well studied [58] as it is a mem-
ber of a class of potentials satisfying the shape-invariance condition in super-
symmetric quantum mechanics (for more on shape-invariant potentials see
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[401, 39]). For Ay > 0, it is known to have a set of discrete bound modes for
n=0,1,..., Ay, with eigenvalues

AL . =2nAy —n’. (1.112)

Combining this with the previous equations for A, ., we see that the poten-
tials have a discrete set of bound modes with masses given by

M2 e = 5 + A — (Ay —n)?. (1.113)
The physical electroweak Higgs and colored Higgs fields in the effective 4D
theory on the brane correspond to the n = 0 modes, and they thus exist in
the 4D theory if Ay > 0. Assuming this, the profiles for these Higgs particles,
Pw(y) and p.(y) respectively, have the same form as those of the zero mode
profiles for the charged fermions,

Pw,c (y) = C’w,ce_bw’C(y) s

ky (1.114)

buw.c(y) = Ay log (cosh (ky)) + 2By arctan (tanh (?))

Hence, we can interpret Ay and By to be effective couplings of the Higgs
fields to the kink and the lump respectively.

The effective couplings Ay and By depend on the hypercharges, and thus
they are in general different for the two Higgs components. This has a number
of consequences. Firstly, the localization centers of the different components
of ® are split according to the hypercharges. We give an example plot of the
profiles for the electroweak and colored Higgs scalars in Fig. [1.10]

Secondly, since the masses of the electroweak and colored Higgs depend
on their respective Ay, the masses of the two components are split. There
exists a parameter region where the electroweak Higgs has a tachyonic mass,

m?2 < 0, while that for the colored Higgs (if a bound state exists) is non-

tachyonic, thus inducing electroweak symmetry breaking on the brane while
preserving SU(3)., as is desired. Since we know the exact form of the masses,

a straightforward analysis shows that this parameter region is
A%y s < i+ A < A% (1.115)

Thirdly, as there only exist discrete bound modes for a species if Ay > 0,
there exist parameter regions where the electroweak Higgs component will
have discrete bound modes localized to the domain wall while at the same
time the colored Higgs will have only unbound continuum modes in its spec-
trum. This suggests that an alternate approach to suppressing colored Higgs



41 CHAPTER 1. INTRODUCTION

P oY)
20

T 1
S
=

15

be

T === —— T O

-4 -2 0 2 4 Y

Figure 1.10: The profiles of the localized electroweak Higgs ¢,, and colored
Higgs scalar ¢, for an arbitrary quintet scalar ® for parameters such that
Ay = —7500, A5 = 1500, \¢ = —75000, and A7 = 2000.

induced proton decay may be possible, as the continuum modes propagate
in the full 441D spacetime so that the partial width contributed to proton
decay from these modes may be suppressed by further powers of Mgyr. The
analysis of this situation is beyond the scope of this thesis.

Lastly, gravity can still be localized and in this case, with a lump as well
as a kink, we can choose parameters such that we obtain an analytic solution

for n and x as well as the warp factor. When we include gravity, the full
action of the model becomes

S:/d5x\/5(—2M3—A+T—YDW—§@—%X—V¢), (1.116)

where T' contains the kinetic terms, A is the cosmological constant and M is
the 5D Planck mass. Writing the metric in the form

dsi = e’p(y)/ﬁMganx“dx” — dy?, (1.117)
and imposing the special parameter conditions

2c—4l— )\, a=0,
s o 6M? A2 (9M3 4 202 (1.118)
=l S
Hx 6ME+ 02 )

6M3—|—02) + 2
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we find that there exists the analytical solution

n(y) = vtanh (ky),
X(y) = vsech (ky), (1.119)

p(y) = v*log [cosh (ky)],

where k* = 3M?(cv® — pu2)/(3M? + v?), if we also impose the usual Randall-
Sundrum fine-tuning condition A = —24M3k?.

This warped background solution has essentially the same properties as
the smooth domain-wall solution discussed in Sec. [[.5.4] As is generic in
RS2-like models [59], the gravitons still experience a volcano potential and
form a continuous KK spectrum, with a zero mode graviton localized to the
domain wall. For the fermions, it was shown in [60] that once a fermionic
field is coupled to the background fields that there still exists a chiral zero
mode, but the warp factor causes the effective potential to decay to zero
out at infinity; this means that like the gravitons, there is a continuous KK
spectrum starting with the zero mode. For scalars, it was shown in [22] that
in the case where the lowest energy mode of a scalar field is tachyonic, the
spectrum consists of the lowest energy mode localized to the wall and then a
continuous KK spectrum with positive definite masses starting infinitesimally
close to zero.

The massive continuum modes are quasi-delocalized and propagate into
the bulk. They then have to tunnel through the maxima of the volcano
potential to enter the interior of the domain wall.

1.7 The Fermion Mass Hierarchy Problem

The Standard Model is a success in that it has given an very accurate de-
scription of the strong and electroweak interactions in terms of Yang-Mills
gauge theory, as well as explaining why the W and Z bosons have mass by
employing spontaneous symmetry breaking via the Higgs mechanism. With
the addition of the three generations of Standard Model fermions, there are
many Yukawa interactions with the Higgs field which are gauge invariant,
leading to a plethora of dimensionless coupling constants. The electroweak
Yukawa sector for the three generations of charged fermions is

B ukawa = N Lidel, + N Q1 0°UL + N Qi ® D3, + h.c. (1.120)
where ® ~ (1,2, —1) is the Higgs doublet and ®¢ = ioy®*. After the Higgs
attains a vacuum expectation value

(@) = ( \ ) : (1.121)

v
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one simply finds that the resultant components of the electron, up and down
quark mass matrices are
mg,U7D — )\’3{2’30. (1.122)

The Yukawa coupling constants are )\%73 are dimensionless numbers. If
the Standard Model were to be a natural theory, we would expect all of
these constants to be of order 1. Evidently, given the measured masses for
the fermions, this is not the case. If we ignore quark and lepton mixing for
a moment and pretend the mass matrices are diagonal, then the component
m$ = X330 of the up quark mass matrix will correspond to the top quark
mass whereas mL = A\l1v will correspond to the electron mass. Given that
the top mass is approximately m; = 173 GeV and given that we know that
the Higgs vacuum expectation value must be equal to v = 174 GeV to yield
the correct W and Z masses, \3° is roughly one and is thus natural. However,
given the value for v and given that the electron mass is m. = 0.511 MeV,
this means that A{! is of order 107% and is thus unnaturally small. Similar
hierarchies follow amongst the constants associated with the other fermion
masses and given that the quark mixing angles are small, this situation does
not change when we account for quark mixing.

Compounding the fermion mass hierarchy problem is the addition of neu-
trino masses. It is now known that the sum of the neutrino masses is less
than about 0.3 eV [61) 62]. Hence there is an extra six orders of magnitude
difference between the electron mass and the neutrino masses, compounding
the problem. Furthermore, to generate neutrino masses we need to extend
the Standard Model as there is no right-chiral neutrino. If we introduce
right-chiral neutrinos along with the relevant Yukawa couplings to the Higgs
which generate Dirac masses for the neutrino, the fermion mass spectrum
now covers at least 12 orders of magnitude. We discuss neutrino masses and
the see-saw mechanism in the next section.

1.8 Neutrino Masses and the See-Saw Mech-
anism

As alluded to at the end of the last section, the discovery of neutrino mass
not only requires physics beyond the Standard Model but it also exacerbates
the fermion mass hierarchy problem. We now know that at least two flavors
of neutrino have mass via neutrino oscillations. From neutrino oscillations,
it is not possible to directly measure the masses my, my and ms of the
neutrinos but it is possible to measure the difference between the squares of
the masses of the neutrino mass eigenstates. From solar neutrino oscillations,
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we have been able to determine the squared mass difference between the
first and second generation neutrino mass eigenstates Am3, = m3 — m? =
7.507030 x 107°eV? [63]. We know from atmospheric neutrino oscillations
that the modulus of the squared mass difference between the second and
third eigenstates is [Am3,| = [m3 — m3| = 2.32%1%, x 1073 eV? [63].

Note that because we do not know the sign of Am2,, my could be either
less than or greater than ms. This means that we can have two types of
hierarchies for the neutrino mass eigenstates: we can have either the normal
hierarchy, where ms > ms > my, or the inverted hierarchy msy > ms3 > my.
It can also be the case that the neutrino masses are quasi-degenerate (m; ~
My ~ M3).

The easiest and most common way to give neutrinos mass is to include
three generations of right-chiral neutrinos which are singlets under the Stan-
dard Model gauge group. The simplest way to make the neutrino masses is
to simply add the Yukawa interactions

gV,Yukawa = )\ZJ[_/(I)CV;% + h.c. (1123)

This term simply yields a Dirac neutrino mass matrix, mp after electroweak
symmetry breaking,

m = \v. (1.124)

There is however a unique possibility for the neutrino given that it is charge-
less and the right-chiral component is a Standard Model singlet, which is
that we can also add a Majorana mass term. This term is written simply as

1 . —
5M”(V§)¢V}l + h.c. (1.125)

Hence, a key question with regards to neutrino mass and neutrinos in general
is whether the neutrino is a Dirac or a Majorana fermion. If for some reason
it turns out that M = 0, the neutrino is Dirac. Otherwise, the neutrino is
Majorana.

Adding a combination of Dirac and Majorana masses also yields a viable
mechanism for explaining the lightness of the neutrinos, called the seesaw
mechanism. The simplest and easiest version of it to understand is called the
Type I seesaw mechanism. Here, we simply add a combination of the Dirac
and Majorana mass terms as given above. This leads to a total 6 x 6 mass
matrix of the form

1 - c
5 7L VR) <nST ”Xf) (”L> + hee, (1.126)

D VR
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where here we have suppressed the flavor indices and where v, really stands
for (v}, v2,v3) and likewise for vz. After diagonalization, one finds that in

the mass eigenstate basis the resultant mass matrix is

1 — — Ic
E(V}/,Vﬁ) (]\gL ]\23) (Zf) + h.c, (1.127)
R

where M is the mass matrix for the mass eigenstates which turn out to
be predominantly composed of the left-chiral neutrinos and Mg is the mass
matrix for the mass eigenstates which are predominantly composed of vg.
One finds, in the limit that the Majorana mass terms are much larger than
the Dirac mass terms, that the left mass matrix is approximately

M~ —mpM'mk, (1.128)
and the right mass matrix is approximately

Mpr ~ M, (1.129)
with the eigenstates being approximately v} ~ vp — m%(M*)"1(vg)¢ and
Vi ~ vp + M~ ImE(vL)e. If we take mp and M to be real and deal with
the case with just one generation of SM fermions, the mass eigenvalues and
eigenstates simply reduce to my = —% for vy = vy — %2 (vg)* and mg = M
for v = vg + 52 (vp)¢. Thus, the mass of v} is suppressed with respect to
the Dirac mass by a factor of m/M. If this factor is small enough, it can
account for the smallness of the neutrino mass. For instance, if we take
M ~ 3 x 10" GeV and mp = m; = 173 GeV, we find that the mass for the
left Majorana mass eigenstate is around my ~ 0.1 eV.

We have in the last two sections outlined the basic problem with regards
to the fine-tuning required for the fermion mass hierarchy in the Standard
Model as well as the origin and smallness of the neutrino masses. In the next
section, we will delve into the problems of quark and lepton mixing.

1.9 Quark and Lepton Mixing

Quark and lepton mixing arises due to the fact that the mass eigenstates of
the various particle species are not the same as weak interaction eigenstates,
thus leading to charged currents involving different flavors when we shift to
the mass eigenbasis. Firstly, let’s look at quark mixing, which is described
by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. After electroweak sym-
metry breaking, as discussed before, we obtain mass matrices for the up
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and down quarks. The corresponding mass terms in the Lagrangian may be
written as
URMUUL + h.C, (1130)

and
DpMpDy, + h.c, (1.131)

where here Uy, p = (up g, cr.r,tr,r) and Dy g = (dr.gr, SL.r, br,.r) are tuples
containing the three generations of up and down quarks.
These mass matrices are bidiagonalizable, which means that they are
diagonalized by
My =V ;MyVyr,

_ . (1.132)
MD = VDRMDVDL7

where My p are the diagonalized mass matrices and the unitary matrices
Vu.pr and Vi pr are the left and right diagonalization matrices, defined by

U = VUL, (1.133)

DL - VDLDIL7 .
and

Ur = VunUk, (1.134)

DL = VDR'D/P,J .

where U p and D} p contain the mass eigenstates. To determine the CKM
matrix, we just need to know the left diagonalization matrices. Obviously
these can’t be determined from the diagonalization of My p but the matrices

M}, My p are

M My = Vi, M VYRV oMy Vi, = Vi, MMV, (1135)
MEMp =V, MLV RV - MpVp, = VI, MEMp VL.

Hence, we can determine Vi, and Vpy by calculating the eigenvectors of
MMy and M}, Mp.

Now let’s look at the charged current interactions in the quark sector of
the Standard Model. These appear in the Standard Model Lagrangian as

Lo = —%UL%DLWJ’: + hee,

NG

g —
_ _EU,L%LVJLVDL DLW + h.c, (1.136)

_9

V2

U,L'Y;LVCKMD/LWﬁ + h.c.
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The matrix derived just above is the famous Cabibbo-Kobayashi-Maskawa
matrix

Verxm = Vi Ve (1.137)

Given that Vi, and Vp are not the same in general, it is obvious that the
CKM matrix will have non-zero off-diagonal elements coupling the different
generations of SM quarks through the charge current interactions. In the case
of two generations, which was the case Cabibbo first considered before there
was experimental evidence for a third generation, all the complex phases of
Verxaw can be absorbed by redefinitions of the fields. In the realistic three
generation case, first treated by Kobayashi and Maskawa, there is always one
complex phase left over and this complex phase is a source of charge-parity
(CP) violation in the Standard Model.

The standard way to parametrize the CKM matrix is through three Euler
angles OGEM | 9SEM and 0GEM as well as the CP violating phase §, which we
represent as

1 0 0 C13 0 81367&; ci2 S12 O
Vekvr = |0 co3 sa3 0 1 0 —S12 c12 0
0 —S923 (23 —513611S 0 C13 0 0 1
C12C13 $12€13 size”
= —512023—0125323313@“S 012023—=5’125>’2:3$13€i(S S523C13 | ,
S128523 — 0120233136“s —C12523 — 812023513€i6 C23C13
(1.138)

where here ¢;; = cos (05;*")

and s;; = sin (05%M).

The quark mixing angles parametrizing the CKM matrix as well as the
CP-violating phase turn out to be small. Given it is also known that
S13 < S93 < 19, the alternative and popular way to parametrize the CKM
matrix is through the Wolfenstein form. Here, we expand the CKM matrix
in terms of the Wolfenstein parameters A\, A, p and 7, and to third order in

A the CKM matrix is approximately

1-2 A 2 AN (p —in) \
Voxkm = -\ — 4 AN? +0(\Y).  (1.139)
AN(1 —p—in) —AN? 1

According to the the PDG [63], the best fit for the Wolfenstein parameters
are A = 0.2253 4+ 0.0007, A = 0.80875:522 p = 0.13275:022 and n = 0.341 +
0.013, giving the most up to date data on the magnitudes of the CKM matrix
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elements as

’Vud’ ’Vw’ ’Vubl
WVerm| = | Vel |Ves| Vel | »
Vil Visl [Vl

0.97427 +0.00015  0.22534 +0.0006  0.00351F5-50015
= 10.22520 £ 0.00065  0.97344 =+ 0.0001 0.041275-0011

0.00867 1595029 0.0404+0:0011 0.99914610-000024
(1.140)
The corresponding Euler angles (in degrees) are 055M = arctan (Vs / Vi) =
13.027003, 0GEM = arctan (Vi /Vi) = 2.36700%, 05KM = arcsin |Vy| =

0.20170:0% and the CP violating phase (in radians) is § = arctan (n/p) =
1 20+0.05
-2Y_0.07-

Given that the lepton doublet couples to the SU(2) weak isospin subgroup
of the Standard Model in the same way as the quark doublet and given
that we now know that neutrinos have mass, there is a matrix analogous
to Vegwm describing the mixing of the various leptonic generations under
charged currents, which can be written

g —
LCC = _EEL’Y‘U‘NLWJ& + h.C,
_9
V2

_9

V2

where here £/, and N, are tuples containing the weak interaction eigenstates
for all the flavors of electrons and neutrinos respectively and E; and N}
contain the mass eigenstates. From the above, we have derived the definition
of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

By Vi Ve NLWE + he, (1.141)

E_,L’}/MVPMNsNE/WJI: + h.C,

Veuns = Vi, Ve (1.142)

where Vg is the left diagonalization matrix for the electron-type leptons and
Vi is the left diagonalization matrix for the neutrinos.

The PMNS matrix is unitary and like the CKM matrix may be param-
etrized with Euler angles 0LMNS gEMNS and 0LMNS and a Dirac CP phase &,
along with two additional Majorana CP phases v and [ which can be non-
zero only if the neutrinos are Majorana. Unlike the quark mixing angles,
two of the angles associated with the PMNS matrix are large so Wolfen-
stein parametrization is inappropriate in this case. The most general PMNS
matrix can be written
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/ r—id’ /i r i
1 0 0 s 0 sise cppe™™  spe” 0
/ / / /
Svi
/o i 1o iB r—id’
C12C13€ S12€13€ S13€

P B o o o S8 o
C12C93€ 5123233136(( ) )) S23C13
o B o o (648 /o
C12593€ 812€93513€ Co3C13

_ I i 1o o i o
= | S12C236 — 0123233136( (/ ))
1o gt o (0 ta
S12523€ C12C3513€

(1.143)

where here ¢j; = cos ( and s}; = sin (
The best fits for the Euler angles and Dirac CP phase for the PMNS
matrix according to current data depend on whether the neutrino mass

hierarchy is normal or inverted. According to [64], for a normal hierar-

chy the angles (in degrees) are §LMNS = 3361950 9EMNS — 8937018
OLMNS — 38 4713 and the Dirac CP phase (in radians) is ¢ /7 = 1.08702}.
For an inverted hierarchy, from the same reference, the mixing angles are
OEMNS = 33,6090, 9LMNS — 8 99044 9PMNS — 38 8*72 and the Dirac CP
phase is ¢’ /7 = 1.0975:35. There is no data with regards to the Majorana CP
phases since we are yet to determine if the neutrino is Dirac or Majorana

and the form of the neutrino mass hierarchy.

95MN5’) HSMNS)

The problems of quark and lepton mixing are to do with the fact that the
Standard Model has nothing to say about the ultimate origin of these types
of mixing and why the angles and phases parametrizing these mixing take on
the values that they do. All the electroweak Yukawa coupling constants of
the Standard Model have to be put in by hand, and if we did not know any
of the experimental data on the CKM and PMNS mixing angles, we could
potentially choose the constants such that mixing was absent. Furthermore,
we would like to understand why the quark and lepton mixing patterns are
so different, with the quark sector experiencing small mixing angles and the
lepton sector large mixing angles.

Before the outcomes of the experiments at Daya Bay [65], RENO [60],
Double Chooze [67] and T2K [68] it was not known whether 65 for the
lepton mixing matrix was non-zero. Prior to this, the experimental data were
consistent with 619 ~ 34°, 093 ~ 45° and 6,3 ~ 0°, leading to the proposal
that the PMNS matrix was approximately equal to the tribimaximal matrix
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VTB
2 1
o
Vg = _?6 ?3 721 . (1.144)
~% B

This led to much speculation as to whether there existed some discrete flavor
symmetry like A4 or T” that could be imposed on the Standard Model field
content, such that the above pattern was generated naturally. There are
some flavor symmetry models which also account for small quark mixing
and with minor adjustments we can generate the relevant deviations from
tribimaximal mixing in the lepton sector with the small ;5. We discuss
discrete flavor symmetry models in the next section.

1.10 Discrete Flavour Symmetries

As alluded to at the end of the last section, the approximately tribimaximal
structure of lepton mixing strongly motivated models with discrete flavor
symmetries. The first such model was based on the group A, and was pro-
posed by Ma and Rajasekaran [69]. Other models based on A4 can be found
in References [70} [7T], [72, [73]. Later models were also proposed based on
more complicated discrete groups like 7" (which is the double cover of Ay)
[74, 175, [76], A(27) [77,[78], S, [79,180, 81] and PSLy(7) [82,183]. A nice review
on discrete flavor symmetries can be found in Ref. [84]. For the purposes of
this section, we are going to give a brief overview the model proposed by He,
Keum and Volkas in Ref. [73] based on Ay. For the basic group theoretic
properties of Ay, please read Appendix [A]

In this A4 model, the full symmetry group is SU(3). x SU(2); x U(1)y X
Ay x U(1)x, where U(1)x is an auxiliary and non-gauged symmetry, which
is usually taken to be a global U(1) symmetry, which forbids unwanted op-
erators, as we will discuss later. In this model, an A4 triplet Higgs field
® which couples to the charged fermions induces the breaking A, — Cj,
ensuring that the CKM matrix is equal to the identity at tree-level, while
another A, Higgs triplet x couples to neutrinos and performs the breaking
Ay — 75, leading to a tribimaximal form for the PMNS matrix. Small angles
for the CKM matrix are then generated radiatively through cross-talk of the
two sectors, although the coupling of ® and y leads to a vacuum alignment
problem which we will discuss in due course. The SM fermions are assigned
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to the following SU(3). x SU(2); x U(1)y x A4 representations,

4 1
UREBUIR@U;{ZN(37175)(1@1/691”)7 QN(3727§)(3)’
2
@ dp®di~ (3,1, -10101),  L~(1,2,-1)@E), (9
er@ep@en~(1,1,-2)1a 1 ®1"), vr ~ (1,1,0)(3),

and the scalar content of the theory is taken to be
o~ (1,2,—-1)(3), o~ (1,2,-1)(1), x ~ (1,1,0)(3). (1.146)
The G ® X invariant Yukawa Lagrangian is then

ﬁyuk :/\u(@q))luR + A;(@(I))lxu}% + )\Z(@@)luu}z
+ 2a(Q)1dr + Ny(QD) v dfy + Nj(QP)1vdy (1.147)
e(f~)1eR+Xe(f<i>)1/e'§+ Xé(fé)lue’R .

+ A
+ A (Lvr)16 + M [TR(ve)], + A\ [TR(vR)], X + hec,

where ® = igy®*.

The aforementioned U(1) x symmetry is present in the Yukawa Lagrangian
above and under this symmetry, L, eg, €, €}, and ¢ have a charge X = +1
while all other fields have X = 0. This forbids Lvz®, which is a term we do
not want so that we can get the desired structure for the neutrino mass ma-
trix. This Abelian symmetry is anomalous and cannot be gauged, meaning
that this symmetry must be broken explicitly to a discrete group that still
prevents the unwanted term in order to get rid of the phenomenologically
disallowed Nambu-Goldstone boson.

Let us first analyze the charged fermion sector. Let f index all three
types of charged fermion, that is f = u,d,e. The resultant mass matrix for
the fermion f is

/\f’Ul val )\}Ul fR
(fio, for, for) [ Asva wXjvg w?Ajvs 7|+ hc (1.148)
Apvs wNpug - wfus fr

where here w = ¢?™/3 as noted in Appendix [A| and (®) = (vi,vs,v3) is the
VEV for ®. Here, 1, 2 and 3 denote the components of the A, triplet fermions.
For a certain parameter choice, one can show that the VEV pattern

V] = Uy = U3 =, (1.149)
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which induces the breaking A; — (5 is a global minimum of the self-
interaction potential for ® (for the moment assume the cross-talk between
the different Higgs fields are switched off). In this special case, the mass
matrices for the charged fermions My can be shown to be of the form

V3o 0 0
M; =U(w). 0 V3Xou 0 : (1.150)
0 0 V3

which in turn implies that the left-diagonalization matrices Vg, Vi and
Vpr are all equal to the unitary matrix

1 1 1
1
Uw)=— 1|1 w w?]. 1.151
@=g(t e v (1151

Immediately, one sees that the CKM matrix is precisely the identity matrix
at tree level
Verm = Vi Voo = UW)TU(w) = 1. (1.152)
For the model to work, we assume that ® does indeed take the VEV pattern
of Eq. [1.149
The neutrino sector is totally different since it couples to ¢ and y and we
will assume y to attain a rather different V E'V pattern to that of ®. The
Dirac mass matrix is generated by the term (L.vz)1¢ and after ¢ attains a
VEV (¢) = vy, the Dirac mass matrix generated is simply proportional to
the identity matrix
MP = X\vy1 =mP1. (1.153)
There are two contributions to the Majorana mass matrix for the neutri-
nos: the bare Majorana mass term M [Ug(vg)¢]; and the contribution coming
from the Yukawa interaction with x, A\ [Zr(vg)“]s,.x. In contrast to the VEV
pattern for ®, we give x the pattern

(x1)=(x3) =0,  (x2) =v, #0. (1.154)

After breaking with the above VEV pattern, the Yukawa interaction

M [7r(VR)¢]3,.x generates non-zero 1—3 and 3—1 components in the Majorana
mass matrix equal to M, = A, v,. Thus the full 6 X 6 neutrino mass matrix
in the (11, var, var, (1R), (12r)S, (V3R)C) basis is

0 0 0 mP 0 o0
0 0 0 0 mP o
0o 0 0 0 0 mP
v 1.155
mP 0 0 M 0 M, (1.155)
0 mP 0 0 M 0
0 0 mP M, 0 M
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Thus the effective left Majorana mass matrix is

M2 MM,

mp) [ 0 —3pom
My = -MPM (MP) = — 2= 0 1 0 . (1.156)
M MMX 0 M2
oz TEEsE

The left diagonalization matrix is simply the orthogonal matrix

1 1 0 -1
Vwe=—7=[0 v2 0], (1.157)
V2 1 0 1
and thus the resultant PMNS matrix is
2 1
76 7§ 0i7r/6
Veuns = VELVNL = U(W)TVNL = _\/ig \/ig —6\/5 (1.158)
W2 w2 e—in/6
V6 V6 V2

Thus we have successfully reproduced a tribimaximal form for the PMNS
matrix at tree level.

With the combinations of VEV patterns for ®, A4 is completely broken
since ® breaks the S generator and x breaks the T' generator. Hence, once
we turn on interactions between ® and Yy, effects that break the C's group left
unbroken by ® will be communicated to the charged fermion sector, while
effects that break the Z, group left unbroken by x will be communicated to
the neutrino sector. This means that in the quark sector, there will be cor-
rections to the tree-level result of Eq. and thus small mixing angles will
be generated as required. Further, in the neutrino sector, there will be cor-
rections to the tree-level PMNS matrix in Eq. and thus deviations from
tribimaximal mixing. In particular, there will be a non-zero #,3 generated
for the PMNS matrix.

Unfortunately, the cross-talk between two different symmetry breaking
sectors also has the unwanted consequence of introducing a vacuum alignment
problem. With interactions between the two triplets turned off, one can
easily choose parameters such that the VEVs that we have chosen for ® and
x are indeed global minima of their respective self-interaction potentials.
However, when we turn on interactions this is no longer guaranteed [73,
71]. When we included terms such as (®T®)y/(xx)1s, after x condenses,
® attains a soft C3-breaking mass term of the form m?(®'®);» which, if
significant, potentially renders the Cs-preserving VEV unstable. Likewise
there are other interactions involving non-trivial A4 products of ® and x
which will generate soft Zs-breaking terms for y. Furthermore, minimization
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of the potential yields a larger number of independent equations than known
vacuum expectation values for the triplets. This means that to get the desired
vacuum alignment we have described above, we must fine-tune the theory.
This usually means setting the coupling constants of the most of the troubling
cross-talking interactions to zero.

There are several ways to resolve the vacuum alignment problem. The
first approach is the one made at the end of Ref. [73]: to make the theory
supersymmetric so that the undesired terms are forbidden by holomorphy
and renormalization constraints on the superpotential. Another is to use
additional discrete symmetries forbidding the interactions [85]. Yet another
is to exploit the physics of extra dimensions, by localizing the flavons on
different branes or by splitting their extra-dimensional profiles with very little
overlap so that the interactions are naturally eliminated or very suppressed
[86], 87, [88]. It is this last possibility that we will discuss and implement later
in this thesis, in a domain-wall brane model based on SU(5) x Aj.

1.11 Models of Flavor in Extra Dimensions

As we observed in the previous sections on extra-dimensional models in-
cluding domain-wall braneworld models, coupling constants such as those
involved in the Yukawa sector of the Standard Model are dependent on over-
lap integrals of the profiles of the particles involved in the interaction. For
Yukawa interactions, the relevant overlap integral is one for which the in-
tegrand is the product of the profile for the Higgs and of the profiles for
the left and right-chiral fermions involved. It is often the case that these
profiles depend exponentially on the relevant parameters of the underlying
extra-dimensional theory, such as the 5D bulk masses of the fermions as we
have seen from the split fermion mechanism [19]. Thus, with models based
on large extra dimensions and warped RS models proposed it was natural to
wonder whether the fermion mass spectra could be accommodated naturally
in these models.

The RS1 model provides a natural framework for approaching the fermion
mass hierarchy problem. In the original RS1 model, the SM fermions were
simply placed fundamentally on the IR brane. This means that one would
have to essentially perform the same fine-tunings in the theory localized to the
IR brane. However, Grossman and Neubert [I7] as well as Gherghetta and
Pomarol [16] suggested the possibility of allowing the fermions to propagate
in the bulk. It can be shown that the bulk Dirac masses for the 5D fields
containing the SM fermions can be parametrized by a dimensionless number,
which is usually denoted by ¢, multiplied by the AdS curvature scale k. It
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turns out that for ¢ < 1/2, the fermion zero mode is localized near the IR
brane, for ¢ > 1/2 it is localized near the UV brane and for ¢ = 1/2 the mode
is delocalized and evenly distributed throughout the bulk. It was shown in
[18] that the fermion mass hierarchy and quark mixing could be generated
by choosing a set of these dimensionless numbers which are all of order one
and thus allowing the fermions to propagate differently in the bulk and be
localized to different branes.

As we have mentioned in the above section, the split fermion mechanism
can be utilized to generate hierarchical fermion masses. A simple application
of this mechanism was shown to be sufficient to account for the fermion mass
hierarchy in Ref. [89], for CP violation in 6D in Ref. [90] and for neutrino
masses in Ref. [91].

It is also quite natural to consider combining the physics of extra dimen-
sions with those of discrete flavor symmetries to not only resolve the problems
of quark and lepton mixing as well as the fermion masses but also to resolve
problems associated with each approach. Altarelli and Feruglio first pro-
posed an RS1 model with a discrete A, flavor symmetry and an SM gauge
group, and they resolved the vacuum alignment problem by putting the Ay
triplet flavons on different branes [86]. It was further shown by Kaddosh
and Pallante that this problem could still be solved even when one allows
the fermions and scalars to propagate through the bulk: in fact, they sup-
press the unwanted operators while still allowing enough cross-talk between
the two sectors coupling to the different A4-triplets to generate small quark
mixing angles and a CP phase [88]. Some other models combining extra
dimensions and discrete flavor symmetries are given in Refs. [87, 02] 03, 04].

In Chapters [2] and 3] we will exploit the split fermion and split scalar
mechanisms to show that the SU(5) domain-wall brane model given in
Ref. [23] and its extension to include an A, flavor symmetry are viable models
with respect to fitting the fermion mass spectra, including quark and lepton
mixing. We will now give some of the background needed for understanding
intersecting domain-wall brane models in the next section, which constitutes
the second half of the thesis.

1.12 Models with Multiple Domain Walls

If we are to consider extending the domain-wall brane framework to more
than one additional dimension, we need to consider either higher dimensional
solitons (like strings) or we need to consider introducing more than one do-
main wall. For the former, we refer the reader to Refs. [95], 96] which discuss
the localization of gravity on strings in 5+1D spacetime. In this section, we
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consider the latter option.

In first motivating models with multiple domain-wall branes, it is en-
couraging to note that realistic models with multiple fundamental branes
have been constructed. In particular, Arkani-Hamed, Dimopoulos, Dvali
and Kaloper showed in Ref. [33] that the RS2 model could be extended to
4 + n dimensional spacetime by localizing gravity to the intersection of n
fundamental 4 +n — 1-D branes. Some higher dimensional generalizations of
the RS1 scenario were also considered in Refs. [97, 08]. In Ref. [99], fermion
localization was discussed. Thus, the fact that there are some realistic mod-
els with fundamental branes in 5+1D and higher encourages us to consider
the same for domain-wall brane models.

If one wants to introduce a second domain wall, there are two possibilities.
The first is that of nested domain walls, which was first considered by Morris
[T00] and also treated in Ref. [I01]. Morris considered a Zs x Z; model with
two scalar fields,  and , with the potential

1
4

1

4/\XX4. (1.159)

1 1
A" =) + S (1 = 007 + S +

Vn,x) = 5

One can show that for a certain parameter choice, a solution to the resultant
Euler-Lagrange equations is of the form

n(y) = vtanh (ky), x(y) = Asech (ky), (1.160)

which is just a kink-lump solution like those discussed previously. In Ref.
[T00], Morris showed that, given the second Z, symmetry implies that there
are two discrete vacua Y = +A at y = 0, there existed solutions in which
X interpolated between these vacua along y = 0. Furthermore, for the same
parameter choice yielding the kink-lump solution in Eq. these solutions
satisfy the boundary conditions

n(y, z = £o0) = v tanh (ky),
X(y, z = £o0) = £ Asech (ky),

1.161
n(y = too, 2) = £, ( )

X(y = £00,2) =0,

so along the lines y = 1y where yo is a constant, y interpolates between
x = —Asech (kyo) at z = —oo and x = +Asech (kyy) at z = +oo. Thus,
along a line y = 1o, x forms a domain wall. The height of the vacua of this
domain wall is maximized in the center of the domain wall generated by n
(ie. y = 0) and decreases to zero as y — = 0o, where the n approaches
its mimima. Hence, x generates a nested domain wall which is localized to
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the defect formed by 7, and the entire system of defects formed by n and
X is known as a domain ribbon. One can then consider localizing fields as
well as gravity on a domain ribbon. A generic treatment on the problem of
localizing gravity on a domain ribbon was given in Ref. [102].

An alternative approach, and the one we will deal with in the later chap-
ters of this thesis, is that of intersecting domain walls. Let’s now take what
is essentially the same potential as before but now let’s choose the region
which corresponds to x being tachyonic and rewrite the potential as

1

WO - 3P, (1162)

1 1
V(n, X) = 1%(?72 - U%>2 + 5/\nx(772 - U%)(XQ - Ug) +

with all of the quartic couplings chosen to be positive. Now there will be
four vacua of the theory, n = £v;, x = *vs. One can imagine forming a
defect for which the solution interpolates between these four vacua along the
corners of a quadrangle at the boundary at infinity. For example, we could
take this quadrangle to be the square shown in Fig. and demand that
the boundary conditions of the solution along the square at infinity are

n(y, z = £oo) = vy tanh (ky),
— 400) = +

X(y, 2 = %o0) = vy s

n(y = £oo, z) = Fvy,

X(y = £00,2) = vy tanh (I2).

When one solves for n and y, one naturally will obtain a solution for n
which interpolates between +v; along the y-axis and a solution for xy which
interpolates between +wvy along the z-axis. Thus, such a solution consists of
two domain walls which intersect. One can now consider localizing fields to
the intersection of the two domain walls.
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Figure 1.11: A graph of the boundary conditions satisfied by the fields gen-
erating the intersecting domain walls along a rectangle at infinity in the x-y
plane. The solution for the fields converges to the four vacua of the theory
at each corner.

This situation described above can be generalized to a system with n
vacua being mapped to the n corners of an n-gon at infinity. In this case
there are n walls interpolating between these distinct vacua along the edges
of the polygon at infinity and the solution can be thought of as n half-walls
extending from the core of the defect to each of the vacua at infinity. Such
a string-like defect is known as a domain-wall junction. An analytic solution
for a domain-wall junction was first given in [I03]. A rare exact solution for
two intersecting walls similar to the situation described above was found in
the context of an N = 2 supersymmetric non-linear sigma model [104]. An
intersecting wall solution found numerically was also given in Ref. [105].

We will deal with a model involving intersecting domain walls later in
this thesis.

1.13 Outline of the Thesis

Starting from the original ideas of Kaluza and Klein, we have discussed the
origins as well as the formulations of the main ideas and elements involved in
the construction of domain-wall brane models. This discussion described the
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construction of a domain wall as well as the localization of scalars, fermions,
gauge bosons and gravity, and culminated with the formulation of the SU(5)
domain-wall brane model of Davies, George and Volkas [23]. This domain-
wall brane framework has shown a lot of promise given that the desired
particle content is present in the 341D effective field theory on the wall, but
to construct a realistic model we must be able to reproduce the parameters
of the Standard Model as determined by experiment. Hence, the first half of
the thesis explores how to generate the fermion mass hierarchy as well as the
CKM and PMNS mixing angles in the context of domain-wall brane models.
Secondly, we would like to know if the 4+1D domain-wall framework can be
extended and generalized. The latter half of the thesis seeks to extend the
framework by adding another dimension and reducing a 5+1D theory to a
341D one by localizing fields to the intersection of two domain-wall branes.

In Chapter [2, which is based on the work in Ref. [1], we investigate
whether the can naturally account for the fermion mass hierarchy as well as
quark and lepton mixing. Exploiting the split fermion mechanism which was
discussed previously and which arises naturally in the SU(5) domain-wall
brane model, we show that the fermion mass hierarchy can be resolved and
that a realistic Cabibbo angle can be reproduced, suggesting that the CKM
angles can also be accounted for. However, we find that the same parameter
region which yields realistic fermion masses and quark mixing cannot yield
realistic lepton mixing and we give reasons why this is the case.

The failure to obtain lepton mixing in the ordinary SU(5) model in the
desired parameter region motivates us to extend the model to include a dis-
crete flavor symmetry. In Chapter , which is based on Ref. [2], we extend
the basic SU(5) model to one based on SU(5) x Ay. In doing so, we assign
the fermions and Higgs scalars to appropriate representations of SU(5) x Ay
and we show that, with two of the Higgs scalars in the triplet representation
of A4 inducing the breaking patterns Ay — C3 and Ay — Z5, one can gen-
erate a realistic PMNS matrix from the properties of A4 whilst still utilizing
the split fermion mechanism to yield the fermion mass hierarchy and the
CKM mixing angles. Furthermore, we can also exploit the splitting of the
Ay-triplet scalars to resolve the vacuum alignment problem which plagues
many models based on discrete flavor symmetries in 34+1D.

Chapter {4]is the start of the second half of the thesis and it is based on
Ref. [3]. In this chapter, we deal with a basic scalar field theory with four real
scalar fields transforming under Z5 x Zy symmetry in 5+1D flat Minkowskian
spacetime which can generate two intersecting domain walls along with fields
which condense in the form of a lump parallel to each wall. We find that
there exists an analytic solution for a special region of parameter space in
which the walls are perpendicular. We also find that in the same region of
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parameter space that there exists a whole set of energy degenerate solutions
in which the walls intersect at an angle less than ninety degrees and a solution
in which the walls are parallel. Although this seems troubling, we find that
there exists a conserved topological charge which implies that none of the
solutions in which the walls intersect can evolve to the solution where the
walls are parallel, and we also suggest how the perpendicular solution may be
made energetically favorable to the solutions for which the intersection angle
is less than ninety degrees by perturbing to a nearby region of parameter
space. After assuming that the perpendicular solution is stable, we show how
chiral fermion zero modes and scalars can be localized to the intersection and
we calculate the profiles of the localized modes.

Having constructed an intersecting domain-wall solution and localized
fermions and scalars, we are then motivated to consider how to localize
gauge bosons. Chapter [5, based on Ref. [5], extends the work in Chapter
by considering an application of the Dvali-Shifman mechanism, called the
intersecting Clash-of-Symmetries mechanism, which can be naturally imple-
mented in that particular model. In this mechanism, we give gauge charges
to the fields which form lumps in the interior of the domain walls, breaking
a non-Abelian gauge group G to two different subgroups H; and H, on each
wall. This leads to H; and Hs being localized to the respective walls by the
Dvali-Shifman mechanism. On the intersection of the domain walls there
is then further breaking to H; N Hy and we conjecture that subgroups of
this remaining group are localized if they belong inside larger non-Abelian,
confining subgroups of both H; and H,;. We then go on to discuss how we
can use this mechanism to localize the Standard Model gauge group starting
from an SU(7) gauge theory in 5+1D.

Chapter [6]is our conclusion. We summarize the main findings of the thesis
and we briefly discuss the areas of both 441D and 541D domain-wall brane
models which require further work. We conclude that domain-wall brane
models in five and six dimensions provide a viable framework for extending
the Standard Model and that these models can reproduce many aspects of
our universe.



Chapter 2

Fermion masses and mixing in
a 4+1-dimensional SU(5)
domain-wall brane model

As described in Sec. and Sec. of the introduction, in the standard
model (SM), three of the most open problems are how the fermion mass
hierarchy is generated, the origin of small mixing angles in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix and near tribimaximal mixing in the
lepton sector. With neutrino masses now known to be nonzero but under
1 eV, the mass hierarchy has a spread of at least 12 orders of magnitude,
given that the top quark has a mass of roughly 170 GeV. Amongst approaches
used for solving these problems are grand unified theories (GUTSs), higher
dimensional operators, and flavor symmetries.

As we have also seen in the introduction, extra-dimensional models, such
as the Arkani-Hamed-Dimopoulos-Dvali (ADD) model [13], and the two
Randall-Sundrum (RS) models [15], 14], have become popular due to their
ability to resolve various hierarchy problems. The ADD and RS1 frameworks
solve the hierarchy problem between the Planck scale and the electroweak
scale, which is of a similar order of magnitude to that of the fermion mass
spectra.

In RS2 models the hierarchy problem is not solved by extra-dimensional
physics, but the split fermion idea of Arkani-Hamed and Schmaltz [19] can
be used to generate fermion mass hierarchies from exponentially sensitive
overlap integrals of extra-dimensional profile functions. Similarly, the RS1
setup can address this problem by allowing fermions to propagate in the
bulk and thus acquire non-trivial profiles [17, [16]. The idea is that the 34+1D
fermion zero modes are in general localized around different locations along
the extra dimension, with dimensional reduction then producing an effective
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3+1D Yukawa coupling constant that is the product of the 4+1D Yukawa
coupling constant and an overlap integral involving profile functions. When
the profiles are split, the overlap integrals are suppressed, leading to small
3+1D effective Yukawa coupling constants. This fits in well with the fact
that quark and lepton masses, except for the top quark, are suppressed with
respect to the electroweak scale. Scalar bosons will also in general be split,
a phenomenon we shall use to suppress colored-Higgs-induced proton decay
(see Refs. [106], 42 43, 107, 108, 109, 110, 111, 112, 113] for more on the
use of the splitting of fermions and bosons in extra dimensions to generate
fermion mass textures and to suppress proton decay and other baryon number
violating processes).

As we observed in Sec. [1.6] the SU(5) 4+1D domain-wall brane model
proposed by Davies, George and Volkas (DGV) has many of the essential
components required for generating a realistic Standard Model localized to
a brane. Scalars and fermions are easily localized and gauge bosons are
localized via the Dvali-Shifman mechanism. Gravity can also be localized.
Under the activation of the Dvali-Shifman mechanism in this model, SU(5)
is broken spontaneously to the SM on the wall. In this RS2-like model,
the split fermion idea arises naturally, and thus the usual SU(5) quark-
lepton mass relations are avoided. This suggests the possibility to generate
hierarchical fermion mass spectra as well as suppress colored Higgs-induced
proton decay from this split mechanism. To show this explicitly is important,
since if domain-wall brane models are to be of any use to describing our
341D universe at low energies, they must be able to naturally generate its
phenomenology.

Hence, in this chapter, we will utilize the split fermion mechanism arising
in the DGV model described in Sec. [LL6 to account for the fermion mass
hierarchy as well as the mixing angle problems. It will be shown that the
mass hierarchy problem can be solved using this method, and that the mass
hierarchy and the Cabibbo angle can be accounted for in the two-generation
case with Majorana neutrinos. We also explain why tribimaximal mixing
cannot be accounted for without fine-tuning, and that the addition of a
flavor symmetry therefore seems necessary. We are thus led to the view that
extra dimensions provide an excellent way to qualitatively understand mass
hierarchies, but they are insufficient to explain all the observed mixing angle
patterns. The reason the flavor problem has proven to be so difficult may
be because more than one ingredient is necessary: extra dimensions on their
own, and flavor symmetry on its own, are only partially successful.

Given that we gave a rather thorough account of the DGV model in
Sec. [I.6] including the classical domain-wall solution described by Eq. [1.95]
we will not repeat most of the details of that model in this chapter. The
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background domain-wall solution as well as the scalar particle content is
unchanged from Sec. [1.6l We will, in the next section, give some results
regarding the minor changes we have made to the model as it was originally
proposed in Ref. [23], such as fermion localization when we extend the model
to include all three generations, the addition of singlet right-chiral neutrinos
and their localization properties, as well as the effects of adding a term which
generates a Majorana mass for a right-chiral neutrino. We also outline the
parameter choices we use in the Higgs sector in order to perform the analysis
of the fermion mass spectra. Section then analyses the parameter space
of the model to produce the required mass and mixing angle hierarchies, with
the aforementioned caveat for tribimaximal lepton mixing. Section [2.2]is the
conclusion of the chapter.

2.0.1 Localizing the charged fermions and the left-chiral
neutrinos: the case with more than one genera-
tion

We have already covered the localization of one generation of the charged
SM fermions via coupling to the background fields n and x in Sec. In
this section, we review the differences when we generalize to more than one
generation of fermions.

In the case that we have m > 1 generations of fermions, Ypy is general-
ized to

Vo = h T W T bl Tr (Bl )20, Tr(Wpy), (2)

where ¢ and j are summed from 1 to m. Hence, in the general case, there
can be intergenerational mixing between the quarks and leptons through the
interaction with the background. The background couplings h,, and h,,
have now become 3 x 3 Hermitian matrices over flavor space and need not
commute. To solve the equations, we look for zero mode solutions of the
form,

Uiy (@,y) = iy @)ty (@), (2.2)
where the 17, (x) are massless left chiral 3+1d fields for n = 5,10. Putting
this into the 4+1D Dirac equation results in the matrix differential equation
for the profiles f,y, which are now 3 x 3 matrix valued functions of y,

dfn;y(y) + n(y)hm]fny(y) + §KX1 (y)hnxfny(y) —0. (2.3)

52
The case where h,, and h,, do not commute, which leads to a natural real-
ization of the twisted split fermion scenario discussed in Refs. [42] 43|, cannot
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be solved analytically, and so for the sake of simplicity we will only search
the parameter space that obeys,

[Py, Bny] = 0, for n = 5, 10. (2.4)

Since both the matrices are required to be Hermitian as well, they are thus
simultaneously diagonalizable, so that for some unitary matrices S,,,

SphuySY = diag(ht, , h? e R,

P 2.5
thnXS;rL = dzag(hix, hixa Ty h:LnX)7 ( )

where the hﬁm and hflx are understood to be the eigenvalues of hy, and hy,
respectively. Choosing to localize left-chiral zero modes for Wg 4 is then
equivalent to demanding that all the eigenvalues of h,,, are positive definite.
Solving the 5D Dirac equation then yields the general solution for the profiles,

fnY (y) = S;rzdiag(C}LYeibhy(y% nge*biy(y)7 e 7CgYeib$Y(y))VnY7

i Ti 37 ky (2.6)
wy (Y) = hy, log (cosh (ky)) +Y ghnx arctan | tanh (7)

Here we have written the multi-generation solutions in terms of the solutions
for the one generation case. The C?, are normalization constants, chosen
such that the profile matrix f,y (y) satisfies the normalization condition,

/f;[Y(y)fnY(y) dy = 1. (2.7)

The parameters hi, and R, are the non-dimensionalized versions of hi, and
By, and are defined in the same way as the non-dimensionalized constants
from the one generation case were in Eq. The V,,y are unitary matrices
which are present since the solution is unique up to matrix multiplication.
The V,,y, in fact, correspond to a choice of which 341D states are the domain
wall eigenstates and thus localized to the wall. Unless otherwise stated, we
will assume these to be the same as the weak interaction eigenstates, and we

will assume that S,, = V,,y = 1.

2.0.2 Adding singlet right-handed neutrinos

In order to generate neutrino masses, we need singlet, right-chiral neutrinos.
We label these as N* and under the SU(5) and discrete reflection symmetries,
they transform as

Nt~ 1,

‘ . 2.8
Nt — —iI°N*, (28)
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To localize the right-chiral neutrinos, we need to couple them to the
background. As they are gauge singlets, they cannot couple to the adjoint
Higgs x. Thus we can only add,

— hil NiN'n, (2.9)

to Ypw. The relative minus sign in front of the Yukawa interactions for
the N is introduced because for these fields we want localized right-chiral
zero modes which represent the right-handed neutrinos in the effective 341D
theory, as opposed to left-chiral zero modes. This allows us to treat hi, in
the same way as hs, and hig,.

Writing down the 5D Dirac equation for the N ¢ and demanding that
Ni(z,y) = fx(y)N7(z), where the N’(z) are 3+1D right chiral zero modes,
in similar fashion to the charged fermions, leads to the profile,

1 2
hlnv

fN(?J) _ Sidzag(clle—y log (cosh (ky))’ 0126_ 71— log (cosh (lcy))7

oL (2.10)
. 701”6_ 1kn log(cosh(ky)))v'N7

where S is again a choice of basis matrix for the 5D fields, Vy is a change of
basis matrix for the 4D fields, the C} are normalization constants, and the
hiln are the positive definite eigenvalues of the Yukawa matrix h,. In the
later analysis, we will also assume that S; = Viy = 1.

2.0.3 Localizing the electroweak symmetry breaking
Higgs boson

We have already discussed in detail the localization properties of the elec-
troweak Higgs as well as that of the colored Higgs scalar in Sec. [I.6] We
will not repeat the details of that analysis here. In this section, we choose
example choices for the non-dimensionalized parameters given in Eq.

Note that it is possible for more than one KK excitation of the Higgs
doublet to have nonzero vacuum expectation values, thus naturally generat-
ing a multi-Higgs doublet model on the brane. However, for simplicity, we
will choose parameters such that only the electroweak Higgs has a tachy-
onic mass, and not its KK modes, and we will also have a bound state for
the colored Higgs. For the purposes of this chapter, we will use three such
choices.
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For the first choice,

pig = k2,
2
M:0§f7
As =:f§§, (2.11)
2042
Ar = vA '’

the mass eigenvalues are m? = —0.510k?, and m? = 0.380k%. The graphs of
the profiles are shown in Fig. [2.1]

PucY)
08F ,~

o6f | )

0.4 ;// \

o L S =7

4 -2 2 4

Figure 2.1: Profiles for the colored Higgs, p., and electroweak Higgs, p,,, for
the parameter choices given in Eq. [2.11]

For the second choice,

pig = 65k,
0.5k
A==,
10k
As = —5 (2.12)
10k
o=
500k
Ay =

vA
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the mass eigenvalues are m2 = —16.8k?, and m? = 13.2k*. As can be seen in
Fig. [2.2] this leads to profiles which are much more localized than those for
the first choice of parameters. As we will see, this has important consequences
for the spread of domain wall Yukawa couplings and for the suppression of
some of the decay modes for colored Higgs induced proton decay.

PycY)
14F
12 I
tof )
0.8;— | |

" 06F | \
04F \
d_z 7 / \

Figure 2.2: Higgs profiles for parameter choices given in Eq. [2.12

For the third choice,
pa = 97700k,
_ —75000%k?

4 — )

02
1500042
As=—p (2.13)
—750000k2
Ao =
B 2000052
T pA
The resultant squared-masses for the lowest energy modes are m?2 = —296k?
and m? = 2.25 x 10*k%. As we can see in the graphs of the profiles in Fig. ,
for this parameter region, the electroweak Higgs is highly peaked near the
brane at y = 0, while the colored Higgs is more delocalized and substantially
displaced from the wall. This parameter choice exploits the property of the
Higgs sector that effective kink and lump couplings Ay and By are not
the same for the colored and electroweak Higgs. As we will see, this kind
of parameter choice can lead to suppression of all decay modes for colored
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Figure 2.3: Higgs profiles for parameter choices given in Eq. [2.13]

Higgs induced proton decay, and ensure that the partial lifetimes for these
modes are all many orders of magnitude above the current lower bounds.

Note that the Higgs vacuum expectation value, (¢,,), is not uniquely de-
termined by the constants which determine the Higgs profile. By dimensional
reduction of the action,

S = /d5:c (OM @)1 (D) ®) — Vs, (2.14)

one can show that the effective electroweak symmetry breaking potential is

Vew (6w) = X (¢],00)° +mi,0l,00, (2.15)

where
N = Ag/pi(y) dy. (2.16)
Thus the VEV of the Higgs doublet is

—m?2

o) =\ 55

— (2.17)
- \/2A3 T o) dy

and so whatever we choose for the other constants, we can always adjust A3
appropriately so that we get the correct VEV of 174 GeV.
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2.0.4 Generating mass matrices for the charged fermions

The electroweak Yukawa Lagrangian, Ys, from [23] which generates masses
for the charged fermions is generalized to

Ys = WIUE)CW + WP (D)0, W, @+ huc, (2.18)
for m generations of fermions. Here, lower case Greek letters are SU(5)
indices and the lower case Roman letters indicate flavor.

The h_ terms generate mass matrices for the down-type quarks and elec-
tron type leptons, while the h, terms generate a mass matrix for the up-type
quarks. Extracting the components from each term which generate 3+1D
masses and performing dimensional reduction, one finds the mass matrices
to be

M, =40 / Fl Wby fo(w)pu(y) dy,
My =7 [ 1, - fow)n () dv (2.19)
M, = %E / f - fi(y)po(y) dy,

where p,,(y) is the profile of the electroweak Higgs doublet which is embedded
in &, and v = 174 GeV is the vacuum expectation value of the electroweak
Higgs field attained on the brane.

Converting to dimensionless quantities, and defining the non-dimens-
ionalized electroweak Yukawa couplings by

?* N k%m, (2.20)
h_ =k2h_,
we see that these mass matrices can be rewritten as
M, =40 [ 7L, () Folu)iulw) di,
Ma= 220 [ Tl h-Fow)puly) 43 (2.21)

There are some important consequences of the above forms of the mass
matrices, which depend on overlap integrals of the profiles for the left and
right chiral fermions and the electroweak Higgs. Firstly, the overlap integral
dependence means we avoid the usual incorrect mass relations like m, = my
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which are characteristic of ordinary 3+1D SU(5) models with a Higgs quin-
tet. This is also the reason why we do not need a Higgs belonging to the 45
representation of SU(5) containing an electroweak Higgs triplet to get the
Georgi-Jarlskog relations [114]. Thirdly, since the fermions are split accord-
ing to their hypercharges, and the splittings are dependent on the background
couplings, we can potentially generate the fermion mass hierarchy and mix-
ings by splitting the fermions appropriately so that the overlap integrals are
in the desired ratios. It will be shown in a later section that this can be done.

2.0.5 Generating Dirac neutrino masses

To generate Dirac masses for the neutrinos, we need to add Yukawa interac-
tions involving the Wi, which contain the left handed neutrinos, the N, which
contain the right handed neutrinos, and ® which contains the electroweak
Higgs. The correct terms to add to Ys which are both SU(5) invariant and
respect the reflection symmetry which preserves the topological stability of
the domain wall are L

(W)YIWLONT + h.c. (2.22)

Reducing these terms to their SM components, and integrating out the
extra-dimensional dependence, one finds the resulting Dirac mass matrix for
the neutrinos to be

=5 [ 11, (0)hsfiw)paly) dy (2.23)
Defining the dimensionless neutrino Yukawa couplings as
hs = k2hs, (2.24)

and changing to non-dimensionalized quantities, we can rewrite the Dirac
mass matrix for the neutrino as

nn:@/ﬁgw%ﬂwm@ww (2.25)

2.0.6 Generating Majorana neutrino masses

Let us consider one generation first. To generate a Majorana mass for the
neutrino, we need to add terms to the Lagrangian that will dimensionally
reduce to terms proportional to v§vg in the effective 4D theory. Thus, we
might want to consider adding a term like

NN€ + h.c. (2.26)
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This is obviously gauge invariant, and it turns out that it is also invariant
under the discrete reflection symmetry as well. We first need to consider
what implications the addition of this term has for the existence of solutions
of the 5D Dirac equation. The relevant Lagrangian is

— _ 1 _
Lypw = iNTM0y N + hy,NNn — 5m(NNC + NCON), (2.27)

and thus the 5d Dirac equation becomes
iTMOy N + hyy Ny — mN® = 0. (2.28)

Demanding the conditions that
N(z,y) = fn(y)vr(z),
Y°vr = Vg, (2.29)
iovr = m'(vR)©,

and noting that the parts proportional to vz and (vg)° must be independent

of each other as the corresponding spinors transform as right-chiral and left-
chiral spinors respectively, we get two independent equations for fy,

div + hagn(y) fa(y) =0,

dy
m' fn(y) —imfy(y) = 0.

The first of the equations above is exactly the same differential equation as
before without the new term, and thus the fy must also have the same form
as before,

(2.30)

hipv
fa(y) = Cye - log(cosh (), (2.31)
The second condition then implies that m’ = |m/|, and since any phase can
just be absorbed into the definition of N, we can take m’ = m. Hence,

instead of a right-chiral zero mode, we now have a right-chiral Majorana
mode of mass m localized to the domain wall.

Similarly with three generations, the profiles are unaltered by the Ma-
jorana mass terms, and the 3+1d Majorana mass matrix after dimensional
reduction is then

Mhtajzi1a = /fT(Z/)m4+1df(Z/) dy. (2.32)

We have thus successfully shown that both Dirac and Majorana masses
can be generated with the addition of a right chiral singlet neutrino, and thus
the see-saw mechanism can be employed. We will now demonstrate that the
fermion mass hierarchy and small CKM mixing angles can be generated from
split fermion idea.
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2.1 Generating the flavor hierarchy and mix-
ing angles

The fermion mass matrices depend on overlap integrals of the fermion profiles
and the electroweak Higgs. Since the left-chiral and right-chiral components
are naturally split according to their hypercharges, and since these overlap
integrals are exponentially sensitive to these splittings, it seems we can em-
ploy the split fermion idea [I9] to account for the fermion mass hierarchy
from a set of domain wall couplings which are all about the same order of
magnitude in this model.

Throughout the rest of this chapter, we will quote the dimensionless back-
ground Yukawa couplings to five significant figures. The reasons for this are
the exponential sensitivity of the profiles to these couplings and the difficulty
that was found in generating the neutrino mass squared differences (which
are quadratic in overlap integrals of these profiles) to an acceptable and rea-
sonable precision. Since this is also a classical calculation where quantum
corrections are ignored, and since the quark and neutrino masses are not as
precisely measured or well known as those for the charged leptons, we will
quote the resultant masses of the quarks and neutrinos to two significant
figures, neutrino mass squared differences to one significant figure, and the
charged lepton masses to three significant figures.

2.1.1 The one-generation case with a Dirac neutrino
and the suppression of colored-Higgs-induced pro-
ton decay

In this section we shall show that the mass hierarchy amongst the first gen-
eration of fermions can be generated from the split fermion idea [19] which
arises naturally in our model. We will start with looking for solutions with
the Higgs parameter choices of Eq. [2.11]

Firstly, we must make the neutrino light. The right chiral neutrino is
always localized at y = 0 while the choice of Higgs parameters in Eq.
(and in fact for those in Eqgs. and as well), the Higgs is localized to
the right. Hence, the easiest way to induce a small Dirac neutrino mass is to
shift the lepton doublet to the left. As the lepton doublet, L, has hypercharge

%, choosing % to be
n

negative will displace the lepton doublet as desired while placing the right-

chiral down quark to the right, near the electroweak Higgs. We now need

to make the charged fermion masses significantly larger. Since the charge

—1 and the charge conjugate of dr has hypercharge +
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Figure 2.4: The profiles for vp, L, dr and the electroweak Higgs with the
Higgs parameter choice of Eq. [2. 11 hm =115, h577 = 100 and h5x = —250.

conjugates of ug and eg, and the quark doublet have hypercharges —%, +2

and +— respectively, making the ratio Z“’X positive will shift ez far to the

left, towards the lepton doublet, @) to shghtly to the left, and ugr to the
right. We found the following solution by using this configuration, making
the parameter choice h577 = 100 and h5x —250, plotting the contours along
which the overlap integrals give the desired mass ratios, and then finding
where the two contours intersected. Doing this yielded the solution for the
couplings for the 10 multiplet, Ay, = 8.2674 and hyp, = 27.911. With
the ratios now fixed, setting the 5D electroweak Yukawas h_ = hy = hg =
5.2268 x 10*31@‘_%, and setting the kink coupling for the right handed neutrino
to ﬁln = 115 gives the masses,

m, = 0.13 eV
me = 0.511 MeV
(2.33)
m, = 2.5 MeV
mg = 5.0 MeV.

Thus, we have generated a neutrino mass below the current most stringent
upper bounds of roughly 2 eV [63] , the correct electron mass, and up and
down quark masses within current constraints of 1.8 MeV< m, < 3.0 MeV,
and 4.5 MeV< my < 5.3 MeV [63].

Furthermore, it turns out we get significant suppression of some modes
of colored Higgs-induced proton decay with this setup. The colored Higgs
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Figure 2.5: The profiles for the 10 representatlon and the electroweak Higgs
with the Higgs parameter choice of Eq. |2 hlo77 = 8.2674 and h1ox = 27.911.

scalar can induce the decays p — e*7” and p — Ve 7T, for which the Feynman
diagrams are shown in Figures [2.7] E ) and - respectively.
For the process p — e*n?, the partial lifetime of each contribution is

m4

—_— (2.34)
Cgue Cgudms) ’

where C,,, and C,,, are replaced by the effective 4D couplings strengths of

the operators inducing the vertices v,. and v,4 respectively. The operators

responsible for the vertex v, are (eg)“urd. and LQ¢., and their respective

coupling strengths are

Crantuns. = 4hs [ FunLen0)plo)

. (2.35)
Cras. = 7h- / 1) fo)pely) d

The operators responsible for the vertex v,4 are (ug)°dr¢? and €9*Q,Q; (¢,
and the associated coupling strengths are

Clumydno: = / fur W) far (Y)pe(y) dy,

(2.36)
Cags: = 4h; / (Joly)pe(y) dy.
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Figure 2.6: The profiles for all fermions and ¢,, for the first solution with
hi, = 115, hs, = 100, hs, = —250, hi, = 8.2674, hig, = 27.911 and the
Higgs parameter choice of Eq. [2.11]

Similarly, the partial lifetime of each contribution to p — v, is

m4

— (2.37)
ngucgudmg

The operators responsible for the vertex v,y in the p — v, m+ are the same

as that for p — et 7, while the operators responsible for the vy, vertex are

LQ¢. and (vg)°drp.. The coupling strength for the operator (vg)¢drd, is

Corrdns. = hs / forW) fan()pe(y) dy. (2.38)

For the solution given above, it turns out that the partial width for p —
et involving just right chiral fermions is substantially suppressed, with
Cr—e = 9.6 x 107* and C(ui = 2.1 x 1075, Since the partial

(er)°urde R)dR oY
lifetime for p — e*n¥ is at least 8.2 x 10% years [I15], and given m, =

0.938 GeV [116], this sets a lower bound on the colored Higgs mass of about
3.3 x 10* TeV, much reduced compared to the standard result of m, ~

Acur ~ 10' GeV. Since Comgedns. = 37 X 1078, and the lower bound of

the partial lifetime for p — v is 2.5 x 103! years [I16], the contribution to
p = v.mr involving the vertices (vg)°dro. and (ug)°dro: sets a lower bound
on the colored Higgs mass of 4.8 x 105 TeV.

However the contribution involving just left-chiral fermions is not sub-
stantially suppressed from the splittings, with Czg, = 9.1 X 10~% and
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Figure 2.7: Feynman diagrams for the processes (a) p — e*7% and (b) p —
+
VTt

Coge: = 1.0 x 1072, These operators contribute to both p — e*n® and
p — v.m", and thus the partial widths coming from the combination of these
operators set lower limits on the colored Higgs mass of 7.0 x 10" GeV for
p — etn? and 1.6 x 10'3 GeV to suppress p — vor". Therefore, we must
still fine-tune so that the colored Higgs mass is of the order ~ 10* GeV to
suppress all proton decay modes induced by the colored Higgs scalar.

One might then ask how to suppress proton decay even further. We
could try looking for a solution where the profiles are more spread out in the
extra dimension. It turns out the choice of parameters, hm = 100, h5n =
100, h5x = —700, hwn = 0.81688, h1oX = 23.868, and hy = h_ = hy =
0.11177k~ 2, yields the same masses for the electron and the quarks as the
first solution, and gives a neutrino mass of the order

m, ~ 1072 eV. (2.39)

For proton decay, we now have for the operators involving just right chiral
: _ —17 5
fermions C(eR)CuR% =4.2x107"", C'(u Ydnor = = 1.7 x 107", and C ednde =
2.8 x 1072, which yield m, > 6.1 x 10> TeV from the partial Wldth for
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I:“igure 2.8: I‘he spread of proﬁles for the se~cond solution with }31,7 = 100,
hs, = 100, hs, = —700, hiy, = 0.81688, hip, = 23.868, and the Higgs
parameter choice of Eq. [2.11]

p — et and m, > 1.2 x 10?2 GeV from the partial width contributed to
p — v.m". However, the couplings for the operators involving the left chiral
fermions are still not suppressed enough to solve the doublet-triplet splitting
problem naturally, with Cgo, = 2.0 x 1072 and Cggg: = 0.21, setting the
bound m, > 1.5 x 10' GeV from the more constraining decay p — e*70.
By spreading out the profiles, we have increased the spread of the domain
wall parameters while only suppressing the proton decay modes induced from
right chiral fermions by a further two orders of magnitude. It turns out that
a choice of Higgs potential parameters giving more localized Higgs profiles
can solve the first problem while yielding a similar result for proton decay. A
solution for the second Higgs profile for Wthh the Higgs parameters are those
in Bq. 2.12]is hy = h_ = hy = 82.975k~2, hy, = 200, hs, = 100, hs, =
—250, hmn = 60.126, thx = 99.829, which again yields the same masses for
the electron and the quarks as the previous solutions, and the neutrino mass

m,, = 0.024 eV. (2.40)

Interestingly, for these parameters, C (Cn)Cunde =2.0x10"%* and C’ anednds =
1.1 x 1073 suppressing the mode of p — e* 7 involving just the right chiral
fermions to the extent that the lower bound for the colored Higgs mass

set by this mode is just 1.1 TeV. However, the decays involving the left

0
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chiral fermions are in fact enhanced rather than suppressed by the fermion
splittings with Czg, = 2.0 % 102 and Coq¢: = 39, which means that the
suppression factor coming from the effective coupling constants is of order
1, and so we need to make m, ~ Mgyr. Also, the partial width involving
the right chiral fermions for p — v, 7+ is not as suppressed this time, with
C = 85 x 1077, so that an m. of order 10'' GeV is required to

(VR)CdR(z)c . .
suppress this particular mode.

ny(y) Pu()
3.0+

YR

Figure 2.9: The profiles for the solution with Ay, = 200, hs, = 100, hs, =
—250, hig, = 60.126, hio, = 99.829, and the choice of Higgs parameters in

Eq.2.12]

The ultimate reason we have successfully suppressed the modes of proton
decay involving just the right chiral fermions but not those involving the
left chiral fermions so far was that the vertices involving the right chiral
fermions depended on the profiles for ug and dr which were localized near
the electroweak Higgs away from the colored Higgs, whereas due to the setup
to generate the mass hierarchy, the quark and lepton doublets were placed
significantly closer to the colored Higgs. To keep the natural solution to the
mass hierarchy problem, we do not wish to displace the quark and lepton
doublets; a more fruitful option is to choose Higgs parameters such that the
colored Higgs is well displaced from the domain wall, while at the same time
the electroweak Higgs is close to y = 0. We have seen in Sec. that
this is in fact possible with the Higgs parameter choice given in Eq. [2.13
A solution for this third Higgs profile to the mass hierarchy problem is the
parameter choice h, = h_ = hg = 409871{" hln = 1000, h5,7 = 1000, h5X
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—1000, ﬁwn = 624.62, izwx = 382.43, which yields the same electron, up and
down quark masses as before and a neutrino mass of the order

m, ~ 107* eV. (2.41)

This time, for the proton decay inducing interactions, C; -z, o ~ 107139,
Clunrdne: ™ 107131 and Comedns. ™ 107126 for the operators involving just
right chiral fermions and for those involving the left chiral fermions, Czo,, ~
1072 and Cgggr ~ 107, Hence, all the decay modes are suppressed by
roughly 90-100 orders of magnitude, with the most constraining decay mode
p — eTm¥ with the left chiral fermions now setting a lower bound on the
colored Higgs mass of ~ 107% eV. Realistically, for such a solution, the
colored Higgs mass should still at the very least be 45 GeV since we have
not seen the 7 boson decay into them, and more probably ~ 1 TeV since it
is proportional to k in this model, so the partial lifetime arising from colored

Higgs induced proton decay would be over 10'%° years.

fax ), Pu®)
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Figure 2.10: The profiles for the solution with /;,, = 1000, hs, = 1000,h5, =
—1000, hig, = 624.62, hig, = 382.43, and the choice of Higgs parameters in

Eq.

The profiles for the latter two solutions are much less dispersed than those
first two for the most delocalized electroweak Higgs profile, as one might ex-
pect. This is reflected in the breadth of the domain wall parameters; for the
third and fourth solutions, the ratios of the magnitude of the largest back-
ground coupling (ilg,x = —250 and ﬁln = i~z5n = —;L5X = 1000 respectively)
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to the smallest (hip, = 60.126 and hio, = 382.43) are roughly 4.2 and 2.6
respectively, under an order of magnitude. In comparison, for the first two
solutions, the corresponding ratios are about 30.2 and 860 respectively. This
difference, as we will see, is exacerbated for three generations.

In summary, we have shown that the one generation mass hierarchy can
be generated by splitting the fermions without fine tuning the electroweak
Yukawa constants, and that for an appropriate choice of Higgs parameters,
one can reduce the spread of the domain wall Yukawa constants and suppress
proton decay by roughly 100 orders of magnitude without fine tuning the
colored Higgs mass. In the next section, we will see that we can also do this
for the three generation case without quark and lepton mixing.

2.1.2 Generating the higher generation mass hierar-
chies without electroweak mixing

For the sake of simplicity, we can solve the mass hierarchy problem while
first omitting quark and lepton mixing by setting the off diagonal elements
of the electroweak Yukawa matrices to zero. Solutions are found in analogous
fashion to the one generation case by finding where the overlap integrals are
in the desired ratios in parameter space.

For the first Higgs profile, setting h’, = h’. = h} = 1.4093k~2, the set of
parameters choices for the domain wall Yukawa parameters and the resultant
masses m' for the electron-type leptons, m¢; for the up-type quarks and m’,
for the down-type quarks are shown in Table 2.1} As one can see, these
masses all lie within current experimental limits [63]. We then get similar
results for the second Higgs profile with k', = h’. = h} = 7859.3k3 and the
third Higgs profile with hl =h' =h} = 2701.2]6_%, with the solutions for
these two parameter choices given in Tables and respectively.

i hgn hgx h’iOn hliox m'(MeV) | mi;(MeV) | mi,(MeV)
11]1064.0 | -8563.9 | 0.2 25.496 | 0.511 2.5 5.0

2 | 48.986 | -708.28 | 1.5 17.330 | 106 1.3x103 1.0x10?

3 | 100 -300 10.537 | 8.6032 | 1.78x10% | 1.7x10° 4.2%x10°

Table 2.1: A set of domain wall parameters and the resultant masses with
Higgs parameters chosen in Eq. and electroweak Yukawas set to h!, =

hi = hi =1410k"z fori=1,2,3
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i ﬁgn ﬁgx BgOW BgOX miy(MeV) | mi,(MeV) | mi,(MeV)
1200 | -648.41 | 38.552 | 99.220 | 0.511 25 5.0
21200 | -493.42 | 62.128 | 94.251 | 106 1.3x10° | 1.0x102
31200 | -400 73.744 | 76.383 | 1.78x10° | 1.7x10° | 4.2x103

Table 2.2: A set of domain wall parameters and the resultant masses with
Higgs parameters chosen in Eq. and electroweak Yukawas set to hl, =

hi = hi =7859.3k"2 for i =1,2,3

1 hén hf—)x hi1077 hliox mt(MeV) | mi;(MeV) | mb,(MeV)
1] 2000 | -1585.2 | 660.91 | 369.07 | 0.511 2.5 5.0

2 12000 | -1434.5 | 744.05 | 325.26 | 106 1.3x10% 1.1x10%

3 | 2000 | -1300 708.14 | 256.02 | 1.78x10% | 1.7x10° 4.2x10°

Table 2.3: A set of domain wall parameters and the resultant masses with
Higgs parameters chosen in Eq. and electroweak Yukawas set to hY, =
hi = hi=2701.2k 2 for i = 1,2,3

There exists a finite range of parameter space spanned by the remaining
couplings him of the right handed neutrinos to the domain wall which fit the
currently accepted squared neutrino mass differences of Amyy = 7.970% x
107° eV? [117] and Amgs = 2.74705¢ x 1073 eV? [118], and cosmological
constraints (in some models) on the sum of the masses > m, < 0.3 —0.6 eV
[119, 120], for normal, inverted, and quasi-degenerate neutrino mass hier-
archies. Provided that the fermion doublets are sufficiently localized and
displaced away from the domain wall at y = 0, where the right handed neu-
trinos are always situated, and the electroweak Higgs, one can just adjust
the couplings of the right handed neutrinos to the kink to get the desired
masses and hierarchy. For each of the three solutions given in Tables [2.1]
and , three example parameter choices for the BZMI yielding normal(N),
quasi-degenerate(Q), and inverted(I) neutrino mass hierarchies are given in
Tables [2.4] [2.5] and [2.6] respectively.

The distribution of the fermions for each family for both the solutions
with a normal neutrino mass hierarchy are shown in the Figs. 2.11] and
[2.13] As can be seen, the lighter generations are, on average, more spread
apart, more distant from y = 0 and more delocalized. Comparing the plots
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Hierarchy | A}, hi, hi, my, (V) | my, (eV) | m, (eV)
N 100 15.44 | 110.4 | 1.5x10~*' | 0.0089 0.053
Q 18.919 | 13.764 | 106.61 | 0.10 0.10 0.086
I 19.503 | 14.219 | 300 0.051 0.052 7.4%x1078
S my(eV) | Am3,(eV?) | Am3,(eV?)
0.062 8x107° 3x1073
0.29 8x107° -3x107°
0.10 8x107° -3x1073

Table 2.4: Solutions for normal, quasi-degenerate and inverted neutrino mass
hierarchies given the parameter choices given in Table

Hierarchy | hy, hi, i, my, (eV) | my, (eV) | m, (eV)
N 200 132.73 | 262.60 | 3.5x1071 | 0.0089 0.053
Q 54.564 | 114.28 | 253.20 | 0.096 0.096 0.081
I 56.690 | 118.95 | 650 0.051 0.052 2.9%x10°°
>_mi(eV) | Am3,(eV?) | Amiy(eV?)
0.062 8x107° 3x1073
0.27 8x107° -3x1073
0.10 8x107° -3x1077

Table 2.5: Solutions for normal, quasi-degenerate and inverted neutrino mass
hierarchies given the parameter choices given in Table

Hierarchy | hy, hi, hi, my, (eV) | m,, (eV) | m, (eV)
N 2000 1449.2 | 2044.3 | 8.1x10~? | 0.0089 0.053
Q 826.28 | 1250 1948.5 | 0.084 0.084 0.099
I 852.44 | 1291 4500 0.051 0.052 2.3x107°
S (V) | A, (V) | A(eV?)
0.062 8x107° 3x1073
0.27 8x107° 3x1073
0.10 8x107° -3x1073

Table 2.6: Solutions for normal, quasi-degenerate and inverted neutrino mass
hierarchies given the parameter choices given in Table

for the first Higgs profile in Fig. to those for the second and third Higgs
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profiles in Figs. and it is conspicuous that this increase in spread
of the fermions between generations is dramatically reduced for the more
localized Higgs. This is reflected in the spread of domain wall parameters,
with the ratios between the smallest and largest non-dimensionalized domain
wall parameters. For the parameter choices of Tables 2.1 2.2 and and
normal neutrino mass hierarchies, these ratios are respectively 4.3 x 10, 17,
and 7.8. The solution of Table is partlcularly 1nterest1ng smce the non-
dimensionalized electroweak Yukawa constant h’ ys=h" 3k2 = 2701.2 is
of the same order as the non-dimensionalized domain wall parameters.

With regards to proton decay, the results for the parameter choices of
Tables [2.1], 2.2] and [2.3] are similar to those of Sec. 2.1.1] For the first two
solutions with Higgs parameters chosen from Eqs. 2.11] and [2.12] the decay
modes involving just right-chiral fermions are substantlally suppressed while
there is negligible suppression for the modes involving the left-chiral fermions.
For the parameters chosen in Table . C unde 10718 C(UR Sdpgr =
L7x107°, Oy = 5.7x107% and Cogg: = 0 80 and hence the lower bound
on the colored Higgs mass from the decay mode for p — et involving just
right-chiral fermions is roughly 120 TeV, while that from the decay mode
involving just left-chiral fermions is of order 10 GeV.

For the solution in Table. C(eR)CuR¢> ~ 10739 C an)edndr = =4.1x1073,

Ctge. = 2-5 and Cogey = 7.4 X 103, so that the decay mode involving the
right-chiral fermions sets a lower bound on m, of just 1.7 GeV, while the
decay mode involving just left-chiral fermions are in fact enhanced, with the
lower bound on m, increased to order 10'7 GeV.

For the solution of Table [2.3] just as with the one generation solution
with the Higgs parameter choices of Eq. [2.13] all decay modes are suppressed
since the colored Higgs is well away from the domain wall and the electroweak
Higgs. For thls solution, we have Cr—z, . ~ 10~ 135 » Cogedne: ~ 107129,
Cros, ~ 1077 and Cqey ~ 1077 so “that the bound on m.. set by the less
suppressed decay mode involving the left-chiral fermions is of the order of
10~™ eV. For all neutrino mass hierarchies, the coupling constant C U)o dnbe

is also well below 1071% so that p — v.mt is also negligible.

Now that it has been demonstrated that the three generation mass hier-
archies can be generated from the exponential dependences of the overlaps
on the domain wall couplings while suppressing proton decay, the next step
is to incorporate quark and lepton mixing.
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Figure 2.11: Plots of the profiles of the first (a), second (b), and third gen-
eration (c) of fermions with the parameter choice of Table 2.1] and the of the
normal hierarchy parameter choice in Table [2.4]
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Figure 2.12: Plots of the profiles of the first (a), second (b), and third gen-
eration (c) of fermions with the parameter choice of Table [2.2| and the of the
normal neutrino mass hierarchy parameter choice in Table [2.5
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Figure 2.13: Plots of the profiles of the first (a), second (b), and third gener-

ation (c) of fermions with the parameter choice of Table and the normal

hierarchy parameter choice in Table [2.6]
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2.1.3 Accounting for the Cabibbo angle in the two-
generation case

To produce realistic mass matrices, we must account for the fermion mixing
angles as well as the masses. For the sake of simplicity, we will work with
two generations and show that the Cabibbo mixing angle can be produced
along with the mass hierarchy.

Performing the required analysis is quite complicated since, if we are
to assume that all the 5D Yukawa couplings are equal, including the off
diagonal couplings, then the order of the analogous equations giving desired
mass matrix element ratios from the overlaps is the equal to the number
of families in the theory. Thus, to generate the Cabibbo angle, one must
solve equations which are quadratic in the overlaps, and which are also no
longer separated with respect to the domain wall parameters. For the CKM
matrix it is even worse since the equations are cubic. This raises difficulties,
in particular, with the down and electron sectors, since these sectors depend
on all of the background couplings of the charged fermions, which amount to
eight for two generations. Hence, we are forced to start with the up quark
sector first, for convenience, since it only depends on four couplings. This
makes it difficult to guarantee that the Dirac neutrino masses will be light.

Instead of directly solving the equations quadratic in the overlaps, we will
try to generate mass matrices approximately equal to the Cholesky decompo-
sitions of the desired mass matrices squared, MM . This is similar to an ap-
proach of generating mass matrices in NNI (Nearest-Neighbour-Interaction)
basis for the three generation case, as was done in the analysis with Gaussian
profiles done in [90], and by Mirabelli and Schmaltz [89]. The advantage of
this approach is that we can now do the analysis in terms of equations linear
in the overlaps instead. The main disadvantage is that we must rely on one of
the off diagonal terms being significantly suppressed compared to the other
couplings.

It turns out that this approach can get the charged fermion mass hierar-
chies and the Cabbibo angle. Taking all the electroweak Yukawa couplings
to be hij =h = héj = 0.089104/€_%, the Higgs parameters to be those of
Eq. 2.11] and making the choices for the domain wall Yukawas in Table [2.7]

we obtain the following mass matrices correct to three significant figures,

(2.42)

A = (104 103 7.28 x 102
vT\27Tx 1070 3.05 ’

70.3 77.8
My = (N ; 7‘47) : (2.43)
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¢ Bén E%X ilil(]n laziOX
1112585 | -36.719 | 100 53.346
365.78 | -1708.2 | 2.5273 | 27.095

Table 2.7:_The choices for the domain wall parameters with Higgs parameters
from Eq. and b = b = h = 0.089104k 2 for 4,5 = 1,2,3

and

106 ~0
Me = (0.465 0.511) '

The resultant left diagonalization angle for M, is ©, = 55°, and the left
diagonalization angle for My is ©, = 42°, yielding the Cabibbo angle ©, =
O, — O4 = 13°. Taking the square roots of the eigenvalues of MM, MdTMd,
and M] M, yields the masses of the charged fermions, and they turn out to
be those in Table 2.8

(2.44)

i | my(eV) | mi(eV) | mb(eV)
0.511 2.5 5.0
106 1.3x10°% | 1.1x10?

Table 2.8: The masses of the mass eigenstates in the electron, up and down
type sectors respectively with the parameter choice of Table [2.7

This solution does not permit two light neutrino masses for the case of a
Dirac neutrino. For example, for the parameter choice h%n = hfn = 100, the
mass matrix for the neutrino is

6.23 ~0
My = (6.23 ~ 0) ’

which yields m,; = 0 and m,, = 8.8 MeV. Because for this solution one
of the left weak eigenstates of the neutrino has a iz%x / B}m ratio larger in
magnitude, and thus is more distant from the wall and the Higgs, the mass
matrix for the neutrino for this solution will always have the entries of one
column being larger than the other for significantly large fﬁln and since one of
the eigenvalues is typically of the same order as the larger of the two elements

(2.45)
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in the larger column in such a matrix. In the limit iz’ln — oo for i =1, 2,

M = hyp / For () Fus (9)p(y) dy
5 hg 1, (0)pu(0)

as the profiles for the right handed neutrinos converge to delta functions at
y = 0, one obtains the mass matrix,

M, (5.81 ~ 0) | (2.47)

(2.46)

2.81 ~0

which yields neutrino masses of m,, = 0 and m,, = 8.2 MeV. Thus, the best
we can do for this solution which yields Cabibbo mixing and the charged
mass hierarchy, for the case of a Dirac neutrino, is to generate a massless
neutrino, and a neutrino about 2-3 MeV heavier than a down quark.

This does not prove that there is no solution for a Dirac neutrino which
incorporates quark mixing and the fermion mass hierarchy. The scheme we
used and the section of parameter space searched led to one of the lepton
doublets being placed too close to the right handed neutrino and too delocal-
ized to support two light neutrinos. A more thorough search of the parameter
space, perhaps utilizing a Monte Carlo method, will have to be done to de-
termine whether a solution supporting two sufficiently light neutrinos exists
for the case of a Dirac neutrino.

For a Majorana neutrino, however, this solution presents no such prob-
lems. As was shown earlier in this paper, the seesaw mechanism can be
employed in the model, and can thus be used to suppress the mass of the
heavier neutrino.

The set of domain wall parameters in Table [2.7] generate the desired mass
spectrum and the Cabibbo angle. The ratio between the parameters smallest
(il%on = 2.5273) and largest (ﬁ%x = —1708.2) in magnitude is roughly 670. To
reduce this, we would need to find solutions with a more localized electroweak
Higgs, such as those resulting from the parameter choices Eqs. and [2.13
Finding such solutions has been difficult, however, and we will leave this to
be done in later work.

Proton decay for this solution cannot be suppressed without fine-tuning
the colored Higgs mass. Since we are using the Higgs parameter choice of
Eq. and not that of Eq. [2.13] the colored Higgs is sufficiently close to the
domain wall so that the decay modes involving just the left-chiral fermions are
not sufficiently suppressed. Furthermore, since the off-diagonal electroweak
Yukawa constants are now non-zero, operators such tg(pg)¢: and Sg(ug)°d.
are present in the action. This means we also have to account for the decay
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modes p — 7% p = eTK° and p — pTK°, which have partial lifetime
lower bounds of 6.6 x 1033 years [115], 1.5x 1032 years [116] and 1.2x 1032 years
[T16]. After computing the overlaps to find the interaction strengths in the
weak eigenbasis, transforming to the mass eigenbasis and then performing
similar analyses for each of the decay modes, we find that even the most
constraining decay mode involving just right-chiral fermions, that of p —
't sets a lower bound on the colored Higgs mass of 3.2 x 10° GeV. In
fact both the modes involving the antimuon set higher bounds then those
producing positrons since the coupling for the wg(ugr)®; vertex is a few orders
of magnitude higher than that for the ug(eg)d: vertex, due to right handed
muon being closer on average to the wall. The decay modes involving left-
chiral fermions are still barely suppressed, with the decay modes involving
just left-chiral fermions for both p — et7® and p — pt7° setting lower
bounds on m, of order 10'® GeV. Obviously, this situation would change if
we used the Higgs parameter choice of Eq. for which the colored Higgs
is well displaced from all fermions and the domain wall.

2.1.4 Lepton mixing

It appears that generating near tribimaximal mixing in the lepton sector is
incompatible with the results for the fermion mass hierarchy problem, for
both Dirac and Majorana neutrinos.

As we have seen, solutions to the mass hierarchy problem typically involve
shifting the lepton doublets to different locations away from the domain wall
and the electroweak Higgs. This means that for such solutions, assuming the
domain wall couplings for the right handed neutrinos are roughly equal, the
neutrino mass matrix will take the form,

aq b1€ 0162
M, ~ | as bee co€® |, (2.48)
as bse c3€?

where € < 1 and the constants a;, b; and ¢; are all taken to be roughly the
same order of magnitude. Then the mass matrix squared will take the form

la]> abe a.ce?
MIM, ~ | abe |b|?¢ b.ce®|. (2.49)
a.ce? b.ce® |c|?e

M} M,, is clearly hierarchical, and thus the neutrino sector cannot generate
two large mixing angles. From the electron sector, we know that both the
lepton doublets and the right handed electrons are placed away from the
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electroweak Higgs doublet, and thus their overlaps decrease rapidly with the
splittings, inducing hierarchical electron mass matrices. Hence, we cannot
generate large mixing angles in the electron sector either, with the generic
type of solution for the mass hierarchy, and thus tribimaximal mixing cannot
be produced in the lepton sector for the case of a Dirac neutrino.

The utilization of the seesaw mechanism also fails to produce tribimax-
imal mixing. Since all the right handed neutrinos are all localized at the
same place, all the overlap integrals which contribute to the Majorana mass
matrix are of the same order of magnitude unless there is a substantial hi-
erarchy amongst their domain wall parameters. Hence, for most solutions of
interest, the right handed Majorana mass matrix assumes a non-hierarchal
form. However, the neutrino Dirac mass matrices will maintain their hier-
archical form since the lepton doublets will still be separated, and therefore
the effective left handed neutrino Majorana mass matrix, My, ~ —m%M RMD
is rendered hierarchical, and thus small lepton mixing angles for a Majorana
neutrino will result.

There are several approaches one could take to the problem of lepton
mixing in this model. The most obvious is the inclusion of a discrete flavor
symmetry like A4 or its double cover T”. This has in fact been employed
successfully in RS1 [94] and orbifold models [87]. We will add a discrete Ay
symmetry in the next chapter.

It was also not surprising that a solution was not found in the Dirac case,
since the initial assumption that the couplings to n and y commuted cut
the number of background Yukawa couplings to 15, and the assumption of
universal electroweak Yukawa couplings cut the number of free parameters
in the electroweak Yukawa sector to 1, giving 16 free parameters in total
which determine the masses. If we want to generate everything except CP
violation from non-hierarchical electroweak Yukawa couplings then, we need
to generate the correct mass ratios for the charged fermions, quark and lepton
mixing angles, the correct Am?, and Am3; and an acceptable neutrino mass
scale, which amounts to 18 constraints. Thus, we were never guaranteed
such a solution. Letting go of the initial assumption that the background
couplings commute allows us to introduce mixing angles and CP phases from
that sector. In practice, solving the relevant equations for the fermion profiles
with non-commuting h,,,, and h,,, is difficult and must be solved numerically;
we do not perform an analysis of this situation in this thesis.
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2.2 Conclusion

As we have seen, the utilization of extra dimensions is particularly useful in
explaining the fermion mass hierarchy problem. This is particularly evident
in the analysis without quark and lepton mixing, where we were able to show
that the mass hierarchy which spans at least 12 orders of magnitude could
be generated from a set of domain wall Yukawa parameters which have a
spread of roughly an order of magnitude. Furthermore, this spread could
be reduced even further by making the Higgs profile more localized. As an
added bonus in this analysis, by choosing parameters such that the colored
Higgs was well displaced from the domain wall and the electroweak Higgs,
the doublet-triplet splitting problem was solved and proton decay suppressed
to such an extent that the colored Higgs mass no longer had to be fine tuned.

Generation of quark mixing from the overlaps after initially assuming non-
hierarchal SU(5) electroweak Yukawa coupling constants also looks promis-
ing, and we successfully generated the Cabibbo angle and the fermion mass
hierarchy for the case with two generations and Majorana neutrinos. Generi-
cally, small quark mixing angles and fermion mass hierarchies naturally arise
from hierarchical mass matrices, although a more thorough numerical anal-
ysis will have to be done to find solutions for the full CKM matrix.

We have given some arguments as to why the problem of tribimaximal
lepton mixing problem cannot be solved simultaneously with the quark mix-
ing and fermion mass hierarchy problems in this braneworld model. Typically
with solutions to the latter two problems, the lepton doublets are spread out
away from the Higgs profile, rendering the electron and Dirac neutrino mass
matrices hierarchical, leading to small mixing angles. We believe this may
be amended with the addition of a discrete flavor symmetry like A4, or by
dropping the assumption that the n and y couplings commute. The addition
of a flavor symmetry to the model as well as a more thorough analysis of the
parameter space will be treated in the next chapter.



Chapter 3

Large lepton mixing angles
from a 44-1-dimensional
SU(5) x Ay domain-wall
braneworld model

In the previous chapter, we performed an analysis on the Yukawa coupling
parameter space of the DGV model which showed that the fermion mass
hierarchy could be accounted for naturally while satisfying the current data
on the squared mass differences for the neutrinos, as well as performing a
calculation with two generations which yielded the correct Cabibbo angle,
showing quark mixing could likely be generated as well. We were also able
to suppress proton decay by splitting the components of the Higgs quintet
appropriately, using the same scheme for choosing the background and elec-
troweak Yukawa coupling constants. We also gave reasons why large lepton
mixing angles could not be generated using the same scheme used to generate
the fermion mass hierarchy and quark mixing. This suggests that we need
to include a further mechanism for generating the PMNS matrix.

As we have seen in Sec. models with discrete flavor symmetries
such as Ay represent an interesting approach to explaining the quark and
lepton mixing patterns. Models of this type were first proposed in [69]. For
other interesting papers on discrete flavor symmetries, see [70, [71], [73]. In
the simplest model using A4 in 3+1D with just the Standard Model gauge
group [73], typically the different mixing patterns are explained due to Ay
being spontaneously broken to different subgroups in each sector: Ay — 73
in the charged fermion sector, and Ay — Z5 in the neutrino sector. This
is typically achieved by the addition of two Ay triplet Higgs fields which
couple to different sectors and which attain different vacuum expectation
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value (VEV) patterns. When this is done, the CKM matrix is found to be
close to the identity and the PMNS matrix assumes a tribimaximal form.
When interactions between the two Ay triplet flavons are switched off, this
arrangement is valid since the two non-aligned VEVs are both global minima
of the potentials for each flavon. However, when interactions are switched
on the two VEV patterns tend to align and thus the responsible cubic and
quartic coupling constants have to be fine-tuned significantly to be small.
This problem is known as the vacuum realignment problem, and is typical of
theories with discrete flavor symmetries which have extended Higgs sectors
of this type. There are in general three ways to ensure that the troublesome
interactions are suppressed.

One is to make the theory supersymmetric so that the undesired terms
are forbidden by holomorphy and renormalization constraints on the super-
potential [73]. Another is to use additional discrete symmetries forbidding
the interactions [85]. Yet another is to exploit the physics of extra dimen-
sions, by localising the flavons on different branes or by splitting their extra-
dimensional profiles with very little overlap so that the interactions are nat-
urally eliminated or very suppressed [86, 87, [8§].

Given that extra-dimensional models have been very successful at explain-
ing the hierarchy problem and can ameliorate one of the major problems of
discrete flavor symmetry models, and that discrete flavor symmetries can re-
produce realistic leptonic mixing patterns which can be difficult to produce
in extra-dimensional models, the combination of the two approaches is quite
attractive. There have already been many models in the literature uniting
the two approaches, particularly with regards to the warped RS1 scenario.
Altarelli and Feruglio first proposed a model based on A4 with an SM gauge
group and the flavons restricted to different branes [86]. There have also been
models with GUTs [87, [92], [121] as well as models with more complicated dis-
crete flavor groups such as the double cover of Ay, T" [93]. It was also shown
by Kadosh and Pallante that the flavons could be put into the bulk to allow
enough cross-talk between the flavons to generate small quark mixing angles
while at the same time maintaining the desired vacuum alignment [88]. It is
also interesting to note that some 34+1D models with flavons in the 1" and 1”
representations of A4, which our model also contains and were not previously
considered in discrete flavor symmetry models, were proposed in [122] [121].
One of these [121] was also based on SU(5) x Aj.

In this chapter, we extend the SU(5) 4+1D domain-wall braneworld
model of Davies, George and Volkas [23] with the inclusion of a discrete
A, flavor symmetry group. We utilize the same domain-wall background so-
lution that we used in the previous chapter. We then dynamically localize the
required fermions and flavon Higgs fields embedded in appropriate SU (5) x A4
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representations to the background solution via Yukawa and quartic coupling
to the kink-lump solution respectively, and we give the forms of the profiles
for the resultant localized SM components which are split according to their
hypercharges, yielding a natural realization of the split fermion mechanism.
We show that the results in [I] with regard to the fermion mass hierarchy
problem can be reproduced as well as quark mixing, neutrino mass squared
differences and a tribimaximal lepton mixing matrix from a set of 5D Yukawa
parameters which are all of the same order of magnitude. In our model, it
turns out the required scale of the breaking of A4 by the triplet flavons can
be altered due to the fact that the Dirac masses for the neutrinos can be
suppressed by the split-fermion mechanism, and these scales can vary from
the electroweak scale all the way up to the GUT scale. We finally show
that splitting the charged Ay-triplet flavon from the gauge singlet Ay-triplet
flavon can exponentially suppress the interactions responsible for the vacuum
realignment problem.

Given we are still utilizing the same background solution from Sec. [1.6]
we simply begin the next section by outlining both the fermionic and scalar
matter content of our model as well as the SU(5) x A, representations to
which they are assigned. Section[3.2]and Sec. [3.3|then address the dynamical
localization of the fermionic matter and the Higgs flavon scalars respectively.
Section gives details of the electroweak Yukawa Lagrangian of the model
and the forms of the fermion mass matrices that arise after the Ay-triplet
flavons condense with the desired vacuum alignment. Our parameter fitting
analysis yielding the desired fermion mass spectra, quark mixing, tribimaxi-
mal lepton mixing and the correct neutrino mass squared differences is given
in Sec. 3.5 In Sec. we discuss our solution to the vacuum realignment
problem in our model, with the full flavon interaction potentials given in
Appendix [B] Section [3.7)is our conclusion.

3.1 The Matter Content and A, Representa-
tions

We now need to introduce three generations of quarks and leptons as well
as Higgs fields embedded in representations of SU(5) x Ay. As is usual
for SU(5) grand unified theories (GUTs), the lepton doublets and right-
chiral down-type quarks are embedded into SU(5) quintets, while the quark
doublets, right-chiral up-type quarks and right-chiral charged leptons are
embedded into SU(5) decuplets. Right-chiral neutrinos are introduced as
gauge singlets. We review the group theory of A, in Appendix [A]
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Before we discuss the fermions and the Higgs content to be localized to the
wall, we should mention that the fields n and x which form the background
solution are given the same SU(5) representations that they were assigned
to in Sec. [L.6]

In addition to the representations under the gauge group and the discrete
flavor symmetry, we must also consider the transformation properties of the
fields under the discrete Z, reflection symmetry which ensures topological
stability of the domain wall. Since interactions which localize fermions to the
domain wall are Yukawa interactions of the form nUW and n has negative
parity, we must have WW — — W, which we can satisfy by choosing ¥ —
iI°W or U — — iV, Scalars can have either positive or negative parity.

The representations of the fermions, denoted as (R, Ry), where Ry de-
notes SU(5) representation and Ry denotes the representation under Ay, are
chosen to be

s ~ (5%, 1), UL ~ (5%, 1), UZ ~ (5% 1")
Ui, ~ (10,1) fori =1,2,3 (3.1)
N ~ (1,3)

where N is an Ay-triplet containing all three right-chiral neutrinos. Under
the reflection symmetry, N — — iI'>N and all other fermions transform as
U — I,

For the Higgs sector, we require at least one Higgs quintet which contains
an electroweak Higgs and a colored Higgs scalar, and some additional flavons
as per usual in models with discrete flavor symmetries. Since the three
fermion quintets V5, UL, and WY are in the 1, 1/, and 1” respectively, and since
all the fermion decuplets are singlets under A4, to form As-invariant Yukawa
interactions which generate charged lepton and down-type quark masses we
similarly require a Higgs quintet under each of the A, representations 1, 1/,
and 1”. As all three generations of right-chiral neutrino are embedded into
an A, triplet, and since we must form Yukawa interactions involving this
triplet and each of the fermion quintets to generate a Dirac neutrino mass
matrix, we must have another Higgs quintet in the triplet representation
of A4. For the desired off-diagonal elements for the Majorana mass matrix
for the neutrinos, we also need a gauge singlet Higgs scalar transforming
as a triplet under A4. Thus, our field content for the Higgs sector can be
summarized as

@ ~ (5*7 1)7 ®/ ~ (5*7 1,)7 ®” ~ (5*7 1//)
p~ (5% 3), ¢ ~ (1, 3).

Under the Z, reflection symmetry, all scalars except ¢ are chosen to have

(3.2)



CHAPTER 3. LARGE LEPTON MIXING ANGLES FROM A
4+1-DIMENSIONAL SU(5) x Ay DOMAIN-WALL BRANEWORLD
97 MODEL

negative parity, while ¢ is chosen to have positive parity for reasons which
will be discussed later in this chapter.

3.2 Localization of Chiral Fermions

To reproduce a Standard Model with an A4 flavor symmetry on the domain
wall, we still need to localize the fermions by coupling them to the background
fields n and x. The results are almost entirely the same as those in the case
without the A, symmetry covered in the previous chapter, but given that
the presence of the A, symmetry imposes some constraints, we go through
the same analysis for the SU(5) x A4 model for the sake of completeness.

Let’s consider the right-chiral neutrinos first. Since the right-chiral neu-
trinos are embedded into Ay triplets and since they are gauge singlets, they
couple to 7 only and the trapping interaction is simply

Yiun = _hln(NN)ln- (3.3)
The 5D Dirac equation that results from this is thus
iTM Oy N + hyyn(y)N = 0. (3.4)

To examine the effective SM Yukawa interactions for the neutrinos in the
effective 4D theory on the wall, we can ignore the Kaluza-Klein (KK) modes
and consider only the localized zero mode of the field N. We thus can simply
look for a solution of the form N(z,y) = fn(y)vr(z), where fy(y) is the zero
mode profile and vg(z) is an Ay-triplet of 4D massless right-chiral neutrinos
satisfying the ansatz

iv"0,vp(r) =0,
YPvp(r) = +vp(w).
Substituting this ansatz into Eq. [3.4] we find that the profile fxy(y) satifies
the first order differential equation
dfn(y)

“ay hiyvtanh (ky) fy (y) = 0, (3.6)

which can be easily solved to yield

h nv
fx(y) = Cysech ™ (ky),
= Cwk? sech™ (9),

(3.5)

(3.7)

where 7 = ky, ﬁln = hlk”v and Cy = C’Nk:_% are the non-dimensionalized

extra-dimensional coordinate, background Yukawa coupling constant and
normalization factor respectively.
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For the analysis in this paper it is convenient to always work with di-
mensionless variables and functions, thus we define the non-dimensionalized
profile fx () = k=2 fx(§) and normalize it to one to obtain the correct nor-
malization for the effective 4D kinetic term for the zero mode vi. Since any
field increases in mass dimension by half when the dimensionality of space-
time is increased by one, we non-dimensionalize the profiles for any effective
4D mode is the same way.

)

-10 -05 0.0 0.5 10

y

Figure 3.1: The localized right-chiral neutrino triplet profile for the param-
eter choice hy, = 100.

As can be seen in Fig. m, the dimensionless profile fN is peaked about
y = 0 and decays exponentially away from the wall. Hence vg is indeed
localized on the domain wall.

Next, we consider the fermion quintets. We have one of each of the
quintets in the 1, 1/, and 1” representations of A4, which means that due
to Ay-invariance, Yukawa interactions between different generations of the
quintets and the background fields 7 and y are forbidden. In this case, the
coupling of each of these fermions to the background is given by

Vs = hanUsWsn + sy Usx' Uy
+ i WU + D, Wi W (3.8)

R T+ 1 T
Note the relative minus sign change between the interactions of n with N
and n with the fermion quintets. This choice was made so that a positive

hsy, hs, and kg, correspond to the existence of left-chiral zero modes for the
SM components of the respective quintets.
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To find the profiles of these left-chiral zero modes embedded in the quin-
tets, we repeat the analysis done for the field N, Writing
OB (2,y) = f&-(y)vd(z) for R=1, 1", 1”7 and Y = +2, — 1, and having
the zero modes YL, (z) satisfy the same ansatz as vp given in Eq. - 3.5 but
with the second condition of right chirality replaced with that of left chirality
VYl (z) = =& (). On substituting the ansatz into the 5D Dirac equation
for &,

[T 00 — W () - \/gyhfxx ()| 95 (2.y) =0, (3.9)

we obtain the ordinary differential equation for the profiles f£.(y)

d 3Y
[d_y + hgf?v tanh (ky) + thA\/;§ sech (k:y)] fE(y)=0. (3.10)

From the above equation, we find that the non-dimensionalized profiles fg/(gj)
of the left-chiral zero modes embedded in the quintets are given by

3 () = Cles®,
R~ ~R ~ 3-p i (3.11)
biy () = hii log [ cosh ()] + 5h5XY arctan [ tanh (5)]
oy ()
2.5j
1sf
1.0; “

05 '

1 I I L 1 L L L { n n n n \\\; n n n 1
10 -05 00 05 10

Figure 3.2: The profiles for the localized lepton doublet L and right-chiral
down-type quark Dp arising from an arbitrary fermion quintet W for the
parameter choice hR = 100 and hR = —100.
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The profiles for the quintets are essentially the same as those of the pre-
vious chapter in the case that both matrices hs, and hs, (as defined in
Sec. are diagonal. Given that two of the generations are in the 1’
and 1” representations, the A, symmetry imposes constraints so that there
is no mixing between the different generations of quintets in the domain-wall
Yukawa sector. A plot of the profiles for a lepton doublet L and a right-
chiral down-type quark Dp, in any representation R = 1,1, 1” of Ay, for the
example parameter choice l}g] =100, 715RX = —100 is shown in Fig. .

Finally, we consider the localization of matter embedded in the decuplets
WUi,. Since all of the decuplets are in the trivial representation of Ay, off-
diagonal Yukawa couplings between 7 (or ) and different generations of ¥,
are permitted, unlike the case for the fermion quintets. This means that the
localization properties of the SM components in the decuplets are essentially
unchanged from the model in the previous chapter, although we will just
restate the result for the sake of completeness and continuity. Therefore the
most general coupling of the fermion decuplets to the background fields is

Voo = iy ViaWhon — 20, Tr (Wipxw, ). (3.12)

Just as was the case for the decuplets in the previous chapter, the back-
ground Yukawa couplings hio, = (h%n) and Aoy = (h%x> can be thought
of as 3 x 3 matrices in the flavor space spanned by the initial 5D fields W¥,.
Just like before, we will assume that [hi¢,, h1oy] = 0 and that the 5D and
4D flavor rotation matrices (which were defined respectively by S,, and V,,y
in the previous chapter) are equal to the identity matrix. In that case, since
hioy = diag(hig,, o, hio,) and hioy = diag(hig,, hiyy, Iy, ), each generation
of decuplet ¥}, for i = 1, 2, 3 obeys the Dirac equation

. i 3Y i
iTM oy — h10n77(y) - \/gg 10;&(1(9)} Wioy (z,y) =0,
4 1
forY = —=, +=, +2.
or 37 +3, +
Writing Wiy (2, 9) = fioy (¥)0iy (x) and again requiring that i, is a left-
chiral fermion which obeys the massless 4D Dirac equation, we easily find
that the non-dimensionalized profiles f}n,-(y) for the decuplet zero modes
take the same form as those for the quintets,

ffoy@) = éioye_blmy@),

oy (9) = Ezion log [ cosh (7)] (3.14)

(3.13)

35, Yy
+ \/gthY arctan [ tanh (5)] :
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A plot of the profiles for the right-chiral electron-type lepton Eg, quark
doublet @) and right-chiral up-type quark Uy for the example parameter
choice 71307] = 100, Bliox = 100 for some generation ¢ is shown in Fig. 3.3

We have successfully shown that fermionic sector of the SM can be local-
ized on the domain-wall brane. Now we must consider the localization of the
Higgs scalars and show that electroweak symmetry breaking is possible.

fov(y)
251

Q oL /“\UR
‘ 201 I \
151 I \

10 K I \

o5F . 1 \

-10 -05 0.0

Figure 3.3: Profiles for a right-chiral electron-type lepton Fg, quark doublet
() and a right-chiral up-type quark Ug arising from an arbitrary fermion
decuplet W, for the parameter choice hj,, = 100 and hf,, = 100.

3.3 Localization of Higgs fields

We now wish to localize the required Higgs scalars on the domain wall. This

involves examining the Higgs scalar potential. As is typical of models with

discrete flavor symmetries, we have an extended Higgs sector and the full

Higgs potential is very complicated. However, most of these interactions are

self-interactions amongst the flavons themselves, which do not contribute to
the localization of the profiles at leading order. Hence it is sufficient to solely
analyze the terms coupling the flavons to 17 and x and the bulk masses of the
flavons.

For the quintet scalars ® = &= & = =V & = =" and the
Ay-triplet p = ®F=3 the localization potentials are easy to write down.
The localization potentials are essentially the same as the one for the Higgs
quintet of the original SU(5) model used in the previous chapter, although
we will restate the result here for the sake of completeness and to define



3.3. LOCALIZATION OF HIGGS FIELDS 102

the dimensionless constants governing the localization of these scalars in this
SU(5) x Ay model. They are

Warn = ppr(®F) 10" + Agr, (7)1 0 n?
+ 20my (OF) BT (x2) 4 Agprya(@F)T (XT) 07 (3.15)
+ Agrgy (D)@, for R=1,1, 1", and 3.

The mode analysis for the quintets follows that for the Higgs quintet in the
original SU(5) braneworld model described in [I]. Taking the ansatz

(I)R(xa y) = Zng(y)¢gY(x)a

Os190y (2) = —mpy &Ry (2),
and substituting it into the resultant 5D Klein-Gordon (KG) equation, one
can show that the (non-dimensionalized) profiles for the modes of the Higgs

quintets, Py (7) satisfy a Schrodinger equation with a hyperbolic Scarf po-
tential, Vis(g), which can be written as

d2ﬁm o o~
— dglzy + Vus(9)Pry (¥) = EryDry (7),

(3.16)

- - 3.17
Vas(y) = A%%Y + (BJQ%Y - A%zy - ARY) sech? (9) ( )
+Bry (2Agy + 1) sech (7) tanh (7),
where Apy and Bpy are defined as
1 ~ 3Y?2. ~ 1
ARY - 5 ( — 1 + <2 [()\<I>Rxl + 2—0/\<I>RX2 — )\q>R77 — 1)2
3Y? - R 3Y? -
+ %)\?{)Rnx] 2 — 2)\<I>RX1 - 1—0)\<I>RX2 ( )
1 3.18
~ 1\2
+ 2)\@1%,7 —|— 5) ) 5
B — %%)\‘PRUX
RY — 2ARY +1 )

the bulk masses, KK mode masses and quartic coupling constants to n and
X are non-dimensionalized as

2 2
N I _ m
MéR = kLQR? m%ﬂY = kIZY’
- A v? ~ A A?
)\CI:an - q)kR—;], )\CDRXl — %, (319>
~ )\@RXQA )\chnX'UA

)‘<I>Rx2 = L2 ) )‘<I>R77X - L2 )
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and FEgry are the eigenvalues of the above potential, which in terms of the
mode masses and fundamental constants in Eq. are

The eigenvalues of the hyperbolic Scarf potential are well known [39], 40,
58]. In the case that Agy > 0, it is known that there exists a set of discrete
bound modes for n = 0,1, ..., | Ary | with eigenvalues

Ely = 2nAgy — n’. (3.21)
This gives the mass of the nth localized mode as
Mgy = fign + 5\<1>Rn — (Ary —n)*. (3.22)

The lowest energy modes which have the same SM charges as the elec-
troweak Higgs doublet, the n = 0, Y = —1 modes, are the ones we identify
as our candidates for the flavons of the effective 4D field theory on the wall.
It should be noted that there are regions of parameter space where for a
given 5D flavon field, more than one mode has a tachyonic mass. It is also
possible to choose parameters such that the modes for the Y = +2/3 compo-
nents, which transform under SU(3)., would attain tachyonic masses, which
would be disastrous since then SU(3). would be broken on the wall. Thus, to
maintain an unbroken SU(3). while employing electroweak symmetry break-
ing and for the sake of simplicity in the analysis of the electroweak sector,
we choose parameters such that only the n = 0 modes of the electroweak
components of ®F attain tachyonic masses on the wall while all modes of the
colored Y = +2/3 components attain positive squared masses.

It turns out the profiles of the n = 0 modes of the quintet scalars fields
have exactly the same form as for the chiral zero modes for the fermionic
quintets described in the previous section, with the Agy playing a role anal-
ogous to the h?n and the Bgry being analogous to the h?x,

Pry () = Corye tery @,

bony () = Ary log [ cosh (5)] (3.23)

+ 2BpRyY arctan {tanh (g)} .

From now on, we denote the profiles of the n = 0 modes as
Pr=1y=—1(Y) = Puw(¥), Pr=1y=—1(y) = Pw(¥), Pr=17y=—1(y) = Pur(y) and
Pr=3,y=—1(y) = pyw(y) for the electroweak components and the same except
with w replaced by ¢ for the Y = +2/3 components. Similarly we will denote
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Figure 3.4: The profiles of the localized electroweak Higgs ¢Z and colored
Higgs scalar (bffor an arbitrary quintet scalar ol for parameters such that
Apry = — 7500, Agryq = 1500, Agryo = —75000, and Agr,, = 2000.

the corresponding 4D fields for these modes as ¢y (), Qu o (T), Guwr ()
and py.(x) for Y = —1,42/3 respectively. A plot of the profiles for the
electroweak and colored scalar components of a Higgs quintet in any Ay
representation is shown in Fig. |3.4]

Now we turn to the gauge singlet, A4-triplet scalar . The localization
potential for ¢ is given by

W = 12(00)1 + Apn(9)1n* + 2X0x ()1 T7 (X?) (3.24)

In a similar fashion to the analysis of the quintet scalars, writing down the
corresponding Euler-Lagrange equation, then writing ¢(x, y) = > p7'(y) 97 (v)
and Oz 17 (x) = —m*¢[(x), we find that the modes of ¢ satisfy a Schrodinger
equation with a well-known potential, in this case the Poschl-Teller potential,

-l )l )~ ) = ELRG), (329)

where the parameter d and the eigenvalues E7' are given in terms of the
fundamental constants and mode masses as

d— \/1+4(5‘<p77_>‘90x)_1

ET =m® — i* — Ay —d.
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Given d > 0, there exists a tower of discrete localized modes with eigen-
values B = 2nd — n?, just as before with the hyperbolic Scarf Potentials
for the quintet scalars. Similarly, we identify the effective 4D gauge singlet,
Ay-triplet flavon ¢ as the n = 0 mode, and we choose parameters such that
this mode is the only one which attains a tachyonic mass on the domain-wall
brane. The mass squared for this flavon localized to the wall is just

Moy = fio + Aoy + d, (3.27)

and the profile for yg, Py, (7) is

Do () = Cy sech? (7). (3.28)

The lowest energy and tachyonic 4D mode of ¢, g, is always localized
at y = 0. A plot of the profile for the example parameter choice d = 500.00
is shown in Fig. [3.5] In contrast, the profile of the electroweak component
of the other Ay triplet, p, is in general not localized about y = 0. The
natural splitting between the two Ay triplets will lead to solutions of the
vacuum realignment problem, since the splitting will naturally suppress the
responsible scalar interactions. This will be covered more extensively in

Sec. 3.6

‘/7‘\“‘\““\9

S S R
-10 -05 0.0 05 10

Figure 3.5: The profile of the lowest energy mode, ¢y, of the A, singlet flavon
field ¢ for the parameter choice d = 500.00.
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3.4 The Electroweak Yukawa Lagrangian and
Fermion Mass Textures

Given we now have a set of localized modes for the fermions and flavons
on the wall, we need to determine the electroweak Yukawa interactions in
the model and the effective 4D mass textures after electroweak symmetry
breaking. The full 5D electroweak Yukawa potential, Yz, is given by

Yew = h' (U5)CW & + B () O "
BT B e (W) o (5)°
+hoWs (PN + B WL (pN) 1 + hy W (pN )1
+ M(NN); + hy[(NN)se.0] | + hec.

(3.29)

From this, we can deduce that the elements of the effective 4D up-type
quark mass matrix are given by

M = 40 () / Fus ) fos (9)puly) dy, -
3.30

—1i2(0n) [ Fo (Do @)5ul0) i,

where the electroweak Yukawa couplings are non-dimensionalized as ﬁfﬁ =
hfﬁk‘%. All electroweak Yukawas will be non-dimensionalized this way.
For the down-type quark sector, the rows of the mass matrix are given

by

MY = %fﬁ_w / Fon(@) s (3)50(@) i
MY = %Mm / For (9) Fos () () d, (3.31)
MY = f 346,) | Fop(@) o @) 4

and similarly the columns of the electron-type lepton mass matrix is

M}E}_T ¢w /fE' fL )pw< )dy,

Mg = 7 ” /fEZ fL’ )pw”( ) dy7 (332>
= 506 | 9 )
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The Dirac neutrino mass matrix comes from the interaction terms cou-
pling the fermion quintet fields, the neutrino triplet and the Higgs (5*, 3)-field
p. The form of this mass matrix is then dependent on the vacuum expecta-
tion value pattern of the lowest energy mode of p, p,(x). For this paper, we
require that p, takes the VEV pattern,

(Pw) = (Up, Up, V). (3.33)
Under this alignment, the form of the Dirac neutrino mass matrix takes the
form

m, m, m,
M,p=|m, wm wm,|,
m// w2m// wm//
’ g 8 (3.34)
V3m, 0 0
= 0 V3m, 0 |.Uw),
0 0 V3m)
where the matrix U(w) is given by
1 1 1 1
Uw=—4|1 w w? (3.35)
V31 W2 w
and
o =hyy [ P00 (@) di
ity = gy [ o0 @)in0) di (3.36)

iy =, [ G (@) @)D di
The matrix U(w) is unitary, and such a factorization of a mass matrix where
the mass eigenvalues can be arbitrary while the diagonalization angles are
fixed is an example of form diagonalizability [72].
Lastly, the Majorana neutrino mass matrix is generated from the bare Ma-
jorana mass term M (NNY); and the Yukawa interaction term hy, [(NN)s,.¢]
The form of the Majorana mass matrix is obviously dependent on the VEV

pattern of the lowest energy mode of ¢, pg. Unlike for p,, we instead give
the field ¢y the VEV pattern,

1

(po) = (0,,,0). (3.37)
This yields a Majorana neutrino mass matrix of the form,
M 0 M,
Myyej=1 0 M 0 |, (3.38)

M, 0 M
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where

M, = v, [ @@ di (3.39)
Clearly M, ]baj is diagonalized by the orthogonal matrix

0 -1
V2 0 . (3.40)
0 1

1

1
P=—1|0
V2 1\

Noting that the effective left Majorana neutrino mass matrix is given by
M ~ — MV7DM1;]{M].M3:D, in the special case that m, = m;, = m7, the left
neutrino diagonalization matrix, V,,; assumes the tribimaximal form

V,,L:U(w)P,
2 1 0
Ve Vs e (3.41)
=l v |
w2 w2 5mi/6
V6 VB V2

The PMNS matrix which describes lepton mixing is defined by Vpyns =
VJLV,,L, where V., is the left electron diagonalization matrix. Hence, if we
obtain mass textures for the charged leptons such that V., ~ 1 we recover
approximate tribimaximal lepton mixing which is favored by experiment.

One also finds that in the special case m, = m;, = m}, the mass eigen-

. . . —3m2  —3m2
Vaiuef for the left Majorana neutrino mass eigenstates are - Moo T and
1\;—717;@ For the purposes of this paper and for simplicity of analysis, we will

choose parameters such that this condition is true. In the next section, we
shall show that there exists a non-hierarchical parameter choice such that the
Euler angles of the CKM matrix and the charged fermion masses are gen-
erated, while at the same time V,; = 1, yielding the correct lepton mixing
patterns, and that the neutrino mass data can be satisfied in the case that
m, =m, = mj.

3.5 Generating the Fermion Mass Hierachy,
the CKM Matrix and Lepton Mixing: An
Example

We now give an example parameter choice in which the fermion mass hi-
erarchy, the Euler angles of the CKM matrix, lepton mixing and neutrino
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mass squared differences are generated. With regard to the CKM matrix,
at tree level the CP violating phase has to be put in by hand by giving the
electroweak Yukawa coupling constants appropriate phases. We will for the
sake of simplicity and clarity of the solution ignore this issue. Note that it
is in principle possible for a CP phase in the CKM matrix to be generated
from cross-talk between the quark and lepton sectors, since the PMNS matrix
given in Eq. contains non-zero Majorana CP phases.

Before we begin the analysis of the fermion mass spectra, let us consider
the constraints on the vacuum expectation values of the gauge non-singlet
Higgs fields coming from the masses of the W and Z bosons. As is typical
with models with discrete flavor symmetries, our model contains an extended
Higgs sector. The electroweak Higgs doublets which arise in the effective field
theory on the wall are contained in the quintet Higgs flavons, ®, &', ®” and p.
To obtain the required W and Z boson masses, as is usual in a multiple Higgs
doublet model, we must have that the sum of the squares of the vacua of these
fields is equal to the square of the usual SM Higgs vacuum expectation value
of 174 GeV. In our specific model, this requirement is

V(60 + ()2 + (912 + 3v2 = 174 GeV, (3.42)

where (¢,,), (@) and (¢?) are the vacuum expectation values of the elec-
troweak doublets arising from ®, ®" and ®” respectively, with v, defined as
before. For the sake of simplicity in our analysis, we will assume that the
vacua obey (¢,,) = (¢} = (¢") = v, = (174 GeV)/v/6 = 71.0 GeV.

We first analyze the charged fermion sector. Since the charged fermion
mass matrices are derived from Yukawa interactions with the Higgs fields &,
®’ and ®”, we first need to localize the electroweak components of these
Higgs fields. For the purpose of this analysis, we choose parameters such
that Agy——1 = 100 and Bry-—1 = —10, for R = 1, 1', 1”. There ex-
ists a large region of parameter space spanned by the quartic coupling con-
stants 5\@1?,77, 5\¢RX1, S\qug, S\q)RnX and the 5D Higgs squared masses pi3 .
which yields Agy-_1 = 100 and Bry-_1 = —10. Furthermore, a subset of
this parameter space is phenomenologically acceptable, namely that at least
the lowest energy mode for the electroweak components attains a tachyonic
mass on the wall, inducing electroweak symmetry breaking and for which
all modes for the colored Higgs components have positive squared masses
leaving SU(3). intact. There also exist choices in this parameter region
which satisfy all these constraints and which displace the colored Higgs well
away from the wall, suppressing colored-Higgs-induced proton decay. An
example from this parameter space is /N\q)m7 = —39725, 5\<1>RX1 = —24396,
Aonyy = —1.6886 x 10°, Agr,, = 5189.8, and p2, = 49700, which gives
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Moo py——1 = —25.0, mZpy__; > 0 for all n > 0, positive squared masses

for all colored Higgs modes, and yields Ary_s/3 = 9.86 and Bgy—_s/3 = 64.6,
which in turn produce a profile localized two characteristic lengths 1/k to
the left of the center of the domain wall for the lowest energy mode of the
colored Higgs.

Now that we have localized the electroweak Higgs flavons responsible for
charged fermion masses after electroweak symmetry breaking, we can proceed
to choose values for the background domain wall Yukawa coupling constants
and electroweak Yukawa constants to generate the correct charged fermion
mass spectra. We find that substituting the parameter choices,

hlg, = T01.41,  hip, = 304.55,
hio, = 609.43, hio, = 263.73, (3.43)
ho, = 500.00, hio, = 188.63,

for the fermion decuplet background Yukawa coupling constants

hsy, = 11748, hs, = —239.30,
hf, =185.40,  hf, = —274.64, (3.44)
hy, =203.50,  hi, = —254.82,

for the quintet background couplings, and

pll plz pld 640.51  504.28  580.59
p2 R BB = 50122 481.66  524.49 |, (3.45)
S I 129.87  128.95  431.03
S L 15 800.00  119.50  119.00
Y2 R3] = (11950 800.00  119.50 |, (3.46)
e 119.00  119.50  800.00

for the charged fermion electroweak Yukawa couplings, we obtain the follow-
ing mass matrices for the up-type quarks, down-type quarks, and electron-
type leptons, all in units of MeV, respectively,

494.21  1044.4 8037.6
My = 10444  2389.3 14475 , (3.47)
80372 14474  1.7139 x 10°

46631  1.0987  3.2390
Mp = 10408 116.60 56.779 | , (3.48)
138.17 21891  4245.2
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0.53478 15.847  210.19
Mg = [81121 x 1072 107.52  217.48 | . (3.49)
5.6198 x 1072 13.762  1750.9

The mass eigenvalues resulting from these mass matrices are
my, = 2.49 MeV, m,=127GeV, m; =173 GeV, (3.50)
for the up, charm and top quarks,
mg = 4.47 MeV, mg, =114 MeV, my = 4.25 GeV, (3.51)
for the down, strange and bottom quarks, and
me = 0.511 MeV, m, =106 MeV, m, =1.78 GeV, (3.52)

for the electron, muon and tauon respectively. These results obviously are in
agreement within error of current data on charged lepton masses [63].

With regards to quark mixing, the Euler angles, ©% O and ©5F of
the left up quark diagonalization matrix, Vi, derived from the up quark
mass matrix in Eqn. [3.47] are approximately

O =17.264°, O =2.6874°, ©f) = 4.8658°, (3.53)

and the corresponding angles OEF ©PL and ©LF of the down quark left
diagonalization matrix, Vpy, are approximately

o =4.2387°, ©7 =1.8634°, O =2.9746°, (3.54)

from which one derives that the Euler angles O4KM  @GKM " and ©FKM of
the CKM matrix, given Vogy = VULV[T)L, are

QUM = 13.0°, OYM =0.201°, O5FM =2.39°. (3.55)

These results are in agreement with the current data on quark mixing angles
[63].
Finally, the Euler angles ©¢%, ©S% and ©5% of the left electron diagonal-

ization matrix, V., are indeed small
O =732x107%°, O =4.15 x 107%°,
I . (3.56)

Thus, the left electron diagonalization matrix is indeed very close to the
identity matrix, which means in choosing parameters such that m, = m/ =
mj, we get a tribimaximal PMNS matrix generated entirely from the left
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diagonalization matrix for the neutrinos. The only remaining things to check
with regard to the mass fitting are the existence of parameter choices for
the right chiral neutrinos generating the desired mass spectra and if, in the
case m, = m;, = mj, the experimentally measured neutrino squared mass
differences can be satisfied.

In the analysis of neutrino masses, we give two example parameter choices
for the non-dimensionalized coupling of the right-handed neutrinos to the
domain-wall, Bln, the bare Majorana mass M, the non-dimensionalized Yuk-
awa coupling Bw describing the strength of the interaction between N and
the gauge singlet Higgs field ¢, as well as the quartic coupling parameters
determining the localization of the lowest energy modes for the Ay-triplet
flavon fields p and . The Dirac masses m,, m;, m) are sensitive to the
splittings between the fields p, the lepton doublets and N, and since we
still have the freedom to shift p, we can naturally control the scales of these
masses: they can be made to be at the same order as the top quark mass or
they can be made to be very light. On the other hand, since the right-handed
neutrino triplet N and the flavon ¢ are always localized about y = 0, the
overlap integral [ f3(9)py,(9) dg on which the mass scale M, is dependent
is always naturally of order 1, so naturally we expect that M, is of the same
order as the bare Majorana mass for V.

In our first examples, we give parameters such that the neutrino Dirac
masses are of the order of the electron mass. For the parameter choice

hi,, = 100.00,
h, =533.27, I = 267. B =777,
p=0533.27, h, 67.97, h,="T77.57, (3.57)
Ayy——1 = Ap—sy——1 = 500.00,
Bpy—_1 = Bp_3y—_1 = 380.00,
we get the Dirac masses to be
m, = m, =m, = 0.100 MeV. (3.58)

One can then show that to satisfy the neutrino mass squared differences
Am?y = 7.59 x 107 eV? and Am3; = 2.43 x 1072 eV? from the PDG [123],
we must have

M =286 TeV, M, =226TeV, (3.59)



CHAPTER 3. LARGE LEPTON MIXING ANGLES FROM A
4+1-DIMENSIONAL SU(5) x Ay DOMAIN-WALL BRANEWORLD
113 MODEL

for which the neutrino masses turn out to be

o 2

=|——L2 1 =586 x 1072 eV
™M, X eV,

2
—am

Mo = Mp =0.0105 eV, (3.60)

_ |23 | oos0aev
ms = m = U. ev.

Because the localized mode of ¢, g is a gauge singlet and Ay-triplet and
thus decoupled from the Standard Model, at least at tree level, we have the
freedom to choose the scale of its vacuum expectation value, v,. This means
we can choose the scale such that the Yukawa coupling iLSD is of the same
order as all the other electroweak Yukawa coupling constants; in this case, if
v, ~ 10 GeV and iLSD ~ 100, we get the correct scale for M.

Another example we give is one in which the Dirac neutrino masses are
the same order as the top quark mass, and the Majorana mass scales are of
the order Mgy = 10'° GeV, albeit with Ay, mildly tuned. For this choice
we have,

hy, = 25.000,
h, = 328. N =208.26, R’ =793.1
,=32895 h, =208.26, h)="793.17, (3.61)
Ayy——1 = Ap_zy——_1 = 900.00,
B,y—_1 = Bp=3y=—1 = 600.00,
which gives
m, =m, =m, = 174 GeV. (3.62)
If we then set
M =8.65 x 10" GeV, M, =6.85 x 10'* GeV, (3.63)

we get the masses of the left neutrino mass eigenstates for this parameter
choice to be the same as those for the first parameter choice in Eqn. [3.60]
Given that the M, = 6.85 x 10" GeV, if we have v, ~ 10" GeV, then we
obtain ilw ~ 100 as desired.

In summary, we have shown that there exist parameter choices within
the model such that the fermion mass hierarchy, light neutrinos and the
correct neutrino mass squared differences, quark mixing and a tribimaximal
lepton mixing matrix are reproduced from a set of Yukawa coupling constants
which are of the same order of magnitude. In light of the recent results of
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the Daya Bay and RENO neutrino experiments [65], 66], which found that
7.9° < 613 < 9.6° for the PMNS matrix, exact tribimaximal mixing is now
excluded. However, a number of assumptions in this analysis were made
which ensured an exact tribimaximal form, namely that m, = m/, = m} and
requiring that the left electron diagonalization matrix was close to trivial.
It is obvious that deviations from tribimaximal mixing will occur if these
assumptions are relaxed, and it is clear that the correct 613 mixing angle can
also be generated in this model.

The m, = m;, = m} assumption generically results in a normal neutrino
mass hierarchy, since the only possible hierarchies for this parameter choice
are either m; < msy < mg, which is the normal hierarchy, or m; > mqy > mg
which is phenomenologically unacceptable. Breaking this assumption can
then lead to inverted or quasidegenerate neutrino mass hierarchies as well as
deviations from tribimaximal mixing.

Like many models based on Ay, our analysis relied on the alignments of
the vacuum expectation values of two A4-triplet Higgs fields being different.
However, when interactions between the two flavons are switched on, this
arrangement is generally destroyed and the VEVs of the two fields align,
leading to the vacuum alignment problem. We will discuss the resolution of

this problem within our model in the next section.

3.6 Resolving the Vacuum Alignment Prob-
lem via Splitting

Throughout this paper our analysis has depended on a particular choice of
alignments for the vacuum expectation values of the two Ay-triplet Higgs
fields localized to the wall. As per usual, finding valid VEVs for these fields
involves finding global minima for the full scalar potential of the theory, which
we have put in Appendix For the gauge charged triplet, p, we assigned
a VEV of the form (v,,v,,v,), which induces a breaking of A, — Z3, and
for the neutrally charged triplet flavon ¢ a VEV of the form (0, v,,0) which
breaks A, down to Z,. After these fields are localized and gain tachyonic
masses on the wall, one can show that these VEV patterns are indeed valid
global minima of the respective self-interaction potentials V, and V, given
in Egs. and [B.3] However, when one turns on interactions between the
Higgs triplets and the 1, 1" and 1” quintet scalars, this is no longer guaranteed
[73), (1]

The problem is that once the cross-talking interactions are switched on,
minimization of the potential yields a larger number of independent equa-



CHAPTER 3. LARGE LEPTON MIXING ANGLES FROM A
4+1-DIMENSIONAL SU(5) x Ay DOMAIN-WALL BRANEWORLD
115 MODEL

tions than known vacuum expectation values (v,, vy, (¢w), (¢,), (¢%,)). This
means that enforcing the desired vacuum alignment requires an unnatural
fine-tuning of the parameters of the scalar potential. The troublesome terms
are those which generate soft A4 — Z5 breaking mass terms in the potential
for p,, after @q attains its VEV, and likewise generate soft Ay, — Z3 breaking
terms for the potential for ¢, when p, condenses. These unwanted inter-
actions involve coupling 1, 1”7, 3, and 3, products of p and ¢, for example
(p'p)1 (@)1 [B5]. In addition to interactions with ¢, there are other in-
teractions generating A; — Z5 breaking mass terms due to the presence of
the 1’ and 1” Higgs quintets ® and ®”, for example (p'p)»®T®’. Analogous
interactions involving just ¢, ® and ®” (and technically ® as well) are not
problematic since ¢, ®" and ®” all break A, to the same Z5 subgroups, al-
though there are interactions such as ®”7(py),» which provide corrections to
the potential for ¢ as well as that for p.

In our model, we follow the approach in [86], 88] and split the triplet
flavons in the extra dimension to ensure the alignment. Typically, if we
suppress the troublesome interactions such that their effective interaction

strengths are extremely small, we simply expect a small classical correction
PP

to the desired vacua for p,, of order % for quartic interactions of p and
@ for instance, and similarly for other troublesome mass terms impacting
the alignment of ¢. Since p is a quintet under SU(5), the electroweak Higgs
doublet p,, arising from it is in general displaced from § = 0. Since the singlet
flavon ¢ is always localized at § = 0, it is in principle possible to separate
the flavons sufficiently so that the operators in V,, are naturally suppressed.
As previously mentioned, we also have troublesome interactions involving p
and the 1" and 1” Higgs quintets. Thus we place the localized mode of p, p.,,
on the opposite side of the wall to those of ®, & and ®”. The interactions
coupling all three types of non-trivially As-charged flavons such as ®"(py),»
are naturally suppressed by the splitting of the Ay — 73 breaking sector
generated by p from the Ay — Z, breaking sector generated from ¢, ®' and
o,

In our example analysis, for the first choice with Ay,y—_1 and B,y—_;
given in Eq. [3.57] the same localization parameters for ®, ® and ®” chosen
in Sec. [3.5] we choose d, as defined in Eq. and which determines how
localized g is to the wall, to be set to d = 500.00. A graph of the profiles
for py, po and those of ¢y, ¢! , and ¢ for this parameter choice is shown in
Fig. 3.6

The potentially most troublesome interactions are the cubic interactions
of the form (pfp)ssa.0 and (pf)1 11+ @111 for which the effective 4D
couplings are proportional to the integrals [ ﬁzw(gj)ﬁ% (7) dy and
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Figure 3.6: Profiles for the localized triplet flavons p,, and ¢ as well as those
for the 1, 1’ and 1” Higgs fields ¢,,, ¢/, and ¢! for the parameter choices
with A,y—_1 and B,y—_; as given in Equation , the same localization
parameters given for ®, &' and ®” chosen in Sec. and d = 500 for .

| Pow(§)Popo (9)Prwwr o (§) df respectively. One has to be careful in calculat-
ing the magnitude of the corrections from these interactions since quartic
and cubic scalar couplings have different mass dimension; in 4+1D a quartic
coupling has mass dimension —1 while a cubic coupling has mass dimension
%. For a generic cubic interaction of the types in consideration, if the cubic
coupling is a, and the quartic self-couplings for a generic A4 triplet are of
order A, provided that the cubic interaction provides just a small pertur-

bation, then we anticipate that this perturbation is proportional to §. If

1 _
we choose these numbers to be natural, that is a = aApy, and A = )\AB%,V
where Apy is the UV cut-off for our theory and @ and A\ are dimension-

3
less numbers of order 1, this means that § ~ Az, An overlap integral

Os of the profiles of the scalars involved in a cubic interaction is k2 times
the non-dimensionalized integral O, while that for a quartic interaction self-
interaction Oy is kO4 ~ k. Given that self-interactions only involve the one
species and thus the relevant overlap integral is only dependent on the one
profile, Oy should be of order 1. If we now consider (pTp)3s.a-p, after py,
attains a VEV| this interaction provides a correction linear in g and so the

. . 2 _1x 02 . .
correction to v, is then of order A3 k~205-%, and likewise when g con-
@ DW ”U?P ’
denses this interaction provides a Ay — Z5 mass term for p,, which provides

3 - -
a correction A%Wk_%ng—*:, where O3 = [ p2,(§)Py, (9) dj. We do not know
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what exactly the scales k and Apy, are, but for the purpose of this analysis we
will assume the worst case scenario as far as these corrections are concerned:
k~1 TeV and Apw ~ Mpane = 10 GeV. For this first parameter choice,
| P Pw(U)Pgo (§) dy is of the order of 10~ 35 which yields the correction to (900>
from this interaction to be of order 10~ "v,,, and the correction to {p,,) to be of
order 1071%,. Likewise, for the interactions of the form (pfp); 1/ 1#®@=11"1
the relevant overlap integral Os = [ ppu(9)Bpo (§)Puwwrw(§) df is of order
1073 and after the non-triplet gauge charged Higgs fields attain VEVs these
interactions give corrections linear in ¢y and p,,, which turn out to be of the
order of 107%v,, and 10~%v, to (o) and (p,,) respectively.

With regard to quartic cross-talk interactions, we do not have to worry
about scaling of the coupling constants for obvious reasons. For the quar-
tic interactions coupling p and ¢, the effective 4D quartic couplings are
all proportional to the integral f ppw pvo( ) dy which for this first pa-
rameter choice turns out to be of order 107%3, yielding corrections of order

(107520, ~ 1075, to {py) and (107532 )u, ~ 100, to (o).

Next, we deal with the quartic mteractlons coupling p, ® and one of ¢’
or @, which are of the form (pfp)g_1/ 1»®T®F=1"1". After dimensional re-
duction the effective 4D coupling constants for these interactions are propor-
tional to the overlap integral [ ppuw(9)pw(9)Pu w(§) dj. For this parameter
choice these overlap integrals are of order 10722, yielding corrections of order
(10722 <¢w><¢;,jé,w">”¢)vp ~ 10722?}1) to <pw>

Finally, there are quartic interactions coupling both p and ¢ to one of
®, @' or ", which are of the form [(gogo)gs.pT}RCI)R*. To leading order, since
({(©0){¢0))3s = ((0,v4,0).(0,v,,0))ss = 0, this interaction does not give a
leading order correction to {p,,), although there are corrections for (o). After
dimensional reduction, the effective 4D coupling strength is proportional to
the overlap integral [ p2 Do (0)Ppw(U)Pw,ur w () df, and for the first parameter
choice this overlap integral is of the order 1073, leading to corrections of

. R=1,1",1"
(10*59””<¢wv—3@))v¢ ~ 10737, to (o). Obviously any second order

order
corrections to (p,) will be much smaller than this.

For the second choice with parameters given in Eq. with d = 900.00,
we get the Value of the relevant overlap integrals to be of order 107°° for
fppw pgoo y) dy, 10~ 2 for fppw psoo (y>ﬁw,w’,w” (9) dy, 107 for
fppw p% g) dy, 107 for [ p2,(9)Ds () Pw w (§) dij, and 10->* for
[ Pow (Y psé,0 U)Dww () dy. All the corrections to (pp) are not only sup-
pressed by the overlap integrals but by either Z—Z ~ 107'2 or its square

(:2)* ~ 107%*, hence doing a similar analysis to that above shows that the
©

corrections to (yg) are extremely negligible. Doing a similar analysis as above
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shows that the the overlap integrals are small enough to overcome the ratio
%2~ 10" or its square (32)* ~ 10** (whichever is relevant) as well as the
P

P
1

3
ratio A}, k2 in the case of the cubic interactions and still ensure that the
corrections to (p,,) are more than several orders of magnitude less than v,,.

3.7 Conclusion

We found that the A4 extension of the SU(5) 441D domain-wall braneworld
model of [23] can generate large mixing angles in the lepton sector. We ex-
plicitly demonstrated parameter values that yield tribimaximal lepton mix-
ing with a normal neutrino mass hierarchy, together with successful predic-
tions for the hierarchical charged fermion masses and quark mixing angles.
Through small departures from this parameter point, the small but nonzero
013 leptonic mixing angle can be generated, and the neutrino mass spectrum
altered to give an inverted hierarchy or a quasi-degenerate pattern. This is
a significant extension of the results found in [I].

We also discovered that the troublesome interactions which are respon-
sible for the vacuum realignment problem in analogous 4D models could be
suppressed by splitting the profile of p, which initiates A4 — Z3 breaking,
from the profiles of the Ay — Z5 breaking flavons ¢, ® and ®”. This led to
exponential suppression of the overlap integrals of these profiles determining
the effective 4D coupling constants for interactions between the Ay-triplets as
well as the troublesome interactions which involve ®' and ®”, ensuring that
the contributions of these interactions to the vacua of the localized compo-
nents of p and ¢ were sufficiently small compared to the classical vacua of
their respective self-interaction potentials. This maintained the desired vac-
uum alignments for these flavons required to generate large lepton mixing
angles.

We have shown in this chapter and in [I] that domain-wall braneworld
models with an SU(5) gauge group are generically good for generating the
fermion mass hierarchy and quark mixing, and that with the inclusion of the
discrete flavor group A4 we can attain large lepton mixing angles. Further
work along these lines could involve extending either the gauge group (to
SO(10) for example [124], or to even larger groups such as Eg [25]), the
discrete flavor group (for example, to 7" which is the double cover of Ay), or
both. Further work could also look at the case where gravity is included or
quantum corrections to the fermion mass spectra.



Chapter 4

Solutions for Intersecting
Domain Walls with Internal
Structure in Six Dimensions
from a 79 X Zo-invariant Action

This chapter represents the beginning of our studies into increasing the scope
of the domain-wall brane framework to two additional dimensions rather than
just one.

Topological defects of co-dimension 2 have been considered as candidates
for the localization of fields onto a 341D subspace. The simplest example of
a co-dimension 2 defect is a string and it has already been shown that 3+1D
gravity can be reproduced on such an object in a 5+1D spacetime [95] 06].
Extensions of the RS2 model for the intersection of n fundamental branes in
4+n-dimensional spacetime were proposed in [33, @9]. Other than strings,
we could instead consider the possibility of using a pair of domain walls in
6D spacetime to localize fields on to a 4D world volume.

There are two ways of introducing a second domain wall in order to freeze
out a second extra dimension. One way is to localize a scalar field onto a
domain wall and have that scalar field develop a tachyonic mass which induces
a breaking of a second discrete symmetry, yielding a second domain wall
localized to the first. This is called a nested domain wall or domain ribbon
and there is some literature that has dealt with this scenario [4], 100, [101] and
with the possible localization of gravity on such a defect [102]. A second way
to produce a dimensional reduction from 5+1D to 3+1D is to have two stable
domain walls which intersect. There have been some supersymmetric models
which yield rare exact solutions for a pair of non-trivially intersecting walls
[T04]. For more on models with intersecting domain walls or domain-wall

119
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junctions, see [103, [125] 126], 105].

In this chapter, we present a Z, X Zs-invariant 5+1D interacting scalar
field theory with four real scalar fields, where the 6D masses are tachyonic
for two of the scalar fields and positive definite for the other two, in which
a rare analytic solution for two intersecting domain walls can be obtained
for a particular parameter choice. We find that there exists a class of en-
ergy degenerate solutions with two domain walls: one in which the walls are
perpendicular, a range of solutions where the walls intersect at an angle be-
tween 0 and 90 degrees and another in which the walls are parallel. We give
topological arguments for why the perpendicular solution cannot evolve to
the parallel solution given for the particular parameter choice, as well as an
argument for why the perpendicular solution might be energetically favorable
to the solutions with intersection angle less than 90 degrees in a nearby region
of parameter space (assuming they are not topologically distinct). We also
show that chiral fermions and scalars can be localized to the intersection of
the domain wall. This is important because these chiral fermions and scalars
form the building blocks of the quarks, leptons and Higgs bosons of an effec-
tive Standard Model-like theory dynamically localized to the intersection.

We have already given a number of solutions to Z,-symmetric scalar field
theories in which one scalar field generates a domain wall and another con-
denses in the domain-wall interior. These single-wall solutions all have the
same qualitative features. Hence, we begin with Sec. in which we outline
the model generating the intersecting domain wall solution, give the form
of the solution for which the walls are perpendicular and give a topologi-
cal argument for why this solution cannot evolve to the solution where the
walls are parallel despite these solutions being energy degenerate. We also
give an argument for why the perpendicular solution and the solutions which
intersect at an angle between 0 and 90 degrees are not energy degenerate
in general. In Sec. we discuss fermion localization and we show that
localization of a single chiral zero mode on the intersection of the domain
walls is possible. In Sec. §.3] we show that scalars can also be localized to
the domain-wall intersection. Section [1.4]is our conclusion.

4.1 The Background Scalar Field Theory

Our model describing the background fields is a 5+41-dimensional (5+1D)
quartic scalar field theory with four scalar fields invariant under a Zy X
Z5 symmetry. The role of the Z, x Z5 symmetry is to ensure topological
stability of the resultant intersecting walls in a manner analogous to that of
the Z5 symmetry in the single wall case. Under this symmetry, we assign the
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following parities to these fields:

m~ (_’+) X1~ (_7+)>

B~ (m) e (). (4.

The fields n; and 7y will form the two perpendicular background domain-wall
kinks while y; and x» will attain lump-like profiles parallel to each respective
wall.

Given the parity assignments, we may write the most general quartic
scalar potential of this theory as

1 1 1 1

Vow = 3 (77 —v1)? + §Am><1(nf —v)x; + 5@1)@ + ZAxlxi‘ + G X1
1 1 1 1

+ My XS + e (5 —v3)? + 5)‘772x2<77§ —v3)x5 + Quigxg + ZAXQXE‘

1 1
+ GaraX2 + Pa X3 + §Amn2(nf —v}) (3 —v3) + §Anlxz(nf —v)X3

1 1 1 1
+ §>\X1772X%(77§ - U%) + 5/\X1X2X%X§ + 5)‘mnzxzn%772X2 + 5)‘Xl7]2X2X%772X2

1 1
+ §>‘771X1772771X177§ + 5)‘771X1X2771X1X§ + )‘771X1772x2771X1772X2-

(4.2)
Choosing parameters such that this potential is bound from below, in-

cluding Ay, Anyy Avrs Axas Amines Apixes Mxames Aaxe > 0, there are four global
minima given by n; = £vq, 79 = v, X1 = X2 = 0. Furthermore, we require
that A, 07 > ,ui Cand Ay, v3 > ,uiz to ensure that x; and x» attain tachy-
onic masses in the interiors of of the respective walls generated by 7; and
12. This ensure solutions where y; and xo form lump-like profiles are the
most stable ones, analogously to the single kink-lump case. We also make
the parameter choices pi2 > Ay,p,v5 and 12, > Xy, v7. We choose the last
two conditions so that y; does not condense along the edges at infinity along
which the 7y — 2 kink-lump solution interpolates and vice versa.

To set up an intersecting domain wall solution, we must find a static
solution for all of the four fields 7y, 72, x1 and x2 to the Euler-Lagrange
equations which at the very least interpolate amongst the four vacua at
infinity along the corners of each quadrant in the y — z plane. Firstly, we
attempt to find a solution in which the walls are mutually perpendicular.
Along one edge where 7, is constant at one of its vacua +v; and where
also x1 = 0, the field 7y should interpolate between the values vy and y»
should be zero at infinity along the edge and condense in the middle of the
edge, much like the one-dimensional kink-lump solutions discussed in the
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previously. The same should apply to 7, and y; along the edges where 17,
and ys are fixed. This motivates us to look for solutions obeying boundary
conditions of the type

m(y = £o00,2) = tvy, mi(y, 2 = Fo0) = vy tanh (ky),
n2(y = £o00, 2) = vy tanh (12), N (y, 2 = £oo) = L., (4.3)
X1(y = £00,2) =0, x1(y, 2 = £o0) = Ay sech (ky),
X2(y = +00, 2) = Agsech (1z), x2(y, z = £00) = 0.
By making the parameter choice,
Ammaxe = Axamexz = Anoane = Anxaxe = Amxamexe = 0;
Imxar = Mpxs = Giaxe = Moy = 0,
)‘7717727)% = )‘X1772A%7 )‘nlnzvg = )‘771X2A§7
/\mxzvf = )‘X1X2A%7 /\xwﬂg = )‘X1X2A§’ (44)
2/~Li1()‘n1X1 = Aa) + A A — )‘31X1)U2 =0,
2#3@ ()‘nzxz = A + ()‘772)‘)(2 - )\3;2X2)U2 =0,
one finds that
m(y) = vitanh (ky), x1(y) = Arsech (ky), (4.5)

n2(2) = vatanh (1z), x2(z) = Agsech (Iz),

)‘mxl”%_zﬂil AQ . )‘nzxzvgfzuiz
>‘X1 ’ 2 )\XQ
to the four coupled Euler-Lagrange equations resulting from the potential in

Eq. and satisfies the boundary conditions in Eq. £.3] We give plots for
M, X1, N2 and o for the solution in Eq. [1.5]in Fig. 4.1} Fig. [£.2] Fig.[£.3]and
Fig. respectively, in terms of the non-dimensionalized coordinates y = ky
and z = [z.

It is important to note that there are other solutions with two kink-lump
pairs to the coupled Euler-Lagrange equations. Without loss of generality,
assume that n; and y; are the same as in Eq. but consider instead that
1o and Yo take the form

2 _ 2 12 _ 2 A2 _ : ;
where k° = py , I* = pu3,, Af = , 1s a solution

n2(y, 2) = vy tanh [[(cos Oy + sin 6z)],

4.6
X2(y, z) = Ay sech [I(cos Oy + sin 0z)]. (4.6)
Acting with the d’Alembertian operator on 7y and ys yields
212
Un, = W(ﬁg — v3)n2,
2 (4.7)

21 3 9
Oxe = A_§X2 —1"Xxa.
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Figure 4.1: A plot of 7; for the solution in Eq. .

The resulting relations of the kinetic terms of 75 and x»2 to themselves
given in Eq. are independent of the relative angle, 6, between this kink-
lump pair and that for 7; and x;. Hence, under the same parameter choice

as in Eq. [4.4]

(4.8)

X2(y, 2) = Agsech [l(cos Oy + sin 0z)],

is a solution to the Euler-Lagrange equations for general 6. This means we
have a whole class of solutions ranging from a solution in which the two
walls are parallel (6 = 0), through intermediate angles of intersection, to
the perpendicular solution of Eq. [1.5] The parallel and angled solutions
obviously do not satisfy the same boundary conditions as the perpendicular
solution given in Eq. [4.3] The angled solutions still divide the y — z plane
into four domains which tend to all four of the discrete global minima out at
infinity. The parallel solution is a wall between two of these discrete vacua
out at infinity along one direction. In calculating the energy density, the
kinetic terms and the potentials describing the self-interactions and mass
terms involving only 7; and x; and likewise only 7, and x» are associated
with the energy density of the single kink-lump pairs, and integrating them
over the directions normal to the walls yields the tensions associated with
each kink-lump pair. In general, in theories with multiple domain-walls, the
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Figure 4.2: A plot of y; for the solution in Eq. |4.5]

quartic interactions between the fields yielding different domain walls lead to
a tension associated with the intersection or junction of those walls. In this
scalar field theory and with the parameter choices we made in Eq. [£.4] we
find that this tension is precisely zero,

1 1
Eint = 5)‘771772 (77% - U%)(n; - Ug) + 5 xe (77% - U%)X% + §>‘X1772X%<77§ - Ug)

1
+ 5)‘X1X2X%X§7

1 1
= 5)\,71,727)%1}% sech? (ky) sech? (lu) — 5)\,71)(21}%143 sech? (ky) sech? (lu)
1

— iAxmAfv% sech? (ky) sech? (lu) + %)\XUQA%A% sech® (ky) sech? (Iu),
=0,

(4.9)
for all angles 6 where here we have used u = cos 6y + sin #z. These solutions
are degenerate in energy.

It turns out that despite the energy degeneracy, neither the perpendicular
nor angled solutions can evolve into the parallel solution. This is not surpris-
ing as the former two interpolate amongst the four vacua along the boundary,
while the latter only interpolates between two of them so we expect them to
be topologically distinct. To be precise, there exists a topological charge as-
sociated with the 2-dimensional boundary of the y — z plane. The associated
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Figure 4.3: A plot of 7, for the solution in Eq.

topological current is defined by
JMNOP — MNOPQR G om.Opn;. (4.10)

Clearly, the 6-divergence of this current vanishes and is thus conserved. The
conserved topological charge associated with this current is just

QAPY = / dSxJ0ABC (4.11)

Since the background fields are solely dependent on y and z, only the elements
QY% where i, 7,k = 1,2, 3 are non-zero. One can show that these charges are
proportional to the integral

I = / dydz(8477185772 - 8577184772), (4.12)
)

where ¥ denotes the y — z plane. Using Stokes’ theorem, one can also write
this as

1 :/ 1104m2dy + 1m105m2dz,
ox

= / 7 Vne.dl
%

One can easily show from Eqgs. and that for the perpendicular

and angled solutions I = 4v,vy whereas for the parallel solution I = 0. Thus

(4.13)



4.1. THE BACKGROUND SCALAR FIELD THEORY 126

Figure 4.4: A plot of s for the solution in Eq. |4.5]

the perpendicular and angled solutions are stable against decay or evolution
to the parallel solution despite the energy degeneracy.

The topological charge in Eq. does not differentiate between the
perpendicular and angled solutions. It is not clear whether this means that
these solutions are in the same topological class as there could exist other
topological charges which differ between the two types of solution. In case
they are topologically equivalent, one can imagine that one could perform
a small perturbation from the parameter region considered in generating
the analytic solutions to ensure that the perpendicular solution is the most
energetically favorable one since the energy degeneracy between the solutions
is likely not true in general. From a rough glance at the interactions in Eq.
one can see that if one performs a perturbation Ay, ,, — Ay, +¢€, with € > 0,
that the contribution en?n3 is minimized for § = 90° and tends towards
infinity as § — 0. Unfortunately, there are also resultant perturbations to
the fields 11, 172, x1 and x2, and these perturbations satisfy four coupled
partial differential equations which can only be solved numerically, so we can
not give a definitive answer here.

We also need to perform a local stability analysis of the solutions given
in this section. Likewise, this requires numerically solving four non-linear
coupled partial differential equations and we defer this to a later study. For
the rest of this paper, we will assume that the perpendicular solution is stable
and that one can always choose this to be the background solution.
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4.2 Fermion Localization

In this section, we show that fermions can be localized to the intersection
of the two domain walls. Normally, in the case of a single domain wall, one
localizes fermions to the center by Yukawa coupling them to the relevant
scalar field. In the case of a single domain wall with a Yukawa coupling
of the form W, as n — —n under the discrete Z, symmetry, to preserve
the symmetry and maintain topological stability, we require that the Dirac
bilinear WW — —WUW under the symmetry. This can be achieved by choosing
the fermionic fields to transform individually as ¥ — +:['W, where I is the
gamma matrix associated with the direction parametrizing the profile of the
domain-wall solution. In 4+1-dimensional (4+1D) theory, one often chooses
' =T = —iv® for example.

In six dimensions, with our background set-up, if one wishes to local-
ize chiral fermions to the intersection region of the background solution, one
must Yukawa couple the desired fermionic fields to all four scalar fields. How-
ever, with two independent Z, symmetries, one has a problem in attempting
to couple a fermionic field to both defects since if we perform the first Z,
transformation 7, — —11, X1 — —X1, 72 — 72, X2 — X2, and maintain that
YU — —UU under such a transformation, then W, and ¥y, are not
invariant under the first symmetry, and likewise UWn, and WW¥y; won't be
if we impose the second Z5 symmetry. Hence, we cannot localize fermions to
the defect by using just scalar Yukawa interactions to all fields without com-
promising topological stability. This reflects the fact that we must choose
our effective 6D localization bulk mass matrix carefully in order to localize
chiral fermions on the intersection, an issue that was first raised in [99].

However, in 541D there is another possibility, since in spacetimes of even
dimensionality there always exists a chirality operator and thus there always
exists a pseudoscalar bilinear in these spacetime dimensionalities. In 5+1D,
the chirality operator I'” is defined

F7 — F0F1F2F3F4F5,
1
= @GMNOPQRPMFNPOFPFQFR.

(4.14)

One can then define the pseudoscalar bilinear WI'"W. Now we consider the

Yukawa terms . .
Ly = —ih,y VT — ih, W Wy,

+ hWQE\IJHQ —|— h,XQE\IJXQ,

and ask if it is possible to define two independent transformations for each Z,
symmetry for W such that for the first symmetry in which n; — —n; and y; —

(4.15)
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—x1 we have UI'"W — —WT7W but UW — U, while for the second reflection
symmetry 1, — —ny and x3 — —Y2 we have WI'7¥ unchanged but WU —
— U, Due to the fact that I'" anticommutes with the gamma matrices, for
the second Z5 one can easily show that the usual type of transformation ¥ —
iI"®¥ can be chosen. For the first Z,, one can show that the transformation
U — [TV induces the transformation V¥ — WU and VIV — —WI7V.
Hence, we have shown that there exists a mechanism to couple a fermionic
field to all four background scalar fields with the combination of scalar and
pseudoscalar Yukawa couplings given in Eq.

Henceforth, we assume boundary conditions such that we have the per-
pendicular intersecting domain-wall solution and we take the following sets
of transformations to be our reflection symmetries which ensure topological
stability of the background,

y— -,
z— 2z,
m— —n,
X1 — — X1, (4.16)
N2 — 72,
X2 = X2,
U — M7,
and
y—y,
z— — 2z,
m — M,
X1 = X1, (4.17)
N2 — — N2,
X2 =7 — X2,
U — [0,
We now need to show that there is indeed a chiral zero mode localized to

the intersection of the domain walls. Writing down the resultant 6D Dirac
equation for ¥, we have

iTM 0 U 4 W, (y) T — Wo(2)¥ = 0, (4.18)

where
Wi(y) = hyym(y) + hy, xa(y),

Wal=) = hya(2) + haxal2). (4.19)
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In order to perform dimensional reduction and calculate the profiles of
the modes of ¥, we must choose a basis for the 5+1D Clifford algebra. One

can show that
0 ol
F#:JI@VV#:(»YM 0),

. 0 —iry®
M=o0® —i’ = (_i75 gY ) ; (4.20)

. -0
F5:—203®]l:<0 i)’

satisfies the 541D Clifford algebra
{TM TN} = 2pMN, (4.21)

and is thus an appropriate choice of basis for the 5+1D gamma matrices. In
this basis the 6D chirality operator is

=0, ®1= (_OZ é) . (4.22)

Decomposing ¥ into components ¥, which have 4 complex components and

are eigenvectors of I'°,
- (?) , (4.23)

one can shown that the 6D Dirac equation reduces to

("0 + 704 + Wi(y)) Wy — 050 — Wy(2)T_ =0, (4.24a)
(i7" 0, + "0y — Wi(y))W_ + 05U, — Wa(2)¥, = 0. (4.24b)

To calculate the profiles of all modes, due to the fact that the excited
Kaluza-Klein (KK) modes are usually Dirac fermions it is useful to find the
corresponding Klein-Gordon (KG) equation that the components W satisfy.
Operating with (iy*9,+7v°04— Wi (y)) from the left on Eq. and likewise
(70, +v°01 + Wi(y)) on Eq. [4.24b] one obtains the KG equations

D0 + (Wi(y)* F Wi(y)7s) Ve + (Wa(2)® £ Wy(2))Ts = 0. (4.25)

Now we expand each of U as a series of modes. As one can see from Eq. [4.24]
the y-dependent piece is chirality-dependent while the z-dependent piece is
not. The z-dependent piece is only dependent on whether the component is
V_ or V.. Thus we make the expansion

Uy (z,,y,2) =
S )R @@ + el (2)eta(e,).  426)
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Here, m just denotes some mass eigenvalue, ¢'';  denotes the 3+1D left /right-
chiral mode of mass m embedded in the component W of ¥, and fI} r(y)
and ¢7'(z) are profiles for these modes along the y and z directions respec-
tively. Since any 341D fermionic mode should satisfy a corresponding Klein-
Gordon equation, let us substitute the expansion into Eq. and demand
that modes satisfy Os 107 p(2,) = —m*@T g(x,). We find that Eq. |4.25
reduces to

- S w2 e Wi )

b1~ T (1(2? £ W) o)

= ZZ?{L(?/)Q?(Z% (4.27)
[ d;;R + (Wi()* F W) fe(w)] gt (2)

¥ 12l [ S (W) = W) ()]

=m’ f[Tr(y)g¥ (2),

for the left and right-chiral components respectively.

Demanding that the profiles satisfy the following Schrodinger equations
(SE)

d2 m
o dij;L + <W1(y)2 + Wll(y))finL(y) = AliLf;TL(y)a (4.28a)
d2 m
- dj;izR + (Wi(y)® F Wi () fr(y) = Mg R (), (4.28D)
d2 m
- dﬁi + (Wa(2)? £ Wy(2))gt (2) = ANLgT (2), (4.28¢)

we find that the values of the squared masses of the localized KK modes are
mipp=Apr T AL (4.29)

for the modes embedded in V.

Given the definitions for Wi and W, in Eq. [£.19, one can see that the
potentials of Eq. are hyperbolic Scarf potentials. These potentials are
well known and can be solved analytically [58, [39, [40]. For simplicity, let us
assume that both h,, and h,, are positive definite. Non-dimensionalizing all
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variables and parameters except m as

y = ky, zZ=lz,

— hyor - hy A
hTh - %7 hX1 = Xk ) ( )
= h (%) ~ h A2 4.30
thQ = TI; ) hXQ = XzT>
5\1 _ AiL,R 12 _ )\i

+L,R — kQ ) + — l_27

and non-dimensionalizing the profiles as

rm ~ —1.m
fj:L,R(y) =k 2fj:L,R<y)a
o~ 1o
gy (2) =129 (),
one can show that each of the Eqs. |4.28al |4.28b| and [4.28c/ has a finite number
of localized, square-normalizable solutions as well as a delocalized continuum.
First, let us start with the z-dependent equations. For positive hy,, it is the
potential for W_, W3 — W which generates a series of [h,,] localized modes

starting from an eigenvalue of :\2_0 = 0. The eigenvalues of these modes are
given as

(4.31)

N2, =2nhy, — 0% n=0,1,.., |hy,]. (4.32)
The A2, profile is given by

g()_ (2) _ D(le—ﬁnz log [cosh (2)]—2i~zx2 arctan [tanh (2/2)}’ (433)

and the profiles for the excited localized modes can be generated by applying
the ladder operator which is proportional to Ws(2) — %. As for the potential
for U, , W2+ W}, given our parameter choice there is no solution with ;\io =
0. Rather, there are LiLmJ localized modes starting from an eigenvalue 5\11 =
2h,, — 1 (provided h,, > 1). All this implies that, in considering just the
interaction with the z-dependent kink-lump, for fzm > 0, there is a massless
4+1D Dirac zero mode generated in W_ and then a tower of massive 4+1D
Dirac modes embedded in both ¥_ and ¥,. In then further considering
the interaction with the y-dependent part of the solution and calculating
the fir g, each of these 441D modes will generate a tower of 3+1D left-
and right-chiral modes localized to the domain-wall intersection. Obviously,
any chiral zero mode produced on the intersection must be embedded in the
massless 441D zero mode of W_ in this case. If we choose 71,72 to be negative
instead, the roles of ¥_ and W, in this situation are reversed, and the chiral
zero mode must therefore be embedded in V.
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Now let us analyze the y-dependent equations. These equations are also
SE’s with the hyperbolic Scarf potentials. In this case the particular form
of the hyperbolic Scarf potential for the modes is dependent on chirality.
Since we are assuming ﬁm > (0 without loss of generality, let us focus on
the left- and right-chiral modes embedded in W_ first, since as noted above
this is the component containing any potential chiral zero mode. Looking at
Eqgs. 4.28ajand |4.28b one sees that the potentials for the left- and right-chiral
components in W_ are Wy (§)? — Wi(j) and Wi(7)* + W{(§) respectively.
Hence, we easily deduce that for ﬁm > 0, the equation for the left-chiral
modes of U_ has the same form as that for the z-dependent profile equation
for U_ and thus has a mode starting from an eigenvalue of AL o = 0, and
likewise that for the right-chiral modes has the same form as that for the
g7 (%) and thus only has solutions with positive definite eigenvalues. Since
from Eq. we know that these eigenvalues directly contribute to the mass,
this implies that for the choice iLm > 0, an > 0, there is a single massless
left-chiral zero mode embedded in W_ localized to the intersection.

0 ~ ~g ~
f g _(2

LTI T T T
plsssss=al
)

Figure 4.5: A plot of the profile for the left chiral zero mode embedded in
V_ for the parameter choice h,, = 10, h,, = =5, h,, = 20, and h,, = 4.

The resultant solution for the A\ ;, = 0 eigenfunction, fo . (9) is given by

f9L<g) _ énge—anl log [cosh (g)}—zﬁxl arctan [tanh (3/2)] : (434)

and thus the full profile over the y — z plane for the left chiral zero mode is

FOr(5.2) = f L3 (2), (4.35)



CHAPTER 4. SOLUTIONS FOR INTERSECTING DOMAIN WALLS
WITH INTERNAL STRUCTURE IN SIX DIMENSIONS FROM A
133 Zy X Z5-INVARIANT ACTION

1 ~ ~0 ~
J g _(3)

Figure 4.6: A plot of the profile for the left-chiral i = 1, j = 0 mode in W_
for the parameter choice h,, = 10, h,, = =5, h,, = 20, and h,, = 4.

and a plot of this is shown in Fig. [4.5]
The y-dependent profiles for the higher localized left-chiral modes can
be accessed by applying a ladder operator proportional to Wi(g) — dig- The

eigenvalues of these f" ; profiles are given as
AL, =2k, —n? (4.36)

Putting Eqgs. 4.32| and [4.36| together and converting back to dimensionful
variables, we can see that the resultant squared masses of the left-chiral
modes embedded in W_ are

m? ;= ALk + 5‘2—]'127
= 2ih,, vik — 2i°k* + 25 hy,val — 25212, (4.37)
i=0,1,. by ), G=0,1,.; [Pl

For the parameter choice ﬁm = 10, Bm = —5, iLm = 20, and sz =4, we
give a plot of the full profile F’EL@, Z) for the zero mode (i = 0, 7 = 0) in
Fig. [£.5] We also give plots for the analogous profiles of the left-chiral i = 1,
j=0,i=1j5=2 and i = 2, j = 2 KK modes in Fig. 1.6 Fig. [£.7 and
Fig. [4.8 respectively.

For the right-chiral modes of ¥_, there is no zero mode, but the massive
modes have the same mass as the left-chiral counterparts, and the masses
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~1

fmg @

Figure 4.7: A plot of the profile for the left-chiral ¢ = 1, j = 2 mode in W_
for the parameter choice h,, = 10, h,, = =5, h,, = 20, and h,, = 4.

are 2 1 2 N2 72

= 2ih,, 01k — 2i°k* + 2jh,,val — 25717, (4.38)

i=1,.. | hyl), 7=0,1,., hy].

For the left-chiral and right-chiral localized modes embedded in ¥, the
eigenvalue associated with the z-dependent profiles, )\ij, is always more than
zero, thus all these modes are massive. Also, A3, = A2, for j = 1,2, ..., | P -
If one looks at Eqgs. (4.28a)) and (4.28b)), one sees that the y-dependent profiles
fi of the chiral modes of W_ satisfy the same equation as those of equal
mass and opposite chirality in W, In other words, fI = fX%, which in turn
implies that A}, » = ALz ;. Thus the masses for these modes are simply

mi iy = Apk® + A5
= 2ih,, vk — 2i*k* + 2jh,,val — 25212, (4.39)

i=1,.lhyl, 7=1, .y,
and 2 Y112 32 g2
M3gii = Appik” + A0,
= 2ih,, vik — 20°k* 4 25 hy,val — 25712, (4.40)
i =01, b, =1, [Pl
Obviously, these modes should satisfy a 3+1D Dirac equation. The above
KG equations and the resultant equations for the profiles give clues for what
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Figure 4.8: A plot of the profile for the left-chiral i = 2, j = 2 mode in W_
for the parameter choice h,, = 10, h,, = =5, h,, = 20, and h,, = 4.

the form of these should be. Each mode belonging to ¥_ or ¥, has a z-
dependent profile g™ or g respectively. In turn, each chiral mode inside W_
and ¥, has a y-dependent profile fI} p, and as we noted above, [} = fI%.
In using this expansion and performing dimensional reduction, one expects a
left-chiral mode of W_ with a particular mass to not only attain a mass term
with the corresponding right-chiral modes of W_ but also those of ¥, . This
is particularly important when considering that for a left-chiral mode in W_
which has A ; = 0 but A2 # 0 (ie. the mode is a zero mode with respect to
the y-dependent wall) given that there is no corresponding right-chiral mode
of the same eigenvalues and thus mass in ¥_. However, there is in ¥, and
thus with such modes there is a single Dirac fermion of the given mass formed
from the left-chiral mode in ¥_ and the right-chiral mode of ¥,. Hence, the
correct ansatz is that the effective 3+1D mass Lagrangian should be of the
form
_./x 2 m
L= (77 77 VA (‘p;ﬁ> +he o (441)
VA A, ) \Prr

For the massive modes with both A! ; and A\?> non-zero, one can deduce
from the mass matrix in Eq. that there exist two Dirac fermion modes

of mass /Al; + A\%. After putting this ansatz into the 5D Dirac equation

and doing some algebra, one can show that the equations yielded for the y
and z-dependent profiles are exactly the same as those derived above from
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the Klein-Gordon equation.

In this section we have shown that there exists a single chiral zero mode
localized to the domain-wall intersection when the 541D fermionic field ¥
is subject to the Yukawa interactions in Eq. [4.15] In addition to this single
chiral zero mode, there is a single tower of Dirac modes which are zero modes
with respect to one wall but not the other, and then for each given squared
mass value for which the eigenvalues associated with each wall are both
non-zero there exist two Dirac modes. There will also be modes with one of
AL g or AL being more than the maximum value for the localized KK modes
and the other corresponding to a value associated with a localized mode;
these modes can propagate along one wall and behave as 5D delocalized
modes. Modes for which both the eigenvalues A},  and A} are more than
the maximum values for the localized modes are completely delocalized from
both walls and can propagate through the entire 6D bulk.

4.3 Scalar Localization

Scalar localization can be similarly achieved via quartic coupling to the back-
ground scalar fields. Generally, in a model that is to be physically viable we
are interested in localizing Higgs fields which have gauge charges. Thus for
this section we will assume that our candidate scalar field is a complex scalar
field ®. The scalar potential for @ is then

1 1 1
V, = 5,@@*@ + ZAq>(<1>*<1>)2 + éA@mnfCIﬂCI)

1 1 1
+ 5)“PX1X%®T® + 5)\<I>771X1771X1(DT(D + 5)\4,77277%@“1) (442)

1 1
+ 5)\<I>X2ng)Tq) + 5)\q>n2x27]2X2q)Tq).

Assuming that either ® has a vanishing vacuum expectation value (VEV) or
one of much smaller magnitude than those that the background fields attain
(as it would be in the case of an electroweak Higgs boson), we can ignore the
quartic self-coupling for ® in the determination of the profiles when we do
a mode expansion. Hence, we can focus solely on the couplings of ¢ to the
background fields and the mass term, and to calculate the profiles we must
solve the 5+1D KG equation

[D + Mé + )‘<I>77177% + >\<I>x1X% + /\<I>n1x17]1X1

2 2 B (4.43)
+ /\4’772772 + /\¢'X2X2 + )“1)7]2X2772X2] ¢ =0.
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Again assuming the same perpendicular solution for the background that we
assumed in the previous section, we expand ® as a series of modes

(I)(ZL‘M, Y, Z) = me(y)Qm(z)gbm(xu)v (4'44)

where the ¢, () are 341D scalar modes satisfying the KG equation O¢,, ()
—m?¢y,(x,) and the p,,(y) and ¢, (z) are the associated profiles along the y
and z directions respectively. Subsitituting this expansion into Eq.[4.43] and
then demanding that profiles satisfy the Schrodinger equations

[- dd22 - /\<1>m771(3/> + Ao, X3 (1)
+ Aena )X )] P (Y) = AP (y) (4.45a)
[ A 2) + A 32)
+ Mooz (2)x2(2)] 4 (2) = A (2), (4.45Db)

reduces Eq. to a relation between the masses of the KK modes m to the
eigenvalues \! ' A2 and the 5D bare mass jig

m® = pg + Ay, + A2, (4.46)

Working in the non-dimensionalised coordinates 4y, = y = ky, . = z = lz,
using the notation p!, = p,, and p?, = ¢, and given the perpendicular solu-
tion given in Eq. the Schrodinger equations can both be rewritten
in the form

d2 o

di 2 5+ Virs (000, (0:) = Ep (),

Vi e(§:) = ai + (b2 a? — a; ) sech? (;) + b;(2a; + 1) sech (¢;) tanh (),
(4.47)

where the a; and b; are defined as

1 - ~ 1 1 N \ N
aizé(_l—’_(Q[(/\@Xi_Aq)m 4) +)‘¢>nx]2_2/\q’><i+2)\¢m 2)2>’
o 5“1>?7iXi
! 2ai+17

(4.48)
the non-dimensionalized versions of the original eigenvalues and quartic scalar
couplings are defined as

< AL Ao, V3 < Agy, A2 Ay, V1A

)\%n - _7;1’ A‘I)ﬂl = <I)772 1) )‘q)Xl = CI)XlQ 1) )‘<1>7]1X1 - Rl X—12 e
¢ ”, L b (4.49)
>\m 3 >‘<I>7)2'U2 Y )‘q’XzAZ )\@anQUgAQ

/\3n = l_gﬂ )‘<1>172 = l—27 /\‘I’X2 = l—27 /\<I>n2><2 = 12 )



4.3. SCALAR LOCALIZATION 138

and the eigenvalues of these potentials E given in terms of 5\271, 5\4)772. and a;
are L
E! =\, — \ay, + a7 (4.50)

Assuming a; and ay are positivdﬂ, these hyperbolic scarf potentials yield
a discrete set of modes localized to the intersection of the domain walls. A
localized ¢,, mode must clearly have both of p,, and g, decay to zero as
y — d+oo and z — Foo respectively. Since the respective hyperbolic scarf
potentials for the p,, and ¢, yield [a;]| and [as]| localized functions respec-
tively, there are [a;][az] modes localized to the domain-wall intersection.
For each potential, the eigenvalues for the localized modes are known to be

E! = 2na; —n?, (4.51)

for n = 0,1, ..., |a;], and using Eqgs. 4.46] 4.50, and [4.51] we thus find that
the squared masses of the localized 3+1D modes are

mgj = M?p + 5\@71 K + S\qmle — (a1 — i)2k2 — (az — j)QZQ’ (4.52)

fori=0,1,...,|a;] and 7 =0,1, ..., |az].

There will also exist modes with sufficient average momenta transverse
to one domain wall but not the other such that these modes are localized
to one wall but not the other. These modes have a profile with one of the
quantum numbers described above with respect to one wall but will have
energies above that of the most energetic localized mode of the other. These
modes are essentially 5D particles.

For modes with energies above all localized modes, their profiles along
both directions are delocalized and they are thus 6D particles with can pro-
pogate along the full extent of the bulk.

In any potentially phenomenological model based on this type, we are
usually interested in the lowest energy localized mode, as this 4D scalar
mode would correspond to Higgs particles in the effective field theory on the
domain-wall intersection. In our model, this mode is the ¢ = 0, j = 0 mode
of Eq.[4.52] The resultant (non-dimensionalized) profiles for this mode po(7)
and §o(Z) are simply given by

~ (~\ _ A _—ajlog[cosh (§)]—2b1 arctan [tanh (7/2)]
po(y) = Coe ) (4.53)

qo (2) _ D[)@_a2 log [cosh (2)]—2b2 arctan [tanh (2/2)] )

Here, po(9) = kfépo@) and §o(2) = li%f_lo(é)-

'If one of a; or ay is negative, then there are no modes localized to the intersection
and there will exist modes localized to one wall but delocalized from the other. If both
are negative, then all modes are delocalized from both walls.
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4.4 Conclusion

In this chapter, we have generated a rare analytic solution to a Zy X Z5-
invariant scalar field theory with four real scalar fields in 5+1D spacetime
describing a pair of intersecting domain walls with internal structure. We
found that with respect to the desirable perpendicular solution, there also ex-
isted a class of solutions describing kink-lump solutions which intersect at an
angle between 0 and 90 degrees, as well as a solution where the walls are par-
allel and that these solutions were energy degenerate. We then argued that
there exists a conserved topological charge related to the one-dimensional
boundary of the y — 2z plane which differed between the intersecting solutions
and the parallel solution, meaning that the intersecting solutions cannot
evolve to the parallel one despite this energy degeneracy. We also gave an
argument as to why the perpendicular solution might be energetically favor-
able to the solutions with intersection angle less than 90 degrees in a nearby
region of parameter space.

In addition to finding this solution, we showed in the case that the two do-
main walls were perpendicular that fermions and scalars could be dynamically
localized to the intersection of the two walls. We found that coupling a 6D
fermionic field to one kink-lump pair with ordinary scalar Yukawa couplings
and to the other with pseudoscalar Yukawa couplings allowed the fermionic
sector to be invariant under the full Z; x Z5 symmetry, and resulted in the
localization of a 4D chiral zero mode on the intersection of the kinks, followed
by a tower of localized KK modes and 5D and 6D delocalized modes.

Standard quartic couplings of a complex scalar field to the background
scalar fields resulted in a tower of localized 4D localized scalar modes with
the squared masses starting from some potentially non-zero value. This re-
sult is similar to the result for scalar localization to a single domain wall
in 5D. Furthermore, the squared mass of the lowest energy scalar mode can
be negative, allowing the possibility of the localized scalar field inducing
spontaneous symmetry breaking should that scalar field transform under a
non-trivial gauge group representation.

Localization of gravity and gauge bosons is left to later work. Localization
of gravity would involve searching for a similar solution to the 6D Einstein
field equations as well as the Einstein-Klein-Gordon equations. These equa-
tions are highly non-linear and difficult to solve so it remains to be seen if
an analytic solution could be found. It could also be the case that such a so-
lution could have qualitative differences as in principle the two domain-wall
branes should interact gravitationally, whereas in this flat space case the net
interaction between the two kink-lump solutions was zero.

For the localization of gauge bosons, we conjecture that the Dvali-Shifman
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mechanism works in 541D spacetime. This ultimately depends on whether
or not non-Abelian gauge theories are confining in 5+1D. In previous work in
4+1D, particularly in the SU(5) model [23], the Dvali-Shifman mechanism
was facilitated by the addition of a scalar field transforming under the gauge
group which attained a lump-like profile and induced symmetry breaking in
the interior of the domain wall. Hence, the background solution of this model
was of the kink-lump type discussed in this thesis, and the additional fields
x1 and 2 which attained lump-like profiles in the 6D model are potentially
well motivated. With the assignment of gauge representations, these fields
can break a gauge group to different subgroups which then clash at the
intersection, leading to further symmetry breaking and a different realization
of the Clash-of-Symmetries mechanism [24], 25]. We will discuss in detail this
realization of the Clash-of-Symmetries mechanism and its applications to
model building in the next chapter.



Chapter 5

A Clash-of-Symmetries
Mechanism from Intersecting
Domain-Wall Branes

In the previous chapter, we proposed a model in 541D based on the discrete
group Zs X Z5 with four real scalar fields in which two of the scalar fields
generate intersecting domain walls and the other two attain lump-like pro-
files parallel to each of the walls. It was found that there existed a small,
special region of parameter space generating analytic solutions. It was also
shown that fermions and scalars could be localized to the domain wall inter-
section, with the couplings to the lumps shifting the profiles away from the
center. To construct a realistic model with a Standard Model localized to
the domain-wall intersection then requires that we introduce mechanisms for
the localization of gravity and the localization of gauge bosons. This chapter
focuses on the latter.

As was discussed in Sec. [I.5] the only plausible mechanism for localizing
gauge bosons to domain walls is the Dvali-Shifman mechanism. In its most
basic form, it involves a non-Abelian gauge group G, which is confining in the
bulk, being broken to a subgroup H. The H-bosons are then confined to the
domain wall by the confinement dynamics of G. Previously, we have dealt
with the DGV model in which G = SU(5) and H = SU(3) x SU(2) x U(1).
Other domain-wall brane models utilizing Dvali-Shifman dynamics have been
constructed based on the gauge groups SO(10) [124] and Eg [25].

The Fs model in Ref. [25] is particularly interesting as it is based on a gen-
eralization of the Dvali-Shifman mechanism called the Clash-of-Symmetries
(CoS) mechanism [127, [128] 24 25 129, 130, 131]. The condition of the
original Dvali-Shifman mechanism where GG was unbroken is not a necessary
one: one just has to ensure that the subgroup preserved on the wall is con-
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tained by a larger non-Abelian subgroup of G which is in confinement phase
in the bulk. It was realized that a smaller subgroup on the wall could still be
localized if G was broken respectively to isomorphic but differently embedded
subgroups H and H' on each side of the domain wall. In the interior of the
wall, the symmetry respected is the intersection of these subgroups H N H’
and some of the factors of this final subgroup will be localized to the domain
wall provided they are proper subgroups of non-Abelian factors of both H
and H’ which are confining in the respective halves of the bulk. In proposing
the CoS mechanism, we have many tools in our framework in which to extend
domain-wall brane models to larger gauge groups.

Just as we saw in the previous chapter that there is more freedom in
constructing braneworlds based on solitons such as domain walls in 541D
and higher, there is clearly also more freedom in how we localize gauge fields
from the Dvali-Shifman mechanism assuming that 5+1D non-Abelian theo-
ries have a confinement phase. Although we are unaware of any work which
attempts to prove that a confinement phase exists in 5+1D non-Abelian
gauge theories, we are encouraged by lattice gauge simulations which have
shown that there exist confining phases in 4+1D SU(2) [57] and SU(5) [41]
Yang-Mills gauge theories. The simplest scenario one could think of in both
intersecting and nested wall scenarios is a simple codimension-2 generaliza-
tion of the standard Dvali-Shifman picture on a single wall where a scalar
field attains a tachyonic mass in the center of the defect or intersection region
and breaks a non-Abelian gauge group G to a subgroup H with the entire
5+1D bulk around the core of the defect in confinement phase. With do-
main ribbons, one could imagine a nested Dvali-Shifman scenario where we
use scalar fields to break G to a subgroup H on the first wall with another
scalar field localized to the first domain wall breaking a non-Abelian factor
of H to yet a smaller gauge group on the core of the domain ribbon.

This chapter focuses on an application of the Dvali-Shifman mechanism
suited for intersecting domain walls and which is the natural one to consider
in the context of the model proposed in the previous chapter, namely that
of what we call an intersecting Clash-of-Symmetries mechanism. Here, we
utilize the two scalar fields which attain one-dimensional lump-like profiles
parallel to each domain wall by giving them gauge charges so that they break
G to two subgroups H; and Hs on the respective domain walls. Here, the
5+1D bulk away from both domain walls is assumed to be in confinement
phase so that H; and H, are localized to the respective walls by the stan-
dard Dvali-Shifman mechanism. On the intersection of these walls, there
in general is a further symmetry breaking to the overlap of these subgroups
H,{NHy. We in turn assume that the non-Abelian factors of H; and H, are in
confinement phase in the 4+1D bulk of the respective domain walls outside
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the intersection. This means that non-Abelian factors of H; N Hy are local-
ized by Dvali-Shifman dynamics if they are proper subgroups of both H; and
H,. Further, Abelian factors of H; N Hy are localized if their generators can
be written completely in terms of generators belonging to the non-Abelian
factors of both H; and H,. Given that the scalar fields generating lumps
need not be in the same representation or have the same symmetry breaking
pattern, in this version of the CoS mechanism we need not have H; and H,
isomorphic. In general, the clashing groups H; and H, are determined by
the 441D energy densities (or brane tensions) of the two perpendicular kink-
lump pairs which can be calculated in terms of the kink-lump solutions that
we set as the boundary conditions at infinity around the plane spanned by
the two extra dimensions. Given that the 4+1D energy density is degenerate
for single kink-lump solutions which break G to different embeddings of the
same subgroup, it is then the minimization of the 3+1D junction tension
or energy density which arises due to interactions between the perpendicular
kink-lump solutions which determines the exact form of the resultant HyN H,
on the intersection.

After laying out the details of the intersecting CoS mechanism, we give
several toy models based on the gauge group SU(7). It turns out that it is
possible to localize a Standard Model gauge groupE] under this mechanism
with G = SU(7). The first three examples we give are all with the fields at-
taining lump-like profiles in the adjoint representation. The first example is
one where the lump fields attain vacua such that H; = SU(5) x SU(2) x U(1)
and Hy = SU(4) x SU(3) x U(1). We show that a particular intersecting CoS
solution yields a localized Standard Model gauge group with the hypercharge
generator proportional to diag(—2/3,—2/3,—-2/3,+1,+1,—2,+2). This ar-
rangement does have some problems since a single kink-lump solution break-
ing SU(7) to H; = SU(5) x SU(2) x U(1) is not the most stable one for the
interaction potential between the two scalar fields involved in this kink-lump
pair, but we give some suggestions about how to overcome this, including
adding a cubic invariant for the lump field and accepting metastability or
alternatively extending the model to a sextic potential. We also find that we
can embed the SM fermions in the anomaly-free combination 7 + 7 + 7 + 21
and we outline how to embed the electroweak Higgs doublet and the addi-
tional Higgs fields required to break the semi-delocalized U(1) groups that
we get in addition to the SM.

The second example we give is one in which H; and H, are differently
embedded subgroups isomorphic to SU(4) x SU(3) x U(1). This can also

Let us note that by saying that a gauge group is localized, we mean that all the gauge
bosons associated with that gauge group are localized.
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yield a localized Standard Model gauge group but this time with a hyper-
charge generator which acts on the fundamental as
diag(—2/3,—2/3,-2/3,—1,—1,4+2,+2). This seems like it might not work
due to the highly unusual form of this hypercharge generator but it actually
turns out that the SM fermions can still be embedded into SU(7) multiplets
with the correct quantum numbers, this time in the anomaly-free combina-
tion 7 + 21 + 35. This model has the advantage over the previous one in
that the energetics of the single kink-lump solutions used as the boundary
conditions can be assured in a model of the form given in Ref. [3] without
resorting to a sextic potential or other additional physics.

The third example we give for adjoint scalars is one in which we show
that this form of the Clash-of-Symmetries mechanism can also be used to
implement the approach taken in Ref. [25] by localizing a grand unification
group to the domain wall. Here, we have H; and H as differently embedded
subgroups isomorphic to SU(6) x U(1), yielding an SU(5) gauge group which
is fully localized to the intersection along with some semi-delocalized U(1)
gauge groups which must be broken.

The last example we give is one in which we have one of the lump-forming
fields in the 21 representation and the other in the 35 representation. The 21
can naturally break SU(7) to Hy = SU(5) x SU(2) and the 35 can naturally
induce a breaking to Hy = SU(4) x SU(3). This is the most elegant example
we give in the paper since we attain the same Standard Model gauge group
as we get in the first example with adjoint scalars with the generators cor-
responding to the semi-delocalized U(1) generators that we got previously
already broken naturally. Furthermore, we can choose parameters such that
the desired solution is the most energetically favorable one.

In Sec.[5.1], we give a review of the Clash-of-Symmetries mechanism, which
includes giving the conditions necessary for localization of both Abelian and
non-Abelian gauge fields under this mechanism. In Sec. [5.2, we outline the
proposal for the intersecting Clash-of-Symmetries mechanism, again outlin-
ing the necessary conditions for localization which are similar to those for
the original CoS mechanism. In Sec. 5.3} we give all four of the examples we
have discussed applying this mechanism in the case that G = SU(7). Section
[£.4]is our conclusion.
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5.1 The Clash-of-Symmetries mechanism in
the single domain-wall scenario

In single domain-wall models, we can generalize the Dvali-Shifman mecha-
nism to the clash-of-symmetries (CoS) mechanism. Several applications of
the CoS mechanism were given in Refs. [127, [128| 24) 25] and for a more de-
tailed treatment of the underlying group theory behind the CoS mechanism,
see Ref. [I32]. Some other papers in which the CoS mechanism is utilized
but with different motivations to ours are given in Refs. [129] 130, 131]. Un-
der the CoS mechanism, only the field generating the kink, n, is retained
and it assigned to the adjoint representation of the gauge group G rather
than being a singlet. To employ this mechanism we require a disconnected
vacuum manifold and the way we achieve this is to ensure that the discrete
Z4 symmetry is outside the gauge group. Hence, the full symmetry group
is G X Zy. In the CoS mechanism, n attains a vacuum expectation value
towards spatial infinity on each side of the wall except this time these vacua
spontaneously break G. In general, n can break G to two differently embed-
ded but isomorphic subgroups H and H’ on each side of the wall. On such a
CoS domain wall, there is a further breaking in the interior to the subgroup
HNH'. Assuming the H and H’ respecting bulks are confining, there should
be a similar Dvali-Shifman mechanism localizing the gauge fields of H N H'.

Whether the full clashing group H N H' or only some of its factor groups
are localized on the wall depends on how they are embedded within the
subgroups of G respected on each wall. Generically, the subgroups on each
side of the wall, H and H’, will be semi-simple and may be written in the
form

H = N; x Ny X Ny x ... X N1 X N x U(1)g, x U(1)g,
X U(D)gs x Ul)q,., x U1y, (5.1)
H' = Ny x Ny x Ny x ... x Npy_; x Niy x U(1)gr x U(1)g '
X U(l)Q/B X U(l)Q;/,l X U(l)Q;,,

where the N; and N/ denote the non-Abelian factor groups and the @); and
@} denote the generators of the Abelian factor groups belonging to H and H’
respectively. Since, H and H’ are semi-simple, H N H’ is also semi-simple.
We will denote its non-Abelian factor groups as n; and the generators of its
Abelian factor groups as ¢; and write

HNH =n; Xng Xng X .. Xnp_g X0, X U(1)g X U(1)

XU(1)gy X 0. x U(1) g, x U(1),. (5.2)
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The above is the general form of the entire H N H' group respected on
the domain wall at the level of symmetries. In general, not all of the factor
groups, both Abelian and non-Abelian, of H N H' will be fully localized to
the wall. For a factor group of H N H' to be localized, it must be fully
embedded in the non-Abelian factor groups of both H and H’ respected in
each semi-infinite region of the bulk, since for a gauge group to be localized
via a Dvali-Shifman mechanism, it must lie inside a larger non-Abelian group
which is confining in the bulk.

In the non-Abelian case, this means that a non-Abelian factor of H N H’,
n; (1 < i <), is localized only if it is a proper subgroup of simple, non-
Abelian factors N, and N] of both H and H’ respectively. In other words,
we require

n; C Na and n; C Nl;’ (53)

for some 1 < a < kand 1 < b < k. If for any a, n; is precisely equal to
N, but is still a proper subgroup of N] for some b, there will be no Dvali-
Shifman mechanism taking place in the H-respecting part of the bulk and
thus the gauge bosons of n; will be semi-delocalized. Likewise, if n;, C N,
but n; = N}, n; will be semi-delocalized and its gauge bosons will be able to
propagate into the H'-respecting bulk. If n; = N, = N{ for some a and b,
then there is no Dvali-Shifman mechanism acting on n; on either side of the
bulk and it is thus fully delocalized: its gauge bosons are able to propagate
through the whole bulk.

The Abelian case is a little more complicated but follows similar princi-
ples. All the generators ¢; from Eq. which are preserved on the wall at
the level of symmetries must be linear combinations of generators residing
in both H and H’. Obviously, the respective U(1) generators @; and @)} can
contribute to both these linear combinations, but there are also generators
that belong to the non-Abelian factor groups N, and N; which lie outside
the resultant non-Abelian factors n; of the clash. For example, suppose we
had for some a and b the factors N, = SU(4) and N] = SU(3) and the
resultant clash was a group n; = SU(2). Then there exists a generator
T = diag(+1,+1,—1,—1) in N, for which the first two eigenvalues act on
components transforming under n; and the latter two act on the two compo-
nents which do not. Because this generator acts non-trivially on components
not acted upon by the resultant SU(2) subgroup, it is outside n;. Similarly
N} will have some generator 7" = diag(—2,+1,+1) in which the latter two
components act on n; which is also outside n;. We will label these genera-
tors T; and T for H and H' respectively. Hence, for a generator ¢; to be a
preserved generator on the domain wall at the level of symmetries, it must
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be that

l m

qi = Z a;Q; + Z BiT5,
i=1 i=1
U m’

= Qi+ > BT,
i=1 i=1

where all the «;, (;, o and ] are real numbers and m and m’' are some
non-negative integers.

Equation is just the condition for the generator to be respected at the
level of symmetries: the condition for the Abelian generator to be localized
is more stringent. For an Abelian generator ¢; to be fully localized to the
domain wall, it must be always embedded inside non-Abelian subgroups of
both H and H’ for the photon to experience the Dvali-Shifman mechanism
from both sides of the bulk. This means that it cannot contain any partition
proportional to one of the @; or @ in either of the linear combinations
describing ¢; in terms of generators from H and H’, otherwise it will be
delocalized in at least one part of the bulk. This means that the condition
for full localization of an Abelian generator ¢; to the domain wall is

(5.4)

& = Z@'Ti = Z@éT{, o =a, =0Vi,1i. (5.5)
=1 i=1

If some «; are non-zero but all the « are zero, then ¢; is free to propagate
and leak into the H-respecting side of the bulk. Likewise, if all the «; are
zero but some o} are non-zero, ¢; is semi-delocalized with respect to the H'-
respecting side of the bulk. If there exist some «, and some «; which are
non-zero, the photon corresponding to ¢; is free to propagate in both sides
of the bulk and is thus fully delocalized.

Several attempts have been made at constructing a realistic model via
the CoS mechanism [25]. In this paper, the authors first mentioned an at-
tempt to construct a model based on SO(10), as noted in the paragraphs
above. Notwithstanding some issues with the energetics, this model fails be-
cause the resultant photon is semi-delocalized. Here, on one side of the wall
H = SU(5) x U(1) and on the other H' = SU(5)' x U(1)". Depending on the
vacua at the two ends at spatial infinity, there are three possible outcomes for
HNH'" SUB)xU(1), SUB)xSU(2)xU(1)xU(1) and SU(4)xU(1)xU(1).
Obviously, it is the second of these two outcomes which is potentially the de-
sirable one. It turned out that in the region of parameter space that was
assumed in that paper to generate analytic solutions, the third option was
the most energetically favorable one, that is it minimized the domain-wall
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tension. However, the authors continued the analysis assuming the second
outcome on the basis that there existed a different region of parameter space
where the second outcome was the most energetically favorable. If we do
this we immediately notice that the SU(3) color and SU(2) weak isospin
subgroups are localized to the domain wall since these groups are contained
in both SU(5) of H and SU(5)" of H'. Where even the second outcome fails
is in considering the localization of the hypercharge generator Y. Since the
hypercharge generator can be embedded entirely in an SU(5) subgroup, we
can choose it to be embedded in either SU(5) or SU(5)". Without loss of
generality, we will assume that Y is contained in SU(5) subgroup of H. How-
ever, since SU(5)" is a differently embedded subgroup of SO(10), it cannot
be that the analogous generator Y’ is equal to Y. Hence, the hypercharge
generator Y must be a non-trivial linear combination of the Y’ and the gen-
erator of the U(1)" subgroup of H'. From the analysis above, it follows that
the hypercharge generator is semi-delocalized (the other U(1) of H N H' will
also be semi-delocalized).

There are several approaches that one could take to get around the prob-
lem of semi-delocalized photons in generating a theory in which the Stan-
dard Model is reproduced on the domain-wall, or as it turns out in the
different Clash-of-Symmetries mechanism on a domain-wall intersection in
the 6D model that we will discuss in the rest of the paper. One approach
is to localize the gauge fields corresponding to a grand unification group
containing the Standard Model on the domain wall instead of just the Stan-
dard Model gauge group (plus some additional U(1)’s perhaps). This is
indeed the approach taken in Ref. [25] in which the authors utilize the gauge
group Fjg instead of SO(10) and break it down to H = SO(10) x U(1) and
H' = SO(10) x U(1)" on each side of the wall. One particular outcome for
the clash is H N H' = SU(5) x U(1) x U(1) for which the SU(5) subgroup
is always localized since it is contained in both SO(10) and SO(10)". As-
suming there is a region of parameter space where this is the most stable
configuration, to reproduce an acceptable model it is just a case of breaking
the localized SU(5) subgroup to the Standard Model as well as breaking the
additional U(1) subgroups and localizing the required matter content to the
wall.

A second approach, the one we will take when we utilize the Clash-of-
Symmetries mechanism for intersecting domain walls in a theory based on
SU(7), is to employ a gauge group which is large enough to generate and
localize the SU(3) color and SU(2) weak isospin subgroups and at the same
type generate more contributing U (1) generators of the second type described
in this section, those that initially belong to non-Abelian subgroups respected
in the bulk. If at the very least one of the clashing subgroups contained at
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least two U(1) generators coming from non-Abelian groups and the other at
least one, then as noted above if there exists a U(1) generator which is a linear
combination of U(1) generators derived solely from non-Abelian subgroups
of both the subgroups of G which clash, then this photon will be localized.
This is exactly how the SU(7) theory localizes a generator containing the
correct hypercharge quantum numbers for the Standard Model components,
along with quantum numbers of £2 for non-SM components (so we get the
Standard Model along with some exotics with Y = 42). Before discussing
the Clash-of-Symmetries mechanism for intersecting domain walls, we will
discuss the generation of intersecting kink-lump solutions in the next section.

5.2 The Clash-of-Symmetries Mechanism from
Intersecting Kink-Lump Solutions

We now give an outline for a new Clash-of-Symmetries mechanism applicable
in the context of the intersecting domain-wall model treated in the previous
chapter, which is the main purpose of this chapter. We now add a gauge
group G and give the fields which form lumps, x; and y,, gauge charges.
When these fields condense in the interior of each of the respective domain
walls n; and 175, they break G to subgroups H; and Hs on each wall. Now
consider what happens on the intersection of the domain walls. Naturally, we
assume G is again confining in the bulk, just as it usually is in the single-wall
case. Then by the Dvali-Shifman mechanism, H; is localized to the domain
wall described by 7; and Hs is localized to the domain wall described by
12. In general H; and H, are not the same group, so in the intersection
these groups will clash and the subgroup respected on the intersection will
be Hy N Hy, analogously to the single-wall CoS mechanism. A graph of this
scenario is shown in Fig.

Unlike the single-wall CoS mechanism, H; and Hs; need not be differ-
ently embedded isomorphic subgroups of G. This is because y; and Y are
independent fields and so they potentially can attain vacuum expectation
values which break G to two different non-isomorphic subgroups. Further-
more, 1 and Yy need not be in the adjoint representation nor do they need
to be in the same representation. These phenomena open up a whole new
set of theoretical possibilities for the CoS mechanism. For instance, con-
sider G = SU(4). With an adjoint, we can break G to SU(3) x U(1) or
to SU(2) x SU(2) x U(1). Unlike the single wall case where we only had
one adjoint field, here we have two adjoint fields so we could break G to
SU(3) x U(1) on one wall and to SU(2) x SU(2) x U(1) on the other, lead-
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H> HiNH,

Figure 5.1: A picture of the intersecting Clash-of-Symmetries mechanism in
the y-z plane. The gauge group G is spontaneously broken to subgroups H;
and H, along the walls parallel to the y and z axes respectively. Further
symmetry breaking occurs in the intersection region of the walls where the
total symmetry respected is Hy N Hy. If H; N Hy is semi-simple, then pro-
vided each factor subgroup is entirely contained in a non-Abelian subgroup
or factor group of each of H; and Hs, it will be completely localized to the
intersection. Otherwise there is at least a subgroup of Hy N Hy which will be
semi-delocalized along one of the domain walls.
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ing to possible CoS groups which are isomorphic to SU(2) x U(1) x U(1).
On the other hand we could make, say, yo transform under the fundamental
representation which always breaks G to SU(3) and consider the possible
CoS groups when x; breaks G to SU(3) x U(1) or when it breaks G to
SU(2) x SU(2) x U(1). Yet another possibility is the case where both 7; and
ne are fundamentals, leading to both H; and Hj being isomorphic to SU(3).
In fact, for the case where G = SU(7) it turns out that there is a phenomeno-
logically acceptable solution which breaks to the Standard Model (plus two
U(1) gauge groups) which results from a clash between non-isomorphic sub-
groups, with Hy = SU(5) x SU(2) x U(1) and Hy = SU(4) x SU(3) x U(1).
We will discuss all these possibilities in further detail in the sections that
follow.

When interactions between these fields are switched on, the configuration
of vacua attained by these fields will be the one that minimizes the energy
of the solution. This is not necessarily the one where both vacua are the
same and aligned. To see this one needs to see the different contributions
to the energy density. The contributions will be the energy densities of each
4+1-dimensional domain wall as well as a 3+1-dimensional junction tension
which is associated with the interactions between the walls. Due to the
additional dimensionality, the 44+1-dimensional wall tensions will be positive
and infinity larger in magnitude than the junction tension. As an illustrative
example to describe this set of physics, let xy; and ys transform under the
adjoint representation, although this also works more generally. Each kink-
lump pair can by itself break G to a number of subgroups depending on
the VEV pattern of the respective lump fields x; and y,. Since the value
of these VEVs depends on the coordinates, we can write these patterns in
the form x1(y) = AiTuxa,(y) and x2(2) = A5T,x4,(2), where x4, (y) and
X4,(2) are just one-dimensional real fields corresponding to the generators
encompassed by the breaking patterns A; and As respectively. Due to the
presence (in general) of Tr[x‘iQ] terms, each of the different configurations
with the lumps breaking G to different subgroups will generate different
effective quartic self-couplings for xa,(y) and xa,(z) and thus affects the
energy densities of these kink-lump solutions. The resultant clashing groups
H, and H, will be determined by which breakings minimize the 4D brane
tensions. After determining the subgroups respected on each wall up to
isomorphism, since single kink-lump configurations which respect isomorphic
but differently embedded subgroups will not differ in energy, it will be the
minimization of the 3D junction tension energy density that will determine
which particular clash gives the minimal energy configuration and thus the
intersection group H; N H,. Taking a given embedding of Hs as a reference,
then the resultant intersection of Hs with different embeddings of H; will
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not be the same in general. It turns out that the various interaction terms
between the two sets of fields generating the kink-lump pairs, like Tr[x?x3],
Tr[x1x2Xx1X2] and [Tr(x1x2)]?, are sensitive to the exact clash and thus the
surviving subgroup resulting from the clash of H; and H,. Thus the final
subgroup respected on the domain-wall intersection firstly depends on the
subgroups respected on each wall, which are more or less determined by the
coupling constants in the 7 — x; and 72 — Y2 sectors, and then secondly
on which particular embeddings of those subgroups minimize the junction
energy density which is determined from the couplings between the n; — x3
and 7, — Y2 sectors.

The localization of the subgroups of H; N Hy in the Clash-of-Symmetries
mechanism in the intersecting wall scenario follows analogously to the single
domain wall case discussed in Sec. [5.1} As discussed above, since G is non-
Abelian and confining in the bulk, H; and H, are automatically localized to
the respective domain walls. Again, as in the single wall scenario, H; and
H, are in general semi-simple and may be written in the form described by
Eq. and their overlap H; N Hy is also described by Eq.[5.2] The conditions
for the full localization of non-Abelian and Abelian groups to the junction
are the same as those for the single-kink Clash-of-Symmetries; a non-Abelian
subgroup n of Hy N Hy must satisfy Eq. and an Abelian generator ¢
must satisfy Eq. In the case that these conditions are not satisfied, the
gauge bosons are semi-delocalized and there are obvious physical differences
to the single-wall case; in this case semi-delocalized gauge bosons are able
to propagate along one or both walls (but not into the G-respecting parts of
the bulk) rather than being able to propagate through one half of the bulk
or through the entire bulk in the single-wall case.

For this application of the Dvali-Shifman mechanism to work, there is a
certain hierarchy of scales which needs to be respected. This hierarchy is
very similar to that stated for the single-wall SU(5) model of Ref. [23], and
it is based on similar principles. Firstly, as our theory is a 5+1D field theory,
it is non-renormalizable and a UV cutoff Ayy must be imposed. Secondly,
there are the symmetry breaking scales for H; and Hs on each wall which
are roughly of the order of A}/ ? and Aé/ 2 respectively, where here A; and A,
simply denote the maximum value of the lump profiles in the components
of x1 and y2 which condense. Due to the bulk being in confinement phase,
there exists the bulk confinement scale for G which we call Ag cont. There are
also the confinement scales for the non-Abelian factor groups of H; and Ho,
which we label collectively as Ag, cont @and A g, cont @s well as the confinement
scales of the localized non-Abelian factor groups of H; N Hy, which we label
At,nH, conf- Finally, there are the inverse widths of each domain wall, & and
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[. The required hierarchy is
AUV > A}/Za A;/2 > AG’,Conf > AHl,COnf7AH2,COHf > k’,l > AHlﬁHQ,Conf' (56)

Obviously, Ayy must be the highest scale of the theory. Next, the symmetry
breaking scales Ai/ ? and Aé/ > must be larger than the confinement scale
in the bulk Ag conr so that our background solutions for y; and ys are not
destroyed by the confinement dynamics of G. In turn, Ag conr must be higher
than any of the confinement scales Ay, conf and Ap, cons in order to localize
H, and H, by the Dvali-Shifman mechanism and ensure that there is a mass
gap between the masses of the glueballs of G and those of the non-Abelian
factor groups of H; and H;. The confinement scales Ap, cont and Ap, cons
on each wall must be larger the the inverse widths of the domain walls k
and [ for the same reasons that the bulk confinement scale must be larger
than the domain wall scale in the single wall case utilizing Dvali-Shifman,
as discussed in [56]. Finally, Ag,m,conr must be lower than Ay, cone and
A, conf to ensure that its gauge bosons are localized by the Dvali-Shifman
mechanism. In fact, Ay, nm,cont should be the lowest scale of the theory
since if we reproduce the Standard Model on the domain-wall intersection
we naturally expect Ap,nm,.cont ~ Agep. All the scales except Ap,nm,, cont
should be above the electroweak scale.

In the next section, we will discuss applying this realization of the Clash-
of-Symmetries mechanism in practice. In Section [5.3] we will discuss how to
build a realistic model from an SU(7) gauge group.

5.3 Some Slices of Heaven From SU(7): A
Construction of a Realistic Model from
the
Clash-of-Symmetries Mechanism

In this section we discuss how to build a realistic model on an SU(7) gauge
group. In the forthcoming analysis, we will assume that both x; and y, are
charged under the adjoint representation, that is the 48 of SU(7). We give
details on the representation theory of SU(7) as well as the embeddings of the
subgroups SU(6) x U(1), SU(5) x SU(2) x U(1) and SU(4) x SU(3) x U(1)
in Appendix [C] Firstly, we need to consider the possible breaking patterns
of a single adjoint scalar field, which can be analyzed by simply looking at
the Cartan subalgebra.

We can always gauge rotate the vacuum expectation value of an adjoint
scalar field y (which could be either x; and 3 here) such that it is represented
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by a traceless diagonal matrix, which in the case of SU(7) may be written
X = diag(al7a27a37a4aaSaaﬁaa7)a (57>

where the a; are numbers parametrizing the Cartan subalgebra and satisfy
the traceless condition Zzzl a; = 0. From considering various values of
the six independent a; it is possible to generate all the possible symmetry
breaking patterns for a single adjoint. The most stable configuration will
depend on the potential for y in the theory. In Ref. [133], Ruegg showed
that the quartic Higgs potential resulting for the a; after substitution for x
only has extrema (and thus minima) if at most two of the a; are different.
Hence the possible resulting subgroups after breaking with the 48 of SU(7)
are SU(6) x U(1), for which six of the a; are equal and the other differs,
SU(5) x SU(2) x U(1) when five a; are equal and the remaining two a; are
equal to a different value, and SU(4) x SU(3) x U(1) which results when one
eigenvalue of y has a multiplicity of four and the other three.

In the context of our model with intersecting kink-lump solutions, this
means that each of x; and x, break SU(7) to one of these three subgroups.
As a result, the possible clashes are between two different embeddings of one
of the three subgroups SU(6) x U(1), SU(5) x SU(2) x U(1) or SU(4) x
SU(3) x U(1) or between particular embeddings of two different choices of
these groups. Most of the possibilities are physically uninteresting; a full
description of all the possibilities is given in Appendix [D}

The most physically interesting possibility with x; and yx» in the ad-
joint representation is a clash between a particular embedding of H; =
SU((5) x SU(2) x U(1) and Hy = SU(4) x SU(3) x U(1). It turns out that a
possible subgroup resulting from the clash contains a Standard Model gauge
group, including the Abelian group generated by hypercharge, which is fully
localized to the domain-wall intersection, along with some semi-delocalized
U(1) gauge groups that we must break by adding additional Higgs fields
in the appropriate representations. Given that the top 5 x 5 block of the
localized Abelian generator is just the usual SU(5) hypercharge generator,
the Standard Model fermions can be embedded in SU(7) multiplets in the
most obvious way: in a combination of the anti-fundamental 7 representation
and the anti-symmetric 21 representation, along with a couple of additional
fermions in the 7 to ensure that the effective 341D field theory is anomaly-
free. The main difficulty with this arrangement is ensuring that the kink-
lump solution breaking SU(7) to H;y = SU(5) x SU(2) x U(1) is the most
energetically favorable one in the 7;-x; sector. This cannot be generated in
the parameter region with analytic solutions with a quartic potential and it
seems necessary to utilize a sextic potential.
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Another particular choice that we mention that works in an unusual way
is that between two different embeddings of SU(4) x SU(3) x U(1). Having
looked at the possibility mentioned in the previous paragraph, it might seem
perfectly reasonable to consider two different embeddings of SU(4) x SU(3) x
U(1) and particularly so since it avoids some of the problems of the previous
solution in ensuring that it is energetically favorable. This choice indeed can
localize a SM-like gauge group but with a localized U(1) subgroup whose
generator has the wrong relative sign between the charges of the right-handed
down quark and the lepton doublet! In spite of this, the Standard Model
fermions can be successfully embedded in to representations of SU(7), albeit
in a rather unusual way: they are embedded in the combination of a 7, a 21
and a 35 rather than the more obvious combination of a 7 and a 21. This
means that this solution yields a Standard Model with more exotics.

The third possibility we mention is one between two different embeddings
of SU(6) xU(1). Like the case with two embeddings of SU(4) x SU(3)xU(1),
one can easily choose energetically favored solutions for the two different
walls. In the case of differently embedded SU(6) x U(1) subgroups, there
will be a localized SU(5) gauge group on the intersection along with two
semi-delocalized U(1) gauge groups. Hence, this example provides a six-
dimensional realization of the approach taken in the single wall case in [25]
to localizing the photon along with the non-Abelian gauge bosons of the
Standard Model, namely that of localizing a grand unified gauge group to
the intersection containing our 3+1D universe. It then follows that one just
needs to break the semi-delocalized Abelian groups and then break the SU(5)
group to the SM in the usual way.

The last possibility we illustrate is a case where neither x; or x. are
adjoint scalars but transform instead under the totally antisymmetric 21 and
35 representations respectively. The 21 can break SU(7) to H; = SU(5) x
SU(2) and the 35 can induce a breaking to Hy = SU(4)x SU(3). A particular
clash between these two groups leads directly to the localization of the same
Standard Model gauge group as that generated in the first example given
with adjoint scalars. There are two main advantages with this situation over
the one with two adjoint scalars in generating the same Standard Model
gauge group. Obviously, the first is that we have a localized Standard Model
without the need to break any additional semi-delocalized Abelian groups.
The second is that, unlike the case with an adjoint scalar, for a particular
parameter choice the arrangement on the first wall where the 21 induces
the breaking to the SU(5) x SU(2) subgroup can be guaranteed to be the
most stable one with a quartic potential. The breaking to SU(4) x SU(3)
on the second wall with the 35 can also be guaranteed to be the most stable
arrangement with a quartic potential.
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We discuss these four possibilities in the following four subsections.

5.3.1 A fully localized Standard Model with H; = SU(5)x
SU(2) x U(1l) and Hy = SU(4) x SU(3) x U(1) on a
Domain-Wall Intersection

Here we will describe firstly the group theoretic background behind the so-
lution with H; = SU(5) x SU(2) x U(1) and Hy = SU(4) x SU(3) x U(1)
which localizes the Standard Model along with some Y = £2 exotics. Later
we will discuss the energetics and parameter choices needed to ensure that
such a solution is the most stable one.

Let’s list all the possible subgroups resulting from a clash between an
SU(5) x SU(2) x U(1) subgroup and an SU(4) x SU(3) x U(1) subgroup of
SU(7), at the level of symmetries. There are three possibilities: Hy N Hy =
SUM4)xSU2)xU(1)xU(1), HHNHy = SU(3)xSU(2)xSU(2)xU(1)xU(1)
and Hy N Hy = SU(3) x SU(2) x U(1) x U(1) x U(1). The first two are
physically uninteresting since, in both these cases, one of the non-Abelian
subgroups is semi-delocalized due to being respected along one wall (the
SU(4) subgroup in the first case, the SU(3) subgroup in the second). It is
the last case which is interesting since here the whole Standard Model gauge
group is localized. Along with the Standard Model come two U(1) subgroups
which are semi-delocalized and thus must be broken at a sufficiently high
energy scale to avoid a leakage of energy into the bulk in the low energy field
theory.

As an example which yields this desired situation, consider the case where
the component of y; which condenses is proportional to the matrix

20000 0 0
02000 0 0
00200 0 0

Q.=looo20 0 o], (5.8)
00002 0 0
00000 -5 0
00000 0 -5
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and the component of ys which condenses is proportional to

300 0 0 0 0
0300 0 0 0
003 0 0 0 0

Q=000 -4 0 0 0 (5.9)
000 0 —4 0 0
000 0 0 —40
000 0 0 0 3

The former clearly induces the breaking SU(7) — SU(5) x SU(2) x
U(1) and the latter induces the breaking SU(7) — SU(4) x SU(3) x U(1).
Inspecting these two matrices, one notices that there is an SU(3) subgroup
which preserves the top-left 3 x 3 blocks of these two matrices. This SU(3)
subgroup is the one common to the SU(5) and SU(4) subgroups induced by
the respective vacua. Similarly, an SU(2) subgroup represented by generators
with non-trivial components in the 2 x 2 block on the intersection of the
fourth and fifth rows and fourth and fifth columns preserves the fourth and
fifth elements along the diagonal along both matrices, which is common to
the SU(5) and SU(3) subgroups. Looking at the lower-right 2 x 2 block,
one sees that the SU(2) subgroup induced by the condensation of x; does
not survive and is thus broken since this same group does not preserve the
corresponding elements of the diagonal in the VEV pattern of x, represented
by Q). Hence, the non-Abelian sector surviving the clash is SU(3) x SU(2),
which is precisely that required for a localized SM. Since both these non-
Abelian subgroups are entirely contained in larger non-Abelian subgroups
respected along each wall (SU(5) and SU(4) in the case of SU(3) color, and
SU(5) and SU(3) in the case of SU(2) weak isospin), they are fully localized
as required to the domain-wall intersection.

Next, we need to determine the remaining U(1) subgroups respected on
the wall at the level of symmetries, and then determine if any of them are
localized. As is well known, any spontaneous breaking by an adjoint scalar
field always preserves a U(1) subgroup and the generator of this U(1) sub-
group is precisely equal to the generator which condenses. Hence, @); and @)}
are the generators of these associated U(1) subgroups in the case of the walls
generated by n; and 7y respectively. We now look at any potential leftover
generators inside the non-Abelian groups respected on each wall but which
are outside the smaller non-Abelian subgroups respected on the intersection
(ie. U(1) generators of the T', T" type discussed previously). For Hy, one sees
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that the usual SU(5) hypercharge generator is one of the leftover generators,

+2 0 0 0 0 0
0 42 0 0 0 0
0 0 +2 0 0 0
Tv={0 0 0 -1 0 0
0 0 0 0 -10
0 0 0 0 0 0
0 0 0 0 0 0

O O O O oo

0

, (5.10)

which lies inside the SU(5) subgroup respected on the first wall but is outside
both its SU(3) and SU(2) subgroups that survive the clash. Similarly,

0

o3

I
SO DO OO oo
S OO OO oo
S OO o oo
SO OO O oo
_ o O O o O
S OO oo oo

OO oo oo

0 0 -1

(5.11)

is inside the SU(2) subgroup respected on the first wall and could poten-
tially contribute to a surviving U(1). For H,, the respective generators in-
side SU(4) and SU(3) but outside the preserved non-Abelian groups are

respectively
+2 0 0 000
0 +2 0 000
0 0 +2 000
/=10 0 0 000
0 0 0 000
0 0 0 000
0 0 0 000
and
000 0 0 00
000 0 0 00
000 0 0 00
T,={000 -1 0 00
000 0 =100
000 0 0 20

000 0 0 00

S OO O oo

(5.12)

(5.13)

We have listed all the possible contributing generators above. For a U(1)
subgroup to be respected on the wall at the level of symmetries, as discussed
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previously it must be a linear combination of generators satisfying Eq. 5.4l
By inspection, one can easily see from the above generators that there exists a
generator Y which can be written solely in terms of the 7; and 7] generators:

-2 0 0 0 0 0 0

0 -2 0 0 0 0 0

0 0 -2 0 0 0 0
Y=-T-2,=-T{-T,=| 0 0 0 +1 0 0 0 [.(514)

00 0 0 +1 0 0

00 0 0 0 =2 0

0 0 0 0 0 0 +2

Thus, Y satisfies Eq. and is thus localized to the domain-wall intersec-
tion. Furthermore, the upper left 5 x 5 block of Y is precisely the usual
hypercharge generator so it has the desired properties of a localized Abelian
generator on the components which transform under the SU(3) color and
SU(2) isospin subgroups. Hence, this configuration successfully localizes the
Standard Model gauge group.

Along with the localized Standard Model, we also get a couple of semi-
delocalized U(1) gauge groups. The generators of these Abelian groups may
be taken to be

B0 0 0 0 0 0
0% 0 0 0 0 0
0 0% 0 0 0 0
A =4AQ+TT—6T, = 2Q+10T7+9T75 = | 0 0 0 +1 0 0 0
00 0 0 +1 0 0
000 0 0 —2 0
000 0 0 0 -14
(5.15)
and
200 0 0 00
020 0 0 00
5 3 002 0 0 00
B = =3Q:+12T1+121, = 5O =T —=15T, = |0 0 0 —18 0 0 0
000 0 —18 0 0
000 0 0 270
000 0 0 0 3
(5.16)

Evidently, both A and B satisfy Eq. but not Eq. [5.5 as one expects
for semi-delocalized generators. The resultant photons are able to propa-
gate along both walls and thus these Abelian groups must be broken on the
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domain-wall intersection as the existence of massless 5D states coupling to
the Standard Model fermions would obviously be disastrous.

Since the lower right 2 x 2 block is proportional to twice the third Pauli
matrix, once we include the fermionic particle content and Higgs fields re-
quired for electroweak symmetry breaking, we expect exotic scalars and
fermions. If we embed the right-handed down quark and the lepton doublet
in a 7 for instance, there will be exotics with hypercharge Y = 4+2. Thus, to
construct realistic models, we need to ensure that the masses of the localized
modes for these exotics are sufficiently more massive than those correspond-
ing to the SM particle content. The exact breakdowns of the 7, 21 and 35
representations in terms of the full SU(3).x SU(2); xU(1)y xU(1)axU(1)p
subgroup preserved at the level of symmetries on the domain-wall intersection
are

_ 2 38
T=03,1,+=-,—,—2)+(1,2,—1,—1,+18) 4+ (1,1, +2, +26, —27
+(1,1,-2,+14, -3),
_ 4 76 1 41
21 = (3,1,—3 +— 5 +4)+(3,2,+§,+§,—16)+(1,1,+2,+2,—36)
8 40 4 4
+(3,1,— 33 +29)+(3,1,+§,—§,+5)+(1,2,—1,—25,+9)
+(1,2,+3,—-13, —15) + (1,1,0, —40, +-30),
(5.18)
and
4 44 — 1 79
35 = (3,1, +§, +§, —34) + (3, 2, ~3 +§, —14) + (1,1, —2,+38, +6)
_ 10 2 5 37
+3,1,——,—=,+31) + (3,2, —=, ——, +11) + (1,1,0, —24, —9)
3 3 3 3
_ 2 34 7
+(3,1,+§,+§,+7)+(3,2,+§,—§,—13)+(1,1,+4,—12,—33)
2 82
+(3,1,—5,—§,+32)+(1,2,+1,—39,+12).

(5.19)
Thus we can easily see that we can embed the Standard Model fermions in the
most obvious way with the charge conjugate of the right-chiral down quark
(dr)¢ and the lepton doublet L embedded in the 7, and the charge conjugates
of the right-chiral up quark (ug)¢ and of the right-chiral electron (eg)¢ along
with the quark doublet () embedded in the 21. There is also a component
which is a singlet under the SM, the (1,1,0,—40,+30) component, inside
the 21 which could be potentially used as a right-chiral neutrino or its charge
conjugate.
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One thing that is not completely clear is what is the minimal content nec-
essary for anomaly cancellation. Fermion localization in the model described
in Sec. was treated in Ref. [3], and it was shown that a single chiral
zero mode was reproduced on the intersection when a 5+1D Dirac fermion
was coupled to the background scalar fields through scalar and pseudoscalar
Yukawa couplings. The fact that we use full eight-component Dirac spinors
to embed 3+1D chiral zero modes is important since this means that the
underlying 541D theory is vector-like and is thus free from both 5+1D grav-
itational and gauge anomalies. However, the effective 341D theory repro-
duced on the intersection is in general chiral since each 541D Dirac fermion
produces a single chiral zero mode. Hence, one may plausibly reproduce an
anomalous 3+1D theory from an anomaly-free 5+1D theory, as would be
the case if we chose the only fermionic content to be a single 5+1D Dirac
fermion in the 7 representation and another in the 21 representation to em-
bed each generation of the SM fermions. In an SU(7) theory in 3+1D with
chiral fermions, 7 + 21 is anomalous and the minimal anomaly-free combina-
tion is in fact a left-chiral fermion in the 21 representation along with three
transforming as a 7. This phenomenon of an anomalous lower dimensional
theory reproduced from an anomaly-free one in higher dimensions has been
noted previously [I34], 135] and in some cases the anomalies of the lower
dimensional theory have been shown to be canceled by effects coming from
the bulk [134]. It is not clear to us if this is the case in our model and that
bulk effects will protect our 341D theory from anomalies if we simply choose
a single 7 Dirac fermion and a 21 Dirac fermion in 541D for each SM gen-
eration. Nevertheless, we can always make the safe choice and include the
full 7+ 7 4 7 + 21 combination for our initial 54+1D Dirac fermion content.
Alternatively, there is the next-to-minimal choice 7 + 21 + 35.

With regards to the Higgs sector, we not only need a Higgs field in which
to embed the electroweak Higgs doublet but we also need to include the req-
uisite Higgs fields to break the semi-delocalized Abelian groups generated by
A and B. Both the Abelian groups U(1)4 and U(1)p must be broken without
breaking U(1)y so the required Higgs fields must contain components which
transform as singlets under the Standard Model but are charged under the
semi-delocalized Abelian groups. The obvious candidates are the 21 and
the 35 since the 21 contains a component transforming as (1, 1,0, —40, +30)
and the 35 contains a component transforming as (1, 1,0, —24, —9). Further-
more, it is obvious that these two different components will completely break
U(1)4 x U(1)p since each component will preserve different linear combina-
tions of A and B after attaining a VEV. Hence the 21 + 35 combination will
do the job. For embedding the electroweak Higgs, one might first consider
the anti-fundamental 7. While a scalar transforming as a 7 can form a gauge



5.3. SOME SLICES OF HEAVEN FROM SU(7): A CONSTRUCTION
OF A REALISTIC MODEL FROM THE
CLASH-OF-SYMMETRIES MECHANISM 162

invariant Yukawa coupling with fermion in the 7 and another in the 21, it
cannot form a Yukawa coupling with the 21 fermion and its charge conju-
gate, which we need to get a mass matrix for the up-like quarks. Neither
can a scalar in the 21 representation, even though it contains a component
transforming as an electroweak doublet. On the other hand, the 35 repre-
sentation can both form a Yukawa coupling between a 7 and a 21 as well as
a gauge invariant Yukawa coupling between the 21 and its charge conjugate.
Further, the 35 contains a component transforming as an electroweak dou-
blet, the (1,2, —1,4+39,—12) component, and thus it is necessary to embed
the electroweak Higgs in this representation. Although a phenomenological
analysis of the fermion and scalar modes is beyond the scope of this paper, it
would be interesting to see if we can embed the electroweak Higgs field along
with the SM singlet required to break one of the semi-delocalized Abelian
groups in the same 35 scalar and choose parameters such that these compo-
nents attain tachyonic masses on the intersection while all other components
attain positive definite squared masses.

To ensure that we get this configuration, we need to ensure that it is
the most energetically favorable and stable one. The most general Z, x Z5-
invariant quartic potential for 7y, x1, 172, and xo with x; and y» as adjoint
scalar fields is

V= V;th + V772X2 + ‘/;71X1772X27 (5'2())

where V., for ¢ = 1,2 are the self interaction potentials

1
Viixi = Z/\m (7712 - 1)12)2 + Anixi (7712 - Uz‘2>Tr[Xi2] + :“iiTr[X?] + hniXiniTr[X?]
(5.21)
for the n1-x1 and ns-x2 sectors respectively and Vv .y, 15 the interaction

potential between these two sectors, which may be written

1
‘/;71X1772X2 = 5)‘711712 (77% - U%)(ng - ’Ug) + )\771X2 (77% - U%)TI[X%]

2
+ M (05 — 03) Te[xT] + 22, Tr] Te[x3] + 225, [Tr[xaxe]]
+ 203 LTl Gl + 208 L Trlxaxexaxe] + Apoaxem Trxax3)
+ )‘X1772X2772Tr[X%X2] + )‘T]1X1772X2n1772Tr[X1X2]'
(5.22)
Firstly, we need to ensure that the configurations on the boundary leading
to the desired subgroups being respected on each wall are the most stable.
This involves analyzing the respective one-dimensional kink-lump solutions
which we utilize as the boundary conditions generated by the self-interaction
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potentials V;,,, given in Eq.[5.21] At the boundaries, we obviously set ;(y; —

+ 00) = tw; (here, y; =y, y2 = z), and here the corresponding x; must be
zero since here it experiences a potential bounded from below with a positive
definite squared mass. At some point, on the wall where n; traverses from
one vacuum to the other, 17; = 0 and here the squared mass of y; becomes
tachyonic and is thus expected to condense. In this region, y; experiences
a standard quartic symmetry-breaking potential for an adjoint scalar. In
generating analytic solutions, we normally set the coupling constant for the
n; Tr[x?] term to zero (and other terms involving odd powers of 7; and x; in
the full potential for similar reasons). This means that the resultant effective
quartic potential experienced by x; in the region where it is tachyonic has
a Zy symmetry, with its breaking patterns determined by Li [136]. Since
all generators are normalized to 1/2, the [Tr(x?)]* always yields a quartic
self-interaction term which has the same strength no matter which breaking
pattern is chosen. On the other hand the value of Tr[y{] differs depending
on the VEV pattern chosen. Hence, the real components of x; corresponding
to different symmetry breaking patterns experience different effective quartic
self-couplings, which will be linear combinations of )\}(i and )\ii. If we write
the effective \,.ss coupling constants for these different components with the
normalization given in Eq. [4.2|in terms of A} and A% , then for an SU(6) x
U(1) breaking pattern the effective coupling is A} +31X7_ /42, for an SU(5) x
SU(2) x U(1) breaking pattern it is A} +19X? /70 and for SU(4) x SU(3) x
U(1) it is A, + 13X7. /84. Since the energy of the effective potential for x;
at the respective vacuum is —uii/ 4)\y,eff, the configuration with the lowest
effective quartic coupling will have the lowest energy and consequently the
most stable vacuum. Thus, of the three breaking patterns, for >\2 > 0 the
SU(4) x SU(3) x U(1) is the most stable and for A} < 0 the SU( ) x U(1)
vacuum is the most stable (provided A} + A%, >0 to ensure the potential is
bound from below); these results agree with Ref. [136].

The energy of the effective potential for an SU(5) x SU(2) x U(1) sym-
metry breaking pattern thus always lies in between that for the SU(6) x U(1)
and SU(4) x SU(3) x U(1) symmetry breaking patterns in the case that the
effective potential for y; has the Zy symmetry (not the ones initially im-
posed). This means that for a quartic potential with the n;x? term set to
zero, that the configuration where the component of y; which is proportional
to ()1 condenses to form the lump is never the most stable one. We can ensure
that the SU(4) x SU(3) x U(1) breaking pattern is the most stable one in the
n2 — X2 sector, but we need some way to ensure that SU(5) x SU(2) x U(1)
breaking kink-lump configuration is the most stable one for the 7; — x; sector
if we are to generate the desired outcome with a localized Standard Model
outlined in this section.
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There are several ways around the problem in the previously mentioned
paragraph. One might first think that one of these would be to switch on
the n; Tr[x?] term. However, there will still be a point where 17, = 0 and thus
around this point one of the other breaking patterns would still be expected
to be more stable. Furthermore, this term will affect the localization of
the lump and once again the effective coupling for this interaction is largest
in magnitude for the SU(6) x U(1) breaking pattern followed by that for
SU(5)xSU(2)xU(1) followed again by SU(4) x SU(3) xU(1). By examining
this term, we have noticed that it generally lowers the energy density of the
solutions and the more the lump is delocalized from the center of the kink,
the more the energy density lowers. Thus, one initially thinks that there may
be a way to make the SU(5) x SU(2) x U(1) preserving configuration the
lowest in energy. The magnitude of its effective coupling constant for this
term is greater than the SU(4) x SU(3) x U(1) one, so if we choose A2 > 0
initially and then slowly increase h,,,, from zero, one may expect the energy
density of the SU(5) x SU(2) x U(1) to become lower. Unfortunately, in
the exploration of the parameter space that we have done, it seems that the
energy density of the SU(6) x U(1) decreases too rapidly for there to be some
point at which SU(5) x SU(2) x U(1) becomes the most stable one. Thus,
the 1, Tr[x3] term seems unlikely to solve this problem.

In terms of the cubic invariant, what one would really like is just a bare
cubic term of the form d,,Tr[x?]. Let us first mention that in Ref. [133],
Ruegg also showed that when )‘?a > 0, as the ratio between d,, and A?a
increases from zero to infinity the most stable breaking pattern cascades
from SU(N —n) x SU(n) x U(1), where n = |N/2], to SU(N —n + 1) x
SU(n —1) x U(1), then to SU(N —n+2) x SU(n —2) x U(1) and so on
up to SU(N — 1) x U(1). Hence, in the case of SU(7), there would exist a
parameter region where the configuration breaking to SU(5) x SU(2) x U(1)
would become the most stable one if we had a bare cubic term for y;. The
main difficulty would then be ensuring that this cubic term would be allowed,
as it is not under the current symmetries and parities imposed in our theory.
One could imagine changing the parity of x; to (4, +) under the Zy x Z,
symmetry or perhaps utilizing a different discrete symmetry with which to
form a domain wall between discrete vacua, so that such a cubic term is
allowed. Provided y; could then be coupled to scalars and fermions in an
acceptable way, this would be an ideal approach.

Another obvious solution is to go to a sextic potential. Resorting to a
sextic potential in our extra-dimensional theory is not a problem since any
interacting field theory in a spacetime with dimension more than four is
non-renormalizable anyway. One of the problems we had was ensuring that
there were enough different invariant operators, and hence parameters, for
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X1 to permit greater freedom in symmetry breaking outcomes. For the sake
of simplicity and as an example, make the quartic self-couplings for y; and
any sextic term involving n; zero, with just the sextic self-couplings for y;
non-zero. In this case, the effective potential for y; where n; = 0 is just
a tachyonic mass term with a positive definite sextic term. Just as before
with the quartic case, the symmetry breaking pattern will be determined by
the effective sextic coupling and the configuration with the lowest effective
sextic coupling will be the most stable. Unlike the quartic case, there are
more invariants to play with since we can have Tr[x$], (Tr[x3])?, Tr[x3]Tr[x]]
and (Tr[x3])?. With this number of invariants, one can easily manipulate the
parameters such that the SU(5) x SU(2) x U(1) respecting configuration has
the lowest effective sextic coupling, and thus yields the kink-lump solution
where the corresponding component for (); condenses is the most stable. A
potential difficulty with this approach is that the theorem proven by Ruegg
[133] where any extrema and thus minima of the potential for an adjoint
scalar exist only if at most two of the eigenvalues of the VEV of the adjoint
scalar differ may not apply here since we are dealing with a sextic potential
and the aforementioned theorem was only proven for a quartic potential.
Thus, with a sextic there may be configurations where the VEV pattern has
more than two distinct eigenvalues and one would need to check through
these to ensure that the desired configuration is the most stable one.

Once one has ensured that one wall generating SU(5) x SU(2) x U(1) is
stable and has chosen parameters such that the other wall breaks SU(7) to
SU(4) x SU(3) x U(1), we need to determine the possible symmetries and lo-
calized groups on the intersection under the clash-of-symmetries mechanism.
As we stated in the previous section, the most stable clash-of-symmetries ar-
rangement will be the one that minimizes the 341D junction energy density.
Just as there existed effective quartic self-couplings for the components of x;
and Yy chosen to condense after computing the traces of the powers of the
respective generators involved, so there will exist other effective coupling con-
stants describing interactions between these different components. In fact,
each different configuration will lead to a different effective scalar potential of
the form given in Eq. [£.2] For the analytic solution given in Eq. yielded
by the parameter conditions in Eq. , only the terms in V;) 1.y, contribute
to the junction energy density. For parameters not satisfying Eq. [£.4] the
self-interaction potentials V;,,, will in general make a small contribution. For-
tunately, there is a way to extract the energy density by defining the fields
1, X1, 72 and 3 as differences between the real two-dimensional interacting
kink-lump solutions and the one-dimensional kink-lump solutions which are
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used as the boundary conditions. In other words, these fields are defined as

My, 2) = m(y, z) — m*(y) = m(y, z) — vi tanh (ky),
iy, 2) = x1(y, 2) — x1*(y) = x1(y, z) — Ay sech (ky),
77_( ) 772(3/7 Z) ! 2 <y7 ) — U3 tanh (ZZ),

(y,2) —

(5.23)
Up ( )
2(y, z) = x2(y, 2 (2) = x2(y, z) — Agsech (Iz).

z

X3

Given the boundary conditions in Eq. for the full fields 7y, 72, x1 and
X2, one can show that 7y, X1, 72 and 3 all vanish along the entire two-
dimensional boundary at infinity. Since for a sensible solution the deviations
from the 1D solutions should be largest on the intersection with the solutions
for 1, M2, x1 and x2 asymptoting to the 1D solutions out at infinity, it should
also be the case that 7, Y1, 72 and Yz should decay to zero faster than 1/y
and 1/z in both directions towards infinity. Given this, since 1y, 72, x1 and
X2 are all bounded functions When We expand the potential V' in terms of 7y,
X1, T2 and X7 and 71, x4 pid and xi?, any term proportional to any power
of 1, X1, M2 or Xz should be mtegrable over the y — z plane and should thus
give a finite contribution to the junction energy density.

If we make choices consistent with those of Eq. and set A\pyixo =
Aimaxe = Amxanexe = 0, then the most important terms in Vj,y, 5., Which de-
cide which clash-of-symmetries solutions are most energetically favorable are
the quartic couplings between y; and o which are Tr[x3]Tr[x3], Tr[x1x2]?
Tr[x3x3] and Tr[x1x2X1X2]. For a given solution, after we take the relevant
traces of these operators, we obtain an effective quartic coupling between the
components of y; and ys. After integrating this effective term over the y — z
plane, we should obtain its contribution to the junction energy density. Since
this effective term is proportional to the squares of the condensing compo-
nents of x; and y», if the effective coupling constant for a particular solution
is positive, the contribution to the junction energy density will be positive.
Furthermore, if we compare it with the contributions coming from the per-
turbations to the fields as a result of turning on interactions, the former
will be proportional to A2A2sech?(ky)sech?(1z) but the latter will be pro-
portional to say (at first order) v$ tanh (ky)sech? (ky)7i(y, z). The v; and A;
(¢ = 1,2) should be roughly the same order and they will be associated with
a high energy scale (typically Agyr) and given we expect the perturbations
1, X1, N2 and Yz to be small, the contribution coming from the background
dependent terms arising from the quartic couplings of V,) \,y,y, are naturally
expected to be one power of this energy scale larger and will dominate the
overall contribution to the junction energy density. It then follows that the
clash-of-symmetries solution with the lowest effective coupling between the
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components of y; and ys which condense will minimize the energy density
and thus be the most stable intersecting kink-lump solution.

We now have to determine the effective quartic couplings between y; and
x2 for each of the different clash-of-symmetries solutions. If xi, and xo
are the components which condense, we define the effective quartic coupling
between them to have the same normalization as the y3x3 term in the original
intersecting kink-lump model given in Eq. [£.2] That is, after computing the
relevant traces of the generators in which y; and x» condense, the effective
coupling )\;f /_is defined such that the quartic term appears in the effective

potential as ;)\‘;({ L X1aX3s

There are three possible clash-of-symmetries solutions coming from H; =
SU(5) x SU(2) xU(1) and Hy = SU(4) x SU(3) x U(1). The other patterns
along with the one we have discussed in this section can be found in the
appendix. We will label these resultant CoS groups X; = SU(4) x SU(2) x
U(l) X U(l), X2 = SU(3)C X SU(Q)] X U(l)y X U(l) X U(l) and X3 =
SU(3) x SU(2) x SU(2) x U(1) x U(1). Obviously, the solution with X5 is
the one we have discussed and the one we desire to be the most stable. It
turns out that the effective y; — x2 couplings for the three breaking patterns
are

1 6
X _ 1 2 3 4
>\X11X2 - )\X1X2 + B)\XU@ + %(AXU@ + >\X1X2)’
1 41
X2 _ 1 2 3 4
)\XIXQ - )\X1X2 + EO)\XIXQ + %O\le + )\X1X2)’ (5'24)
3 407
X 1 2 3 4
/\X13X2 = )\X1X2 + E)\Xlxz + 5880 (/\X1X2 + /\X1X2>‘

From this it follows that the solution generating the Standard Model that we
have discussed above has the lowest )\;{{(2 and is thus the most stable CoS
solution if the parameter conditions A2 > 0 and —%)\2 <X 4N <

1715 \ 2 X1X21 9 X1X§ X1X42 X1X2
251 M\y1ye are imposed. We also impose A + A + A + A >0 to

X1X2 X1X2 X1X2 X1X2
ensure that the potential is bounded from below.

After doing the above analysis, one notices that there is actually another
solution to the problem of making the kink-lump generating the SU(5) x
SU(2) x U(1) subgroup stable, although it involves a fine-tuning that is not
ideal. If we fine-tune the self-coupling /\f< . to zero, then all three solutions
generating the respective subgroups SU(6) x U(1), SU(5) x SU(2) x U(1)
and SU(4) x SU(3) x U(1) become degenerate. The other reason this is
problematic is that it introduces an accidental O(48) symmetry amongst
the components of x; in the potential V, ,, and thus we would naturally
expect these solutions to fluctuate. However, the interactions in V;, y,n.y, do
not respect this O(48) symmetry, breaking it explicitly back to SU(7). The
resultant possible solutions then are not only the three with H; = SU(5) x
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SU(2) x U(1) and Hy = SU(4) x SU(3) x U(1), but also those where H; =
SU(6) x U(1) and Hy = SU(4) x SU(3) x U(1) as well as those coming from
H, = SU(4)xSU(3)xU(1)and Hy = SU(4)'xSU(3)'xU(1)" (which includes
the alternate SM we discuss in the next subsection). In other words, making
the fine-tuning )\il = 0, our desired solution simply has more competitors.
Amazingly, when one computes all the effective x; — x2 couplings of the
additional CoS solutions, it is still possible to make the solution with the
SM discussed in this subsection the most stable one. This is largely due
to the very small coefficient in front of the )\ilm coupling constant. One
finds that the solution discussed in this subsection is still the most stable
in this scenario if we tighten the parameter conditions to A2 > (0 and

X1X2
_T)2 3 4 98 42
3>\X1X2 < /\XIXZ + /\X1X2 < 383>\X1X2'

5.3.2 A Rather Non-Standard Standard Model from
Hy = SU(4)xSU(3)xU(1) and Hy = SU(4)'xSU(3)'x
U)

In the last subsection, we described a scenario which produced a Standard
Model-like gauge group with the correct hypercharge quantum numbers for
the known SM field content along with some Y = +2 exotics from a clash
between SU(5) x SU(2) x U(1) and SU(4) x SU(3) x U(1). As noted above,
there are some problems in ensuring that the arrangement where we have an
SU(5) x SU(2) x U(1) subgroup as one of the clashing groups is the most
stable one for one kink-lump pair. One naturally might then be motivated to
consider obtaining a Standard Model-like gauge group from a clash between
two differently embedded copies of SU(4) x SU(3) x U(1). Firstly, this
has the advantage that we can ensure the most stable arrangement for each
kink-lump pair from a one-dimensional point of view is the one generating a
SU(4)x SU(3)xU(1) subgroup, since to do this we simply choose A2 > 0 and
Aiz > () in each sector. Furthermore, it is obvious that we can obtain the non-
Abelian part of the Standard Model gauge group since if we call the second
group Hy = SU(4)' x SU(3)" x U(1)’, we can easily choose the embeddings
such that SU(4)NSU(4)" D SU(3). and SU(3)NSU(3)" D SU(2);. One also
suspects that we can get a localized U(1) in this case since like the case in
the previous section, there will be four leftover diagonal generators from all
four non-Abelian groups involved in the clash. Indeed, it turns out that this
is the case. In this case, we obtain a rather different localized hypercharge
generator, one that makes it seem like a successful embedding of the Standard
Model fermion content is not possible

To realize the above described situation, we make x; condense in a com-
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ponent proportional to the Abelian generator

3300 0 0 0 O
030 0 0 0 O
003 0 0 0 O

=10 00 —4 0 0 O0f, (5.25)
000 0 —4 0 O
000 0 0 —-40
000 0 0 0 3

and let the component of y, which condenses be proportional to

300 0 0 0 O
030 0 0 0 O
003 0 0 0 O

Q=10 00 —4 0 0 O (5.26)
000 0 —40 O
000 0 0 3 0
000 0 0 0 —4

From this we easily see that the groups preserved by the clash are, as noted in
the first paragraph of this section, SU(3). C SU(4) N SU(4)" and SU(2); C
SU(3) N SU(3)". The leftover generators from SU(4), SU(3) from H; and
SU(4), SU(3)" from H, are respectively

+2 0 0 000 O
0 42 0 000 0
0 0 42000 0
Tv=|10 0 0 000 0], (5.27)
00 0 000 0
0 0 0 000 O
0 0 0 000 -2
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
T,=(000+1 0 0 0], (5.28)
000 0 +1 0 0
000 0 0 —20
000 0 0 0 0
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+2 0 0 00 0 0
0 +2 0 00 0 ©
0 0 +2 00 0 0
T{=]10 0 0 00 0 0], (5.29)
0 0 0 00 0 0
0 0 0 00 -20
0 0 0 00 0 0
and
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
;=10 00 41 0 0 0 (5.30)
000 0 410 0
000 0 0 0 0
000 0 0 0 —2

Again there is an Abelian generator surviving the clash which is solely a linear
combination of the above four generators and thus satisfies the localization
condition described in Eq. [5.5 namely

-2 0 0 0 0 0 O

0O -2 0 0 0 0 O

0 0 -2 0 0 0 O
Y=-T-Tp=-T{-T,=[ 0 0 0 -1 0 0 0 [.(531)

0 0 0 0 -1 0 0

0 0 0 0 0 42 0

00 0 0 0 0 +2

Again, we also get a couple of semi-delocalized U(1) gauge groups. In
this case, the semi-delocalized generators A and B may be taken to be

o O O
o O OO

A =4Q1+T—T, = 2Q1+10T]—9T;, =

S OO OO

|
—
~
coocooo

oo oo o owy
oo oo oxgo
oo o owEo o

|

—_

\]

o O O

o O
|

O =
W

—_

(@]

(5.32)
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and

200 0 0 0 0
020 0 0 0 0
1 99 002 0 0 0 0
B:Q1—2T1+2T2:—§Q3+ZT{—6TQ’: 000 -2 0 0 0
000 0 -2 0 0
000 0 0 —80
000 0 0 0 7

(5.33)

Thus, we have a localized hypercharge generator with a relative sign be-
tween the charge for the lepton doublet and the charge for the conjugate of
the right-chiral down quark which is opposite that of the usual SU(5) hy-
percharge generator. It seems that it would be extremely difficult to pick
representations containing the SM field content in a simple way, since the
charges for the components in the antisymmetric 21 representation would
also be affected, which is problematic since the 21 is the natural candidate
for embedding the right-chiral up quark, right-chiral electron and the quark
doublet. For instance, instead of having a hypercharge Y = +1/3, the com-
ponent inside the 21 that transforms as (3,2) under SU(3). x SU(2); now
has Y = —5/3. This rules out using the minimal anomaly-free fermion com-
bination of 7+ 7 + 7 + 21 to embed each generation of the Standard Model
fermions. However, it in fact turns out that the SM fermion content can
be embedded in the next-to-minimal anomaly-free fermion combination of
7+ 21+ 35. Under SU(3). x SU(2); x U(1)y: x U(1)4 x U(1)p, the SU(7)
representations break down as

2 38 5
7T=03,1,—=,+—,+= 1,2,—1,—-17,-2 1,1,+2,—-14, -8
( Y ? 37+3 7+3)+( ? ) ) Y )+( 7 7+ ) Y ) (534)
+(1,1,42,410,+7),
_ 4 76 10 - 5 13 1
I=031,4+=-,—,—— 24—, +—, +=)+ (1,1,42,+34,+4
(37 7+37 37 3)+(37 7+37+37+3)+(7 7+ 7+37+>
_ 4 4 19 — 4 68 26
L, ——, 4=, +— L, ——, ——, =)+ (1,2, —1,+431, +1
+(37 ) 37+3’+3)+<37 ) 3’ 37 3)+(7 ) 7+37+0)
+ (1,2, —1,47,=5) + (1,1, -4, +4,+1),

(5.35)
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8 64 7. . T 25 4
=3,1,--,——,—= 2, — =, +—,+=)+(1,1,-2
35 = (3,1, U 3)+(3, : 3,+3,+3)+(, ,—2,+38,+5)
=, 2 34 14, . 2 106 31 1 55 25
L+, +—, —— L4+, +—,+— 2, 4=, ——,——
+(37 7+3?+37 3)+(37 7+37+ 3 7+3)+(37 7+37 37 3)
1 17 20 10 26 2
2, 4=, +—, +—= L4+—,+—,+2) +(1,2,+3,-21,—
+ (3, gt )+ 6 ,+3,+3,+3)+( ,2,43, 21, -3)

+(1,1,0,—48, —12) + (1,1,0, —24, +3).

(5.36)
Hence, if we choose the couplings to the background scalar fields such that
each of the fermion fields charged under these representations has a localized
left-chiral zero mode, both the lepton doublet L and the charge conjugate of
the right-chiral electron (er)® can be embedded in either the 7 or the 21, the
charge conjugate of the right-chiral up quark (ug)® can be embedded in the
21 and the quark doublet @ can be embedded in the 35. In choosing the rep-
resentations in this way, the charge conjugate of the right-chiral down quark,
(dgr)¢, must be embedded in the 35. We can even fit in the charge conjugate
of the right-chiral neutrino as the 35 contains two singlet representations. In
fact, we can fit in two generations of quarks and 3 generations of charged
leptons along with two right-chiral neutrinos.

The electroweak Higgs could fit into either a 7 or a 21. However, given
both @ and (dg)¢ are embedded in a 35, to form a down-quark mass matrix
we need an invariant between a Higgs field and the Dirac bilinear formed from
a fermion field in the 35 representation and its charge conjugate. The only
choice that can do the job is a 7 since the tensor product 35 x 35 contains
a 7 but not a 21. Since the tensor products 7 x 7 x 21 and 7 x 21 x 35
contain singlets, we can form mass matrices for the charged leptons and
the up-type quarks with the electroweak Higgs in a 7. With regards to
breaking the semi-delocalized photons, we can utilize the (1,1,0,—48, —12)
and (1,1,0,—24,+3) of the 35. It would be interesting to see whether we
could use both these components from the one 35 and choose parameters
such that both these components attain tachyonic masses. Otherwise, we
can use two 35’s. From there, like with the previous realization of the SM,
the main task is to ensure that the profiles for the scalars and fermions are
split appropriately so that the exotic states, other extra states and the semi-
delocalized photons become sufficiently massive. Like before, we also need
to make sure that there are no unwanted breakings coming from additional
localized Higgs components.

Lastly, we need to check that we can make the aforementioned CoS solu-
tion the most stable one. As in the previous section, the relevant operators
are Tr[x3] Tr[x3], Tr[x1x2)? Tr[x3x3] and Tr[x1xa2x1X2] and we need to take
the relevant traces to compute A, y,ers for each different solution. There
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are three other clash-of-symmetries breaking patterns, the VEV patterns
for which are listed in Appendix [D] along with the one we have described.
These other solutions break SU(7) down to Wy = SU(4) x SU(3) x U(1),
Wy = SU(2) x SU(2) x SU(2) x U(1) x U(1) x U(1) and W3 = SU(3) x
SU(3) x U(1) x U(1). After taking the relevant traces, it turns out that the
effective coupling constants are in this case

2% ., 149

SMxU(1)2 |1 3 4
)\X1X23ff - )\X1X2 + % X1X2 + 1008 ()\X1X2 + )\X1X2)’
13
W- _ 1 2 3 4
/\X11X2€ff - /\X1X2 + /\X1X2 + @(Axwz + )\X1X2)’
W- 1 1 2 7]‘ 3 4 (537)
2 J— _
)\X1X2€ff - >\X1X2 + %AXU& + 1008 <)\X1X2 + )\X1X2>’
9 15
W- _ 1 2 3 4
)\X13X2€ff - /\X1X2 + 1_6)\X1X2 + E()‘le + )\X1X2)'
Again we can easily choose parameters such that )\if\i;%m is the smallest

of the effective couplings, rendering the arrangement we have described above

the most stable. In fact, one can show that )\if\i:el};lf is smaller than all of
lezeff’ )\f;meff and )‘zﬁczeff if we choose parameters such that )\ilm >0
3 4 2
and —551A% /4 <Ay, + AL, < 2125, ,,/104.

5.3.3 The GUT Approach: A Localized SU(5) theory
from H; = SU(6) x U(1) and Hy = SU(6) x U(1)

We can also take the approach of Ref. [25] and localize a grand unification
group. If we choose our clashing subgroups to be differently embedded copies
of SU(6) x U(1), then it is clear that we can obtain a localized SU(5) sub-
group. Again, from what we know from Ref. [136], if we choose A2, < 0 and
A2, < 0 then an SU(6) x U(1) breaking pattern will be the most stable 1D
kink-lump configuration for each sector, provided we also choose parameters
such that A} + A} > 0and A}, + A3, > 0 still hold so that it is absolutely
guaranteed that the potentials are bounded from below. This means that the
only thing we really need to check is that the arrangement where the clash
yields a localized SU(5) subgroup is the most stable arrangement, which in
this case just means that it is more stable than the only other arrangement
where Hy = H, to give a semi-delocalized SU(6) x U(1).

The VEV pattern we desire is one in which y; condenses in the component
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corresponding to the matrix

100000 O
010000 O
001 0O0O0 O

=100 0100 0|, (5.38)
000O0T1O0 O
000O0O0OT1T O
000O0O0OO0 —6

and o condenses in the component corresponding to

10000 O O
01000 0 O
00100 0O O

Q=10 0010 0 O (5.39)
00001 0 O
0000O0—-60
000O0O0O O 1

Clearly, SU(6)NSU(6)" = SU(5). The leftover generators coming from inside
the SU(6) and SU(6)" generators are

10000 0 O
01000 O O
00100 0 O

'=10 00 10 0 0], (5.40)
00001 0 O
00000 —-50
0000O0O O O

and Y, condenses in the component corresponding to

1 00000 O
01 0000 O
001000 O

;=10 0 0 1 0 0 O (5.41)
000O01O0 O
00 00O0O0O O
000O0O0O0 =5

There are therefore a couple of semi-delocalized U(1) generators which may
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be taken to be

¢ =5/6Q1+7/6T) =5/6Q,+7/6T, = , (5.42)

S OO OO
OO OO oo

OO OO O OoOoN
SO O oo N O
SO DO O NN OO
SO OO N O OO
SO N O O oo

and

g2 =1/6(Q1 —T1) =1/6(T] — Q) = (5.43)

S OO O O oo
DO DO OO oo
DO DO OO oo
SO O OO oo
S OO OO oo
OO oo oo

Thus the full symmetry respected on the wall is SU(5) x U(1),, x U(1),, but
only the SU(5) subgroup is fully localized to the junction, and just as before
in the other cases with adjoint scalars, we will have to introduce additional
Higgs fields to break the residual Abelian groups.

To work out if this arrangement is the most stable one, again we just
analyze the effective quartic coupling constants coming from the interac-
tions Tr[x3]Tr[x3], (Tr[x1x2])?, Tr[x?x3] and Trxixax1X2]- Firstly, note that
a pattern generating a clash between identical SU(6) x U(1) subgroups is
simply one where both x; and x» condense in the component proportional
to Q1 in Eq. In calculating the relevant traces of the generators in-
volved, we find that the effective quartic coupling Ay y,epr = 1/2A},,, +
/722 + 11/504(A3 xs + XL ) for the SU(5) x U(1) x U(1) breaking
pattern and it is Ay y,err = 1/2(AL,,, + A2,,,) + 31/84(A3 x2 + X},,,) for
the SU(6) x U(1) pattern. Thus there is a very large parameter space where
the SU(5) x U(1) x U(1) has the lowest effective quartic coupling given
that the coefficients coming from the traces of the (Tr[x1x2])?, Tr[x?x3] and
Tr[x1x2X1X2] terms are much lower than those for the SU(6) x U(1) pattern.
Indeed, one can ensure that SU(5) x U(1) x U(1) has the lowest effective
X1 — X2 coupling by choosing all of X} ., A% and A}, to be positive.

Having now ensured that the desired Clash-of-Symmetries breaking pat-
tern where we have a localized SU(5) subgroup on the domain-wall intersec-

tion can be the most stable one, let us comment briefly on how to construct
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a realistic scenario. We obviously have to break SU(5) on the domain-wall
intersection. We do this by introducing another adjoint scalar since under

SU((5) x U(1)4 x U(1)g the 48 breaks down as

48 = (24,0,0) + (5, +7,—1) + (5, =7, +1) + (5, +7,+1) + (5, -7, —1)
+(1,0,—-2) + (1,0,42) + (1,0,0) + (1,0, 0),

(5.44)
and subsequently we perform dynamical localization on this additional ad-
joint scalar field. As usual, each of the different SU(5) x U(1)4 x U(1)p
components of the 48 will have their own set of discrete localized modes
and continuum modes. To break to the SM, we need the (24,0,0) com-
ponent to have at least one localized mode and we need its lowest energy
localized mode to attain a tachyonic mass on the domain-wall intersection.
Although doing the exact full analysis is beyond the scope of this paper, it
would be interesting to see if we can make the lowest energy localized mode
of one of the (1,0, —2) and (1,0, +2) components tachyonic simultaneously
with that of the (24,0,0) component in order to efficiently break one of the
semi-delocalized subgroups.

We need to break both the semi-delocalized U(1) subgroups to produce
a phenomenologically acceptable model. As noted above we can break one
of them by utilizing some of the components inside the additional adjoint
scalar. Under SU(5) x U(1)4 x U(1)p symmetry, the 7, 21 and 35 reduce
respectively to

7=(542,0)+ (1,=5,+1) + (1,-5, 1), (5.45)
21 = (10,+44,0) + (5, —3,+1) + (5, —3,—1) + (1, —10,0), (5.46)
35 = (10,46, 0) + (10, —1,+1) + (10, —1, —1) + (5, —8,0). (5.47)

Thus, we can utilize the (1, —5, +1) components inside the 7 or the (1, —10, 0)
components in conjunction with one of the (1,0, £2) components inside the
48 to break both the semi-delocalized Abelian groups. Alternatively, we
could use any two SU(5) singlet components which have different non-trivial
charges under the Abelian symmetries in any combination of 7’s and 21’s.
From the above equations for the representations, we can easily see how
to make the exotic and unwanted fermionic states much more massive than
the SU(5) states yielding the SM quark and lepton field content. If we choose
the standard anomaly-free combination 7 + 7 + 7 + 21 for each generation,
we can see that if we use the combination of a 7 and a 21 to break the
semi-delocalized U(1) gauge symmetries by giving the respective (1, =5, +1)
and (1,—5, —1) components tachyonic masses, the quintets (5, —2,0) from
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the extra two anti-fundamentals can form singlets with the (5, —3,+1) and
(5, —3, —1) components inside the 21 and thus decouple as heavy fermions.
Finally, one needs to break electroweak symmetry. In principle one could
do this with any of the quintets embedded in the 7, 21, or 35 representations.
If we embed the usual fermionic quintet in a 7, we can form the electron and
down quark mass matrices with two conjugates of the (5,42,0) component
and the (10,44,0) component in the 21. On the other hand, we can’t use
the same quintet to yield the up quark mass matrix: we instead require the
(5,—8,0) component to give the SM fermions inside the (10,+4,0) compo-
nent of the 21 masses. Thus, it seems we require a two-Higgs doublet model
in this scenario, along with more singlet Higgs fields than is necessary to
break the semi-delocalized U(1)’s in order to give the exotic states masses.

5.3.4 An Alternative Path to the Standard Model with
X1 ~ 21 and yo ~ 35

Finally, we give an example yielding a Standard Model gauge group where
the scalar fields responsible for the breakings on each wall are not in the
adjoint representation. Instead, the field x; will be chosen to transform
under the 21 representation and ys will be chosen to transform under the
35 representation. With these representations, we can end up with exactly
the Standard Model gauge group without any semi-delocalized U(1) gauge
groups.
The full scalar potential is

V= Vnm + V;mcz + V771><1772xz> (5'48)

where in this case the self-interaction potentials for each kink-lump generat-
ing pair are

1 9 2\9 2 2\ .. ab 2 . ab
V771X1 = Z)\m (771 - Ul) + )‘771X1 (771 - Ul)Xl X1ba + Fxa X1 X1ba (549)
+ /\ia [XClLbXMb}2 + Ailx(llbxlbcxtlzdxld“’
and
1)\ 9 o\ 2 A\ 2 2\ abe 2 | abc
Viax2 = 4 (1 = 03)” 4 Anao (15 = V2)X5 ™ Xaabe + Hy, X" Xaabe (5.50)

abc

abc de
+ )\>1<2 [X2 XZabc}Z + )\ileb X1bed X1 leefm
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and the interaction potential between the two sectors is

2 22

1 abc
‘/;71X1772X2 - 5)‘771772 (771 - Ul)(”? Ug) + >‘T]1X2 (77% - ’U%)X2b X2abe

+ Xan (773 - U;)thleIab + QA;IXQXTbXIabX§d€X2Cde

202 XXX X 2dea + 223 o X X 2abeX 5 X 1de

+ /\X1772X2 6ade6ng1abX1¢dX2efgn2 + /\;17]2)(2 eabcdefgxlllbx;dnggn}

(5.51)

There are some clear advantages with regards to the energetics by choos-
ing x1 ~ 21 and x2 ~ 35. Firstly, the 21 representation corresponds to a
rank 2 antisymmetric tensor. It was shown in Ref. [136] that for a potential
just involving a rank 2 antisymmetric SU(N) tensor that for A2 > 0 the
lowest energy breaking pattern was one where a single 2 x 2 block of the
tensor is non-zero and proportional to the rank 2 alternating tensor while
all other components vanish, yielding SU(N — 2) x SU(2) as the unbroken
subgroup. Thus, if we choose /\i1 > () then in the region where y; is tachy-
onic it should condense with this pattern and therefore the lowest energy 1D
kink-lump solution should have SU(7) broken to SU(5) x SU(2)! Thus we
have done what we had trouble doing in a simple way with an adjoint scalar
in Sec. and ensured that one wall generates the same SU(5) x SU(2)
subgroup. Furthermore, as the 21 is an antisymmetric tensor rather than an
adjoint, the U(1) subgroup of SU(5) x SU(2) x U(1) that we got with an
adjoint scalar is already broken.

In a similar way to how the 21 attains a VEV pattern with one block
proportional to the rank 2 alternating tensor ¢;;, one might think that for a
certain region of parameter space that a rank 3 totally antisymmetric tensor
such as the 35 of SU(7) might attain a VEV pattern in which just three
indices trace over the elements of the rank 3 alternating tensor €;; with
all other components zero. If this were the case, since €;;, is an invariant
tensor under SU(3) and the VEV patttern of the 35 would vanish for the
remaining four indices, one would expect the unbroken subgroup would to
be SU(4) x SU(3). Although obtaining the canonical form for a rank 3
alternating tensor is a much more non-trivial problem than that for a rank
2 antisymmetric tensor, this was indeed shown to be the case [137, [13§].
Choosing 7A>1<2 + )\iz > 0 to ensure boundedness from below, if we choose
)\il > 0 then the 35 will indeed condense with the aforementioned pattern.
In choosing the 35 we also automatically break the U(1) that usually comes
with the SU(4) x SU(3) subgroup if we perform the breaking with an adjoint,
which is analogous to how the 21 breaks the U(1) associated with SU(5) x
SU(2). Hence, in choosing x; ~ 21 and x5 ~ 35 we have already broken the
semi-delocalized U(1) subgroups that we get when we utilize adjoint scalars.
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The last thing to check is whether we can guarantee that the pattern
generating a Standard Model gauge group localized to the intersection is the
most stable one. It is obvious that we can generate the same Standard Model
gauge group given Sec.[5.3.1] It is this precise SM group since if we choose our
VEV’s such that SU(5) N SU(4) D SU(3) and SU(5) N SU(3) D SU(2), we
still obtain the same leftover generators from each group given in Egs. [5.10]
b.11] 5.12] and [5.13] yielding the same hypercharge generator as in Eq. [5.14]
To show this outcome can be achieved obviously requires looking at the
possible VEV patterns.

As x; is a rank 2 antisymmetric tensor, it will attain a VEV of the form

Vfbl = A1 (6125?62 + 621(53(52’1)7 (552)

where here 1 < m < n < 7 denote some fixed, distinct integers. In a similar
manner, Yo ~ 35 will attain a VEV of the form

V35

e = A (6123(535g5§+5;5§5§+526§53)+6132(53555@+5§5553+6g5§6§)), (5.53)
where again 1 < g <r < s <7 are fixed, distinct integers.

Up to rearrangement of the indices and gauge transformations, there are
three distinct clashing patterns. The first is where neither of the integers
m or n of Eq. are equal to any of the integers ¢, r or s of Eq. p.53
For this first pattern, the SU(2) subgroup preserving the rank 2 alternating
tensor of V3! is outside the SU(3) alternating tensor preserving the rank 3
alternating tensor of the pattern V32 and thus the unbroken symmetry in
the intersection region is SU(3) x SU(2) x SU(2), with only one of the SU(2)
subgroups localized and the other SU(2) and the SU(3) semi-delocalized.

The second pattern is where, without loss of generality, n = ¢ with m
not equal to neither of r or s. Here, since the two indices r and s over-
lap with the remaining five indices for which any element of V3! is zero,
the SU(2) subgroup of the SU(3) preserving V3> is also contained in the
SU(5) subgroup preserved by V2l Also, three of the indices transformed by
the SU(4) subgroup left unbroken by V35 also transform under the SU(5)
subgroup left unbroken by V2'. Hence this is the pattern we want, with
SU(3). x SU(2); x U(1)y localized to the domain-wall intersection.

The last possible pattern is where, without loss of generality, m = ¢ and
n = r. Here, the SU(2) subgroup preserving V2! is also a subgroup of the
SU(3) subgroup preserving V33 Also, the SU(4) subgroup left unbroken by

abc*

V3% is also a subgroup of the SU(5) subgroup preserved by V2!, Thus, the

abc

group respected on the wall with this pattern is SU(4) x SU(2), with both
non-Abelian factor groups semi-delocalized.
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Having outlined the possible groups resulting from the clash-of-symme-
tries mechanism, we now need to look at the effective couplings between the
relevant components of y; and y, involved in each clash. For simplicity of
analysis, we will ignore the e®bcdef IX1abX1edX2efqN2 term and set Ay .y, =
0. This leaves as the relevant terms X‘fbxlbaxgdexgcde, Xj‘bxlbcxgdexgdm, and
X?bxzabcxgdexlde. To determine the effective quartic coupling constants, we
need to calculate the contractions of the various epsilon tensors involved
in the products, which can be though of as products between V3! /A; and
V35 /Ay, For XPX16aX5%Xaede, the resulting coefficient is always the same,
namely we have XX 15aX5% X2cde X €7€;;€" “eypy = 2 X 6 = 12. Hence, the
X%”lecxgdexgdm and X‘fbxgabcxgdexlde terms are ultimately the ones which
determine which clash-of-symmetries group is favored.

For the SU(3) x SU(2) x SU(2) pattern, x$°X16eX5%X2dea and
XX 2abe X 5% X 14 both vanish since the rank 2 and rank 3 tensors contained
in V2! and V3 do not have any indices in common. Therefore, the effective

quartic coupling in this situation is simply A, y,erf = )‘>1<1xz'

For the pattern generating a localized SU(3). x SU(2); x U(1)y to the
intersection, there is one index in common between the rank 2 alternating
tensor from V3! and the rank 3 alternating tensor from V32. This means
that X‘fl’mabcxgdexlde must vanish because it involves a contraction between
V2l and V35 over two indices rather than just one. On the other hand, since
ey, = 01 and V2PVl oc 62 6™ + 6267, we have

n-cr

XX 18eX5™ Xadea O (85,8" + 807 ) VEVEE

dea
— V35mde‘/d365;n + ‘/35ndeV'dSE'S;Z
_ 35qrsy /35
-0 +352qz ) Vesa (5.54)
=2V ‘/qrs
X 2€Uk€ijk
=12.

Thus for the pattern we want, Ay, yaers = ALy, +A%,y,- For the SU(4)x SU(2)
pattern, both indices of the rank 2 alternating tensor in V3! coincide with
indices of the rank 3 alternating tensor in V32. Thus, in this case, both the

non-trivial quartic coupling terms are non-vanishing. For XX 15 X5% X2dea We
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have
XX 16eX5™ Xadea O (80,00 + 0200 V30tV

dea
_ V35mdev35 + V35ndev35
- dem

den

— 2v35qrsv35 4 2v35rsqv35

35qrs T?f5q " (555)
= AV
o 4e'*
= 24.

Given ‘/:12blv350ab o 5(rlnégLv35cab _ 535gnv35cab — 2v35cmn and V21abva?z5c o
— e sby3s + 55553”‘/35@0 — 235  we have

m-n " abc mnc?

€ijk

ab cde 35 35cmn
X1 X2abeXo Xide X — 4V, 0V

mnc

— _4v35 V35mnc
mne (5.56)

o — 41(—,‘1»3-,1@6“]C
= —24.
Thus for the SU(4) x SU(2) pattern, Ay ypers = AL+ 22— 2)3

X1x2 X1x2 X1xz°

We can easily choose parameters such that the pattern yielding the lo-
calized Standard Model has the lowest effective x; — x2 coupling and is
thus the most stable solution. One can easily see by inspection that choos-
ing )\;XQ > 0, >‘3<1><2 < 0, )\>1(1X2 + )\im > 0 and )\ilm — )‘iw@ > 0 that
Ayixseff Will be positive for all three patterns and will always be lowest for

the SU(3). x SU(2); x U(1)y pattern and highest for the SU(4) x SU(2)
pattern.

We have successfully shown that an intersecting kink-lump solution with
X1 ~ 21 and yo ~ 35 yields a subgroup localized to the domain-wall in-
tersection which is precisely the Standard Model gauge group with no other
localized or semi-delocalized gauge symmetries respected there. Furthermore,
we have shown that this solution can be the most stable one possible. From
here, aside from the semi-delocalized U(1)’s which are already broken in this
case, we face many of the same challenges as with the models produced from
adjoint scalars. We need to localize the requisite Higgs fields to the inter-
section with tachyonic masses and we need to ensure that other unwanted
components have positive definite squared masses. As the Standard Model
produced here is equivalent to the one produced with two adjoint scalars
in Sec. [5.3.1] we will have to embed the electroweak Higgs doublet inside
another scalar field charged under the 35 representation if we embed the
Standard Model fermions inside a 7 and a 21 with a couple of 7’s in addition
to ensure anomaly cancellation.

Since the 21 and 35 representations are complex, the fermion couplings
to x1 and y» are not exactly vector-like as they are in the case in which they
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are adjoint scalars. They involve Dirac scalar products between spinor fields
U, ~ 7 and Uy ~ 21 and their charge conjugates. Note that if a 5+1D
spinor ¥ transforms under the two discrete Z, symmetries as ¥ — 4070
and ¥ — IV respectively, then its charge conjugate ¢ also transforms as
UC — TP and ¥ — I°WC. This implies that it is also the case that
YOU — UOU and UCT™U — — WOT'W under the first Z, symmetry and
YO — — UOU and WO — WCT'W under the second. Hence, in this
scenario, the background Yukawa Lagrangian for one generation, with the
SM fermions embedded in ¥, and ¥y, and with the fermionic fields K ~ 7
and K? ~ 7 added for anomaly cancellation, is

Ly = —ihgy Vel Wony + hay, Uz Urny — ihggiy, Yol K 'y + hygein, U K 'y
— il i, KTy + By, KWqny — ihgigcin, KT K,
+ hicigcimy K K0y — 2ihg1, Tr[Uy T o ]m + 2hay,, Tr[Way Way]n,

— b U TTWE — bz W\ DT — ihygy, Uy (T

— i, KT Wr — ihyei i KT EKIC — il s KIOYITTK?

+ h7x221\p_21ab‘P$X2abc + h$X221\I’_7¢\I’21abx§bc-

(5.57)
It would be interesting to see what effect some of these non-standard back-
ground couplings have on the profiles. There should still be chiral zero modes
localized on the intersection since their existence is mainly due to the cou-
plings to the fields generating the kinks 7; and n,. If the couplings are
vector-like, the interactions with y; and ys tend to affect the localization
centers, although in this case we also have interactions mixing the fermionic
fields so one would expect some mixing induced in the profiles. The analysis
for fermion localization is beyond the scope of the paper.

In showing that there is an interesting solution in a case where the fields
inducing the symmetry breaking on each wall are not adjoint scalar fields,
we have demonstrated that the scope for application of this new realization
of the clash-of-symmetries mechanism is broad. One of the advantages of
using complex representations to induce the breakings on the walls is that
the residual U(1)’s are automatically broken. Indeed, one can imagine using
different representations from the ones chosen in this section to reproduce
other interesting scenarios. For example, it is obvious that the SM-like gauge
group produced and described in Sec. [5.3.2] could alternatively be produced
by utilizing two scalars in the 35 representation since they both induce break-
ings to SU(4) x SU(3) subgroups. Likewise, an SU(5) theory equivalent to
the one produced in Sec. could also be reproduced by replacing the
adjoint scalars with fundamental scalars.
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5.4 Conclusion

In this chapter, we have proposed a new version of the Clash-of-Symmetries
mechanism, which is an extension of the Dvali-Shifman mechanism, in the
context of intersecting domain walls in 541D spacetime. Here, a large gauge
group G was assumed to be in confinement phase in the 6D bulk away from
both domain-wall branes and on the branes G was broken to subgroups H;
and H, on each wall by the fields which attain lump-like VEV patterns on
the wall. H; and Hy are taken to be localized via the Dvali-Shifman mecha-
nism. In turn, there is a clash-of-symmetries mechanism on the domain-wall
intersection between H, and Hs, where the symmetry respected is Hy N Hs.
Subgroups of H; N Hy are then taken to be localized to the domain-wall
intersection by confinement dynamics if they are proper subgroups of con-
fining, non-Abelian factor subgroups of both H; and H;. Assuming that
both 5D and 6D non-Abelian Yang-Mills gauge theories exhibit confinement,
this is a plausible mechanism to localize subgroups of a larger group on the
intersection of two domain walls.

We then dealt with a toy SU(7) model which yielded some interesting
results. In a model in which both y; and ys were charged under the adjoint
representation, we showed that two choices for the VEV patterns for these
fields yielded SM-like gauge groups fully localized to the domain-wall inter-
section, and another yielded a localized SU(5) gauge theory. We found that
in these cases, there are always left-over photons that are semi-delocalized
and thus must be broken. We then gave the most elegant example in the
paper in which x; is charged under the 21 representation and Yy is charged
under the 35 representation, yielding exactly an SM-like gauge group local-
ized to the intersection with no leftover semi-delocalized photons. This case
also has another advantage over the case with adjoint scalars generating the
same SM, namely that it is possible to ensure that the desired configuration
is the most stable in a quartic scalar field theory.

In all the examples that we have given, we only briefly touched on some
of the basics of how to construct realistic fermionic and scalar sectors local-
ized to the domain-wall intersection. We did not, for example, go into the
specifics of scalar and fermion localization and show that realistic masses
for the Standard Model fermions could be generated and that all the extra
exotic fermions and scalars could be made massive enough. In some of the
examples we have used, this seems to be quite a formidable task and one
that is truly beyond the scope of this thesis. Nevertheless, we have achieved
something quite non-trivial in showing that in principle it is possible to lo-
calize and break straight down to a Standard Model gauge group by using
the Clash-of-Symmetries mechanism. We showed this could be done both
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by using adjoint scalars and scalars in complex representations, and we have
thus shown that the scope for use of this particular version of the Clash-of-
Symmetries mechanism is very broad. It may not turn out that the particular
models we have described in this paper are of phenomenological relevance af-
ter a more thorough analysis of the fermionic and scalar sectors, but we
have laid the foundations for building a successful intersecting domain-wall
braneworld model with gauge bosons localized to the intersection.

There is still further work that needs to be done in the intersecting
domain-wall braneworld framework. We also need to successfully localize
gravity and we also need to analyze the local stability properties of these
intersecting domain-wall solutions.



Chapter 6

Conclusion

In this thesis, we have essentially discussed two different aspects of domain-
wall brane models; the first being how to account for the fermiom mass
spectra in such models and the second on how to extend the domain-wall
brane framework to six dimensions. The first was necessary to show that
a domain-wall brane model could realistically and naturally account for the
fermion masses and mixing angles, and it served as a test for whether these
models can fit phenomenological constraints. The second was motivated by
the desire to extend the domain-wall brane framework beyond one additional
dimension, just as has been done previously by extending the framework to
gauge groups more complicated than SU(5) [124, 25].

In Chapter [2, we showed that the split fermion mechanism which arose
naturally in the SU(5) model could account for the fermion mass hierarchy
as well as small quark mixing angles. We showed that this could be done
by choosing a set of Yukawa coupling constants associated with interactions
with the background fields which were all of the same order of magnitude and
with all electroweak Yukawa coupling constants equal. Given that the non-
dimensionalized versions of the background and electroweak Yukawa coupling
constants that we gave depend differently on the diverse set of energy scales in
the theory, there could very well be a hierarchy between these sets of coupling
constants, although it could also be possible to choose the energy scales of
the theory such that they are of the same order of magnitude. Knowing what
the relevent energy scales are, such as the domain-wall scale and the bulk
confinement scale, requires further work. We were also able to show that
the mass squared differences between the neutrino mass eigenstates could be
satisfied using the split fermion mechanism and we also were able to suppress
proton decay via use of the split scalar mechanism. However, we failed to
generate large leptonic mixing angles in the same regime as the one we used
to generate the fermion mass hierarchy and quark mixing. This motivated

185



186

us to consider adding a discrete flavor symmetry.

In Chapter 3] we extended the SU(5) model by adding a discrete A,
flavor symmetry. This meant that the full symmetry group of the model was
extended from SU(5) X Z5 to SU(5) x Ay X Z5. We introduced two Ay-triplet
Higgs scalars, one of which, p, was charged under the quintet of SU(5),
and the other, ¢, was a gauge singlet. We also added some Higgs quintents
in the 1, 1" and 1” representations of A;. We then assigned the Standard
Model fermions to appropriate representations, such that we were able to
generate the fermion mass hierarchy and quark mixing with the split fermion
mechanism just as before, while generating a tribimaximal PMNS matrix
from the neutrino sector by utilizing the form diagonalizability properties
typical of models based on A4. Furthermore, we showed that the split scalar
mechanism could be utilized to suppress the interactions between the two
Ay triplet scalars and resolve the VEV alignment problem. Given that we
put some strong assumptions on the parameter space to get a tribimaximal
PMNS matrix, we also suggested that deviations from tribimaximal mixing,
in particular a non-zero ;3 mixing angle, could be generated by breaking
those assumptions.

Chapter 4] was the start of our endeavor to construct a 5+1D intersecting
domain-wall brane model, in which we proposed a simple Z, x Z5 scalar field
theory with four scalar fields, with two of them generating kinks and the
other two forming lump-like profiles. We showed that an analytic solution
in which the domain walls are perpendicular exists in a special region of pa-
rameter space. We also showed that there was a class of energy-degenerate
solutions in the same parameter space in which the angle between the walls
was less than ninety degrees and potentially zero, yielding the solution with
the walls parallel. We then showed that any solution with a non-zero inter-
section angle could not deform into the solution with parallel walls, due to
the existence of a conserved topological charge associated with the bound-
ary of the plane spanned by the two extra-dimensional coordinates. We also
suggested that the perpendicular solution and the solutions for which the
intersection angle was non-zero but less than ninety degrees are no longer
energy degenerate if we perturb to a nearby region of parameter space. As-
suming the perpendicular solution, we proceeded to show that scalars and
fermions could be localized to the intersection.

In Chapter [3], we sought to extend the work of the previous chapter to in-
clude gauge structure and to localize gauge fields through Dvali-Shifman dy-
namics. In this section, we proposed a realization of the Clash-of-Symmetries
mechanism in which a gauge group G is broken to different subgroups H;
and Hs on the two different walls by giving the scalar fields which generate
the lumps gauge charges, with further breaking to H; N Hy on the intersec-
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tion of the domain walls. We then outlined the conditions in which Abelian
and non-Abelian gauge fields of H; N Hy are fully localized to the domain-
wall intersection. We then proposed several toy models and scenarios. We
gave three examples in the case with the lump-generating fields y; and y»
being charged under the adjoint representation, two of which localized SM-
like gauge theories and another in which there was an SU(5) GUT localized
to the domain-wall intersection. We then gave an example with y; ~ 21
and o ~ 35 which for a particular parameter region generated a localized
Standard Model without the semi-delocalized photons and we found that we
could ensure that the SM-generating configuration could be made the most
stable one.

There is still much more work to be done in order to demonstrate that
domain-wall brane models are viable. On the phenomenological front, hav-
ing passed the test with regards to the fermion mass spectra and the sup-
pression of colored-Higgs-induced proton decay, we need to show that other
experimental limits and tests can be satisfied. In the context of the basic
SU(5) model, an obvious one is proton decay mediated by X and Y gauge
bosons which become massive on the wall. Another is the unification of the
gauge coupling constants, which is not only desirable but in fact required in
domain-wall brane models utilizing the Dvali-Shifman mechanism, since any
realistic model will have the Standard Model embedded in a grand unification
group. Given that the running of the gauge coupling constants depends on
the fermions in the effective field theory on the wall as well as their masses,
the parameter fitting done in Chapters [2] and [3| will be invaluable.

Clearly the work we have done in this thesis on intersecting domain-wall
brane models in 5+1D is not finished. The next goal is to localize gravity
onto the domain-wall intersection. In doing this, one would take very much
the same approach as for a single-wall model by taking an appropriate ansatz
for the warped background metric and proceed to show that the resultant
warped metric has all the same properties as before and that there exists
a graviton zero mode localized to the domain-wall intersection. Such work
will probably have to be done numerically. We also need to further analyze
local stability of the solutions given in Chapters ] and [5 which will involve
studying the translational zero modes, as well as any other possible massless
modes arising in the KK spectrum of the background fields. There is also
phenomenological work to be done although one would naturally expect,
given that the split fermion and split scalar mechanisms would still arise,
that fermion mass spectra could still be reproduced in much the same way.

Domain-wall brane models are an exciting approach to extra dimensions,
and such models are capable of explaining the fermion mass hierarchy prob-
lem as well as quark and lepton mixing. There is also now a framework for
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extending the number of extra dimensions through the utilization of inter-
secting domain walls. The work done in this thesis represents another step
in this corpus of work and further motivates its extension.
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Appendix A

Group Theoretic Properties
and Representations of The
Discrete Flavor Group Ay

In this appendix, we follow heavily the appendix given in Ref. [73]. The
discrete flavor group Ay is a non-Abelian finite group with twelve elements.
It is the set of even permutations of four objects (and thus a subgroup of
Sy) and is also the symmetry group of a tetrahedron. Formally, the group is
generated by two generators S and 7" and is defined by the presentation

Ay=<ST|S>=T°=1>. (A1)

The generator T by itself generates a Z3 ~ C5 subgroup and the generator S
generates a Z5 reflection subgroup. There is one real triplet representation
3 as well as three one-dimensional representations 1, 1’ and 1”7, where the 1
representation is the usual singlet and the 1" and 1” representations transform
non-trivially under A, and a complex conjugates of each other, 1”7 = (1')*.
The generators S and T may be represented as real 3 x 3 matrices acting on
the 3 representation and these representations may be written as

1 0 0 001
S={o0o -1 o0 T=1|[10 0], (A.2)
0 0 -1 010

(A.3)
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as well as two other reflection matrices S’ = TST™! = diag(—1,1,-1),
S" =T-1ST = diag(—1,—1,1) and six other rotations ST'S, ST~'S, S'T'S’,
S'T-18", S"TS", and S"T-1S".

The non-trivial one-dimensional representations 1" and 1” transform triv-
ially under the generator S but non-trivially under 7. Under the action of
T,

1" — wl’,
1// - w21// (A4>
where w = e?™/3 is the complex cube root of one.
The tensor products of the non-trivial A, representations are
'wl =1", '®1" =1, (A.5)
and
33=3,®3, 211" 1" (A.6)

In Eq.[A.6], s and a stand for symmetric and antisymmetric products respec-
tively. If we represent two 3 representations as three-dimensional vectors
(21,22, x3) and (y1, Y2, ys3), the various irreducible representations resulting
from their tensor product are

(3® 3)3, = (Tays + T3Y2, T3y1 + T1Y3, T1Y2 + T2Y1) (A7)
(3®3)3, = (w2y3 — T3Y2, T3y1 — T1Y3, T1Y2 — T2Y1) (A.8)
(3®3)1 = m1y1 + Tayo + T3Y3 (A.9)
(B3®3)1y = 211 + WraYs + W T3Y3 (A.10)
(3®3)1r = Ty + waoys + wWrsys. (A.11)



Appendix B

The Higgs Flavon Scalar
Interaction Potential

In this appendix, we give the potentials describing the interactions amongst
different Higgs flavon fields localized to the domain wall. The background
scalar field potential V;,, yielding the background kink-lump solution was
given in Eq. in Sec. The potentials coupling the flavons to the back-
ground fields n and x, We, Wer, Wer, W, and W, were given in Sec.
in Egs. [3.15) and [3.24] which after localization of the scalars and an appro-
priate choice of parameters contribute tachyonic masses to the effective self-
interaction potentials for the lightest localized modes of these fields. Thus let
V,, Vo, Vo, Var, and Vg be potentials containing the quartic self-interactions
for each of these fields along with their localization potentials. Let the poten-
tials ‘/P<P7 ‘/p(pquw, V¢@¢/¢N, ‘/p@@q)/q)//, and V@q;./qw be those containing Cross-
talk interactions between the fields in the subscripts. Then the full scalar
potential of the theory, V', is given by

V = Vi + Vot Vi 4 Vi 4 Var + Vi + Vs

(B.1)
+ Viooror + Vosoor + Viogoarar + Voaron,
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where

V, = ALp'p)1(p" )1 + N2 ) (pTp)1r
+ X807 )3s-(010)3s], + Aa[(pTP)3a-(pTP)3a) |
+iX [(p"0)3s-(p'p)sal , + W,
= A" ) (pp)1 + X2(p" P (pTp) 1
+ X307 0)3s- (0 )ss], + A2[(07P)sa-(07P)30)
+ N [(070)3s- (0T P)3a) L + B2(PTP)1 + A (P )10
+ 201 (0" TT () + A (0! (XT) o)1
+ )‘pnx(PTXTP)ﬂ?,

Vi, = 6,(000)1 + AL ()1 ()1
A2 ()1 (@)1 4+ X2 [(90)ss(00)3s ], + W
S,(0p)1 + AL ()1 (0p)1
+ V 2(00)v ()1 + A2 [(09)3s(090)3s]
+ 112 (09)1 + Agn(090)17% + 20 (01 T (X7)

Vq)R - )\@R(((I)R)T(I)R)Q + WCDR

= Ao ((DF)TOR)2 4 12 (@F) DR 4 g, (OF) T2
+ 200 () T () + Ao @) () "
+ Aprpy (@) Iy O, for R=1,1',1",

Voo = 65 [(p'p)3s-0], + 0%, [(p70)3a-¢0] |
Ao (P ) 1(0e)1 + A2, (0 p)1 ()1

A2"(p P (9090)1/+Ap¢[(p P)3s- (sw)ss}

+ X [ppsa L

1

Vosarar = Ao (p'0)1(8T®) + Ay (07 )1 (2110)
+ Ao (pT )1 (1) + A (0 p) 1 (DT P')
+ Noar (019)1(21®) + Apwar (pp) 1 (2T2")
+ oo (p P)l”((b”Tq)) + )\p<1>’<1>" (p p)l,,(q)”rq)”)
+ >\p<I>’<I>" (0" )1 ("10') + A2 p® [( fo). (o' @)} 1
A2 (7). (019)], + X [(510). (1]
b Xy [(9).(2"1 )],

(B.2)

(B.4)

(B.5)

(B.6)



APPENDIX B. THE HIGGS FLAVON SCALAR INTERACTION
205 POTENTIAL

Vosorar = )\<pd>(q)Tq>)<9090)1 + Awéf(q)ITq)/)(WP)l
+ )‘AO@”(CI)”T(D”)(QOSO)I + /\@@/(@T@')(gﬁga)lu
+ Nooa (O12) (99) 1 + Apar (2107) (0i0) 1 (B.7)
+ Apaar (2"12) ()17 + Aparan (212") (0p) 1
+ A;¢,¢,,(¢”T¢’)(¢¢)l,7

Vopoaron = 5p¢q>(<PPT)1‘I) + 5;@@@@)1
+ Oppar (1) 1@ + 67 @' (p) 1
+ Oppar (0P )1 ®" + 8% g @ (pp) 1
+ Ao [(09)35-0T] | @ + X5 6 DT [p.(00)3s ],
+ Ao [(090)30-0'] " + N ar®T [p.(00)s4]
+ A [(09)35:0T] @ + X @ [ p.(060)35] 14

(B.8)

Vawrar = Mo (B1B)(10) + N (21 ')(0110)
+ Apar (TR (2"TQ") + A (2T")(2"1D)
£ Ay (910 (B710) 1 Ny (0107) (01
§ N (D10 (@10) 4 ALy (810) (27 0)
+ Ngarpn (PT0)(DTR") + ATy 4 (PT) (0"10)
+ Aggran (D"1D)(D"1D') + ATgrqn (DTO")(271D")
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Appendix C

Some SU(7) Representations,
Products and Embeddings

C.1 Basic SU(7) Representations

= (1,0,0,0,0,0) 196 = (0,2,0,0,0,0)
21 = (0,1,0,0,0,0) 210 = (1,0,1,0,0,0)
35 = (0,0,1,0,0,0) 224 = (1,0,0,1,0,0)
35 = (0,0,0,1,0,0) 392 =(0,1,0,0,1,0)
2_: (0,0,0,0,1,0) 490" = (0,1,1,0,0,0)

= (0,0,0,0,0,1) 540 = (2,0,0,0,1,0)
28 = (2,0,0,0,0,0) 588 = (0,1,0,1,0,0)
48 = (1,0,0,0,0,1) 735 =(2,0,0,0,0,2)
84 = (3,0,0,0,0,0) 735 =(1,1,0,0,0,1)
112 = (1,1,0,0,0,0) 784 =(0,0,1,1,0,0)
140 = (1,0,0,0,1,0) 1323 = (1,0,1,0,0,1)

( )

189 = (2,0,0,0,0, 1
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C.2 Some Tensor Products of SU(7) Repre-

sentations
TxT=1+48 21 x 21 = 1 + 48 + 392
TxT7T=21+28 21 x 35 = 21 + 224 + 490/

7% 21 =35+ 112
7x 21 =7+ 140

7 % 35 =35+ 210/

7 x 35 =21+ 224

7 x 48 =7+ 140 + 189
21 x 21 = 35 + 196 + 210’

21 x 35 = 7 + 140 + 588

21 x 48 = 21 + 28 + 224 + 735

35 % 35 =7 + 140 + 490’ + 588

35 x 35 =1+ 48 + 392 4 784

35 x 48 = 35 + 112 + 210/ + 1323

48 X 48 = 1 + 48 + 48 + 392 + 540 + 540 + 735

(C.2)
C.3 Embeddings of Subgroups of SU(7)
C.3.1 SU(T) > SU(6) x U(1)
— (6,+1) + (1, -6)
21 = (15,42) + (6, —5)
28 = (21,+2) + (6,=5) + (1, —12)
35 = (20,43) + (15, —4) (C3)
48 = (35,0) + (6,+7) + (6, ~7) + (1,0)
112 = (70,+3) + (21, —4) 4 (15, —4) + (6, —11)
C.3.2 SU(T) > SU(5) x SU(2) x U(1)
= (5,1,42) + (1,2, -5)
21_(10,1,+4) (5,2, -3) + (1,1,-10)
28 = (15,1, +4) + (5,2, —3) + (1,3, —10)
35 = (10,1, +6) + (10,2, —1) + (5, 1, —8)
48 = (24,1,0) + (5,2, +7) + (3,2,—7)+(1,3,0)+(1,1,0)
112 = (40,1, 46) + (15,2, —1) + (10,2, —1) + (5,3, =8) + (5,1, —8) + (1,2,

(C.4)

15)
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C.3.3 SU(7T)DSU4) x SU(3) x U(1)

= (4,1,43) + (1,3, —4)
21 = (6,1,46) + (4,3,—1) + (1,3, —8)
28 = (10,1, +6) + (4,3, —1) + (1, 6 —8)
35 = (4,1,49) + (6,3,+2) + (4,3, -5) + (1,1, —12)
48 = (15,1,0) + (4,3,+7) + (4,3, —7) + (1,8,0) + (1,1,0)
(

112 = (20,1, 49) + (10,3, +2) + (6,3, +2) + (4,6, —5) + (4,3, =5) + (1,8, —12)
(C.5)
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Appendix D

All Possible
Clash-of-Symmetries Groups
from SU(7) With Two Adjoint
Scalars

In this appendix, we list all the possible Clash-of-Symmetries breaking pat-
terns with both of x; and y» transforming under the adjoint representa-
tion. For each possibility, we give example VEV patterns for y; and y»
which generate them. We also state which resultant gauge groups are lo-
calized to the domain-wall intersection under the Dvali-Shifman formalism
and which are semi-delocalized. We start by detailing the possibilities when

H, ~ Hy >~ SU(6) x U(1).

D.1 H1 = SU(G) X U(l) and HQ = SU(6)/ X U(l)/

D.1.1 Case 1: HlﬂHQZHl :HQISU(6) X U(l)

Example VEV pattern: both y; and xs condense in the component
proportional to the generator @); = diag(1,1,1,1,1,1,—6).

Here, SU(6) N SU(6)" = SU(6)

There are no leftover diagonal generators.

Hence, the only Abelian symmetry preserved on the wall is ().
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The full symmetry respected on the intersection is Hy N Hy = SU(6) %
U(1)g,. Both the gauge groups are semi-delocalized and able to prop-
agate along both walls.

D.1.2 Case 2: HHNHy, =SU(5) xU(1) x U(1)

Example VEV pattern: y; condenses in the component proportional
to the generator ¢y = diag(1,1,1,1,1,1,—6) and y2 condenses in the
component proportional to the generator @} = diag(1,1,1,1,1,—6,1).

Here, SU(6) N SU(6) = SU(5)

The leftover diagonal generators are T} = diag(1,1,1,1,1,—5,0) and
T = diag(1,1,1,1,1,0, —5).

Hence, the Abelian symmetries preserved on the wall are ¢; = 5/6Q); +
7/6Ty, =5/6Q) + 7/6T] = diag(2,2,2,2,2,—5,—5) and ¢ = 1/6(Q; —
Tl) = 1/6(T1/ - Qll) = dlag(oa 07 07 07 07 17 _1)

The full symmetry respected on the intersection is Hy N Hy = SU(5) X
U(l)y x U(1)y,. The SU(5) subgroup is fully localized, the Abelian
subgroups are not localized to the intersection and are free to propagate
along both walls.

D.2 H,=SU(6)xU(1l) and Hy = SU(5)x SU(2) x

U(1)

D.2.1 Case 1: HHNHy, =SU(5) xU(1) x U(1)

Example VEV pattern: y; condenses in the component proportional to
the generator Q; = diag(1,1,1,1,1,1, —6) and y» condenses in the com-
ponent proportional to the generator @} = diag(2,2,2,2,2, -5, —5).

Here, SU(6) N SU(5) = SU(5)

The leftover diagonal generators are T = diag(1,1,1,1,1,—5,0) and
T] = diag(0,0,0,0,0,1,—1)

Hence, the Abelian symmetries preserved on the wall are ¢; = Q1+717 =
Qll + T1/ = diag(272727272a _4’ _6) and Q2 = 1/6(Q1 - Tl) - T1/ =
diag(0,0,0,0,0,1,—1).
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The full symmetry respected on the intersection is H; N Hy = SU(5) X
U(1l)y, x U(1)g,- None of the gauge groups are localized; the SU(5)
gauge bosons are free to propagate along the Hs-respecting wall, the
U(1),, photon can propagate along the Hj-respecting wall and the
U(1),, photon can propagate along both walls.

D.2.2 Case 2: HHNHy,=SU(4) x SU((2) xU(1) x U(1)

Example VEV pattern: (x1) o< @1 = diag(1,1,1,1,1,1,—6) and (y2)
Qll = dlag(_57 —9,2,2,2,2, 2)

Hence, SU(6) N SU(5) = SU(4) and SU(6) N SU(2) = SU(2).

Leftover diagonal generators: 177 = diag(—2,—2,1,1,1,1,0) from H;
and T] = diag(0,0,1,1,1,1, —4) from H,.

Preserved Abelian generators: ¢; = Q1 — 271 =1T] — Q] =
diag(5,5, —1,—1,—1,—1,—6) and g = 2Q, + T} = 3T =
diag(0,0,1,1,1,1,—4).

Preserved symmetry on intersection: Hy N Hy = SU(4) x SU(2) x
U(l), xU(1),,. The SU(4) subgroup is fully localized, the SU(2) and
U(1),, subgroup is semi-delocalized and able to propagate along the
Hy-respecting wall, U(1),, is semi-delocalized and able to propagate
along both walls.

D.3 H1=SU(6>XU(1> and HQZSU(4>XSU<3)X

U(1)

D.3.1 Case 1: H, N Hy, = SU(4) x SU(2) x U(1) x U(1)

Example VEV pattern: (x;) o« @1 = diag(1,1,1,1,1,1,—6) and (y2)
Q) = diag(3,3,3,3,—4, —4,—4).

Hence, SU(6) N SU(4) = SU(4) and SU(6) N SU(3) = SU(2).

Leftover diagonal generators: 177 = diag(1,1,1,1,—2,—-2,0) from H;
and 7] = diag(0,0,0,0,1,1, —2) from H,.

Preserved Abelian generators: ¢ = @ + 277 = Q) + 1] =
diag(3,3,3,3, -3, -3, —6) and g» = 2Q, — T1 = 1/3(Q, + 16T7) =
diag(1,1,1,1,4, 4, —12).
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Preserved symmetry on intersection: H; N Hy = SU(4) x SU(2) x
U(1)y, xU(1)4,- The SU(2) subgroup is fully localized, the SU(4) sub-
group is semi-delocalized and able to propagate along the Ho-respecting
wall, and the U(1),, and U(1),, subgroups are semi-delocalized and able
to propagate along both walls.

D.3.2 Case 2: HHNHy, =SU(3) x SU(3) x U(1) x U(1)

Example VEV pattern: (x1) < @1 = diag(1,1,1,1,1,1,—6) and (x2)
Q) = diag(3,3,3, —4, -4, —4,3).

Hence, SU(6) N SU(4) = SU(3); and SU(6) N SU(3) = SU(3),.

Leftover diagonal generators: 77 = diag(1,1,1,—1,—1,—1,0) from H;
and T} = diag(1,1,1,0,0,0, —3) from H,.

Preserved Abelian generators: ¢ =377 — Q= Q) — 1] =
diag(2,2,2,—4,—4,—4,6) and ¢ = 3Q; + 71 = 1/2(11T! — Q}) =
diag(4,4,4,2,2,2,—18).

Preserved symmetry on intersection: H; N Hy = SU(3); x SU(3)s X
U(l)y x U(1l)g,. The SU(3); subgroup is fully localized while the
SU(3), subgroup is semi-delocalized and able to propagate along the
Hs-respecting wall, and the U(1),, and U(1),, subgroups are semi-
delocalized and able to propagate along both walls.

D.4 H, = SU(5)xSU2)xU(1) and Hy = SU(5) %

SU(2) x U(1Y

D.4.1 Casel: HHNHy=Hy = Hy = SU(5) x SU(2) x U(1)

Example VEV pattern: (x;) o« @Q; = diag(2,2,2,2,2,—5,—5) and
<X2> (S8 Qll = dlag(27 27 27 27 27 _57 _5)

Hence, SU(5) N SU(5) = SU(5) and SU(2) N SU(2) = SU(2).
Leftover diagonal generators: None
Preserved Abelian generators: ¢; = Q1 = Q) = diag(2,2,2,2,2, -5, —5)

Preserved symmetry on intersection: HiNHy = SU(5)xSU(2)xU(1),,.
All the factor gauge groups are semi-delocalized and free to propagate
along both walls.
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D.4.2 Case 2: HHNHy, =SU(4) x U(1) x U(1) x U(1)

Example VEV pattern: (x;) « Q; = diag(2,2,2,2,2,—5,—5) and
(x2) x Q) = diag(2,2,2,2,—5,—5,2).

Hence, SU(5) N SU(5) = SU(4).

Leftover diagonal generators: T} = diag(1,1,1,1,—4,0,0),
T, = diag(0,0,0,0,0,1,—1) from H; and 7] = diag(1,1,1,1,0,0, —4),
Ty = diag(0,0,0,0,1,—1,0) from Hs.

Preserved Abelian generators: ¢ =T + 41, =T — 4T =

dlag(]-? 17 17 ]-7 _47 47 _4>7 q2 = 1/2(Q1 - 7T2) - 1/2(62/1 + 7T2,) =
dlag(L 17 17 1a ]-7 _67 1)7 and g3 = 1/5(2Q1+T1) = 1/5(Q/1+3T1/+5T2/> =
diag(1,1,1,1,0, -2, —2).

Preserved symmetry on intersection: Hy N Hy = SU(4) x U(1), X
U(l)y, x U(1)g,. The SU(4) and U(1),, subgroups are fully localized

to the intersection while the U(1), and U(1), subgroups are semi-
delocalized and able to propagate along both walls.

D.4.3 Case 3: HHNHy,=SU3) x SU(2) x SU(2) x U(1) x

U(1)

Example VEV pattern: (x1) o« @1 = diag(2,2,2,2,2,—5,—5) and
<X2> X Q/l = dla’g(27 27 27 _5a _5a 27 2)

Hence, SU(5)NSU(5) = SU(3), SU(2)NSU(5) = SU(2), and SU(5)N
SU(2) = SU(2)s.

Leftover diagonal generators: 17 = diag(2/3,2/3,2/3,—1,—1,0,0) from
H, and T} = diag(2/3,2/3,2/3,0,0,—1,—1) from H,.

Preserved Abelian generators: ¢; = 9/5Q; +3/57y = 3/5Q, —9/5T] =
dlag(47 47 47 37 37 _97 _9> and q2 = Ql - 3Tl = _Qll + 3Tvll =
diag(0,0,0,5,5, =5, =5).

Preserved symmetry on intersection: H; N Hy = SU(3) x SU(2); X
SU(2)s x U(1)y, x U(1)g,. The SU(3) subgroup is fully localized to
the intersection, the SU(2); gauge bosons are semi-delocalized and
free to propagate along the Hi-respecting wall, similarly the SU(2),
gauge bosons are semi-delocalized and free to propagate along the Ho-
respecting wall and the Abelian groups U(1), and U(1),, are semi-
delocalized and free to propagate along both walls.
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D.5 H, = SU(5)xSU(2)xU(1) and Hy = SU(4) %

SU(3) x U(1)

D.5.1 Case 1: HHNHy=5SU(4) x SU(2) xU(1) x U(1)

Example VEV pattern: (x;) « @, = diag(2,2,2,2,2,—5,—5) and
(x2) x Q) = diag(3,3,3,3,—4,—4, —4).

Hence, SU(5) N SU(4) = SU(4) and SU(2) N SU(3) = SU(2).

Leftover diagonal generators: T} = diag(1,1,1,1,—4,0,0) from H; and
T = diag(0,0,0,0,—2,1,1) from Hs.

Preserved Abelian generators: ¢ = Q1 + 711 = Q| — 1] =
dlag(3v 37 3a 37 _27 _57 _5) and q2 = _Ql + 5T = Qll + 9T1/ =
diag(3,3,3,3, —22,5,5).

Preserved symmetry on intersection: Hy N Hy = SU(4) x SU(2) x
U(1)y x U(1)y,. None of the subgroups are fully localized. The SU(4)
gauge bosons are semi-delocalized and free to propagate along the Ho-
respecting wall, similarly the SU(2) gauge bosons are semi-delocalized
and free to propagate along the Hi-respecting wall and the Abelian
groups U(1), and U(1),, are semi-delocalized and free to propagate
along both walls.

D.5.2 Case2: HINHy, = SUB)xSU(2)xU(1)xU(1)xU(1)

Example VEV pattern: (x;) o« @Q; = diag(2,2,2,2,2,—5,—5) and
<X2> X Qll = dlag(37 37 37 _47 _47 _47 3)

Hence, SU(5) N SU(4) = SU(3) and SU(5) N SU(3) = SU(2).

Leftover diagonal generators: T = diag(2/3,2/3,2/3,—1,-1,0,0),
T, = diag(0,0,0,0,0,1,—1) from H; and

T! = diag(2/3,2/3,2/3,0,0,0,—2), T, = diag(0,0,0,1,1, —2,0) from
H,.

Preserved Abelian generators: ¢ = =T — 2T, = =T, + T} =
diag(—2/3,-2/3,-2/3,1,1,-2,2), q» = 4Q, + 7T, — 6Ty = 2Q) +
107! + 973 = diag(38/3,38/3,38/3,1,1, —26, —14) and ¢5 = —3Q; +
127, + 1273 = 3/2Q", — 3/8T! — 15'Ty = diag(2, 2,2, —18, —18,27,3).
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e Preserved symmetry on intersection: Hy; N Hy = SU(3) x SU(2) x
U(1)g, xU(1)g, x U(1)g,. The SU(3), SU(2) and U(1),, subgroups are
fully localized to the domain-wall intersection. The U(1),, and U(1),,
subgroups are semi-delocalized and their photons can propagate along
both walls.

D.5.3 Case 3: HHNHy,=SU3) x SU(2) x SU(2) x U(1) x
U(1)
e Example VEV pattern: (x;) o« @, = diag(2,2,2,2,2,—5,—5) and
(x2) x Q) = diag(—4,—4,—4,3,3,3,3).

o Hence, SU(5)NSU(3) = SU(3), SU(5)NSU(4) = SU(2); and SU(2)N
SU(4) = SU(2)s.

o Leftover diagonal generators: T} = diag(2/3,2/3,2/3,—1,—1,0,0) from
H, and T} = diag(0,0,0,1,1,—1, —1) from Hs.

e Preserved Abelian generators: ¢, = Q1 + 37y = —Q) + 217 =
diag(4,4,4,—1,—1,—5,—5) and ¢ = 3Q1 — T1 = —4/3Q} + 111} =
diag(16/3,16/3,16/3,7,7, —15, —15).

e Preserved symmetry on intersection: Hy N Hy = SU(3) x SU(2); X
SU(2)axU(1),, xU(1),,. Only the SU(2); subgroup is fully localized to
the domain-wall intersection. The SU(3) subgroup is semi-delocalized
and its gauge bosons can propagate along the Hs-respecting wall. The
SU(2)s subgroup is semi-delocalized and its gauge bosons can propa-
gate along the Hj-respecting wall. The U(1),, and U(1),, subgroups
are semi-delocalized and their photons can propagate along both walls.

D.6 H; =SU(4)xSU3)xU(1)and Hy = SU(4)' X
SU(3) x U(1)
D.6.1 Case 1: HHNHy,=SU(4) x SU(3) x U(1)

e Example VEV pattern: (x;) o« Q1 = diag(3,3,3,3,—4,—4,—4) and
<X2> X Q/l = dla’g(37 3,3, 3, _47 _47 _4)

o Hence, SU(4) N SU(4) = SU(4) and SU(3) N SU(3) = SU(3).

e Leftover diagonal generators: None
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e Preserved Abelian generators: ¢ = Q1 = Q) =
diag(3,3,3,3, —4,—4, —4)

e Preserved symmetry on intersection: HiNHy = SU(4)xSU(3)xU(1),,-
All the factor gauge groups are semi-delocalized and free to propagate
along both walls.

D.6.2 Case2: HiNHy, = SU3)xSU(2)xU(1)xU(1)xU(1)

e Example VEV pattern: (x;) o< @1 = diag(3,3,3,—4, —4,—4,3) and
<X2> & Qll = dlag<37 3’ 37 _47 _47 37 _4)

o Hence, SU(4) N SU(4) = SU(3) and SU(3) N SU(3) = SU(2).

e Leftover diagonal generators: T; = diag(2/3,2/3,2/3,0,0,0, —2), Ty =
diag(0,0,0,1,1,—2,0) from H; and T} = diag(2/3,2/3,2/3,0,0,—2,0),
T} = diag(0,0,0,1,1,0, —2) from Ho.

e Preserved Abelian generators: ¢y = =11 — Ty = =17 — T =
diag(—2/3,—-2/3,-2/3,—-1,—1,2,2), ¢o = 4Q1+11 T, = 2Q |+ 10T} —
0T} = diag(38/3,38/3,38/3, —17, 17, —14,10), and q3 = Q, — 2T} +
9T, = —1/2Q, + 29/4T! — 6T}, = diag(5/3,5/3,5/3, 2, -2, —8,7).

e Preserved symmetry on intersection: Hy N Hy = SU(3) x SU(2) x
U(l)y, xU(1)g, xU(1)y,. The SU(3), SU(2) and U(1),, subgroups are
fully localized to the domain-wall intersection. The U(1),, and U(1),,
subgroups are semi-delocalized and their photons can propagate along
both walls.

D.6.3 Case 3: HHNHy,=SU(2) x SU(2) x SU(2) x U(1) x
U(l) x U(1)

e Example VEV pattern: (y1) « Q1 = diag(3,3,3,3,—4,—4,—4) and
(x2) x Q) = diag(3,3, —4,—4,—4,3,3).

e Hence, SU(4) N SU(4) = SU(2);, SU(4) N SU3)" = SU(2), and
SUB)NSU4) = SU(2)s.

e Leftover diagonal generators: 7; = diag(1l,1,—1,—1,0,0,0), 75, =
diag(0,0,0,0,—2,1,1) from H; and 7] = diag(1,1,0,0,0,—1,—1), Ty =
diag(0,0,1,1,—-2,0,0) from H,.
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Preserved Abelian generators: ¢y =11 —To =T1] — T4 =
diag(1,1,-1,-1,2,-1,-1), o = Q1 + 2Ty + 2T, = 1/2(Q} + 717 +
67y) = diag(5,5,1,1,—8,—2,-2), and q3 = 4Q, — Ty — Tr = —Q} +
14T + 9T} = diag(11, 11, 13,13, —14, —17, —17).

Preserved symmetry on intersection: Hy N Hy = SU(2); x SU(2), X
SU(2)3 x U(1)y, x U(1)g, X U(1)gy. The SU(2)1, SU(2)a, SU(2)5 and
U(1),, subgroups are fully localized to the domain-wall intersection.
The U(1),, and U(1),, subgroups are semi-delocalized and their pho-
tons can propagate along both walls.

D.6.4 Case 4: HHNHy,=SU(3) x SU(3) x U(1) x U(1)

Example VEV pattern: (x;) o @1 = diag(3,3,3,3, —4,—4, —4) and
(x2) x Q) = diag(—4,—4,—4,3,3,3,3).

Hence, SU(3)NSU(4) = SU(3); and SU(4) N SU(3)" = SU(3).

Leftover diagonal generators: 177 = diag(1,1,1,—3,0,0,0) from H; and
T] = diag(0,0,0,—3,1,1,1) from Hs.

Preserved Abelian generators: ¢; = 1/4(Q1 + T1) = —1/4(Q} + 17)
dlag(L 17 17 Oa _17 _17 _1) and q2 = 1/2(Q1 - Tl) = _1/4<Q,1 + 5T1/) =
diag(1,1,1,3, -2, -2, —2).

Preserved symmetry on intersection: Hy; N Hy = SU(3); x SU(3)2 X
U(1), xU(1),,. The SU(3); subgroup is semi-delocalized and its gauge
bosons are able to propagate along the H-respecting wall. The SU(3),
subgroup is semi-delocalized and its gauge bosons are able to propagate
along the Hj-respecting wall. The U(1),, and U(1),, subgroups are
semi-delocalized and their photons can propagate along both walls.
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