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Abstract

Pionic contributions to static nucleon properties are calculated in a chiral extension of the colour-

dielectric model. The pion field and residual gluon field are treated perturbatively. It is shown that

with a simple choice for the energy of the scalar confining field and in the chiral limit, the system

of equations describing the bare soliton and the perturbative pion and gluon fields may be cast in

a dimensionless, parameter free form for large glueball mass. This enables a formula for the masses

of the nucleon and delta including leading order pionic and gluonic contributions and corrections

for spurious centre-of-mass motion, valid for a wide range of input parameters determining the

bare soliton solutions, to be derived. A further consequence of the scaling behaviour is that pionic

contributions to nucleon properties, calculated using the methods of the cloudy bag model, are

insensitive to the soliton parameters, once the size of the soliton is fixed. The model results are

very similar to those of the cloudy bag model but the predicted masses are about 20% too large,

and the pionic contributions to charge radii are underestimated.
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INTRODUCTION

In their simplest form colour-dielectric models (CDM) [1] describe the quark structure

of hadrons by confining effective quark fields with a scalar field which represents the long

range order of the QCD vacuum. Like the MIT bag [2] lagrangian, the typical lagrangian

of these models at this level is not chirally symmetric, but it is well known that by in-

troducing an suitable interaction with an elementary pion field, manifest chiral symmetry

may be restored[3]. There is no unique prescription for the additional terms in the effective

lagrangian and a number of different chiral versions of nontopological soliton models have

been considered by various authors (reviewed recently by Birse [1]).

Following the approach which was used to obtain the cloudy bag model (CBM) lagrangian

[3] from the MIT bag model, Williams and Dodd [4] investigated chiral extensions of both the

Nielsen-Patkos colour-dielectric model [5] and the Friedberg-Lee soliton bag model [6]. It was

found that the pion fields in the soliton were sufficiently weak that pionic contributions to

nucleon properties could be calculated using perturbation theory as in the CBM work [3, 7–

9]. This is to be contrasted with non-perturbative approaches where the pion field is treated

in the mean field approximation using the hedgehog ansatz [10]. The numerical results of

reference 4 for pionic corrections showed an insensitivity to the details of the unperturbed

soliton solutions and, when the scale of the soliton solution was fixed to reproduce the proton

charge radius, broad agreement with the results of the CBM. However, no attempt was made

in this work to choose a parameter set which would also fit the nucleon and delta masses

when centre-of-mass corrections and gluonic corrections, discussed below, were included.

Another refinement of the CDM, necessary for the calculation of mass splittings of the

hadrons, is the retention of residual colour fields left over from the coarse-graining of the

QCD fields. For example the mass degeneracy of the nucleon and delta isobars is lifted

by the colour magnetic hyperfine interaction. The one-gluon exchange contribution to the

nucleon-delta mass difference has been calculated in the CDM both perturbatively and self-

consistently [11, 12]. However, these calculations did not take into account the contribution

from pion exchange expected from the chiral models.

The aim of the present work is to test the predictions of the CDM for static nucleon prop-

erties including both pionic and gluonic contributions and with centre of mass corrections.

A similar calculation has appeared recently. Leech and Birse [14] have calculated pionic
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contributions using Peierls-Yoccoz projection to remove spurious centre-of-mass contribu-

tions. They use a chiral version of the CDM where the pion fields are accompanied by an

additional scalar field, as in the linear sigma model, rather than the non-linear realization

of chiral symmetry adopted in this paper. Although their lagrangian has chiral symmetry,

the Goldberger-Treiman relation, which should be satisfied by the model, is violated by the

approximations made in projecting momentum eigenstates. In our work we have chosen to

preserve the Goldberger-Treiman relation at the expense of using only cruder estimates of

centre-of-mass corrections. In our view reliable estimates of c.m. corrections which respect

the symmetries of the lagrangian remain a problem for these models. Leech and Birse did

not calculate the gluonic contribution to the nucleon-delta mass splitting but assumed that

the strength of the quark-gluon coupling could be adjusted so that a fit to the non-pionic

part of the mass-splitting would be achieved. Here we calculate the M1 colour magnetic en-

ergy explicitly to see whether consistent values of the strong coupling constant are obtained

over a range of soliton parameters.

We would like to emphasize that our model is just one of many possibilities. From a more

fundamental point of view it is natural to regard the pion (and other mesons) as composites

of the quark and gluon fields. For example in the work of Banerjee et al. [15] it is assumed

that an effective low energy chiral model can be derived from QCD by entirely eliminating

the gluon degrees of freedom in favour of meson exchanges between quarks. In this approach

one gluon exchange should not be added to the quark-meson model. The Lagrangian that we

use, as in the CBM, includes an additional elementary pion field to restore chiral symmetry,

and within the context of the model both one pion and one gluon exchange are calculated.

Section 2 describes the chiral version of the colour-dielectric model considered in this

paper, how the lowest order perturbative pionic and gluonic contributions to the soliton

energy are calculated, and how the masses of the nucleon and delta are estimated including

c.m. corrections. The bare soliton solutions are characterized by three parameters, the

quark mass m, the glueball mass Mχ, and the scale σv of the confining scalar field. The

magnitude of the gluonic energy shift is determined by the strong coupling constant αs which

is essentally a free parameter of the model. The magnitude of the pionic contributions are

fixed through the Goldberger-Treiman relation of the model in terms of the pion mass, the

pion decay constant and the axial coupling constant. The latter is calculated from the bare

soliton solution while the pion mass and pion decay constant are given their experimental
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values. Thus once the bare soliton solutions are chosen there is no further freedom in the

model to vary the pionic contributions to nucleon properties.

In section 3, following the scaling argument of McGovern, Birse and Spanos [13] for large

glueball mass, we are able to show that the system of equations determining the bare soliton

solution and the perturbative pion and gluon fields may be cast in a dimensionless, parameter

free form in the chiral limit where the pion is massless. This enables a mass formula for the

nucleon and delta masses to be given whose numerical coefficients are determined by solving

the universal equations once only. This scaling which still holds to a good approximation for

quite small ratios of the glueball to quark masses and for non-vanishing pion mass explains

the insensitivity of pionic corrections to the soliton parameters found in earlier work [4].

Pionic contributions to static nucleon properties are considered in section 4. The formulae

for charge radii and magnetic moments are essentially identical with those of the cloudy bag

model, with the CBM form factor replaced by the form factor computed from the soliton

solution.

Section 5 contains our numerical results and conclusions.

THE MODEL

The Hamiltonian

With the notation of reference 4 , the Hamiltonian of the chiral extension of the colour

dielectric model, including gluons, to be considered here may be written as

H = HNS + Hπ + Hπ
I + Hg + Hg

I ≡ H0 + Hπ
I + Hg

I (1)

where the Hamiltonian for the non-topological soliton in the mean field approximation

(MFA) is

HNS =
∫

d3x {: q̄(iγ.∇ + m/χ)q : +1
2
σ2

v(∇χ)2 + 1
2
σ2

vM
2
χχ2}, (2)

the pion field contribution is

Hπ =
∫

d3x 1
2

: [(∂0π)2 + (∇π)2 + m2
ππ2] : (3)

and the interaction between quarks and pions is given by

Hπ
I =

i

fπ

∫
d3x

m

χ
: q̄τ .πγ5q : . (4)
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The remaining terms in Eq. (2.1)

Hg =
∫

d3x (κ(χ)F 0νa∂0A
a
ν + 1

4
κ(χ)F a

µνF
µνa) (5)

and

Hg
I = 1

2
gs

∫
d3x : q̄γµλaAa

µq : (6)

describe the coupling of effective gluon fields Aa
µ to the colour singlet dielectric mean field

χ through the dielectric function κ(χ) = χ4, and the quark fields q respectively. As we

consider only single gluon exchange between quarks, the quadratic terms in the gluon field

tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν (7)

are dropped, so that each of the gluon fields propagates like an independent electromagnetic

field in the presence of a spatially varying dielectric medium. It should be noted that in the

absence of a rigorous derivation of the dielectric model from QCD, there is some arbitrariness

in the details of the Hamiltonian density adopted above. Bayer et al. [16] and Banerjee [17]

have argued that the quark-pion coupling of Eq. (2.4) should be proportional to χ−2. The

question of whether residual gluon interactions, Eq. (2.6), should be included at all, has

been mentioned in the introduction. However, the work of McGovern [18] in fitting the

baryon spectrum with a chiral dielectric model including perturbative gluons lends some

support to the model chosen here. The fit using the inverse coupling of Eq.(2.4) was found

to be more satisfactory than the fit using inverse square coupling.

In zeroth order the interactions between quarks and pions and quarks and gluons may be

ignored and the bare baryon states are eigenstates of H0 with no gluons or pions present.

The bare nucleon and delta states are thus described by the usual MFA solutions where the

mean χ field has spherical symmetry and the three quarks are all placed in the lowest 1S

mode. The upper and lower radial components u and v of the quark wavefunctions and the

quark energy eigenvalue ε satisfy

du

dr
= −(ε +

m

χ
)v, (8)

dv

dr
= (ε− m

χ
)− 2v

r
(9)

and the mean field χ is determined self-consistently from

d2χ

dr2
+

2

χ

dχ

dr
= − 3m

σ2
vχ

2
(u2 − v2) + M2

χχ (10)
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with appropriate boundary conditions. The spin and isospin states of the bare nucleon and

delta, denoted here simply by |A0〉, are degenerate with energy

E0 = 3ε + 2πσ2
v

∫ ∞

0
dr r2

[
(
dχ

dr
)2 + M2

χχ2

]
. (11)

Perturbation theory

Our aim is to include perturbative corrections due to one-pion and one-gluon exchange.

In the remainder of this section we consider the mass splitting of the nucleon and delta to

order (1/fπ)2 and g2
s . In Sec. 4 pionic corrections to the static nucleon properties will be

evaluated.

Working in the Shrödinger picture, we may write an exact formal equation for the dressed

nucleon or delta state |A〉 which satisfies H|A〉 = EA|A〉,

|A〉 = (ZA
2 )

1
2 |A0〉+ (EA −H0)

−1ΛHI|A〉 (12)

where both |A〉 and |A0〉 are normalized to unity and Λ is the complement of the projection

operator onto the space of degenerate bare nucleon and delta states

Λ = I−
∑
A0

|A0〉〈A0|. (13)

The perturbation HI = Hg
I + Hπ

I includes interactions with gluons as well as pions. The

energy shift ∆A = EA − E0 is determined from

∆A = 〈A0|HI|A0〉+ 〈A0|HI(E0 −H0 + ∆A)−1ΛHI|A〉(ZA
2 )−

1
2 (14)

The second order shift

∆
(2)
A = 〈A0|HI(E0 −H0)

−1ΛHI|A0〉 (15)

= ∆g
A + ∆π

A (16)

is obtained by replacing |A〉(ZA
2 )−

1
2 by |A0〉 in Eq. (2.14), noting that in this case 〈A0|HI|A0〉

vanishes and that the shift separates into distinct gluon and pion pieces.

The pion shift

A calculation of the pion shift, similar to that of Chin[19] for the MIT bag, yields

∆π
A = −8π

3

m2

f 2
π

∑
i,j

〈σi.σj τi.τj〉A Mπ (17)
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with

Mπ =
∫ ∞

0

∫ ∞

0

u(r)v(r)

χ(r)
∆(r, r′)

u(r′)v(r′)

χ(r′)
r2dr r′2dr′ (18)

where ∆(r, r′) is the free pion propagator. (In his work Chin uses a pion propagator which

excludes the pion from the bag.) The question arises whether the quark-pion self-energies

given by the terms with i = j should be included in the sums over the spin-isospin matrix

elements in Eq.(2.17). Chin excludes the self-energies from the energy shift, grouping them

with the vacuum energy of the bag. On the other hand in cloudy bag model calculations,

they are included in order that intermediate quark states may be coupled together to give

the full subspace of intermediate nucleon and delta states. If S is the spin and T the isospin

of the state A, then[20]

∑
i6=j

〈σi.σj τi.τj〉A = 36− 4S(S + 1)− 4T (T + 1) (19)

and
∑

i=j〈. . .〉A = 27 for both nucleon and delta. Thus the predicted splitting of the energy

levels of the nucleon and delta due to the pion, to the order of approximation considered

here, does not depend on the pionic self-energies.

It is convenient to define

Π(r) =
∫ ∞

0
∆(r, r′)

u(r′)v(r′)

χ(r′)
r′2dr′, (20)

satisfying
d2Π

dr2
+

2

r

dΠ

dr
− 2Π

r2
−m2

πΠ =
uv

χ
, (21)

in terms of which

Mπ =
∫ ∞

0
((

dΠ

dr
)2 +

2Π2

r2
+ m2

πΠ2) r2dr. (22)

The gluon shift

The shift due to exchange of gluons in the dominant M1 mode is

∆g
A = −4

3
πg2

s

∑
i,j

〈λi.λj σi.σj〉A Mg (23)

with

Mg =
∫ ∞

0

∫ ∞

0

u(r)v(r)

rκ(r)
g(r, r′)

u(r′)v(r′)

r′κ(r′)
r2dr r′2dr′ (24)

where g(r, r′) is the static Green’s function[21] for the propagation of the confined M1 gluon.
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The matrix elements of the quark spin and colour observables in Eq. (2.23) are taken with

respect to the spin-isospin-colour states of the nucleon or delta. In the sum over quarks it is

customary to exclude the terms with i = j i.e. colour magnetic self-energies of the quarks are

not included, and
∑

i6=j〈λi.λj σi.σj〉A = ±16, the plus sign for the nucleon and the minus for

the delta. This choice is supported by the derivation[22] of the shift using relativistic, many-

body perturbation theory which suggests that the quark self-energies should be regarded as

part of the vacuum energy of the soliton. However, in the present work we ignore the Dirac

sea and make no attempt to calculate the Casimir energy of the soliton. As usual we assume

that the colour electric energies for quarks in the same spatial state sum to zero.

An equivalent expression[12] for Mg which avoids the construction of the Green’s function,

Mg =
∫ ∞

0
((

dF

dr
)2 +

2F 2

r2
)κ dr, (25)

uses the field function F (r) which satisfies

d2F

dr2
+

1

κ

dκ

dr

dF

dr
− 2F

r2
=

uvr

κ
. (26)

Eqs. (2.24) and (2.25) may be shown to be equivalent by using the explicit expression for

the Green’s function and integration by parts.

Center-of-mass corrections

The nucleon and delta energies

EA = E0 + ∆g
A + ∆π

A (27)

contain contributions from the center-of-mass motion of the soliton. Our calculated masses

MA = (E2
A − 〈P 2〉A,q − 〈P 2〉A,χ)

1
2 (28)

include corrections for the quark momentum[23]

〈P 2〉A,q = 12π
∫ ∞

0
dr [r2(ε +

m

χ
v)2 + (−2v + r(ε− m

χ
)u)2 + 2v2] (29)

and the momentum of the χ field[24] (using a quantum coherent state to produce the mean

χ field),

〈P 2〉A,χ = 2πMχσ2
v

∫ ∞

0
(
dχ

dr
)2r2 dr. (30)
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In our numerical calculations the differential equations (2.8) and (2.9) for the quark

wavefunctions, Eq. (2.10) for the χ field, Eq.(2.22) for the pion field and Eq.(2.26) for

the gluon field, together with a normalization integral for the quark wavefunctions, are

formulated as a non-linear boundary value problem and solved simultaneously.[25] In the

next section we demonstrate that this system has interesting scaling properties leading to a

formula for the delta and nucleon masses in the chiral limit mπ = 0.

THE NUCLEON AND DELTA MASSES IN THE CHIRAL LIMIT

Scaling

The MFA solutions describing the degenerate bare nucleon and delta states depend on

three parameters, the quark mass m, the glueball mass Mχ and the scale σv of the χ field.

McGovern, Birse and Spanos[13] have shown that for sufficiently large values of the glueball

mass only two of the parameters are independent and after choosing one to fix the size of

the soliton, one is left with a one parameter family of MFA solutions. In this section we

extend their arguments to find a mass formula for the nucleon and delta which includes

the colour-magnetic energy, the pion interaction energy and corrections for centre-of-mass

motion.

With the help of a length unit

r0 = (mMχσv)
− 1

3 , (31)

new dimensionless variables may be introduced:

r = r0x, (32)

ε = r−1
0 ε0, (33)

χ = mr0χ0, (34)

u = r
− 3

2
0 u0, (35)

v = r
− 3

2
0 v0, (36)

F = m−4r−4
0 F0 (37)

and

Π = m−1r−2
0 Π0. (38)
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In terms of these variables, the system to be solved is (the prime denotes differentiation with

respect to x = r/r0)

u′0 = −(
1

χ0

+ ε0)v0, (39)

v′0 +
2

x
v0 = −(

1

χ0

− ε0)u0, (40)

(χ′′
0 +

2

x
χ′

0)
1

M2
χr2

0

= χ0 −
3

χ2
0

(u2
0 − v2

0), (41)

F ′′
0 +

4χ′
0

χ0

F ′
0 −

2

x2
F0 =

u0v0x

χ4
0

, (42)

Π′′
0 +

2

x
Π′

0 −
2

x2
Π0 −m2

πr2
0Π0 =

u0v0

χ0

(43)

with the normalization condition

4π
∫ ∞

0
(u2

0 + v2
0)x

2 dx = 1. (44)

For sufficiently smooth variations of the χ0 field and large values of the glueball mass Mχ,

the left hand side of Eq. (41) is negligible and χ0 is simply determined from the quark

wavefunction,

χ3
0 = 3(u2

0 − v2
0). (45)

If furthermore the pion mass vanishes, Eqs. (3.9), (3.10), (3.12)-(3.15) constitute a di-

mensionless, parameter free system which need be solved only once to determine the quark

wavefunctions, the χ field, and the pion and gluon fields for all values of m, σv and Mχ,

provided Mχr0 is large.

Mass formula

Evaluation of the energy of the nucleon in terms of the scaled variables gives

EN = r−1
0 [3ε0 + c1 + c2(Mχr0)

−2 + c3g
2
s(mr0)

−4 + c4(fπr0)
−2], (46)

where ε0, c1, c2, c3 and c4 are the constants:

ε0 = 2.426 (47)

c1 = 2π
∫

χ2
0x

2 dx = 1.456, (48)

c2 = 2π
∫

(χ′
0)

2 dx = 6.68, (49)

c3 = −256

3
π2

∫
[(F ′

0)
2 +

2

x2
F 2

0 ]χ4
0 dx = −0.04617 (50)
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and

c4 = −80π
∫

[(Π′
0)

2 +
2

x2
Π2

0]x
2 dx = −0.1469, (51)

determined from numerical solution of the soliton equations in the limit where Eq. (3.15)

is satisfied. A typical solution is shown in Figure 1. In the expression for the energy, Eq.

(3.16), the first term is the quark energy, the second the potential energy of the χ field, the

third the kinetic energy of χ, the fourth the colour-magnetic energy, and the fifth the pion

field energy (in the chiral limit). The energy of the delta is also given by Eq. (3.16) with c3

replaced by −c3 and c4 replaced by c4/5.

The colour-magnetic energy appears to be strongly dependent on the quark mass. How-

ever, as McGovern [18] points out, the definition of the strong coupling constant αs and

the dielectric function are inter-dependent and there is no unique value of the quark-gluon

coupling. From Eqs.(2.5), (2.6) and (2.7) we see that a change κ → λ4κ is compensated by

the changes Aa
µ → λ−2Aa

µ and gs → λ2gs. We will fix the definition of the strong coupling

constant by choosing κ = 1 at the center of the soliton. Since the value of the dielectric

function is proportional to χ4(0) = (mr0)
4χ4

0(0) at the center of the soliton, the coupling

constant is 4παs = g2
s(mr0χ0(0))−4 and the colour-magnetic energy may be written as

4παsc3χ0(0)4r−1
0 = 0.9050αsr

−1
0 , (52)

which shows the expected dependence on the soliton parameters. Of course defining the

coupling constant and gluon potentials in this way does not remove the sensitivity of the

colour magnetic energy to the χ field inside the soliton. Once the scale of the χ field is set

variations of the field inside solitons with different quark content will produce large relative

changes in the gluonic energy.

The corrections, Eqs. (2.29) and (2.30), to the energy due to the center-of-mass motion

also scale:

〈P 2〉q = c5r
−2
0 (53)

with

c5 = 12π
∫
{[(ε0 + χ−1

0 )v0]
2 + [−2v0/x + (ε0 − χ−1

0 )u0]
2 + 2v2

0/x
2}x2 dx, (54)

= 16.12

and

〈P 2〉χ = c2(Mχr3
0)

−1. (55)
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The nucleon and delta masses in the model are found from Eq. (2.28), using Eq. (3.16)

for the energies and Eqs. (3.23) and (3.24) for the momentum corrections.

The parameter r0 is related to the root mean square radius of the quark distribution in

the nucleon R by

R = η〈x2〉
1
2 r0 (56)

where

〈x2〉 = 4π
∫

(u2
0 + v2

0)x
4 dx = (0.7923)2 (57)

and

η = [1− 2λ + 3λ2 +
3

2
(

λ

ε0r0

)2]
1
2 (58)

with

λ =
ε0

MAr0

, (59)

is an additional scaling factor[23] which estimates the reduction in size after removal of the

motion of the center-of-mass.

We note that the simple scaling behavior derived here depends on our initial choice of

the quadratic form of the potential energy of the χ field. In practice this means that the

MFA solutions are one-phase solutions in the nomenclature of Ref. 26. Unlike the usual bag

models, there is no bag pressure, the energy of the χ field having the same 1/r0 dependence

as the quark energy. For two-phase solutions, possible in quartic potentials, where there is

rapid variation in χ between the interior and exterior of the soliton, the kinetic energy of

the χ field is not negligible and the above scaling does not hold. Of course in this case the

full equations may be solved numerically for a given parameter set which may include a bag

pressure, but the simplicity of the energy formula Eq. (3.16) is lost.

From the work of this section, we see that the masses of the nucleon and delta are

essentially determined by the length scale r0 = (mMχσv)
− 1

3 and the strong coupling constant

αs, the pion decay constant fπ = 93 MeV being taken from experiment, and the small

corrections due to the kinetic energy of the χ field being of order (Mχr0)
−1. If r0 is fixed by

fitting the isoscalar charge radius of the nucleon and αs by fitting the nucleon-delta mass

splitting, the predicted masses of the nuclon and delta in the model show little variation for

a wide range of quark and glueball masses. In Table 1 the predictions for the masses using

the approximation Eq. (3.15) are compared with those given by numerical solution of the

full system, Eqs. (3.9)-(3.14), for three parameter sets. The input parameters have been
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fixed by reqiring a nucleon-delta mass splitting of 295 MeV and an isoscalar nucleon radius

of .75 fm in the full numerical calculations. Even for ratios of the glueball mass to the quark

mass as small as Mχ/m = 10 the approximate formula is remarkably accurate.

PIONIC CORRECTIONS TO NUCLEON PROPERTIES

Previous work[4] has shown that it is consistent to treat the weak pion field in chiral

non-topological solitons perturbatively, as is done in the cloudy-bag model. With an ap-

propriately modified pionic form factor, the CBM expressions may be applied to evaluate

pionic contributions to nucleon properties in the present model.

The vertex functions for the absorption or emission of a pion are found by expanding the

pion field in a plane wave basis and taking matrix elements of the interaction (2.4) between

the bare soliton states |A0〉. In particular the vertex function vAB
j (k) for the absorption of a

pion with isospin j and momentum k on the bare baryon state |B0〉 to produce the baryon

state |A0〉 may be written as[4]

vAB
j (k) = −i

fAB

mπ

µ(k)

(2π)3/2(2ωk)1/2

∑
m,n

〈SB, sB, 1, m|SA, sA〉〈TB, tB, 1, n|TA, tB〉k∗me∗j,n, (60)

where SA and sA denote the spin and third component of spin for A ( and similarly TA and

tA for isospin), km and ej,n are the spherical tensor components of the momentum k and the

vector ej respectively, and ω2
k = k2 + m2

π. The CBM form factor [7]

µ′(kR) = 3j1(kR)/kR, (61)

where j1 is the spherical Bessel function of order one and R is the bag radius, is replaced in

Eq. (4.1) by the soliton form factor

µ(k) =

∫
drr3(m/χ(r))u(r)v(r)µ′(kr)∫

drr3(m/χ(r))u(r)v(r)
, (62)

defined so that µ(0) = 1. The form factors are compared in Figure 2.

From Eqs. (1.8) and (1.9) it is easy to establish [4, 27] that the denominator in (4.3) is

proportional to the bare axial vector coupling constant

gb
A =

5

3

∫
d3r(u2(r)− 1

3
v2(r)) =

20

9
4π

∫
drr3m

χ
u(r)v(r) (63)
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and hence that the nucleon-nucleon transition coupling constant in (4.1) is

fNN =
3

2

mπ

fπ

gA (64)

and that the other relevant couplings have the usual CBM ratios,

fNN : f∆∆ : fN∆ : f∆N = 5 : 5 : 4
√

2 : 2
√

2. (65)

In terms of the usual πNN coupling constant, fNN = (3mπ/2mN)gπNN = 3
√

4πfπNN and

Eq. (4.5) is an expression of the Goldberger-Treiman relation.

Scaling

The solutions of Eqs.(2.8) and (2.9) for the quark wavefunctions and Eq.(2.10) for the χ

field may be used to construct the form factor (4.3) and the transition coupling constants

(4.6) using (4.4) and (4.5). With the coupling constants and the form factor calculated

from the soliton solution replacing the CBM form factor and coupling constants, the usual

CBM expressions for the pionic contributions to the nucleon and delta self-energies, charge

radii and magnetic moments etc. apply. Before discussing these contributions in detail, it

is important to note that the pionic corrections will be largely independent of the choice of

the bare soliton parameters. This can be seen by applying the transformations (3.2)-(3.6)

of the previous section to the Eqs.(4.3) and (4.4). The bare axial constant becomes

gb
A =

80π

9

∫
dxx3u0v0

χ0

. (66)

For sufficiently large glueball mass, the scaled variables approach their limiting forms,

gb
A = 1.318, and hence fNN ,f∆∆, fN∆ and f∆N are constant under variation of the soli-

ton parameters. In the same limit the form factor only depends on the length scale set by

r0 = (Mχmσv)
− 1

3 ,since

µ(k) =
80π

9gb
A

∫
dxx3u0v0

χ0

µ′(kr0x). (67)

Pionic self-energies

The pionic self-energies of the nucleon and delta are given by

ΣA = − 1

12π2

∑
B

(
fAB

mπ

)2
∫

dk
k4µ2(k)

ωk(ωk + mB −mA)
(68)
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In the cloudy bag model the masses mB = mN , m∆ are usually taken as the physical masses

and renormalized perturbation theory is considered. Here, since we are only considering

the leading order in a perturbative calculation, the masses mN and m∆ are equal to the

bare soliton mass. In this case the energy shift given by Eq. (4.9) is the same as that

given by Eq. (2.17), derived at the quark-pion level, provided the quark-pion self-energies

(terms with i = j in Eq.(2.17)) are included. If the scaling transformations are applied to

(4.9), we see that the mass splitting of the delta and nucleon due to pions has the form

(fπr0)
−2r−1

0 I(mπr0) where I is an integral depending on a single parameter, the product of

the soliton scale and the chiral symmetry breaking pion mass.

Electric form factors and charge radii

The pionic contribution to the nucleon electric form factor is

Gπ
E,N(q2) = ± 1

36π3
(
fNN

mπ

)2
∫

d3k
µ(k)µ(k′)k.k′

ωkωk′(ωk + ωk′)
(69)

∓ 1

72π3
(
fN∆

mπ

)2
∫

d3k
µ(k)µ(k′)k.k′

(ωk + ω∆N)(ωk′ + ω∆N)(ωk + ωk′)
,

where k′ = k + q and ω∆N = m∆ −mN . The upper sign holds for the proton and the lower

for the neutron. Since (4.10) involves the difference of two similar terms, it turns out that

the calculated values of the electric root mean square radii of the neutron and proton are

quite sensitive to the assumed value of ω∆N . In our simple perturbative approach where

m∆ and mN are equal to the bare soliton mass ω∆N = 0. Alternatively, we may compute

the pionic correction, after the gluonic hyperfine splitting has been calculated, by setting

ω∆N = ∆g
∆ −∆g

N (c.f. Eq. (2.23)). Numerical results for both choices are compared in the

next section.

The quark contribution to the electric form factor is proportional to the Fourier transform

of the quark density,

Gq
E,N(q2) = CN

∫
d3r(u2(r) + v2(r))eiq·r, (70)

where the constant CN is determined from charge conservation, Gq
E,p(0) + Gπ

E,p(0) = 1 for

the proton and Gq
E,n(0) + Gπ

E,n(0) = 0 for the neutron.

The charge radii are calculated from the electric form factors by

〈r2〉N = −6
∂

∂q2
[Gq

E,N(q2) + Gπ
E,N(q2)]q2=0. (71)
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Magnetic moments

The pionic contribution to the nucleon magnetic moment is

µπ
N = ± 1

27π2
(
fNN

mπ

)2
∫ ∞

0
dkk4µ2(k)

ω4
k

± 1

216π2
(
fN∆

mπ

)2
∫ ∞

0
dkk4µ2(k)(ω∆N + 2ωk)

ω3
k(ω∆N + ωk)2

, (72)

the upper sign holding for the proton and the lower for the neutron.

The quark contribution involves several integrals which determine the probabilities of

various components of the dressed nucleon. Define

PBCπ =
1

12π2
Z2

fNBfNC

m2
π

∫ ∞

0
dkk4 µ2(k)

ωk(ωBN + ωk)(ωCN + ωk)
, (73)

then for the proton,

µq
p =

µ0

27
(27Z2 + PNNπ + 20P∆∆π + 16

√
2PN∆π), (74)

and for the neutron,

µq
n = −µ0

27
(18Z2 + 4PNNπ + 5P∆∆π + 16

√
2PN∆π). (75)

The contribution from three bare quarks in Eqs.(4.15) and (4.16) is

µ0 =
2

3

∫ ∞

0
drr3u(r)v(r), (76)

and the normalization is determined by Z2 + PNNπ + P∆∆π = 1. The pionic and quark

contributions together give

µN = µq
N + µπ

N . (77)

NUMERICAL RESULTS AND CONCLUSIONS

Typical results of our numerical calculations of static nucleon properties, including pionic

contributions, are shown in Table 2. In these calculations chiral symmetry is broken by using

the experimental value of the pion mass in the field equation (3.13). Nevertheless Table 2

shows that the scaling behaviour derived in section III for massless pions persists; when

the overall scale of the unperturbed soliton solution is set by matching the experimental

isoscalar charge radius, there is little variation in the predicted nucleon properties over a
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wide range of input parameters for the soliton. As in other soliton bag calculations, the

predicted nucleon masses are too large. The nucleon mass can be made smaller by including

the pion-quark self-energies, but following the discussion of section II , we believe it is more

consistent not to do so. The pion generates about 25% of the nucleon-delta mass splitting;

the rest is provided by the M1 colour magnetic splitting (αs is adjusted to reproduce the

experimental mass difference). Comparison of Table 1 and Table 2 shows that the pionic

energy shift is decreased by about 17% in going from the massless to the massive pion.

The strength of the pion coupling is fixed by the experimental values of the pion decay

constant and the pion mass, and the value of the bare axial coupling gb
A, which is calculated

from the model. The axial coupling is independent of the soliton scale and is nearly constant

over the various parameter sets. Thus the pion coupling is almost constant and as can be seen

from the first three columns of Table 2, once the soliton size is fixed, the pionic contributions

to the nucleon properties exhibit little dependence on the details of the soliton solutions.

The model is qualitatively similar to the Cloudy Bag Model; the pion cloud increases the

charge radius of the proton and gives the neutron a negative charge radius. In Figure 3,

we plot the neutron charge density, together with its quark and pion components, for the

soliton model using the parameters of Column 2, Table 2 (Mχ=1908 MeV). The quark and

pion components for the CBM are also shown for comparison, where the bag radius R= 1.1

fm. This choice of R minimises the root-mean-square difference of the soliton and CBM

form factors (shown in Figure 2). The quark (isoscalar) radius is then 20% larger in the

soliton model than in the CBM. The pionic term 〈r2〉π is 10% smaller. The decrease in 〈r2〉π
is attributable to the small tail of the form factor (Figure 2). There are minor differences

in the numerical values of the coupling parameters fNN chosen in the two models, some

second order renormalization being taken into account in the CBM, but these differences

are compensated by the larger value for the mass difference ω∆N in the CBM where the

physical masses are assumed. Excluding centre-of-mass corrections, the proton and neutron

charge radii are .93 fm and -.31 fm in the soliton calculation in comparison with .87 fm and

-.34 fm in the corresponding CBM calculation [8]. The values of fNNπ and gA in Table 2 are

bare values. They are decreased by about 5% if the renormalization procedure of the CBM

is adopted.

The values for the magnetic moments and charge radii given in Table 2 have been calcu-

lated with the difference between the delta and nucleon mass given by the colour magnetic
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energy, ω∆N = 2∆g
N in the energy denominators of Eqs. (4.10) and (4.13). For the parame-

ter set with glueball mass Mχ=1908 MeV, the bracketed values, calculated with a vanishing

delta nucleon mass difference, are also given for comparison. It can be seen that the pionic

contributions, particularly the neutron charge radius, are quite sensitive to the assumed

value of ω∆N .

Although the πNN coupling constant agrees well with the experimental value, pionic con-

tribitions to static electromagnetic properties are somewhat underestimated by the model.

From the above comparison with the CBM it apears the pion form factor (4.3) falls off too

quickly in momentum space compared with CBM form factor (4.2). This can be compen-

sated for by regarding the pion coupling fNN as an adjustable parameter rather than taking

the value fixed by Goldberger-Treiman relation, Eq.(4.5), of the model. For example the

results listed in the second last column of Table 2, obtained with pion coupling strength

increased by 40% are in excellent agreement with the experimental values. However, it

should be emphasized that this procedure violates one of the attractive theoretical features

of the model, the connection between the scale of the bare soliton and the magnitude of the

pion cloud. In view of the simplicity of the perturbative calculation of gluonic and pionic

corrections, and the crudeness of the estimates of centre-of-mass effects, the quantitative

results are in reasonable agreement with experiment.
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FIG. 1: Solutions of Eqs.(3.9)-(3.11) with a large value of the glueball mass, Mχr0=48.7. The

dashed curve is the gluon source term of Eq.(3.12). For x < 1.4 these curves are indistinguishable

from the solutions of Eqs. (3.9) and Eq. (3.10) with the approximation (3.15).

FIG. 2: Comparison of the soliton model (solid line) and CBM (dashed line) pion form factors

for the parameter set of Column 2 of Table 2. The CBM radius, R=1.1 fm, minimimises the

root-mean-square difference of the form factors.

FIG. 3: Comparison of the quark and pion components of the neutron charge density in the soliton

model (solid curves) and the CBM (dashed curves). The CBM radius is R=1.1 fm. The total

charge density is shown only for the soliton model.
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Mχ/m = 10 Mχ/m = 50 Mχ/m = 150

Mχ = 648.6MeV Mχ = 1910.5MeV Mχ = 3978.8MeV

αs = 0.6016 αs = 0.5699 αs = 0.5687

(a) (b) (a) (b) (a) (b)

〈r2〉
1
2 (fm) 0.750 0.752 0.750 0.751 0.750 0.750

E0(Mev) 1600.8 1624.5 1558.3 1559.2 1553.1 1553.2

∆g
N (MeV ) −92.5 −95.9 −91.8 −91.5 −91.6 −91.4

∆π
N (MeV ) −97.9 −92.7 −95.3 −94.8 −95.3 −95.1

MN (MeV ) 1228.6 1227.1 1175.6 1165.6 1167.7 1162.1

M∆(MeV ) 1523.6 1529.7 1470.6 1461.5 1462.7 1457.7

TABLE I: Nucleon and delta masses in the chiral limit. Quantities in columns labelled (a) have

been calculated by solving the full set of soliton equations; the corresponding predictions from the

approximate mass formula are contained in columns (b).
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TABLE II: Results for nucleon properties, including perturbative pions and gluons, for four different

soliton parameter sets. The soliton scale is fixed to give the experimental isoscalar charge radius

and the strong coupling constant to give the experimental value of the nucleon-delta mass splitting

in all cases. Centre-of-mass corrections are included.

Mχ/m 10 50 150 50

Mχ(MeV ) 648 1908 3974 1920

αs 0.646 0.612 0.611 0.401 Expt

〈r2
0〉

1
2 (fm) 0.750 0.750 0.750 0.750 0.750

E0(Mev) 1601 1556 1551 1566

∆g
N (MeV ) −99.2 −98.5 −98.2 −65.0

∆π
N (MeV ) −81.6 −79.5 −79.2 −160.0

MN (MeV ) 1240 1185 1177 1139 939

M∆ −MN (MeV ) 295 295 295 295 295

fNNπ 0.283 0.280 0.279 0.393 0.28

gb
A 1.34 1.32 1.32 1.32 1.27

µp 2.28 2.29 (2.40) 2.29 2.71 2.76

µn −1.72 −1.72 (−1.78) −1.72 −2.18 −1.91

〈r2
p〉

1
2 (fm) 0.795 0.795 (0.770) 0.795 0.830 0.83

〈r2
n〉

1
2 (fm) −0.264 −0.263 (−0.175) −0.262 −0.355 −0.35
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