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Abstract

Pionic contributions to static nucleon properties are calculated in a chiral extension of the colour-
dielectric model. The pion field and residual gluon field are treated perturbatively. It is shown that
with a simple choice for the energy of the scalar confining field and in the chiral limit, the system
of equations describing the bare soliton and the perturbative pion and gluon fields may be cast in
a dimensionless, parameter free form for large glueball mass. This enables a formula for the masses
of the nucleon and delta including leading order pionic and gluonic contributions and corrections
for spurious centre-of-mass motion, valid for a wide range of input parameters determining the
bare soliton solutions, to be derived. A further consequence of the scaling behaviour is that pionic
contributions to nucleon properties, calculated using the methods of the cloudy bag model, are
insensitive to the soliton parameters, once the size of the soliton is fixed. The model results are
very similar to those of the cloudy bag model but the predicted masses are about 20% too large,

and the pionic contributions to charge radii are underestimated.



INTRODUCTION

In their simplest form colour-dielectric models (CDM) [1] describe the quark structure
of hadrons by confining effective quark fields with a scalar field which represents the long
range order of the QCD vacuum. Like the MIT bag [2] lagrangian, the typical lagrangian
of these models at this level is not chirally symmetric, but it is well known that by in-
troducing an suitable interaction with an elementary pion field, manifest chiral symmetry
may be restored[3]. There is no unique prescription for the additional terms in the effective
lagrangian and a number of different chiral versions of nontopological soliton models have
been considered by various authors (reviewed recently by Birse [1]).

Following the approach which was used to obtain the cloudy bag model (CBM) lagrangian
[3] from the MIT bag model, Williams and Dodd [4] investigated chiral extensions of both the
Nielsen-Patkos colour-dielectric model [5] and the Friedberg-Lee soliton bag model [6]. It was
found that the pion fields in the soliton were sufficiently weak that pionic contributions to
nucleon properties could be calculated using perturbation theory as in the CBM work [3, 7—
9]. This is to be contrasted with non-perturbative approaches where the pion field is treated
in the mean field approximation using the hedgehog ansatz [10]. The numerical results of
reference 4 for pionic corrections showed an insensitivity to the details of the unperturbed
soliton solutions and, when the scale of the soliton solution was fixed to reproduce the proton
charge radius, broad agreement with the results of the CBM. However, no attempt was made
in this work to choose a parameter set which would also fit the nucleon and delta masses
when centre-of-mass corrections and gluonic corrections, discussed below, were included.

Another refinement of the CDM, necessary for the calculation of mass splittings of the
hadrons, is the retention of residual colour fields left over from the coarse-graining of the
QCD fields. For example the mass degeneracy of the nucleon and delta isobars is lifted
by the colour magnetic hyperfine interaction. The one-gluon exchange contribution to the
nucleon-delta mass difference has been calculated in the CDM both perturbatively and self-
consistently [11, 12]. However, these calculations did not take into account the contribution
from pion exchange expected from the chiral models.

The aim of the present work is to test the predictions of the CDM for static nucleon prop-
erties including both pionic and gluonic contributions and with centre of mass corrections.

A similar calculation has appeared recently. Leech and Birse [14] have calculated pionic



contributions using Peierls-Yoccoz projection to remove spurious centre-of-mass contribu-
tions. They use a chiral version of the CDM where the pion fields are accompanied by an
additional scalar field, as in the linear sigma model, rather than the non-linear realization
of chiral symmetry adopted in this paper. Although their lagrangian has chiral symmetry,
the Goldberger-Treiman relation, which should be satisfied by the model, is violated by the
approximations made in projecting momentum eigenstates. In our work we have chosen to
preserve the Goldberger-Treiman relation at the expense of using only cruder estimates of
centre-of-mass corrections. In our view reliable estimates of c.m. corrections which respect
the symmetries of the lagrangian remain a problem for these models. Leech and Birse did
not calculate the gluonic contribution to the nucleon-delta mass splitting but assumed that
the strength of the quark-gluon coupling could be adjusted so that a fit to the non-pionic
part of the mass-splitting would be achieved. Here we calculate the M1 colour magnetic en-
ergy explicitly to see whether consistent values of the strong coupling constant are obtained
over a range of soliton parameters.

We would like to emphasize that our model is just one of many possibilities. From a more
fundamental point of view it is natural to regard the pion (and other mesons) as composites
of the quark and gluon fields. For example in the work of Banerjee et al. [15] it is assumed
that an effective low energy chiral model can be derived from QCD by entirely eliminating
the gluon degrees of freedom in favour of meson exchanges between quarks. In this approach
one gluon exchange should not be added to the quark-meson model. The Lagrangian that we
use, as in the CBM, includes an additional elementary pion field to restore chiral symmetry,
and within the context of the model both one pion and one gluon exchange are calculated.

Section 2 describes the chiral version of the colour-dielectric model considered in this
paper, how the lowest order perturbative pionic and gluonic contributions to the soliton
energy are calculated, and how the masses of the nucleon and delta are estimated including
c.m. corrections. The bare soliton solutions are characterized by three parameters, the
quark mass m, the glueball mass M,, and the scale o, of the confining scalar field. The
magnitude of the gluonic energy shift is determined by the strong coupling constant a,; which
is essentally a free parameter of the model. The magnitude of the pionic contributions are
fixed through the Goldberger-Treiman relation of the model in terms of the pion mass, the
pion decay constant and the axial coupling constant. The latter is calculated from the bare

soliton solution while the pion mass and pion decay constant are given their experimental



values. Thus once the bare soliton solutions are chosen there is no further freedom in the
model to vary the pionic contributions to nucleon properties.

In section 3, following the scaling argument of McGovern, Birse and Spanos [13] for large
glueball mass, we are able to show that the system of equations determining the bare soliton
solution and the perturbative pion and gluon fields may be cast in a dimensionless, parameter
free form in the chiral limit where the pion is massless. This enables a mass formula for the
nucleon and delta masses to be given whose numerical coefficients are determined by solving
the universal equations once only. This scaling which still holds to a good approximation for
quite small ratios of the glueball to quark masses and for non-vanishing pion mass explains
the insensitivity of pionic corrections to the soliton parameters found in earlier work [4].

Pionic contributions to static nucleon properties are considered in section 4. The formulae
for charge radii and magnetic moments are essentially identical with those of the cloudy bag
model, with the CBM form factor replaced by the form factor computed from the soliton
solution.

Section 5 contains our numerical results and conclusions.

THE MODEL
The Hamiltonian

With the notation of reference 4 , the Hamiltonian of the chiral extension of the colour

dielectric model, including gluons, to be considered here may be written as
H = Hxs+ H, + H' + H,+ H} = Hy+ H + H{ (1)
where the Hamiltonian for the non-topological soliton in the mean field approximation
(MFA) is
Hys = [d% {: vV +m/x)a : +102(V0)? + M2}, (2)
the pion field contribution is
H, — / Brl o [(0om) + (V) +min?] (3)
and the interaction between quarks and pions is given by

1 m
H”:—/d%—:cﬁ'.ﬂ"yq:. 4
' X ’ @
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The remaining terms in Eq. (2.1)
Hy = [ (50 F 048 + k() Fo ) (5)

and
H{ = 39, / d’x A Al (6)

describe the coupling of effective gluon fields A}, to the colour singlet dielectric mean field
x through the dielectric function k(x) = x*, and the quark fields ¢ respectively. As we
consider only single gluon exchange between quarks, the quadratic terms in the gluon field
tensor

FO, = 0,A% — 0,4 + g, f™ AL A (7)
are dropped, so that each of the gluon fields propagates like an independent electromagnetic
field in the presence of a spatially varying dielectric medium. It should be noted that in the
absence of a rigorous derivation of the dielectric model from QCD, there is some arbitrariness
in the details of the Hamiltonian density adopted above. Bayer et al. [16] and Banerjee [17]
have argued that the quark-pion coupling of Eq. (2.4) should be proportional to xy~2. The
question of whether residual gluon interactions, Eq. (2.6), should be included at all, has
been mentioned in the introduction. However, the work of McGovern [18] in fitting the
baryon spectrum with a chiral dielectric model including perturbative gluons lends some
support to the model chosen here. The fit using the inverse coupling of Eq.(2.4) was found
to be more satisfactory than the fit using inverse square coupling.

In zeroth order the interactions between quarks and pions and quarks and gluons may be
ignored and the bare baryon states are eigenstates of Hy with no gluons or pions present.
The bare nucleon and delta states are thus described by the usual MFA solutions where the
mean Y field has spherical symmetry and the three quarks are all placed in the lowest 15
mode. The upper and lower radial components u and v of the quark wavefunctions and the

quark energy eigenvalue € satisfy

du m
= e+, Q
dv m 2v
il G ;) - (9)
and the mean field x is determined self-consistently from
d> 2d 3
X X __ oM (u* — v?) + M;X (10)

drr " xdr oy
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with appropriate boundary conditions. The spin and isospin states of the bare nucleon and
delta, denoted here simply by |Ag), are degenerate with energy

dx

Ey = 3¢ + 2707 /Oodr 7 [(
0 dr

2+ Mif] . (11)

Perturbation theory

Our aim is to include perturbative corrections due to one-pion and one-gluon exchange.
In the remainder of this section we consider the mass splitting of the nucleon and delta to
order (1/f)?* and ¢g2. In Sec. 4 pionic corrections to the static nucleon properties will be
evaluated.
Working in the Shrodinger picture, we may write an exact formal equation for the dressed
nucleon or delta state |A) which satisfies H|A) = E4|A),
14) = (Z4)2]40) + (Ba — Hy) ' AHi|A) (12

where both |A) and |Ag) are normalized to unity and A is the complement of the projection

operator onto the space of degenerate bare nucleon and delta states

A:I—;|Ao><Ao‘- (13)

The perturbation Hy = H{ + H includes interactions with gluons as well as pions. The

energy shift Ay = F4 — Ejy is determined from
A= (Al Hi| Ao) + (Ao|Hi(Ey — Ho + Aa) A |A)(23) 2 (14
The second order shift
AP = (Ag|Hi(Ey — Ho) "AH;|Ap) (15)
= A%+ A7} (16)

1
is obtained by replacing |A)(Z3') 2 by |Ay) in Eq. (2.14), noting that in this case (Ag|Hy| Ap)

vanishes and that the shift separates into distinct gluon and pion pieces.

The pion shift

A calculation of the pion shift, similar to that of Chin[19] for the MIT bag, yields

8t m?
AZ = —?72 Z<0'20'_7 Ti-Tj>A M7r (17)
T 1,
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with

o] e'e] / /

M = [ [yt s
o Jo  x(r) x(r')

where A(r,r’) is the free pion propagator. (In his work Chin uses a pion propagator which

excludes the pion from the bag.) The question arises whether the quark-pion self-energies
given by the terms with ¢ = j should be included in the sums over the spin-isospin matrix
elements in Eq.(2.17). Chin excludes the self-energies from the energy shift, grouping them
with the vacuum energy of the bag. On the other hand in cloudy bag model calculations,
they are included in order that intermediate quark states may be coupled together to give
the full subspace of intermediate nucleon and delta states. If S is the spin and T the isospin
of the state A, then[20)]
Y (0105 T.m)a =36 —4S(S+1) —4T(T + 1) (19)
i#]
and >2,_;(...)a = 27 for both nucleon and delta. Thus the predicted splitting of the energy
levels of the nucleon and delta due to the pion, to the order of approximation considered
here, does not depend on the pionic self-energies.

It is convenient to define

ne) = [~ ae, r')“(;'z:,( ) gy (20)
satisfying ,
in terms of which
M, = /OOO((?:)Q 2722 +m2I) r2dr (22)

The gluon shift

The shift due to exchange of gluons in the dominant M1 mode is

4
A‘Z‘ = —gﬂ'gg Z(A,AJ O'i.0'j>A Mg (23)
irj
with
_ e euryor) o u(r)olr) oo s
Mg_/o /0 ) g(r,r") () rdr r'“dr (24)

where g(r, ') is the static Green’s function[21] for the propagation of the confined M1 gluon.
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The matrix elements of the quark spin and colour observables in Eq. (2.23) are taken with
respect to the spin-isospin-colour states of the nucleon or delta. In the sum over quarks it is
customary to exclude the terms with ¢ = j i.e. colour magnetic self-energies of the quarks are
not included, and 3=, ,,;(X;.Aj 05.05) 4 = £16, the plus sign for the nucleon and the minus for
the delta. This choice is supported by the derivation[22] of the shift using relativistic, many-
body perturbation theory which suggests that the quark self-energies should be regarded as
part of the vacuum energy of the soliton. However, in the present work we ignore the Dirac
sea and make no attempt to calculate the Casimir energy of the soliton. As usual we assume
that the colour electric energies for quarks in the same spatial state sum to zero.

An equivalent expression[12] for M, which avoids the construction of the Green’s function,

M, = /f((ffj)? 2 (25)

2
uses the field function F(r) which satisfies

°F | VdedF 2F uvr (26)

dr? ' kdr dr 72 K

Eqgs. (2.24) and (2.25) may be shown to be equivalent by using the explicit expression for

the Green’s function and integration by parts.

Center-of-mass corrections

The nucleon and delta energies
E,=Ey+ A% + A7) (27)
contain contributions from the center-of-mass motion of the soliton. Our calculated masses
My = (B3 = (PP)aq = (P?) 4,2 (28)
include corrections for the quark momentum|23]

(P4, = 127 / dr [r2(e + 0)? 4 (=20 + (e — )2 + 27 (29)
0 X X
and the momentum of the x field[24] (using a quantum coherent state to produce the mean

X field),
2 o [®,dX\2 2
(P 4, = 27 M, 0” / (S5 r. (30)
0

r
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In our numerical calculations the differential equations (2.8) and (2.9) for the quark
wavefunctions, Eq. (2.10) for the x field, Eq.(2.22) for the pion field and Eq.(2.26) for
the gluon field, together with a normalization integral for the quark wavefunctions, are
formulated as a non-linear boundary value problem and solved simultaneously.[25] In the
next section we demonstrate that this system has interesting scaling properties leading to a

formula for the delta and nucleon masses in the chiral limit m, = 0.

THE NUCLEON AND DELTA MASSES IN THE CHIRAL LIMIT

Scaling

The MFA solutions describing the degenerate bare nucleon and delta states depend on
three parameters, the quark mass m, the glueball mass M, and the scale o, of the x field.
McGovern, Birse and Spanos[13] have shown that for sufficiently large values of the glueball
mass only two of the parameters are independent and after choosing one to fix the size of
the soliton, one is left with a one parameter family of MFA solutions. In this section we
extend their arguments to find a mass formula for the nucleon and delta which includes
the colour-magnetic energy, the pion interaction energy and corrections for centre-of-mass
motion.

With the help of a length unit

Wl

ro = (mM,o,)” 3, (31)

new dimensionless variables may be introduced:

r = 1oz, (32)
€ = 7“0_160, (33)
X = mroXo, (34)
u = ro_%uo, (35)
v = 7“8%’00, (36)
F = m 'K (37)
and
IT = m™ry 2. (38)



In terms of these variables, the system to be solved is (the prime denotes differentiation with

respect to x = r/rq)

1
u6 = —(7 + EQ)UQ, (39)
X0
2 1
vg+ —vg = —(— — €g)uo, (40)
X0
1 3
" / 2
Xo + — = Xo — —(ug —vg), 41
( 0 O)Mi g Xg( 0 0) ( )
4yt 2 UYUoT
" 0 _
2 2 UQV
I+ 210 — =10y — m2r2dl, = — 43
O+x0 20 maTollo Yo (43)
with the normalization condition
47r/ (ud +v3)r?dr = 1. (44)
0

For sufficiently smooth variations of the o field and large values of the glueball mass M,,
the left hand side of Eq. (41) is negligible and y, is simply determined from the quark
wavefunction,

Xo = 3(ug — vp). (45)
If furthermore the pion mass vanishes, Eqs. (3.9), (3.10), (3.12)-(3.15) constitute a di-
mensionless, parameter free system which need be solved only once to determine the quark
wavefunctions, the x field, and the pion and gluon fields for all values of m, o, and M,,

provided M, ry is large.

Mass formula

Evaluation of the energy of the nucleon in terms of the scaled variables gives
En =15 360 + 1 + co(Myro) "2 + c3g2(mro) ™ + ea(fro) 72, (46)

where €, ¢1, c9, c3 and ¢4 are the constants:

€0 = 2.426 (47)

¢ = 27r/x3x2 dx = 1.456, (48)

cy = 27r/(X6)2 dxr = 6.68, (49)
256 2

¢y = —?ﬁ/[(ﬂ;)? + SRS o = —0.04617 (50)
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and

2
¢t = 80 / [(I)2 + =5 T3] d = ~0.1469, (51)

determined from numerical solution of the soliton equations in the limit where Eq. (3.15)
is satisfied. A typical solution is shown in Figure 1. In the expression for the energy, Eq.
(3.16), the first term is the quark energy, the second the potential energy of the x field, the
third the kinetic energy of x, the fourth the colour-magnetic energy, and the fifth the pion
field energy (in the chiral limit). The energy of the delta is also given by Eq. (3.16) with c¢3
replaced by —c3 and ¢4 replaced by ¢4/5.

The colour-magnetic energy appears to be strongly dependent on the quark mass. How-
ever, as McGovern [18] points out, the definition of the strong coupling constant «, and
the dielectric function are inter-dependent and there is no unique value of the quark-gluon
coupling. From Eqs.(2.5), (2.6) and (2.7) we see that a change k — Ak is compensated by
the changes A% — A72A% and g, — A\?g,. We will fix the definition of the strong coupling
constant by choosing x = 1 at the center of the soliton. Since the value of the dielectric
function is proportional to x*(0) = (mry)*x5(0) at the center of the soliton, the coupling

constant is 4w, = g2(mroxo(0))™* and the colour-magnetic energy may be written as
4rasesxo(0)tryt = 0.9050a,7, (52)

which shows the expected dependence on the soliton parameters. Of course defining the
coupling constant and gluon potentials in this way does not remove the sensitivity of the
colour magnetic energy to the x field inside the soliton. Once the scale of the x field is set
variations of the field inside solitons with different quark content will produce large relative
changes in the gluonic energy.

The corrections, Egs. (2.29) and (2.30), to the energy due to the center-of-mass motion

also scale:
(P?)q = cs1g? (53)
with
cs = 127 /{[(60 + Xa1)v0]2 + [—2vo/z + (€0 — Xal)uo]Q + 2v§/x2}x2 dz, (54)
= 16.12
and
(P?)y = co(Myrg) ™" (55)
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The nucleon and delta masses in the model are found from Eq. (2.28), using Eq. (3.16)
for the energies and Eqgs. (3.23) and (3.24) for the momentum corrections.
The parameter ry is related to the root mean square radius of the quark distribution in

the nucleon R by

1
R =n(z*)2r (56)
where
(2?) = 47 / (u2 + v2)at dx = (0.7923)? (57)
and
3 0N 1
=1 —=2X+3)2+ ()22 58
n= + +2(60T0)] (58)
with
€0
A p—
Mo (59)

is an additional scaling factor[23] which estimates the reduction in size after removal of the
motion of the center-of-mass.

We note that the simple scaling behavior derived here depends on our initial choice of
the quadratic form of the potential energy of the y field. In practice this means that the
MFA solutions are one-phase solutions in the nomenclature of Ref. 26. Unlike the usual bag
models, there is no bag pressure, the energy of the x field having the same 1/ry dependence
as the quark energy. For two-phase solutions, possible in quartic potentials, where there is
rapid variation in y between the interior and exterior of the soliton, the kinetic energy of
the x field is not negligible and the above scaling does not hold. Of course in this case the
full equations may be solved numerically for a given parameter set which may include a bag
pressure, but the simplicity of the energy formula Eq. (3.16) is lost.

From the work of this section, we see that the masses of the nucleon and delta are
essentially determined by the length scale ry = (mMXav)’% and the strong coupling constant
as, the pion decay constant f, = 93 MeV being taken from experiment, and the small
corrections due to the kinetic energy of the x field being of order (M, rq)~*. If 7q is fixed by
fitting the isoscalar charge radius of the nucleon and «y by fitting the nucleon-delta mass
splitting, the predicted masses of the nuclon and delta in the model show little variation for
a wide range of quark and glueball masses. In Table 1 the predictions for the masses using
the approximation Eq. (3.15) are compared with those given by numerical solution of the

full system, Eqs. (3.9)-(3.14), for three parameter sets. The input parameters have been
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fixed by reqiring a nucleon-delta mass splitting of 295 MeV and an isoscalar nucleon radius
of .75 fm in the full numerical calculations. Even for ratios of the glueball mass to the quark

mass as small as M, /m = 10 the approximate formula is remarkably accurate.

PIONIC CORRECTIONS TO NUCLEON PROPERTIES

Previous work[4] has shown that it is consistent to treat the weak pion field in chiral
non-topological solitons perturbatively, as is done in the cloudy-bag model. With an ap-
propriately modified pionic form factor, the CBM expressions may be applied to evaluate
pionic contributions to nucleon properties in the present model.

The vertex functions for the absorption or emission of a pion are found by expanding the
pion field in a plane wave basis and taking matrix elements of the interaction (2.4) between
the bare soliton states |Ap). In particular the vertex function v{*?(k) for the absorption of a

pion with isospin j and momentum k on the bare baryon state |By) to produce the baryon

state |Ap) may be written as[4]

AB
ABy _ p(k) x %
U (k) =1 m, (2#)3/2(2wk)1/2 T;L<537 S$B, 17 m’SAa SA><TB> B, 17 n’TAa tB>kmej,n7 (60)

where S, and s4 denote the spin and third component of spin for A ( and similarly 74 and
t4 for isospin), k,, and e;,, are the spherical tensor components of the momentum k and the

vector e; respectively, and wi = k* + m2. The CBM form factor [7]
W (kR) = 3j1(kR)/kR, (61)
where 7, is the spherical Bessel function of order one and R is the bag radius, is replaced in

Eq. (4.1) by the soliton form factor

[ drr () (o) (k)
) = T e ()l )o(r)

defined so that p(0) = 1. The form factors are compared in Figure 2.
From Eqgs. (1.8) and (1.9) it is easy to establish [4, 27] that the denominator in (4.3) is

(62)

proportional to the bare axial vector coupling constant

¢ = g/d?’r(uz(r) — ;02(7“)) = Zg)élw/drr?’?zu(r)v(r) (63)

13



and hence that the nucleon-nucleon transition coupling constant in (4.1) is

P = S (64)

and that the other relevant couplings have the usual CBM ratios,
NN AL NA AN — 55 44/2 1 24/2. (65)

In terms of the usual 7NN coupling constant, ¥~ = (3m,/2my)g-.ny = 3VA4T fryn and

Eq. (4.5) is an expression of the Goldberger-Treiman relation.

Scaling

The solutions of Egs.(2.8) and (2.9) for the quark wavefunctions and Eq.(2.10) for the x
field may be used to construct the form factor (4.3) and the transition coupling constants
(4.6) using (4.4) and (4.5). With the coupling constants and the form factor calculated
from the soliton solution replacing the CBM form factor and coupling constants, the usual
CBM expressions for the pionic contributions to the nucleon and delta self-energies, charge
radii and magnetic moments etc. apply. Before discussing these contributions in detail, it
is important to note that the pionic corrections will be largely independent of the choice of
the bare soliton parameters. This can be seen by applying the transformations (3.2)-(3.6)

of the previous section to the Eqs.(4.3) and (4.4). The bare axial constant becomes

80w UQV
gh =5 [ dza® 2. (66)

For sufficiently large glueball mass, the scaled variables approach their limiting forms,

FNN fAA - FNA AN are constant under variation of the soli-

g% = 1.318, and hence and

ton parameters. In the same limit the form factor only depends on the length scale set by
ro = (Mxmav)_%,since
80w

W) = 5 / dzz 3“000 1 (kroz). (67)

Pionic self-energies

The pionic self-energies of the nucleon and delta are given by

/ d FEW) (68)

Wk; +mp — mA)

AB

1zB
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In the cloudy bag model the masses mpg = my, ma are usually taken as the physical masses
and renormalized perturbation theory is considered. Here, since we are only considering
the leading order in a perturbative calculation, the masses my and ma are equal to the
bare soliton mass. In this case the energy shift given by Eq. (4.9) is the same as that
given by Eq. (2.17), derived at the quark-pion level, provided the quark-pion self-energies
(terms with ¢ = j in Eq.(2.17)) are included. If the scaling transformations are applied to
(4.9), we see that the mass splitting of the delta and nucleon due to pions has the form
(frr0)"2rg *I(myro) where I is an integral depending on a single parameter, the product of

the soliton scale and the chiral symmetry breaking pion mass.

Electric form factors and charge radii

The pionic contribution to the nucleon electric form factor is

1 fNN (K ke K
(@) = £ 7 [ &k 69
E’N(q ) 3671'3 WEWg! wk —i—wk/) ( )
I (fNA o [ k)l )bk
:F727T3 wk—l—wAN)(wk/ +wAN)(wk+wk/)’

where k' = k + q and wany = ma — my. The upper sign holds for the proton and the lower
for the neutron. Since (4.10) involves the difference of two similar terms, it turns out that
the calculated values of the electric root mean square radii of the neutron and proton are
quite sensitive to the assumed value of way. In our simple perturbative approach where
ma and my are equal to the bare soliton mass way = 0. Alternatively, we may compute
the pionic correction, after the gluonic hyperfine splitting has been calculated, by setting
wany = AL — A% (c.f. Eq. (2.23)). Numerical results for both choices are compared in the
next section.

The quark contribution to the electric form factor is proportional to the Fourier transform

of the quark density,
G(a?) = Cx [ dn( V(1)) (70)

where the constant Cy is determined from charge conservation, G (0) + G%,(0) = 1 for
the proton and Gf,,(0) + G%,,(0) = 0 for the neutron.

The charge radii are calculated from the electric form factors by

() =~

68712[@(113,1\/(6]2) + G v (07)] g2=0- (71)
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Magnetic moments

The pionic contribution to the nucleon magnetic moment is

1 fNN p (k)
vo==* dkk*
Hu 277r2 / wi

1 fNA / dik (k) (wan + 2wy)
2167T2 wi(wan + wi)?
k

(72)

the upper sign holding for the proton and the lower for the neutron.
The quark contribution involves several integrals which determine the probabilities of

various components of the dressed nucleon. Define

L ()

Ppor = —— 27 / dkk! 73
Bo 127272 wi(wpN + wi) (wWen + wy)’ (73)

then for the proton,
[l = 27(2722 + Py + 20Pans + 167V/2Pyas), (74)

and for the neutron,
pl = 27(1822 + 4Pyny + 5Pans + 16V2Pyax). (75)

The contribution from three bare quarks in Eqgs.(4.15) and (4.16) is
2 [ 3
= g/ drrou(r)v(r), (76)
0

and the normalization is determined by Zs + Pyy» + Paar = 1. The pionic and quark

contributions together give

= i+ iR (77)

NUMERICAL RESULTS AND CONCLUSIONS

Typical results of our numerical calculations of static nucleon properties, including pionic
contributions, are shown in Table 2. In these calculations chiral symmetry is broken by using
the experimental value of the pion mass in the field equation (3.13). Nevertheless Table 2
shows that the scaling behaviour derived in section III for massless pions persists; when
the overall scale of the unperturbed soliton solution is set by matching the experimental

isoscalar charge radius, there is little variation in the predicted nucleon properties over a
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wide range of input parameters for the soliton. As in other soliton bag calculations, the
predicted nucleon masses are too large. The nucleon mass can be made smaller by including
the pion-quark self-energies, but following the discussion of section II , we believe it is more
consistent not to do so. The pion generates about 25% of the nucleon-delta mass splitting;
the rest is provided by the M1 colour magnetic splitting (s is adjusted to reproduce the
experimental mass difference). Comparison of Table 1 and Table 2 shows that the pionic
energy shift is decreased by about 17% in going from the massless to the massive pion.

The strength of the pion coupling is fixed by the experimental values of the pion decay
constant and the pion mass, and the value of the bare axial coupling ¢4, which is calculated
from the model. The axial coupling is independent of the soliton scale and is nearly constant
over the various parameter sets. Thus the pion coupling is almost constant and as can be seen
from the first three columns of Table 2, once the soliton size is fixed, the pionic contributions
to the nucleon properties exhibit little dependence on the details of the soliton solutions.

The model is qualitatively similar to the Cloudy Bag Model; the pion cloud increases the
charge radius of the proton and gives the neutron a negative charge radius. In Figure 3,
we plot the neutron charge density, together with its quark and pion components, for the
soliton model using the parameters of Column 2, Table 2 (A/,=1908 MeV). The quark and
pion components for the CBM are also shown for comparison, where the bag radius R= 1.1
fm. This choice of R minimises the root-mean-square difference of the soliton and CBM
form factors (shown in Figure 2). The quark (isoscalar) radius is then 20% larger in the
soliton model than in the CBM. The pionic term (r?), is 10% smaller. The decrease in (r?),
is attributable to the small tail of the form factor (Figure 2). There are minor differences
in the numerical values of the coupling parameters fVV chosen in the two models, some
second order renormalization being taken into account in the CBM, but these differences
are compensated by the larger value for the mass difference way in the CBM where the
physical masses are assumed. Excluding centre-of-mass corrections, the proton and neutron
charge radii are .93 fm and -.31 fm in the soliton calculation in comparison with .87 fm and
-.34 fm in the corresponding CBM calculation [8]. The values of fyn, and g4 in Table 2 are
bare values. They are decreased by about 5% if the renormalization procedure of the CBM
is adopted.

The values for the magnetic moments and charge radii given in Table 2 have been calcu-

lated with the difference between the delta and nucleon mass given by the colour magnetic
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energy, way = 2A% in the energy denominators of Egs. (4.10) and (4.13). For the parame-
ter set with glueball mass M, =1908 MeV, the bracketed values, calculated with a vanishing
delta nucleon mass difference, are also given for comparison. It can be seen that the pionic
contributions, particularly the neutron charge radius, are quite sensitive to the assumed
value of wan.

Although the 7N N coupling constant agrees well with the experimental value, pionic con-
tribitions to static electromagnetic properties are somewhat underestimated by the model.
From the above comparison with the CBM it apears the pion form factor (4.3) falls off too
quickly in momentum space compared with CBM form factor (4.2). This can be compen-
sated for by regarding the pion coupling f¥V as an adjustable parameter rather than taking
the value fixed by Goldberger-Treiman relation, Eq.(4.5), of the model. For example the
results listed in the second last column of Table 2, obtained with pion coupling strength
increased by 40% are in excellent agreement with the experimental values. However, it
should be emphasized that this procedure violates one of the attractive theoretical features
of the model, the connection between the scale of the bare soliton and the magnitude of the
pion cloud. In view of the simplicity of the perturbative calculation of gluonic and pionic
corrections, and the crudeness of the estimates of centre-of-mass effects, the quantitative
results are in reasonable agreement with experiment.
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FIG. 1: Solutions of Egs.(3.9)-(3.11) with a large value of the glueball mass, M,ro=48.7. The
dashed curve is the gluon source term of Eq.(3.12). For & < 1.4 these curves are indistinguishable

from the solutions of Egs. (3.9) and Eq. (3.10) with the approximation (3.15).

FIG. 2: Comparison of the soliton model (solid line) and CBM (dashed line) pion form factors
for the parameter set of Column 2 of Table 2. The CBM radius, R=1.1 fm, minimimises the

root-mean-square difference of the form factors.

FIG. 3: Comparison of the quark and pion components of the neutron charge density in the soliton
model (solid curves) and the CBM (dashed curves). The CBM radius is R=1.1 fm. The total

charge density is shown only for the soliton model.

20



M, /m =10

M, /m = 50

M, /m = 150

M, = 648.6MeV M, = 1910.5MeV M, = 3978.8MeV

as = 0.6016 as = 0.5699 s = 0.5687

(a) (b)  (a) (b)  (a) (b)
<r2>%(fm) 0.750 0.752  0.750 0.751 0.750 0.750
Eo(Mev) 1600.8  1624.5 1558.3 1559.2 1553.1 1553.2
AY(MeV) —925  —95.9 —91.8 —91.5 —91.6 —91.4
AT (MeV) —97.9  —92.7 —95.3 —94.8 —95.3 —95.1
My(MeV) 1228.6  1227.1 1175.6 1165.6 1167.7 1162.1
Ma(MeV) 1523.6  1529.7 1470.6 1461.5 1462.7 1457.7

TABLE I: Nucleon and delta masses in the chiral limit. Quantities in columns labelled (a) have
been calculated by solving the full set of soliton equations; the corresponding predictions from the

approximate mass formula are contained in columns (b).
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TABLE II: Results for nucleon properties, including perturbative pions and gluons, for four different
soliton parameter sets. The soliton scale is fixed to give the experimental isoscalar charge radius
and the strong coupling constant to give the experimental value of the nucleon-delta mass splitting

in all cases. Centre-of-mass corrections are included.

M, /m 10 50 150 50
M, (MeV) 648 1908 3974 1920
Qs 0.646 0.612 0.611 0.401 Expt
(r2)2 (fm) 0.750  0.750 0.750 0.750 0.750
Eo(Mev) 1601 1556 1551 1566
A9 (MeV) ~99.2 —985 —98.2 —65.0
AT (MeV) —81.6 —79.5 ~79.2 —160.0
My (MeV) 1240 1185 1177 1139 939
Ma — My(MeV) 295 295 295 295 295
INNT 0.283  0.280 0.279 0.393 0.28
7 134 1.32 132 132 1.27
iy 2.28  2.29 (2.40) 229 271 2.76
[in —1.72 —1.72 (=1.78) —1.72 —2.18 —1.91
<r§,>%(fm) 0.795 0.795 (0.770)  0.795 0.830 0.83
(r2)2 (fm) ~0.264 —0.263 (—0.175) —0.262 —0.355 —0.35
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