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Abstract: Rapid growth of machine learning techniques has arisen over last decades, which results in wide
applications of machine learning for solving various complex problems in science and engineering. In the last decade,
machine learning and big data techniques have been widely applied to the domain of particle accelerators and a
growing number of results have been reported. Several particle accelerator laboratories around the world have been
starting to explore the potential of machine learning the processing the massive data of accelerators and to tried to
solve complex practical problems in accelerators with the aids of machine learning. Nevertheless, current exploration
of machine learning application in accelerators is still in a preliminary stage. The effectiveness and limitations of

different machine learning algorithms in solving different accelerator problems have not been thoroughly investigated,
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which limits the further applications of machine learning in actual accelerators. Therefore, it is necessary to review and
summarize the developments of machine learning so far in the accelerator field. This paper mainly reviews the
successful applications of machine learning in large accelerator facilities, covering the research areas of accelerator
technology, beam physics, and accelerator performance optimization, and discusses the future developments and
possible applications of machine learning in the accelerator field.

Key words:  machine learning; particle accelerator; large scientific facilities; big data; accelerator

technology; beam physics
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Fig.4 Optimization of dynamic aperture and Touschek lifetime of the HEPS with multiple optimization methods'®
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Fig. 5 Water temperature change under 1 °C step change of electron gun setting!”
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