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 摘     要：    机器学习技术在近十几年发展迅猛，并被广泛地用于解决复杂的科学和工程问题。最近十年间，

基于机器学习的粒子加速器相关研究也开始呈现出井喷式发展趋势。国际上许多加速器实验室开始尝试用机

器学习和大数据技术处理加速器中的海量复杂数据，以期解决加速器及其子系统中的诸多物理和技术问题。

不过，迄今为止，机器学习在加速器中的应用仍处于初步探索阶段，不同机器学习算法在解决具体加速器问题

的效果及其适用范围尚待摸索，机器学习在实际加速器中的应用仍非常有限。因此，有必要对加速器领域中的

机器学习研究做一个整体回顾和总结。将回顾机器学习在大型粒子加速器（以储存环加速器和直线加速器为

主）中的加速器技术、束流物理以及加速器整体性能优化等研究方向中已取得的研究成果，并探讨机器学习在

加速器领域的未来发展方向和应用前景。
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Abstract：    Rapid  growth  of  machine  learning  techniques  has  arisen  over  last  decades,  which  results  in  wide
applications of machine learning for solving various complex problems in science and engineering. In the last decade,
machine  learning  and  big  data  techniques  have  been  widely  applied  to  the  domain  of  particle  accelerators  and  a
growing number  of  results  have  been reported.  Several  particle  accelerator  laboratories  around the  world  have  been
starting  to  explore  the  potential  of  machine  learning  the  processing  the  massive  data  of  accelerators  and  to  tried  to
solve complex practical problems in accelerators with the aids of machine learning. Nevertheless, current exploration
of  machine  learning  application  in  accelerators  is  still  in  a  preliminary  stage.  The  effectiveness  and  limitations  of
different machine learning algorithms in solving different accelerator problems have not been thoroughly investigated,

 
 

*   收稿日期：2021-05-25； 　修订日期：2021-08-31
基金项目：国家自然科学基金项目（11922512）；中国科学院青年创新促进会项目（Y201904）；国家重点研发计划项目（2016YFA0401900）
联系方式：万金宇，wanjinyu@ihep.ac.cn。
通信作者：焦　毅，jiaoyi@ihep.ac.cn。

 

第 33 卷第 9 期 强　 激　 光　 与　 粒　 子　 束 Vol. 33，No. 9
2021 年 9 月 HIGH POWER LASER AND PARTICLE BEAMS Sep.，2021

094001-1

http://dx.doi.org/10.11884/HPLPB202133.210199
http://dx.doi.org/10.11884/HPLPB202133.210199
mailto:wanjinyu@ihep.ac.cn
mailto:jiaoyi@ihep.ac.cn


which limits the further applications of machine learning in actual accelerators. Therefore, it is necessary to review and
summarize  the  developments  of  machine  learning  so  far  in  the  accelerator  field.  This  paper  mainly  reviews  the
successful  applications  of  machine  learning  in  large  accelerator  facilities,  covering  the  research  areas  of  accelerator
technology,  beam  physics,  and  accelerator  performance  optimization,  and  discusses  the  future  developments  and
possible applications of machine learning in the accelerator field.

Key  words：    machine  learning；  particle  accelerator；  large  scientific  facilities；  big  data；  accelerator
technology； beam physics

 

粒子加速器是一种利用电磁场将带电粒子加速（可接近光速），使其获得能量的装置 [1]。粒子加速器不仅是进

行粒子物理、原子核物理、生命科学、材料科学等多领域基础科学研究的重要实验装置 [2-5]，而且在工农业生产、医

疗卫生、国防航天等领域也有重要应用 [6-8]。

随着相关基础科学及应用研究的进步，现代科学实验对粒子加速器性能的需求不断提高。为了满足这些科学

研究需求，需设计建造性能更高、性能参数更趋极限的加速器装置，并不断发展更先进的粒子加速物理与技术。

新一代加速器，例如，以自由电子激光 [9] 和衍射极限储存环光源 [10] 为主的第四代加速器光源等先进加速器正在世

界多国的加速器实验室中逐步投入建设。作为用户装置，加速器除了要能实现设计目标参数，还需要保持很高的

运行稳定性。这要求对机器运行参数进行实时监测，进而进行实时反馈控制，动态调节机器参数，以保持运行状态

的稳定。作为一个包含磁铁、电源、真空、机械、束流诊断、射频加速腔、计算机控制等子系统的集合体，大型粒

子加速器具有数以千计的控制变量，许多变量之间相互耦合，它们与加速器整体性能之间的关联非常复杂且往往

呈非线性关系。依靠传统手段对如此复杂的系统进行研究越来越困难。现代粒子加速器研究，包括前沿加速器物

理与技术的研究以及加速器整体性能的优化等，存在诸多极具挑战性的问题。

针对粒子加速器前沿研究中的众多挑战和困难，机器学习提供了全新的解决问题的手段。2016年世界顶级围

棋选手李世石在与围棋机器 AlphaGO[11] 的对弈中以 1∶4惨败，引发一时轰动，让以机器学习为核心的人工智能技

术逐步走进了大众视野。机器学习是实现人工智能概念的核心方法，是通过对数据进行学习从而总结其中的特征

和规律的一类方法的统称。AlphaGO是众多机器学习技术的集大成者。在 AlphaGO出现之前的十几年间，机器学

习技术就已经开始得到广泛应用，发展极其迅猛。近年来，随着计算机计算能力的大幅提高和大数据技术的发展，

机器学习已经在物理学、高分子科学、材料科学、生物学等学术领域 [12-15] 和自动驾驶、模式识别、智能生产和机器

翻译等工业领域 [16-19] 产生了巨大而深远的影响。

自 20世纪 80年代开始，机器学习技术就已经被应用在粒子加速器领域中 [20]。不过，由于当时算法尚不成熟及

计算能力受限等诸多原因，限制了机器学习在加速器上应用的进一步拓展。而近几年来，随着机器学习本身热度

的不断升温且日渐成熟，加速器专家们开始大量地使用机器学习方法解决粒子加速器中的问题，这促进了机器学

习相关研究在加速器领域中的快速发展。机器学习被认为具有从加速器研究中产生的复杂、海量数据里揭示隐

藏的物理关系，甚至发现新的物理规律的潜力。与基于物理模型的传统研究方法相比，机器学习的优势主要在于

强大的泛用性和高计算效率。与传统物理模型相比，机器学习模型的训练和使用对先验物理知识的依赖大幅降

低，能较容易地从一个问题拓展到另一个问题。并且机器学习模型的计算时间只由数据的数量、变量的维度以及

机器学习模型本身的复杂度决定，而与其所学习的问题的复杂度无关。通常利用一个训练好的机器学习模型对一

个新的数据进行预测样本所花的时间，将远远小于使用物理软件模拟或是直接进行实验获取结果所需的时间。迄

今为止，机器学习已经在加速器设计、束流调试、束流诊断、设备控制等众多研究方向取得了大量的成果。加速

器界也日益意识到将机器学习与传统方法和技术相结合的重要性，以及机器学习在发展新原理、新技术和提升机

器性能方面的巨大潜力。一些大型国际粒子加速器会议，如 IPAC[21]，PCaPAC[22]，ICALEPCS[23] 等，专门设置了机器

学习分会场供全球科研人员讨论机器学习在加速器设计、建造及运行中应用的相关课题。各国的大型加速器实

验室，如美国 SLAC国家加速器实验室、欧洲核子研究中心（CERN）、德国电子同步加速器研究所（DESY）等都开

始积极探索机器学习在加速器中的不同应用，整个领域呈现出一片欣欣向荣之势。

尽管机器学习在加速器领域中的应用研究有了良好的开端，并取得了一定的成果，不过该方向的整体发展水

平仍处于初期，很多研究还处于原理验证或测试阶段，机器学习在日常机器运行优化中的应用还非常有限。在目

前加速器领域中的机器学习应用研究课题中，所应用的机器学习算法以一些基础的算法为主，与人工智能界中机

器学习算法的快速发展相比有一定的滞后。不同机器学习算法在不同场景下的效果和局限性也缺乏系统性的对

比研究。另外，目前的研究更倾向于使用小数据集，很少有研究能充分利用大型加速器天然大数据库的优势。由
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于数据库管理不完善或是数据处理困难等原因，很容易导致没有足够数量的高质量数据用于机器学习训练，从而

造成一些研究结果不尽理想，方法推广也受到限制。为了解决以上问题，将机器学习发展为真正能解决大型加速

器中诸多问题的通用方法，需要更多研究人员投入精力，通力合作，进行更细致、更全面的机器学习研究，不断推

动领域前沿发展。

基于以上情况，有必要对加速器领域迄今开展的机器学习研究工作及成果进行总结整理。由于加速器种类众

多而受篇幅所限，且已有一些相关综述文献 [24-29] 对机器学习在各类加速器装置中的研究进行了探讨，本文将主要

围绕以直线加速器及储存环加速器为主的大型粒子加速器装置中的机器学习相关研究进行探讨。以下，将在对机

器学习方法进行简要介绍的基础上，就加速器物理、加速器技术以及加速器整体性能优化等三个方面作详细介

绍。值得指出的是，加速器物理、加速器技术与加速器整体性能优化的研究之间并没有明晰的界限。在加速器的

机器学习研究中，往往需要综合运用加速器物理与技术的原理、知识及运行经验等，采用公式推导、数值模拟、实

验验证等多种手段，本文作上述分类更多是为了叙述的需要。 

1    机器学习介绍
随着计算机性能、智能算法和大数据技术的进步，人工智能得到了飞速的发展。机器学习作为实现人工智能

概念的核心部分，受到越来越多的研究人员关注。机器学习是一门基于数据的学科，其核心是通过一系列机器学

习算法对数据进行分析、学习，进而建立模型，并在面对新的数据时，基于此模型给出预判。根据机器学习训练的

方法，机器学习算法目前可以大致分为有监督学习、无监督学习和强化学习三大类 [30]。 

1.1    有监督学习

有监督学习是对处理有标签数据的机器学习算法的统称，即数据之间有确定的 Y=f（X）的对应关系。假设我们

考虑一个特征数据集{X1，X2，X3，…}，Xi= xi，1，xi，2，xi，3…，Xi 可以代表某个对象的一些特征参数，例如储存环加速器

的多极磁铁强度、加速腔电压和频率或电子枪冷却水温度等参数，每个特征 Xi 都对应一组标签 Yi。对上述例子来

说，Yi 可以是储存环的动力学孔径、束团纵向相空间分布或是电子枪的谐振频率等。有监督学习的目的就是通过

机器学习算法从数据集{X，Y}中学到 X 和 Y 的对应关系，从

而在应对一个没有贴上标签的新特征数据 Xnew 时，能够预测

出它对应的 Ypre（如图 1所示）。在有监督学习中有两种典型

的案例，分别是分类和回归。二者的本质都是建立训练数据

中 X 和 Y 的映射关系。它们的区别在于分类的目的是将输

入特征数据“定性”地归类，对其输出结果好坏的评判只有分

类正确与分类错误两种，其特征和标签的映射关系是离散

的；而回归的目的则是希望“定量”地度量输入特征数据，利

用数据实际标签值和算法输出值的误差评判算法输出结果

的好坏，其特征和标签的映射关系是连续的。

有监督学习的基本流程可以划分为：数据集的创建和标记、训练、测试（或验证）。数据集的创建和标记是指

将已有的数据进行预处理后对其分别打上对应的标签。在这个过程中，通常会把已有的数据集随机划分为一大一

小两部分，其中较大的部分称为训练集，另一部分称为测试集。训练集将用于第二步的训练中，而测试集将用于最

后一步的测试。训练是机器学习算法的核心内容。我们假设机器学习算法找到的数据特征和数据标签之间的关

系可以用函数 fw 来表示，即 Y=fw（X），其中 fw 由一系列权重参数 W={w1，w2，w3，…}所决定。在训练中我们还会定

义一个损失函数 L[fw（Xi），Yi]来表征当前预测结果和实际数据标签的差距。所有训练数据的损失函数值的平均值

R=Σi L[fw（Xi），Yi]/N 被称作经验风险，N 是训练数据的数量。训练的过程实际上就是通过调整参数 W 来使经验风

险 R 最小化的过程。一种最常用的最小化经验风险 R 的方法是梯度下降方法，即让 W 沿着经验风险 R 关于 W 的

梯度▽WR 的逆方向下降，从而逐渐降低经验风险，最终达到收敛。常用的梯度下降方法有随机梯度下降法 [31] 和小

批量梯度下降法 [32] 等。

有监督机器学习作为应用最为广泛的机器学习方法，内含的算法众多，每种算法还可能有不同的分支，难以详

尽地叙述。下面我们将对几种常见的有监督学习算法进行简要介绍。

在众多有监督学习算法中，最基础的、形式最简单的是线性回归算法 [33]，即将 X 和 Y 的关系视作线性函数来进
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Fig. 1    Schematic diagram of supervised learning

图 1    有监督学习示意图
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行参数拟合。线性回归成立的前提是数据的特征 X 和标签 Y 呈线性关系。对于非线性的问题，可以将线性回归模

型拓展到高阶，改为多项式回归 [34] 去解决。

另一种经典的有监督学习算法是决策树 [35]。决策树是一种直接使用概率分析的图解法。它具有树状的拓扑

结构，从树顶发散出多个树枝，每个树枝又可以继续发散。决策树的一个节点代表一个抽象的对象，该节点的每个

分支都表示该对象某个属性的可能值。在训练时往往通过统计训练数据集的先验信息来计算出最终决策的结

果。由于单棵决策树的预测能力通常较弱，人们又提出了用训练样本同时训练多棵树并让它们同时进行预测的方

法，该方法被称为随机森林算法 [36]。

还有一种有监督学习分类算法的思想是将分类的间隔最大化，基于该思想最著名的方法就是支持向量机 [37]。

支持向量机是一种二分类方法，它的思想是寻找一个能够划分数据集并让它们之间的几何距离最大化的超平面。

对于线性不可分的非线性问题，支持向量机还引入了核函数的思想，即通过一个非线性核函数将数据映射到更高

维的变量空间中将其变得线性可分。虽然支持向量机是一种二分类方法，但是通过多个支持向量机的组合，也可

以实现多分类的任务。目前在针对数据量较少的分类问题时，支持向量机是一种非常有效的方法。

在近十几年来，真正为机器学习领域带来革命性变化的机器学习方法是多层感知器，即人工神经网络 [38]。典

型的人工神经网络是一个网状拓扑结构，由一层输入层、一层或多层隐藏层和一层输出层组成（如图 2所示）。每

一层神经网络上都会有至少一个节点，被称作神经元。每个节点都代表一个代数函数（通常是非线性的），被称为

激活函数，每个激活函数都会包含权重和偏置两个参数。数

据被输入到输入层后，会先和所在层的权重矩阵相乘再和偏

置向量相加得到所在层的输出向量作为下一层的输入向量，

该向量输入下一层后会被下一层各个节点的激活函数处理，

再经过同样的矩阵运算后得到该层的输出向量作为输入再

送到更下一层，这个过程会不断迭代最终到达输出层。在训

练时，一般会采用反向传播方法，即从输出层开始反向计算

经验风险对于各层各激活函数参数的梯度，并通过梯度下降

方法调整这些参数的值，最终让神经网络尽可能地拟合输入

数据和输出数据之间的关系。一般认为神经网络的隐藏层

数越多、每层隐藏层的神经元越多，其能学习的映射关系就

越复杂。即使是一个只有一层隐藏层的神经网络，当它的隐

藏层神经元激活函数是非线性函数，且数目足够多时，也可

以拟合任意的连续非线性函数 [39]。

神经网络尽管理论上十分强大，但在诞生之初却并未得到广泛的应用，主要原因是当时算法的不完善，导致其

对非线性问题无能为力，且训练容易出现过拟合，即对训练数据的预测非常准确，却对训练数据以外的数据无法准

确预测。即使后来算法本身得到了一定完善，但由于神经网络的训练参数数量过于庞大，在训练过程中同时优化

如此之多的参数会十分消耗计算资源，也致使神经网络的使用一直受限。直到十几年前，随着计算机性能的飞速

提升，神经网络再次进入人们的视线，尤其是以深层卷积神经网络 [40] 为代表的深度学习方法的出现，使得我们在

有限的计算资源下对一个深层的神经网络进行训练成为了可能。卷积神经网络通过一个过滤器将输入变量降维

到一个更小的维度，并通过权重共享和局部连接等操作进一步降低变量维度，大幅减少了深层神经网络训练所需

的计算量。这种类型的神经网络被证明尤其适合于解决图像处理等高维变量问题。

以上提到的有监督学习算法所处理的数据大多是无序的，即调换某几个数据的顺序并不会对结果产生影响。

而在某些具有序列特征的问题中，数据顺序会带来极大的影响，例如在自然语言处理中，前几个单词会对后一个单

词的语义判别产生影响。对于这类时序问题，则往往需要使用循环神经网络 [41] 来处理。循环神经网络和普通神

经网络的区别在于，它的隐藏层中各个神经元的输出值不仅取决于本次的输入向量，还受到上一次计算输出值的

影响。这种特性使得循环神经网络可以用于处理一些前后相互关联的数据。在众多类型的循环神经网络中，以长

短期记忆神经网络 [42] 最为著名，在自然语言处理、语音识别等领域有着广泛的应用。 

1.2    无监督学习

无监督学习是对能处理无标签数据的一系列机器学习算法的总称。无监督学习与有监督学习的主要区别在

 

input layer hidden layer output layer 
Fig. 2    Schematic diagram of artificial neural network topology

图 2    人工神经网络神经网络拓扑结构示意图
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于，无监督学习处理的数据没有明确的标签，即学习的目标并不是明确的。标签的缺失可能由不同的原因导致，例

如对问题缺乏足够的先验知识而无法进行数据标记，或是因为给每个数据贴上标签需要的时间、计算资源等成本

太高而无法有效标记数据。由于缺少明确的学习目标，无监督学习算法通常希望从数据中找寻出某种隐藏的、或

是不明显的关系或结构。

最典型的无监督学习方法是聚类算法，包括 K-means算法 [43]、K-medoids算法 [44] 和 DBSCAN算法 [45] 等。聚类

的思想是将具有相似特征的数据聚在一起归类，不同的聚类算法会有不同的特征选择方式，例如 K-means和 K-

medoids算法会选择当前数据与 K个核心点之间的欧氏距离作为聚类特征，DBSCAN算法将参数空间中数据点的

密度作为聚类特征。聚类算法可以根据一些不明显的特征对数据进行初步处理，将不同属性的数据归类以便于后

续的分析。

除了寻找数据中的隐藏关系，无监督学习的另一个应用是数据降维。随着大数据行业的快速发展，机器学习

方法需要处理的数据数量和维度都在快速增长，越是高维的数据处理起来就越困难，也越耗费时间和计算资源。

降维算法的核心思想是通过提取数据中的有效信息将高维的数据投影到低维。主成分分析法 [46] 是一种常用的降

维方法，它的主要思想是用线性矩阵，将高维的数据映射到低维，这些低维的特征向量是全新的正交特征向量，被

称为主成分。主成分分析算法的主要流程是在原始的变量空间中寻找当前数据中方差最大，也就是分布最离散的

方向，并将这些方向作为新的正交坐标轴。在寻找正交坐标轴的过程中，一般会发现，只有前 k 个坐标轴具有明显

的方差，而后面的坐标轴方差都会趋于 0，因此可以舍弃后面的坐标轴，相当于只保留具有明显方差的 k 个坐标

轴，从而实现数据的降维。除了主成分分析法外，自编码器 [47] 也是一种重要的数据降维方法。自编码器本身是一

个多层的神经网络，它的输入和输出都是数据样本本身。当一个样本输入到自编码器后，首先会进行编码，即将样

本数据压缩成一组低维数据，该低维数据称为“代码”。在需要将数据恢复到原本维度时，“代码”又可以被后面的

神经网络层恢复到原本的维度，该过程称为解码。通过引入神经网络的非线性激活函数，可以大幅提高其处理非

线性数据的能力。

在无监督学习中，还有一类算法是通过学习数据的概率分布，从而产生一些与原始数据分布相类似的随机新

样本。这类算法被称作生成方法。基于生成方法演化出的一种重要算法是生成对抗网络 [48]。生成对抗网络由两

个相互竞争的神经网络组成，分别称为生成器和判别器。其中生成器用于随机产生与原始数据样本相似的“假数

据”，而判别器用于分辨这些“假数据”和原始数据。通过同时训练二者，最终使其达到平衡，此时判别器将再无法

判断数据的来源，生成器将有能力生成符合原始数据概率分布的随机样本。目前生成对抗网络已经成为图像处理

领域的前沿技术。 

1.3    强化学习

强化学习被认为是实现能模拟人类思维的真正意义上

的人工智能的途径之一。强化学习的核心思想是通过训练

一个代理人，使其学会与环境变化进行交互，在面对不同的

环境时采取不同的策略进行行动，从而获取最大的奖励（流

程如图 3所示）。在代理人采取不同的行动的过程中，它所

处的环境也会发生不同的变化，该代理人又需要在新的环境

中选择下一步的行动，这是一个马尔科夫过程 [49]。在经过了

一系列的马尔科夫过程后，最终环境状态会达到一个人为设定的终止状态，例如自动驾驶中车辆到达终点或是撞

上墙壁无法前进，或是围棋对弈中被判定取胜或落败，此时代理人会获得一个最终“奖励”。强化学习的学习目标

就是让代理人学到它的行为与环境的这种交互会对最终的“奖励”产生何种影响，从而选取能够最大化最终“奖

励”的行动。

一种经典的强化学习算法是 Q-学习算法 [50]。该算法会建立一个奖励矩阵 Q，Q矩阵会对不同情况下采取不同

行动的预期奖励值进行记录。最终代理人通过查表的方式选择奖励值最高的方案进行行动。但 Q-学习算法只适

用于状态和动作空间是离散且数量不多的情况，当状态数或是动作数太多，Q矩阵维度将变得非常大而无法使

用。为了解决该问题，可以用一个深度神经网络来代替 Q矩阵输出预期奖励值，将深度学习与强化学习结合，这

就形成了深度 Q-学习算法 [51]。然而即使深度神经网络可以输出无限个动作和状态的组合对应的预期奖励值，在代
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Fig. 3    Schematic diagram of reinforcement learning

图 3    强化学习示意图
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理人决定下一步的动作时，仍然需要遍历一遍当前环境状态下所有的动作并计算出它们的预期奖励值，才能最终

选取出预期奖励值最大的一个动作，这个选择的过程在动作数较多时仍然非常耗时。于是，人们又提出了确定性

策略梯度算法 [52]，通过直接学习参数化的策略让动作的选择不再依赖某个函数的值，而是通过对策略梯度函数进

行梯度最大化的方法选取动作。在确定性策略梯度算法的基础上，人们又提出了深度确定性策略梯度算法 [53]，将

确定性策略梯度算法与在深度 Q-学习算法中提出的经验回放和目标网络两项技术融合，改进了确定性策略梯度

算法难收敛的问题。 

2    加速器束流物理相关的机器学习研究
现代大型粒子加速器的束流物理研究包括束流的产生、输运、加速、操纵、测量和应用等方面的研究。随着

加速器设计日益复杂化以及束流能量、流强等关键性能参数的不断提升，高密度束流自作用和束流阻抗等引起的

束流不稳定性 [54]、低发射度储存环中非线性效应引起的动力学孔径大幅减小 [55] 等一些物理现象和机制变得更为

显著，甚至会对相关科学研究和实验产生显著的影响。这为现代加速器束流物理的研究带来了新的挑战。

以单粒子动力学中的动力学孔径优化为例，在三代光源以及更早期的储存环加速器中，动力学孔径往往很容

易就能被优化到大于真空盒所决定的物理孔径。而在以新一代的光源和对撞机为主的低发射度储存环中，由六极

磁铁等非线性元件引入的非线性力导致动力学孔径急剧减小，有时甚至已经不满足加速器正常运行的需求，这促

使动力学孔径的相关研究变成现代储存环束流物理研究的重要前沿课题 [56]。目前大部分储存环动力学孔径的优

化普遍依赖于粒子跟踪模拟软件和一些随机优化算法（如多目标遗传算法 [57]、多目标粒子群算法 [58] 等）。这些方

法虽然可靠但却比较耗时。CERN的专家提出 [59] 可以用机器学习方法快速判定出动力学孔径较小的磁聚焦结构

（lattice）。他们用 DBSCAN算法将粒子跟踪模拟的结果聚类，并且从中挑选出运动状态异常的类，帮助他们快速

判别粒子是否已经接近共振线，从而提前排除掉一些动力学孔径较小的 lattice。聚类方法也被用于改进智能优化

算法，提高动力学孔径等参数的优化效率。为了优化衍射极限储存环光源的 lattice，使光源在尽可能高的辐射亮度

下拥有尽量大的动力学孔径，美国布鲁克海文国家实验室（BNL）和中国高能物理研究所（IHEP）的专家提出 [60-61] 将

多目标遗传算法的优化历史数据进行聚类，并挑选出适应度最高的聚类作为最优类，可以从中产生潜在优质解替

代原本的优化解。该方法通过牺牲少量优化种群的多样性，可以获得比普通多目标遗传算法更快的收敛速度，在

动力学孔径优化这一费时的优化中能更快地找到优化解。

除了无监督学习方法，能更为准确提取数据特征的有监督学习方法也开始在动力学孔径等加速器非线性动

力学参数优化中得到应用。通过大量数据训练出的有监督学习模型能直接预期一个新样本的优化目标值，而不

需要复杂的物理软件模拟计算。用一个训练好的神经网络作为替代模型代替原本的粒子跟踪模拟过程，可以在

优化效率上获得几个数量级上的提升 [62]。除了直接使用机器学习模型作为替代模型，还有一种方案是用机器学

习模型来对优化候选解进行筛选，在优化算法每次迭代前先挑选出具有较高概率拥有高优化目标值的解，将其用

于优化算法的演化 [63]。这种方法除了能明显提高优化效率，还能提高最终优化种群的多样性，并且没有引导优化

进入错误演化方向的风险。IHEP的专家成功用该方法优化高能同步辐射光源（HEPS）的非线性动力学参数，相比

于无机器学习的遗传算法，该方法能在保持动力学孔径几乎不变的情况下将 HEPS的托歇克寿命提高约 10%（见

图 4），在五种被测试的优化算法中表现出了最佳的性能。其他的将优化算法和有监督学习方法结合的类似应用

还可参见文献 [64-65]。

在高能对撞机与强流强子加速器等高束流流强的加速器中，由束流之间的相互作用等过程引起的束流集体效

应十分显著，这些效应会造成束流发射度增长、束流寿命下降等 [66]，破坏束流的稳定性，甚至导致束流丢失。虽然

已经发展出了多种针对这些集体效应的数值模拟方法，但仍然不够全面。例如针对高密度束流中相干同步辐射

（CSR）效应及其物理现象的研究，目前还没有一种能准确可靠地对三维 CSR效应进行模拟的程序 [67]。较强的

CSR效应会使束流的纵向相空间分布出现复杂的微结构，并且这种微结构难以直接测量、观察。CSR效应导致的

束团相空间微结构对高亮度电子能量回收循环加速器 [68] 或高能离子对撞机电子冷却环效能 [69] 影响很大。在卡尔

斯鲁厄研究加速器（KARA）中，加速器专家们发现 K-means聚类方法可以从束流纵向轮廓中分辨出这些微结构。

这项研究可以对有效抑制 CSR效应的影响提供有益的借鉴 [70]。

机器学习方法还可以被用于探索加速器中复杂的物理关系。CERN的专家尝试用神经网络训练有监督模型

来建立紧凑型直线对撞机（CLIC）最终聚焦系统中六极磁铁中心偏差和最终的对撞亮度以及束团尺寸之间的映射
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关系 [71]。该模型有助于研究人员理解对撞机中一些复杂参数之间的关系，从而为在线参数优化提供指导。针对

目前自由电子激光的饱和边带不稳定性 [72]，SLAC的专家尝试利用 K-means聚类方法分析直线加速器相干光源

（LCLS） [73] 自由电子激光装置所收集到的即时频谱影像，过滤非相干同步辐射背景，试图验证并建立更完整的饱和

边带不稳定性动力学模型。为了更好地理解加速器中的束流动力学，DESY的专家提出了一种专门用于拟合加速

器中束流动力学参数的多项式神经网络 [74]。该网络不仅能较好地拟合基于模拟数据的束流动力学关系，还能通过

调整多项式网络系数的方法方便地从模拟场景迁移至实验场景，并用于轨道校正、线性光学校正等场景中。

虽然目前在加速器束流物理中的机器学习相关研究已经取得了不少成果，加速器专家们认为机器学习解决复

杂束流物理问题的潜力远远未得到充分挖掘。为了“一劳永逸”地解决众多的加速器束流物理问题，加速器物理

专家们正在尝试将束流物理知识、数学分析方法以及机器学习技术集成在一起，搭建“虚拟加速器”对粒子加速器

进行从头到尾的建模 [75-77]。与真实机器相比，研究人员可以更方便、更高效地在“虚拟加速器”中对加速器及束流

参数进行调试，快速获得数据，从而应用各种机器学习算法对这些数据进行处理。 

3    加速器技术相关的机器学习研究
随着加速器复杂程度的大幅提升，现代加速器对加速器技术（包括各个子系统的物理设计、控制精度、响应速

度等）的要求也越来越高。例如在现代高能对撞机中，不断提升的对撞能量需要越来越高的磁铁强度，如何在有限

预算的前提下实现超强的磁场对磁铁和电源工艺都提出了新的挑战。加速器的一类重要设备工作在射频模式，例

如，射频加速腔、射频电子枪、射频四极铁等，其频率等性能参数的稳定是加速器高性能稳定运行的基础性要求之

一。除了硬件设备以外，控制系统也是加速器技术中的重要一环。现代加速器需要控制程序能在较短的时间内将

控制参数改变到设定值。例如在射频信号与激光脉冲之间实现亚飞秒量级的同步，对控制系统的控制精度、稳定

性和响应时间等都有极高的要求。为了满足对控制系统的高要求，既需要开发出准确、稳定的控制算法，也需要

研制更为高效、精准的可编程控制元件用于执行控制程序。

第四代光源对工作在射频模式的设备稳定性提出了更高的要求，这对其控制系统设计提出了诸多挑战。国际

上相关专家已经尝试利用机器学习方法实现更好的设备稳定性。2015年，美国费米实验室（FNAL）的专家，针对

基于水温调节共振频率的电子枪，利用历史数据构建了电子枪水温及频率响应的神经网络模型，建立了基于模型

预测的控制（Model predictive control，MPC）方法，其相比传统比例积分（Proportional-integral，PI）控制方法可实现更

快、更平稳的频率调节和控制 [78-79]。相关验证实验表明，利用 MPC方法，避免了传统 PI调节过程中的变量过冲现

象；更为重要的是，MPC方法将共振频率的稳定时间减小了近 80%（如图 5所示）。此后，加速器专家针对射频四

极磁铁 [80-83]、离子源 [84]、射频加速腔 [85-86] 等设备，开展了类似的利用机器学习改进其频率（及其他关键参数）稳定性

的探索性研究。
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Fig. 4    Optimization of dynamic aperture and Touschek lifetime of the HEPS with multiple optimization methods[63]

图 4    用不同的优化算法对 HEPS 的动力学孔径和托歇克寿命进行优化的示意图 [63]
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大型加速器中，硬件工作不正常，会导致机器操作和运行的效率降低，严重时甚至导致机器非正常停机和设备

严重损坏。例如，工作在低温环境中的超导磁铁，时常会由于线圈或束流中的能量释放造成失超。如果不能及早

发现、预防，将会对设备造成不可逆损伤。在其他超导设备，如超导高频腔中也会存在类似问题。这些故障和异

常的发生往往具有突然性，通过人工监测手段难以预防，事后分析也有很多困难。为了避免重大故障，保证机器长

时间稳定运行，对于某些特殊硬件，如超导高频腔、超导磁铁等，建立高效稳定的故障监测及预警系统十分必要。

近几年来，机器学习已经被应用于许多加速器硬件系统故障监测及预警，并取得了积极进展。

美国 Jefferson实验室（JLAB）的专家在超导高频腔故障分析中，搭建了基于随机森林算法的数据分析处理系

统 [87]。在超导高频腔发生故障后，可以基于故障前后记录的 100多路不同 RF信号，快速判定出故障腔及故障类

型。与专家评判结果相比，该方法达到了接近 80%的准确率，可为机器操作员处理故障提供重要参考。CERN的

专家开展了利用机器学习对超导磁铁状态监测和故障预防的可行性研究。研究显示，长短期记忆神经网络具备对

超导磁体电压时间序列建模的能力，可以较早地预测故障的发生 [88]。在此基础上，相关专家研究了自适应的阈值

判选方法和数据压缩技术 [89]，开发了可以在嵌入式系统上使用的异常检测的软件包 [90]。此外，CERN的专家还利用

机器学习方法发展出了性能更优的束流位置探测器（BPM）异常检测方法 [91-92]。他们通过将传统的奇异值分解

（SVD）技术和孤立森林方法相结合，发展出比传统技术准确度更高的异常 BPM数据清洗方法，并成功应用于大型

强子对撞机（LHC）日常运行中的束流光学校正。

束测设备是加速器中监测机器和束流状态的关键设备。现代大型加速器对束流参数要求的提高对束测设备

也提出了越来越高的要求。例如，要求束测系统具备对单束团（而非平均效应）信息的检测能力、具备相空间（而

非实空间）的观测能力、具备更快速高效的数据处理和信息提取能力等 [67, 93]。一般来说，对加速器中束流参数的测

量会存在诸多限制，例如，束测设备数量有限制，有些测量对束流具有侵入性，许多测量无法以高重复率进行操作

等。尤其在一些极端束流参数条件下，传统的测量方法可能不再适用。例如在美国的先进加速器实验测试用户装

置-II（FACET-II）中，束流峰值流强高达 200 kA，能量也高达 10 GeV，这导致了传统基于热辐照损伤的测量元件失

效，而且其极短的束团脉冲时间已经接近了包括横向偏转腔在内的纵向相空间分布测量元件的分辨率极限。为了

克服这些挑战，近几年加速器专家们开始尝试用机器学习提升束测系统的检测分析能力并拓展其应用范围。

加速器专家们发现，机器学习技术可以辅助已有的束团测量装置和诊断系统对束团参数进行测量和推断。例

如，为了提高对线性光学参数的测量能力，CERN的科学家们将无监督学习中的聚类算法用于辅助 LHC加速器线

性光学参数的测量 [94]。通过对工作点和 BPM之间的设计相移与实际相移的偏差值等数据进行多维聚类分析，可

以将有效测量数据归类并将噪声数据剔除，从而提升线性光学参数测量结果的可靠性。上海光源（SSRF）利用基

于密度峰值的聚类算法寻找储存环中故障和性能欠佳的 BPM[95]。基于探头噪音或 β振荡的数据，该聚类方法能快

速地对束流位置探测器性能进行准确的归类，定位出故障探头、性能较差的探头和性能优良的探头，从而极大提

高在线运行的束测系统性能。除此之外，机器学习在辅助失真束测结果重建方面同样可以发挥作用。例如在测量

高流强束流的横向相空间分布时，一般的电离测量器会受到束流自身产生的空间电荷效应的影响，导致测量数据

的失真。针对这种失真，有加速器专家提出，可以通过机器学习算法学习失真数据和真实数据之间的映射关系，从

而重建真实数据 [96-97]。他们通过模拟一台质子加速器的束流参数，获得了束流实际横向分布的数据和受空间电荷

效应干扰的失真数据，并用这批数据训练一个神经网络。该研究表明神经网络能快速重建真实的束流横向相空间

分布。
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Fig. 5    Water temperature change under 1 °C step change of electron gun setting[79]

图 5    电子枪温度设定值调整 1 ℃，对应的水温变化曲线 [79]
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除了依靠机器学习辅助束测系统外，加速器专家们还在探索更直接的利用机器学习技术测量束流状态参数的

方法，即虚拟束流诊断系统。这里的虚拟束流诊断系统指的是一整套计算软件，它的核心是一个或数个机器学习

模型。通过机器学习算法，这些模型能学习加速器中一些可直接测量的参数和其他一些无法直接测量的参数之间

的映射关系，而后者往往是加速器物理研究或是相关实验中更令人感兴趣的参数。2017年发表的一项工作 [98]，首

次展现了通过利用历史数据训练神经网络和支持向量机模型，在高重频自由电子激光中预测每个激光脉冲特性

（能量、频谱等信息）的可行性。后来 SLAC的专家分别尝试使用加速器模拟软件模拟数据和真实实验数据训练神

经网络模型，让其能根据一些加速器设置参数的值，如加速器相位、束流峰值流强等，直接预测出对应的束流二维

纵向相空间分布 [99]。在 FACET-II加速器的模拟实验中，该方法能较准确地预测出束长仅为 1 μm的束团的纵向相

空间分布情况，而这个束团长度已经接近 FACET-II用于测量纵向相空间的横向偏转腔的分辨率极限。同时，他们

还利用 LCLS加速器的实测数据进行了类似的实验，证明了该方法在大型加速器的束流诊断中同样有效。其他相

类似的研究，还包括发展基于机器学习的 FEL脉冲功率时间分布的测量方法 [100] 等。后来，SSRF的专家也将类似

方法用于同步辐射振荡阻尼参数的测量中 [101-102]。他们将不同束团的逐圈 BPM信号拼接成一组二维数据，并用擅

长处理多维图像数据的卷积神经网络来处理这些数据。相比于传统方法，卷积神经网络不仅能将 SSRF同步辐射

振荡阻尼参数测量的时间从分钟级减少到毫秒级（误差仅约 0.5%），还能避免传统方法由于电信号串扰、未释放的

存储电荷以及优化算法陷入局部最优等因素偶尔导致的错误推断。机器学习还可以用在基于多维数据融合及关

联分析的束团参数预测中。SSRF的专家利用人工神经网络模型，以束团横向位置实时测量数据（逐束团数据）以

及空间干涉仪实时测量数据（平均尺寸数据）作为输入，建立了一个束团横向截面尺寸虚拟测量系统，用于 SSRF

的逐束团截面测量。与真实束测系统的测量结果相比，该系统对束团截面尺寸的测量误差约 3.8 μm[103]。

传统的束测系统对束流相空间分布的测量能力还局限在低维情况，但为了准确地描述束流相空间结构的全

貌，以及精确地控制束流的六维相空间分布，需要研究人员们发展出一套可用于六维相空间测量的方法。为了满

足该需求，洛斯阿拉莫斯国家实验室（LANL）的研究人员提出一种自适应性的深度学习方法 [104]。他们利用编码-解

码型卷积神经网络来拟合束测系统测量到的数据与实际束流相空间分布的关系，并用极值搜索算法进行自适应的

调整以使模型能应对随时间逐渐变化的加速器状态。该方法被成功地用于测量一条超快电子衍射束线的束流相

空间分布 [104]。

在加速器束流准直系统中也有机器学习相关应用。例如，LHC加速器的准直系统就大量使用了机器学习方

法 [26, 105]。LHC专门配置了近 100个准直器分布在全环，对束流实现各个方向上的动态准直控制。之前的传统控制

方法是由专家基于束流监测信号配合一套束流对准程序，进行对准工作并完成判定。受不同的机器运行状态和束

流轨道慢漂移效应或者其他热效应等影响，每隔一定时间，准直器需要重新对准，过程非常复杂且耗时。因此，

CERN的专家一直在尝试寻找自动化的准直控制方案。他们首先结合传统方法发展出了一套半自动程序，再结合

机器学习对尖峰信号实现自动检测判别 [106-107]。通过测试不同的机器学习算法，最终发现支持向量机算法得到了

最佳的预测精度，而且具有更加稳定可靠的预测范围。该项技术的应用在 LHC机器上实现了由传统半自动控制

到全自动检测控制的突破 [107]。 

4    机器学习在加速器整体性能优化中的应用
加速器整体性能的优化依赖于各物理子系统的共同合作，往往会涉及到众多相关物理参数。例如，作为用户

装置的加速器光源，其两个核心的要求是保持机器状态的稳定性和实现机器状态调节的灵活性。相对而言，储存

环光源更侧重前者，例如在各种动态误差、机器状态微调情况下保持电子轨道及同步辐射光的稳定，保持流强稳

定等；自由电子激光装置更关注后者，因为其基于单脉冲应用的特性，要求模式可灵活切换、电子和光脉冲参数可

调控。这些物理参数的控制往往并不能由一个或几个加速器控制参数线性决定，而是多个加速器控制参数相互耦

合，呈现出较强的非线性。想要实现对这些物理参数的精确控制，需要加速器专家对这些参数之间的物理关系具

有深刻的理解。而有的时候由于参数过多或是参数相互之间的关系过于复杂，想要直接理解它们之间的物理关系

比较困难。为了实现机器性能的自动调控优化，国际上发展了很多适用于在线优化的随机优化算法 [108-111]。在此

基础上，机器学习被用于进一步优化束流性能乃至加速器整体性能，在轨道校正、束流稳定、纵向相空间操纵等加

速器性能优化场景都有较好的应用。

在储存环加速器中，束流轨道校正是加速器运行中的基础调控手段之一。传统的轨道校正方法需要耗费大量
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时间测量 BPM信号和用于校正的冲击磁铁（校正子）之间的响应矩阵，利用 SVD计算校正子强度 [112]，并且当加速

器状态改变时，响应矩阵需要重新测量。利用机器学习进行更高效的轨道校正的想法从 20世纪 90年代就已经开

始萌芽 [113]，但受限于当时的计算机性能和机器学习本身的发展，研究人员并没有做更进一步的尝试。直到最近十

年间才又有不少相关成果出现。为了实现在连续动作空间中的智能控制，加速器专家们采用了一种策略梯度型强

化学习算法，即“演员-批评家网络”（AC）用于储存环束流轨道的校正 [114]。他们在一个拥有 42块横向校正子和

98个 BPM的储存环同步辐射光源中挑选出 3块校正子和 3个 BPM进行模拟测试，发现 AC能在迭代了大约

350步之后将束流位置校正至设置轨道。尽管目前该方法只在变量较少的情况下进行了测试，和实际的多变量轨

道校正相比还有不小距离，但该工作也显示出了强化学习用于加速器智能控制的可能性。

除了强化学习以外，有监督学习算法也被认为有潜力用于帮助校正束流轨道。德国多特蒙德大学的加速器专

家尝试使用神经网络校正由于超导线圈磁场变化引起的束流轨道漂移 [86]。由于受到束流损失辐射的影响，超导不

对称扭摆磁铁中的磁场强度会随时间逐渐减小，导致束流水平轨道出现明显的漂移。通过数种不同的神经网络来

学习这些磁场和轨道的数据，可以得到相对误差小于 10−6 的高精度模型。将这些模型直接用于轨道校正，效率会

远高于传统的 SVD方法。类似的工作还有文献 [115]。不过这些工作目前还处于早期模拟阶段，想要将这些神经

网络应用于真实加速器的轨道校正中，还需要通过大量的测试和探索以将模拟方法与实际机器的运行相结合。

为了给加速器用户提供稳定的实验条件，加速器操作人员需要通过参数调整克服许多束团参数的抖动，如束

长、能量、流强等，使这些参数保持稳定。SLAC的专家注意到，在较高的束流重复频率下，直线加速器中束流的

能量和束长都会发生较明显的变化，而用传统的控制算法如 PI控制方法在高频情况下进行实时控制的效果较

差。于是他们提出用神经网络来学习束测参数和响应控制参数的映射关系 [116]。利用加速器运行产生的历史数据

训练出的模型，他们发展出了基于神经网络模型而不依赖于物理模型的控制方法，该方法被先后应用到了澳大利

亚同步辐射光源 [117] 的直线加速器以及 LCLS加速器的能量、束长抖动控制中，并在高频情况表现出了比 PI方法

更高的控制精度。类似的案例还有储存环加速器的辐射源抖动控制。例如美国劳伦斯伯克利国家实验室（LBNL）
的专家使用类似的方法来控制插入件设置参数，从而使束团尺寸保持稳定 [118-119]。他们利用神经网络学习插入件

参数和束团尺寸波动的映射关系，在当前参数空间内进行网格扫描，寻找到一组束团尺寸抖动最小的参数设置用

于稳定束流。该方法在美国先进光源（ALS）中表现出了远强于一般反馈算法的控制精度，可以将同步辐射光源点

处的波动控制在 0.2 μm以下，成功将束流尺寸的抖动减小到了实验噪声量级。此外，强化学习作为机器学习中典

型的控制方法也被用于加速器束流参数的稳定控制中。德国卡尔斯鲁厄理工学院（KIT）的科学家提出可以用强

化学习操控 KARA加速器高频腔的参数 [120]，该强化学习方法能根据测得的束流纵向电荷分布信息给出合理的高

频腔设置参数用于反馈控制，从而减小 CSR效应引起的微束团不稳定性，以保持稳定的太赫兹辐射。

许多先进加速器相关应用的实现都要求束团具有一些特殊的纵向分布形状，例如自由电子激光 [9]、尾场加速

器 [121] 和稳态微聚束加速器 [122] 等。为了实现所需的特殊纵向分布形状，一般都需要对电子束团的纵向相空间分布

进行调制，这个过程被称为纵向相空间操纵。而一些传统的控制方法在面对众多复杂集体效应同时起作用的场景

下效果往往不佳。美国 SLAC的专家提出一种不依赖模型的极值搜索控制方法 [123] 用于控制一个束团压缩段中的

束流纵向相空间。如图 6所示，为了给该方法提供可靠的初始设置，他们使用一个能较准确拟合束团压缩段参数

设置和纵向相空间形状之间关系的神经网络来给出一个大致的初始条件，然后用极值搜索算法来精细地调节加速

腔和压缩段的参数，进行进一步的控制，最终实现了 fs量级分辨率的控制精度。 

5    总结与展望
机器学习已经在加速器的应用研究中展现出其强大的潜力。将机器学习与加速器研究领域已有的成熟方法

与手段结合，可以进一步提升这些传统方法的效果或执行速度。机器学习在海量数据的实时处理及大量控制变量

的同时调整等方面具有强大的应用潜力。这为机器、束流状态的实时分析及预测提供了可能。此外，在一些由于

当前技术、理论、认知限制导致的“无人区”，例如超高重频、多维相空间的束流信息提取等方面，机器学习可以提

供重要的实现路径。总而言之，机器学习正在成为加速器物理研究、在线调试优化以及技术研究等众多加速器研

究领域中全新的强有力研究工具。

虽然加速器领域的机器学习相关研究已取得了一定进展，但整体发展水平仍处于初期阶段，尚有很大的发展

空间。即使在目前开展较为充分的机器学习应用研究课题中，所应用的算法相比人工智能界最先进的、最综合的

机器学习算法仍有较大差距。此外，目前加速器领域对多种机器算法的系统对比研究较为缺乏，对不同机器学习
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算法在不同加速器中的适用范围和局限性尚无系统性的研究。另外，很多研究仍处于原理验证或测试阶段，将机

器学习用于日常机器运行优化还有不小限制。为达到该目标，既需要在提升算法的稳定性和鲁棒性等方面做大量

的工作，也需要发展数据库、快速存储等技术为机器学习提供可用的高质量数据，还需要发展相关调束软件为机

器学习算法提供接口、适配，以及发展高性能硬件设备用于部署机器学习算法等。在加速器数据获取与大数据交

叉分析方面，也需要有总体的规划设计与系统集成。这些工作对加速器中的机器学习研究既是挑战，也是机遇。

相信加速器专家们可以充分挖掘机器学习在提升加速器性能方面的潜力，拓展机器学习在加速器中的应用前景，

产生更多振奋人心的研究成果。
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Fig. 6    Longitudinal phase space manipulation experiments in LCLS with a neural network enhanced extremum seeking control method[123]

图 6    用神经网络增强的极值搜索控制方法对 LCLS 的束流纵向相空间操纵的实验 [123]
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