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Abstract

I present an analysis o f techniques used to determine the mass power spectrum from 

observations of the intergalactic medium.

Simple Monte Carlo simulations are presented which clarify some of the problems 

which must be overcome when attempting any inversion process. The 1 dimensional 

flux power spectrum is dependent on both the clustering of the absorption features and 

on the scaling relations existing between the dark matter and baryon distributions.

More realistic simulated spectra are used to illustrate differences in the mean flux 

power spectrum for a range of cosmologies and the ratio of the 1 dimensional linear mass 

and flux power spectra. The mass distribution is much more dependent on cosmological 

parameters than the flux power spectrum, highlighting the very accurate measurements 

o f the latter quantity required for an accurate recovery of the mass density power 

spectrum.

These spectra are further analysed by deconvolution into Voigt profiles. This tech­

nique is shown to be an excellent approximation, in spite of the current cosmic web 

paradigm of the Ly-a forest. However the power spectrum of the positions of these 

fitted lines is shown to be a very poor indicator of the underlying mass density field.

Inferring the 3 dimensional forms of power spectra from 1 dimensional data is 

shown to be problematic. This, coupled with analysis of the correlation matrix of the 

flux power spectrum, casts doubts on the reliability of the error analysis presented in 

the literature.
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Chapter 1

Introduction

One of the aims o f observational cosmology is to determine the functional form of the 

power spectrum of initial mass density perturbations, which are believed to be the seeds 

for modern day structures. As well as being of interest in its own right, it could also 

provide a test for theories of cosmological structure formation and offer constraints 

on the values o f cosmological parameters. Importantly for a Gaussian field, which 

the initial density perturbations are expected to be (e.g. Fischler, Ratra & Susskind 

1985; Peebles 1993), the power spectrum offers a statistically complete description. 

Measuring the primordial mass power spectrum is unfortunately a difficult task since 

non-linear gravitational growth of the inhomogeneities causes substantial alteration of 

the power spectrum with time. Therefore the mass power spectrum seen today is a 

non-Gaussian field due to being distorted from its primordial form.

Advances in the understanding of the equation of state o f the intergalactic medium 

(IGM) has meant that this has become an area of study which can now provide an 

illuminating companion to other, more traditional, methods of determining the mass 

power spectrum. In this thesis I will present work in this field. Firstly in this chapter 

an outline of some vital background material will be given. This will include basic 

cosmology, statistics, absorption physics and a review of the papers upon which the 

work in this thesis in based.
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In chapter 2 I shall present results from simple computer simulations of the IGM. 

These results will be discussed with respect to certain difficulties they highlight in using 

the IGM to recover the mass power spectrum. Recovering the mass power spectrum by 

using Lyman-a (hereafter Ly-ee) absorbers as indicators of peaks in the mass density 

density field is also discussed. The lognormal approximation (Coles & Jones 1991) is 

introduced and applied to simulate mass density fields.

More sophisticated simulations will then be analysed in chapter 3. This chapter 

includes a study of the relationship between 1 dimensional mass and flux spectra for 

various cosmologies. Line lists of the spectra are also found and used to calculate the 

power spectrum of line positions and the relation to the mass power spectrum is dis­

cussed. The importance of the profiles of individual Ly-ci absorbers is also highlighted 

through a technique where line positions are scrambled.

Chapter 4 contains work on the statistics of the techniques studied in the previous 

chapters. A study of the flux correlation matrix and the number of independent points 

being examined is presented. The difficulties in inferring the 3 dimensional flux power 

spectrum is also demonstrated, and an alternative o f working with likelihoods based on 

the directly observable 1 dimensional data is presented. Also the relationship between 

the mass and flux variances for individual realizations is briefly discussed.

Finally all this work will be summarised and conclusions presented in chapter 5.

1.1  B a s ic  co sm o lo g y

In this section I will outline some of the fundamental observations and theories in cos­

mology which provide the framework within which the work in this thesis is based. The 

paradigm for modern cosmology is the hot big bang inflationary model. In this model 

the Universe began from a singularity a finite time ago. A major triumph o f this model 

is a prediction for relative abundances of light elements which matches the observations. 

The hot big bang model results in the Universe being statistically isotropic and homo­

geneous. Observationally isotropy is very well motivated, with structure distributions
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being highly isotropic on large scales. The strongest evidence however comes from the 

cosmic microwave background (CM B). Once corrected to account for the movement of 

our galaxy, the CMB is observed to be the same to 1 part in 105 in all directions (e.g. 

de Bernardis et al. 2000). To say more it becomes essential to invoke the Copernican 

Principle, which states that we are not privileged observers. Therefore it is postulated 

that if the Universe is isotropic about the Earth, then it is isotropic about all locations. 

Any mass distribution which is isotropic about all positions can be readily shown to 

be homogeneous. Another key feature about the Universe is that observations show it 

to be expanding (as will be discussed later). These three elements form the basis for 

modern day cosmology.

1.1.1  T h e  Robertson W alker m etric

The metric required to describe an isotropic, homogeneous and expanding universe can 

be completely inferred from symmetry arguments. This was first done independently 

by H.P. Robertson and A .G. Walker. The metric can be written in a number of forms, 

for example:

ds2 =  c2dr2 =  c2dt2 -  R 2(t) +  r2d ^ A  . (1.1)

There are a few things to note with the Robertson-Walker (RW) metric. First it 

is usual to establish a set of ‘ fundamental observers’ . These are hypothetical observers 

who are at rest with respect to the local matter in their vicinity and are free from 

any strong gravitational fields. The time coordinate of the metric, which is referred 

to as cosmic time, uses the fact that the Universe is expanding to allow fundamental 

observers to synchronise their clocks. The idea is that because the density of the 

Universe is changing, it allows fundamental observers to use the value of density they 

see as a. measure of time. In the spatial part, the r and tp coordinates are comoving, 

meaning the coordinates expand with the Universe, for example two objects moving 

apart with the expansion but with no peculiar velocity with respect to each other will 

have the same comoving separation, r, at all times. The comoving coordinates between 

two points is related to the proper physical distance between them at any given time by
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the scale factor R(t). The coordinates are determined so that the proper and comoving 

distances are coincident now, so Rq =  1 . Finally the factor k is determined by the 

curvature o f the Universe and can take one of three values, ± 1  or 0. Each o f these 

values correspond to very different geometries.

k — I applies when space is ‘closed’ , geometry corresponds to the surface o f a sphere 

so any trajectory o f fixed ^ will always return to its starting point.

k =  0 applies when space is flat and geometry is Euclidean.

k =  — 1 applies when space is ‘open’ and infinite in extent.

1.1 .2  Redsh ift

The form o f the scale factor that appears in the RW metric can be found in terms 

of a fundamental observable in astrophysics, the redshift, 2 . Distances to objects will 

normally be expressed in terms of a redshift rather than proper or comoving distance 

since calculating the latter requires knowledge o f certain cosmological parameters. The 

redshift is defined as

1 +  * = ^ ,  (1 .2 )

where the subscripts o and e represent observed and emitted respectively. This

expression can be linked to the RW metric via the expression obtained for radial light

rays to show that

l +  z =  — =  ^ 1  =  — (1. 3) Ae R(te) R (te) [

For small redshifts the recession velocity is related linearly to the redshift, and is 

given by

v
z ~ - .  (1.4)
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1.1 .3  H u b b le ’s law

A universe that expands uniformly results in distant objects recessing faster than nearby 

objects. In 1929 Edwin Hubble discovered a correlation between the recession velocities 

o f galaxies and their distance from us. The resulting equation is known as Hubble’s

law

v - H 0rp, (1.5)

where v is the velocity o f recession, rp is the proper distance to the galaxy and 

Hq is the Hubble constant, usually measured in units of k m s- 1M pc- 1 . The Hubble 

constant is the current day value o f the Hubble parameter H (t),  which governs the 

rate o f expansion at a given time. The Hubble parameter changes with time for any 

universe which is not empty, due to the pull of gravity slowing down the expansion.

For a small separation, where things are Euclidean the proper separation of two 

fundamental observers is just R(t)dr, which upon substitution into Hubble’s law, and 

re-arranging gives

fl =  |  ( 1-6 )

The value of H q has been the subject of some debate ever since Hubble’s first esti­

mate o f its value to be of the order of 500 km s_1M pc . The most recent measurements 

o f The Hubble Space Telescope Extragalactic Distance Scale Key Project, which uses 

Cepheid variables to estimate Ho give a value of 72 ±  8 km s“ 1M pc“ 1 (Freedman et 

al. 2001). Due to the uncertainty in the value o f Hq it is common practice to use a 

parameter h defined as

Hp
100 km s_ 1M pc‘
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1 .1 .4  T h e  density and fate o f the Universe

The dynamics o f the Universe can be calculated using the theory o f general relativit}'. 

This results in the Friedmann equations

In the equations above p is the mass density at time f, p  is the pressure o f matter 

and A is the cosmological constant as described below. A simple Newtonian argument 

results in similar expressions to those above, but a full general relativistic treatment is 

needed to obtain the A terms and the pressure term in equation 1.8.

A is a constant o f integration representing the energy o f a vacuum. It was originally 

included by Einstein in his field equations, not because he thought a non-zero vacuum 

energy was well motivated, but because he wanted a solution to these equations which 

could result in a static universe. Vacuum energy requires a negative pressure equation 

of state resulting in a universal repulsive force. It also has massive implications for the 

flatness and fate o f the Universe as will be shown later.

Looking at equation 1.9, it can be seen that the density o f the Universe is related to 

its geometry (via the constant k). Further to this it is clear that for any given Hubble 

parameter there is a value of the density for which k — 0. The density corresponding 

to k =  0 in a universe without any cosmological constant contribution is known as 

the critical density. Often the density o f the Universe is expressed as a dimensionless 

parameter defined as

It is usual to denote the current day value of this parameter as f l0- In a. matter 

only universe, the value of II has a clear meaning, if it is less than 1 then the universe 

is ‘open’ and the gravitational attraction of all the matter in the universe is not enough

(1.8)

(1.9)
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F igu re  1.1: The scale factor as a function of time for a universe 
containing only matter. The scale factor in an open universe increases 
indefinitely. In a closed universe the scale factor will, after some finite 
time, become zero as everything collapses to a single point. A critical 
density universe loiters between these two extremes, with the scale 
factor asymptotically tending towards a constant at large times.

to ever halt the expansion. In this case the universe will continue to grow and cool 

indefinitely. If fi is greater than 1 then the universe is ‘closed’ , at some time in the 

future all the matter will eventually be pulled back, via gravitational interaction, to 

the same point (see figure 1 .1).

More generally however contributions to the dimensionless density parameter from 

matter, vacuum energy and radiation must all be considered. In this case Q without a 

subscript can be used for the sum of these contributions

0  =  Qm +  Qa +  (1.11)

where Ha is given by

n *  =  ^ .  ( i . i 2 )

It should be noted however that there is some ambiguity in the literature where H



F igu re  1 .2 : The fate and curvature of a matter and vacuum en­
ergy dominated universe. The curvature for a given cosmology is
determined only by the sum of Qm and Qa not by the individual
components. The fate of a universe depends on both Qm and Qa .
Any negative value of Qa will result in a universe which eventually 
recollapses. In some cosmologies a big bang singularity is excluded.

(rather than Qm) is often used to represent solely the matter contribution. The fate of 

the Universe is affected by all the contributions to Q, however the different components 

effect the dynamics o f the Universe in different ways as demonstrated in figure 1.2 (e.g. 

Peacock 1999).

Currently the preferred cosmological model is a flat model T20 =  1 with the modern 

day contributions o f Qm ~  0.3 and Qa ~  0.7. The main evidence for this comes from 

the CMB (e.g. Balbi 2000) and observations of type la  supernovae (e.g. Jha et al. 2001) 

as well as a host of other corroborative data. However question marks remain over the 

reliability o f some of these results and the debate on this subject is far from over.

1 .1 .5  Inflation

Despite its success in many areas the hot big bang model gives rise to some interesting

problems outlined below. A solution to these problems was proposed by Guth in 1981,



and is known as inflation. The basic idea is that in its infancy the Universe underwent 

a period of very rapid expansion. The cause for this is thought to be have been a 

phase transition in a scalar field. One simple example o f an inflationary universe is one 

where vacuum energy dominates. Re-arranging equation 1.9 and assuming the A term 

dominates gives

So for an inflationary period starting at /; =  0 the scale factor at time t is

It is thought that when inflation ends the energy contained in vacuum energy is 

transformed into normal matter and radiation. Although the precise mechanism for 

the process of inflation remains unclear, it still presents a very attractive proposition 

since it solves the problems discussed below.

T h e  flatness problem

It can be shown that a universe of O =  1 is unstable. Therefore small deviations from 

this value will quickly result in a big divergence from 0  =  1. For a matter dominated 

universe (for the radiation dominated case deviations grow even more rapidly) the 

evolution o f 0  with 2 is given by

Since the value o f 12 is close to unity now it must have been even more so in the

density at the Planck epoch must have been no larger than about 1 part in 1060. This 

required level of precision leads one to ask how is it that the Universe started with a 

density so close to critical density?

R{t) =  R{ 0 )ex . (1.14)

(1.15)

past. In fact it can be shown that for sensible values of 12o the deviation from critical

Inflation helps solve this problem since during an inflationary period the Universe 

is actually driven towards Q =  1. So regardless of the initial conditions a long enough
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period of inflation will yield a universe which has a density extremely close to the 

critical value.

T h e  horizon problem

The earliest epoch that photons observed today can have been emitted is known as the 

recombination epoch. Prior to this the Universe was opaque due to light being scattered 

off free electrons. The size of casually connected regions at this time (z ~  1000) 

corresponds to an observed angle on the sky of about 1 degree. However the CMB is 

seen to be isotropic over the entire sky. The question therefore is how is the CMB so 

smooth given that it corresponds to many supposedly distinct regions?

However since regions can be expanded by a huge amount during inflation it follows 

that the horizon problem can be solved. An initially small (and therefore casually 

connected) region can establish equilibrium before being inflated. The rapid expansion 

during inflation can then lead to the region becoming larger than the horizon scale. 

Therefore the observed isotropic CMB ceases to be a problem.

T h e  structure  problem

Alt hough statistically homogeneous and isotropic the Universe is clearly neither of these 

things on small scales. The structure seen is assumed to be the result o f gravity acting 

on small primordial perturbations in density. The problem is explaining a mechanism 

to produce these perturbations.

In the inflationary model these initial perturbations in the density o f the Universe 

can be attributed to quantum fluctuations. The uncertainty principle means that, 

even in a vacuum, the energy required to create a particle-antiparticle pair can be 

‘borrowed’ for a short period of time. These pairs are continually phasing in and out of 

existence, and such an event is called a quantum fluctuation. During inflation quantum 

fluctuations can be frozen in, leading to small perturbations in density. After inflation 

has ended gravity acts on these perturbations to form the structure seen today.

10



Although offering a self consistent theory of the early Universe can inflation be 

corroborated observationally? Certainly some strong predictions arise, as previously 

discussed an inflationary period will lead to a spatially flat universe, also if initial 

perturbations were caused by quantum fluctuations then these should be scale invariant 

and Gaussian. The strongest piece of evidence to support inflation would be to observe 

the correct form of gravity-wave background. However this is way beyond current 

technology and will probably remain infeasible for some time. Clearly there is much still 

to understand about inflation, however despite this it provides an excellent foundation 

of understanding and is the canonical view of the astrophysical community today.

1.1 .6  Stru ctu re  form ation and growth of perturbations

The structures seen in the Universe today are thought to be the result o f gravity acting 

on small initial perturbations. A region of overdensity in a homogeneous background 

will, with time, become increasingly overdense. This is because any matter surrounding 

the perturbation will experience a gravitational attraction towards it. This process of 

regions growing ever more overdense does not continue indefinitely due to the effects 

of pressure and dissipative processes becoming important.

T h e  grow th o f linear perturbations

Before perturbations become large enough to pass into the non-linear regime the treat­

ment of their evolution can be approximated with a Newtonian treatment. This is 

because Birkhoff’s theorem shows that a perturbed region will evolve, as governed by 

the Friedmann equations, as if it were an independent universe. To study the evolution 

of density perturbations it is useful to define a fractional density perturbation as

In a flat matter dominated universe the Friedmann equations for a perturbed region
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(with density pp) and the background universe give

r r 2 _ 8 7 T Gp r r 2  _  8 7 T Gpp kpC2

3 p 3 R2 ' 1 J

If this perturbation is small then the expansion rates and scale factors will be very 

similar for both cases and the resultant expression for 5 is

kpc
W h 25 =  (L18)

So, since H  oc p oc R , it can immediately be seen that in an Einstein de-Sitter 

universe

S oc (1 +  z )~ x. (1-19)

A similar argument for a general cosmology results in a much more involved cal­

culation. This evolution of perturbations can be quantified by a linear growth factor 

defined as

m  =  s$ y  ( 1 .20 )

where

a =  1 /(1  +  z). (1 .2 1 )

in general exact solutions for D(a) can only be obtained by numerical integration

of a function determined by the Friedmann equation (Heath 1977) given by

5n m da [ a { da'\~3 ,D(“] = I U) da’ (L22)
where

( ^ ) 2 = l  +  f im ( " l J  + ^ a («2 - 1 ) -  (1-23)

It is often useful to quantify the modern day value of the linear growth for any given 

cosmology relative to the growth factor for an Einstein De-Sitter universe such that

( Q  o  \    h ~ (c  =  0 ,  D m ,  & a )  ,  ,  . .

g { n m , nA) -  ^  = 0> fijn = it = o) ■ ( • )
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Where the values of 5 for the different cosmologies are equal at high z. An excellent 

approximation has been shown (Carroll, Press k  Turner 1992) to be

g(Q m, DA) ~  — Dm D)5/ 7 — Da +  (1 +  Dm/2) (1 +  Da/70)
- l

(1.25)

1 .1 .7  D ark  m atter

Much o f the matter in the Universe appears to be dark and its presence can only 

be inferred by its gravitational interaction. Galaxy rotation curves and gravitational 

lensing analysis for example show that the matter which is actually visible accounts 

for only a very small fraction of the total mass in galaxies. The important question is 

clearly what actually comprises this dark matter? If the dark matter is in the form of 

baryons then it is likely to be massive compact halo objects (MACHOs) such as white 

dwarfs or brown dwarfs. However using the ratio of hydrogen to deuterium to determine 

a value for the amount o f baryons present in the Universe gives Dfc =  0.019 ±  0.0024 

(e.g. Tytler et al. 2000), whereas Dm is thought to be about 0.3. This implies that 

most dark matter is non-baryonic. There are two main candidates for the form of non- 

baryonic dark matter, cold and hot (meaning it is travelling relativistically at the time 

of recombination).

Cold dark matter (CDM ) candidates consist mostly of weakly interacting massive 

particles (W IMPs) such as heavy neutrinos. Structure formation theories seem to de­

mand that at least some o f the dark matter is cold. A  favourable W IM P candidate to 

make up this component is the neutralino, a particle which is predicted by supersym­

metry.

Hot dark matter (HDM) refers to particles which are moving relativistically. An 

example o f a HDM candidate is the light neutrino which from a particle physics per­

spective is far more desirable than a heavy one. However the properties of HDM do 

not correlate well with structure formation theories so both forms of dark matter bring 

with them their own pros and cons.



1 .2  T h e  co rre la tio n  fu n ctio n  and pow er sp e c tru m

This section outlines the statistical definitions of the expressions encountered later. 

The correlation function and power spectrum defined in this section give a formal 

mechanism via which the inhomogeneities in the mass density field o f the Universe can 

be described.

The correlation function of a density field can be defined as

£(x) =  (¿ (x O ^ x ' +  x )} , (1.26)

where () represents an average over some normalization volume V,  and 6(x)  is the 

fractional density perturbation defined in equation 1.16.

It is usual to then express 5(x) as a superposition o f plane wave modes

<S(x) =  ] T h ke- ik'x , (1.27)
k

where

2 7T
k =  (TLX, ! ^z) '̂ •x,y,z — 1 , 2 , . . .  (1.28)

Although this treatment is not strictly valid if space has curved geometry, the

corrections needed are small on almost all scales and can be neglected.

Substituting equation 1.27 into 1.26 and noting that since £(x) is a real field, one 

of the <Ts can be replaced by its complex conjugate gives

f W  =  ( E E i I 4 . e - <k- k' , - * V ik' * \  . (1.29)
\ k k ' /

Applying periodic boundary conditions (so all k ' /  k terms average to zero) and 

expressing the equation as an integral rather than a sum gives the result

£(x) =  ^ 3  J (|4|2) e - ik-x d3k. (1.30)
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It can now be seen that the correlation function is the Fourier transform of (|hk|2) 

which is referred to as the power spectrum, -P(k), defined such that

P ( k ) =  lim <|hk|2). (1.31)
V  —>-oo

This expression can be simplified using the properties of isotropy. In an isotropic 

universe there can be no preferred direction and so only the modulus o f k is important 

thus P(k )  =  (|5k|2) =  (|^|2). Therefore the angle integration can be performed (e.g. 

Gradshteyn & Ryzhik 1994) giving

i w = (2 w !  i k '( 1 ' 3 2 )

Having defined these quantities it is straightforward to define their one dimensional 

counterparts. Isotropy requires the functional form of the correlation function to be 

the same in both cases so £(&•) =  £ (x ). However by considering the ID  and 3D Fourier 

transforms o f £, it can immediately be seen that the ID and 3D power spectra must

have different functional forms. The relationship between them was shown (Lumsden,

Heavens & Peacock 1989) to be

P w (k )  =  —  I "  p (y)y dy, U-33)

p (k) =  (1.34)

Throughout this thesis any power spectrum term without a subscript will refer to 

the 3D form and the ID form will always be marked as such. The power spectrum is 

usually expressed in a dimensionless form as the variance o f 6 per logarithmic bin

A T > s  ( 2t y4 r f F <‘ > S '  (L35)

with the 1 dimensional equivalent given by

A 2D(A;) =  - k P lV {k). (1.36)
7T

A value o f A 2(k) =  1 corresponds to order unity density fluctuations from modes in 

the logarithmic bin about wavenumber k.
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Up until now the discussion has concentrated solely on continuous distributions. In 

many real and simulated data sets, a continuous variable is sampled at regular intervals. 

Crossing from a continuous to a discrete distribution has a non trivial effect, where a 

Fourier transform is now replaced by a fast Fourier Transform (FFT). In the case o f a 

real field, a:,-, sampled at N  points where i =  0,1, 2,..., N  -  1, the FFT components, 

Xk, can be calculated by

^  =  ^ E ^ x e x p  (1-37)
j =o v ‘ 7

with the inverse relation

x i =  ik  x exp ■ (L38)
k= 0 '  7

For example later work frequently refers to the flux power spectrum which is ob­

tained by taking an FFT of the spectra using IV flux points, f j  and then squaring the 

resultant //Fs to give P id .f-

It should also be noted that a correlation function can be defined for a distribution 

o f discrete objects as well as a field. If there is a density of objects n, then £(x) gives 

the excess probability of finding an object in an element dV  centred at x  from another 

one. Once again isotropy means only the magnitude of x  is important and the direction 

can be ignored

dp =  n [1 +  £(#)] dV. (1.39)

Although both forms o f £(x) will be used the definition will be clear from the 

context.
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1 .3  T h e  p h y s ics  o f ab so rp tio n

This section contains an outline to the physics involved in the processes o f absorption 

and emission within the classical regime. The quantum mechanical basis for these 

processes is reviewed in appendix A.

1.3 .1  E m issiv ity  and opacity

Classically the change of specific intensity Iv of light passing through a thickness dx of 

an absorber can be described by the equation

— • =  — +  ei/i (1.40)
dx

where /i„ and ev are the opacity and emissivity o f the matter in question. The 

emissivity relates to the Einstein Auj coefficient (see Appendix A) since the energy 

emitted will be equal to the number of transitions occurring multiplied by the energy 

of each o f the corresponding photons. Since this process is isotropic, dividing this 

energy by the total solid angle gives the specific intensity

/
1\ V

eu d f  =  nuA u\-~. (1.41)

The integration accounts for a small spread of energy about vu\. This spread can 

be written as a function such that J 4>v du =  1 , giving

hv
tv =  nu .lu! o u. (1.42)47T

Similarly the optical depth can be defined in terms of opacity as

t„ =  J  dr„ =  j  dx. (1-43)

By a similar argument to the one given for emissivity it can be shown that is

related to the Einstein B\u coefficient, or alternatively the cross section by the equation

=  n\a4>v (1-44)
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Often the eu term is negligible in which case equation 1.40 integrates to

/„ (* )  =  /„ (  0 )e -T". (1.45)

So far the arguments have referred to the density of absorbers n\. When studying 

absorption features what is important is the total number of absorbers encountered 

thus it is more usual to refer to the column density N  defined as

neutral hydrogen.

1.3 .2  Line w idth

Any transition between states appears to involve a well defined energy difference K&%. 

However there will always be some spread around this energy due to the uncertainty 

principle which can be stated as

where A E  is the uncertainty in the measurement and £ is the time available to 

make the measurement. Since t ~  1 /A ui, A E  ~  TiAu\ which gives a finite width to any 

absorption line resulting from a given transition, this width is known as the natural 

width. Applying perturbation theory to the atomic system in question allows the 

shape o f the frequency distribution to be found (e.g. Landau & Lifshitz 1982). This 

calculation shows the natural response shape to be a Lorentzian, given formally by

(1.46)

It is usual to measure column densities in cm 2 and to mark N  with a subscript to 

show the identity o f the absorber. iVm for example represents the column density of

A E.t >  h (1.47)

dp(u) r  l
du 2tt (u> — cofi)2 +  (T /2 )2

(1.48)

Where F is the de-excitation rate o f the upper level and is equal to A ui-

Often line profiles are dominated entirely by Doppler broadening. In this case the 

random motion of gas particles gives rise to a Doppler shift so any frequency of light
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within a small range o f zzuj can be absorbed. The function <j)udv then equals P(v)dv,  the 

fraction o f atoms, assumed to have the same mass, m, whose radial velocities lie within 

the range dv of v. In thermal equilibrium the system has a Maxwellian distribution of 

velocities

where A corresponds to the wavelength associated with the absorption and b is 

known as the Doppler parameter, which is given by

The absorption feature obtained from a Maxwellian distribution o f velocities is 

known as a Voigt profile. This is just the absorption profile seen when the optical 

depth is given by the Voigt function. This function is found at each point by the 

convolution o f a Gaussian, corresponding to the motion o f the gas, and a Lorentzian

Typically the width of the Gaussian far exceeds the natural width. The centres of 

Voigt profiles are often dominated by the motion of the gas and thus look Gaussian. 

However in high column density systems the Lorentzian will dominate the profile at 

the edges, leading to the presence of prominent damping wings.

When the true line profile cannot be fully resolved, a parameter known as the 

equivalent width is often used, defined by

The integral extends over the line and A represents the wavelength at the centre of 

the line. W\ measures the fraction of the energy removed from the spectrum by the 

absorption line. It represents the width a line which extends to 0, centred on A, would

\ r)
<pu{Au) -  XP[v) =  e~(fc) (1.49)7T<

(1.50)

centred at the point of interest, corresponding to the natural width. This results in an 

expression for the Voigt function which is given by

e - P  /b2 dv
(1.51)

(1.52)
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NHI /  cm 2

F igu re  1.3: The curve of growth, or relation between Doppler 
parameter and equivalent width, for the Ly-a transition. There are 
three distinct regions. In the two extremes of column density the
equivalent width has a single value irrespective of the value of the
Doppler parameter. Conversely the equivalent width for features with 
intermediate column densities are highly dependent on the value of 
the Doppler parameter.

have if it removed the same fraction of energy as the actual absorption line. It can be 

readily seen that W\ is unaffected by changes in resolution, on the condition that each 

individual feature can still be resolved.

1.3 .3  T h e  curve of growth

The curve o f growth is the name given to the relationship between the equivalent width

of a line and its column density for different values of the Doppler parameter. The curve 

of growth for the Ly-a transition, for b — 5, 10, '20 and 30 km s- 1 , is shown in figure 

1.3. As seen on the diagram there are three distinct parts to the curve:
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Low column density - in this case the absorption line is optically thin and the 

equivalent width is independent of b. This is known as the linear part o f the curve 

of growth. Determination of Nm  from W\ is easy and reliable, for features identified, 

given the level o f signal to noise.

The logarithmic region - here there is a strong dependence of TVhi on b for any given 

W\. This is the most difficult regime to determine Nui and b. Reliable results can only 

be obtained if more than one line from the same absorber are used.

High column density - absorption lines in this part o f the curve of growth are 

characterized by prominent damping wings. Here the column density can be found 

very accurately given W\, which is independent of b.

1 .3 .4  T h e  Ly m a n -a  transition

The Ly-o.' transition refers to the change from the first excited state to the ground 

state in the Hydrogen atom. This accounts for the vast majority o f light absorbed by 

the IGM in quasar spectra as will be discussed in the following section. Applying the 

theory of quantum mechanics to a Hydrogen atom allows the calculation o f both the 

restframe wavelength of this transition, 1216 A, and of an expression for the optical 

depth (as demonstrated in appendix A).

t u — 1.11 x 10- 2./Vhi^i/- (1.53)
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1 .4  T h e  L y m a n -c i forest

Studies in astrophysics have a range of epochs which can theoretically be observed. 

Galaxy and cluster surveys offer information about the Universe today (z ~  0), whilst 

the CMB provides a view of the very early Universe (z ~  1000). However the interven­

ing epochs are not so easy to observe. As redshift increases the apparent magnitudes 

o f objects tends to increase and they become more difficult to observe, so at high z 

many things are impossible to see with current telescope technology. However very 

luminous objects which are still observable at high redshift (z >  5.0) such as quasars 

can indirectly offer information about the intervening redshifts. Although quasars are 

a huge area o f study in their own right with many interesting features, here these issues 

will be ignored, and they will be regarded simply as high redshift bright light sources. 

Lynds (1971) discovered that quasar spectra contained hundreds o f absorption lines 

from ‘clouds’ o f neutral hydrogen gas, which comprise the IGM. Each cloud absorbs 

light at the wavelength of the redshifted Ly-a transition. These systems appeared to be 

uniformly distributed over the complete range between the lowest observable redshift 

up to that o f the quasar being studied. This entire system of clouds has become known 

as ‘The Ly-a Forest’ .

Historically the Ly-a forest has been analysed in terms o f blended line profiles. In 

this process different cloud profiles are fitted, to match the observed continuum, in 

order to gain information about the cloud system. Each cloud can be characterized 

by three parameters, its redshift, column density and Doppler parameter. Although 

this process o f fitting lines can sometimes be degenerate, the technique has enjoyed 

considerable success. This picture has now been superceded by what is known as ‘the 

cosmic web’ . Here rather than there being discrete clouds along a line of sight there 

is an evolving network of filaments and sheets. The clouds, previously thought to be 

discrete, are simply the most overdense parts o f the web. An illustration of this is 

shown in figure 1.4 which shows an 77-body simulation of the Ly-a forest (Zhang et 

al. 1998).

The IGM is thought to be highly ionized (Gunn & Peterson 1965), with a neutral 

component ‘ the cosmic web’ of predominately hydrogen but with some metals present.
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Figure 1.4: An jV-body simulation by Zhang et al. (1998) show­
ing the structure of neutral hydrogen in the Ly-a forest. Density 
variations are shown in colour.

Despite this picture o f the IGM, treating the Ly-a forest as a set o f discrete clouds is a 

good approximation, and remains a valuable method o f analysis. There follows a brief 

review o f some broadly accepted results o f previous work on the Ly-a forest.

1.4.1  F lu x  decrem ent and mean optical depth

One observable property o f the forest is a measure o f the mean fraction o f the quasars’ 

continuum that is absorbed, D , or alternatively the mean optical depth, r . These 

quantities are defined as

D =  / l  — =  (1 — e~T) =  1 — e~f , (1.54)
\ Jcont /

where f Qbs and / cont are the observed and continuum flux respectively. Although 

this may seem like a straightforward calculation there are some complexities. Firstly 

the quasar continuum flux is never known precisely and has to be estimated, therefore 

introducing errors when calculating the absorption. Also some o f the absorption seen 

may be due to metal lines, which are hard to identify so are often wrongly included. 

Typically values are quoted for D a , the flux decrement between Ly-a and Ly-/3 (rest 

wavelength 1026 A) transitions. Quoted values vary from D a ( z  =  3) =  0.36 (Press,
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Rybicki & Schneider 1993) to D A(z =  3) ~  0.2 (Zuo & Lu 1993).

1 .4 .2  Evo lution with redshift

As the Ly-cr forest is studied over a huge redshift range it is natural to expect to see 

evolution in the forest with redshift due to changing cosmological conditions. However 

the increase seen in the number of Ly-a  absorption lines as z  increases is not consistent 

with a non-evolving cloud population. Observationally a strong 2 dependence is seen 

with high redshift quasars showing very much more absorption than their low redshift 

counterparts. This dependence can be expressed in the form of a power law

densities or equivalent widths of the clouds being considered. Calculating the exponent 

by line counting is a difficult task and a broad range of values have been quoted, some

0.5, as long as there are enough lines in the sample to overcome small number statistics. 

At the other extreme, values as high as 7  =  2.9 ± 0 .3  (Cooke, Espey & Carswell 1997)

exponent without directly counting lines suggest a high value, 7  =  2.46 ±  0.37 (Press, 

Rybicki & Schneider 1993), or consider a broken power law to be a better fit to the 

data. (Zuo & Lu 1993). It is now clear observationally that a single power law does

redshifts. Observations with the Hubble Space Telescope reveal that the steep decline 

in cloud number with decreasing redshift does not extend to zero, instead a much flatter 

evolution for 2 <  2 is seen (Impey et al. 1996). High redshift work z >  4 suggests the 

evolution accelerates with 7  becoming as high as 5.5 (Williger et al. 1994).

(1.55)

Here the value o f the first term on the right hand side is dependent on the column

as low as 7  =  1 .7±1.0  for lines where the rest W\ >  0.2 A (Atw ood, Baldwin & Carswell 

1985). The authors find that the value of 7  is dependant on W\ but not by more than ±

have been calculated, where all values of W\ were included. Methods o f finding the

not adequately describe the entire range of redshift from zero up to the highest quasar
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1.4 .3  T h e  colum n density distribution function

It was suggested (Carswell et al. 1984) that the number of clouds per unit Nui interval 

fitted a power law distribution

(IN a
—  oc NHf ,  ¡3 =  1 .68 , 13 < log Nm <  15. (1.56)

Results from high column density surveys were studied and the distribution in these 

systems was found to be well fitted by the above relation with ¡3 =  1.5 (Tytler 1987). 

Work with Keck spectra seems to show that the power law can be extended over a 

range of ten orders o f magnitude from 1012 to 1022 cm -2  (Kirkman & Tytler 1997). It 

should be noted that these results are obtained assuming that the blending of the low 

column density lines is being handled correctly (Hu et al. 1995).

Evidence for departure from this single power law has been presented (Meiksin & 

Madau 1993; Giallongo et al. 1993) and cannot be discounted. Departure from a single 

power law could explain why individual high resolution spectra seem to suggest high 

values o f (3 (Rauch et al. 1992; Atwood, Baldwin & Carswell 1985).

1 .4 .4  D opp ler param eter distribution

The width o f an absorption feature can lead to a measurement o f b, the Doppler pa­

rameter. Typically values of b fall between about 15 - 45 km s_1 with a median value 

of about 30 - 35 km s-1  (Carswell et al. 1991; Rauch et al. 1992).

There has been some speculation as to a correlation between column density and 

Doppler parameter, where high values of Nm  correspond to high values of b. Initially 

this was explained as the effect of noise in the spectra distorting b measurements leading 

to underestimation. Despite this, high resolution spectra seemed to suggest a corre­

lation does exist where a minimum value of b has a weak dependence on IVhi (Hu et 

al. 1995). Kirkman & Tytler (1997) also found a similar trend which is well fitted by
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the expression

bmin =  14 +  4 X log ^ km s X' (1.57)

1.4 .5  T h e  equation of state

The physical processes governing the behaviour o f the IGM are thought to be well 

understood. iV-body simulations offer results in close agreement with observations 

(e.g. Cen et al. 1994; Zhang, Annios & Norman 1995; Hernquist et al. 1996; Zhang 

et al. 1998) and so the essential physics are thought to be well captured. These sim­

ulations also demonstrate that the majority of the evolution of the Ly-a  forest can 

be attributed to the effects of universal expansion. The key physical processes are 

heating by photoionization coupled with cooling from radiative processes and adiabatic 

expansion.

The temperature-density relation was studied semi-analytically by Hui & Gnedin 

(1997). A model was used where the density evolution was found from the Zel’dovich 

(1970) approximation, while the thermal and chemical evolution were solved numeri­

cally. This model was then tested against full hydrodynamic simulations and found to 

be in good agreement for the low densities found in the IGM. The physical processes 

occurring in the IGM lead to a tight correlation between temperature and baryonic 

density given as

T  =  To(l +  ¿>)7_1. (1.58)

The ranges o f these parameters shown to be physically reasonable (Hui, Gnedin & 

Zhang 1997; Hui & Gnedin 1997) are, 103 K < To < 104"5 K, and 1.2 <  7  <  1.7. The 

values of these parameters depends 011 the cosmology and reionization history of the 

Universe. Effects such as shock heating and feedback from star formation are thought to 

be relatively unimportant. The most likely candidates to provide the ionizing radiation 

are quasars and young stars, so the evolution of quasars and the star formation history 

of the Universe are key factors in understanding the reionization history, and thus the 

evolution o f the IGM.
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1.4 .6  M orphology

For over a decade now the properties of the Ly-cr forest have been usefully predicted by 

hydrodynamical simulations. Furthermore irrespective o f the cosmological parameters 

used, these simulations give rise to a generic picture o f the Ly-a forest (e.g. Rauch 

1998). At high redshifts the evolution o f the IGM is largely governed simply by the 

Hubble expansion and change in the ionization rate of the gas. At these times the 

absorption is dominated by sheet-like structures. These sheets are similar to small 

pancakes arising in the Zel’dovich approximation, where collapse o f triaxial structures 

along the shortest axis is predicted, but are subtly different. The sheets are actually 

present in the early geometry of the density fluctuations in 3 dimensions and the features 

are merely sharpened by non-linear dynamics (e.g. Bond et al. 1996).

At lower redshifts absorption arises not only from sheets but also filament struc­

tures. Low column density systems (IVhi <  1014 cm -2 ) are associated with the sheet­

like structures whose characteristic proper length scale is typically between about one 

hundred kpc and one Mpc.

Higher column density features are seen to correspond to filamentary structures. 

These filaments are o f relatively uniform thickness (~  40 - 100 proper kpc) and extend 

over distances of many megaparsecs. These filaments are typically found at the inter­

section o f the sheets discussed above, resulting in a morphology of interlinked systems, 

leading to the terminology ‘cosmic web’ (first introduced by Bond et al. 1996) being 

used to describe the IGM. As the column density increases still further the geome­

try of the absorber tends to become more spherical. As column densities reach about 

1016 cm -2  the absorbers are almost completely spherical and correspond to minihalos. 

On scales of many Mpcs the halo systems tend to align along filaments in a similar way 

to the distribution of dark matter in JV-body simulations.

A key result from the simulations which matches the observations well is the bro­

ken power law found for the evolution of the number o f absorbers with redshift (e.g. 

Muecket et al. 1996) who found that for systems with A/hi >  1014 cm - 2 , 7  ~  0.6 

for z < 1.5 switching to 7  ~  2.6 for 1.5 <  2 <  3.0. This break arises as the struc­
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tures dominating the absorption change with time. The sheets which dominate high 

redshift absorption are expanding with time leading to a. decrease in column density. 

As these systems drop below the detection threshold, the filaments begin to dominate 

the absorption. Although the column densities associated with these systems are also 

dropping, they were originally higher and so take longer to drop below the detection 

threshold.
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1 .5  M e a su rin g  th e  m ass d e n sity  pow er sp e c tru m

This section contains a brief review of the most important ways in which the mass 

power spectrum can be determined from observational data.

1.5 .1  G a laxy surveys

The mass power spectrum can be found from galaxy surveys (e.g Feldman, Kaiser 

& Peacock 1994), by assuming the galaxies offer Poisson indicators o f mass. To do 

this the weighted galaxy distribution is converted to an overdensity distribution. The 

weighting is introduced so that small volumes containing large numbers of galaxies 

do not unduly affect the uncertainty of the power spectrum. The conversion to an 

overdensity distribution is done by subtracting off a synthetic random catalogue. Once 

this has been done the effect of the window function must be considered. Since the 

analysis attempts to measure a random field of infinite extent with a limited survey 

volume, what is actually measured, _P0bs, is a, convolution of the actual power spectrum 

and the window function, Wk,

Pobs =  Ptrue * \Wk\2- (1.59)

Therefore to obtain an accurate measurement of the power spectrum the geometry 

o f the survey must be taken into account, and this deconvolution performed.

The most recent application of this method was performed by Percival et cil. (2001) 

with a sample o f ~  147 000 galaxies from the 2dF Galaxy Redshift Survey (2dFGRS). It 

was also shown, by comparisons with simulations, that the power spectrum is coincident 

to the linear density perturbations on certain scales (0.02 £ k & 0.15 /¿Mpc“ 1).

However there are difficulties associated with using galaxy surveys for this work. 

For example the discrete nature of galaxies gives rise to shot noise, though the large 

number o f galaxies used in Percival et al. (2001) means the effects should be negligible. 

Observational difficulties such as redshift-space distortions can also influence the data. 

The radial position of a given galaxy is inferred by its redshift. To do this it is assumed
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that the redshift comes about solely from the Hubble flow, although any peculiar veloc­

ity that a galaxy has will contribute to the redshift measurement, therefore introducing 

errors when inferring its distance.

More importantly the process o f galaxy formation is not well understood and the 

assumption that galaxies offer a Poisson sampling of the mass field is not necessarily 

a good one. This introduces an uncertain, possibly scale dependent, bias parameter 

between the mass and galaxy distributions. However recent work (Verde et al. '2001; 

Lahav et al. 2001) suggests that the 2dFGRS does, on certain scales, offer a Poisson 

sampling o f the mass field and thus this bias parameter is very close to unity. There­

fore the recovered galaxy power spectrum should match the underlying mass power 

spectrum well.

1.5 .2  G ravitatio nal leasing

One o f the predictions made by general relativity is that the path of light is affected 

by the local mass distribution. This effect is known as gravitational lensing which is 

a rapidly developing field which can be applied to determine cosmological parameters. 

For the study o f large scale structure the weak lensing regime is important. Here rather 

than a large deviation in the path of light, caused by an isolated concentration o f mass, 

being o f interest, the small deviations caused by the large scale structure are studied. 

This effect is known as cosmic shear and a simulation by Colombi (2000) of this is 

shown in figure 1.5.

The correlations of shapes in observed distant galaxies can be used to infer the mass 

distribution through which the light has passed. The huge advantage offered by this 

method is that it probes the mass, regardless of its physical nature, directly. However 

there are also considerable drawbacks. Any residual distortion due to cosmic shear is 

intrinsically very small and the systematic errors in the observations are generally far 

more significant. Therefore very careful indentification and removal o f the systematics 

is crucial. Furthermore, at the current time, the quality and quantity of the data is 

insufficient to impose stringent constraints on the mass power spectrum.
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Figure 1.5: A simulation of the effect of cosmic shear on light 
from distant objects by Colombi (2000). The matter concentration 
of a region is indicated by its brightness, while the blue dots represent 
galaxies. Due to gravitational lensing the path of the light emitted 
is determined by the mass distribution through which it passes. The 
resulting distortions in the shapes of the observed galaxies may be 
used to infer the large scale structure of the Universe.

However, in the future, as the data improves and the analysis techniques are refined 

this field should become one of the most powerful probes o f the matter distribution in 

the Universe.

1.5 .3  T h e  cosm ic m icrow ave background

The CMB allows the opportunity to study the correlations o f inhomogenities in the 

very early Universe. The detected temperature inhomogenities (Smoot et al. 1982) can 

be used to set constraints on large scale density variations. The temperature power 

spectrum o f the CMB can be related to the mass power spectrum since the temperature 

and mass perturbations correspond to each other.

The dominant large scale effect was originally derived by Sachs & Wolfe (1967)
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after whom it is named. The perturbations in gravitational potential at the surface 

o f last scattering has two effects. The first is that photons travelling from within a 

potential well are redshifted as they climb out. A second, more subtle, effect is that 

the gravitational potential perturbations cause varying amounts o f time dilation, thus 

causing the age, and the temperature, of the Universe at the surface o f last scattering 

to vary. These effects combine to give the expression

ST 5$
T  3c

2 . (1.60)

The gravitational potential, 4>, in the above expression can be related to be mass 

density via Poisson’s equation

V 2S< =  47iGpSk- (1-61)

Other processes such as the Doppler effect of photons scattering off moving plasma 

and adiabatic expansion must also be considered. The inferred mass power spectrum 

is dependent on several factors such as the Hubble constant, 0 , the baryon fraction 

and the contribution of tensor fluctuations (White and Bunn 1996). For a given set of 

cosmological parameters a matter power spectrum can be calculated using an algorithm 

called CMBFAST (Seljak & Zaldarriaga 1996).

1 .5 .4  T h e  L y -a  forest

This section contains a review o f the papers which lay the foundation upon which the 

work in this thesis is based.

C ro ft  et  al. (1998)

This paper argues that the Ly-a forest could provide an elegant way to recover the 

shape of P{k).  It is then argued that once the shape is known, the amplitude can be 

determined by evolving a number cosmological simulations with varying amplitudes of 

P(k).  The correct amplitude is then the amplitude corresponding to the simulation 

which successfully reproduces the observed power spectrum of transmitted quasar flux.



Is is argued that this method circumvents many of the problems faced when measuring 

P (k ) by different methods, for example, there are none o f the bias parameters or shot 

noise problems associated with calculating the power spectrum from galaxy surveys. It 

also has the advantage of probing the power spectrum at high redshifts. The effects of 

non-linearity at high redshift are less pronounced than at lower redshifts, and thus a 

direct measurement of the linear regime is possible for a wider range o f scales.

The method for recovering the shape of the power spectra exploits the fact that the 

state of the gas in the IGM is largely governed by well understood processes, namely 

radiative cooling coupled with a further adiabatic cooling due to the expansion of the 

Universe, against heating due to photoionization by the ultraviolet (UV) background. 

This leads to a situation where the optical depth of the Ly-a forest is directly related 

to the underlying baryon density (Bi, Ge & Fang 1995; Hui, Gnedin & Zhang 1997). 

This is implied since the temperature seems very well fitted by a power law relation

T =  T0 ( ^ J  , (1.62)

where pb is the baryonic density (Hui & Gnedin 1997). This relation only holds 

in the regime where pb/pb is small. When the pb/pb — 10 regime is reached there is a 

range of temperatures for any given density, depending on the extent that the gas has 

been shocked (Meiksin 1994; Theuns et al. 1998). The parameters To and a  depend on 

the reionization history o f the Universe and the spectral shape of the UV background. 

The density regime o f the Ly-a forest is such that any pressure gradients present should 

be small compared to gravitational forces. This leads to an environment where the gas 

traces the structure of the dark matter, meaning pb oc p. Since the gas is highly ionized 

and dominated by photoionization it follows that

Tiffl oc r _1a ( T ) n 2, (1.63)

where tchi and n represent the densities of neutral hydrogen and total gas, F is the 

photoionization rate of the UV background and a(T )  is the recombination coefficient. 

Inputting an expression for a (T ) which is proportional to T -0 '' (Osterbrock 1989) 

produces a tight relationship between optical depth and baryon density where by

r  cc p2bT - ° - ‘ cc p'l where /3 — 2 -  0.7a. (1-64)
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Although the argument neglects many effects, for example shock heating, collisional 

ionization and peculiar velocities it is claimed these do not affect the relation signifi­

cantly. Given this relationship it becomes possible to map a continuous density field 

from the continuum of a quasar spectrum. This process cannot be achieved by direct 

inversion, firstly as some of the parameters are not known precisely and secondly be­

cause inferring an accurate value of r  from the flux becomes virtually impossible as 

the flux level approaches zero. Instead of attempting this inversion this paper proposes 

the use o f Gaussianization. This is a process introduced by Weinberg (1992) which 

exploits the fact that the primordial density held is expected to a have a Gaussian 

probability distribution function (PDF). Although the density held evolves with time 

it tends to preserve its relative order, for example overdense regions remain overdense. 

Gaussianization exploits this to try and map a density held back to its original form. 

This process can be applied to quasar spectrum by ranking in order the normalized 

flux values and then assigning a density value which corresponds to a Gaussian PDF. 

The resulting density values obtained are only relative, and it is for this reason that 

only the shape o f the power spectra can be recovered. Once the shape of Piv(k)  has 

been recovered in this way, the three dimensional form, P(k ),  can be obtained via 

differentiation (equation 1.34).

This procedure is applied to a quasar spectrum, but the statistical uncertainties 

are large since only one quasar is used. It is noted on scales below about '2ir/k =

1.5 h~l M pc (comoving) this method cannot be reliably applied as the effects o f non­

linear gravitational evolution, thermal broadening and peculiar velocities dominate. It 

is also questioned whether an upper limit for the reliability of recovery at large scales 

might be set by the discreteness of the sources that make up the UV background.

H u i (1999 )

In this paper the affect of redshift-space distortions is considered in more detail. This 

problem arises since any comoving distances used are calculated from redshift informa­

tion. Clearly any peculiar velocities will introduce an error when converting between 

these two parameters. In general these distortions affect the flux power spectrum to 

make it anisotropic. Therefore recovering the three dimensional mass fluctuation power
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spectrum from the one dimensional flux power spectrum becomes a more involved pro­

cess. This paper presents a modification to the Croft et al. method to account for this.

where k̂  represents the wave vector along the line o f sight and k, as usual, is the 

magnitude of k. Recovery of the three dimensional mass fluctuation power spectrum 

now requires inverting equation 1.65. Hui argues that for practical purposes it is nec­

essary to truncate the infinite vectors involved. However since P (k)  is in general a 

function which decays rapidly with k at high A, a practical limit can be chosen for 

truncation which leads to a small error in the final answer. This paper shows that 

excluding the distortion kernel, which corresponds to W Fp =  constant, tends to lead 

to an underestimation of the steepness o f the mass power spectrum.

C ro ft  et  al. (1999)

This paper applies the method from Croft et al. (1998) to a sample of 19 quasar 

spectra. A result for the measurement of P(k)  is given between the range '2n/k ~  

450 — 2350 km s . The results are given in the form o f the equation

where n =  -2 .2 5  ± 0 .1 8  with an amplitude A 2 (fcp) =  0.57+g'is, for the chosen pivot 

wavenumber kp =  0.008 (km s-1 ) - 1 .

It is also demonstrated that the effect o f artificial correlations produced by variations 

in the UV ionizing background are negligible.

A distortion kernel W Fp(k\\/k, k) is introduced so that the flux (denoted by subscript 

F) and mass power spectra are now related by the equation

(1.65)

( 1 .66 )

35



M cDonald et al. (2000)

In this paper the usefulness of the process of Gaussianization is called into question. It 

is claimed that this process can amplify noise effects, and that its role in improving the 

recovery o f the mass fluctuation power spectrum is questionable. The authors therefore 

prefer to omit this step and first calculate the one dimensional power spectrum of the 

transmitted flux Pid,f(&) with the Lomb periodogram technique (Press et al. 1992). 

They then use numerical simulations to study the relationship between the flux power 

spectrum and the mass density power spectrum. They relate the flux and mass density 

power spectra with the formula

where the three dimensional power spectrum of mass density perturbations is given 

by a functional form, with modified parameters, which is known to fit a cold dark 

matter model well (e.g. Bardeen et al. 1986). The authors note that the equation used 

agrees well with Pid,f(& ) for the low k regime (k <  0.04 (km s“' 1) " 1). Although it is

power spectrum on small scales than a ID Gaussian smoothing, the 3D smoothing does 

not return the correct value of the spectral index n o f the model used in the simulation. 

Fits are obtained for the observations to this formula treating .4p, vc and n as free 

parameters. Applying this method to a flux power spectrum from simulations they 

find an error in recovery of the spectral index of A n =  —0.02 ±  0.07 and assume that 

the same offset should be seen in the observations. They use this as a correction to the 

observed slope and add the error in quadrature. This method is applied to 8 quasar 

spectra, with the slope of P(k)  measured to he n — — 2.55 ±  0.10 with an amplitude of 

A 2{k) =  0.72 ±  0.09, at k =  0.04 (km s-1 ) - 1 .

Feng Sz Fang ( 2 0 0 0 )

The usefulness o f the Gaussianization process is again under scrutiny in this paper. The 

authors claim that the non-Gaussian behaviour o f the flux still remains even after this 

process is applied. Any recovered mass power spectrum is shown to be systematically 

lower than the initial mass power spectrum, on certain scales, if this is the case. A

(1.67)

noted that the 3D Gaussian smoothing used in this paper provides a better fit for the

36



modification to the usual Gaussianization method is presented which overcomes this 

problem. The method involves using a discrete wavelet transform in conjunction with 

Gaussianization and a summary o f the prescription given is:

1) Use the conventional Gaussianization technique to recover the mass field. Nor­

malize this field so simulations reproduce the observed flux limits.

2 ) Calculate the wavelet function coefficients of the recovered density field on each 

scale.

3) For each scale make a Gaussian mapping of the coefficients to produce unnor­

malized wavelet function coefficients.

4) Normalize these new coefficients by requiring that the variance matches that of 

the original coefficients.

5) Randomize the spatial sequence of the Gaussianized coefficients.

6) Use the coefficients to reconstruct the mass density field to the scale given by 

the resolution of the flux.

Z a ldarriaga  et al. (2000)

In this paper the authors, rather than attempting any inversion technique prefer to 

simply compare the flux power spectrum with predictions for a range o f cosmological 

models. The Ly-a- simulations they use are generated with a PM code (e.g. Meiksin 

& White 2001), with the gas properties inferred from the dark matter distribution, via 

simple scaling relations.

The results o f this paper indicate that the spectral index is poorly constrained 

when inferring the mass density field. The reason for this is that the smoothing scale 

linking the baryonic and dark matter distribution is left as a free parameter. Essentially 

differences in the power on various scales can be accounted for as being the result of 

either the value of the spectral index, or by a change in the temperature of the IGM. 

It is suggested that much o f this uncertainty could be accounted for by the use of a

37



more sophisticated hydro-PM code (Gnedin & Hui 1998). Although it is claimed that 

the degeneracy cannot be completely removed due to uncertainties o f the reionization 

history.

C ro ft  et al. (2000)

This paper applies a modified version of the original method to a sample of Keck 

spectra (30 HIRES and 23 LRIS spectra). The results of the recovered P{k)  presented 

are a spectral index of n =  —2.47 ±  0.06 and amplitude A 2(k) =  0.54lg at k =  

0.03 (km s-1 ) -1 . Modifications to the original method are included to account for

errors arising from redshift-space distortions, non-linearity and thermal broadening. In

this modified method they calculate the one dimensional flux power spectrum using 

the Lomb periodogram method. A three dimensional flux power spectrum Pp(k) is 

then defined such that it is the power spectrum of the three dimensional flux field that 

would have a line-of-sight power spectrum P\ptp{k) if it were isotropic

Pp(k) =  -  —  —  Pw,F[k)-  (1.68)

This flux power spectrum is then related to the mass density power spectrum with 

the assumption that they are related by a scale dependent bias factor such that

PF(k) =  b2(k)P(k) .  (1.69)

The calculation o f b(k) is performed with ‘normalizing simulations’ , which rely on 

the fact that the form of P(k)  is in good agreement with a low density ACDM  model, 

which can therefore be used in these simulations. The bias parameter is then calculated 

using the equation

b(k) =
i f  m (¿0 ) 1/2 

_Psim(k)_
(1.70)

The simulation used is the one for which the value of A | (k) most closely matches 

the observations. Any systematic uncertainties in the recovered P(k)  will now relate 

directly to the bias parameter. They argue that if the assumption of Gaussian fluctua­

tions is correct then the shape and amplitude of P(k)  will be the important feature to
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determine the bias parameter for any cosmological model. However the authors then 

claim the dependence of b(k) on the shape o f the power spectrum is weak since what is 

computed in the simulations is b2(k) =  Pp{k)/P(k)  rather than Pp(k)  itself. Therefore 

it is claimed that the uncertainty in b(k) associated with adopting a ACDM  model for 

the normalizing simulations should be small. An extensive study is presented showing 

that reducing the uncertainties is limited by a lack of knowledge about the parameters 

To, a  (see equation 1.62) and r. It is argued that as these parameters are determined 

more precisely the errors in this modified method will be reduced.

Jam k h ed k ar et al. (2001)

The problem of correctly normalizing the flux power spectrum is addressed in this 

paper. Since the effect of mean optical depth and continuum fitting affect the inferred 

amplitude o f the mass power spectrum, the authors present a method of independent 

normalization. This is done with a discrete wavelet transform of the flux spectrum.

First the flux is decomposed into the background and fluctuation information as

F{\)  — F{\)  +  F(X)S(X).  (1.71)

It is then argued that a wavelet analysis has the advantage that if the background 

flux is correlated with the fluctuations this effect is quantified by the spatial informa­

tion. This technique also allows simultaneous estimation of the normalization of the 

background and the calculation of the power spectrum. The mathematical formalism 

of this technique is omitted for reasons of conciseness.

G n ed in  &  H a m ilton  (2001)

This paper investigates systematic errors of inferring the mass power spectrum from 

the Ly-a forest. They find the main sources of error concern the assumed equation of 

state and mean optical depth.

Recent observations (Schaye et al. 2001; McDonald et al. 2001) suggest somewhat
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different values o f the parameters To and 7  than those used by Croft et al . . Although 

finding the effect o f altering 7  is small, the amplitude o f the mass power spectrum is 

reported to be strongly dependent on T0. This effect is quantified by the equation

P\m(k, To) =  P Vm(k,  2 x  104 K )  ™  . (1.72)

Similarly they find that the value o f the mean optical depth used will also have an 

effect on the amplitude o f the recovered power spectrum such that

/ 0 .3 4 9 \ ° '75
P\in{k, f )  — F i in(A:, 0.349) f — — J  . (1.73)

These two effects therefore mean the errors in the amplitude of any recovered mass 

power spectrum are highly effected by the uncertainties in these parameters. However 

other effects such as inhomogeneities in the ionizing background, shock heating of gas 

and the form of the prior mass power spectrum are argued to be less significant than 

the random errors.

Za ldarriaga  et al. (2001)

This paper discusses the effects of non-linearity on the recovery o f the linear mass 

power spectrum. It is argued that the non-linear effects drive the power spectrum to 

a power law o f k~1A, regardless of the initial conditions. The authors therefore claim 

that previously quoted uncertainties in the shape o f the linear power spectrum are 

underestimated.

It is argued that the important quantity is the spectral index in the weakly non­

linear scale. For a power spectrum which is initially a power law (and, it is claimed, a 

good approximation of CDM spectra), one loop perturbation theory gives the non-linear 

power spectrum as

n+3

^ ^nl)1 +  a (n) ( 77~) (1.74)

Where a(n)  monotonically decreases with n. The critical value is nc =  -1 .4  since 

for a spectral index below this value the non-linear spectrum is less steep than the
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linear one. When n >  —1.4 the non-linear corrections are negative, and non-linear 

power spectrum grows more slowly than the linear case leading to a spectrum steeper 

than the linear one. When n ~  —1.4 the power spectrum retains its linear shape. 

Therefore it is claimed that all cases are driven towards the critical index regardless of 

their initial linear shape (Scoccimarro & Frieman 1996).

The authors claim this process occurs on scales o f interest in the Ly-a forest at 

z ~  3. For example in the case o f a model with a low value for the shape parameter 

and large amplitude they claim the non-linear corrections have a strong effect at k ~  

4 X 10~3 (km s“ 1) - 1 . Therefore they conclude that the constraints on the initial linear 

power spectrum that can be set with the present data are poor.
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Chapter 2

Monte Carlo simulations

This chapter contains analysis o f A jD F(/c) for rudimentary simulations, where spectra 

are modelled with blended Voigt profiles. This work is then discussed in the context of 

the difficulties it highlights when attempting to infer the mass field from quasar spectra.. 

The power spectrum obtained from the positions o f discrete objects are also considered, 

and applied to line centres of Ly-a absorption spectra. Results are presented for cases 

where the line centres are randomly placed and when they are clustered according to 

an underlying density field. Additionally the formalism used to generate the density 

fields used in the latter case is discussed in detail.

2.1  M o n te  C a rlo  s im u la tio n s

2.1 .1  T h e  m odel

This set of simulations is one of the simplest that can be studied. A  spectrum is 

generated simply by assuming that there is a set o f Ly-a  absorption lines which are 

randomly positioned in accordance with a given redshift distribution. Since the pixels 

used in these simulations are small (see below) it can be assumed that there is no 

variation in clN/clz across each pixel, thus the probability o f a Ly-a cloud being centred
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in each pixel is given by

C l N  Ad p = ——Az,  2.1)
dz

where both quantities on the right hand side represent the local values corresponding 

to the pixel in question. A random number generator is then used, in conjunction with 

this probability, to determine which pixels contain the centres of absorption features. 

This probability, dp, is small enough that the chance o f there being more than one 

absorption feature centred in each pixel can be neglected. For each line present a 

column density and Doppler parameter are then assigned from simple distributions. 

Once these parameters have been assigned the absorption effects are calculated by 

assuming each feature has a perfect Voigt profile. Complications such as noise have 

been ignored while discussion of the effects of peculiar velocities is saved until §3.6.

Redshift distribution

The redshift distribution function used is simply the power law relation described in 

equation 1.55, which is assumed to be independent o f W \. The exponent 7  can be chosen 

to have any value and the constant in the equation is then determined, in conjunction 

with the other line parameters, by imposing the mean optical depth (equation 1.54) 

in a small redshift interval to have a selected value. The simulations analysed in this 

chapter were chosen to have f ( z  =  3.0) ~  0.35 in accordance with Meiksin, Bryan & 

Machaeek (2001) and references therein.

Colum n density distribution

The column density of each cloud is assigned in accordance with the distribution de­

scribed by equation 1.56. The exponent (5 can be chosen to have any value. A lower 

limit o f column density must be set since extending this power law relation towards 

zero would result in the probability of obtaining a high column density line becoming 

negligible. The lowest column density that can be assigned is set to be 1 X 1012 cm- 2 , 

since lines weaker than this do not have a significant optical depth and thus below this
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limit the distribution o f Nm  cannot be measured directly. There is no constraint on the 

highest possible column density, but any sensible value o f the exponent in the distribu­

tion function ensures that very high column density systems will always be exceedingly 

rare.

Doppler parameter distribution

The Doppler parameter for any feature is drawn at random from a truncated PDF 

with the distribution above the truncation limit matching a Gaussian distribution with 

a selected mean, b, and standard deviation, erf,. This is consistent with the distribution 

of Doppler parameters observed by Kirkman & Tytler (1997). The truncation value 

for each feature is set by a minimum allowable value of Doppler parameter which is 

dependent on its column density. Again this is in accordance with the observations 

reported in Kirkman & Tytler (1997), and the minimum required value is found using 

the expression given in equation 1.57. In the case when a Doppler parameter drawn 

from the Gaussian is less than bm-m this value is simply ignored and a new value is 

assigned, this process is repeated until a suitable value o f b is obtained. It should 

be noted that due to the constraint on 6m;n the mean and standard deviation of the 

resulting Doppler parameters will not equal the input values, b and cq,.

2 .1 .2  R ange and resolution

Due to the simplicity o f these simulations they allow a. large number o f spectra to be 

generated corresponding to any arbitrary redshift range. A reasonably small range is 

chosen so that when an underlying power spectrum is added the cosmological evolution 

can be ignored. The range of comoving r corresponding to any fixed redshift interval 

is obviously dependent on cosmology. When real data are considered the uncertainty 

in the values of cosmological parameters means the distance coordinate r cannot be 

directly computed. Therefore it is most convenient to work with the directly observable 

variable, the velocity v, and inverse velocity space for the wave vectors. Working with 

velocities also makes it possible to compare results from different cosmologies and other
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published data. The simulations analysed in this chapter are chosen to have a redshift 

range o f z — 2.9 — 3.0. Using a convention where v =  0 at the lowest redshift limit it 

is sensible to define a redshift relative to this

1 +  z„ ,  =  I ± i i L .  (2 .2 )
-L T  ~ lo w

Now if zrei <C 1 then the velocity is given by

~c ^  ~rel• (2.3)

Alternatively if 2re] is large enough to introduce substantial errors with this method 

then Hubble’s law can be used to approximate the velocity using the equation

v =  H ( z ) r p, (2.4)

where 2 is the mean redshift. However this too is only a reasonable approximation 

if the redshift interval is small. In cases where the redshift difference is large the use 

of velocity as a measure of distance breaks down, since on these scales the two are not 

linearly related. The above calculation o f equation 2.4 for 2 =  2.9 — 3.0 gives a velocity 

range o f v =  0 — 7600 km s-1 .

The resolution o f these simulations has been set at 2 km s-1  per pixel. This decision 

has been made to match observations made with the Keck telescope (e.g. Kirkman & 

Tytler 1997). Using this pixel size and spectra length means the data can be studied 

on scales o f k running from 8.0 X 10~4 — 1.57 (km s-1 ) -1 .

2 .1 .3  A n a lysis  o f spectra 

Flux power spectra

The spectra generated by the above method were then analysed in the following ways. 

First an FFT was taken of the flux and the resulting components used to calculate

the flux power spectrum P id ,f (&)- ̂  was found that P id ,f (&) for individual spectra
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flux

F igu re  2.1: The probability o f finding a flux level greater than 
a given value. The simplistic nature o f these simulations leads a 
situation where large parts o f the spectrum are very close to or equal 
to 0 or 1. This accounts for the sharp turn off seen at the extreme 
ends.

were very noisy, therefore a number of realizations were performed and the flux power 

spectra were averaged. This expression Pld,f(&) was then fitted by a cubic spline to 

remove any remaining noise before being multiplied by vma,xk/n to give A jD p(k). This 

process was performed for various values of the input parameters.

Additionally the effect of Gaussianization on the shape o f the power spectrum was 

studied. This process is performed by assigning each flux point a 5G value corresponding 

to a Gaussian PDF. First the cumulative probability distribution for the flux of a given 

spectrum is calculated (e.g figure 2.1). Now for the flux value in the ¿th pixel, /¿, 

the associated probability pi can be assigned. A ‘Gaussian’ fluctuation value can then 

calculated using

1 f 5'3 _ tL
Pi =  ~j== /  e 2 dy. (2.5)

v ' Z t t  7 — o o
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This 5G value gives a relative measure of the density corresponding to a given flux 

level. For example a low flux value in a particular pixel has a high probability associated 

with it and thus a high value of SG. Using this definition of 5G requires a numerical 

truncation to be set since if the assigned probability is exactly equal to 0 or 1 then 

this corresponds to SG =  ± 00 . The Gaussianization process was introduced by Croft 

et al. into the analysis to infer a relative underlying mass density from flux levels in a 

spectrum. However an inferred underlying mass density from a saturated flux region is 

a lower limit value, therefore this truncation is consistent with the physical motivation 

for introducing this process.

Line power spectra

The power spectrum of line positions was also recovered. This technique is analogous to 

using galaxy surveys to recover the power spectrum which means, unfortunately, that 

many o f the problems encountered in that field apply to this method as well. This will 

be discussed fully later. Here rather than the point objects of interest being galaxies 

they are the absorption line centres. Each pixel is assigned a value 5i =  iii/Nt where 

N( is the total number o f lines in the realization, and rii =  0 or 1. Each pixel containing 

a cloud centre is set to =  1, and all other pixels are assigned a value o f =  0. An 

FF T  was then performed on this binary distribution and the power spectrum, labelled 

-PiD,i(&), was calculated. As with the flux equivalent this was then used to calculate 

the dimensionless power spectrum A^D ¿(k). When calculating the power spectrum for 

a discrete set o f objects the shot noise must be accounted for. The Fourier modes given 

by the FFT convention defined in equation 1.37 lead to the expression

/ /  N— 1

( !% ■ !)  ^ 2 ^ 2  'm e ikXi

( 2 -6 )
(■ i=0 j = 0

where N  is the number of pixels. Now in the absence of clustering all i 7  ̂ j  terms
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where the final term follows since the only occupancy numbers allowed are 0 or 1 

meaning that nj =  m.  This shot noise is present in all /¡¡-modes and must be subtracted 

when calculating Pw,e{k) .

2 .1 .4  R esu lts and discussion

Flux and Gaussianized power spectra

F igu re  2 .2 : The dimensionless power spectra for the flux and Gaus- 
sianized values. The Gaussianized power spectra has been renor­
malised to match the flux at k = 1.0 x 10- 3  (k m s - 1 ) - 1 . In the 
regime o f k <  0.01 (k in s ' 1) " 1 the lines are almost identical. On 
smaller scales the lines diverge with the Gaussianized case showing a 
flatter drop off than the flux counterpart.

The process of Gaussianization only produces a power spectrum of relative am­



plitude. Since at this stage it is the shape, not the absolute magnitude, that is of 

interest the Gaussianized power can be renormalised to match the flux counterpart 

for easy comparison. Figure 2.2 shows the averaged power spectra o f the flux and 

Gaussianization values where the latter has been renormalised to equal the former at 

k =  1.0 X  1CT3 (km s-1 ) - 1 . In the region k <  0.01 (km s- 1 ) -1  the power spectra are 

an excellent match, though at higher k values the Gaussianized case drops from the 

maximum value with a flatter decline than the flux power spectrum. The important 

issue is whether, when analysing more advanced simulations or real data, one of these 

methods offers better recovery of A|d (&) than the other. If the technique of Croft et 

al. (2000) is applied then the results obtained should not depend on whether the Gaus­

sianization process is applied or not. The reason for this is that the change in the shape 

of the power spectrum from Gaussianization will be counteracted by a change in the 

shape of b(k), the parameter used to link the flux and mass power spectra. Addition­

ally since the amplitude o f a Gaussianized spectra is not dependent on the actual flux 

levels, information is actually being discarded. Therefore the Gaussianization process 

can be considered an unnecessary additional step, which can be omitted. Therefore 

the following analysis was performed only on A|D p(^)) though on large scales this is 

equivalent to considering the power spectra o f the Gaussianized values.

Figure 2.3 shows the recovered A|d f (/c) for 500 simulated spectra with the input 

parameters 7  =  2.5, (3 =  1.5, b =  23.0 km s_1 and cq, =  14.0 km s- 1 . Despite the 

simplicity of this model the results do highlight some considerations which should be 

borne in mind when using Pid,f(& ) to recover the mass power spectrum. The recovery 

of P l d , f ( & )  and subsequently A|d f (/c) show that even a random distribution of lines 

gives a non-zero A|d f (&). This is because the Ly-ct absorption features are not point­

like objects. The natural width of the absorption features guarantees correlations will 

be seen on scales corresponding to a few tens of km s_ . It does though highlight the 

fact that, in general and on some scales, the flux power spectrum will not necessarily 

be linearly related to the mass power spectrum (consider equation 1.69 for P ( k ) =  0).

Varying some of the input parameters affects the recovered shape of A (D F(fc). 

Altering the redshift distribution parameter 7  does not have a significant affect on 

A|d f(^') s' nce the constraint on mean optical depth ensures that changing 7  will alter
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F igu re  2 .3 : The dimensionless flux power spectrum for a Poisson 
line distribution. Although the placement of the features is unclus­
tered the flux power spectrum has non negligible Fourier components.
These correlations in the flux spectrum exist since Ly-ar absorbers are 
not point like objects, but instead have a finite width.

dn/dz|0 to ensure approximately the same number of lines still occur in each spectrum. 

Since the shape of A jD f (A;) is dependent on the line profiles and all these features 

have the same intrinsic statistical properties the flux power spectrum remains largely 

unchanged.

Conversely varying the parameters which determine the absorption profiles can 

be seen to be significant. Figure 2.4 shows the affect of varying the column density 

distribution parameter ¡3. It can clearly be seen that the magnitude o f the peak of the 

recovered A jD F(k) is dependent on [3. A high value o f (3 corresponds to systems of 

high 7Vhi being rare. When f3 is large the constraint on mean optical depth means that 

there will be more absorption features than for a low value o f (3, but these features 

will tend to have lower column densities. Figure 2.4 shows that fewer lines with a 

wider range of column densities have bigger Fourier components than more lines with 

a small range of Nm-  This can best be understood if an extreme case is considered
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F igu re  2 .4 : The dimensionless flux power spectrum for various 
values o f /?. This parameter determines the relative abundances o f 
high and low column density features. As the statistical properties 
o f  the lines change so does the resulting flux power spectrum. The 
peak value decreases as high column density features becom e rarer.

where ¡3 tends to infinity and therefore all the lines present tend to have the same, low, 

column density. In this case satisfying the f  constraint requires that the spectrum has 

a small, almost constant, amount of absorption at each point across its entire length. 

Performing an FFT on this approximately constant flux would then result in negligible 

Fourier coefficients.

Figures 2.5 and 2.6 show the affect on A^DF(A:) of different values of b and cp,. 

Changing the distribution of b can be seen to have a small but noticeable effect on 

the recovered A^D F(A:). Looking at the region of k >  0.1 (km s" 1) " 1 these graphs 

show that increasing b or 0-5 has the effect of slightly narrowing the feature recovered 

in Fourier space. This is to be expected since high Doppler parameters correspond to 

broad absorption lines and so correlations can be expected on larger scales.

When more realistic models are considered the aim is to use A^D F(A:) to recover its
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F igu re  2 .5 : The dimensionless flux power spectrum for various 
values o f b, the mean Doppler parameter. For a given line, the width 
depends on the value o f the Doppler parameter. As the mean Doppler 
parameter is increased a slight narrowing o f the feature seen in Fourier 
space is apparent.

mass counterpart A jD(fc). The Croft et al. (2000) method suggests that this can be done 

with a bias parameter, b(k). Therefore the change in the intrinsic shape o f A jD , f ( * )  

given by a. Poisson distribution o f lines should be accounted for by this bias parameter. 

The important point is that b(k) is calculated from the ratio o f these power spectra 

in simulations. If the simulations correctly account for the factors that give rise to 

parameters governing the line statistics then the precise shape o f a Poisson distribution 

of lines should be unimportant. Regardless of this the values of these parameters may 

give some indications of the suitability of this method, which involves the concept of 

inferring a continuous mass field from a quasar spectrum.

Certain values of (3, which governs the column density distribution, for example may 

affect the fundamental assumption that the optical depth corresponding to a spatial 

point can be used to infer the density of dark matter at that point.. A low value of ¡3 

would mean that absorption features are more likely to be saturated than a high value.
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F igu re  2 .6 : The dimensionless flux power spectrum for various val­
ues o f ab, the variance in the Doppler parameter distribution function.
As 0*5 increases, the likelihood o f a feature having a high Doppler pa­
rameter is also increased. This is due to the truncation o f the Gaus­
sian distribution function, arising from  the presence o f a constraint 
on the minimum allowable value o f b. Therefore the width o f the flux 
power spectrum is weakly dependent on at,.

Strong absorption lines in spectra could be problematic when attempting to reconstruct 

the mass field. This follows since the inferred density at the centre of these saturated 

regions is only a lower limit. The reason for this is that the spectra cannot be used 

to accurately determine even the relative density in such regions since any additional 

obscuring material above some threshold limit will not cause any additional absorption.

The extent o f the blending of lines, which depends on ¡3, b and cp,, can also be 

significant. When the lines are strongly blended the optical depth at any point may have 

contributions from many regions around that point. The Doppler broadening of lines 

confuses the link between the absorption seen and the spatial position it corresponds 

to. Figure 2.7 demonstrates this effect, in the underlying density field (shown in the 

top plot) there are two peaks close together. In the middle graph the profiles of the
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absorption features corresponding to these peaks are shown as solid lines while the 

blended feature, that an observer would see, is represented by the dotted line. The 

inferred density field is shown on the bottom plot and shows how this quantity is 

affected by both the Doppler broadening and blending o f the features. This effect may 

be particularly important in saturated regions. For example a feature with a very high 

values o f column density and Doppler parameter will have a broad saturation trough. 

Since the flux level throughout the trough is zero, due to the high density point at 

the line centre, no additional absorption associated with the local baryons can occur. 

Therefore no information about the density in these regions can be obtained. Any areas 

o f a spectrum which contain line blending, of which this is an extreme example, lead 

to the breakdown of the assumption that the local value o f r  gives a measure of the 

underlying density. This is another obstacle which the use o f the bias parameter, b(k), 

hopes to overcome.

The distribution of Doppler parameters also raises another issue concerning the 

extent to which the baryons trace the dark matter. The Doppler parameter is intimately 

linked with the temperature of the gas. Since the underlying dark matter is thought to 

be collisionless, a key difference in the behaviour of the baryons is that at high densities 

it becomes pressure dominated and hot. The differing physical properties of these two 

types of matter will inevitably lead to differences in their distributions. The pressure 

forces arising in the baryonic distributions will, on certain scales, effectively oppose 

gravitational collapse. The critical length below which collapse is halted for a given 

system is known as the Jeans length. This scale arises since if the free fall collapse 

time of a structure is less than the time it takes for sound waves to travel across it 

then the pressure is unable to halt the collapse. The time taken for sound waves to 

cross a structure of size x is just given by t =  x/cs. The free fall collapse time can be 

approximated by considering the simplified case where a particle undergoes constant 

acceleration starting from rest. This results in a collapse time given by iff =  yj1/Gp . 

Equating these two time scales then gives the critical length as x =  csy/1 /G p , a result 

remarkably similar to the exact expression for the Jeans length which is

(2 .8)
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F igu re  2 .7 : The effects o f Doppler broadening and line blending on 
an inferred density field. The top and bottom  plots show the actual 
and inferred density profiles respectively. The middle plot shows the 
absorption features associated with the density peaks and the blended 
profile. The inferred mass density shows that in addition to inferring 
a wide density profile, due to Doppler broadening, that one o f the 
peaks is obscured by the line blending.

The effect, on the power spectrum of the baryonic pressure forces can be modelled 

with the equation (e.g Fang et cil. 1993)

Pou{k )
Ph{k)~  (1 +  ^ fc 2) 2 ’ 

where x/, represents the Jeans length and is given by

(2.9)

x b{Z) =  77"
1

Ho

21 kBT0{z) 1/2

(2 .10)

where all the symbols have their usual meanings and To is the temperature of the 

IGM at the mean baryon density and //. is the mean molecular weight of the IGM. 

Since xi, is proportional to the square root of the temperature, To, increasing this 

quantity leads to a greater divergence between these distributions. The difference of 

the clustering is therefore likely to be greatest at the places where the gas is hottest.



In summary the assumption that absorption flux can give an indication of the 

density o f underlying dark matter works best in the regime where any gas is cold and 

fairly diffuse. However the hope is that all the effects introduced when this is not the 

case can be reasonably accounted for by the bias parameter b(k). This assumption will 

be investigated later with more realistic models.

Line power spectra

___________________________________ i____________________ ,.......................................................................  I____________i____________________ i...........................    !___
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F igu re  2 .8 : Dimensionless line power spectrum for a Poisson line 
distribution. For an infinite number o f realizations the expected 
power spectrum would be zero on all scales. The large scatter on 
individual realizations leads to the non-zero result seen. Even when 
a signal is present it is, as expected, largely scale invariant.

The power spectrum of line positions does reasonably recover the Poisson result 

A jD ( {k) =  0 as shown in figure 2.8. The result does not vanish completely as A jDji(&) 

will only be zero for an infinite number of realizations. The scatter on the individual 

realizations is very large and the shot noise subtraction can lead to calculating a -PiD,r(&)
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which is not non-negative definite. However averaging over the many realizations used 

here gives a best fit line where the recovered signal is weak and positive. Any signal that 

is recovered should not have a scale dependence, meaning A jD e(k) should be a straight 

line. The recovered form of A jD ( (k) is an excellent fit to the straight line expected. The 

recovered signal is consistent with a Poisson distribution even despite the evolution, 

with redshift, o f the line population. This effect must be considered since P id /(& ) has 

been calculated from an expression which assumes that n is a constant. However the 

evolution across the spectra is not very dramatic and so the result still offers an excellent 

approximation. Comparison between the case where the line population evolves and 

where n is constant show that the errors are small on the scales considered, and even 

weak clustering will lead to a signal far in excess of these systematics. In cases of 

more extreme evolution a more thorough analysis should be used, for example the 1 

dimensional equivalent of the scheme used by Feldman, Kaiser & Peacock (1994).
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2 .2  A d d in g  an u n d e rly in g  d e n sity  fie ld

Once a density field has been generated (using the method described below) the selec­

tion o f lines can be modified to position lines preferentially at places of high density. 

This will lead to a situation where the line centres will offer a Poisson sampling of the 

density field. To do this equation '2.1 is replaced with

dN  r ,
dp =  — [1 +  d{x)]Az.  (2.11)

The Monte Carlo simulations are then performed in exactly the same way as before 

except for this modification o f line placement.

2.2 .1  T h e  form  of the baryonic power spectrum

The input power spectrum used in this chapter was calculated as follows. The initial 

form of the dark matter perturbations was assumed to be a featureless power law such 

that Po u (k )  oc kn, where n is known as the spectral index and determines the relative 

power on large and small scales.

Various processes (gravitational interaction, dissipation etc) cause the initial pertur­

bations to change, altering the functional form of the power spectrum. This alteration 

is quantified by the transfer function, T(k) ,  which is the ratio o f the modern day am­

plitude of each mode and its initial value. Bardeen et al. (1996) found that the transfer 

function for CDM  cosmologies was well fitted by the formula

T(q) =  -----------M 1 + °n)Mri--------  (2.12)
[1 +  a 2q +  ( a 3q ) 2 +  (a'4<z)3 +  ( a v / ) 4] 1

where q =  &/F, and F, known as the shape parameter, is dependent on Clm, f a n d  

h. The a  coefficients also depend on cosmological parameters and the values used here 

are the results of Ma (1996) corresponding to Of, =  0.05 (aq =  2.205, a 2 — 4.05, cr3 =  

18.3, a 4 =  8.725 and «5 =  8.0). The modern day linear power spectrum is then given by 

Tdm(^) ex knT 2(k). The constant of proportionality is constrained using the modern 

day value of <7S, which refers to the rms density fluctuations averaged over spheres of
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radius 8 h~l Mpc. Observationally erg is found to have a value close to unity. So with 

this prescription a modern day linear power spectrum can be generated for given values 

o f just 3 parameters (n ,F  and cts).

This power spectrum must now be renormalized to correspond to the redshift ap­

propriate to the simulations. This renormalization corresponds only to a change in 

amplitude due to the evolution of linear perturbations, not a. change in functional 

form. Since the redshift range of these simulations is small, it is a reasonable approxi­

mation to generate the power spectra at one redshift [z =  3.0 in this case) and use this 

across the entire length o f the spectra. In linear theory, the power spectrum evolves 

according to

Pdm (M )  =  D 2(z)PDM(k,0) ,  (2.13)

where D(z)  is the linear growth factor for the cosmological parameters being used 

and is given in equation 1 .2 2 .

This linear form of P dm ^i-2) can then be used to calculate the more general 

■ P d m .n l ( k ,  z )  in which the effects of the non-linear regime on the power spectrum are 

also included. This is done using the Peacock & Dodds (1996) method, which is an 

extension o f work carried out by Hamilton et al. (1991). First the scales of the non­

linear and linear regimes can be linked since non-linear density contrasts arise from the 

collapse of linear perturbations on linear scales. Once the scales corresponding to the 

two regimes have been established it has been shown that it is a good approximation to 

assert that the non-linear perturbations are a universal function of linear ones. These 

relationships are given by the expressions

&L =  [l T  A n l(^ n l)]  ̂ kml, (2-14)

A nl(*nl) =  / nlX ^ ’l )]. (2.15)

The function /n l(® ) is found from iV-body simulations and is given by 

f i 1 +  B/3x +  (Ax)°<3 V /g
/nl(a) x \  1 + [(A*)V(fi)/(^*1/2)F J ’
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where the coefficients are

A =  0.482(1 - f -n / 3 )“ 0'947, 

B — 0.226(1 +  n /3 ) -1 '778, 

a  =  3 .310(1 +  n / 3 ) - 0 '244, 

/? =  0.862(1 +  n / 3 ) - 0 '287, 

1/ =  11.55(1 +  n / 3 ) -a 4 2 3 ,

and the function <7(£2) accounts for the difference o f the growth rate o f linear per­

turbations in different cosmologies and is given in equation 1.24.

Once the non-linear dark matter power spectrum at the appropriate redshift has 

been calculated, it can be smoothed to find the corresponding baryonic Pb(k). This 

accounts for the difference of the physical properties o f baryons and dark matter which 

will inevitably affect the clustering. As previously discussed the appropriate scale of 

the baryonic smoothing corresponds to the Jeans length and can be expressed as

-P d m ,n l(& i z )Pb(k ,z )  =
( l  +  * 2*2)2 ’

(2.11

with Xb given by

27 fcer 0Q) 
3fJ,mpClm0(l  +

1/2
(2.18)

where the parameters To and 7  were predicted for a given redshift by Hui & Gnedin 

(1997).

Finally, since these simulations are one dimensional, a transformation from the 3D 

power spectrum must be made using the relation given in 1.33. Figure 2.9 shows the 

ID dark matter and baryonic power spectra obtained at 2 =  3.0 for the parameters 

n =  1.0, - 0.3, Da =  0.7, T =  0.2 and erg =  1.0.
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F igu re  2 .9 : The baryonic and dark matter ID power spectra with 
parameters n =  1 .0 , F =  0 .2  and <jg =  1.0 for the cosm ology f2m =
0.3, Qa =  0.7. The effect o f the baryon sm oothing is to reduce the 
amplitude o f the 3D power spectrum on small scales. This is due 
to baryon distributions being dominated on small scales by pressure 
processes. Since the ID power spectrum is an integral to infinity o f 
the 3D form  the ID baryonic power spectrum has a lower amplitude 
on all scales than the dark matter one.

2.2 .2  T h e  lognorm al approxim ation

A density field for each realization can be generated by taking Gaussian fluctuations of 

the known input power spectrum P(k) .  To do this it is noted that the corresponding 

Sk’s can be split into real and imaginary parts such that

< N 2> H l 4 r)|2> + ( l 4 !)|2> =  ^ ) -  (2-19)

Now assuming the phases of different modes are random and uncorrelated implies

<l4r)|2> =  < l iV >  =  ^ (*0 / 2 , (2 .2 0 )

meaning a density field with a Gaussian PDF around a known power spectrum can
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be generated by taking 8j.r) =  u X y/P{k)/2 and 8 ^  =  u' X y/P{k)/2, where u and 

are Gaussian deviates with mean =  0, a — 1 . To ensure that when a Fourier transform 

is performed the resulting 8(x)  distribution is a real field, 6k must be an Hermitian 

series. This is done by imposing the condition

<5_k =  8y. or more explicitly 8^1 =  1 8^1 =  —6 ^ .  (2 .21 )

Once this condition is applied then performing an FFT on these components will 

give a suitable 6(x)  distribution. However applying this technique as it stands does not 

necessarily give a physically sensible density field for input power spectra with ampli­

tudes which are not small. Using this prescription offers no guarantees that the resulting 

values o f 8(x)  are greater than —1 . Clearly values lower than this threshold make no 

physical sense. To ensure a viable density field, a more involved generation process is 

required. To do this the lognormal approximation first introduced by Coles & Jones 

(1991) is used. This model is a good approximation to non-linear matter distributions, 

such as those found in the IGM. This distribution has been tested against hydrodynam- 

ical simulations and been found to be in reasonable agreement (Bi & Davidsen 1997). 

It has also been used to model the IGM and found to have reproduced the observations 

well (Bi 1993; Bi & Davidsen 1997).

In order to use the lognormal approximation it is asserted that given a set of density 

perturbations <5g(*) (which have been marked with a subscript G because they are 

Gaussian fluctuations of the generating power spectrum Po{k )) ,  the density of baryons 

is given by

pb{x) =  A es^ x\ (2.22)

where A is a normalization constant. It should be noted that valid values o f pb(x) are 

generated for any real value of 8g (x ), thus the distribution of 5q (x ) is not subject to 

the same constraint as the usual fractional density parameters that 8 >  - 1 . The value 

o f the constant A can be found by invoking the properties of Gaussian fields. Taking 

the mean value of both sides of equation 2.22  gives

(pb(x)) =  pb =  A (es^ ) .  (2.23)
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Now since a Gaussian field is being used it is known (see Appendix B) that

(eM * ) } = e ^  (2.24)

where

(2.25)

Hence

A =  pbe~ . (2.26)
A “

Substituting equation 2.26 in to equation 2.22  gives

pb =  Pb exp ( <5g (x ) -  ) . (2.27)

Figure 2.10 shows the distributions of a set of Gaussian fluctuations and the baryon 

densities generated from these fluctuations using the lognormal approximation. It can 

be seen that the distribution o f the resulting baryon field peaks at low values, but 

has a long tail at the high end. This is to be expected since individual values have 

the constraint that 5b >  —1 , while the sum all values must remain equal to zero. 

It is therefore clear that applying the lognormal approximation to calculate baryon 

densities will lead to a distribution of 5b's which has a different power spectrum to 

the corresponding input Gaussian fluctuations. Therefore a formalism is needed to 

calculate the power spectrum Pg {k) which will provide suitable Gaussian fluctuations 

to generate a baryonic density field with the required distribution for a known power 

spectrum Pb{k). The first step is to recall that the correlation function is given by

Zb(x) =  (5b(x,)5b(x, +  x) ).  (2.28)

Now from equations 1.16 and 2.27 it can be seen

5b(x) =  exp ( ¿a(a:) -  ) -  1, (2.29)
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F igu re  2 .10 : Histograms showing the distribution of a set of Gaus­
sian fluctuations, Sq , and the baryon field resulting from applying 
the lognormal approximation to these fluctuations, 6b- The numbers 
expected in each bin are shown by the overlying lines. It can be 
seen that the resulting baryonic density field is non-Gaussian, being 
skewed towards low density values whilst having a long tail for high 
values.

which upon substitution to equation '2.28 gives

A 21

260*0 exp <M *') -  1 W  exp SG(x' +  x) -
A 2

-  1 (2.30)

Multiplying these terms out gives

&0*0 =  ( exP $G [x ') +  Sq (x> +  x )
■2 A 21

exp
A 2'

Sg W )  -  —

exp Sc, (s ' +  x )
A

+ 1. (2.31)

Now using the properties of Gaussian statistics as shown in equation 2.24 the result 

simplifies to

6 (:e) =  exp | ^ (  [5g (s ')  +  SG (s ' +  s ) ] 2)  -  A 21 -  1
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£b (x) =  exp 9 ( sg (x ')) +  \ { 5g (x ‘ +  x )) +  {Sg (x')5g (x ' +  x ) )  -  A 2

=  eic(r) -  1 . (2.32)

A result shown by Coles & Jones (1991). Thus it appears that to generate a baryon 

density distribution with the power spectrum Pb{k) from the lognormal approximation, 

the original set of Jq ’s must be generated from a power spectrum PG{k) corresponding 

to £g (*) which is related to §,.(x)  by

ia ( * )  =  ln [6 (s )  +  l]. (2.33)

From this equation it can be seen that for low amplitudes the forms o f the baryonic 

and generating power spectra will be coincident (since for small x, ln (l +  a;) ~  x).  It 

should also be noted that this prescription will break down if £k(x)  ever has a value of, 

or lower than, - 1 . Another problem which can be encountered is that even for a given 

correlation function £&($) which does correspond to a well defined £ g ( ® ) ,  there is no 

guarantee that the resulting PG(k) will be non-negative definite.

Even when PG(k) is well defined and positive this mechanism only works within 

certain limits if PG[k) is large. For example figure 2.11 shows the average recovered 

Aid& (^) f ° r 500 realizations using this technique, with the length and resolution pa­

rameters previously discussed, for the baryonic power spectrum shown in figure 2.9. 

The discrepancy seen between the input and recovered power spectra can be elimi­

nated by using a longer baseline to calculate the density field. Even in this case care 

must taken, although the mean recovered A^D h(k) may be in good agreement with 

the desired value, the variances of the densities for each realization may still be very 

erratic. This is demonstrated in figure 2.12. The top histogram shows the variances 

calculated from the Fourier components when Gaussian fluctuations are applied to the 

baryonic power spectrum. The second histogram shows the variances recovered from 

the lognormal approximation. In both cases the solid line shows the value o f the mean 

from the Gaussian fluctuations o f the baryonic power spectrum, while in the bottom
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F igu re  2 .11 : Input and recovered dimensionless baryonic power 
spectra when using the lognormal approximation. The method breaks 
down if the base line is not o f sufficient length, as shown by the 
discrepancy between the two lines. Although the shape o f the input 
power spectrum is well recovered the amplitude is too low.

plot the dashed line shows the mean of the variance when using the lognormal ap­

proximation. The simulations used to generate these density fields have a baseline two 

orders of magnitude greater than those of the simulations previously discussed. It can 

be seen that although the average variance of each distribution is very similar, the 

distributions themselves are radically different. The mean variance of the density fields 

from the lognormal approximation is strongly affected by a few realizations with very 

large variances. This effect can be reduced by increasing the length o f the baseline 

still further, however since only a subsection of any density field generated on a large 

baseline is used there still remains the possibility that this subsection will contain some 

points with very high densities, and thus a large variance. This should not present a 

problem however since these density fields are used either, in this chapter, to allocate 

a line position or, in chapter 3, to calculate the optical depth at some point. Therefore 

the flux variance of any spectra will not be unduly affected by these rare points of very
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F igu re  2 .12: Distribution o f variances when Gaussian fluctuations 
are applied to the baryonic power spectrum (top plot), and from  re­
alizations o f the lognormal approximation (bottom  plot). Care must 
be taken since although the mean values o f the distributions are very 
similar the distributions themselves are radically different. The solid 
and dashed vertical lines show the mean value o f the variances for 
the Gaussian fluctuated and generated baryonic density fields respec­
tively.

high overdensity.

2 .2 .3  R e su lts  and d iscu ssio n  

Flux power spectra

Figure 2.13 shows the recovered A jD F(k) for the two cases where the line distribution 

is Poisson and clustered according to an underlying density field. The value of A^D p(/c) 

is affected by the preferential placing of lines in regions of high density. The intrinsic 

properties of the absorption features are identical in both cases so the difference can 

be attributed solely to the positioning of the lines. On large scales the flux power

67



0.1

k /  (kms ')  1

F igu re  2 .13: The dimensionless flux power spectra for both clus­
tered and unclustered lines. The presence o f clustering has an effect 
on the flux power spectrum even though the statistical properties of 
the absorbers are the same. On large scales the power is boosted 
by the presence o f clustering and conversely on small scales it is re­
pressed .

spectrum of the clustered lines is higher than the Poisson distribution. On these scales 

the absorption features can be thought of as isolated markers of regions o f high density 

leading to an increase in power. More interestingly there is also a suppression o f power 

on small scales where the Voigt profiles themselves should dominate. The amount of 

line blending must account for the difference between the two power spectra. This result 

coupled with those in §2.1.4 demonstrates that the flux power spectrum is influenced 

both by the intrinsic statistical properties of any absorption features and their positions. 

In observed data these two factors may be degenerate and are not necessarily easily 

disentangled since the underlying mass density will have an effect on both properties.
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F igu re  2 .14 : The dimensionless line power spectrum compared 
with its mass counterpart. As would be expected if the lines of­
fer a Poisson sampling of the mass field the shape of recovered
line power spectrum closely matches the mass equivalent. The am­
plitudes will in general be different and here the line power spec­
trum has been renormalised to match the mass power spectrum at 
k =  1.0 x 10“ 3 (km s-1 )-1 .

Line power spectra

Figure 2.14 shows the line and mass power spectra where the line power spectra has 

been renormalised to match the mass one at k =  1.0 X  10-3  (km s-1 ) - 1 . The results 

show that in the unlikely situation that the line centres offer a Poisson sampling of the 

density field then the shapes of A 3D e(k) and A 3D(fc) should be very similar. Therefore 

the power spectrum of line positions could be used to recover the shape, but not the

magnitude, o f the mass density power spectrum. Not much can be read in to this result

since the method is so basic. It does however suggest that if line centres tend to be in 

high density regions then this may provide a useful aid in the recovery of the mass field. 

Even if this is the case then using this method does reintroduce the sorts of problems
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which the Croft et al. method avoids. Shot noise for example appears and there may be 

difficulty identifying the positions of line centres. Furthermore the scales upon which 

the recovered mass power spectrum matches the underlying linear power spectrum will 

be limited. It is more likely that the absorption lines do not offer a Poisson sampling of 

the density field. In this case the best that can be hoped for is that the line and mass 

power spectra will be linked by a scale-dependent bias parameter. Further discussion 

on this topic will be saved until chapter 3 where the method of generating spectra is 

much more dependent on the underlying mass density field.
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Chapter 3

Realistic spectra

In this chapter power spectra analysis is performed on spectra simulated by more 

sophisticated methods than in the previous chapter. Despite these simulations not 

being as rigorous as IV-body simulations, they do have the advantage of requiring far 

less computing power and time thus allowing a wide range o f parameter space to be 

studied. As before the flux and line power spectra will be obtained from these spectra. 

Additionally the relationship between the flux and mass power spectra will be analysed 

for various cosmologies. Finally a technique will be applied to highlight the importance 

o f the gas properties on the flux power spectra. This technique involves scrambling the 

spatial information of a line list obtained for a given spectrum and then constructing a 

new spectrum from this altered absorber configuration. The flux power spectra of both 

the original and scrambled arrangement are then compared.

3.1  S im u la te d  sp e ctra

3.1 .1  T h e  m odel

The first step in these simulations is to generate a baryonic density field using the 

prescription outlined in §2.2.1. However, unlike previously where absorption lines were 

just laid down on this density field, the spectral features are obtained by summing the
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contributions to the optical depth from each pixel. The line of sight spectrum can then 

be calculated using the prescription that the optical depth at any velocity along the 

line of sight is given by (e.g Meiksin & White 2000)

r(v ) =  / t (x )  dx , (3.1)

where

T(x) cc pi,(x)2T(x)  u-‘ b 1 exp
(u(.-r) -  v0) ‘ 

b 2
(3.2)

The temperature at any point can be computed from the equation of state given by
7-1

T(x) (3.3)

where 7  and To can be obtained from calculations performed by Hui & Gnedin 

(1997). This power law relation strictly only holds true in the regime where pb/pb ~ 

10.0. However, since points of density higher than this are rare, extending this relation 

to all points should not introduce a large error. Now substituting expressions for b 

(equation 1.50) and T (equation 3.3) into equation 3.2 gives

m H d fi)  -  v0)2
t { x ) (X p b { x ) 3.2—1.2-7 exp

'2ksTo{pb/Pb) 7 -1
(3.4)

The constant of proportionality can be obtained by imposing the condition that the 

mean flux decrement of the spectra obtained have a value which matches the observa­

tions. As with the previous simulations, this is chosen to be t (z =  3.0) ~  0.35. Once 

the optical depth has been calculated at each pixel the flux level is simply given by e~T.

3 .1 .2  R ange and resolution

These simulations must have a small redshift range in order to justify using a power 

spectrum which does not evolve across the length of the spectrum. As with the previous 

chapter the redshift range from z =  2.9 — 3.0 (velocity scale o f 0 — 7600 km s-1 ) is 

studied, meaning once again the scales o f k which can be probed run from 8.0 x 10- 4 -  

1.57 (km s-1 ) - 1 .
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3 .2  T h e  ratio  o f flu x  to  baryo n ic pow er sp e ctra

An important part o f an accurate recovery o f the mass density power spectrum using 

the most recent Croft et al. method is the role of the bias parameter, b(k), as defined 

in equation 1.70. Rather than studying b(k) directly, the work in this section will ex­

amine a related quantity, the ratio o f the 1 dimensional flux and linear baryonic power 

spectra. The quantity that is calculated directly from the observations is A 'jDF(/c) not 

the 3 dimensional equivalent. Croft et al. define an isotropic A|(fc) from this quantity 

and compare this with its mass counterpart A 2(k). The true flux power spectrum is 

not expected to be isotropic, and so this constructed quantity should not be confused 

with the actual form of A p (k ), which in general cannot be inferred from A jD 

Therefore, keeping in line with the observations, I prefer to work towards determining 

(k). If the 3 dimensional form is to be recovered then clearly a transform form via 

differentiation (see equation 1.34) must still be applied. However, since this transfor­

mation is not necessarily straightforward, it seems prudent to work with the data in its 

original form rather than inferring the 3 dimensional equivalent at the outset. There­

fore studying the ratio of power spectra, as in the analysis below, can be considered as 

the equivalent of investigating the bias parameter, b(k), in a 3 dimensional analysis.

The effect of cosmological parameters on the ratio between flux and linear mass 

power spectra must be considered, as accurate recovery of the latter is reliant on this 

ratio being not only a universal function, but also independent of cosmology. In this 

section a number of simulations are studied with various cosmological parameters and 

the aforementioned ratio is calculated.

Table 3.1 gives a list of the parameters used for each input baryonic power spectrum 

(calculated using the prescription described in §2.2.1). The first power spectrum is a 

fiducial ACDM  model. Small alterations in the parameters (assuming a flat universe, 

so and are not independent variables) are then applied to obtain the following 

4 power spectra. Power spectrum 6 has the same parameters as those used for the 

normalizing simulations of Croft et al. (2000). Finally an Einstein-de Sitter model is 

also considered. The flux power spectra for 1000 realizations are averaged for each 

cosmology, and the ratio calculated.
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Number Q a r Spectral Index n <78

1 0.30 0.70 0.20 1.00 1.00

•2 0.35 0.65 0.20 1.00 1.00

3 0.30 0.70 0.30 1.00 1.00

4 0.30 0.70 0.20 0.90 1.00

5 0.30 0.70 0.20 1.00 0.80

6 0.40 0.60 0.26 0.95 0.74

7 1.00 0.00 0.20 1.00 1.00

T able  3.1: Parameters o f power spectra to be considered

Clearly the amplitude of the flux power spectra, and therefore the ratio calculated, 

is dependent on the value of f . In some limits this parameter will also affect the shape of 

the flux power spectra. This effect must be studied since if the shape of A^D F(k) varies 

then not only the amplitude, but also the form of the recovered linear mass density 

power spectrum will be affected. Therefore A^D p(k)  is also obtained for the first power 

spectrum using the higher mean optical depth constraint of f ( z  =  3.0) ~  0.45 (Press, 

Rybicki & Schneider 1993), as used by Croft et al. , and compared with the results for 

the lower mean optical constraint.

3.2 .1  R esu lts and discussion

Figure 3.1 shows the effect of altering the mean optical depth constraint on the flux 

power spectra. Although, as expected, the amplitudes o f the resulting A jD p(fc) are 

different, their shapes match very closely. In this case, as f  is increased so is the 

amplitude o f the flux power spectrum. The reason for this is because any correlations 

present are more pronounced due to the higher levels of absorption. This trend is not 

general and some value of f  will correspond to a maximum amplitude of A fDF(fc). This 

is the case since the two extreme cases ( f  =  0 or oo) both correspond to A jD F(/r) =  0 . 

So increasing f  from zero increases the flux correlations, this effect continues until some 

maximal level is reached when the saturation of absorption features starts to decrease 

the correlations seen in the flux. However the crucial point is that in the regime
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0.1

F igu re  3 .1 : The effect o f mean optical depth on the dimensionless 
flux power spectrum. Although there is an increase in amplitude 
when using the higher mean optical depth constraint, the shape o f 
the flux power spectrum is the same in both cases.

of the observed values of mean optical depth the shape o f the flux power spectrum 

remains unaltered by the value of this quantity. It must though be remembered that, 

as demonstrated by Croft et al. , the correct normalization of any recovered mass power 

spectrum does require using an accurate value of f .

Figure 3.2 shows the average dimensionless flux power spectra obtained for the 7 

different cosmological models. Since the flux power spectra are very similar the data 

has been plotted as a ratio of the first fiducial case, where A fD F(k) for this case is 

shown in the top plot. The bottom half of figure 3.2 demonstrates that the flux power 

spectra for all the ACDM  models are the same to within about 10% in the regime of 

k < 0.1 (km s-1 ) - 1 . On smaller scales the lines separate out as the flux power spectra 

start to level out on different scales and at different values. The Einstein De-Sitter 

case (model 7) clearly differs from the other cases in a large region o f k space, showing
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F igu re  3.2: The dimensionless flux power spectra for different
cosmological models. The top plot shows the recovered flux power 
spectrum for the model with parameters =  0.3, Qa =  0.7, T =
0.2, n =  1.0 and ag =  1.0. The second plot shows the ratio of 
the flux power spectra for each model (parameters given in table 3.1) 
relative to the flux power spectrum of the first case. While the matter 
dominated case (power spectrum 7) clearly deviates from the others, 
the ACDM models are all similar on scales k < 0.1 (km s- 1 )-1 before 
deviating slightly as they level out at high k.

more power on large scales and peaking at a lower value of k. Subsequently it has less 

power on intermediate scales, before levelling off in the same way as the vacuum energy 

dominated models at small scales.

The ratio of the flux and linear baryonic power spectra for each of the cases is shown 

in figure 3.3. The analysis will now focus only on the regime where k <  0.1 (km s-1 ) - 1 . 

This limit is chosen for several reasons, first it has been noted that on scales smaller than 

this results for A jD F(k) obtained from observational data diverge (Croft et al. 2000). 

This is thought to be the result of differing signal to noise levels. Secondly McDonald 

et al. (2000 ) found that for k values larger than this the results were sensitive to the
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F igu re  3 .3 : The ratio o f flux and linear baryonic power spectra 
for different cosmological parameters. A ll the ACD M  models follow 
the same trend where the ratio increases from  low I" to a maximum 
at k ~  0.04 (kms-1 )-1 , although the magnitudes are clearly model 
dependent. The matter dominated case shows less o f an increase and 
peaks earlier. On large scales the ratio is relatively flat for all cases.

correct removal o f contaminating metal lines in the spectra.

Since the flux power spectra are so alike the differences in the ratio o f each case is 

strongly dependent on the linear baryonic A?n(A;). A-s with the flux power spectra all 

the models, with the exception of the Einstein De-Sitter case, show the same trend. 

They rise from low k to peak at k ~  0.04 (km s ) -1 , then rapidly decline at larger 

k. Although exhibiting a similar overall form, the amplitude of this ratio is clearly 

model dependent, with the extreme cases differing by a factor o f about 2 on all scales. 

Therefore there is no universal function which, when multiplied by any given A jD 

gives the correctly normalized, corresponding linear mass power spectrum.

In the 3 dimensional analysis since the form of the flux power spectrum is found 

by differentiation, the gradient of any line rather than its absolute magnitude is the
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F igu re  3 .4 : The renormalized ratio o f flux and linear baryonic 
power spectra. Although showing considerable differences on small 
scales, on large scales each case is very similar.

important feature. However since ID flux power are so similar, the inferred Ap(/r) 

will in turn be very alike. Therefore the bias parameter, b(k), advocated by Croft et 

al. which is found by dividing the inferred flux power spectrum by the known mass 

power spectrum will still be subject to these differences in magnitude.

Leaving aside the issue of normalization, the relatively flat behaviour o f the ratio of 

flux and linear baryonic power spectra on large scales does suggest that, in this regime, 

a mechanism aimed at recovering only the shape of the mass power spectrum may 

be successful. If recovery of only the shape of linear mass density power spectrum is 

attempted then the amplitude of the ratio found is unimportant. Figure 3.4 shows the 

ratio of the flux and linear baryonic power spectra for each case where this ratio has 

been renormalized such that A 3D =  1.0 x 10-3  (km s-1 ) -1 ) =  1.0. The difference 

between the lines is small on very large scales suggesting that a reasonably accurate 

recovery o f the shape of the linear mass spectrum on these scales is possible. However 

the range over which this is valid is limited, with even the normalized ratios showing
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significant deviations on scales of where k z 0.03 (km s-1 ) ' 1. Even in the regime 

where the shape o f the linear mass power spectrum can be recovered the problem of 

independent normalization remains.

On even larger scales than those analysed here it is expected that the flux power 

spectrum will continue to offer a good indication of the underlying mass density dis­

tribution. However probing larger scales with pencil beam surveys presents several 

difficulties. First o f all for large redshift intervals there is not a linear relationship be­

tween distance and velocity. Therefore to set a distance scale requires the assumption 

of a cosmological model. Assuming the distance scale given by the currently favoured 

model o f a flat vacuum energy dominated cosmology should be a reasonable assump­

tion, though the precise relative contributions of Qm and JIa does have a considerable 

effect. For example calculating the comoving distance corresponding to 2 =  2.9 — 3.1 

gives rc ~  117 h~l M pc for the cosmological parameters Qm =  0.3, Qa =  0-7 rising to 

rc ~  134 h,-1  M pc if the combination is — 0.4, Oa =  0.6.

Another difficulty is that on very large scales it must be remembered that the mass 

power spectrum is evolving. On large scales where the correlations being measured are 

changing in amplitude over space this will complicate matters. Therefore, with this 

is in mind, any attempt to determine the mass density power spectrum 011 very large 

scales using the I.y-cv forest must be performed with caution.
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3 .3  D e c o n v o lu t io n  o f sp e ctra  in to  V o ig t  profiles

Spectra generated from the prescription outlined in §3.1 can also be analysed by recov­

ering line lists from them. A given spectrum can be fitted with blended Voigt profiles 

using the algorithms outlined below, which give a list o f cloud positions, column den­

sities and Doppler parameters. It should be noted that the ‘cosmic web’ paradigm for 

the IGM does not demand that the profiles found fully account for all the absorption 

seen. This is because the Ly-a absorption seen is accounted for as arising from a con­

tinuous fluctuating medium, rather than discrete clouds, and is therefore intrinsically 

non-Voigt (Outrarn, Carswell & Theuns 2000). The same applies to these simulations 

where the optical depths calculated from the underlying density field will not guaran­

tee Voigt like features. However despite this, spectra (both real and simulated) can be 

well fitted using this technique since the majority of absorption does correspond well 

to these blended profiles. Once these line lists have been compiled they can then be 

studied in the ways detailed later in sections 3.4 and 3.5.

3 .3 .1  Line fittin g  a lgorithm s

Extracting a list o f absorption parameters for each spectrum has been done with two 

methods, SPECFIT and AutoVP, there follows a brief description o f each algorithm. 

Although neither algorithm recovers the spectra perfectly they both provide acceptable 

fits to the data as is demonstrated later. The majority of fitting is done with SPECFIT 

which is by far the quicker of the two methods and AutoVP is applied to some data sets 

as a check that the results are not strongly affected by the line identification process. 

Codes for both o f these algorithms were provided by Avery Meiksin.

S P E C F IT

SPECFIT performs line fitting with the following steps:

1) First the spectrum is filtered using a wavelet transform. The smallest coefficients
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are discarded to ensure a reduced \2 o f 1 between the filtered and unfiltered spectra.

2) Line candidates are identified as inflection points using the smoothed second 

derivative o f the spectrum.

3) A  spectral region is defined to fit around each line candidate, as a contiguous 

region with the flux smaller than a given e-Tmin.

4) Overlapping regions are merged into a single continuous region.

5) A  non-linear least squares fit is performed o f candidate lines to the original 

spectrum.

Below is a concise description o f this algorithm, a more detailed account can be found 

in Dave et al. (1997).

1) Detection regions are identified by calculating an equivalent width per pixel

where AA is the pixel size and F{ and C{ represent the flux and calculated continuum 

in pixel i. The quantity aei is then given by

where api is the la  error in flux at pixel i. The e; values are then summed across 

2 pixels either side o f i to give j?,-, which has a standard deviation given by

A u t o V P

across the spectrum as defined at the ?th pixel as

(3.5)

(3.7)

Any point where E l >  8a pt is identified as a detection region.
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2) If the region is non-saturated, a single Voigt profile is placed at the minimum flux 

level in the detection region. JVhi and b are adjusted by small decrements from large 

initial values until the feature is above the minimum flux everywhere. In saturated 

regions a feature is placed at the centre of saturation and ArHi and b are adjusted to fit 

five pixels either side of the saturation.

3) The feature profiles from step 2 are then subtracted from the data to give a 

residual flux. Steps 1 and 2 are then repeated and a new residual flux calculated. This 

process is repeated until no new detections are found.

4) The resulting features are then subjected to simultaneous y 2 minimization o f the 

three parameters uCentral, Ahi, b.

5) A  fit of the detection region is then attempted with one less line. If this results 

in a lower y 2 then the line is omitted, otherwise the fit retains the original feature 

list. This step ensures that the region is fitted with as few lines as possible whilst still 

maintaining the constraint that y 2 is minimised.

6 ) If y 2 S 2 per pixel then the algorithm is complete. If y 2 is above this level then 

a line is added to the point where the local contribution to y 2 is highest. This step is 

repeated until y 2 is suitably small.

3 .3 .2  A ccu ra cy  of line fittin g

Once the line fitting has been performed the first step is to ensure that it is a good fit 

to the data. For each case a new spectrum is constructed where the Voigt profiles of 

the given line list are the only source of absorption. This new spectrum is subtracted 

from the original and the difference in the square of the flux at each point is summed 

to quantify the quality o f the fit.

SPECFIT provides an excellent fit to many of spectra, one example of which is 

shown in figure 3.5, where the value of the fit parameter, described above, for this 

spectra is 2.33 x l 0 ~4 per pixel. The top and middle graphs show the original and
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F igu re  3.5: An example o f a spectrum which is well fitted with 
Voigt profiles by SPECFIT. The top two plots show the original and 
reconstituted spectra respectively. The bottom  plot shows the dif­
ference in flux levels between these two spectra at each point. The 
only source o f discrepancy between the two corresponds to low level 
absorption in the original spectrum.

reconstituted spectra respectively, while the lower plot shows the difference in the 

flux o f the two. As can be seen in figure 3.5 in the cases of the best fits, the only 

discrepancy between the original and reconstituted spectra arise in areas where the 

original spectrum has very low levels o f absorption.

At the other extreme some spectra are very badly fitted by this algorithm. Figure 

3.6 shows the realization with the best example of this and has a fit parameter of 0.207 

per pixel. Clearly large areas o f the reconstituted spectrum fail to match the features 

seen in the original. Instead in these regions the reconstituted spectrum have massive 

regions o f saturation. This is thought to be a failure of the non-linear, least square fit
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F igu re  3.6: An example o f a spectrum which is badly fitted with 
Voigt profiles by SPECFIT. Although some regions are well fitted, 
the reconstituted spectrum contains some large regions erroneously 
dominated by massive saturated features. In these regions the recon­
stituted spectrum bears no resemblance to the original.

routine. These regions are flagged by SPECFIT as having an unreasonably large value

of x 2.

Inspection of the line lists produced by SPECFIT shows the list of absorbers con­

tains some systematic errors. In some spectra this algorithm will spuriously fit some 

regions with features with very large column densities and Doppler parameters. In ad­

dition to these saturated features, SPECFIT also tends to include some tiny features, 

with very low column densities and Doppler parameters, which cover only a few pixels. 

An example of one o f these features can be seen in figure 3.6 at v ~  4150 k m s-1 . 

These lines are removed since they are highly unphysical and their presence cannot be 

justified, and additionally, they often do not improve the fit to the original data.
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F igu re  3.7: An example of the improvement in the Voigt profile 
fitting process using SPECFIT when spurious lines are identified and 
removed. The large saturated features are no longer present and the 
regions they covered are generally well fitted. The only remaining 
area of discrepancy not corresponding to low level absorption in the 
original spectrum is where one blended feature is only partially fitted.

Examining each spectrum and removing these spurious features from the line list 

improves the fit considerably. To do this an algorithm is applied where lines are ex­

cluded if their Doppler parameters lie outside a given range. It was found empirically 

that rejecting lines where b <  10 k m s -1  or b >  100 k m s- 1 , removed all spurious 

features while also retaining valid ones. Alternatively SPECFIT gives the option of 

specifying, at the outset, a range of b values which can be considered acceptable. The 

result o f rejecting spurious lines can be seen in figure 3.7 which shows the reconsti­

tuted spectrum, after this line removal process has been applied, for the same original 

spectrum as in figure 3.6.
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% of pixels

|/org /reel Original Spurious lines removed

> 0.50 5.82 0.87

> 0.25 7.84 1.62

> 0.10 10.96 3.67

> 0.05 15.19 7.10

< 0.05 84.81 92.90

T able  3 .2 : A table showing the flux differences between the original 
and reconstituted spectra for SPECFIT, with and without spurious 
line removal.

The fit parameter for this spectrum is then reduced to 1.81 XlO -2  per pixel. Per­

forming this process on the entire sample leads to a situation where the main errors in 

any fit arise from spectra where a large saturated feature is removed from the line list. 

After this process it is sometimes seen that features present in the original spectrum, 

in the vicinity of the removed feature, are erroneously excluded when the spectrum is 

reconstituted. Figure 3.7 has a good example o f this at v ~  7200 km s_1. The mean fit 

parameter for the full sample of 100 spectra is decreased from to 4.59 x lO -2  per pixel 

down to 7.92 XlO -3  per pixel after the removal of these lines.

Table 3.2 shows the percentage of pixels with various differences in absolute flux 

levels between the original and reconstructed spectra for 100 realizations when using 

the original output from SPECFIT, and when spurious lines are removed. This table 

coupled with the fit parameter shows better fits are obtained when the spurious features 

are removed. This is also confirmed by eye when comparing figures 3.6 and 3.7.

In addition to quantifying the fits in the way previously discussed it is important 

to consider A 2D F(A:). Since this fundamental observable is used in the data analysis 

it is essential to ensure that this quantity in the reconstituted spectra closely matches 

the original value. Figure 3.8 shows this quantity for the sample when using SPECFIT 

and when the anomalous features have been removed. When the spurious lines are not 

removed there are considerable differences in both the high and low k regime between 

the two flux power spectra. After the line removal process the original and recovered
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F ig u re  3 .8 : Averaged dimensionless flux power spectra for original 
and reconstructed spectra using SPECFIT. Using the original line list 
the flux power spectra match well on intermediate scales but there 
is a discrepancy of nearly an order of magnitude on small scales. On 
large scales there is a less pronounced yet still considerable difference.
Once the spurious features have been removed there is a much better 
fit on all scales, though suppression of small scale power is seen.

F (Jfc) are in agreement for low k values. At large k the amended version o f SPECFIT 

does not recover the flux power spectrum exactly but instead suppresses small scale 

power. This is not significant however since recovery o f the mass power spectrum on 

these scales is not practical due to observational constraints (e.g M cDonald et al. '2000; 

Croft et al. 2000). Therefore the errors introduced when using SPECFIT do not affect 

the data strongly in the regime o f interest and using these line lists in the analysis is 

justified.

3 .3 .3  C o m p ariso n  o f line f it t in g  a lgo rith m s

As previously discussed, to ensure that the line list data obtained is not dependent on 

the line fitting algorithm used, some o f the spectra are also fitted using AutoVP. In
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F igu re  3.9: An example o f degeneracy when fitting a blended line 
profile. The top plots show the individual absorption components and 
the bottom  plots show the resultant blended profile. Although the 
com ponent features are different the resultant profile is very similar.

general the line lists obtained from SPECFIT and AutoVP are similar, although some 

differences are evident. Unsurprisingly there are minor differences in the parameter 

values of the lines given, although these are usually small and unimportant. In ad­

dition the line lists obtained from AutoVP are invariably longer than those obtained 

by SPECFIT. Nearly all o f these additional features have low column densities and 

correspond to areas of low level absorption in the original spectrum. As previously 

discussed these regions are are not accurately recovered by SPECFIT.

Significantly some discrepancy arises between the line lists where heavily blended 

features are fitted differently. The fits for heavily blended features can be degenerate 

as demonstrated in figure 3.9. This does not present a problem however since, in later 

analysis of the line positions, the individual components o f these blended lines still 

mark regions of high underlying baryon density.

Despite the presence of these discrepancies there is in general an excellent agreement
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between the two line fitting algorithms. With exception o f the degeneracies found in 

blended features, the lists o f absorption lines produced by AutoVP and SPECFIT 

unambiguously identify similar line positions and profiles to account for the flux levels 

seen. Since these algorithms apply different methods for line identification and the 

results are in excellent agreement, the line lists produced by either can be considered 

as accurate and robust.
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3 . 4  P o w er sp e c tru m  o f line p o sitio n s

3.4 .1  M ethod

Once a line list has been obtained it is straightforward to calculate Pro,i{k) using a 

binary distribution of S/> as discussed in §2.1.3. Using a grid of the same resolution as 

the spectrum is generated on for this calculation can lead to a situation where more 

than one line centre is found in some given pixel. Since the only occupancy numbers 

allowed in the binary distribution are 0 or 1 this is potentially a problem. When this 

occurs the grid can be made finer though, in this case, finding two absorption lines so 

close together is rare enough (approximately one occurrence in every 10 spectra) that 

ignoring the presence of one of the lines has a negligible effect on the calculated PiD/{k). 

If the centres o f absorption lines offer either a Poisson sampling o f the mass field or 

act as reliable markers of the peaks in this field then A j0  ( (k) should provide a good 

way to recover the shape o f the underlying mass density field. The amplitude of the 

recovered field however would require some independent form of normalization. This 

technique was applied to a sample of 500 spectra where the line fitting was performed 

with SPECFIT.

3 .4 .2  R esu lts and discussion

The first thing to note is that the small number of objects, inherent in using absorption 

line centres in this way, means the scatter on individual realizations is very large. In 

spite of this the number of realizations used here allows a suitable line to be fitted to the 

data. Since the normalization of the recovered A fD ( (k) is arbitrary its amplitude is set 

to be equal to that of the underlying mass distribution at k  — 1.0 X  10-3  (km s ) - 1 . 

Figure 3.10 shows this renormalized A fD e(k) compared with A jD(A;). It is clear that 

as a method of recovering the mass field this technique fails dramatically on scales of 

k >  3 X  10~ 3 (km s- 1 ) -1 . Furthermore studying P\o/{k) on scales smaller than those 

shown on the graph reveal that on scales k >  0.2 (km s- 1 ) -1  this power spectrum tends 

to a constant. This constant is larger than the recovered signal on large scales and so
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F igu re  3 .10: The dimensionless power spectrum o f the underlying 
mass density field and the recovered line power spectrum which has 
been renormalized to match the mass power spectrum at k =  1.0 x 
10~3 (km s- 1 ) " 1. Although on very large scales these quantities are 
closely matched a large discrepancy becomes apparent at k ~  3.0 x 
10~3 (km s-1 ) - i .

even the results from larger scales must be considered dubious.

The reason for the failure of this method to recover the mass power spectrum is 

thought to be due to the effects of Doppler broadening of the lines. If the flux in 

each pixel was dependent only on the density at that point, rather than the general 

surrounding region, then marking the points of greatest absorption would give a much 

better indicator of the underlying mass. Even though the Doppler broadening is a 

relatively local effect its distortion of the link between underlying density and optical 

depth at any given point is enough to render this method highly unreliable.
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3 . 5  F lu x  pow er sp e c tru m  o f scra m b le d  line p o s itio n s

3.5 .1  M ethod

Having obtained line lists for a sample of spectra, this information can be used to 

investigate the effect on the flux power spectrum of the different profiles and positions 

of the lines. If the flux power spectrum seen can be better understood in terms of 

the absorption systems that cause it, then this in turn will lead to an insight into the 

relationship between the flux power spectrum and the underlying mass density field.

The lines corresponding to each spectrum were maintained in pairs of column den­

sity, iVHi, and Doppler parameter, b, but their velocity parameters were scrambled. So 

for a given line list the centres of the absorption lines were kept in the same positions 

but the profiles o f the absorption features were placed randomly amongst these posi­

tions. A  spectrum was then generated from this new absorber configuration, and its 

flux power spectrum calculated. The flux power spectra from each randomization were 

averaged to find a sample mean. This process was then repeated 100 times and the 

mean flux power spectrum for all the realizations was found.

3.5 .2  R esu lts and discussion

Figure 3.11 shows the original flux power spectrum and that obtained from the scram­

bled line profiles for a sample o f 500 spectra. Scrambling the spatial positions o f the 

absorption profiles suppresses power on large scales, while boosting it by a factor by 

up to 2 on intermediate scales. The power spectra are well matched in the regime 

0.1 (km s- 1 ) -1  <  k <  0.3 (km s-  ) -1 , while for k values above this small scale power 

is boosted by the scrambling process.

If the Croft et al. method of recovering the mass power spectra is valid, then a change 

in the flux power spectrum when a line list is scrambled is required. Investigating the 

nature of this change, however, should give a thorough understanding o f the relationship 

between the individual absorption systems and the flux power spectrum.
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F igu re  3 .11: The dimensionless flux power spectra for the scram­
bled and original line positions. The scrambling process causes a 
change o f power on many scales. Large scale power is suppressed 
while an increase in power is seen on small and some intermedi­
ate scales. The power spectra are very similar for k values between 
0.1 - 0 . 3  (k m s - 1 ) - 1.

Slightly different scrambling processes were also performed in order to study the 

cause of the change in the flux power spectrum further. The difference is that this time 

only certain subsets of lines had their profiles scrambled. Each line list was split into 

subsets depending on the column densities of the absorbers. Figure 3.12 shows a sample 

spectrum broken down into lines of different ranges of column density. The absorption 

features from four different regimes of fVni are shown, while the bottom plot shows the 

spectrum obtained when all the features are included. As would be expected the lower 

column density lines are more numerous, yet their contributions to the spectrum are 

not as dramatic as those seen from the high column density systems.
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F igu re  3 .12: The absorption profiles o f a spectrum broken down 
into different regimes o f column density. The top four plots show 
the profiles o f features from given ranges o f column density while the 
bottom  plot shows the spectrum obtained when all the features are 
included.

These column density subsets were then scrambled, while the configuration o f the 

remaining absorption systems was maintained. Figure 3.13 shows the resulting flux 

power spectra as a ratio of the original flux power spectrum. This is done since the 

lines are very hard to distinguish when plotted on the normal log-log plot. The results 

o f scrambling each decade of column densities results in flux power spectra which are 

the same, to within about 5%, of the original in every case.

This in itself is interesting since although the column densities being scrambled in 

each case are similar, each subset of absorbers contains a range o f Doppler parameters. 

The curve o f growth, shown in figure 1.3, shows that many o f the lines in a given
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F igu re  3 .13: The flux power spectra obtained when subsets o f the 
absorption features are scrambled. The top plot shows the flux power 
spectrum o f the original configuration while the bottom  plot shows 
the ratio o f the new flux power spectra and the original. Although 
all the ratios are close to one it can clearly be seen that power on 
different scales is affected differently by scrambling different subsets 
o f the absorption features. The wiggles seen on intermediate scales 
are thought to be artifacts o f  the spline line fitting.
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subset will have significant differences in their equivalent widths. However it is seen 

that scrambling these subsets o f features is relatively unimportant to the resulting flux 

power spectrum. This suggests that the Doppler broadening o f lines, which may have 

been problematic (as discussed in chapter 2 ), does not have a dramatic effect when the 

Croft et al. inversion method is applied.

Another interesting feature to be noted in figure 3.13 is that, although the differences 

seen are slight, the spatial position of features o f different column density do affect 

different scales o f the flux power spectrum. The information on intermediate scales is 

not very reliable, showing an oscillating nature. This is thought to be the result of 

systematics due to the smoothing spline fitting routine rather than a real signal. The 

regime of most interest is the scales where k <  0.1 (km s ' 1) ' 1 since this the regime 

where recovery o f the mass power spectrum is usually attempted. These large scale 

correlations are almost completely insensitive to the scrambling o f lines in the regime 

o f 1014 cm -2  <  A'hi <  10lD cm - 2 . The spatial positions o f the subset o f the weakest 

lines does contribute slightly to the large scale structure whereas the lines of column 

density 1013 cm -2  <  Nm  <  1014 cm -2  has the greatest effect on the large scale power. 

This is likely to be due to the balance between the number o f lines and the relative 

importance of a single feature. Lower column density lines may be more numerous, 

but their absorption profiles are such that the effect on the flux power spectrum of 

scrambling them is small.

To study the difference in the subsets of absorption features further, the two-point 

correlation function of the lines in the different column density regimes was calculated. 

To evaluate the two-point correlation function, £(u), the estimator advocated by Hamil­

ton (1993) was used. Here two catalogues are used, the data catalogue and a larger 

random catalogue. The correlation function was then estimated using the expression

D D ( v ) -2 D R (v )  +  R R (v)
R R {v) ’ 1 j

where D D (v )  and R R (v) represents the average number o f pairs found within a 

given distance, v, o f each other, divided by the number o f pairs in the entire sample, 

for the data and random catalogues respectively. D R (v ) is the same quantity for the 

cross pairs across the catalogues. Other estimators of £(u) were also tested and found
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to be in good agreement with the expression given in equation 3 .8 .
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F igu re  3 .14 : The two-point correlation function for different col­
umn density regimes. The plot shows that although the amplitude 
o f £(v) is small when all the features are considered, different column 
density regimes do show differing degrees o f clustering on small scales. 
The noise increases as the number o f lines decreases and the result 
for 1014 cm -2  <  Nhi <  1015 cm -2  shows considerable scatter. There 
is a strong anti-correlation on very small scales since line centres are 
rarely extremely close.

Figure 3.14 shows the recovered values of £(n), for 100 bins of width v =  20 km s- 1 . 

The first thing to note is the strong anti-correlation seen at 20 km s_1, this is since the 

lines themselves have widths comparable to this scale and so the only place lines are in 

such close proximity are in heavily blended systems. In all cases the value of £(u) on 

scales o f over several hundred km s_1 is consistent with zero.

The effect of the number o f features in each subset can be clearly seen with the
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increase of scatter in £(u) as the column densities increase (and thus the number of ob­

jects decreases). The lines showing the strongest clustering on small scales correspond 

to the highest decade of column densities considered. Each subset, however, shows a 

significant signal on small scales.

When all the systems are included the two-point correlation tends to zero on much 

smaller scales than when only a subset of lines is considered. This appears to be an 

anomalous result since three subsets, all showing considerable clustering, are combined 

to give a distribution that has a very weak two-point correlation. However this result 

arises since the regions of voids for one column density regime correspond to a concen­

tration o f lines in a different column density range. This effect can be seen in figure 

3.12 if it is remembered that each individual absorption feature is weighted equally 

regardless o f its column density.
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3 .6  P e c u lia r  v e lo c it ie s

A complication to the analysis that has not yet been addressed in this thesis is that 

of peculiar velocities. The recovered mass power spectrum is required in real space 

whereas the flux power spectrum of the absorption spectra is calculated in velocity 

space. The presence of a peculiar velocity field leads to a distorting effect between real 

and velocity space and induces anisotropies in the 3 dimensional flux power spectrum.

The effects o f the peculiar velocity field cannot be properly considered in 1 dimension 

alone, since the magnitude o f the field along directions other than the line of sight can 

have an effect. For example a density fluctuation can occur where there is no velocity 

fluctuation along the line of sight if the gas is infalling perpendicularly. Conversely 

a point noted by McGill (1990) is that peculiar velocities can give rise to apparent 

absorption features in velocity space even in the absence of density fluctuations. In 

this case material can be converging along the line o f sight, giving rise to an absorption 

feature, whilst perpendicular to this infall the gas is diverging such that the density 

contrast is zero. Therefore the effects of a peculiar velocity field are best studied by 

3 dimensional iV-body simulations. Failing this more simplistic approaches can be 

applied in 3 dimensions, for example the Zel’dovich (1970) approximation. Essentially 

this is first order perturbation theory expressed in Lagrangian space whose results 

show that in a triaxial system collapse will occur along the shortest axis. An excellent 

approximation in highly asymmetric systems, this approach works least well when 

considering situations of complete spherical symmetry.

A peculiar velocity field has several effects on the absorption spectra produced as has 

been shown by 77-body simulations (e.g. Zhang et al. 1998). Firstly, and most obviously, 

systematic offsets occur in the positions of an absorption feature in velocity space, due 

to the density fluctuations responsible for the absorption features following the bulk 

flow motions. At a redshift o f 3.0 the amplitude of systematic peculiar velocities can be 

as high as several hundred km s- 1 . An additional, more subtle, effect is that the bulk 

motions within gas clouds can lead to a substantial alteration o f the Doppler parameter, 

b. In the absence o f peculiar velocities the Doppler parameter is determined solely by 

the temperature o f the gas cloud (see equation 1.50), but this is boosted by the non-
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thermal motion arising from the peculiar velocities.

Modelling peculiar velocities in 1 dimensional simulations cannot be tackled exactly, 

but several different approximations exist in the literature. One approach is to neglect 

the effect o f non-linearities and work solely in the linear regime. This allows the 3 

dimensional density and velocity power spectra to be linked via the continuity equation. 

The usual transformation can then be made to 1 dimension power spectra and Gaussian 

realizations can then give correlated 1 dimensional density and velocity fields (e.g. Bi

1993). This procedure introduces different line blending and clustering effects as the 

position of the absorption features are seen by an observer to be shifted. The effects of 

peculiar velocities arising in the non-linear regime can be crudely modelled by filtering 

the spectrum in velocity space with a Gaussian, with the effect that a cut off in the 

power spectrum is introduced at high k (e.g. Kaiser & Peacock 1991).

The related problem of taking 1 dimensional data and inferring the peculiar velocity 

field along the line o f sight (thus allowing the effects to be corrected for) was tackled by 

Nusser & Hehnelt (1999). The method used is an iterative approach where a density 

field is inferred from the spectra and a velocity field calculated, the density field is 

then recalculated with the new peculiar velocity components and the process repeated 

until convergence is reached. Reconstructing the velocity field from the density field 

is performed using the same 1 dimensional approximation of the 3 dimensional fluid 

equations as Bi (1993) outlined above. This approach gives a probable 1 dimensional 

velocity field consistent with the line of sight density field but is not rigorous due to 

the 3 dimensional effects discussed above being neglected.

As previously mentioned Hui (1999) showed that neglecting the effects of peculiar 

velocities in the initial method of Croft et cil. (1998) leads to underestimation of the 

steepness of the recovered mass power spectrum. However this problem should not 

exist with the most recent technique where the mass power spectrum is found using the 

bias parameter, b{k). Since the bias parameter is calculated from iV-body simulations 

where peculiar velocities are well modelled any error arising from these effects should 

be slight, especially compared to the errors introduced by, for example, uncertainties 

in the temperature, mean optical depth and reionization history of the IGM.
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Chapter 4

The statistics of the flux power 

spectrum

In this chapter the statistical properties of the simulations from chapter 3 will be dis­

cussed. Firstly analysis of the correlation matrix o f the inferred 3 dimensional flux 

power spectrum will be presented. This is followed by a comparison o f two different 

methods of inferring the 3 dimensional flux power spectrum from its 1 dimensional 

counterpart. Analysis is then presented showing the relative likelihoods, between cos­

mological models, when using measurements of P id ,f (&) directly, rather than any in­

version techniques. Finally the relationship between the mass and flux variances found 

in individual realizations is briefly discussed.

4 .1  C o rre la t io n s  in th e  flu x  pow er sp e c tru m

In general to test models against observable data it is necessary to quantify the likeli­

hood that a set of data would arise for a given model. Assuming a set of N  data points, 

yi (i =  1 ,N ) ,  and a set of models which predict values for these data, y¿,mod, then the 

question that needs to be asked for each model is what is the probability that this 

data set could have occurred? Then the likelihood of the parameters given the data is
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identified as being proportional to the probability o f the data given the parameters.

If each data point is assumed to be measured independently, with a Gaussian mea­

surement error, then the probability o f the data is the product o f the probabilities of 

each point, leading to an expression for likelihood given by

1 {  Hi ~  Hi,m o d

r F p  I-e x p ( - x 2/ 2 ) =  I I  I exp (4.1)

or alternatively

N

111 L — X 2/2 =  -  Yl(lJi ~  iprnod ) 2/'2^ 2 (4.2)
¿=1

The parameter x 2 has been introduced in the above expressions and should be 

minimized to find the maximum likelihood estimates of the model parameters.

The assumption o f Gaussian distributed errors is usually justified by appealing to 

the central limit theorem. This fundamental theorem in statistics states that, regardless 

of the underlying probability distribution function, if a large number of points are 

sampled then the distribution of these sampled points tends towards a Gaussian. It 

should be noted that there are distributions for which this theorem does not hold 

true, however that it does for so many distributions is the reason that the Gaussian 

distribution is so important in statistics.

However another assumption in the derivation of equation 4.2 is that the individual 

data points, y,-, are uncorrelated. If this is not the case a more rigorous analysis is 

required where each data point is not simply considered in isolation, but with respect 

to the other points. A correlation matrix Cij can be defined as

/  1

_  /  {¡Ji Vi,m o d )  ( Vj Vj,m o d )
L>ij

"

?’12 1

V  r l  N  r 2N

f f i  N  

r 2N

\

(4.3)

Where lyy is known as the correlation coefficient between the distributions o f i and 

j .  The values for this coefficient range between 1 and —1 corresponding to perfect
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con  elation (ŷ  yi,mod — Vj yj,mod) &nd anti conelation (yi yi,mod — (!Jj yj,mod))

respectively between yt- and y j .  Then, in the general case, the relative likelihood that 

a set o f data is consistent with a model is given by

—  2 ^  . ( Vi ~~ Vi,mod)^ ¡j { y j  ~  Vj, m o d ) -  ( 4 - 4 )

ij

In practice it is often convenient to use an approximate analysis where the correla­

tion matrix is simply equal to the identity matrix (in which case the above expression 

is equivalent to that shown in equation 4.2). However this can only be justified if it 

is shown that rtj  ~  0 for all combinations o f i ^  j .  Although even in the case where 

a set o f data are truly independent, the correlation coefficients for iV realizations, will 

have a standard deviation given by 1 / \/fV, so will in general, be scattered about zero 

rather than being equal to zero, although the scatter will decrease as the number of 

realizations is increased.

The case o f interest with respect to the simulations presented in chapter 3 is to 

what level the flux power spectrum measurements on different k scales are independent 

o f each other. If there are significant correlations between the flux power spectrum on 

different scales then any likelihood analysis performed which neglects these correlations 

will be inaccurate.

Croft et al. (2000) show a correlation matrix calculated from a subset of their data 

set using the jackknife method. This technique provides good error estimates for many 

data sets, though is not infallible. Given a data set one point is removed from the 

sample at a time, explicitly the data set remaining after deletion can be represented by

X(i) =  (mi, . . . ,  * i_ i, z i+1, . . . , x n). (4.5)

Now letting s =  s (xM) represent the value of a given statistic for the data cor­

responding to the deleted point, then the jackknife estimate for the standard error of 

s(x ) is given by

1/2

S6jack{,s} — -E< Hi) 5())'
¡'=i

(4.6)
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where

Sn =  £ ï f i i .  (4.7)0 t.—, n
4 =  1

The correlations in the flux power spectrum between given wave numbers in a 

sample of simulations can be computed exactly. Explicitly the correlation coefficients 

for the flux power spectrum between two wave numbers kj and kj is

_ / [p F(ki) -  p r dm  -  p r d(kj)] (4-8)
\ CTi -

where o f  is simply the variance of PF{ki). However in this case the model value of 

PF{ki) is simply the mean value of this parameter over many realizations. Therefore 

substituting this into the above expression and writing ex; in terms o f the flux power 

spectrum gives

(PF(kt)PF(kj)) -  (Pp(ki))(PF (kj))

[(P$(ki)) -  (PF{ki))2]1/2[(P p{kj)) -  (P F ik j))2]1' 2 '
(4.9)

So for a given number of realizations there is a straightforward way to calculate the 

correlation coefficients r,-j between wave scales k{ and kj.

This calculation was performed for spectra generated using a similar prescription 

to that given in chapter 3. However in order to compare the results with those in Croft 

et al. some parameters were altered to match their data set. Therefore the redshift 

range was chosen to be z =  2.5 -  2.9. Despite the redshift range being considerable 

the evolution of the mass power spectrum over this range has been ignored and the 

normalization redshift was set at z — 2.7. The constant o f proportionality in equation

3.2 was determined using the constraint f ( z  =  2.7) ~  0.3 in accordance with Meiksin, 

Bryan & Machacek (2001). Additionally, to replicate the resolution effects o f the Keck 

HIRES sample, the spectra were convolved with a Gaussian with a full width at half 

maximum of 8 km s-1 . Finally the spectra were rebinned to a pixel size of 2.1 km s“ 1.

The main complication arises since the analysis o f the correlation between wave 

numbers must be performed using the 3 dimensional flux power spectrum. Following 

the technique of Croft et al. a quantity PF{k) is defined as

PF(k) =  --^ --^ P iD .F (k ). (4-10)
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In practice performing this differentiation is non-trivial. Typically the 1 dimen­

sional flux power spectrum is a noisy function, which in all probability will not be 

monotonically decreasing. This leads to the possibility of calculating a 3 dimensional 

power which is negative. Reducing the noise inherent in the measured 1 dimensional 

flux power spectrum is therefore of key importance when this inversion is applied.

Evaluating the necessary gradient at a given point can be done in a number of 

different ways. The technique applied by Croft et al. is to estimate the derivative at the 

point by averaging the gradients between this point and its two neighbouring

points, and Hi+i) (Croft, private communication). This can result in

a mean positive gradient and so the magnitude o f the power spectrum quoted for a 

given wavenumber is calculated by averaging the results about this value in k bins of 

fixed logarithmic length. However even after this process is applied a 3 dimensional flux 

power spectrum which is negative on some scales is often calculated when individual 

spectra are analysed, especially at low wave numbers where only a small number of 

modes are averaged.

Although the occurrence of negative power is unphysical, it need not effect the 

correlation analysis. Bearing in mind that what is calculated is an estimator of the true 

flux power spectrum it is unimportant that this is sometimes less than zero, provided 

that the mean for a large sample is positive. If this is not the case then using this 

estimator cannot be justified.

The correlation coefficients were calculated for wave numbers which were chosen to 

match the values used in Croft et al. (2000). Table 4.1 gives the values o f k correspond­

ing to each index, i, o f the correlation matrix presented.

Figure 4.1 shows the correlation matrices calculated for 50 realizations, and by Croft 

et al. from their data set using the jackknife estimator. The top plot also shows the area 

o f circles that would correspond to scatter of ler, 2cr and 3cr in uncorrelated data, for 50 

realizations. There are considerable differences between these two matrices, firstly the 

positive correlations they find at high wave numbers is absent. The authors note that 

if the correlation seen is statistically significant it is probably due to the differencing
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F igu re  4 .1 : The correlation matrices calculated for a sample o f 
simulated spectra (top plot) and for the fiducial Keck HIRES data 
o f Croft et al. using the jackknife technique (bottom  plot taken from 
their paper). In each case the amplitude o f the coefficient is propor­
tional to the area o f the circle. The filled circles represent positive 
coefficients, while negative coefficients are represented with hollow 
circles. The bottom  row in the top plot shows the size o f expected 
ltr, 2cr and 3<r variations arising from 50 realizations o f uncorrelated 
data. The wave scales corresponding to each integer value can be 
found in table 4.1.
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Number k (km s *) 1

1 1.99 X  10~ 3
2 2.59 x 10~ 3
3 3.37 x 10~ 3
4 4.37 x 10" 3
5 5.68 x 10" 3
6 7.38 x 10“ 3
7 9.58 x 10~3
8 1.24 x 10~ 2
9 1.62 x 10~2
10 2.10  x 10~2
11 2.72 X  10-2
12 3.55 x 10~ 2
13 4.61 X 10~ 2
14 5.98 x 10~2
15 7.77 X 10~2
16 0.101
17 0.131
18 0.170
19 0.221
20 0.287

T able 4 .1 : The wave scales for the correlation matrices calculated 
by Croft et al. and for a sample of simulated spectra generated using 
the lognormal approximation.

needed to infer the flux power spectrum. The second major difference seen is that 

the calculation on the simulations shows anti-correlation between neighbouring wave 

numbers.

A possible explanation for this may arise from the way the flux power spectrum is 

estimated. If the flux power spectrum found at a particular wavenumber is very large 

for a given realization, this corresponds to region in k space where the 1 dimensional 

flux power spectrum has shown a sharper fall off than normal. This means the 1 

dimensional flux power spectrum is at a. lower value on some given scale than would be 

expected. Therefore, since this quantity is always positive, the gradient in the higher k 

regimes is likely to be lower. This will result in anti-correlations between neighbouring 

k being likely.

This is demonstrated in figure 4.2 for the simple case where the 1 dimensional 

flux power spectrum is a well defined exponential. The solid line represents gradient
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k

F igu re  4 .2 : A demonstration that a high value of the inferred 3 
dimensional flux power spectrum in one k bin cannot occur without 
affecting measurements on other scales.

estimates if a realization exactly followed this form. The dashed line shows the case 

if one tries to enforce a high power spectrum measurement in one isolated regime of 

k {k =  0.1) while maintaining the correct values of inferred 3 dimensional power for 

all other values of k. The requirement that the gradients match in all regions, except 

k =  0.0  — 0 .1 , means the 1 dimensional flux power spectrum must fall below zero. 

Therefore this scenario cannot happen and the high measurement in one k bin requires 

a low measurement in one or more of the other bins. This argument assumes that 

the 1 dimensional flux power spectrum always has a similar value at very low k values. 

Although this should be true statistically it is quite reasonable to expect to find isolated 

cases where high values of the flux power spectrum are calculated.

Outside of neighbouring k bins, and the positive correlation found by Croft et al. in 

the high k regime both the matrices presented have off diagonal elements which are 

consistent with zero, although the scatter in the Croft et al. results is more pronounced 

than for the correlations computed directly from the simulations. As previously dis­

cussed some scatter around zero is inevitable and these elements may not be statistically
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significant. However even if this is the case then the significant correlations between 

neighbouring wave numbers implies the assumption made by Croft et al. , that it is 

valid to use only the diagonal elements, may lead to errors when calculating the error 

bars on the inferred 3 dimensional mass power spectrum.
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4 . 2  C a lc u la t in g  th e  3 d im e n sio n a l flu x  pow er sp e c tru m

As previously mentioned a number o f techniques can be used to infer the 3 dimensional 

flux power spectrum from its 1 dimensional counterpart. This is intimately linked with 

the question o f how large a data sample needs to be before it converges reliably. In 

this section an alternative to the direct calculation of the gradient is considered. With 

this technique the derivative is found using a spline fit of the 1 dimensional flux power 

spectrum. This smooths the data in its original form before the derivative is found.

k /  (kms ' )  1 k /  (kms ' )  1

F igu re  4 .3 : The effect o f knot positions on the spline fit. If the 
knots are spaced in close proximity then an oscillating function can 
result, shown in the bottom  right hand plot. At the other extreme 
too few knots also result in an inaccurate fit as seen in the high k 
regime o f the top left hand plot.

Using this method raises the crucial question of how the data is best fitted. The key 

when using this spline fit method is to attempt to accurately represent the data points
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whilst still offering a function which is suitably smooth. It is important to balance 

these two factors carefully and this is controlled by the positioning of internal knots in 

the data set.

A routine is used that fits the data with a function which is usually continuous in 

its first three derivatives. At certain points, the knot positions, the third derivative is 

allowed to be discontinuous. The positioning of these knots is crucial in determining the 

final form of the function. This effect is shown in figure 4.3, the same 1 dimensional flux 

power spectrum (averaged from 50 realizations) is fitted with four different sets of knot 

positions, chosen such that they are separated by intervals o f constant logarithmic k. 

This figure clearly demonstrates that the gradient at a given point, and thus the inferred 

3 dimensional flux power spectrum is strongly dependent on these knot positions.

As the function becomes smoother, for example as more realizations are averaged 

to find the 1 dimensional flux power spectrum, the spline fits tend to converge to the 

same result regardless of the positioning of the knots. The crucial question in this 

case is how closely the inferred flux power spectrum matches the results when the 

gradient is computed directly. Figure 4.4 shows the results from these two methods 

when 1000 realizations are averaged and so the 1 dimensional flux power spectrum 

is intrinsically very smooth. Also included, to guide the eye, is the renormalised 3 

dimensional linear baryonic mass power spectrum corresponding to the simulations. If 

the mechanism applied by Croft et al. is well motivated the mass and flux power spectra 

should be similar shapes, especially in the low k regime where the bias factor, b(k), is 

slowly varying. The mass power spectrum has been renormalised such that it offers 

the closest consistent fit to the mean of the two data points, for the three lowest k 

values. It can be seen that the results obtained for the different techniques of gradient 

calculation are only very well matched on certain scales.

This is likely to be due to a weakness in the spline fitting technique. Smoothing 

the data in this way inevitably leads to information being discarded. This result does 

however highlight the sensitivity of the inferred 3 dimensional flux power spectrum on 

the calculated gradient.
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F igu re  4 .4 : Comparison of the 3 dimensional flux power spectrum 
where the calculation is performed for two different techniques. The 
inferred flux power spectrum can be seen to highly dependent on the 
method used to calculate the gradient, especially at large scales.

In the case when a more conservative number o f realizations are used to calculate 

the mean 1 dimensional flux power spectrum, the discrepancy between the inferred 3 

dimensional results for these two methods is even more pronounced, and more signifi­

cantly both methods show considerable deviation from the results found when a. large 

number of realizations are used. This is shown in figure 4.5 which shows the inferred 

3 dimensional flux power spectrum for a sample o f 50 realizations. The spline fit per­

formed had knot positions separated by an interval in logarithmic k o f 0 .2 , since it 

was found that this fit most closely matched the result when many realizations were 

averaged.

This highlights the problems inherent in differentiating a noisy function accurately, 

irrespective of the method used. Although the 1 dimensional flux power spectrum

renormalised linear baryonic mass power spectrum 

direct gradient calculation 

spline fit  technique
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k /  (kms 1) 1

F igu re  4 .5 : Comparison o f the 3 dimensional flux power spectrum 
where the calculation is performed on a sample size o f 50. The in­
ferred flux power spectrum can be seen to differ considerably from 
that where a very large number realizations are used (see figure 4.4).

converges well for a sample size of 50 realizations the scatter in each individual point 

still causes considerable difficulties when differentiation is performed. The uncertainties 

arising from this step are shown to be considerable, even when a sample size comparable 

to the largest observational data sets is used.

One complication, that may help reduce the scatter seen, is that if the 1 dimensional 

flux power spectrum is calculated using the Lomb periodogram technique (as Croft et 

al. do in their analysis) rather than an FFT then this quantity is found for values of 

k which are not necessarily equally spaced. Therefore the number o f modes averaged 

over to determine each data point at a given value o f k will differ from the analysis 

presented here. If more modes are averaged over then the scatter will be reduced.
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4 . 3  L ik e lih o o d  a n a ly s is  o f th e  1 d im e n sio n a l f lu x  pow er sp e c ­

tru m

In this section analysis working with the directly observable quantity P id ,f(^ ) >s pre­

sented. This has the advantage that the difficulties associated with inferring the 3 di­

mensional flux power spectrum from its 1 dimensional counterpart, highlighted earlier, 

are avoided. To do this the likelihood techniques outlined in §4.1 are used, specifically 

£  is calculated using the expression

£  =  e x p ( - /Y2/2 ) , (4.11)

where

E
N

^  j ilJi y i,m od )C ^ j (ijj Uj,mod) (4.12)

where N  is the number o f simulations contained in the data set. In this case the 

data points are bin averaged values of Pid,f(&)- In order to keep the inversion o f the 

correlation matrix practical the data is handled in 20 wave bins, similar to those used 

in the Croft et cil. analysis but slightly different due to using a different pixel size, the 

values for these wave bins are shown in table 4.2. The simulations used span a redshift 

range o f z =  2.5 —2.9, have a pixel size o f 2 km s_1, and a mean optical depth constraint 

o f r  ~  0.3. Model values for each wave bin and correlation matrices (see equation 4.9) 

are calculated using 1000 realizations for each given set o f cosmological parameters.

Values of x 2 are calculated for a given set of data for all 7 cosmological models. Some 

of these values o f x 2 can be large (especially when N  is large), leading to vanishingly 

small values o f £ , therefore, for convenience, the quantity considered is

Rm =  logro f 7^ - )  =  log10(e )xiue ~ m =  l , . . . ,7 .  (4.13)
V^true/ ^

So, for example, when this quantity equals —1 , for a given set of data, these data 

are 10% as likely to have come from the cosmological model in question than the actual 

model from which they were generated. However interpretation of the significance of
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Number k (km s x) 1

1 2.00 x 10~3
2 2.58 x 10~3
3 3.43 x 10“ 3
4 4.48 x 1 0 -3
5 5.72 x  10~3
6 7.44 X  10“ 3
7 9.73 x  10~3
8 1.25 x  10~2
9 1.62 x  10“ 2
10 2.12 x  10“ 2
11 2.75 x  10~2
12 3.57 x  10~2
13 4.65 X  10~2
14 6.03 X  1 0 -2
15 7.82 x  10~2
16 0.102
17 0.132
18 0.171
19 0.222
20 0.288

T a b le  4 .2 :  The wave scales used in the likelihood analysis.

specific values o f R m should be done with consideration to the number of realizations in 

each data set. The reason for this is that this quantity is proportional to the difference 

in the values o f y 2 between models. For a system with M  degrees of freedom one 

typically expects (e.g. Lupton 1993)

Xtrue ~  V 2 M .  ( 4 .1 4 )

In the case considered here M  is equal to the number o f realizations multiplied by 

the number of wave bins, so M  =  207V. Thus the la  error bar on the expected value 

X^ue increases as the square root of the number o f realizations. This implies two data 

sets of 50 realizations (M  =  1000) generated from the same cosmological model could 

easily give rise to values of \2 which differed by about 50 (R m — —10.86). Therefore 

low values of R m do not necessarily imply that a model is confidently ruled out, even 

though at first glance the ratio of the likelihoods is tiny.
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4 .3 .1  R esu lts and D iscussion

Figures 4.6 and 4.7 show the quantity Rm calculated for a single realization and 50 

realizations (the approximate size o f the largest data set currently available) respec­

tively. It can be seen that when using a single realization the most likely cosmological 

model is sometimes found to be a different model than that from which the data was 

actually generated (R.m >  0.0). The reason for this is that the individual realizations 

have a large scatter and so differentiating between different cosmological models can 

be difficult. Even in the case when the correct cosmological model is identified as the 

most likely, other models often have similar values of likelihood and ruling out models 

with any degree confidence is difficult. The exception to this is the Einstein-de Sitter 

model (cosmological model number 7), any likelihood ratio between this model and any 

of the AC'DM cases are vanishingly small. This is not unexpected since the Einstein-de 

Sitter model is radically different from all the other cosmological models considered.

The results are more conclusive when a greater number o f realizations are used, 

with the true model invariably being identified as the most likely. Even in this case 

however only some of the comparison models are confidently ruled out. Perhaps the 

most interesting result arises when the data is generated using model 4, where the 

technique finds that the data are almost equally likely to have come from model 1 or 

model 4 (the difference between these two being the value o f the spectral index n ). 

A bigger likelihood ratio between these two models is seen when model 1 is used to 

generate the data, but model 4 is not confidently ruled out. This indicates that the 

technique may not be very powerful when distinguishing between different values of 

certain parameters. However any constraints that could be imposed would be useful and 

combining results with those from other sources should help set stringent constraints 

on cosmological parameters.

Although these results are an encouraging indication for the validity o f using likeli­

hood analysis on the 1 dimensional data, the method used here is somewhat rudimen­

tary. Ideally, rather than considering a small number o f models, a large parameter space 

would be studied. Then maximum likelihood regions could be found and probability 

contours used to show the degree of confidence in each result. Also if this technique
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were applied to real data then the model parameters should ideally be taken from full 

hydro-PM codes. The major problem is that each iV-body simulation is expensive in 

computing time and memory, and a huge number of these simulations would be required 

to span a large parameter space. However, more economical codes, where the gas is 

assumed to trace the dark matter through simple scaling relations have been shown 

to be in good, though not perfect, agreement (White & Meiksin 2000) with the more 

sophisticated codes. Aside from issues of computer efficiency, there is no reason why 

direct likelihood analysis of the 1 dimensional data should not provide a complementary 

or alternative method to determining the primordial mass density power spectrum to 

the inversion techniques currently being advocated in the literature.
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F igu re  4 .6 : The logarithm o f likelihood ratios for single realiza­
tions o f each model. The true cosmological m odel is found to be the 
most likely in only 5 o f the 7 cases, due to the large scatter encoun­
tered on individual realizations. Despite this the difference between 
the Einstein-de Sitter model and ACDM  cases are sufficiently large 
that any likelihood ratios involving the Einstein-de Sitter model are 
vanishingly small.
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F igu re  4 .7 : The logarithm o f likelihood ratios for 50 realizations 
o f each model. W ith sufficient numbers o f simulations the true model 
is always found to be the most likely, although in one case (for data 
simulated using model 4) only by a negligibly small amount. The like­
lihood ratios corresponding to incorrect models are also often smaller 
than for a single realization.
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4.4 T h e  re la tio n sh ip  betw een flu x  and m ass v a ria n ce s

The unusual distribution of mass variances arising when using the lognormal approx­

imation to generate the mass field was discussed briefly in chapter 2. In this section 

a more thorough analysis will be presented to analyse the effect that realizations with 

high mass variances have on the mean flux spectra of a sample.

The key question is whether the spectra generated using the lognormal approxi­

mation are reasonable for any value o f mass variance. An obvious investigation is to 

compare the flux and mass variances for individual realizations.

C£>

mass variance

F igu re  4 .8 : The relationship between the variance in the mass and 
flux for a sample o f simulated spectra. The result is close to a scatter 
plot, except at very low mass variances which correspond to low flux 
variances.

Figure 4.8 shows the flux and mass variances for a sample o f 1000 simulated spectra.
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The realizations with low flux variances invariably correspond with low mass variances 

(ofn < 5.0). However there is considerable scatter for any given range o f mass variances. 

In the regime of a 2m >  5.0 the figure is consistent with a scatter diagram with no overall 

trend seen between the mass and flux variances. The reason for this is the relationship 

between the flux and the mass at a given point is, neglecting Doppler broadening, 

given by /  ex exp( —a p f). This leads to a situation where the mass levels above some 

threshold correspond to a saturated region. Therefore high values o f variance in the 

mass field do not transfer to the flux variance as the saturated features reduce the 

impact o f the high mass points.

In this sample studied there are a small number (26) o f realizations with mass 

variances greater than 50.0 which have not been shown on the plot. However the flux 

variance in each case is consistent with values seen for lower mass variances.

The effect o f Doppler broadening and saturated regions is the reason that any given 

value of mass variance can correspond to a range of flux variances. However the key 

point is that since even the very high values of mass variance correspond to reasonable 

flux variances the unusual distribution of mass variances seen in figure 2.12  does not 

unduly affect the resulting mean flux power spectrum o f the sample.
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Chapter 5

Conclusions

In this chapter I summarise the main results and conclusions resulting from the work 

presented.

M o n te  C arlo  S im ulations

In chapter 2 absorption spectra generated from a simple model were analysed. The 

intrinsic properties of the absorption features were set by various parameters, and 

cases were studied for both a Poisson distribution and where the line centres were 

clustered. This analysis has several interesting results which are important with respect 

to recovery o f the mass density power spectrum.

The flux power spectrum is non zero even for a Poisson line distribution, since Ly-cv 

absorption features are not point like objects.

The extent of clustering in an absorption line system is seen to affect the resulting 

flux power spectrum. This result is required if the techniques used to determine the 

underlying mass distribution are valid.

The intrinsic statistical properties of individual absorption features is seen to affect 

the flux power spectrum. Although the change in the flux power spectrum seen from 

altering the distribution of the Doppler parameters is small, there is a considerable
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difference as the column density distribution parameter is altered. In terms of the 

physical picture, these parameters are dependent on the scaling relations that exist 

between the dark matter and the baryonic gas.

It is thought that in observed data both the positions and profiles o f the absorption 

features will be determined by the underlying mass field. The differing effects that 

these lines have on the flux power spectrum may lead to degeneracies between some 

cosmologies. For example the change to the flux power spectrum resulting from a 

variation in the large scale mass distribution may be counteracted by a shift in the 

mass behaviour on small scales, via an alteration in the intrinsic line profiles.

R ea lis tic  S p ectra

In this chapter spectra were generated using the lognormal approximation. The ab­

sorption features are calculated by summing the optical depth contributions from each 

pixel along the line of sight. Analysis of these simulations illustrates that inferring a 

correctly normalized mass power spectrum from the flux power spectrum is non trivial.

Across the range of realistic values of the mean optical depth the shape of the flux 

power spectrum is not altered significantly. Therefore assuming the inversion method is 

valid, only the normalization of the mass power spectrum, not its form, will be subject 

to errors from the uncertainties about the value o f this parameter.

The results presented clearly show that the amplitude o f the ratio between the 

flux and mass power spectra is highly dependent on cosmology. Although different 

cosmological parameters do affect the shape of the flux power spectrum, the effect seen 

on the linear mass power spectrum is far more pronounced. Therefore, it is concluded 

that, considerable errors may be present in a linear mass field recovered using the 

Croft et al. inversion method. Rather than calculate a bias parameter from a set of 

simulations assuming one cosmological model it may be better to investigate the relative 

likelihood that an observed flux power spectrum can arise from any one o f several 

different cosmologies.

The simulated absorption spectra can be fitted with Voigt profiles which approxi­



mates the properties of the original spectra in both real and Fourier space very well. 

Therefore deconvolution of spectra into Voigt profiles remains a valuable method of 

analysis even in the cosmic web paradigm of the Ly-ct forest. It is shown that the posi­

tions o f line centres are very poor indicators of the underlying mass density in realistic 

cases. This is attributed to the effects of Doppler broadening of the baryonic features, 

which distorts the relationship between the optical depth at a given point and the mass 

densit,y at that point.

Further to this the relative importance o f the positions and profiles of the absorption 

features is demonstrated by the line scrambling process. That a different flux power 

spectrum results after this scrambling process is evidence that the Croft et al. method 

is well motivated. Additionally it is seen that when lines within small column density 

regimes are scrambled the change of the flux power spectrum is small. Therefore it 

is concluded that the Doppler broadening of lines is o f negligible importance to the 

accuracy o f the Croft et al. method.

T h e  statistics o f  the  flux  p ow er sp ectru m

In this chapter some of the important statistical properties of the simulated data sets 

were studied. The correlation coefficients calculated directly from a set o f simulations 

differ considerably from those calculated by Croft et al. using the jackknife estimator. 

The considerable anti-correlation seen between almost all neighbouring wave bins sug­

gests that analysis ignoring the off diagonal elements may not be rigorous enough to 

accurately determine the errors.

Determining the gradient o f a noisy function, such as the 1 dimensional power 

spectrum, is non-trivial. Two techniques are compared for a large number o f realizations 

and the inferred 3 dimensional flux power spectrum is shown to be dependent on the 

method o f calculating the gradient. Both techniques require a. large sample of data for 

convergence o f the inferred 3 dimensional flux power spectrum. For the size of data sets 

currently available, calculation of the gradient may introduce considerable uncertainties 

to the analysis.

Determination of the relative likelihoods is shown to successfully identify the un­
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derlying cosmological model when large numbers o f realizations are used. Although 

the analysis is fairly basic it is suggestive that working directly with the 1 dimensional 

data in this way would be an illuminating complementary approach to the techniques 

already being applied.

O vera ll su m m a ry

The Ly-a forest currently presents the best opportunity to probe the mass distribution 

at high redshifts. However the present results must be treated with some caution.

One main weakness of this technique is that the data available is by its nature 1 

dimensional. Although the 3 dimensional power spectrum is related to its 1 dimensional 

counterpart by a known expression, this applies to fields o f infinite extent. The noise 

inherent in any measurements therefore ensures that any conversion is non-trivial.

Since the directly observable quantity is A jDF(&), I would advocate the devel­

opment o f techniques that study directly how its form is affected by changes to the 

shape and amplitude o f the 3 dimensional mass power spectrum. In this way it should 

be possible via likelihood analysis and statistical studies to constrain the mass power 

spectrum without changing the form of the data.

Another concern arises from the lack of knowledge about the precise values of tem­

perature and mean optical depth of the IGM and the reionization history of the Uni­

verse. At the current time these uncertainties are potentially a source o f substantial 

errors in the recovered mass power spectrum. However, as the quantity o f data in­

creases, parameter uncertainties are reduced, and the analysis techniques are refined, 

the Ly-a forest should provide strong constraints on both the shape and the amplitude 

of the mass density power spectrum.
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Appendix A

Atomic processes

This appendix contains the background theory needed to calculate the properties of 

atomic transitions. The starting point is to apply quantum mechanics to a single atom, 

these results can then be extended to the classical regime. In an isolated atom with a set 

o f allowed energy levels, any transition by an electron to a different energy level must be 

compensated by a shift in energy elsewhere in the system. For example, a transition to 

a lower energy level is accompanied by the emission o f a photon. Similarly a photon of 

suitable energy could be absorbed to allow a transition to a higher energy level. These 

effects can be formalised and thus the effect on light o f passing through an absorber 

can be calculated for a given system. These techniques are then applied to the Ly-a 

transition to obtain parameters used in the main body o f this thesis.

A . l  A to m ic  tra n s it io n s  

A . 1.1 T h e  Ferm i Golden Rule

The easiest way to treat matter in a radiation field is to think o f the interaction Hamil­

tonian as a perturbation. This is possible since the coupling constant (the fine structure 

constant a  =  1/137) is small. With this assumption quantum theory can provide a 

solution, since the unperturbed system of uncoupled atoms and radiation can be fully
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described. Applying perturbation theory to an isolated atom in a radiation field it is 

found that the probability of a transition from an initial to a final state is

=  |ig| »/(«■*.) (A .1}
fir

where \H'R\ is the matrix element of the Hamiltonian o f the transition from the 

initial to the final state, wf, is the angular frequency corresponding to the change in 

energy E j — E t and the function is

/ ( t , u ) =  i h ! M  (a .2 )
( „ ) 2

Equation A .l  can be made more general, by considering any number o f transitions 

to the final states grouped within some small energy range. The density o f states g{E )  

can be introduced so that g(E {)dE{ is the total number o f final states available. Then 

the probability o f the system being in any one of these states at time t is

rE\+AE  

l E i - A E
P G ( t ) =  jp  I \Hfi\2f  [t,u)fi)g(E{) dE{. (A .3)

Now this expression can be simplified if t is large (meaning in this context that 

t 27r/tUfi). In this regime the dominant contribution of the function is a

peak centred on w =  0 of height t2 and width 4ir j t .  Assuming all contributions from 

the integral that fall outside of the integration limits are negligible and assuming the 

density o f states and Hamiltonian matrix element to be constants in this region, allows 

the integral to be performed analytically. Finally differentiating the equation with 

respect to time gives the transition rate. This results in the equation known as the 

Fermi Golden Rule

^  =  f  ■ (A.4)

So to find the transition rate, the form of the interaction Hamiltonian is required 

(e.g. Landau & Lifshitz 1982)

H' =  q f dV, (A .5)
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where q is electric charge, is the 4-current and A M is the 4-vector potential of the 

electromagnetic field. The matrix element o f H' between the initial and final states of 

the atomic system and radiation field is

{^¡l(Ajk,a.k I f  d V r n ^ ' c ) ,  (A .6)

where ip is the wave function o f the electron involved and N k,Q. is the number of 

photons in the state with wave vector k and polarization state a. W ith a suitable 

choice of frame the zeroth component of the 4-scalar product is zero and if the atom is 

non-relativistic then j  =  ip*vip. The key point now is that the plane wave description 

o f Ak.Q can be written in terms of a combination of ladder operators for the radiation 

field. This is important since to obtain a non-zero matrix element requires an operator 

that acts on |iVk,a) to give a multiple o f |iV£ a). This happens if and only if N ' =  N i l .  

For example N ' =  N  +  1 relates to the absorption o f a photon and in this case the 

matrix element becomes

\ 2couV ^  Nk’a<1 j  ^ fv '^-ek.«eik'r dV. (A.7)

The constants and imaginary exponential in the above expression follow from the 

definition o f Ak,a and the constants of proportionality obtained from the ladder op­

erators (e.g. Landau & Lifshitz 1982). The integral in the above equation can now 

be solved if the dipole approximation is applied, which is justified if the wavelength of 

the radiation considered is much greater than the atomic dimensions. This is usually 

the case when the velocity of any particles are much less than the speed o f light. The 

approximation then has the effect of neglecting the photon momentum. In this case 

v  =  —¿cur and e!k'r =  1. Then all that is needed is the total number o f allowed final 

states which is just the number of available atomic states multiplied by the number of 

allowed final photon states. Treating the radiation field as being plane waves of a large 

box gives

CJphot = J ^ y n ' c  d i l ' (A,8)

So finally averaging over the dipole direction and assuming both polarization direc­
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tions are equally populated gives

R abs(Ç l)d Q = r̂ ^ N kia-^-\rn\2gu, (A.9)
47T STlCô 4 7 T € 0

where Rabs is the rate of absorption. To calculate the rate for emission the same 

calculation is performed but with g\ and N k,a +  1 replacing gu and N k>a

Rem{Q)dn =  +  1) -^ -—|rfi| V  (A .10)
4-7T S h e J  47T€o

So comparing equations A.9 and A . 10 it can be seen that guR em =  0i1Lk«,4-guRspom 

where Rspon is the rate of spontaneous emission and is given by

4 to3 e2

i? sp o n = 3 â ? 4 ^ |rfi|2ffl- (A -U )

A . 1.2 B la ckb o d y  radiation

It be can seen from equations A.9 and A .10 that

ffu R  em Nk,a +  1
9\ R&bs -A,a

(A .12)

If a system is in thermodynamic equilibrium then on average there are as many 

transitions up as down, therefore if the rate of spontaneous emission is negligible then 

it follows that n\Rabs =  nuRem. Where nu and n\ are the numbers o f electrons in the 

upper and lower atomic states respectively. In addition to this condition the occupancy 

of the energy levels can be determined by the Boltzmann distribution such that n\/g\ =  

Tiu/ju^i where x — (E u — E\)/kT. Substituting these expressions into equation A .12, 

gives an expression for Nki0l, so multiplying by hv gives the energy in each radiation 

state. Finally multiplying by the density of states gives the energy density as

8nis2 hv
U ^ ) du =  ^  £X_ 1dv. (A .13)

Classically it is usual to quantify a radiation field by its specific intensity, Iu, such 

that IudvdQ. is the energy per unit area per unit time o f the photons whose frequency 

is within dv about v. Since radiation is isotropic the specific intensity for a blackbody
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B U(T) is just the above expression multiplied by c/4n. Therefore a blackbody at 

temperature T  has specific intensity which is given by

BvlT) — — 7 '  ( A. 14)
c ex -  1

A . 1.3 E instein  coefficients

All that has gone before can now be related to the Einstein coefficients. The coefficient 

A ui is the probability that a transition from the upper to lower energy will spontaneously 

occur, and so by definition is equal to i?spon- Clearly there is no such coefficient for 

the reverse jump, as the energy level can never rise spontaneously. The two other 

coefficients are Bu\ and B\u which when multiplied by the specific intensity o f the 

surrounding radiation field give the rates of transitions which are stimulated in an 

atom by this field. To find how these coefficients relate it is easiest to consider a system 

in thermodynamic equilibrium, which must fulfill the condition

77,1 Biu /„  =  77.u ( Bui h  +  A u | ). ( A . 1.5 )

Or re-arranging and using the Boltzmann condition for the occupancy levels
Aal

h  =  T — ^ ------ w, (A -16)

and now applying the condition that Iv =  B U(T) as given in equation A. 14 it can 

be seen immediately that the Einstein coefficients must obey the following rules

fJ\B[u =  guB u\, (A .17)

2 /ii' 3 „  2hv3 ai ,
Ail — — o~B u\ =  — -̂----- 5 ,u. A .18c2 c2 gu

Rather than referring directly to the Einstein B\u coefficient it is often easier to think 

in terms o f the cross section per particle a. This can be thought of in classical terms

such that a large cross section corresponds to a high probability that an interaction

will occur

f  t hva — / au civ = — B\u. (A .19)
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The results obtained so far can now be applied to the Ly-a  transition. It is shown in 

equation A .11 that to calculate A ui requires an expression for the matrix element |l'fi |2.

This can be found for the hydrogen atom since it is an exactly soluble system whose 

wave function is ipnem = Rn(.{'r )Ytm{Q, 4>)- In this equation n, I and m represent the 

energy level, angular moment and ¿-component of the angular momentum respectively. 

R n i ( r )  are the radial functions and Y (m (6 ,  $ )  are the spherical harmonic functions, both 

of which are known (e.g. Rae 1992). This system has energy levels given by

The upper state in the Ly-ct transition has values n =  2, £<= 1 and m  =  —1,0 ,1  

and the ground state is n =  1 and I  =  m =  0. Therefore the corresponding energy

Now the operator r =  r =  x e x +  i/ey +  z e z , can be expressed in polar coordinates

as

(A .2 0 )

change (J52 — E\) is 10.2 eV and the wavelength of radiation involved is 1216 A. Now 

writing the initial wave function o f the electron explicitly gives

(A .21)

where

mee
(A .22 )

and the corresponding spherical harmonics are

Now the final state o f the wave function o f the election is given by

2 r 1
(A .23)
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x =  r sin 6 cos <j> =  i 'C lp  (A * -i -  A*i)- 

y =  r sin 9 sin <f> =  (!"*_ ! +  y * i)  •

z =  r COs9  =  r ^ / f Y * 0.

So for example the x component of the integral | rfj | is

<tfioo|s|̂ 2im>= I  | rXo(r)iMO^:o(M)^pm(M) drdn,

which can be split into radial and angular integrals such that

a#2im) = a / c  /  yoto(n:-i -  n:i)A,m ¿a

=  / y f ' - ; ! -  I -  YCiYi,m dn.

Now invoking the orthogonality relations of the spherical harmonics

J dn =  5 ° 5 ° m„  ( AM)

gives

(</>10o|a#21m) =  4 | ( C l,m “  C m ) »  ( A -2 5 )

where I  is the radial integral. Similar calculations now give

( ¿bOO i 1 '02 lm) =  ~^=r{à-l,m +  C m ) ’ (A .26)

(V’lOokl̂ lm) = ^Cm> (A.27)

and so squaring all the contributions and adding gives a result which is independent 

o f m

12|(V>ioo|r|i/>2im)|2 = y- (A.28)
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The radial integral can then be calculated

reo
/  =  I rsRÌ 0R 2,i dr

10

o 2 r -_ n -  .
/  f   e “o — — = e  2a° dr
Io \ / ® f

1 f 00 4 _JLC. ,

r e 2“° dr

256a,-,

s i v V

which upon substitution into A .28 gives

Thus the Einstein coefficient is given by

¿ 2^ 1,0 =  34r c3 4 ^ l^ loo|r|V ’21m)|2 =  6 ’3 X 1 0 8  S _ 1 ‘

This in turn can be substituted into equations A. 18 and A. 19 to give 

section for the Ly-cv transition

hv ffu c2
47t gì 2 /ii/‘

•Aui =  1.11 X 10 2 cm2s l .

(A .29)

(A -30)

(A .31) 

the cross

(A .32)
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Appendix B

Properties of Gaussian statistics

This appendix contains the proof that for a probability distribution which is Gaussian,
(x2 )

with a mean of zero, (ex) is equal to e 2 .

For a Gaussian with a mean of zero and a standard deviation o f a the probability 

distribution function is given by

P(x ) =  (B -1)
y/ZTTCT

The mean of ex is given by

/ oo
p [x )ex dx. (B .2 )

•OO

Substituting in equation (B .l) gives

1 r°° x2
(ex) =  /  e- ^ +"  dx. (B.3)

\j 'Z'KG J —00

Completing the square o f the term in the exponential gives

a.-2 (  x a \ 2 a 2
■2a2 + X  [,/ 2 a  v ^ J  +  2 ' (B ’4)

Thus making the substitution

x a
u =

V2a  \/2  ’
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dx
du =

gives

(ex) = - ^ ^ e ^  e~u2V 2a du (B .6 )
\Z2tt a J-co

I o r co
/  e- “2 du (B.7)

=  e ~ .  (B .8 )

Now comparing this result with the one for (a-2)

—  F\/2Tra J -

r oo
(a2) =  I x 2e ~ ^  dx. (B.9)

Noting the function being integrated is even allows a change on the integrating 

limits such that

1 f°° x2
(a2) =  J  /  x 2e ~ ^  dx. (B.10)

7r <7 ■Jo

Now using the standard result for the integral which is (e.g. Gradshteyn & Ryzhik

1994)

r 11' / - .  (B .u )

So setting n =  1 and a =  I/2a gives

(a;2) =  4/ ? I  '^~-V2ahr (B.12)
V 7T cr 4

=  <r2. (B.13)

Thus proving the result that for a Gaussian distribution with x =  0

,2\
ex) — e 2 . (B.14)
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