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Abstract

I present an analysis of techniques used to determine the mass power spectrum from

observations of the intergalactic medium.

Simple Monte Carlo simulations are presented which clarify some of the problems
which must be overcome when attempting any inversion process. The 1 dimensional
flux power spectrum is dependent on both the clustering of the absorption features and

on the scaling relations existing between the dark matter and baryon distributions.

More realistic simulated spectra are used to illustrate differences in the mean flux
power spectrum for a range of cosmologies and the ratio of the 1 dimensional linear mass
and flux power spectra. The mass distribution is much more dependent on cosmological
parameters than the flux power spectrum, highlighting the very accurate measurements
ol the latter quantity required for an accurate recovery of the mass density power

spectrum.

These spectra are further analysed by deconvolution into Voigt profiles. This tech-
nique is shown to be an excellent approximation, in spite of the current cosmic web
paradigm of the Ly-a forest. However the power spectrum of the positions of these

fitted lines is shown to be a very poor indicator of the underlying mass density field.

[nferring the 3 dimensional forms of power spectra from 1 dimensional data is
shown to be problematic. This, coupled with analysis of the correlation matrix of the
flux power spectrum, casts doubts on the reliability of the error analysis presented in

the literature.
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Chapter 1

Introduction

One of the aims of observational cosmology is to determine the functional form of the
power spectrum of initial mass density perturbations, which are believed to be the seeds
for modern day structures. As well as being of interest in its own right, it could also
provide a test for theories of cosmological structure formation and offer constraints
on the values of cosmological parameters. Importantly for a Gaussian field, which
the initial density perturbations are expected to be (e.g. Fischler, Ratra & Susskind
1985: Peebles 1993), the power spectrum offers a statistically complete description.
Measuring the primordial mass power spectrum is unfortunately a difficult task since
non-linear gravitational growth of the inhomogeneities causes substantial alteration of
the power spectrum with time. Therefore the mass power spectrum seen today is a

non-Gaussian field due to being distorted from its primordial form.

Advances in the understanding of the equation of state of the intergalactic medium
(IGM) has meant that this has become an area of study which can now provide an
illuminating companion to other, more traditional, methods of determining the mass
power spectrum. In this thesis | will present work in this field. Firstly in this chapter
an outline of some vital background material will be given. This will include basic
cosmology. statistics, absorption physics and a review of the papers upon which the

work in this thesis in based.



In chapter 2 I shall present results from simple computer simulations of the IGM.
These results will be discussed with respect to certain difficulties they highlight in using
the IGM to recover the mass power spectrum. Recovering the mass power spectrum by
using Lyman-a (hereafter Ly-a) absorbers as indicators of peaks in the mass density
density field is also discussed. The lognormal approximation (Coles & Jones 1991) is

introduced and applied to simulate mass density fields.

More sophisticated simulations will then be analysed in chapter 3. This chapter
includes a study of the relationship between 1 dimensional mass and flux spectra for
various cosmologies. Line lists of the spectra are also found and used to calculate the
power spectrum of line positions and the relation to the mass power spectrum is dis-
cussed. The importance of the profiles of individual Ly-a absorbers is also highlighted

through a technique where line positions are scrambled.

Chapter 4 contains work on the statistics of the techniques studied in the previous
chapters. A study of the flux correlation matrix and the number of independent points
being examined is presented. The difficulties in inferring the 3 dimensional flux power
spectrum is also demonstrated, and an alternative of working with likelihoods based on
the directly observable 1 dimensional data is presented. Also the relationship between

the mass and flux variances for individual realizations is briefly discussed.

Finally all this work will be summarised and conclusions presented in chapter 5.

1.1 Basic cosmology

In this section I will outline some of the fundamental observations and theories in cos-
mology which provide the framework within which the work in this thesis is based. The
paradigm for modern cosmology is the hot big bang inflationary model. In this model
the Universe began from a singularity a finite time ago. A major triumph of this model
is a prediction for relative abundances of light elements which matches the observations.
The hot big bang model results in the Universe being statistically isotropic and homo-

geneous. Observationally isotropy is very well motivated, with structure distributions



being highly isotropic on large scales. The strongest evidence however comes from the
cosmic microwave background (CMB). Once corrected to account for the movement of
our galaxy, the CMB is observed to be the same to 1 part in 10° in all directions (e.g.
de Bernardis et al. 2000). To say more it becomes essential to invoke the Copernican
Principle, which states that we are not privileged observers. Therefore it is postulated
that if the Universe is isotropic about the Earth, then it is isotropic about all locations.
Any mass distribution which is isotropic about all positions can be readily shown to
be homogeneous. Another key feature about the Universe is that observations show it
to be expanding (as will be discussed later). These three elements form the basis for

modern day cosmology.

1.1.1 The Robertson Walker metric

The metric required to describe an isotropic, homogeneous and expanding universe can
be completely inferred from symmetry arguments. This was first done independently
by H.P. Robertson and A.G. Walker. The metric can be written in a number of forms.
for example:

2 -
ds? = ®dr? = 2dt? — R*(1) (% + r'zrf-g{’z) 5 (1.1)

There are a few things to note with the Robertson-Walker (RW) metric. First it
is usual to establish a set of ‘fundamental observers’. These are hypothetical observers
who are at rest with respect to the local matter in their vicinity and are free from
any strong gravitational fields. The time coordinate of the metric, which is referred
to as cosmic time, uses the fact that the Universe is expanding to allow fundamental
observers to synchronise their clocks. The idea is that because the density of the
Universe is changing, it allows fundamental observers to use the value of density they
see as a measure of time. In the spatial part, the r and v coordinates are comoving,
meaning the coordinates expand with the Universe, for example two objects moving
apart with the expansion but with no peculiar velocity with respect to each other will
have the same comoving separation, r, at all times. The comoving coordinates between

two points is related to the proper physical distance between them at any given time by



the scale factor R(t). The coordinates are determined so that the proper and comoving
distances are coincident now, so Ry = 1. Finally the factor k is determined by the
curvature of the Universe and can take one of three values, &1 or 0. Each of these

values correspond to very different geometries.

k=1 applies when space is ‘closed’, geometry corresponds to the surface of a sphere

so any trajectory of fixed 1 will always return to its starting point.
k = 0 applies when space is flat and geometry is Euclidean.

k = —1 applies when space is ‘open’ and infinite in extent.

1.1.2 Redshift

The form of the scale factor that appears in the RW metric can be found in terms
of a fundamental observable in astrophysics, the redshift, z. Distances to objects will
normally be expressed in terms of a redshift rather than proper or comoving distance
since calculating the latter requires knowledge of certain cosmological parameters. The

redshift is defined as

(1.2)

._
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where the subscripts o and e represent observed and emitted respectively. This

expression can be linked to the RW metric via the expression obtained for radial light

rays to show that
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For small redshifts the recession velocity is related linearly to the redshift, and is

given by
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1.1.3 Hubble’s law

A universe that expands uniformly results in distant objects recessing faster than nearby
objects. In 1929 Edwin Hubble discovered a correlation between the recession velocities
of galaxies and their distance from us. The resulting equation is known as Hubble’s

law

v'=-Hgry, (1.5)

where v is the velocity of recession, rj, is the proper distance to the galaxy and
Hy is the Hubble constant, usually measured in units of km s™*Mpc™!. The Hubble
constant is the current day value of the Hubble parameter H(t), which governs the
rate of expansion at a given time. The Hubble parameter changes with time for any

universe which is not empty, due to the pull of gravity slowing down the expansion.

For a small separation, where things are Euclidean the proper separation of two
fundamental observers is just R(t)dr, which upon substitution into Hubble’s law, and

re-arranging gives

H = % (1.6)

The value of Hy has been the subject of some debate ever since Hubble’s first esti-
mate of its value to be of the order of 500 km s™'Mpc~". The most recent measurements
of The Hubble Space Telescope Extragalactic Distance Scale IXey Project, which uses
Cepheid variables to estimate Hy give a value of 72 £ 8 km s™'Mpe~! (Freedman et
al.2001). Due to the uncertainty in the value of Hy it is common practice to use a
parameter h defined as

Hy
h = = =T
100 km s~ Mpc

(L.7)



1.1.4 The density and fate of the Universe

The dynamics of the Universe can be calculated using the theory of general relativity.

This results in the Friedmann equations

- 4 (J" »5 ~ A 1"{
R=—-— (p—l——.’?) Bt (1.8)
S * 3
B2 — 'TB'(’OR‘*JL‘C"—&%. (1.9)

In the equations above p is the mass density at time ¢, p is the pressure of matter
and A is the cosmological constant as described below. A simple Newtonian argument
results in similar expressions to those above, but a full general relativistic treatment is

needed to obtain the A terms and the pressure term in equation 1.8.

A is a constant of integration representing the energy of a vacuum. It was originally
included by Einstein in his field equations, not because he thought a non-zero vacuum
energy was well motivated, but because he wanted a solution to these equations which
could result in a static universe. Vacuum energy requires a negative pressure equation
of state resulting in a universal repulsive force. It also has massive implications for the

flatness and fate of the Universe as will be shown later.

Looking at equation 1.9, it can be seen that the density of the Universe is related to
its geometry (via the constant k). Further to this it is clear that for any given Hubble
parameter there is a value of the density for which & = 0. The density corresponding
to k = 0 in a universe without any cosmological constant contribution is known as
the critical density. Often the density of the Universe is expressed as a dimensionless

parameter € defined as

_p _ 8aGp

It is usual to denote the current day value of this parameter as €. In a matter
only universe, the value of Q has a clear meaning, if it is less than 1 then the universe

is "open’ and the gravitational attraction of all the matter in the universe is not enough

G
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Q=1 _

S critical

R(1)

/ : e Qs1 " closed

Time

Figure 1.1: The scale factor as a function of time for a universe
containing only matter. The scale factor in an open universe increases
indefinitely. In a closed universe the scale factor will, after some finite
time, become zero as everything collapses to a single point. A critical
density universe loiters between these two extremes, with the scale

factor asymptotically tending towards a constant at large times.

to ever halt the expansion. In this case the universe will continue to grow and cool
indefinitely. If Q is greater than 1 then the universe is ‘closed’, at some time in the
future all the matter will eventually be pulled back, via gravitational interaction, to

the same point (see figure 1.1).

More generally however contributions to the dimensionless density parameter from
matter, vacuum energy and radiation must all be considered. In this case Q without a

subscript can be used for the sum of these contributions

£ = Qi + Qp +Qp, (1.11)
where 4 is given by
A
= EYIEh (1:12)

It should be noted however that there is some ambiguity in the literature where Q

=1
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Figure 1.2: The fate and curvature of a matter and vacuum en-
ergy dominated universe. The curvature for a given cosmology is
determined only by the sum of €, and Q4 not by the individual
components. The fate of a universe depends on both €, and Q4.
Any negative value of €, will result in a universe which eventually
recollapses. In some cosmologies a big bang singularity is excluded.

(rather than Q,,) is often used to represent solely the matter contribution. The fate of
the Universe is affected by all the contributions to €2, however the different components
effect the dynamics of the Universe in different ways as demonstrated in figure 1.2 (e.g.

Peacock 1999).

Currently the preferred cosmological model is a flat model €y = 1 with the modern
day contributions of ©Q,, ~ 0.3 and Q5 ~ 0.7. The main evidence for this comes from
the CMB (e.g. Balbi 2000) and observations of type la supernovae (e.g. Jha et al. 2001)
as well as a host of other corroborative data. However question marks remain over the

reliability of some of these results and the debate on this subject is far from over.

1.1.5 Inflation

Despite its success in many areas the hot big bang model gives rise to some interesting

problems outlined below. A solution to these problems was proposed by Guth in 1981,



and is known as inflation. The basic idea is that in its infancy the Universe underwent
a period of very rapid expansion. The cause for this is thought to be have been a
phase transition in a scalar field. One simple example of an inflationary universe is one
where vacuum energy dominates. Re-arranging equation 1.9 and assuming the A term

dominates gives

R A
i e |l
k3 {1:3¢)
So for an inflationary period starting at ¢ = 0 the scale factor at time ¢ is
R(t) = R(0)e . (1.14)

It is thought that when inflation ends the energy contained in vacuum energy is
transformed into normal matter and radiation. Although the precise mechanism for
the process of inflation remains unclear, it still presents a very attractive proposition

since it solves the problems discussed below.

The flatness problem

[t can be shown that a universe of Q = 1 is unstable. Therefore small deviations from
this value will quickly result in a big divergence from € = 1. For a matter dominated
universe (for the radiation dominated case deviations grow even more rapidly) the

evolution of Q with =z is given by

vl—_—1=(1+z}_1 (i—l). (1.15)

Since the value of Q is close to unity now it must have been even more so in the
past. In fact it can be shown that for sensible values of {2y the deviation from critical
density at the Planck epoch must have been no larger than about 1 part in 10%°. This
required level of precision leads one to ask how is it that the Universe started with a

density so close to critical density?

Inflation helps solve this problem since during an inflationary period the Universe

is actually driven towards Q = 1. So regardless of the initial conditions a long enough

9



period of inflation will yield a universe which has a density extremely close to the

critical value,

The horizon problem

The earliest epoch that photons observed today can have been emitted is known as the
recombination epoch. Prior to this the Universe was opaque due to light being scattered
off free electrons. The size of casually connected regions at this time (z ~ 1000)
corresponds to an observed angle on the sky of about 1 degree. However the CMB is
seen to be isotropic over the entire sky. The question therefore is how is the C'MB so

smooth given that it corresponds to many supposedly distinet regions?

However since regions can be expanded by a huge amount during inflation it follows
that the horizon problem can be solved. An initially small (and therefore casually
connected) region can establish equilibrium before being inflated. The rapid expansion

during inflation can then lead to the region becoming larger than the horizon scale.

Therefore the observed isotropic CMB ceases to be a problem.

The structure problem

Although statistically homogeneous and isotropic the Universe is clearly neither of these
things on small scales. The structure seen is assumed to be the result of gravity acting
on small primordial perturbations in density. The problem is explaining a mechanism

to produce these perturbations.

In the inflationary model these initial perturbations in the density of the Universe
can be attributed to quantum fluctuations. The uncertainty principle means that,
even in a vacuum, the energy required to create a particle-antiparticle pair can be
‘borrowed’ for a short period of time. These pairs are continually phasing in and out of
existence, and such an event is called a quantum fluctuation. During inflation quantum
fluctuations can be frozen in, leading to small perturbations in density. After inflation

has ended gravity acts on these perturbations to form the structure seen today.

10



Although offering a self consistent theory of the early Universe can inflation be
corroborated observationally? Certainly some strong predictions arise, as previously
discussed an inflationary period will lead to a spatially flat universe, also if initial
perturbations were caused by quantum fluctuations then these should be scale invariant
and Gaussian. The strongest piece of evidence to support inflation would be to observe
the correct form of gravity-wave background. However this is way beyond current
technology and will probably remain infeasible for some time. Clearly there is much still
to understand about inflation, however despite this it provides an excellent foundation

of understanding and is the canonical view of the astrophysical community today.

1.1.6  Structure formation and growth of perturbations

The structures seen in the Universe today are thought to be the result of gravity acting
on small initial perturbations. A region of overdensity in a homogeneous background
will, with time, become increasingly overdense. This is because any matter surrounding
the perturbation will experience a gravitational attraction towards it. This process of
regions growing ever more overdense does not continue indefinitely due to the effects

of pressure and dissipative processes becoming important.

The growth of linear perturbations

Before perturbations become large enough to pass into the non-linear regime the treat-
ment of their evolution can be approximated with a Newtonian treatment. This is
because Birkhoff’s theorem shows that a perturbed region will evolve, as governed by
the Friedmann equations, as if it were an independent universe. To study the evolution

of density perturbations it is useful to define a fractional density perturbation as

s=r—2 (1.16)

In a flat matter dominated universe the Friedmann equations for a perturbed region

11



(with density p,) and the background universe give

SnGp 2 8nGpp ksc?

H? = ;
3 R 3 I3

(1.17)

If this perturbation is small then the expansion rates and scale factors will be very
similar for both cases and the resultant expression for ¢ is

b ke

= —=— LIS
R?H? e

So, since H? x p o R73, it can immediately be seen that in an Einstein de-Sitter

universe

Soc(l4+2)"1 (1.19)

A similar argument for a general cosmology results in a much more involved cal-
culation. This evolution of perturbations can be quantified by a linear growth factor

defined as

_ o(a)
where
a=1/(1+z). (1.21)

In general exact solutions for D(a) can only be obtained by numerical integration

of a function determined by the Friedmann equation (Heath 1977) given by

s
Di(a) = 5 d_a/ (d“ ) da’, (1.22)

2a dt Jq dr

where

dr

2
(ffﬁ) =14+ ((I—L—L)-i-ﬁﬁ(cﬁ—l). (1.23)

It is often useful to quantify the modern day value of the linear growth for any given
cosmology relative to the growth factor for an Einstein De-Sitter universe such that

(5{3: D‘va Q;‘\)
§(=0, 9= L Ry=1)

9( iy Q) = (1.24)

12



Where the values of ¢ for the different cosmologies are equal at high z. An excellent
approximation has been shown (Carroll, Press & Turner 1992) to be

5 3
9(Qm, Q) = S (6 a9 SR B o B S0 e V0 gy ) M (1.25)

m

1.1.7 Dark matter

Much of the matter in the Universe appears to be dark and its presence can only
be inferred by its gravitational interaction. Galaxy rotation curves and gravitational
lensing analysis for example show that the matter which is actually visible accounts
for only a very small fraction of the total mass in galaxies. The important question is
clearly what actually comprises this dark matter? If the dark matter is in the form of
baryons then it is likely to be massive compact halo objects (MACHOs) such as white
dwarfs or brown dwarfs. However using the ratio of hydrogen to deuterium to determine
a value for the amount of baryons present in the Universe gives Q, = 0.019 4 0.0024
(e.g. Tytler et al.2000), whereas €2, is thought to be about 0.3. This implies that
most dark matter is non-baryonic. There are two main candidates for the form of non-
baryonic dark matter, cold and hot (meaning it is travelling relativistically at the time

of recombination).

Cold dark matter (CDM) candidates consist mostly of weakly interacting massive
particles (WIMPs) such as heavy neutrinos. Structure formation theories seem to de-
mand that at least some of the dark matter is cold. A favourable WIMP candidate to
make up this component is the neutralino, a particle which is predicted by supersym-

metry.

Hot dark matter (HDM) refers to particles which are moving relativistically. An
example of a HDM candidate is the light neutrino which from a particle physics per-
spective is far more desirable than a heavy one. However the properties of HDM do
not correlate well with structure formation theories so both forms of dark matter bring

with them their own pros and cons.



1.2 The correlation function and power spectrum

This section outlines the statistical definitions of the expressions encountered later.
The correlation function and power spectrum defined in this section give a formal
mechanism via which the inhomogeneities in the mass density field of the Universe can

be described.

The correlation function of a density field can be defined as

€(x) = (5(x')8(x' + x)), (1.26)

where () represents an average over some normalization volume V', and §(x) is the

fractional density perturbation defined in equation 1.16.

It is usual to then express §(x) as a superposition of plane wave modes

§(x) = Zo‘kc-“"'k-", (1.27)
k
where
27
k= %(nw, Ny, Nz ) Tpaie = LyZgens (1.28)

Although this treatment is not strictly valid if space has curved geometry, the

corrections needed are small on almost all scales and can be neglected.

Substituting equation 1.27 into 1.26 and noting that since £(x) is a real field, one

of the &’s can be replaced by its complex conjugate gives

§(x) = <ZZ51':5kfe"(k_k:]‘x:e_"'k"x : (1.29)
k Kk

Applying periodic boundary conditions (so all k' # k terms average to zero) and

expressing the equation as an integral rather than a sum gives the result
v —ik.x iy
£(x) = P /(]6k|2)e ok (1.30)
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It can now be seen that the correlation function is the Fourier transform of (|dx|?)

which is referred to as the power spectrum, P(k), defined such that

Pk) = L_l‘i_ill‘o<|()‘k12>, (131

This expression can be simplified using the properties of isotropy. In an isotropic
universe there can be no preferred direction and so only the modulus of k is important
thus P(k) = (|6k|?) = (|6x]?). Therefore the angle integration can be performed (e.g.

Gradshteyn & Ryzhik 1994) giving

vV ' sin ka
&(z) :W/P(H T — " 4rk® dk. (1.32)

Having defined these quantities it is straightforward to define their one dimensional
counterparts. Isotropy requires the functional form of the correlation function to be
the same in both cases so &(z) = £(x). However by considering the 1D and 3D Fourier
transforms of &, it can immediately be seen that the 1D and 3D power spectra must
have different functional forms. The relationship between them was shown (Lumsden,

Heavens & Peacock 1989) to be

Pip(k) = — / P(y)y dy, (1.33)
27 d S

Throughout this thesis any power spectrum term without a subscript will refer to
the 3D form and the 1D form will always be marked as such. The power spectrum is

usually expressed in a dimensionless form as the variance of § per logarithmic bin

.. v d(5%)
A k) = ——Ank*P(k) = ——£, 1.3
ANE) (2m)3 (k) din k' (1.35)
with the 1 dimensional equivalent given by
o9 L o
Afp(k) = —kPip(k). (1.36)

m
A value of A%(k) = 1 corresponds to order unity density fluctuations from modes in

the logarithmic bin about wavenumber k.



Up until now the discussion has concentrated solely on continuous distributions. In
many real and simulated data sets, a continuous variable is sampled at regular intervals.
Crossing from a continuous to a discrete distribution has a non trivial effect, where a
Fourier transform is now replaced by a fast Fourier Transform (FFT). In the case of a
real field, x;, sampled at N points where i = 0,1,2,..., N — 1, the FFT components,

I, can be calculated by

Iy 2mjk
Tk = v 2. Z; X exp (—i ?T\Jj ) ; (1.37)
J=
with the inverse relation
N-=1 ? 2
2mik -
2= Tk X exp (?. ::r_;: ) 3 (1.38)
k=0 )

For example later work frequently refers to the flux power spectrum which is ob-
tained by taking an FF'T of the spectra using N flux points, f; and then squaring the

resultant f.’s to give Pip .

It should also be noted that a correlation function can be defined for a distribution
of discrete objects as well as a field. If there is a density of objects n, then §(x) gives
the excess probability of finding an object in an element dV centred at x from another
one. Once again isotropy means only the magnitude of x is important and the direction

can be ignored

dp=n[l+&(2)]dV. (1.39)

Although both forms of &(z) will be used the definition will be clear from the

context.



1.3 The physics of absorption

This section contains an outline to the physics involved in the processes of absorption
and emission within the classical regime. The quantum mechanical basis for these

processes is reviewed in appendix A.

1.3.1 Emissivity and opacity

Classically the change of specific intensity 7, of light passing through a thickness da of
an absorber can be described by the equation

dl,
da

= ‘_RU;U—[_EH'. ([IUJ

where k, and €, are the opacity and emissivity of the matter in question. The
emissivity relates to the Einstein A, coefficient (see Appendix A) since the energy
emitted will be equal to the number of transitions occurring multiplied by the energy
of each of the corresponding photons. Since this process is isotropic, dividing this

energy by the total solid angle gives the specific intensity

h
/f,, dy = HUAUI—K. (1.41)
. 4

The integration accounts for a small spread of energy about v,;. This spread can
be written as a function ¢, such that J o, dv =1, giving

h
€y = Ty -'Ilnl%(r’jrz- (l~l2)
"'7:-

Similarly the optical depth can be defined in terms of opacity as

= /n’.'ri, = /f{.,, de. (1.43)

By a similar argument to the one given for emissivity it can be shown that &, is

related to the Einstein By, coefficient, or alternatively the cross section by the equation

Ky = OOy, (1.44)
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Often the ¢, term is negligible in which case equation 1.40 integrates to

1,(2) = 1,(0)e™™. (1.45)

So far the arguments have referred to the density of absorbers n;. When studying
absorption features what is important is the total number of absorbers encountered

thus it is more usual to refer to the column density N defined as

N = /m dz. (1.46)

[t is usual to measure column densities in cm ™ and to mark N with a subscript to
show the identity of the absorber. Ny for example represents the column density of

neutral hydrogen.

1.3.2 Line width

Any transition between states appears to involve a well defined energy difference fiwg.
However there will always be some spread around this energy due to the uncertainty

principle which can be stated as

AE.t> B, (1.47)

where AF is the uncertainty in the measurement and ¢ is the time available to
make the measurement. Since t ~ 1/A,, AE ~ hAy, which gives a finite width to any
absorption line resulting from a given transition, this width is known as the natural
width. Applying perturbation theory to the atomic system in question allows the
shape of the frequency distribution to be found (e.g. Landau & Lifshitz 1982). This
calculation shows the natural response shape to be a Lorentzian, given formally by

dpw) — T' 1

(1.48)

dw 27 (w —wg)? + (I'/2)%
Where I' is the de-excitation rate of the upper level and is equal to A.

Often line profiles are dominated entirely by Doppler broadening. In this case the

random motion of gas particles gives rise to a Doppler shift so any frequency of light
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within a small range of v, can be absorbed. The function ¢,dv then equals P(v)dv, the
fraction of atoms, assumed to have the same mass, m, whose radial velocities lie within
the range dv of v. In thermal equilibrium the system has a Maxwellian distribution of

velocities

e
i
—_—
o
—
L]

@u(Av) = AP(v) = (1.49)
where A corresponds to the wavelength associated with the absorption and b is
known as the Doppler parameter, which is given by

DT
b:( B) . (1.50)

m

The absorption feature obtained from a Maxwellian distribution of velocities is
known as a Voigt profile. This is just the absorption profile seen when the optical
depth is given by the Voigt function. This function is found at each point by the
convolution of a Gaussian, corresponding to the motion of the gas, and a Lorentzian
centred at the point of interest, corresponding to the natural width. This results in an

expression for the Voigt function which is given by

J —/% dy
dplv) / = (1.51)
dw 27372 w—wg(l +v/e))24 (T/2)% '

Typically the width of the Gaussian far exceeds the natural width. The centres of
Voigt profiles are often dominated by the motion of the gas and thus look Gaussian.
However in high column density systems the Lorentzian will dominate the profile at

the edges, leading to the presence of prominent damping wings.

When the true line profile cannot be fully resolved, a parameter known as the

equivalent width is often used, defined by

Wy = | 1 4 d/\—i\i (1—e"™) dv (1.52)
ne [fi- ] =2 fucem 5

The integral extends over the line and A represents the wavelength at the centre of
the line. W, measures the fraction of the energy removed from the spectrum by the

absorption line. It represents the width a line which extends to 0, centred on A, would
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Figure 1.3: The curve of growth, or relation between Doppler
parameter and equivalent width, for the Ly-o transition. There are
three distinet regions. In the two extremes of column density the
equivalent width has a single value irrespective of the value of the
Doppler parameter. Conversely the equivalent width for features with
intermediate column densities are highly dependent on the value of
the Doppler parameter.

have if it removed the same fraction of energy as the actual absorption line. It can be
readily seen that Wy is unaffected by changes in resolution, on the condition that each

individual feature can still be resolved.

1.3.3 The curve of growth

The curve of growth is the name given to the relationship between the equivalent width
of a line and its column density for different values of the Doppler parameter. The curve
of growth for the Ly-a transition, for b = 5, 10, 20 and 30 km 5_1, is shown in figure

1.3. As seen on the diagram there are three distinct parts to the curve:
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Low column density - in this case the absorption line is optically thin and the
equivalent width is independent of b. This is known as the linear part of the curve
of growth. Determination of Ny from W) is easy and reliable, for features identified,

given the level of signal to noise.

The logarithmic region - here there is a strong dependence of Nyy on b for any given
Wy. This is the most difficult regime to determine Nyp and b. Reliable results can only

be obtained if more than one line from the same absorber are used.

High column density - absorption lines in this part of the curve of growth are
characterized by prominent damping wings. Here the column density can be found

very accurately given W, which is independent of b.

1.3.4 The Lyman-a transition

The Ly-a transition refers to the change from the first excited state to the ground
state in the Hydrogen atom. This accounts for the vast majority of light absorbed by
the IGM in quasar spectra as will be discussed in the following section. Applying the
theory of quantum mechanics to a Hydrogen atom allows the calculation of both the
restframe wavelength of this transition, 1216 A, and of an expression for the optical

depth (as demonstrated in appendix A).

7, = 1.11 X 107*Nyy10,,. (1.53)
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1.4 The Lyman-«a forest

Studies in astrophysics have a range of epochs which can theoretically be observed.
Galaxy and cluster surveys offer information about the Universe today (z =~ 0), whilst
the CMB provides a view of the very early Universe (z ~ 1000). However the interven-
ing epochs are not so easy to observe. As redshift increases the apparent magnitudes
of objects tends to increase and they become more difficult to observe, so at high =
many things are impossible to see with current telescope technology. However very
luminous objects which are still observable at high redshift (z > 5.0) such as quasars
can indirectly offer information about the intervening redshifts. Although quasars are
a huge area of study in their own right with many interesting features, here these issues
will be ignored, and they will be regarded simply as high redshift bright light sources.
Lynds (1971) discovered that quasar spectra contained hundreds of absorption lines
from ‘clouds’ of neutral hydrogen gas, which comprise the IGM. Each cloud ahsorbs
light at the wavelength of the redshifted Ly-a transition. These systems appeared to be
uniformly distributed over the complete range between the lowest observable redshift
up to that of the quasar being studied. This entire system of clouds has become known

as “The Ly-a Forest’.

Historically the Ly-a forest has been analysed in terms of blended line profiles. In
this process different cloud profiles are fitted, to match the observed continuum, in
order to gain information about the cloud system. Each cloud can be characterized
by three parameters, its redshift, column density and Doppler parameter. Although
this process of fitting lines can sometimes be degenerate, the technique has enjoyed
considerable success. This picture has now been superceded by what is known as ‘the
cosmic web’. Here rather than there being discrete clouds along a line of sight there
is an evolving network of filaments and sheets. The clouds, previously thought to be
discrete, are simply the most overdense parts of the web. An illustration of this is
shown in figure 1.4 which shows an N-body simulation of the Ly-a forest (Zhang et

al. 1998).

The IGM is thought to be highly ionized (Gunn & Peterson 1965), with a neutral

component ‘the cosmic web’ of predominately hydrogen but with some metals present.
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Figure 1.4: An N-body simulation by Zhang et al. (1998) show-
ing the structure of neutral hydrogen in the Ly-a forest. Density

variations are shown in colour.

Despite this picture of the IGM, treating the Ly-a forest as a set of discrete clouds is a
good approximation, and remains a valuable method of analysis. There follows a brief

review of some broadly accepted results of previous work on the Ly-a forest.

1.4.1 Flux decrement and mean optical depth

One observable property of the forest is a measure of the mean fraction of the quasars’
continuum that is absorbed, D, or alternatively the mean optical depth, 7. These

quantities are defined as

D

I}

<1— f°b3>:<1—e—f>zl—e‘f, (1.54)

Jeont

where fops and feone are the observed and continuum flux respectively. Although
this may seem like a straightforward calculation there are some complexities. Firstly
the quasar continuum flux is never known precisely and has to be estimated, therefore
introducing errors when calculating the absorption. Also some of the absorption seen
may be due to metal lines, which are hard to identify so are often wrongly included.
Typically values are quoted for Dy, the flux decrement between Ly-a and Ly-g (rest

wavelength 1026 A) transitions. Quoted values vary from Dy(z = 3) = 0.36 (Press,
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Rybicki & Schneider 1993) to D4(z = 3) ~ 0.2 (Zuo & Lu 1993).

1.4.2 Evolution with redshift

As the Ly-a forest is studied over a huge redshift range it is natural to expect to see
evolution in the forest with redshift due to changing cosmological conditions. However
the increase seen in the number of Ly-a absorption lines as z increases is not consistent
with a non-evolving cloud population. Observationally a strong z dependence is seen
with high redshift quasars showing very much more absorption than their low redshift

counterparts. This dependence can be expressed in the form of a power law
dN dN )
— = — |+ 2)7, L.}
dz ( dz >U Lr [

Here the value of the first term on the right hand side is dependent on the column

(L)
ot
—

densities or equivalent widths of the clouds being considered. Calculating the exponent
by line counting is a difficult task and a broad range of values have been quoted, some
as low as v = 1.741.0 for lines where the rest Wy > 0.2 A(Atwood, Baldwin & Carswell
1985). The authors find that the value of 7 is dependant on W) but not by more than +
0.5, as long as there are enough lines in the sample to overcome small number statistics.
At the other extreme, values as high as v = 2.9 £ 0.3 (Cooke, Espey & Carswell 1997)
have been calculated, where all values of W) were included. Methods of finding the
exponent without directly counting lines suggest a high value, v = 2.46 £ 0.37 (Press,
Rybicki & Schneider 1993), or consider a broken power law to be a better fit to the
data (Zuo & Lu 1993). It is now clear observationally that a single power law does
not adequately describe the entire range of redshift from zero up to the highest quasar
redshifts. Observations with the Hubble Space Telescope reveal that the steep decline
in cloud number with decreasing redshift does not extend to zero, instead a much flatter
evolution for z < 2 is seen (Impey et al. 1996). High redshift work = > 4 suggests the

evolution accelerates with v becoming as high as 5.5 (Williger et al. 1994).
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1.4.3 The column density distribution function

[t was suggested (Carswell ef al. 1984) that the number of clouds per unit Nyp interval
fitted a power law distribution

giNT el o < - 24
m x ."\'I_[l " IJJ' = 1.63, 13 < IDg .-'\‘1-[[ < 15. (1)(})

Results from high column density surveys were studied and the distribution in these
systems was found to be well fitted by the above relation with 5 = 1.5 (Tytler 1987).
Work with IKeck spectra seems to show that the power law can be extended over a
range of ten orders of magnitude from 10'? to 10?2 em~2 (Kirkman & Tytler 1997). It
should be noted that these results are obtained assuming that the blending of the low

column density lines is being handled correctly (Hu et al. 1995).

Evidence for departure from this single power law has been presented (Meiksin &
Madau 1993; Giallongo et al. 1993) and cannot be discounted. Departure from a single
power law could explain why individual high resolution spectra seem to suggest high

values of J (Rauch et al. 1992; Atwood, Baldwin & Carswell 1985).

1.4.4 Doppler parameter distribution

The width of an absorption feature can lead to a measurement of b, the Doppler pa-
rameter. Typically values of b fall between about 15 - 45 km s™" with a median value

of about 30 - 35 km s™" (Carswell et al. 1991; Rauch et al. 1992).

There has been some speculation as to a correlation between column density and
Doppler parameter, where high values of Ny correspond to high values of b. Initially
this was explained as the effect of noise in the spectra distorting b measurements leading
to underestimation. Despite this, high resolution spectra seemed to suggest a corre-
lation does exist where a minimum value of b has a weak dependence on Ny (Hu et

al. 1995). Kirkman & Tytler (1997) also found a similar trend which is well fitted by



the expression

N =4
bmin = 14 + 4 x log (—%) km s~ (1.57)

1.4.5 The equation of state

The physical processes governing the behaviour of the IGM are thought to be well
understood. N-body simulations offer results in close agreement with observations
(e.g. Cen et al.1994; Zhang, Annios & Norman 1995; Hernquist et al. 1996; Zhang
el al. 1998) and so the essential physics are thought to be well captured. These sim-
ulations also demonstrate that the majority of the evolution of the Ly-a forest can
be attributed to the effects of universal expansion. The key physical processes are
heating by photoionization coupled with cooling from radiative processes and adiabatic

expansion.

The temperature-density relation was studied semi-analytically by Hui & Gnedin
(1997). A model was used where the density evolution was found from the Zel'dovich
(1970) approximation, while the thermal and chemical evolution were solved numeri-
cally. This model was then tested against full hydrodynamic simulations and found to
be in good agreement for the low densities found in the IGM. The physical processes
occurring in the IGM lead to a tight correlation between temperature and baryonic

density given as

T =To(l+6)7~". (1.58)

The ranges of these parameters shown to be physically reasonable (Hui, Gnedin &
Zhang 1997; Hui & Gnedin 1997) are, 10° K < Ty < 10%° K, and 1.2 < v < 1.7. The
values of these parameters depends on the cosmology and reionization history of the
Universe. Effects such as shock heating and feedback from star formation are thought to
be relatively unimportant. The most likely candidates to provide the ionizing radiation
are quasars and young stars, so the evolution of quasars and the star formation history
of the Universe are key factors in understanding the reionization history, and thus the

evolution of the [GM.
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1.4.6 Morphology

For over a decade now the properties of the Ly-a forest have been usefully predicted by
hydrodynamical simulations. Furthermore irrespective of the cosmological parameters
used, these simulations give rise to a generic picture of the Ly-a forest (e.g. Rauch
1998). At high redshifts the evolution of the IGM is largely governed simply by the
Hubble expansion and change in the ionization rate of the gas. At these times the
absorption is dominated by sheet-like structures. These sheets are similar to small
pancakes arising in the Zel’dovich approximation, where collapse of triaxial structures
along the shortest axis is predicted, but are subtly different. The sheets are actually
present in the early geometry of the density fluctuations in 3 dimensions and the features

are merely sharpened by non-linear dynamics (e.g. Bond et al. 1996).

At lower redshifts absorption arises not only from sheets but also filament struc-
tures. Low column density systems (Nygp < 10" em™?) are associated with the sheet-
like structures whose characteristic proper length scale is typically between about one

hundred kpc and one Mpec.

Higher column density features are seen to correspond to filamentary structures.
These filaments are of relatively uniform thickness (~ 40 - 100 proper kpc) and extend
over distances of many megaparsecs. These filaments are typically found at the inter-
section of the sheets discussed above, resulting in a morphology of interlinked systems,
leading to the terminology ‘cosmic web’ (first introduced by Bond et al. 1996) being
used to describe the IGM. As the column density increases still [urther the geome-
try of the absorber tends to become more spherical. As column densities reach about
10 em ™2 the absorbers are almost completely spherical and correspond to minihalos.
On scales of many Mpes the halo systems tend to align along filaments in a similar way

to the distribution of dark matter in N-body simulations.

A key result from the simulations which matches the observations well is the bro-
ken power law found for the evolution of the number of absorbers with redshift (e.g.
Muecket et al.1996) who found that for systems with Nyp > 10 em™2, v ~ 0.6

for = < 1.5 Switching to vy ~ 26 for 1.5 < z < 3.0. This break arises as the struc-
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tures dominating the absorption change with time. The sheets which dominate high
redshift absorption are expanding with time leading to a decrease in column density.
As these systems drop below the detection threshold, the filaments begin to dominate
the absorption. Although the column densities associated with these systems are also
dropping. they were originally higher and so take longer to drop below the detection

threshold.

b
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1.5 Measuring the mass density power spectrum

This section contains a brief review of the most important ways in which the mass

power spectrum can be determined from observational data.

1.5.1 Galaxy surveys

The mass power spectrum can be found from galaxy surveys (e.g Feldman, Kaiser
& Peacock 1994), by assuming the galaxies offer Poisson indicators of mass. To do
this the weighted galaxy distribution is converted to an overdensity distribution. The
weighting is introduced so that small volumes containing large numbers of galaxies
do not unduly affect the uncertainty of the power spectrum. The conversion to an
overdensity distribution is done by subtracting off a synthetic random catalogue. Once
this has been done the effect of the window function must be considered. Since the
analysis attempts to measure a random field of infinite extent with a limited survey
volume, what is actually measured, P, is a convolution of the actual power spectrum

and the window function, Wy,

Potis =P [Wa| % (1.59)

Therefore to obtain an accurate measurement of the power spectrum the geometry

of the survey must be taken into account, and this deconvolution performed.

The most recent application of this method was performed by Percival et al. (2001)
with a sample of ~ 147 000 galaxies from the 2dF Galaxy Redshift Survey (2dFGRS). It
was also shown, by comparisons with simulations, that the power spectrum is coincident

to the linear density perturbations on certain scales (0.02 5 k < 0.15 hMpc™).

However there are difficulties associated with using galaxy surveys for this work.
For example the discrete nature of galaxies gives rise to shot noise, though the large
number of galaxies used in Percival et al. (2001) means the effects should be negligible.
Observational difficulties such as redshift-space distortions can also influence the data.

The radial position of a given galaxy is inferred by its redshift. To do this it is assumed
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that the redshift comes about solely from the Hubble flow, although any peculiar veloc-
ity that a galaxy has will contribute to the redshift measurement, therefore introducing

errors when inferring its distance.

More importantly the process of galaxy formation is not well understood and the
assumption that galaxies offer a Poisson sampling of the mass field is not necessarily
a good one. This introduces an uncertain, possibly scale dependent, bias parameter
between the mass and galaxy distributions. However recent work (Verde et al.2001;
Lahav et al. 2001) suggests that the 2dFGRS does, on certain scales, offer a Poisson
sampling of the mass field and thus this bias parameter is very close to unity. There-
fore the recovered galaxy power spectrum should match the underlying mass power

spectrum well.

1.5.2 Gravitational lensing

One of the predictions made by general relativity is that the path of light is affected
by the local mass distribution. This effect is known as gravitational lensing which is
a rapidly developing field which can be applied to determine cosmological parameters.
For the study of large scale structure the weak lensing regime is important. Here rather
than a large deviation in the path of light, caused by an isolated concentration of mass,
being of interest, the small deviations caused by the large scale structure are studied.
This effect is known as cosmic shear and a simulation by Colombi (2000) of this is

shown in figure 1.5.

The correlations of shapes in observed distant galaxies can be used to infer the mass
distribution through which the light has passed. The huge advantage offered by this
method is that it probes the mass, regardless of its physical nature, directly. However
there are also considerable drawbacks. Any residual distortion due to cosmic shear is
intrinsically very small and the systematic errors in the observations are generally far
more significant. Therefore very careful indentification and removal of the systematics
is crucial. Furthermore, at the current time, the quality and quantity of the data is

insufficient to impose stringent constraints on the mass power spectrum.
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Figure 1.5: A simulation of the effect of cosmic shear on light
from distant objects by Colombi (2000). The matter concentration
of a region is indicated by its brightness, while the blue dots represent

galaxies. Due to gravitational lensing the path of the light emitted
is determined by the mass distribution through which it passes. The
resulting distortions in the shapes of the observed galaxies may be
used to infer the large scale structure of the Universe.

However, in the future, as the data improves and the analysis techniques are refined
this field should become one of the most powerful probes of the matter distribution in

the Universe.

1.5.3 The cosmic microwave background

The CMB allows the opportunity to study the correlations of inhomogenities in the
very early Universe. The detected temperature inhomogenities (Smoot ef al. 1982) can
be used to set constraints on large scale density variations. The temperature power
spectrum of the CMB can be related to the mass power spectrum since the temperature

and mass perturbations correspond to each other.
The dominant large scale effect was originally derived by Sachs & Wolfe (1967)
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after whom it is named. The perturbations in gravitational potential at the surface
of last scattering has two effects. The first is that photons travelling from within a
potential well are redshifted as they climb out. A second, more subtle, effect is that
the gravitational potential perturbations cause varying amounts of time dilation, thus
causing the age, and the temperature, of the Universe at the surface of last scattering
to vary. These effects combine to give the expression
E = & (1.60)
£ Bt '
The gravitational potential, ®, in the above expression can be related to be mass

density via Poisson’s equation

V26®;, = 47 Gpdy. (1.61)

Other processes such as the Doppler effect of photons scattering off moving plasma
and adiabatic expansion must also be considered. The inferred mass power spectrum
is dependent on several factors such as the Hubble constant, €, the baryon fraction
and the contribution of tensor fluctuations (White and Bunn 1996). For a given set of
cosmological parameters a matter power spectrum can be calculated using an algorithm

called CMBFAST (Seljak & Zaldarriaga 1996).

1.5.4 The Ly-o forest

This section contains a review of the papers which lay the foundation upon which the

work in this thesis is based.
Croft et al. (1998)

This paper argues that the Ly-a forest could provide an elegant way to recover the
shape of P(k). It is then argued that once the shape is known, the amplitude can be
determined by evolving a number cosmological simulations with varying amplitudes of
P(k). The correct amplitude is then the amplitude corresponding to the simulation

which successfully reproduces the observed power spectrum of transmitted quasar flux.
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[s is argued that this method circumvents many of the problems faced when measuring
P(k) by different methods, for example, there are none of the bias parameters or shot
noise problems associated with calculating the power spectrum from galaxy surveys. It
also has the advantage of probing the power spectrum at high redshifts. The effects of
non-linearity at high redshift are less pronounced than at lower redshifts, and thus a

direct measurement of the linear regime is possible for a wider range of scales.

The method for recovering the shape of the power spectra exploits the fact that the
state of the gas in the IGM is largely governed by well understood processes, namely
radiative cooling coupled with a further adiabatic cooling due to the expansion of the
Universe, against heating due to photoionization by the ultraviolet (UV) background.
This leads to a situation where the optical depth of the Ly-a forest is directly related
to the underlying baryon density (Bi, Ge & Fang 1995; Hui, Gnedin & Zhang 1997).

This is implied since the temperature seems very well fitted by a power law relation

=1 (@) (1.62)
Pb

where py is the baryonic density (Hui & Gnedin 1997). This relation only holds
in the regime where py/pp is small. When the py/pp ~ 10 regime is reached there is a
range of temperatures for any given density, depending on the extent that the gas has
been shocked (Meiksin 1994; Theuns et al. 1998). The parameters Ty and a depend on
the reionization history of the Universe and the spectral shape of the UV background.
The density regime of the Ly-a forest is such that any pressure gradients present should
be small compared to gravitational forces. This leads to an environment where the gas
traces the structure of the dark matter, meaning p, o p. Since the gas is highly ionized

and dominated by photoionization it follows that

nup < [ ra(T)n?, (1.63)

where nyr and n represent the densities of neutral hydrogen and total gas, I' is the
photoionization rate of the UV background and «(7) is the recombination coefficient.
Inputting an expression for a(T) which is proportional to 7797 (Osterbrock 1989)

produces a tight relationship between optical depth and baryon density where by

Tiocpel o o ,f_Jf where =2 - 0.7a. (1.64)
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Although the argument neglects many effects, for example shock heating, collisional
ionization and peculiar velocities it is claimed these do not affect the relation signifi-
cantly. Given this relationship it becomes possible to map a continuous density field
from the continuum of a quasar spectrum. This process cannot be achieved by direct
inversion, firstly as some of the parameters are not known precisely and secondly be-
cause inferring an accurate value of 7 from the flux becomes virtually impossible as
the flux level approaches zero. Instead of attempting this inversion this paper proposes
the use of Gaussianization. This is a process introduced by Weinberg (1992) which
exploits the fact that the primordial density field is expected to a have a Gaussian
probability distribution function (PDF). Although the density field evolves with time
it tends to preserve its relative order, for example overdense regions remain overdense.
Gaussianization exploits this to try and map a density field back to its original form.
This process can be applied to quasar spectrum by ranking in order the normalized
flux values and then assigning a density value which corresponds to a Gaussian PDF.
The resulting density values obtained are only relative, and it is for this reason that
only the shape of the power spectra can be recovered. Once the shape of Pip(k) has
been recovered in this way, the three dimensional form, P(k), can be obtained via

differentiation (equation 1.34).

This procedure is applied to a quasar spectrum, but the statistical uncertainties
are large since only one quasar is used. It is noted on scales below about 2w /k =
1.5 h=! Mpc (comoving) this method cannot be reliably applied as the effects of non-
linear gravitational evolution, thermal broadening and peculiar velocities dominate. It
is also questioned whether an upper limit for the reliability of recovery at large scales

might be set by the discreteness of the sources that make up the UV background.
Hui (1999)

In this paper the affect of redshift-space distortions is considered in more detail. This
problem arises since any comoving distances used are calculated from redshift informa-
tion. Clearly any peculiar velocities will introduce an error when converting between
these two parameters. In general these distortions affect the flux power spectrum to

malke it anisotropic. Therefore recovering the three dimensional mass fluctuation power
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spectrum from the one dimensional flux power spectrum becomes a more involved pro-
cess. This paper presents a modification to the Croft et al. method to account for this.
A distortion kernel W P(ky/k, k) is introduced so that the flux (denoted by subscript

I') and mass power spectra are now related by the equation

: Y s AEOBET e
Pipp(ky)) = 5= / WE2 (ky /y, y) Py)y dy, (1.65)
2m : A'“

where k| represents the wave vector along the line of sight and k, as usual, is the
magnitude of k. Recovery of the three dimensional mass fluctuation power spectrum
now requires inverting equation 1.65. Hui argues that for practical purposes it is nec-
essary to truncate the infinite vectors involved. However since P(k) is in general a
function which decays rapidly with & at high &, a practical limit can be chosen for
truncation which leads to a small error in the final answer. This paper shows that
excluding the distortion kernel, which corresponds to WF? = constant, tends to lead

to an underestimation of the steepness of the mass power spectrum.
Croft et al. (1999)

This paper applies the method from Croft el al. (1998) to a sample of 19 quasar
spectra. A result for the measurement of P(k) is given between the range 27 /k ~

450 — 2350 km s~'. The results are given in the form of the equation

PR =B, (i> ._ (1.66)
kp
where n = —2.2540.18 with an amplitude A?(k,) = 0.57'_"8:%2, for the chosen pivot

wavenumber &, = 0.008 (kms™')~1.

It is also demonstrated that the effect of artificial correlations produced by variations

in the UV ionizing background are negligible.



McDonald et al. (2000)

In this paper the usefulness of the process of Gaussianization is called into question. [t
is claimed that this process can amplify noise effects, and that its role in improving the
recovery of the mass fluctuation power spectrum is questionable. The authors therefore
prefer to omit this step and first calculate the one dimensional power spectrum of the
transmitted flux Pyp p(k) with the Lomb periodogram technique (Press et al. 1992).
They then use numerical simulations to study the relationship between the flux power
spectrum and the mass density power spectrum. They relate the flux and mass density

power spectra with the formula

L_.—k"e:.r'f oo
(B = Ar B () du. 67
Pipr(k) = Ap 5 /A Ply)y dy (1.67)

where the three dimensional power spectrum of mass density perturbations is given
by a functional form, with modified parameters, which is known to fit a cold dark
matter model well (e.g. Bardeen et al. 1986). The authors note that the equation used
agrees well with Pip (k) for the low k regime (k < 0.04 (kms~')~!). Although it is
noted that the 3D Gaussian smoothing used in this paper provides a better fit for the
power spectrum on small scales than a 1D Gaussian smoothing, the 3D smoothing does
not return the correct value of the spectral index n of the model used in the simulation.
Fits are obtained for the observations to this formula treating Ap, v. and n as free
parameters. Applying this method to a flux power spectrum from simulations they
find an error in recovery of the spectral index of An = —0.02 £ 0.07 and assume that
the same offset should be seen in the observations. They use this as a correction to the
observed slope and add the error in quadrature. This method is applied to 8 quasar
spectra, with the slope of P(k) measured to be n = —2.554 0.10 with an amplitude of

A%(k)=0.7240.09, at k= 0.04 (kms™ ")~
Feng & Fang (2000)

The usefulness of the Gaussianization process is again under scrutiny in this paper. The
authors claim that the non-Gaussian behaviour of the flux still remains even after this
process is applied. Any recovered mass power spectrum is shown to be systematically

ower than the initial mass power spectrum, ertain scales, if this is the case. A
lower than tl tial pow pectrum, on certain scales. if this is the case. A
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modification to the usual Gaussianization method is presented which overcomes this
problem. The method involves using a discrete wavelet transform in conjunction with

Gaussianization and a summary of the prescription given is:

1) Use the conventional Gaussianization technique to recover the mass field. Nor-

malize this field so simulations reproduce the observed flux limits.

2) Calculate the wavelet function coefficients of the recovered density field on each

scale.

3) For each scale make a Gaussian mapping of the coefficients to produce unnor-

malized wavelet function coefficients.

4) Normalize these new coefficients by requiring that the variance matches that of

the original coefficients.
5) Randomize the spatial sequence of the Gaussianized coeflicients.

G) Use the coeflicients to reconstruct the mass density field to the scale given by

the resolution of the flux.
Zaldarriaga et al. (2000)

In this paper the authors, rather than attempting any inversion technique prefer to
simply compare the flux power spectrum with predictions for a range of cosmological
models. The Ly-« simulations they use are generated with a PM code (e.g. Meiksin
& White 2001), with the gas properties inferred from the dark matter distribution, via

simple scaling relations.

The results of this paper indicate that the spectral index is poorly constrained
when inferring the mass density field. The reason for this is that the smoothing scale
linking the baryonic and dark matter distribution is left as a free parameter. Essentially
differences in the power on various scales can be accounted for as being the result of
either the value of the spectral index, or by a change in the temperature of the IGM.

It is suggested that much of this uncertainty could be accounted for by the use of a



more sophisticated hydro-PM code (Gnedin & Hui 1998). Although it is claimed that
the degeneracy cannot be completely removed due to uncertainties of the reionization

history.
Croft et al. (2000)

This paper applies a modified version of the original method to a sample of Keck
spectra (30 HIRES and 23 LRIS spectra). The results of the recovered P(k) presented
are a spectral index of n = —2.47  0.06 and amplitude A2(k) = 0.543313 at k =
0.03 (kms™!)~'. Modifications to the original method are included to account for
errors arising from redshift-space distortions, non-linearity and thermal broadening. In
this modified method they calculate the one dimensional flux power spectrum using
the Lomb periodogram method. A three dimensional flux power spectrum Pp(k) is
then defined such that it is the power spectrum of the three dimensional flux field that

would have a line-of-sight power spectrum Pyp p(k) if it were isotropic

27 d )
Pp(k) = = a:f’m,r-‘(k)- (1.68)

This flux power spectrum is then related to the mass density power spectrum with

the assumption that they are related by a scale dependent bias factor such that

P (k) = b2(k) P(k). (1.69)

The calculation of b(k) is performed with ‘normalizing simulations’, which rely on
the fact that the form of P(k) is in good agreement with a low density ACDM model,
which can therefore be used in these simulations. The bias parameter is then calculated

using the equation

2

(1.70)

The simulation used is the one for which the value of Af(k) most closely matches
the observations. Any systematic uncertainties in the recovered P(k) will now relate
directly to the bias parameter. They argue that if the assumption of Gaussian fluctua-

tions is correct then the shape and amplitude of P(k) will be the important feature to
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determine the bias parameter for any cosmological model. However the authors then
claim the dependence of b(k) on the shape of the power spectrum is weak since what is
U b he STl ona et = >
computed in the simulations is b°(k) = Pr(k)/P(k) rather than Pp(k) itself. Therefore
it is claimed that the uncertainty in b(k) associated with adopting a ACDM model for
the normalizing simulations should be small. An extensive study is presented showing
that reducing the uncertainties is limited by a lack of knowledge about the parameters
Ty, a (see equation 1.62) and 7. It is argued that as these parameters are determined

more precisely the errors in this modified method will be reduced.
Jamkhedkar et al. (2001)

The problem of correctly normalizing the flux power spectrum is addressed in this
paper. Since the effect of mean optical depth and continuum fitting affect the inferred
amplitude of the mass power spectrum, the authors present a method of independent

normalization. This is done with a discrete wavelet transform of the flux spectrum.

First the flux is decomposed into the background and fluctuation information as

F(A) = F(A) + F(A\)§(N). (7L

It is then argued that a wavelet analysis has the advantage that if the background
flux is correlated with the fluctuations this effect is quantified by the spatial informa-
tion. This technique also allows simultaneous estimation of the normalization of the
background and the calculation of the power spectrum. The mathematical formalism

of this technique is omitted for reasons of conciseness.
Gnedin & Hamilton (2001)

This paper investigates systematic errors of inferring the mass power spectrum from
the Ly-a forest. They find the main sources of error concern the assumed equation of

state and mean optical depth.
Recent observations (Schaye et al.2001; McDonald et al. 2001) suggest somewhat
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different values of the parameters Ty and v than those used by Croft et al.. Although
finding the effect of altering v is small, the amplitude of the mass power spectrum is

reported to be strongly dependent on Ty. This effect is quantified by the equation

(1.72)

. . 4 -
Bin(k, To) = Plin(k, 2 x 10" K) (w) .

To

Similarly they find that the value of the mean optical depth used will also have an

effect on the amplitude of the recovered power spectrum such that

. 0.75
| 0.349 g
‘H]“{L"TJ = Hm[iijiU) (f c ([i”
7 o

These two effects therefore mean the errors in the amplitude of any recovered mass
power spectrum are highly effected by the uncertainties in these parameters. However
other effects such as inhomogeneities in the ionizing background. shock heating of gas
and the form of the prior mass power spectrum are argued to be less significant than

the random errors.
Zaldarriaga et al. (2001)

This paper discusses the effects of non-linearity on the recovery of the linear mass
power spectrum. [t is argued that the non-linear effects drive the power spectrum to
a power law of k=1, regardless of the initial conditions. The authors therefore claim
that previously quoted uncertainties in the shape of the linear power spectrum are

underestimated.

It is argued that the important quantity is the spectral index in the weakly non-
linear scale. For a power spectrum which is initially a power law (and, it is claimed, a
good approximation of CDM spectra), one loop perturbation theory gives the non-linear

power spectrum as
i n+3
P(k) = Fin(k) |1+ a(n) (L_) ; (1.74)
nl

Where a(n) monotonically decreases with n. The critical value is n. = —1.4 since

for a spectral index below this value the non-linear spectrum is less steep than the
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linear one. When n > —1.4 the non-linear corrections are negative, and non-linear
power spectrum grows more slowly than the linear case leading to a spectrum steeper
than the linear one. When n ~ —1.4 the power spectrum retains its linear shape.
Therefore it is claimed that all cases are driven towards the critical index regardless of

their initial linear shape (Scoccimarro & Frieman 1996).

The authors claim this process occurs on scales of interest in the Ly-a forest at
z ~ 3. For example in the case of a model with a low value for the shape parameter
and large amplitude they claim the non-linear corrections have a strong effect at & ~
4 x 10~ (km s~')~!. Therefore they conclude that the constraints on the initial linear

power spectrum that can be set with the present data are poor.
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Chapter 2

Monte Carlo simulations

This chapter contains analysis of AfD,F("“") for rudimentary simulations, where spectra
are modelled with blended Voigt profiles. This work is then discussed in the context of
the difficulties it highlights when attempting to infer the mass field from quasar spectra.
The power spectrum obtained from the positions of discrete objects are also considered,
and applied to line centres of Ly-a absorption spectra. Results are presented for cases
where the line centres are randomly placed and when they are clustered according to
an underlying density field. Additionally the formalism used to generate the density

fields used in the latter case is discussed in detail.

2.1 Monte Carlo simulations

2.1.1 The model

This set of simulations is one of the simplest that can be studied. A spectrum is
generated simply by assuming that there is a set of Ly-a absorption lines which are
randomly positioned in accordance with a given redshift distribution. Since the pixels
used in these simulations are small (see below) it can be assumed that there is no

variation in dN/dz across each pixel, thus the probability of a Ly-a cloud being centred



in each pixel is given by

dp = %Az, (2.1)

where both quantities on the right hand side represent the local values corresponding
to the pixel in question. A random number generator is then used. in conjunction with
this probability, to determine which pixels contain the centres of absorption features.
This probability, dp, is small enough that the chance of there being more than one
absorption feature centred in each pixel can be neglected. TFor each line present a
column density and Doppler parameter are then assigned from simple distributions.
Once these parameters have been assigned the absorption effects are calculated by
assuming each feature has a perfect Voigt profile. Complications such as noise have

been ignored while discussion of the effects of peculiar velocities is saved until §3.6.

Redshift distribution

The redshift distribution function used is simply the power law relation described in
equation 1.55, which is assumed to be independent of Wy. The exponent v can be chosen
to have any value and the constant in the equation is then determined, in conjunction
with the other line parameters, by imposing the mean optical depth (equation 1.54)
in a small redshift interval to have a selected value. The simulations analysed in this
chapter were chosen to have 7(z = 3.0) ~ 0.35 in accordance with Meiksin, Bryan &

Machacek (2001) and references therein.

Column density distribution

The column density of each cloud is assigned in accordance with the distribution de-
scribed by equation 1.56. The exponent 3 can be chosen to have any value. A lower
limit of column density must be set since extending this power law relation towards

zero would result in the probability of obtaining a high column density line becoming

)

negligible. The lowest column density that can be assigned is set to be 1 x 10'* em™2,

since lines weaker than this do not have a significant optical depth and thus below this
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limit the distribution of Ny cannot be measured directly. There is no constraint on the
highest possible column density, but any sensible value of the exponent in the distribu-
tion function ensures that very high column density systems will always be exceedingly

rare.

Doppler parameter distribution

The Doppler parameter for any feature is drawn at random from a truncated PDI
with the distribution above the truncation limit matching a Gaussian distribution with
a selected mean, b, and standard deviation, o,. This is consistent with the distribution
of Doppler parameters observed by Kirkman & Tytler (1997). The truncation value
for each feature is set by a minimum allowable value of Doppler parameter which is
dependent on its column density. Again this is in accordance with the observations
reported in Kirkman & Tytler (1997), and the minimum required value is found using
the expression given in equation 1.57. In the case when a Doppler parameter drawn
from the Gaussian is less than by, this value is simply ignored and a new value is
assigned, this process is repeated until a suitable value of b is obtained. It should
be noted that due to the constraint on by, the mean and standard deviation of the

resulting Doppler parameters will not equal the input values, b and oy.

2.1.2 Range and resolution

Due to the simplicity of these simulations they allow a large number of spectra to be
generated corresponding to any arbitrary redshift range. A reasonably small range is
chosen so that when an underlying power spectrum is added the cosmological evolution
can be ignored. The range of comoving » corresponding to any fixed redshift interval
is obviously dependent on cosmology. When real data are considered the uncertainty
in the values of cosmological parameters means the distance coordinate r cannot be
directly computed. Therefore it is most convenient to work with the directly observable
variable, the velocity v, and inverse velocity space for the wave vectors. Working with

velocities also makes it possible to compare results from different cosmologies and other



published data. The simulations analysed in this chapter are chosen to have a redshift
range of z = 2.9 — 3.0. Using a convention where v = 0 at the lowest redshift limit it

is sensible to define a redshift relative to this

I+ \
L"f‘*_:rl:l: 1+7|-] . (22}

Now il z € 1 then the velocity is given by

U

- = Zrel (23)
-
Alternatively if z, is large enough to introduce substantial errors with this method

then Hubble’s law can be used to approximate the velocity using the equation

v=H(Z)rp, (2.4)

where z is the mean redshift. However this too is only a reasonable approximation
il the redshift interval is small. In cases where the redshift difference is large the use
of velocity as a measure of distance breaks down, since on these scales the two are not
linearly related. The above calculation of equation 2.4 for z = 2.9 — 3.0 gives a velocity

range of v = 0 — 7600 km s™".

The resolution of these simulations has been set at 2 km s™" per pixel. This decision
has been made to match observations made with the Keck telescope (e.g. Kirkman &
Tytler 1997). Using this pixel size and spectra length means the data can be studied

on scales of k running from 8.0 x 10™* — 1.57 (km s™')~L.

2.1.3 Analysis of spectra
Flux power spectra

The spectra generated by the above method were then analysed in the following ways.
First an FFT was taken of the flux and the resulting components used to calculate

the flux power spectrum Pipp(k). It was found that Pip (k) for individual spectra

45



0.8

0.6

0.4
-

0.2
T
=i

L L mae W ey
0 0.2 0.4 0.6 0.8 1

flux

Figure 2.1: The probability of finding a flux level greater than
a given value. The simplistic nature of these simulations leads a
situation where large parts of the spectrum are very close to or equal
to 0 or 1. This accounts for the sharp turn off seen at the extreme

ends.

were very noisy, therefore a number of realizations were performed and the flux power
spectra were averaged. This expression Pip (k) was then fitted by a cubic spline to

Ll . - . . - A I ] o
remove any remaining noise before being multiplied by vyaxk/m to give Ajp (k). This

process was performed for various values of the input parameters.

Additionally the effect of Gaussianization on the shape of the power spectrum was

SG

studied. This process is performed by assigning each flux point a 6 value corresponding

to a Gaussian PDFE. First the cumulative probability distribution for the flux of a given

sth

spectrum is calculated (e.g figure 2.1). Now for the flux value in the " pixel, f;,

the associated probability p; can be assigned. A ‘Gaussian’ fluctuation value can then

calculated using

§G

R
D= E [ e~ T dy. (2.5)
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This 6% value gives a relative measure of the density corresponding to a given flux
level. For example a low flux value in a particular pixel has a high probability associated
with it and thus a high value of §. Using this definition of 6% requires a numerical
truncation to be set since if the assigned probability is exactly equal to 0 or 1 then
this corresponds to 69 = +c0. The Gaussianization process was introduced by Croft
et al.into the analysis to infer a relative underlying mass density from flux levels in a
spectrum. However an inferred underlying mass density from a saturated flux region is
a lower limit value, therefore this truncation is consistent with the physical motivation

for introducing this process.

Line power spectra

The power spectrum of line positions was also recovered. This technique is analogous to
using galaxy surveys to recover the power spectrum which means, unfortunately, that
many of the problems encountered in that field apply to this method as well. This will
be discussed fully later. Here rather than the point objects of interest being galaxies
they are the absorption line centres. Each pixel is assigned a value §; = n;/N; where
Ny is the total number of lines in the realization, and n; = 0 or 1. Each pixel containing
a cloud centre is set to n; = 1, and all other pixels are assigned a value of n; = 0. An
FFT was then performed on this binary distribution and the power spectrum, labelled
Pip.¢(k), was calculated. As with the flux equivalent this was then used to calculate
the dimensionless power spectrum AfD.{,(ﬁar). When calculating the power spectrum for
a discrete set of objects the shot noise must be accounted for. The Fourier modes given

by the FF'T convention defined in equation 1.37 lead to the expression

1 N-1 _ N-1 )
<|5(‘.A'[2> = w Z .r.};E_fo_‘L'; Z “_j{__.—;xu:}
AR i=0 j=0
0 e .
5 \fz\{z Z Z(”‘f”‘j)f' thr_ilJ}~ (2.6)
O =0 j=0

where NV is the number of pixels. Now in the absence of clustering all 7 # j terms
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will vanish leaving just

(16ek1%) = NINZ (ni) = NN (2.7)

£ =0

where the final term follows since the only occupancy numbers allowed are 0 or 1
meaning that n7 = n;. This shot noise is present in all k-modes and must be subtracted

when calculating Pip¢(k).

2.1.4 Results and discussion

Flux and Gaussianized power spectra
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Figure 2.2: The dimensionless power spectra for the flux and Gaus-
sianized values. The Gaussianized power spectra has been renor-
malised to match the flux at & = 1.0 x 10~% (kms™')~'. In the
regime of k < 0.01 (kms™')~! the lines are almost identical. On
smaller scales the lines diverge with the Gaussianized case showing a

flatter drop off than the flux counterpart.
The process of Gaussianization only produces a power spectrum of relative am-
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plitude. Since at this stage it is the shape, not the absolute magnitude, that is of
interest the Gaussianized power can be renormalised to match the flux counterpart
for easy comparison. Figure 2.2 shows the averaged power spectra of the flux and
Gaussianization values where the latter has been renormalised to equal the former at
k= 1.0x 1072 (kms™")=% In the region & < 0.01 (kms™')~! the power spectra are
an excellent match, though at higher £ values the Gaussianized case drops from the
maximum value with a flatter decline than the flux power spectrum. The important
issue is whether, when analysing more advanced simulations or real data, one of these
methods offers better recovery of A% (k) than the other. If the technique of Croft et
al. (2000) is applied then the results obtained should not depend on whether the Gaus-
sianization process is applied or not. The reason for this is that the change in the shape
of the power spectrum from Gaussianization will be counteracted by a change in the
shape of b(k), the parameter used to link the flux and mass power spectra. Addition-
ally since the amplitude of a Gaussianized spectra is not dependent on the actual flux
levels, information is actually being discarded. Therefore the Gaussianization process
can be considered an unnecessary additional step, which can be omitted. Therefore
the following analysis was performed only on QQID‘F(;C), though on large scales this is

equivalent to considering the power spectra of the Gaussianized values.

Figure 2.3 shows the recovered Afp (k) for 500 simulated spectra with the input
parameters v = 2.5, 3 = 1.5, b = 23.0 kms™! and o, = 14.0 km s~". Despite the
simplicity of this model the results do highlight some considerations which should be
borne in mind when using Pjp (k) to recover the mass power spectrum. The recovery
ol Pip.p(k) and subsequently ;\‘fD,E'(k) show that even a random distribution of lines
gives a non-zero &%D,FU"")' This is because the Ly-a absorption features are not point-
like objects. The natural width of the absorption features guarantees correlations will
be seen on scales corresponding to a few tens of km s™'. It does though highlight the
fact that, in general and on some scales, the flux power spectrum will not necessarily

be linearly related to the mass power spectrum (consider equation 1.69 for P(k) = 0).

Varying some of the input parameters affects the recovered shape of Afp (k).
Altering the redshift distribution parameter v does not have a significant affect on

A2 (k) since the constraint on mean optical depth ensures that changing v will alter
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Figure 2.3: The dimensionless flux power spectrum for a Poisson
line distribution. Although the placement of the features is unclus-
tered the flux power spectrum has non negligible Fourier components.
These correlations in the flux spectrum exist since Ly-a absorbers are

not point like objects, but instead have a finite width.

dn/dz|p to ensure approximately the same number of lines still occur in each spectrum.
Since the shape of A%, (k) is dependent on the line profiles and all these features
have the same intrinsic statistical properties the flux power spectrum remains largely

unchanged.

Conversely varying the parameters which determine the absorption profiles can
be seen to be significant. Figure 2.4 shows the affect of varyving the column density
distribution parameter 3. It can clearly be seen that the magnitude of the peak of the
recovered Ajp p(k) is dependent on 3. A high value of 3 corresponds to systems of
high Nyp being rare. When § is large the constraint on mean optical depth means that
there will be more absorption features than for a low value of 4, but these features
will tend to have lower column densities. Figure 2.4 shows that fewer lines with a
wider range of column densities have bigger Fourier components than more lines with

a small range of Nyj. This can best be understood if an extreme case is considered
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Figure 2.4: The dimensionless flux power spectrum for various
values of 3. This parameter determines the relative abundances of
high and low column density features. As the statistical properties
of the lines change so does the resulting flux power spectrum. The

peak value decreases as high column density features become rarer.

where /3 tends to infinity and therefore all the lines present tend to have the same, low,
column density. In this case satisfying the 7 constraint requires that the spectrum has
a small, almost constant, amount of absorption at each point across its entire length.
Performing an FEF'T on this approximately constant flux would then result in negligible

Fourier coefficients.

Figures 2.5 and 2.6 show the affect on &?D,F(ﬁz) of different values of b and oy,
Changing the distribution of b can be seen to have a small but noticeable effect on
the recovered Afj p(k). Looking at the region of & > 0.1 (km s71)~! these graphs
show that increasing b or a; has the effect of slightly narrowing the feature recovered
in Fourier space. This is to be expected since high Doppler parameters correspond to

broad absorption lines and so correlations can be expected on larger scales.

= % 5 5 5 A2 X -
When more realistic models are considered the aim is to use A{p p(k) to recover its
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Figure 2.5: The dimensionless flux power spectrum for various
values of b, the mean Doppler parameter. For a given line, the width
depends on the value of the Doppler parameter. As the mean Doppler
parameter is increased a slight narrowing of the feature seen in Fourier

space is apparent.

mass counterpart A2 (k). The Croft et al. (2000) method suggests that this can be done
with a bias parameter, b(k). Therefore the change in the intrinsic shape of A}’D,F(!ﬁ)
eiven by a Poisson distribution of lines should be accounted for by this bias parameter.
The important point is that b(%) is calculated from the ratio of these power spectra
in simulations. If the simulations correctly account for the factors that give rise to
parameters governing the line statistics then the precise shape of a Poisson distribution
of lines should be unimportant. Regardless of this the values of these parameters may
give some indications of the suitability of this method, which involves the concept of

inferring a continuous mass field from a quasar spectrum.

Certain values of 3, which governs the column density distribution, for example may
affect the fundamental assumption that the optical depth corresponding to a spatial
point can be used to infer the density of dark matter at that point. A low value of 3

would mean that absorption features are more likely to be saturated than a high value.
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Figure 2.6: The dimensionless flux power spectrum for various val-
ues of @y, the variance in the Doppler parameter distribution function.
As oy, increases, the likelihood of a feature having a high Doppler pa-
rameter is also increased. This is due to the truncation of the Gaus-
sian distribution function, arising from the presence of a constraint
on the minimum allowable value of b. Therefore the width of the flux

power spectrum is weakly dependent on ay.

Strong absorption lines in spectra could be problematic when attempting to reconstruct
the mass field. This follows since the inferred density at the centre of these saturated
regions is only a lower limit. The reason for this is that the spectra cannot be used
to accurately determine even the relative density in such regions since any additional

obscuring material above some threshold limit will not cause any additional absorption.

The extent of the blending of lines, which depends on 3, b and o3, can also be
significant. When the lines are strongly blended the optical depth at any point may have
contributions from many regions around that point. The Doppler broadening of lines
confuses the link between the absorption seen and the spatial position it corresponds
to. Figure 2.7 demonstrates this effect, in the underlying density field (shown in the

top plot) there are two peaks close together. In the middle graph the profiles of the

1) §
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absorption features corresponding to these peaks are shown as solid lines while the
blended feature, that an observer would see, is represented by the dotted line. The
inferred density field is shown on the bottom plot and shows how this quantity is
affected by both the Doppler broadening and blending of the features. This effect may
be particularly important in saturated regions. For example a feature with a very high
values of column density and Doppler parameter will have a broad saturation trough.
Since the flux level throughout the trough is zero, due to the high density point at
the line centre, no additional absorption associated with the local baryons can occur.
Therefore no information about the density in these regions can be obtained. Any areas
of a spectrum which contain line blending, of which this is an extreme example, lead
to the breakdown of the assumption that the local value of 7 gives a measure of the
underlying density. This is another obstacle which the use of the bias parameter, b(k),

hopes to overcome.

The distribution of Doppler parameters also raises another issue concerning the
extent to which the baryons trace the dark matter. The Doppler parameter is intimately
linked with the temperature of the gas. Since the underlying dark matter is thought to
be collisionless, a key difference in the behaviour of the baryons is that at high densities
it becomes pressure dominated and hot. The differing physical properties of these two
types of matter will inevitably lead to differences in their distributions. The pressure
forces arising in the baryonic distributions will, on certain scales, effectively oppose
gravitational collapse. The critical length below which collapse is halted for a given
system is known as the Jeans length. This scale arises since if the free fall collapse
time of a structure is less than the time it takes for sound waves to travel across it
then the pressure is unable to halt the collapse. The time taken for sound waves to
cross a structure of size x is just given by t = #/cs. The free fall collapse time can be
approximated by considering the simplified case where a particle undergoes constant
acceleration starting from rest. This results in a collapse time given by tg = 1/1/Gp.
Equating these two time scales then gives the critical length as @ = ¢i\/1/Gp, a result
remarkably similar to the exact expression for the Jeans length which is

Np=Can [ = 9
1=/ (

o0
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Figure 2.7: The effects of Doppler broadening and line blending on
an inferred density field. The top and bottom plots show the actual
and inferred density profiles respectively. The middle plot shows the
absorption features associated with the density peaks and the blended
profile. The inferred mass density shows that in addition to inferring
a wide density profile, due to Doppler broadening, that one of the
peaks is obscured by the line blending.

The effect on the power spectrum of the baryonic pressure forces can be modelled

with the equation (e.g Fang et al. 1993)

Ppu (k)

By(k) = ————, 2.9
where @ represents the Jeans length and is given by
_ L[ 2yksTo(2)

Hy [ 3umpQmo(l + 2)

1/2
; (2.10)

xp(2)

where all the symbols have their usual meanings and Ty is the temperature of the
[GM at the mean baryon density and p is the mean molecular weight of the IGM.
Since z; is proportional to the square root of the temperature, Ty, increasing this
quantity leads to a greater divergence between these distributions. The difference of

the clustering is therefore likely to be greatest at the places where the gas is hottest.

o
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In summary the assumption that absorption flux can give an indication of the
density of underlying dark matter works best in the regime where any gas is cold and
fairly diffuse. However the hope is that all the effects introduced when this is not the
case can be reasonably accounted for by the bias parameter b(k). This assumption will

be investigated later with more realistic models.

Line power spectra
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Figure 2.8: Dimensionless line power spectrum for a Poisson line
distribution. For an infinite number of realizations the expected
power spectrum would be zero on all scales. The large scatter on
individual realizations leads to the non-zero result seen. Even when

a signal is present it is, as expected, largely scale invariant.

The power spectrum of line positions does reasonably recover the Poisson result
AfD,r(k) = 0 as shown in figure 2.8, The result does not vanish completely as A'fD‘e(k)
will only be zero for an infinite number of realizations. The scatter on the individual

realizations is very large and the shot noise subtraction can lead to calculating a Pyp ¢(k)



which is not non-negative definite. However averaging over the many realizations used
here gives a best fit line where the recovered signal is weak and positive. Any signal that
is recovered should not have a scale dependence, meaning A, (k) should be a straight
line. The recovered form of A%D_f(k) is an excellent fit to the straight line expected. The
recovered signal is consistent with a Poisson distribution even despite the evolution,
with redshift, of the line population. This effect must be considered since Pip¢(k) has
been calculated from an expression which assumes that 7 is a constant. However the
evolution across the spectra is not very dramatic and so the result still offers an excellent
approximation. Comparison between the case where the line population evolves and
where 7 is constant show that the errors are small on the scales considered, and even
weak clustering will lead to a signal far in excess of these systematics. In cases of

more extreme evolution a more thorough analysis should be used, for example the 1

dimensional equivalent of the scheme used by Feldman, Kaiser & Peacock (1994).



2.2 Adding an underlying density field

Once a density field has been generated (using the method described below) the selec-
tion of lines can be modified to position lines preferentially at places of high density.
This will lead to a situation where the line centres will offer a Poisson sampling of the

density field. To do this equation 2.1 is replaced with

(N -
dp = %—[l + d(x)]Az. (2.11)

The Monte Carlo simulations are then performed in exactly the same way as before

except for this modification of line placement.

2.2.1 The form of the baryonic power spectrum

The input power spectrum used in this chapter was calculated as follows. The initial
form of the dark matter perturbations was assumed to be a featureless power law such
that Ppwm (k) o k™, where n is known as the spectral index and determines the relative

power on large and small scales.

Various processes (gravitational interaction, dissipation etc) cause the initial pertur-
bations to change, altering the functional form of the power spectrum. This alteration
is quantified by the transfer function, T'(k), which is the ratio of the modern day am-
plitude of each mode and its initial value. Bardeen et al. (1996) found that the transfer

function for CDM cosmologies was well fitted by the formula

" [In(1+ a1q)/a1q] "
= ’ 219
O [ a0+ (@007 + (@) + (@) ] (2.12)

where ¢ = k/I', and T, known as the shape parameter, is dependent on §2,,, £2; and
h. The « coefficients also depend on cosmological parameters and the values used here
are the results of Ma (1996) corresponding to €, = 0.05 (ay = 2.205, oy = 4.05, a3 =
18.3, ay = 8.725 and as = 8.0). The modern day linear power spectrum is then given by
Pom (k)  k*T?(k). The constant of proportionality is constrained using the modern

day value of og, which refers to the rins density fluctuations averaged over spheres of
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radius 8 A=! Mpc. Observationally og is found to have a value close to unity. So with
this prescription a modern day linear power spectrum can be generated for given values

of just 3 parameters (n,[" and os).

This power spectrum must now be renormalized to correspond to the redshift ap-
propriate to the simulations. This renormalization corresponds only to a change in
amplitude due to the evolution of linear perturbations, not a change in functional
form. Since the redshift range of these simulations is small, it is a reasonable approxi-
mation to generate the power spectra at one redshift (z = 3.0 in this case) and use this
across the entire length of the spectra. In linear theory, the power spectrum evolves

according to

Pom(k, z) = D*(2) Pom(k, 0), (2.13)

where D(z) is the linear growth factor for the cosmological parameters being used

and is given in equation 1.22.

This linear form of Ppm(k,z) can then be used to calculate the more general
PomNL(k, z) in which the effects of the non-linear regime on the power spectrum are
also included. This is done using the Peacock & Dodds (1996) method, which is an
extension of work carried out by Hamilton et al. (1991). First the scales of the non-
linear and linear regimes can be linked since non-linear density contrasts arise from the
collapse of linear perturbations on linear scales. Once the scales corresponding to the
two regimes have been established it has been shown that it is a good approximation to
assert that the non-linear perturbations are a universal function of linear ones. These

relationships are given by the expressions

kL= [1+ A%‘L(kNL)]_UB SN (2.14)

ARy (kxe) = fNU[AT (kL)) (2.15)

The function fxp,(z) is found from N-body simulations and is given by

S 1 4+ Bz + (Ax)°8 }1;_6
itz)l= g { 1 [(‘4;1.)‘.15,3(Q)/(1_,:'1‘1,1-2]],3 3

(2.16)
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where the coefficients are

A = 0.482(1 + n/3) 0947,
B =0.226(14n/3)"178,
o = 3.310(1 +n/3) 224,
A = 0.862(1 4+ n/3) %287

V = 11.55(1+n/3) 94,

and the function g(€2) accounts for the difference of the growth rate of linear per-

turbations in different cosmologies and is given in equation 1.24.

Once the non-linear dark matter power spectrum at the appropriate redshift has
been calculated, it can be smoothed to find the corresponding baryonic F(k). This
accounts for the difference of the physical properties of baryons and dark matter which
will inevitably affect the clustering. As previously discussed the appropriate scale of

the baryonic smoothing corresponds to the Jeans length and can be expressed as
Pomi (£, 2)
Py(k,z) = ————-, 217

with 2 given by

1/2

(2.18)

wp(2) : [ i

) ()
- ILJTU 3!-'7'”'3103110(1 + :}

where the parameters Ty and v were predicted for a given redshift by Hui & Gnedin

(1997).

Finally, since these simulations are one dimensional, a transformation from the 3D
power spectrum must be made using the relation given in 1.33. Figure 2.9 shows the

1D dark matter and baryonic power spectra obtained at z = 3.0 for the parameters

= 10595 =03, Qkx =07 P=10.2 andigs = 1.0\
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Figure 2.9: The baryonic and dark matter 1D power spectra with
parameters n = 1.0, I' = 0.2 and og = 1.0 for the cosmology 9,, =
0.3, 25 = 0.7. The effect of the baryon smoothing is to reduce the
amplitude of the 3D power spectrum on small scales. This is due
to baryon distributions being dominated on small scales by pressure
processes, Since the 1D power spectrum is an integral to infinity of
the 3D form the 1D baryonic power spectrum has a lower amplitude

on all scales than the dark matter one.

2.2.2 The lognormal approximation

A density field for each realization can be generated by taking Gaussian fluctuations of
the known input power spectrum P(k). To do this it is noted that the corresponding

d1’s can be split into real and imaginary parts such that

(16612 = (812 + (189012 = P(k). (2.19)

Now assuming the phases of different modes are random and uncorrelated implies

1071 = (1871) = Pk} /2. (2.20)

meaning a density field with a Gaussian PDF around a known power spectrum can
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be generated by taking (Yi,_r] = u X y/P(k)/2 and 5}:’ =u' x \/P(k)/2, where u and v’
are Gaussian deviates with mean = 0, ¢ = 1. To ensure that when a Fourier transform
is performed the resulting §(2) distribution is a real field, §, must be an Hermitian

series. This is done by imposing the condition

d_x = 6g  or more explicitly 0811 = r)'lt‘rJI d[—il)-: = —51{:). (2.21)

Once this condition is applied then performing an FFT on these components will
give a suitable §(x) distribution. However applying this technique as it stands does not
necessarily give a physically sensible density field for input power spectra with ampli-
tudes which are not small. Using this prescription offers no guarantees that the resulting
values of d(a) are greater than —1. Clearly values lower than this threshold make no
physical sense. To ensure a viable density field, a more involved generation process is
required. To do this the lognormal approximation first introduced by Coles & Jones
(1991) is used. This model is a good approximation to non-linear matter distributions,
such as those found in the IGM. This distribution has been tested against hydrodynam-
ical simulations and been found to be in reasonable agreement (Bi & Davidsen 1997).
It has also been used to model the IGM and found to have reproduced the observations

well (Bi 1993; Bi & Davidsen 1997).

In order to use the lognormal approximation it is asserted that given a set of density
perturbations dg(2) (which have been marked with a subscript G because they are
Gaussian fluctuations of the generating power spectrum Fg(k)). the density of baryons

is given by

py(z) = Ae’s(®), (2.22)

where A is a normalization constant. It should be noted that valid values of py(z) are
generated for any real value of dg (), thus the distribution of dg(z) is not subject to
the same constraint as the usual fractional density parameters that § > —1. The value
of the constant A can be found by invoking the properties of Gaussian fields. Taking

the mean value of both sides of equation 2.22 gives

(ps(x)) = pp = A(e°5™)), (2.23)
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Now since a Gaussian field is being used it is known (see Appendix B) that

"D
(eet®)y = e, (2.24)

where
A% = (8 (2)). (2.25)

Hence
A=ppe T (2.26)

Substituting equation 2.26 in to equation 2.22 gives
AQ

Pb = pPpexp (ci(:;(i‘) = 7) 5 (227)

Figure 2.10 shows the distributions of a set of Gaussian fluctuations and the baryon
densities generated from these fluctuations using the lognormal approximation. It can
be seen that the distribution of the resulting baryon field peaks at low values, but
has a long tail at the high end. This is to be expected since individual values have
the constraint that §, > —1, while the sum all values must remain equal to zero.
It is therefore clear that applying the lognormal approximation to calculate baryon
densities will lead to a distribution of d,’s which has a different power spectrum to
the corresponding input Gaussian fluctuations. Therefore a formalism is needed to
calculate the power spectrum Pg (k) which will provide suitable Gaussian fluctuations
to generate a baryonic density field with the required distribution for a known power

spectrum Py(k). The first step is to recall that the correlation function is given by

& () = (d(a) (2" + 2)). (2.28)

Now from equations 1.16 and 2.27 it can be seen

A2
dy(a) = exp (5(;(:1:) - —) -1, (2.29)
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Figure 2.10: Histograms showing the distribution of a set of Gaus-
sian fluctuations, dg, and the baryon field resulting from applying

the lognormal approximation to these fluctuations, d,. The numbers
expected in each bin are shown by the overlying lines. It can be
seen that the resulting baryonic density field is non-Gaussian, being
skewed towards low density values whilst having a long tail for high
values.

which upon substitution to equation 2.28 gives
: A? A?
&(z) = <{exp [bg(:.';’) - —2—] - 1} {exp [5g($'+ x) — T} - 1}> ) (2.30)
Multiplying these terms out gives

GA2 2
Ep(a) = <exp [5@(:;:’) +éq(2' +2) - %:[> - <exp [5@(:1:’) — AT]>

2
= <exp [&_;(.r" +z) — AT]> + 1. (2.31)

Now using the properties of Gaussian statistics as shown in equation 2.24 the result

simplifies to

| =

bl

]

<[5G(x’} Ehalala: .-1,-)]2> = L\.?} )
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1 / Lo, ) " f :
6(2) = exp | 5 (36 (2)) + é("é(:r +2)) + (0a(2)da (' +2)) ~ AZJ ==
= exp I((SG(Q;*’)&(;(:::’ + L})] =

— efal®) _ . (2-:52J

A result shown by Coles & Jones (1991). Thus it appears that to generate a baryon
density distribution with the power spectrum P, (k) from the lognormal approximation,
the original set of dg’s must be generated from a power spectrum P (k) corresponding

to £ (x) which is related to &(z) by

§a(z) = In[§ (=) + 1. (2.33)

From this equation it can be seen that for low amplitudes the forms of the baryonic
and generating power spectra will be coincident (since for small @, In(1 + 2) ~ z). It
should also be noted that this prescription will break down if & (2) ever has a value of,
or lower than, —1. Another problem which can be encountered is that even for a given
correlation function &(a) which does correspond to a well defined &g (), there is no

guarantee that the resulting Pg (k) will be non-negative definite.

Even when Pg(k) is well defined and positive this mechanism only works within
certain limits if Pg(k) is large. For example figure 2.11 shows the average recovered
\?p (k) for 500 realizations using this technique, with the length and resolution pa-
rameters previously discussed, for the baryonic power spectrum shown in figure 2.9.
The discrepancy seen between the input and recovered power spectra can be elimi-
nated by using a longer baseline to calculate the density field. Even in this case care
must taken, although the mean recovered A}y, (k) may be in good agreement with
the desired value, the variances of the densities for each realization may still be very
erratic. This is demonstrated in figure 2.12. The top histogram shows the variances
calculated from the Fourier components when Gaussian fluctuations are applied to the
baryonic power spectrum. The second histogram shows the variances recovered from
the lognormal approximation. In both cases the solid line shows the value of the mean

from the Gaussian fluctuations of the baryonic power spectrum, while in the bottom
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Figure 2.11: Input and recovered dimensionless baryonic power
spectra when using the lognormal approximation. The method breaks
down if the base line is not of sufficient length, as shown by the
discrepancy between the two lines. Although the shape of the input

power spectrum is well recovered the amplitude is too low,

plot the dashed line shows the mean of the variance when using the lognormal ap-
proximation. The simulations used to generate these density fields have a baseline two
orders of magnitude greater than those of the simulations previously discussed. It can
be seen that although the average variance of each distribution is very similar, the
distributions themselves are radically different. The mean variance of the density fields
from the lognormal approximation is strongly affected by a few realizations with very
large variances. This effect can be reduced by increasing the length of the baseline
still further, however since only a subsection of any density field generated on a large
baseline is used there still remains the possibility that this subsection will contain some
points with very high densities, and thus a large variance. This should not present a
problem however since these density fields are used either, in this chapter, to allocate
a line position or, in chapter 3, to calculate the optical depth at some point. Therefore

the flux variance of any spectra will not be unduly affected by these rare points of very
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Figure 2.12: Distribution of variances when Gaussian fluctuations
are applied to the baryonic power spectrum (top plot), and from re-
alizations of the lognormal approximation (bottom plot). Care must
be taken since although the mean values of the distributions are very
similar the distributions themselves are radically different. The solid
and dashed vertical lines show the mean value of the variances for
the Gaussian fluctuated and generated baryonic density fields respec-
tively.

high overdensity.

2.2.3 Results and discussion
Flux power spectra

Figure 2.13 shows the recovered Aty p(k) for the two cases where the line distribution
is Poisson and clustered according to an underlying density field. The value of Q‘f[),F(k}
is affected by the preferential placing of lines in regions of high density. The intrinsic
properties of the absorption features are identical in both cases so the difference can

be attributed solely to the positioning of the lines. On large scales the flux power
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Figure 2.13: The dimensionless flux power spectra for both clus-
tered and unclustered lines. The presence of clustering has an effect
on the flux power spectrum even though the statistical properties of
the absorbers are the same. On large scales the power is boosted
by the presence of clustering and conversely on small scales it is re-

pressed.

spectrum of the clustered lines is higher than the Poisson distribution. On these scales
the absorption features can be thought of as isolated markers of regions of high density
leading to an increase in power. More interestingly there is also a suppression of power
on small scales where the Voigt profiles themselves should dominate. The amount of
line blending must account for the difference between the two power spectra. This result
coupled with those in §2.1.4 demonstrates that the flux power spectrum is influenced
both by the intrinsic statistical properties of any absorption features and their positions.
In observed data these two factors may be degenerate and are not necessarily easily

disentangled since the underlying mass density will have an effect on both properties.
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Figure 2.14: The dimensionless line power spectrum compared
with its mass counterpart. As would be expected if the lines of-
fer a Poisson sampling of the mass field the shape of recovered
line power spectrum closely matches the mass equivalent. The am-
plitudes will in general be different and here the line power spec-
trum has been renormalised to match the mass power spectrum at
k=1.0x10"2 (kms~ ')~

Line power spectra

Figure 2.14 shows the line and mass power spectra where the line power spectra has
been renormalised to match the mass one at k& = 1.0 x 1072 (km s™!)~1. The results
show that in the unlikely situation that the line centres offer a Poisson sampling of the
density field then the shapes of Afp (k) and Afp (k) should be very similar. Therefore
the power spectrum of line positions could be used to recover the shape, but not the
magnitude, of the mass density power spectrum. Not much can be read in to this result
since the method is so basic. It does however suggest that if line centres tend to be in
high density regions then this may provide a useful aid in the recovery of the mass field.

Even if this is the case then using this method does reintroduce the sorts of problems
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which the Croft ef al. method avoids. Shot noise for example appears and there may be
difficulty identifying the positions of line centres. Furthermore the scales upon which
the recovered mass power spectrum matches the underlying linear power spectrum will
be limited. It is more likely that the absorption lines do not offer a Poisson sampling of
the density field. In this case the best that can be hoped for is that the line and mass
power spectra will be linked by a scale-dependent bias parameter. Further discussion
on this topic will be saved until chapter 3 where the method of generating spectra is

much more dependent on the underlying mass density field.
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Chapter 3

Realistic spectra

[n this chapter power spectra analysis is performed on spectra simulated by more
sophisticated methods than in the previous chapter. Despite these simulations not
being as rigorous as N-body simulations, they do have the advantage of requiring far
less computing power and time thus allowing a wide range of parameter space to be
studied. As before the flux and line power spectra will be obtained from these spectra.
Additionally the relationship between the flux and mass power spectra will be analysed
for various cosmologies. Finally a technique will be applied to highlight the importance
of the gas properties on the flux power spectra. This technique involves scrambling the
spatial information of a line list obtained for a given spectrum and then constructing a
new spectrum from this altered absorber configuration. The flux power spectra of both

the original and scrambled arrangement are then compared.

3.1 Simulated spectra

3.1.1 The model

The first step in these simulations is to generate a baryonic density field using the
prescription outlined in §2.2.1. However. unlike previously where absorption lines were

just laid down on this density field, the spectral features are obtained by summing the
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contributions to the optical depth from each pixel. The line of sight spectrum can then
be calculated using the prescription that the optical depth at any velocity along the

line of sight is given by (e.g Meiksin & White 2000)

7(v) = /.7‘(;1‘) dz, (3.1)

where

(3.2)

T(x) x pp(2)°T (2) " b~ Lexp [— —~—(.f"{"r) = vU)T :

b'ﬁ

The temperature at any point can be computed from the equation of state given by

pp\"!
T(z)=To (_—) - (3.3)
)

where 7 and Ty can be obtained from calculations performed by Hui & Gnedin
(1997). This power law relation strictly only holds true in the regime where py/py £
10.0. However, since points of density higher than this are rare, extending this relation
to all points should not introduce a large error. Now substituting expressions for b
(equation 1.50) and T (equation 3.3) into equation 3.2 gives
2

)3:2-1:27 oy | mu (v(x) — vo) : (3.4)

2kgTo(ps/pp) !

7(2) o pp(z

The constant of proportionality can be obtained by imposing the condition that the
mean {lux decrement of the spectra obtained have a value which matches the observa-
tions. As with the previous simulations, this is chosen to be 7(z = 3.0) ~ 0.35. Once

-7

the optical depth has been calculated at each pixel the flux level is simply given by e

3.1.2 Range and resolution

These simulations must have a small redshift range in order to justify using a power
spectrum which does not evolve across the length of the spectrum. As with the previous
chapter the redshift range from z = 2.9 — 3.0 (velocity scale of 0 — 7600 km s7!) is
studied, meaning once again the scales of k which can be probed run from 8.0 x 10~ -

1.57 (lem s 1) =2



3.2 The ratio of flux to baryonic power spectra

An important part of an accurate recovery of the mass density power spectrum using
the most recent Croft et al. method is the role of the bias parameter, b(k), as defined
in equation 1.70. Rather than studying b(k) directly, the work in this section will ex-
amine a related quantity, the ratio of the 1 dimensional flux and linear baryonic power
spectra. The quantity that is calculated directly from the observations is AbeF(k‘) not
the 3 dimensional equivalent. Croft el al. define an isotropic Af (k) from this quantity
and compare this with its mass counterpart A?(k). The true flux power spectrum is
not expected to be isotropic, and so this constructed quantity should not be confused
with the actual form of Af(k), which in general cannot be inferred from A%, (k).
Therefore, keeping in line with the observations, | prefer to work towards determining
Aip(k). If the 3 dimensional form is to be recovered then clearly a transform form via
differentiation (see equation 1.34) must still be applied. However, since this transfor-
madtion is not necessarily straightforward, it seems prudent to work with the data in its
original form rather than inferring the 3 dimensional equivalent at the outset. There-
fore studying the ratio of power spectra, as in the analysis below, can be considered as

the equivalent of investigating the bias parameter, b(k), in a 3 dimensional analysis.

The effect of cosmological parameters on the ratio between flux and linear mass
power spectra must be considered, as accurate recovery of the latter is reliant on this
ratio being not only a universal function, but also independent of cosmology. In this
section a number of simulations are studied with various cosmological parameters and

the aforementioned ratio is calculated.

Table 3.1 gives a list of the parameters used for each input baryonic power spectrum
(calculated using the prescription described in §2.2.1). The first power spectrum is a
fiducial ACDM model. Small alterations in the parameters (assuming a flat universe,
so Q,, and Q, are not independent variables) are then applied to obtain the following
4 power spectra. Power spectrum 6 has the same parameters as those used for the
normalizing simulations of Croft et al. (2000). Finally an Einstein-de Sitter model is
also considered. The flux power spectra for 1000 realizations are averaged for each

cosmology, and the ratio calculated.



Number | Q,. | Qa [' | Spectral Index n | o3
l 0.30 | 0.70 | 0.20 1.00 1.00
2 0.35 | 0.65 | 0.20 1.00 1.00
3 0.30 | 0.70 | 0.30 1.00 1.00
4 0.30 | 0.70 | 0.20 0.90 1.00
5 0.30 | 0.70 | 0.20 1.00 0.80
6 0.40 | 0.60 | 0.26 0.95 0.74
7 1.00 | 0.00 | 0.20 1.00 1.00

Table 3.1: Parameters of power spectra to be considered

Clearly the amplitude of the flux power spectra, and therefore the ratio calculated,
is dependent on the value of 7. In some limits this parameter will also affect the shape of
the flux power spectra. This effect must be studied since if the shape of Af (k) varies
then not only the amplitude, but also the form of the recovered linear mass density
power spectrum will be affected. Therefore A} (k) is also obtained for the first power
spectrum using the higher mean optical depth constraint of 7(z = 3.0) ~ 0.45 (Press,
Rybicki & Schneider 1993), as used by Croft et al., and compared with the results for

the lower mean optical constraint.

3.2.1 Results and discussion

Figure 3.1 shows the effect of altering the mean optical depth constraint on the flux
power spectra. Although, as expected, the amplitudes of the resulting Afp (k) are
different. their shapes match very closely. In this case, as 7 is increased so is the
amplitude of the flux power spectrum. The reason for this is because any correlations
present are more pronounced due to the higher levels of absorption. This trend is not
general and some value of 7 will correspond to a maximum amplitude of L\fD,F(!"")- This
is the case since the two extreme cases (7 = 0 or oo) both correspond to A2y (k) = 0.
So increasing 7 from zero increases the flux correlations, this effect continues until some
maximal level is reached when the saturation of absorption features starts to decrease

the correlations seen in the flux. However the crucial point is that in the regime
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Figure 3.1: The effect of mean optical depth on the dimensionless
flux power spectrum. Although there is an increase in amplitude
when using the higher mean optical depth constraint, the shape of
the flux power spectrum is the same in both cases.

of the observed values of mean optical depth the shape of the flux power spectrum
remains unaltered by the value of this quantity. It must though be remembered that,
as demonstrated by Croft et al., the correct normalization of any recovered mass power

spectrum does require using an accurate value of 7.

Figure 3.2 shows the average dimensionless flux power spectra obtained for the 7
different cosmological models. Since the flux power spectra are very similar the data
has been plotted as a ratio of the first fiducial case, where AfD'p(k) for this case is
shown in the top plot. The bottom half of figure 3.2 demonstrates that the flux power
spectra for all the ACDM models are the same to within about 10% in the regime of
k< 0.1 (kms™")~!. On smaller scales the lines separate out as the flux power spectra
start to level out on different scales and at different values. The Einstein De-Sitter

case (model 7) clearly differs from the other cases in a large region of k space, showing
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more power on large scales and peaking at a lower value of k. Subsequently it has less

power on intermediate scales, before levelling off in the same way as the vacuum energy
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Figure 3.2: The dimensionless flux power spectra for different
cosmological models. The top plot shows the recovered flux power
spectrum for the model with parameters €, = 0.3, Q4 = 0.7, ' =
0.2. n = 1.0 and og = 1.0. The second plot shows the ratio of
the flux power spectra for each model (parameters given in table 3.1)
relative to the flux power spectrum of the first case. While the matter
dominated case (power spectrum 7) clearly deviates [rom the others,
the ACDM models are all similar on scales k < 0.1 (kms™')~" before
deviating slightly as they level out at high k.

dominated models at small scales.

The ratio of the flux and linear baryonic power spectra for each of the cases is shown
in figure 3.3. The analysis will now focus only on the regime where £ < 0.1 (km s
This limit is chosen for several reasons, first it has been noted that on scales smaller than
this results for A%D,F("‘c) obtained from observational data diverge (Croft et al. 2000).
This is thought to be the result of differing signal to noise levels. Secondly McDonald

et al. (2000) found that for k values larger than this the results were sensitive to the
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Figure 3.3: The ratio of flux and linear baryonic power spectra
for different cosmological parameters. All the ACDM models follow
the same trend where the ratio increases from low &k to a maximum
at k ~ 0.04 (kms~')~!, although the magnitudes are clearly model
dependent. The matter dominated case shows less of an increase and
peaks earlier. On large scales the ratio is relatively flat for all cases.

correct removal of contaminating metal lines in the spectra.

Since the flux power spectra are so alike the differences in the ratio of each case is
strongly dependent on the linear baryonic A?(k). As with the flux power spectra all
the models, with the exception of the Einstein De-Sitter case, show the same trend.
They rise from low k to peak at k ~ 0.04 (kms™')~!, then rapidly decline at larger
k. Although exhibiting a similar overall form, the amplitude of this ratio is clearly
model dependent, with the extreme cases differing by a factor of about 2 on all scales.
Therefore there is no universal function which, when multiplied by any given A?j (k).

gives the correctly normalized, corresponding linear mass power spectrum.

In the 3 dimensional analysis since the form of the flux power spectrum is found

by differentiation, the gradient of any line rather than its absolute magnitude is the
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Figure 3.4: The renormalized ratio of flux and linear baryonic
power spectra. Although showing considerable differences on small

scales, on large scales each case is very similar.

important feature. However since 1D flux power are so similar, the inferred Af}(;’.r)
will in turn be very alike. Therefore the bias parameter, b(k), advocated by Croft et
al. which is found by dividing the inferred flux power spectrum by the known mass

power spectrum will still be subject to these differences in magnitude.

Leaving aside the issue of normalization, the relatively flat behaviour of the ratio of
flux and linear baryonic power spectra on large scales does suggest that, in this regime,
a mechanism aimed at recovering only the shape of the mass power spectrum may
be successful. If recovery of only the shape of linear mass density power spectrum is
attempted then the amplitude of the ratio found is unimportant. Figure 3.4 shows the
ratio of the flux and linear baryonic power spectra for each case where this ratio has
been renormalized such that ;\fD_l:(A: = 1.0 x 1073 (km s7™!)~!) = 1.0. The difference
between the lines is small on very large scales suggesting that a reasonably accurate
recovery of the shape of the linear mass spectrum on these scales is possible. However

the range over which this is valid is limited, with even the normalized ratios showing



significant deviations on scales of where k& 2 0.03 (kms™')~!. Even in the regime
where the shape of the linear mass power spectrum can be recovered the problem of

independent normalization remains.

On even larger scales than those analysed here it is expected that the flux power
spectrum will continue to offer a good indication of the underlying mass density dis-
tribution. However probing larger scales with pencil beam surveys presents several
difficulties. First of all for large redshift intervals there is not a linear relationship be-
fween distance and velocity. Therefore to set a distance scale requires the assumption
of a cosmological model. Assuming the distance scale given by the currently favoured
model of a flat vacuum energy dominated cosmology should be a reasonable assump-
tion, though the precise relative contributions of Q,, and €, does have a considerable
effect. For example calculating the comoving distance corresponding to z = 2.9 — 3.1
gives r. ~ 117 h~! Mpc for the cosmological parameters Q,, = 0.3, Q4 = 0.7 rising to

re ~ 134 h=! Mpc if the combination is ©,, = 0.4, Q; = 0.6.

Another difficulty is that on very large scales it must be remembered that the mass
power spectrum is evolving. On large scales where the correlations being measured are
changing in amplitude over space this will complicate matters. Therefore, with this
is in mind, any attempt to determine the mass density power spectrum on very large

scales using the Ly-« forest must be performed with caution.



3.3 Deconvolution of spectra into Voigt profiles

Spectra generated from the prescription outlined in §3.1 can also be analysed by recov-
ering line lists from them. A given spectrum can be fitted with blended Voigt profiles
using the algorithms outlined below, which give a list of cloud positions, column den-
sities and Doppler parameters. It should be noted that the ‘cosmic web’ paradigm for
the IGM does not demand that the profiles found fully account for all the absorption
seen. This is because the Ly-a absorption seen is accounted for as arising from a con-
tinuous fluctuating medium, rather than discrete clouds, and is therefore intrinsically
non-Voigt (Outram, Carswell & Theuns 2000). The same applies to these simulations
where the optical depths calculated from the underlying density field will not guaran-
tee Voigt like features. However despite this, spectra (both real and simulated) can be
well fitted using this technique since the majority of absorption does correspond well
to these blended profiles. Once these line lists have been compiled they can then be

studied in the ways detailed later in sections 3.4 and 3.5.

3.3.1 Line fitting algorithms

Extracting a list of absorption parameters for each spectrum has been done with two
methods, SPECFIT and AutoVP, there follows a brief description of each algorithm.
Although neither algorithm recovers the spectra perfectly they both provide acceptable
fits to the data as is demonstrated later. The majority of fitting is done with SPECFIT
which is by far the quicker of the two methods and AutoVP is applied to some data sets
as a check that the results are not strongly affected by the line identification process.

Codes for both of these algorithms were provided by Avery Meiksin.

SPECFIT

SPECFIT performs line fitting with the following steps:

1) First the spectrum is filtered using a wavelet transform. The smallest coefficients
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are discarded to ensure a reduced \? of 1 between the filtered and unfiltered spectra.

2) Line candidates are identified as inflection points using the smoothed second

derivative of the spectrum.

3) A spectral region is defined to fit around each line candidate, as a contiguous

region with the flux smaller than a given e~ 7min,

4) Overlapping regions are merged into a single continuous region.

5) A non-linear least squares fit is performed of candidate lines to the original

spectrum.

AutoVP

Below is a concise description of this algorithm, a more detailed account can be found

in Davé et al. (1997).
1) Detection regions are identified by calculating an equivalent width per pixel

across the spectrum as defined at the i*h

F
e; = AX (1 = C—'a) : (3.5)

pixel as

where AMis the pixel size and F; and C; represent the flux and calculated continuum

in pixel i. The quantity o., is then given by

AloF, (3.6)
O = —— 3i
; C ;
where o is the 1o error in flux at pixel i. The e; values are then summed across
2 pixels either side of ¢ to give E;, which has a standard deviation given by

142

O’E = Z crf“. (8.7
2

n=i—:
Any point where E; > 8o, is identified as a detection region.
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2) If the region is non-saturated, a single Voigt profile is placed at the minimum flux
level in the detection region. Ny and b are adjusted by small decrements from large
initial values until the feature is above the minimum flux everywhere. In saturated
regions a feature is placed at the centre of saturation and Ny and b are adjusted to fit

five pixels either side of the saturation.

3) The feature profiles from step 2 are then subtracted from the data to give a
residual flux. Steps 1 and 2 are then repeated and a new residual flux calculated. This

process is repeated until no new detections are found.

4) The resulting features are then subjected to simultaneous y* minimization of the

three parameters veeneral, NuI, 0.

5) A fit of the detection region is then attempted with one less line. If this results
in a lower y? then the line is omitted, otherwise the fit retains the original feature
list. This step ensures that the region is fitted with as few lines as possible whilst still

maintaining the constraint that y? is minimised.

6) If v2 < 2 per pixel then the algorithm is complete. If y* is above this level then
a line is added to the point where the local contribution to y? is highest. This step is

repeated until y? is suitably small.

3.3.2  Accuracy of line fitting

Once the line fitting has been performed the first step is to ensure that it is a good fit
to the data. For each case a new spectrum is constructed where the Voigt profiles of
the given line list are the only source of absorption. This new spectrum is subtracted
from the original and the difference in the square of the flux at each point is summed

to quantify the quality of the fit.

SPECFIT provides an excellent fit to many of spectra. one example of which is
shown in figure 3.5, where the value of the fit parameter, described above, for this

spectra is 2.33 x10~* per pixel. The top and middle graphs show the original and
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Figure 3.5: An example of a spectrum which is well fitted with
Voigt profiles by SPECFIT. The top two plots show the original and
reconstituted spectra respectively. The bottom plot shows the dif-
ference in flux levels between these two spectra at each point. The
only source of discrepancy between the two corresponds to low level
absorption in the original spectrum.

reconstituted spectra respectively, while the lower plot shows the difference in the
flux of the two. As can be seen in figure 3.5 in the cases of the best fits, the only
discrepancy between the original and reconstituted spectra arise in areas where the

original spectrum has very low levels of absorption.

At the other extreme some spectra are very badly fitted by this algorithm. Figure
3.6 shows the realization with the best example of this and has a fit parameter of 0.207
per pixel. Clearly large areas of the reconstituted spectrum fail to match the features
seen in the original. Instead in these regions the reconstituted spectrum have massive

regions of saturation. This is thought to be a failure of the non-linear, least square fit
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Figure 3.6: An example of a spectrum which is badly fitted with
Voigt profiles by SPECFIT. Although some regions are well fitted,
the reconstifuted spectrum contains some large regions erroneously
dominated by massive saturated features. In these regions the recon-
stituted spectrum bears no resemblance to the original.

routine. These regions are flagged by SPECFIT as having an unreasonably large value

of 2.

Inspection of the line lists produced by SPECFIT shows the list of absorbers con-
tains some systematic errors. In some spectra this algorithm will spuriously fit some
regions with features with very large column densities and Doppler parameters. In ad-
dition to these saturated features, SPECFIT also tends to include some tiny features,
with very low column densities and Doppler parameters, which cover only a few pixels.
An example of one of these features can be seen in figure 3.6 at v ~ 4150 km s™"'.

These lines are removed since they are highly unphysical and their presence cannot be

justified, and additionally, they often do not improve the fit to the original data.
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Figure 3.7: An example of the improvement in the Voigt profile
fitting process using SPECFIT when spurious lines are identified and
removed. The large saturated features are no longer present and the
regions they covered are generally well fitted. The only remaining
area of discrepancy not corresponding to low level absorption in the
original spectrum is where one blended feature is only partially fitted.

Examining each spectrum and removing these spurious features from the line list
improves the fit considerably. To do this an algorithm is applied where lines are ex-
cluded if their Doppler parameters lie outside a given range. It was found empirically
that rejecting lines where b < 10 kms™ or b > 100 km s™', removed all spurious
features while also retaining valid ones. Alternatively SPECFIT gives the option of
specifying, at the outset, a range of b values which can be considered acceptable. The
result of rejecting spurious lines can be seen in figure 3.7 which shows the reconsti-
tuted spectrum, after this line removal process has been applied, for the same original

spectrum as in figure 3.6.



% of pixels
| forg — frec| | Original | Spurious lines removed
> (.50 5.82 0.87
> 0.25 7.84 1.62
> 0.10 10.96 3.67
> 0.05 15.19 7.10
< 0.05 34 .81 92.90

Table 3.2: A table showing the flux differences between the original
and reconstituted spectra for SPECFIT, with and without spurious

line removal.

The fit parameter for this spectrum is then reduced to 1.81 x 1072 per pixel. Per-
forming this process on the entire sample leads to a situation where the main errors in
any fit arise from spectra where a large saturated feature is removed from the line list.
After this process it is sometimes seen that features present in the original spectrum,
in the vicinity of the removed feature, are erroneously excluded when the spectrum is
reconstituted. Figure 3.7 has a good example of this at v ~ 7200 km s™!. The mean fit
parameter for the full sample of 100 spectra is decreased from to 4.59 x10~2 per pixel

down to 7.92 x10~2 per pixel after the removal of these lines.

Table 3.2 shows the percentage of pixels with various differences in absolute flux
levels between the original and reconstructed spectra for 100 realizations when using
the original output from SPECFIT, and when spurious lines are removed. This table
coupled with the fit parameter shows better fits are obtained when the spurious features

are removed. This is also confirmed by eye when comparing figures 3.6 and 3.7.

In addition to quantifying the fits in the way previously discussed it is important
to consider AfD,F(,‘.‘). Since this fundamental observable is used in the data analysis
it is essential to ensure that this quantity in the reconstituted spectra closely matches
the original value. Figure 3.8 shows this quantity for the sample when using SPECFIT
and when the anomalous features have been removed. When the spurious lines are not
removed there are considerable differences in both the high and low £ regime between

the two flux power spectra. After the line removal process the original and recovered
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Figure 3.8: Averaged dimensionless flux power spectra for original
and reconstructed spectra using SPECFIT. Using the original line list
the flux power spectra match well on intermediate scales but there
is a discrepancy of nearly an order of magnitude on small scales. On
large scales there is a less pronounced yet still considerable difference.
Once the spurious features have been removed there is a much better
fit on all scales, though suppression of small scale power is seen.

&fD‘F(k) are in agreement for low k values. At large k the amended version of SPECFIT
does not recover the flux power spectrum exactly but instead suppresses small scale
power. This is not significant however since recovery of the mass power spectrum on
these scales is not practical due to observational constraints (e.g McDonald et al. 2000;
Croft et al. 2000). Therefore the errors introduced when using SPECFIT do not affect
the data strongly in the regime of interest and using these line lists in the analysis is

justified.

3.3.3 Comparison of line fitting algorithms

As previously discussed, to ensure that the line list data obtained is not dependent on

the line fitting algorithm used, some of the spectra are also fitted using AutoVP. In

87



SPECFIT AutoVP

Flux
0.5

flux

e LN (S P Ty il R St Sl (S Wit S

o LA VT S SRSy e ) B L AV T

0 50 100 150 200 250 0 50 100 150 200 250

1

1

v / kms™ v / kms

Figure 3.9: An example of degeneracy when fitting a blended line
profile. The top plots show the individual absorption components and
the bottom plots show the resultant blended profile. Although the
component features are different the resultant profile is very similar.

general the line lists obtained from SPECFIT and AutoVP are similar, although some
differences are evident. Unsurprisingly there are minor differences in the parameter
values of the lines given, although these are usually small and unimportant. In ad-
dition the line lists obtained from AutoVP are invariably longer than those obtained
by SPECFIT. Nearly all of these additional features have low column densities and
correspond to areas of low level absorption in the original spectrum. As previously

discussed these regions are are not accurately recovered by SPECFIT.

Significantly some discrepancy arises between the line lists where heavily blended
features are fitted differently. The fits for heavily blended features can be degenerate
as demounstrated in figure 3.9. This does not present a problem however since. in later
analysis of the line positions, the individual components of these blended lines still

mark regions of high underlying baryon density.
Despite the presence of these discrepancies there is in general an excellent agreement
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between the two line fitting algorithms. With exception of the degeneracies found in
blended features, the lists of absorption lines produced by AutoVP and SPECFIT
unambiguously identify similar line positions and profiles to account for the flux levels
seen. Since these algorithms apply different methods for line identification and the
results are in excellent agreement, the line lists produced by either can be considered

as accurate 'rl.l].d ro l_)ll-':il.



3.4 Power spectrum of line positions

3.4.1 Method

Once a line list has been obtained it is straightforward to calculate Pip¢(k) using a
binary distribution of §; as discussed in §2.1.3. Using a grid of the same resolution as
the spectrum is generated on for this calculation can lead to a situation where more
than one line centre is found in some given pixel. Since the only occupancy numbers
allowed in the binary distribution are 0 or 1 this is potentially a problem. When this
occurs the grid can be made finer though, in this case, finding two absorption lines so
close together is rare enough (approximately one occurrence in every 10 spectra) that
ignoring the presence of one of the lines has a negligible effect on the calculated Pyp (k).
If the centres of absorption lines offer either a Poisson sampling of the mass field or
act as reliable markers of the peaks in this field then A7, (k) should provide a good
way to recover the shape of the underlying mass density field. The amplitude of the
recovered field however would require some independent form of normalization. This
technique was applied to a sample of 500 spectra where the line fitting was performed

with SPECFIT.

3.4.2 Results and discussion

The first thing to note is that the small number of objects, inherent in using absorption
line centres in this way, means the scatter on individual realizations is very large. In
spite of this the number of realizations used here allows a suitable line to be fitted to the
data. Since the normalization of the recovered ﬂ?D,c:(k} is arbitrary its amplitude is set
to be equal to that of the underlying mass distribution at k = 1.0 x 1072 (km s™!)~1.
Figure 3.10 shows this renormalized A-fD‘e'U*") compared with AfD(I;). It is clear that
as a method of recovering the mass field this technique fails dramatically on scales of
k>3 x 1072 (km s7')~L. Furthermore studying Pip (k) on scales smaller than those
shown on the graph reveal that on scales & > 0.2 (km s™')~! this power spectrum tends

to a constant. This constant is larger than the recovered signal on large scales and so
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Figure 3.10: The dimensionless power spectrum of the underlying
mass density field and the recovered line power spectrum which has

been renormalized to match the mass power spectrum at k& = 1.0 x

107% (km s™')~1. Although on very large scales these quantities are
closely matched a large discrepancy becomes apparent at k ~ 3.0 x

10-3 (kms™)~L.
even the results from larger scales must be considered dubious.

The reason for the failure of this method to recover the mass power spectrum is
thought to be due to the effects of Doppler broadening of the lines. If the flux in
each pixel was dependent only on the density at that point, rather than the general
surrounding region, then marking the points of greatest absorption would give a much
better indicator of the underlying mass. Even though the Doppler broadening is a
relatively local effect its distortion of the link between underlying density and optical

depth at any given point is enough to render this method highly unreliable.
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3.5 Flux power spectrum of scrambled line positions

3.5.1 Method

Having obtained line lists for a sample of spectra, this information can be used to
investigate the effect on the flux power spectrum of the different profiles and positions
of the lines. If the flux power spectrum seen can be better understood in terms of
the absorption systems that cause it, then this in turn will lead to an insight into the

relationship between the flux power spectrum and the underlying mass density field.

The lines corresponding to each spectrum were maintained in pairs of column den-
sity, Ny, and Doppler parameter, b, but their velocity parameters were scrambled. So
for a given line list the centres of the absorption lines were kept in the same positions
but the profiles of the absorption features were placed randomly amongst these posi-
tions. A spectrum was then generated from this new absorber configuration, and its
flux power spectrum calculated. The flux power spectra from each randomization were
averaged to find a sample mean. This process was then repeated 100 times and the

mean flux power spectrum for all the realizations was found.

3.5.2 Results and discussion

Figure 3.11 shows the original flux power spectrum and that obtained from the scram-
bled line profiles for a sample of 500 spectra. Scrambling the spatial positions of the
absorption profiles suppresses power on large scales, while boosting it by a factor by
up to 2 on intermediate scales. The power spectra are well matched in the regime
0.1 (kms™!)~! < k < 0.3 (kms~)~!, while for k values above this small scale power

is boosted by the scrambling process.

[f the Croft et al. method of recovering the mass power spectra is valid, then a change
in the flux power spectrum when a line list is scrambled is required. Investigating the
nature of this change, however, should give a thorough understanding of the relationship

between the individual absorption systems and the flux power spectrum.
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Figure 3.11: The dimensionless flux power spectra for the scram-
bled and original line positions. The scrambling process causes a
change of power on many scales. Large scale power is suppressed
while an increase in power is seen on small and some intermedi-
ate scales. The power spectra are very similar for & values between
0.1 —0:3 (kms™2)~L

Slightly different scrambling processes were also performed in order to study the
cause of the change in the flux power spectrum further. The difference is that this time
only certain subsets of lines had their profiles scrambled. Each line list was split into
subsets depending on the column densities of the absorbers. Figure 3.12 shows a sample
spectrum broken down into lines of different ranges of column density. The absorption
features from four different regimes of Ny are shown, while the bottom plot shows the
spectrum obtained when all the features are included. As would be expected the lower
column density lines are more numerous, yet their contributions to the spectrum are

not as dramatic as those seen from the high column density systems.
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Figure 3.12: The absorption profiles of a spectrum broken down
into different regimes of column density. The top four plots show
the profiles of features from given ranges of column density while the
bottom plot shows the spectrum obtained when all the features are
included.

These column density subsets were then scrambled, while the configuration of the
remaining absorption systems was maintained. Figure 3.13 shows the resulting flux
power spectra as a ratio of the original flux power spectrum. This is done since the
lines are very hard to distinguish when plotted on the normal log-log plot. The results
of scrambling each decade of column densities results in flux power spectra which are

the same, to within about 5%, of the original in every case.

This in itself is interesting since although the column densities being scrambled in
each case are similar, each subset of absorbers contains a range of Doppler parameters.

The curve of growth, shown in figure 1.3, shows that many of the lines in a given
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Figure 3.13: The flux power spectra obtained when subsets of the
absorption features are scrambled. The top plot shows the flux power
spectrum of the original configuration while the bottom plot shows
the ratio of the new flux power spectra and the original. Although
all the ratios are close to one it can clearly be seen that power on
different scales is affected differently by scrambling different subsets
of the absorption features. The wiggles seen on intermediate scales
are thought to be artifacts of the spline line fitting.



subset will have significant differences in their equivalent widths. However it is seen
that scrambling these subsets of features is relatively unimportant to the resulting flux
power spectrum. This suggests that the Doppler broadening of lines, which may have
been problematic (as discussed in chapter 2), does not have a dramatic effect when the

Croft et al.inversion method is applied.

Another interesting feature to be noted in figure 3.13 is that, although the differences
seen are slight, the spatial position of features of different column density do affect
different scales of the flux power spectrum. The information on intermediate scales is
not very reliable, showing an oscillating nature. This is thought to be the result of
systematics due to the smoothing spline fitting routine rather than a real signal. The
regime of most interest is the scales where & < 0.1 (km s™%)~! since this the regime
where recovery of the mass power spectrum is usually attempted. These large scale
correlations are almost completely insensitive to the scrambling of lines in the regime
of 10" em™2 < Ny < 10* em™2. The spatial positions of the subset of the weakest
lines does contribute slightly to the large scale structure whereas the lines of column
density 10'3 cm~? < Nyp < 10'* em™2 has the greatest effect on the large scale power.
This is likely to be due to the balance between the number of lines and the relative
importance of a single feature. Lower column density lines may be more numerous,

but their absorption profiles are such that the effect on the flux power spectrum of

scrambling them is small.

To study the difference in the subsets of absorption features further, the two-point
correlation function of the lines in the different column density regimes was calculated.
To evaluate the two-point correlation function, £(v). the estimator advocated by Hamil-
ton (1993) was used. Here two catalogues are used, the data catalogue and a larger

random catalogue. The correlation function was then estimated using the expression
£(v) = DD(v) — 2DR(v) + RR(v)
i RE(v) ’

(3.8)

where DD(v) and RR(v) represents the average number of pairs found within a
given distance, v, of each other, divided by the number of pairs in the entire sample,
for the data and random catalogues respectively. DR(v) is the same quantity for the

cross pairs across the catalogues. Other estimators of £(v) were also tested and found
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Figure 3.14: The two-point correlation function for different col-

umn density regimes. The plot shows that although the amplitude
of £(v) is small when all the features are considered, different column

density regimes do show differing degrees of clustering on small scales.

The noise increases as the number of lines decreases and the result
for 10 em=? < Ny < 10" em~2 shows considerable scatter. There

is a strong anti-correlation on very small scales since line centres are

rarely extremely close.

2000

Figure 3.14 shows the recovered values of &(v), for 100 bins of width v = 20 km s™*.

The first thing to note is the strong anti-correlation seen at 20 km s™!, this is since the

lines themselves have widths comparable to this scale and so the only place lines are in

such close proximity are in heavily blended systems. In all cases the value of &(v) on

scales of over several hundred km s~

1

is consistent with zero.

The effect of the number of features in each subset can be clearly seen with the



increase of scatter in £(v) as the column densities increase (and thus the number of ob-
jects decreases). The lines showing the strongest clustering on small scales correspond
to the highest decade of column densities considered. Each subset, however, shows a

significant signal on small scales.

When all the systems are included the two-point correlation tends to zero on much
smaller scales than when only a subset of lines is considered. This appears to be an
anomalous result since three subsets, all showing considerable clustering, are combined
to give a distribution that has a very weak two-point correlation. However this result
arises since the regions of voids for one column density regime correspond to a concen-
tration of lines in a different column density range. This effect can be seen in figure
3.12 if it is remembered that each individual absorption feature is weighted equally

regardless of its column density.



3.6 Peculiar velocities

A complication to the analysis that has not yet been addressed in this thesis is that
of peculiar velocities. The recovered mass power spectrum is required in real space
whereas the flux power spectrum of the absorption spectra is calculated in velocity
space. The presence of a peculiar velocity field leads to a distorting effect between real

and velocity space and induces anisotropies in the 3 dimensional flux power spectrum.

The effects of the peculiar velocity field cannot be properly considered in 1 dimension
alone, since the magnitude of the field along directions other than the line of sight can
have an effect. For example a density fluctuation can occur where there is no velocity
fluctuation along the line of sight if the gas is infalling perpendicularly. Conversely
a point noted by McGill (1990) is that peculiar velocities can give rise to apparent
absorption features in velocity space even in the absence of density fluctuations. In
this case material can be converging along the line of sight, giving rise to an absorption
feature, whilst perpendicular to this infall the gas is diverging such that the density
contrast is zero. Therefore the effects of a peculiar velocity field are best studied by
3 dimensional N-body simulations. Failing this more simplistic approaches can be
applied in 3 dimensions, for example the Zel’dovich (1970) approximation. Essentially
this is first order perturbation theory expressed in Lagrangian space whose results
show that in a triaxial system collapse will occur along the shortest axis. An excellent
approximation in highly asymmetric systems, this approach works least well when

considering situations of complete spherical symmetry.

A peculiar velocity field has several effects on the absorption spectra produced as has
been shown by N-body simulations (e.g. Zhang et al. 1998). Firstly, and most obviously,
systematic offsets occur in the positions of an absorption feature in velocity space, due
to the density fluctuations responsible for the absorption features following the bulk
flow motions. At a redshift of 3.0 the amplitude of systematic peculiar velocities can be
as high as several hundred km s~!. An additional, more subtle, effect is that the bulk
motions within gas clouds can lead to a substantial alteration of the Doppler parameter,
b. In the absence of peculiar velocities the Doppler parameter is determined solely by

the temperature of the gas cloud (see equation 1.50), but this is boosted by the non-
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thermal motion arising from the peculiar velocities.

Modelling peculiar velocities in 1 dimensional simulations cannot be tackled exactly,
but several different approximations exist in the literature. One approach is to neglect
the effect of non-linearities and work solely in the linear regime. This allows the 3
dimensional density and velocity power spectra to be linked via the continuity equation.
The usual transformation can then be made to 1 dimension power spectra and Gaussian
realizations can then give correlated 1 dimensional density and velocity fields (e.g. Bi
1993). This procedure introduces different line blending and clustering effects as the
position of the absorption features are seen by an observer to be shifted. The effects of
peculiar velocities arising in the non-linear regime can be crudely modelled by filtering
the spectrum in velocity space with a Gaussian, with the effect that a cut off in the

power spectrum is introduced at high k (e.g. Kaiser & Peacock 1991).

The related problem of taking 1 dimensional data and inferring the peculiar velocity
field along the line of sight (thus allowing the effects to be corrected for) was tackled by
Nusser & Hehnelt (1999). The method used is an iterative approach where a density
field is inferred from the spectra and a velocity field calculated, the density field is
then recalculated with the new peculiar velocity components and the process repeated
until convergence is reached. Reconstructing the velocity field from the density field
is performed using the same 1 dimensional approximation of the 3 dimensional fluid
equations as Bi (1993) outlined above. This approach gives a probable 1 dimensional
velocity field consistent with the line of sight density field but is not rigorous due to

the 3 dimensional effects discussed above being neglected.

As previously mentioned Hui (1999) showed that neglecting the effects of peculiar
velocities in the initial method of Croft et al. (1998) leads to underestimation of the
steepness of the recovered mass power spectrum. However this problem should not
exist with the most recent technique where the mass power spectrum is found using the
bias parameter, b(k). Since the bias parameter is calculated from N-body simulations
where peculiar velocities are well modelled any error arising from these effects should
be slight, especially compared to the errors introduced by, for example, uncertainties

in the temperature, mean optical depth and reionization history of the IGM.
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Chapter 4

The statistics of the flux power

spectrum

In this chapter the statistical properties of the simulations from chapter 3 will be dis-
cussed. Firstly analysis of the correlation matrix of the inferred 3 dimensional flux
power spectrum will be presented. This is followed by a comparison of two different
methods of inferring the 3 dimensional flux power spectrum from its | dimensional
counterpart. Analysis is then presented showing the relative likelihoods, between cos-
mological models, when using measurements of Pjp p(k) directly, rather than any in-
version techniques. Finally the relationship between the mass and flux variances found

in individual realizations is briefly discussed.

4.1 Correlations in the flux power spectrum

In general to test models against observable data it is necessary to quantify the likeli-
hood that a set of data would arise for a given model. Assuming a set of V data points,
y; (i=1,N), and a set of models which predict values for these data, y; moa, then the
question that needs to be asked for each model is what is the probability that this

data set could have occurred? Then the likelihood of the parameters given the data is
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identified as being proportional to the probability of the data given the parameters.

If each data point is assumed to be measured independently, with a Gaussian mea-
surement error, then the probability of the data is the product of the probabilities of
each point, leading to an expression for likelihood given by

L =rexp(=x*/2) = f[ exp = (yi; = yi‘“md)! (4.1)
i= = S 5 ) il

a;

i=1

or alternatively
N

InL=—x*/2=-) (4 - Yimod)’/20}. (4.2)

The parameter y? has been introduced in the above expressions and should be

minimized to find the maximum likelihood estimates of the model parameters.

The assumption of Gaussian distributed errors is usually justified by appealing to
the central limit theorem. This fundamental theorem in statistics states that, regardless
of the underlying probability distribution function, if a large number of points are
sampled then the distribution of these sampled points tends towards a Gaussian. It
should be noted that there are distributions for which this theorem does not hold
true, however that it does for so many distributions is the reason that the Gaussian

distribution is so important in statistics.

However another assumption in the derivation of equation 4.2 is that the individual
data points, y;, are uncorrelated. If this is not the case a more rigorous analysis is
required where each data point is not simply considered in isolation, but with respect

to the other points. A correlation matrix C;; can be defined as

L g e TIN
o/ (¥i = Yimod) (¥i = Yjmod) riz 1 ... Tay o
C'U = . == s . . (4--3)
o g;
"IN TaN 1

Where r;; is known as the correlation coefficient between the distributions of ¢ and

j. The values for this coefficient range between 1 and —1 corresponding to perfect
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correlation (¥; — ¥imod = ¥j — ¥j,mod) and anti-correlation (Y — ¥imod = —(¥; — ¥j.mod))
respectively between y; and y;. Then, in the general case, the relative likelihood that

a set of data is consistent with a model is given by

- 1 =
InL = '—‘.-'2' Z(y: ¥ yz',mod)c jl}'l(yj = y;j.mucl)- (44)
(¥}

[n practice it is often convenient to use an approximate analysis where the correla-
tion matrix is simply equal to the identity matrix (in which case the above expression
is equivalent to that shown in equation 4.2). However this can only be justified if it
is shown that r;; >~ 0 for all combinations of i # j. Although even in the case where
a set of data are truly independent, the correlation coefficients for N realizations, will
have a standard deviation given by 1/v/N, so will in general, be scattered about zero
rather than being equal to zero, although the scatter will decrease as the number of

realizations is increased.

The case of interest with respect to the simulations presented in chapter 3 is to
what level the flux power spectrum measurements on different k scales are independent
of each other. If there are significant correlations between the flux power spectrum on
different scales then any likelihood analysis performed which neglects these correlations

will be inaccurate.

Croft et al. (2000) show a correlation matrix calculated from a subset of their data
set using the jackknife method. This technique provides good error estimates for many
data sets, though is not infallible. Given a data set one point is removed from the

sample at a time, explicitly the data set remaining after deletion can be represented by
X(;) = (.’I.‘l, BT I ST (N .'!,'n}. (4-))
Now letting s(;) = $(x,) represent the value of a given statistic for the data cor-

responding to the deleted point, then the jackknife estimate for the standard error of

s(x) is given by

" n—1
Sejack{s} = [—— D (s —50)®| (4.6)



where
i S(i
i E =151 (4.7)
: n
=1

The correlations in the flux power spectrum between given wave numbers in a
sample of simulations can be computed exactly. Explicitly the correlation coefficients

for the flux power spectrum between two wave numbers k; and &; is

- <[Pp(k«;) ! Prod (k)] [P (k) — = "“""(k.r'H)? (4.8)

:Ir's'j ==

where o is simply the variance of Pp(k;). However in this case the model value of
Pr(k;) is simply the mean value of this parameter over many realizations. Therefore
substituting this into the above expression and writing o; in terms of the flux power

spectrui gives

(Pp (ki) Pr(k;)) — ( I§ ( ) (Pr(k;))
k

i = TR = (R RIPI PR = (P IT S

So for a given number of realizations there is a straightforward way to calculate the

correlation coefficients r;; between wave scales k; and k;.

This calculation was performed for spectra generated using a similar prescription
to that given in chapter 3. However in order to compare the results with those in Croft
el al.some parameters were altered to match their data set. Therefore the redshift
range was chosen to be z = 2.5 — 2.9. Despite the redshift range being considerable
the evolution of the mass power spectrum over this range has been ignored and the
normalization redshift was set at z = 2.7. The constant of proportionality in equation
3.2 was determined using the constraint 7(z = 2.7) >~ 0.3 in accordance with Meiksin,
Bryan & Machacek (2001). Additionally, to replicate the resolution effects of the Keck
HIRES sample, the spectra were convolved with a Gaussian with a full width at half
maximum of 8 km s™'. Finally the spectra were rebinned to a pixel size of 2.1 km s™7.

The main complication arises since the analysis of the correlation between wave
numbers must be performed using the 3 dimensional flux power spectrum. Following

the technique of Croft et al. a quantity Pp(k) is defined as
2m d

Pr(k) = ———-Piop (k). (4.10)
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In practice performing this differentiation is non-trivial. Typically the 1 dimen-
sional flux power spectrum is a noisy function, which in all probability will not be
monotonically decreasing. This leads to the possibility of calculating a 3 dimensional
power which is negative. Reducing the noise inherent in the measured 1 dimensional

flux power spectrum is therefore of key importance when this inversion is applied.

Evaluating the necessary gradient at a given point can be done in a number of
different ways. The technique applied by Croft et al. is to estimate the derivative at the
point (2;,y;) by averaging the gradients between this point and its two neighbouring
points, (2j—1,yi—1) and (241, yi+1) (Croft, private communication). This can result in
a mean positive gradient and so the magnitude of the power spectrum quoted for a
given wavenumber is calculated by averaging the results about this value in & bins of
fixed logarithmic length. However even after this process is applied a 3 dimensional flux
power spectrum which is negative on some scales is often calculated when individual
spectra are analysed, especially at low wave numbers where only a small number of

modes are averaged.

Although the occurrence of negative power is unphysical, it need not effect the
correlation analysis. Bearing in mind that what is calculated is an estimator of the true
flux power spectrum it is unimportant that this is sometimes less than zero, provided
that the mean for a large sample is positive. If this is not the case then using this

estimator cannot be justified.

The correlation coefficients were calculated for wave numbers which were chosen to
match the values used in Croft et al. (2000). Table 4.1 gives the values of & correspond-

ing to each index, i, of the correlation matrix presented.

Figure 4.1 shows the correlation matrices calculated for 50 realizations, and by Croft
el al. from their data set using the jackknife estimator. The top plot also shows the area
of circles that would correspond to scatter of 1, 20 and 3¢ in uncorrelated data, for 50
realizations. There are considerable differences between these two matrices, firstly the
positive correlations they find at high wave numbers is absent. The authors note that

il the correlation seen is statistically significant it is probably due to the differencing
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Figure 4.1: The correlation matrices calculated for a sample of
simulated spectra (top plot) and for the fiducial Keck HIRES data
of Croft et al. using the jackknife technique (bottom plot taken from
their paper). In each case the amplitude of the coefficient is propor-
tional to the area of the circle. The filled circles represent positive
coefficients, while negative coefficients are represented with hollow
circles. The botiom row in the top plot shows the size of expected
lo, 20 and 30 variations arising from 50 realizations of uncorrelated
data. The wave scales corresponding to each integer value can be

found in table 4.1.
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Number & (kms™')~!

1 1.99 x 1072
2 2.59 x 1073
3 3.37 x 103
4 437 % 107>
5 5.68 x 10~3
6 738 x 10>
7 9.58 x 10~3
8 1.24 x 1072
9 1.62 % 1072
10 2.10 x 1072
11 2.72 x 1072
12 3.55 x 102
13 4.61 x 1072
14 5.98 x 1072
15 177 %107
16 0.101

17 0.131

18 0.170

19 0.221
20 0.287

Table 4.1: The wave scales for the correlation matrices calculated
by Croft et al. and for a sample of simulated spectra generated using
the lognormal approximation.

needed to infer the flux power spectrum. The second major difference seen is that
the calculation on the simulations shows anti-correlation between neighbouring wave

numbers.

A possible explanation for this may arise from the way the flux power spectrum is
estimated. If the flux power spectrum found at a particular wavenumber is very large
for a given realization, this corresponds to region in k space where the 1 dimensional
flux power spectrum has shown a sharper fall off than normal. This means the 1
dimensional flux power spectrum is at a lower value on some given scale than would be
expected. Therefore, since this quantity is always positive, the gradient in the higher k&
regimes is likely to be lower. This will result in anti-correlations between neighbouring

k being likely.

This is demonstrated in figure 4.2 for the simple case where the 1 dimensional

flux power spectrum is a well defined exponential. The solid line represents gradient
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Figure 4.2: A demonstration that a high value of the inferred 3
dimensional flux power spectrum in one k bin cannot occur without
affecting measurements on other scales.

estimates if a realization exactly followed this form. The dashed line shows the case
il one tries to enforce a high power spectrum measurement in one isolated regime of
k (k = 0.1) while maintaining the correct values of inferred 3 dimensional power for
all other values of k. The requirement that the gradients match in all regions, except
k = 0.0 — 0.1, means the 1 dimensional flux power spectrum must fall below zero.
Therefore this scenario cannot happen and the high measurement in one k bin requires
a low measurement in one or more of the other bins. This argument assumes that
the 1 dimensional flux power spectrum always has a similar value at very low k values.
Although this should be true statistically it is quite reasonable to expect to find isolated

cases where high values of the flux power spectrum are calculated.

Outside of neighbouring & bins, and the positive correlation found by Croft et al. in
the high k& regime both the matrices presented have off diagonal elements which are
consistent with zero, although the scatter in the Croft ef al. results is more pronounced
than for the correlations computed directly from the simulations. As previously dis-

cussed some scatter around zero is inevitable and these elements may not be statistically
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significant. However even if this is the case then the significant correlations between
neighbouring wave numbers implies the assumption made by Croft el al., that it is
valid to use only the diagonal elements, may lead to errors when calculating the error

bars on the inferred 3 dimensional mass power spectrum.
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4.2 Calculating the 3 dimensional flux power spectrum

As previously mentioned a number of techniques can be used to infer the 3 dimensional
flux power spectrum from its 1 dimensional counterpart. This is intimately linked with
the question of how large a data sample needs to be before it converges reliably. In
this section an alternative to the direct calculation of the gradient is considered. With
this technique the derivative is found using a spline fit of the 1 dimensional flux power

spectrum. This smooths the data in its original form before the derivative is found.
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Figure 4.3: The effect of knot positions on the spline fit. If the
knots are spaced in close proximity then an oscillating function can
result, shown in the bottom right hand plot. At the other extreme
too few knots also result in an inaccurate fit as seen in the high &

regime of the top left hand plot.

Using this method raises the crucial question of how the data is best fitted. The key

when using this spline fit method is to attempt to accurately represent the data points

110



whilst still offering a function which is suitably smooth. It is important to balance
these two factors carefully and this is controlled by the positioning of internal knots in

the data set.

A routine is used that fits the data with a function which is usually continuous in
its first three derivatives. At certain points, the knot positions, the third derivative is
allowed to be discontinuous. The positioning of these knots is crucial in determining the
final form of the function. This effect is shown in figure 4.3, the same 1 dimensional flux
power spectrum (averaged from 50 realizations) is fitted with four different sets of knot
positions, chosen such that they are separated by intervals of constant logarithmic £.
This figure clearly demonstrates that the gradient at a given point, and thus the inferred

3 dimensional flux power spectrum is strongly dependent on these knot positions.

As the function becomes smoother, for example as more realizations are averaged
to find the 1 dimensional flux power spectrum, the spline fits tend to converge to the
same result regardless of the positioning of the knots. The crucial question in this
case is how closely the inferred flux power spectrum matches the results when the
gradient is computed directly. Figure 4.4 shows the results from these two methods
when 1000 realizations are averaged and so the 1 dimensional flux power spectrum
is intrinsically very smooth. Also included, to guide the eye, is the renormalised 3
dimensional linear baryonic mass power spectrum corresponding to the simulations. If
the mechanism applied by Croft et al. is well motivated the mass and flux power spectra
should be similar shapes, especially in the low k£ regime where the bias factor, b(k), is
slowly varying. The mass power spectrum has been renormalised such that it offers
the closest consistent fit to the mean of the two data points, for the three lowest &
values. It can be seen that the results obtained for the different techniques of gradient

calculation are only very well matched on certain scales.

This is likely to be due to a weakness in the spline fitting technique. Smoothing
the data in this way inevitably leads to information being discarded. This result does
however highlight the sensitivity of the inferred 3 dimensional flux power spectrum on

the calculated gradient.
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Figure 4.4: Comparison of the 3 dimensional flux power spectrum
where the calculation is performed for two different techniques. The
inferred flux power spectrum can be seen to highly dependent on the
method used to calculate the gradient, especially at large scales.

In the case when a more conservative number of realizations are used to calculate
the mean 1 dimensional flux power spectrum, the discrepancy between the inferred 3
dimensional results for these two methods is even more pronounced, and more signifi-
cantly both methods show considerable deviation from the results found when a large
number of realizations are used. This is shown in figure 4.5 which shows the inferred
3 dimensional flux power spectrum for a sample of 50 realizations. The spline fit per-
formed had knot positions separated by an interval in logarithmic k& of 0.2, since it

was found that this fit most closely matched the result when many realizations were

averaged.

This highlights the problems inherent in differentiating a noisy function accurately,

irrespective of the method used. Although the 1 dimensional flux power spectrum
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Figure 4.5: Comparison of the 3 dimensional flux power spectrum
where the calculation is performed on a sample size of 50. The in-
ferred flux power spectrum can be seen to differ considerably from
that where a very large number realizations are used (see figure 4.4).

converges well for a sample size of 50 realizations the scatter in each individual point
still causes considerable difficulties when differentiation is performed. The uncertainties
arising from this step are shown to be considerable, even when a sample size comparable

to the largest observational data sets is used.

One complication, that may help reduce the scatter seen, is that if the 1 dimensional
flux power spectrum is calculated using the Lomb periodogram technique (as Croft et
al.do in their analysis) rather than an FFT then this quantity is found for values of
k which are not necessarily equally spaced. Therefore the number of modes averaged
over to determine each data point at a given value of £ will differ from the analysis

presented here. If more modes are averaged over then the scatter will be reduced.



4.3 Likelihood analysis of the 1 dimensional flux power spec-

trum

[n this section analysis working with the directly observable quantity Pip (k) is pre-
sented. This has the advantage that the difficulties associated with inferring the 3 di-
mensional flux power spectrum from its 1 dimensional counterpart, highlighted earlier,
are avoided. To do this the likelihood techniques outlined in §4.1 are used, specifically

L is calculated using the expression

L =exp(—x*/2), (4.11)

where

\2 = Z Z[ya = y-",mm_i}(ré_,}l (UJ = y,{'-"'“‘-i} ) (112‘]
N

i

where N is the number of simulations contained in the data set. In this case the
data points are bin averaged values of Pip (k). In order to keep the inversion of the
correlation matrix practical the data is handled in 20 wave bins, similar to those used
in the Croft et al. analysis but slightly different due to using a different pixel size, the
values for these wave bins are shown in table 4.2. The simulations used span a redshift
range of z = 2.5—2.9, have a pixel size of 2 km s, and a mean optical depth constraint
of ¥ ~ 0.3. Model values for each wave bin and correlation matrices (see equation 4.9)

are calculated using 1000 realizations for each given set of cosmological parameters.

Values of y? are calculated for a given set of data for all 7 cosmological models. Some
of these values of \? can be large (especially when N is large), leading to vanishingly
small values of £, therefore, for convenience, the quantity considered is
2

Lm g =N e
R = logyo (L—) = logo(e)Xtme —Xm 7. (4.13)

true 2

%

So. for example, when this quantity equals —1, for a given set of data, these data
are 10% as likely to have come from the cosmological model in question than the actual

model from which they were generated. However interpretation of the significance of

114



Number £ (km S—l)—l

1 2.00 x 1072
2 2.58 x 1072
3 343 x 1072
4 4,48 x 10~3
5 572 x 10~
6 7.44 x 10~
7 9.73 x 1073
8 1.25 x 10~2
9 1.62 x 10~2
10 2,12 x 10°2
11 2752 107*
12 3.57% 10=*
13 4.65 % 1072
14 6.03 x 1072
15 7.82x 1072
16 0.102

17 0.132

18 0.171

19 0.222

20 0.288

Table 4.2: The wave scales used in the likelihood analysis.

specific values of Ry, should be done with consideration to the number of realizations in
each data set. The reason for this is that this quantity is proportional to the difference
in the values of y* between models. For a system with M degrees of freedom one

typically expects (e.g. Lupton 1993)

Xowe ~ M £ V2M. (4.14)

[n the case considered here M is equal to the number of realizations multiplied by
the number of wave bins, so M = 20N. Thus the lo error bar on the expected value
Xirge increases as the square root of the number of realizations. This implies two data
sets of 50 realizations (M = 1000) generated from the same cosmological model could
easily give rise to values of y? which differed by about 50 (Rp, >~ —10.86). Therefore
low values of R, do not necessarily imply that a model is confidently ruled out, even

though at first glance the ratio of the likelihoods is tiny.



4.3.1 Results and Discussion

Figures 4.6 and 4.7 show the quantity R, calculated for a single realization and 50
realizations (the approximate size of the largest data set currently available) respec-
tively. It can be seen that when using a single realization the most likely cosmological
model is sometimes found to be a different model than that from which the data was
actually generated (R, > 0.0). The reason for this is that the individual realizations
have a large scatter and so differentiating between different cosmological models can
be difficult. Even in the case when the correct cosmological model is identified as the
most likely, other models often have similar values of likelihood and ruling out models
with any degree confidence is difficult. The exception to this is the Einstein-de Sitter
model (cosmological model number 7), any likelihood ratio between this model and any

of the ACDM cases are vanishingly small. This is not unexpected since the Einstein-de

Sitter model is radically different from all the other cosmological models considered.

The results are more conclusive when a greater number of realizations are used,
with the true model invariably being identified as the most likely. Even in this case
however only some of the comparison models are confidently ruled out. Perhaps the
most interesting result arises when the data is generated using model 4, where the
technique finds that the data are almost equally likely to have come from model 1 or
model 4 (the difference between these two being the value of the spectral index n).
A bigger likelihood ratio between these two models is seen when model 1 is used to
generate the data, but model 4 is not confidently ruled out. This indicates that the
technique may not be very powerful when distinguishing between different values of
certain parameters. However any constraints that could be imposed would be useful and
combining results with those from other sources should help set stringent constraints

on cosmological parameters.

Although these results are an encouraging indication for the validity of using likeli-
hood analysis on the 1 dimensional data, the method used here is somewhat rudimen-
tary. Ideally, rather than considering a small number of models, a large parameter space
would be studied. Then maximum likelihood regions could be found and probability

contours used to show the degree of confidence in each result. Also if this technique
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were applied to real data then the model parameters should ideally be taken from full
hydro-PM codes. The major problem is that each N-body simulation is expensive in
computing time and memory, and a huge number of these simulations would be required
to span a large parameter space. However, more economical codes, where the gas is
assumed to trace the dark matter through simple scaling relations have been shown
to be in good, though not perfect, agreement (White & Meiksin 2000) with the more
sophisticated codes. Aside from issues of computer efficiency, there is no reason why
direct likelihood analysis of the 1 dimensional data should not provide a complementary
or alternative method to determining the primordial mass density power spectrum to

the inversion techniques currently being advocated in the literature.
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Figure 4.6: The logarithm of likelihood ratios for single realiza-
tions of each model. The true cosmological model is found to be the
most likely in only 5 of the 7 cases, due to the large scatter encoun-
tered on individual realizations. Despite this the difference between
the Einstein-de Sitter model and ACDM cases are sufficiently large
that any likelihood ratios involving the Einstein-de Sitter model are

vanishingly small.
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Figure 4.7: The logarithm of likelihood ratios for 50 realizations
of each model. With sufficient numbers of simulations the true model
is always found to be the most likely, although in one case (for data
simulated using model 4) only by a negligibly small amount. The like-
lihood ratios corresponding to incorrect models are also often smaller

than for a single realization.
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4.4 The relationship between flux and mass variances

The unusual distribution of mass variances arising when using the lognormal approx-
imation to generate the mass field was discussed briefly in chapter 2. In this section
a more thorough analysis will be presented to analyse the effect that realizations with

high mass variances have on the mean flux spectra of a sample.

The key question is whether the spectra generated using the lognormal approxi-
mation are reasonable for any value of mass variance. An obvious investigation is to

compare the flux and mass variances for individual realizations.
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Figure 4.8: The relationship between the variance in the mass and
flux for a sample of simulated spectra. The result is close to a scatter
plot, except at very low mass variances which correspond to low flux

variances.

Figure 4.8 shows the flux and mass variances for a sample of 1000 simulated spectra.
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The realizations with low flux variances invariably correspond with low mass variances
2 5.0). However there is considerable scatter for any eive r e of NASS VAriances
(05, < 5.0). However there is considerable scatter for any given range of mass variances.

2
m

In the regime of ¢, > 5.0 the figure is consistent with a scatter diagram with no overall
trend seen between the mass and flux variances. The reason for this is the relationship
between the flux and the mass at a given point is, neglecting Doppler broadening,
given by f exp(—*{rpf). This leads to a situation where the mass levels above some
threshold correspond to a saturated region. Therefore high values of variance in the
mass field do not transfer to the flux variance as the saturated features reduce the

impact of the high mass points.

In this sample studied there are a small number (26) of realizations with mass
variances greater than 50.0 which have not been shown on the plot. However the flux

variance in each case is consistent with values seen for lower mass variances.

The effect of Doppler broadening and saturated regions is the reason that any given
value of mass variance can correspond to a range of flux variances. However the key
point is that since even the very high values of mass variance correspond to reasonable
flux variances the unusual distribution of mass variances seen in figure 2.12 does not

unduly affect the resulting mean flux power spectrum of the sample.
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Chapter 5

Conclusions

In this chapter I summarise the main results and conclusions resulting from the work

presented.
Monte Carlo Simulations

In chapter 2 absorption spectra generated from a simple model were analysed. The
intrinsic properties of the absorption features were set by various parameters, and
cases were studied for both a Poisson distribution and where the line centres were
clustered. This analysis has several interesting results which are important with respect

to recovery of the mass density power spectrum.

The flux power spectrum is non zero even for a Poisson line distribution, since Ly-a

absorption features are not point like objects.

The extent of clustering in an absorption line system is seen to affect the resulting
flux power spectrum. This result is required if the techniques used to determine the

underlying mass distribution are valid.

The intrinsic statistical properties of individual absorption features is seen to affect
the flux power spectrum. Although the change in the flux power spectrum seen from

altering the distribution of the Doppler parameters is small, there is a considerable
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difference as the column density distribution parameter is altered. In terms of the
physical picture. these parameters are dependent on the scaling relations that exist

between the dark matter and the baryonic gas.

[t is thought that in observed data both the positions and profiles of the absorption
features will be determined by the underlying mass field. The differing effects that
these lines have on the flux power spectrum may lead to degeneracies between some
cosmologies. For example the change to the flux power spectrum resulting from a
variation in the large scale mass distribution may be counteracted by a shift in the

mass behaviour on small scales, via an alteration in the intrinsic line profiles.
Realistic Spectra

[n this chapter spectra were generated using the lognormal approximation. The ab-
sorption features are calculated by summing the optical depth contributions from each
pixel along the line of sight. Analysis of these simulations illustrates that inferring a

correctly normalized mass power spectrum from the flux power spectrum is non trivial.

Across the range of realistic values of the mean optical depth the shape of the flux
power spectrum is not altered significantly. Therefore assuming the inversion method is
valid, only the normalization of the mass power spectrum, not its form, will be subject

to errors from the uncertainties about the value of this parameter.

The results presented clearly show that the amplitude of the ratio between the
flux and mass power spectra is highly dependent on cosmology. Although different
cosmological parameters do affect the shape of the flux power spectrum, the effect seen
on the linear mass power spectrum is far more pronounced. Therefore, it is concluded
that, considerable errors may be present in a linear mass field recovered using the
Croft et al. inversion method. Rather than calculate a bias parameter from a set of
simulations assuming one cosmological model it may be better to investigate the relative
likelihood that an observed flux power spectrum can arise from any one of several

different cosmologies.

The simulated absorption spectra can be fitted with Voigt profiles which approxi-
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mates the properties of the original spectra in both real and Fourier space very well.
Therefore deconvolution of spectra into Voigt profiles remains a valuable method of
analysis even in the cosmic web paradigm of the Ly-a forest. It is shown that the posi-
tions of line centres are very poor indicators of the underlying mass density in realistic
cases. This is attributed to the effects of Doppler broadening of the baryonic features,
which distorts the relationship between the optical depth at a given point and the mass

density at that point.

Further to this the relative importance of the positions and profiles of the absorption
features is demonstrated by the line scrambling process. That a different flux power
spectrum results after this scrambling process is evidence that the Croft et al. method
is well motivated. Additionally it is seen that when lines within small column density
regimes are scrambled the change of the flux power spectrum is small. Therefore it
is concluded that the Doppler broadening of lines is of negligible importance to the

accuracy of the Croft et al. method.
The statistics of the flux power spectrum

In this chapter some of the important statistical properties of the simulated data sets
were studied. The correlation coefficients calculated directly from a set of simulations
differ considerably from those calculated by Croft et al. using the jackknife estimator.
The considerable anti-correlation seen between almost all neighbouring wave bins sug-
gests that analysis ignoring the off diagonal elements may not be rigorous enough to

accurately determine the errors.

Determining the gradient of a noisy function, such as the 1 dimensional power
spectrum, is non-trivial. Two techniques are compared for a large number of realizations
and the inferred 3 dimensional flux power spectrum is shown to be dependent on the
method of calculating the gradient. Both techniques require a large sample of data for
convergence of the inferred 3 dimensional flux power spectrum. For the size of data sets
currently available, calculation of the gradient may introduce considerable uncertainties

to the analysis.
Determination of the relative likelihoods is shown to successfully identify the un-
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derlying cosmological model when large numbers of realizations are used. Although
the analysis is fairly basic it is suggestive that working directly with the 1 dimensional
data in this way would be an illuminating complementary approach to the techniques

already being applied.
Overall summary

The Ly-a forest currently presents the best opportunity to probe the mass distribution

at high redshifts. However the present results must be treated with some caution.

One main weakness of this technique is that the data available is by its nature 1
dimensional. Although the 3 dimensional power spectrum is related to its 1 dimensional
counterpart by a known expression, this applies to fields of infinite extent. The noise

inherent in any measurements therefore ensures that any conversion is non-trivial.

Since the directly observable quantity is &%D‘F(k), [ would advocate the devel-
opment of techniques that study directly how its form is affected by changes to the
shape and amplitude of the 3 dimensional mass power spectrum. In this way it should
be possible via likelihood analysis and statistical studies to constrain the mass power

spectrum without changing the form of the data.

Another concern arises from the lack of knowledge about the precise values of tem-
perature and mean optical depth of the IGM and the reionization history of the Uni-
verse. At the current time these uncertainties are potentially a source of substantial
errors in the recovered mass power spectrum. However, as the quantity of data in-
creases, parameter uncertainties are reduced, and the analysis techniques are refined,
the Ly-a forest should provide strong constraints on both the shape and the amplitude

of the mass density power spectrum.
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Appendix A

Atomic processes

This appendix contains the background theory needed to calculate the properties of
atomic transitions. The starting point is to apply quantum mechanics to a single atom,
these results can then be extended to the classical regime. [n an isolated atom with a set
of allowed energy levels, any transition by an electron to a different energy level must be
compensated by a shift in energy elsewhere in the system. For example, a transition to
a lower energy level is accompanied by the emission of a photon. Similarly a photon of
suitable energy could be absorbed to allow a transition to a higher energy level. These
effects can be formalised and thus the effect on light of passing through an absorber
can be calculated for a given system. These techniques are then applied to the Ly-a

transition to obtain parameters used in the main body of this thesis.

A.1 Atomic transitions

A.1.1 The Fermi Golden Rule

The easiest way to treat matter in a radiation field is to think of the interaction Hamil-
tonian as a perturbation. This is possible since the coupling constant (the fine structure
constant @ = 1/137) is small. With this assumption quantum theory can provide a

solution, since the unperturbed system of uncoupled atoms and radiation can be fully
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described. Applying perturbation theory to an isolated atom in a radiation field it is
found that the probability of a transition from an initial to a final state is

7l |2 o
_ [Hgl"f(t ) _f,EMJ, (A.1)

pe(t
pe(t) 2

where [Hg| is the matrix element of the Hamiltonian of the transition from the
initial to the final state, wg is the angular frequency corresponding to the change in

energy Ey — E; and the function is

(A.2)

Equation A.l can be made more general, by considering any number of transitions
to the final states grouped within some small energy range. The density of states g(F)
can be introduced so that g(Er)dE; is the total number of final states available. Then
the probability of the system being in any one of these states at time ¢ is

Ei+AE .
pa(t) = — / |HG[* f(t,ws)g(Er) dE. (A.3)
e Jp—aE

Now this expression can be simplified if # is large (meaning in this context that
t > 2m/wg). In this regime the dominant contribution of the function f(t,w) is a
peak centred on w = 0 of height ¢* and width 47 /t. Assuming all contributions from
the integral that fall outside of the integration limits are negligible and assuming the
density of states and Hamiltonian matrix element to be constants in this region, allows
the integral to be performed analytically. Finally differentiating the equation with
respect to time gives the transition rate. This results in the equation known as the

Fermi Golden Rule

dpa(t) _ 2m

dt h

[1HEPg(E0)] g, - (A.4)

So to find the transition rate, the form of the interaction Hamiltonian is required

(e.g. Landau & Lifshitz 1982)

' =q / J*A, dV, (A.5)
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where ¢ is electric charge, j# is the 4-current and A, is the 4-vector potential of the
electromagnetic field. The matrix element of A’ between the initial and final states of

the atomic system and radiation field is

(Uil (VY g / J# A, dV || Nia). (A.6)

where ¢ is the wave function of the electron involved and Ny . is the number of
photons in the state with wave vector k and polarization state . With a suitable
choice of frame the zeroth component of the 4-scalar product is zero and if the atom is
non-relativistic then j = ¢¥*vi. The key point now is that the plane wave description
of Ak, can be written in terms of a combination of ladder operators for the radiation
field. This is important since to obtain a non-zero matrix element requires an operator
that acts on [Nk ) to give a multiple of [Ny ). This happens if and only if N =R
For example N = N + 1 relates to the absorption of a photon and in this case the

matrix element becomes

\/ i -/ Nx,ag / Vv i.ex ac™r dV. (A.7)
2egwV )

The constants and imaginary exponential in the above expression follow from the

definition of Ay, and the constants of proportionality obtained from the ladder op-
erators (e.g. Landau & Lifshitz 1982). The integral in the above equation can now
be solved if the dipole approximation is applied, which is justified if the wavelength of
the radiation considered is much greater than the atomic dimensions. This is usually
the case when the velocity of any particles are much less than the speed of light. The
approximation then has the effect of neglecting the photon momentum. In this case
v = —iwr and €¥* = 1. Then all that is needed is the total number of allowed final
states which is just the number of available atomic states multiplied by the number of
allowed final photon states. Treating the radiation field as being plane waves of a large
box gives

V. k2

Yphot = (2“_)3 E ¢ (A.R)

So finally averaging over the dipole direction and assuming both polarization direc-
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tions are equally populated gives

dQ 403 e2
Rabs e —|rg)? A9
'Eclbs(Q) dS2 A% 3hc8 Nk,o« dreg Irﬁl Jus ( )

where R,ps is the rate of absorption. To calculate the rate for emission the same

calculation is performed but with ¢ and Nk, + 1 replacing g, and Nk,

dQ 4w? e? ;
AR (A.10)

Rcm(Q)d‘Q S s {"\'rk.n + l)

47 3he3 4dmeg

So comparing equations A.9 and A.10 it can be seen that ¢, Rem = ¢1Rabs + gullspon,
where Rqpon is the rate of spontaneous emission and is given by

3hed dmeg

Rspon = |rs|*g1- (A.11)

A.1.2 Blackbody radiation

It be can seen from equations A.9 and A.10 that

Ju R{3m ) —'Mk,u +1

== = A2
4l Ra.bs Ark.cx ( )

If a system is in thermodynamic equilibrium then on average there are as many
transitions up as down, therefore if the rate of spontaneous emission is negligible then
it follows that nRaps = nyRem. Where n, and n) are the numbers of electrons in the
upper and lower atomic states respectively. In addition to this condition the occupancy
of the energy levels can be determined by the Boltzmann distribution such that n)/g =
1y /gue®, where v = (E, — E))/kT. Substituting these expressions into equation A.12,
gives an expression for Ny ., so multiplying by hv gives the energy in each radiation
state. Finally multiplying by the density of states gives the energy density as

87t hy
3 et —1

Uv)dv =

dv. (A.13)

Classically it is usual to quantify a radiation field by its specific intensity, 1,,, such
that I,dvdS) is the energy per unit area per unit time of the photons whose frequency

is within dv about v. Since radiation is isotropic the specific intensity for a blackbody
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B,(T) is just the above expression multiplied by e¢/4m. Therefore a blackbody at
temperature 7" has specific intensity which is given by
2% hv

B(T)=———. (A.14)

CQ et — 1
A.1.3 Einstein coefficients

All that has gone before can now be related to the Einstein coefficients. The coefficient
Ayl is the probability that a transition from the upper to lower energy will spontaneously
occur, and so by definition is equal to Rspon. Clearly there is no such coefficient for
the reverse jump, as the energy level can never rise spontaneously. The two other
coefficients are B, and Bj, which when multiplied by the specific intensity of the
surrounding radiation field give the rates of transitions which are stimulated in an
atom by this field. To find how these coeflicients relate it is easiest to consider a system

in thermodynamic equilibrium, which must fulfill the condition

'I'“Blll Iri, — 'H'il(BLl] ‘ru _i' ‘4“|)‘ (’\.15)

Or re-arranging and using the Boltzmann condition for the occupancy levels

Ay
= (A.16)

9 By o _
(gu By 3 1)

and now applying the condition that /, = B, (T) as given in equation A.14 it can

be seen immediately that the Einstein coefficients must obey the following rules

9B = guBu, (;\l'l_)
2hy3 2hv® g _
Aul = (‘—2 Jul = — Biu- ("\-18)

u

Rather than referring directly to the Einstein By, coefficient it is often easier to think
in terms of the cross section per particle o. This can be thought of in classical terms
such that a large cross section corresponds to a high probability that an interaction

will occur

i hv
o= / o, dv = Zﬁ-_B'“' (A.19)
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The results obtained so far can now be applied to the Ly-c transition. It is shown in
equation A.11 that to calculate A, requires an expression for the matrix element |rg|%.
This can be found for the hydrogen atom since it is an exactly soluble system whose
wave function is ¥,pn = Rue(r)Yen (8, 0). In this equation n, £ and m represent the
energy level, angular moment and z-component of the angular momentum respectively.
R,¢(r) are the radial functions and Y%, (6, ¢) are the spherical harmonic functions, both

of which are known (e.g. Rae 1992). This system has energy levels given by

m e2 \? 1
E,=——|—) . A.20
" 2h? (fl?i'c-?()) p { )
The upper state in the Ly-a transition has values n =2, { =1 and m = —1,0, 1

and the ground state is n = 1 and { = m = 0. Therefore the corresponding energy
change (Fy — 1) is 10.2 eV and the wavelength of radiation involved is 1216 A. Now

writing the initial wave function of the electron explicitly gives

|Tr"|/'21m> — R‘E,l (7‘)}'Fl.vra(9- ‘;D)

I r .
=g R Yy (b (A.21
V2da, m (6,9) )
where
P L (A.22)
M€

and the corresponding spherical harmonics are
i3 : 3
Yii— —sin 4 et Yio= 1/ —cosé.
1,21 = F y ) 1,0 =

Now the final state of the wave function of the election is given by
[¥100) = R1,0(r)Yo,0(0, ¢)

AU | )
—¢ %0 ——, (A.23
(L'E] var )

Now the operator 7 = r = zeyx 4 yey + ze,, can be expressed in polar coordinates
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2m £ % =
x=rsinfcosd=ry/5 (Y7_, - Y)).

y = rsinfsin ¢ = —ir 1!2“ (Y7_ + Y7

o — o AT =
z=rcost =ry/F Y.
So for example the @ component of the integral |rg| is

v T i
(h IUOI 11, Zlm / / jHl U _{i‘) l( J '[-,‘U(H,(_.D);}'L-,“(H‘f;?) dr n{Q.

which can be split into radial and angular integrals such that

. 2R o v NV
(Y100]2|21m) = Iy 3 / YooYy =1 = Y7 1) Y1,m dS2
= ! ‘2‘3_??—\!:7 [ylfﬂlyrl m = Ylﬁjlylum ds.

Now invoking the orthogonality relations of the spherical harmonics

/}}T m.-}f,n dQ = 5&:; 6]’?171’1 ) (1‘\.2‘1)

gives
D D ALY
<'¢"‘luui‘c|'{-"!'2er1} \/—(O 1,m Ol i) (A.25)
where [ is the radial integral. Similar calculations now give

=i
(V1r00ly|Yaim) = = — (02 o+ 6m), (A.26)

I
Yroo|z|Vaim) = —=02 | A.27
(¥100]2|P21m) /3007 ( )

and so squaring all the contributions and adding gives a result which is independent

of m
|) .2
[(¥100T|¥21m)|” = - (A.28)
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The radial integral can then be calculated

Fes / 3R g Ry dr
(1]

1 /:k 4 —2E y
= _ rie” 260 dr
a6 Jo

256 _
il (A.29)

816’
which upon substitution into A.28 gives

|(¥ 100/t Ya1m)|* = 0.555a2. (A.30)

Thus the Einstein coefficient is given by

du® e?

T W 1 2= 2 ‘ 8 ,—].‘ A
3hed _,:lﬂol(irmo|1‘|¢21m)| 6.3 x 10° s (A.31)

-42,1—>1,0=

This in turn can be substituted into equations A.18 and A.19 to give the cross
section for the Ly-a transition

hv Ju 62 ; 1 7 -2 2.—1 / ‘
o= -fl_?r"_ng'ﬁlul = L.IlSehFSemess (A.32)
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Appendix B

Properties of Gaussian statistics

This appendix contains the proof that for a probability distribution which is Gaussian,
with a mean of zero, (¢*) is equal to e 7 .

For a Gaussian with a mean of zero and a standard deviation of @ the probability

distribution function is given by

pla) = \/'2_*-’(;. 202 , (B.1)

The mean of e* is given by

Substituting in equation (B.1) gives

l o] z2 z
(e?) = [ e (B.3)

2na J =

Completing the square of the term in the exponential gives

a2 @ o \* o?
S b b B

Thus making the substitution

i a
i = =

V2o 2
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dx

V20

du =

gives

S R
te™) = ez / e™" V20 du (B.6)
V2re Jowx

Now comparing this result with the one for (2?),

o0 22
(3*)= ! f x?e” 207 da. (B.9)

2T ) =00

Noting the function being integrated is even allows a change on the integrating

()= \/gé /0\? xle” 2 dz. (B.10)

Now using the standard result for the integral which is (e.g. Gradshteyn & Ryzhik

limits such that

w2
qJL,v

1994)

e 1.3....2n-1) =
o (R T it = o
/u e diE= S (B.11)

So setting n = 1 and a = 1/20? gives

F; o
(a?) = ;é% 202 (B.12)

=/q"; (B.13)

Thus proving the result that for a Gaussian distribution with 2 =0

ey £t (B.14)
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