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Abstract. We provide a concise review of how chiral and flavor oscillations can be described in
quantum field theory using a finite-time interaction picture approach, where the mass and mixing
terms in the Lagrangian can be treated as perturbations. We derive the oscillation formulas for
both chiral and flavor transitions and demonstrate that, within the adopted approximations,
they match the exact results obtained through non-perturbative methods. Finally, we point out
the strong similarities and the differences between these two phenomena.

1. Introduction
The weak interaction is a strange beast. When parity was widely believed to be strictly
conserved in all physical processes, Lee and Yang challenged this assumption, suggesting that
weak interactions might violate it [1]. Shortly after, Wu and collaborators provided experimental
confirmation, demonstrating that only left-handed neutrinos participate in weak processes [2].
More generally, charged current weak interactions involve only left-chiral fermions and right-
chiral antifermions [3, 4, 5].

Furthermore, to address the solar neutrino puzzle [6], Pontecorvo and collaborators proposed
that neutrino flavor states – those involved in weak interactions – could be expressed as linear
superpositions of neutrino mass states, leading to the phenomenon of neutrino flavor oscillations
[7, 8, 9, 10, 11]. This idea was later experimentally confirmed and is now well established
[12, 13, 14, 15].

Another approach proposed to solve the solar neutrino puzzle was based on the observation
that the chirality of massive particles is not conserved during their propagation. As a result,
particles produced with definite chirality in weak interactions undergo chiral oscillations [16].
Although it was soon realized that this effect is too small to account for the missing solar
neutrinos, the phenomenon itself is genuine and has been further investigated over the years
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[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. It has been shown that a massive fermion produced
in a weak decay at time t = ti with a definite (e.g., left) chirality has a probability of being
detected in another weak process at time t = tf with the same chirality, given by

PL→L(p,∆t) = 1− m2

ω2
p

sin2 (ωp∆t) , ∆t ≡ tf − ti , (1)

where ωp =
√
|p|2 +m2 is the fermion energy. Although such expressions clearly shows that

such effect is suppressed for very energetic particles (ωp ≫ m), chiral oscillations remain of
phenomenological interest. Notably, it has been recently suggested that this effect could be
observable in the cosmic neutrino background [28, 25] and in electronic transport in graphene
layers, where chiral symmetry is explicitly broken by external potential barriers [29].

Within the phenomenological understanding of flavor oscillations, the problem arose regarding
the correct theoretical description in quantum field theory (QFT) [30, 31, 32, 33, 34, 35, 36, 37].
In Ref. [32], an approach was proposed in which a flavor Fock space is explicitly constructed
(see also Refs. [38, 39, 40, 41]). Within this approach, the flavor survival probability (e.g., for
electron neutrinos) was derived in Ref. [42] and is given by

Pe→e(p,∆t) = 1− sin2(2θ)
[
|Up|2 sin2

(
Ω−
p

2
∆t

)
+ |Vp|2 sin2

(
Ω+
p

2
∆t

)]
, (2)

where Ω±
p ≡ ωp,2 ± ωp,1, ωp,j =

√
|p|2 +m2

j (m1 and m2 are the neutrino masses) and

|Up| ≡
(
ωp,1 +m1

2ωp,1

) 1
2
(
ωp,2 +m2

2ωp,2

) 1
2
(
1 +

|p|2

(ωp,1 +m1)(ωp,2 +m2)

)
.

|Vp| =
|p|√

4ωp,1ωp,1

(√
ωp,2 +m2

ωp,1 +m1
−
√
ωp,1 +m1

ωp,2 +m2

)
. (3)

Let us stress that the above formula also naturally arises in relativistic quantum mechanics,
employing the Dirac equation [18]. A similar QFT approach has been also recently proposed for
chiral oscillations [43], which permits to recover the formula (1) in a full fledged QFT language.

In this paper, we provide a brief review of the perturbative method to deal with flavor and
chiral oscillations in QFT, originally introduced in Refs. [44] and [45], respectively. The key
aspects of this approach are as follows:

(i) The mixing (or mass) term in the Lagrangian can be treated as a perturbation.

(ii) In the interaction picture, fields with definite flavor (chirality) can be expanded as free
fields, ensuring that flavor (chiral) states are unambiguously defined in QFT.

(iii) The probability of flavor (chiral) oscillations can be computed using the matrix elements of
the time evolution operator U(ti, tf ).

It is important to emphasize, as discussed in Ref. [46], that the time evolution operator plays a
central role in this analysis. Taking the limit ti → −∞, tf → +∞, which transforms U into the
S-matrix, would eliminate the oscillation phenomenon. This observation is profound and closely
linked to the time-energy uncertainty relation [47, 48, 49, 50, 51]. Notably, the computation in
the interaction picture, within the approximations used to truncate the perturbative expansion,
yields results that nontrivially agree with Eqs. (1), (2).

The paper is organized as follows: In Section 2, we briefly review how chiral oscillations
can be treated within our interaction picture scheme. Then, in Section 3, we apply the same
methods to analyze two-flavor oscillations. Throughout the paper, we highlight the differences
and similarities between these two phenomena. Finally, in Section 4, we present our conclusions.
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2. Chiral oscillations in the interaction picture
The Lagrangian for a massive Dirac field ψ can be expressed in terms of its chiral components
as

L =
∑

σ=L,R

ψσi/∂ψσ −m
(
ψLψR + ψRψL

)
, (4)

where ψL(R) = PL(R)ψ, with PL(R) ≡ 1∓γ5
2 denoting the chiral projection operators.

The central idea is to interpret the mass term as an interaction between massless fields of
definite chirality, enabling its treatment using standard perturbative methods in QFT. Our
starting point is the Dyson series for the time evolution operator:

U(ti, tf ) = T exp

[
i

∫ tf

ti

d4x : Lint(x) :

]
= T exp

[
−i
∫ tf

ti

d4x : Hint(x) :

]
, (5)

where Lint = −m
(
ψLψR + ψRψL

)
, and the interaction Hamiltonian density is given by

Hint(x) = −Lint(x). The operator T denotes time ordering.
In the interaction picture, the fields ψσ (σ = L,R) are expanded as free fields [5]:

ψσ(x) =
1√
V

∑
k

(
uk,σ αk,σ e

−ikx + vk,σ β
†
k,σ e

ikx
)
. (6)

Since these fields are massless, their helicity coincides with their chirality.
We define the perturbative vacuum in the usual way:

αk,σ|0⟩ = 0 = βk,σ|0⟩ , (7)

and its excitations as
|ψp,σ⟩ ≡ α†

p,σ|0⟩ . (8)

The canonical anticommutation relations are given by

{αk,ρ, α
†
q,σ} = δkqδρσ , {βk,ρ, β†q,σ} = δkqδρσ . (9)

Next, we explicitly compute the interaction Hamiltonian Hint =
∫
d3xHint(x) in the interaction

picture:

Hint(t) = m
∑
p

[
β−p,Rαp,L e

−2i|p|t + α†
p,Rβ

†
−p,L e

2i|p|t + h.c.
]
. (10)

Our goal is to compute the survival probability, i.e., the probability for the process |ψp,L⟩ →
|ψp,L⟩ over a time interval ∆t ≡ tf−ti, PL→L(p,∆t) . At zeroth order, we obtain PL→L(p,∆t) =
1. The first nontrivial contribution appears at second order in m. The corresponding Feynman
diagrams are shown in the upper part of Fig. 1.

Retaining only terms up to quadratic order in m, the survival amplitude can be expressed as

AL→L(p; ti, tf ) = 1− 1

2
A(2)

L→L(p; ti, tf ) , (11)

where A(2)
L→L(p; ti, tf ) represents the second-order contribution, which is proportional to m2.

Squaring this expression and neglecting all terms with mass dependence beyond second order,
we obtain

PL→L(p; ∆t) = 1− ℜe
(
A(2)

L→L(p; ti, tf )
)
. (12)
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Figure 1. Second-order diagrams for the L (upper part) and e (lower part) survival probability.
Time flows from left to right. The diagram (a) vanishes since it involves identical massless
particles. The Z-type diagram (b) contributes nontrivially. The diagrams (c) and (d) both
contribute to flavor oscillations.

The second-order amplitude is given explicitly by

A(2)
L→L(p; ti, tf ) ≈ m2

∫ tf

ti

dt1

∫ tf

ti

dt2 e
2i|p|(t1−t2) =

m2

|p|2
sin2(|p|(tf − ti)) .

Thus, the survival probability takes the form

PL→L(p; ∆t) = 1− m2

|p|2
sin2 (|p|∆t) . (13)

At leading order, this result coincides with Eq. (1). In fact, we have

m2

ω2
p

sin2 (ωp∆t) =
m2

|p|2
sin2 (|p|∆t) +O(m4) . (14)

This confirms that the quantum mechanical result is successfully recovered within the framework
of finite-time QFT.

Although the above result is approximate, the agreement between Eq. (13) and Eq. (1)
is highly non-trivial. To explore corrections beyond the leading order, we now consider the
fourth-order contributions. One such term, proportional to m4, arises from the square of the
second-order amplitude:

1

4
|A(2)

L→L(p; ti, tf )|
2 =

m4

4|p|4
sin4(|p|∆t) . (15)

However, this is not the only contribution at orderm4. The fourth-order amplitude itself provides
an additional term:

1

24
A(4)

L→L(p; ti, tf ) =
m4

24|p|4
sin4(|p|∆t) . (16)

Thus, the survival probability at fourth order is given by

PL→L(p; ∆t) = 1− m2

|p|2
sin2 (|p|∆t) + m4

3|p|4
sin4(|p|∆t) . (17)
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To verify consistency with the exact survival probability in Eq. (1), we expand the latter up to
fourth order in m:

PL→L(p; ∆t) ≈ 1− m2 sin2(|p|∆t)
|p|2

− m4 sin(|p|∆t)(|p|∆t cos(|p|∆t)− sin(|p|∆t))
|p|4

. (18)

It is important to note that this expansion is only valid for short time intervals; for large ∆t,
the last term would diverge. Expanding further in ∆t, we obtain:

PL→L(p; ∆t) ≈ 1−m2∆t2 +
1

3
m2∆t4ω2

p +O
(
∆t5

)
, (19)

where ωp =
√
|p|2 +m2 is the energy of the massive fermion. It is straightforward to see that

this result matches the expansion of Eq. (17) in ∆t, considering that sin (|p|∆t) ≈ |p|∆t.

3. Neutrino oscillations in the interaction picture
Following Ref. [44], we demonstrate that neutrino flavor oscillations can also be studied in
the interaction picture, in a manner similar to chiral oscillations. However, in this case, the
unperturbed modes are massive, with massesme,mµ, . . . (for simplicity, we will consider only two
flavors), while the perturbation arises from the mixing term in the Lagrangian. The Hamiltonian
density is therefore given by

H = H0 + Hint , (20)

where

H0 =
∑
σ=e,µ

[
νσ
(
i/∂ −mσ

)
νσ
]
, Hint = meµ (νeνµ + νµνe) . (21)

In the interaction picture, the neutrino fields νσ (σ = e, µ) can be expanded as

νσ(x) =
1√
V

∑
k,r

[
urk,σe

−iωk,σt αr
k,σ + vr−k,σe

iωk,σt βr†−k,σ

]
eik·x , (22)

with ωk,σ =
√
|k|2 +m2

σ. The perturbative vacuum is defined by the condition

αr
k,σ|0⟩ = 0 = βrk,σ|0⟩ , (23)

while the ladder operators satisfy the standard anticommutation relations:

{αr
k,ρ, α

s†
q,σ} = δkqδrsδρσ , {βrk,ρ, βs†q,σ} = δkqδrsδρσ . (24)

Using these definitions, we can express the interaction Hamiltonian as

Hint(t) = meµ

∑
s,s′=1,2

∑
p

[
βsp,µβ

s†
p,eδss′W

∗
p(t) + αr†

p,µα
r
p,eδss′Wp(t)

+ βs−p,µα
s′
e,p

(
Y ss′
p (t)

)∗
+ αs†

p,µβ
s′†
−p,eY

ss′
p (t) + e↔ µ

]
, (25)

where we have introduced the functions

Wp(t) = usp,µu
s
p,ee

i(ωk,µ−ωk,e)t = Wp e
i(ωp,µ−ωp,e)t, (26)

Y ss′
p (t) = usp,µv

s′
−p,ee

i(ωk,µ+ωk,e)t = Y ss′
p ei(ωp,µ+ωp,e)t. (27)
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Their explicit forms are given by

Wp =

√
(ωp,e +me) (ωp,µ +mµ)

4ωp,eωp,µ

(
1− |p|2

(ωp,e +me)(ωp,µ +mµ)

)
, (28)

Y 22
p = −Y 11

p =
p3√

4ωp,eωp,µ

(√
ωp,µ +mµ

ωp,e +me
+

√
ωp,e +me

ωp,µ +mµ

)
, (29)

Y 12
p =

(
Y 21
p

)∗
= − p1 − ip2√

4ωp,eωp,µ

(√
ωp,µ +mµ

ωp,e +me
+

√
ωp,e +me

ωp,µ +mµ

)
. (30)

Let us now compute the survival probability Pe→e(p,∆t), corresponding to the process
|νrp,e⟩ → |νrp,e⟩. Keeping only terms up to the second order in meµ, the amplitude can be
expressed as

Ae→e(p; ti, tf ) = 1− 1

2
A(2)

e→e(p; ti, tf ), (31)

where A(2)
e→e(p; ti, tf ) represents the second-order contribution, which is proportional to m2

eµ.
The Feynman diagrams are depicted in the lower part of Fig.1. However, in this case, both
diagrams (c) and (d) contribute non-trivially, with the vertex given by meµ instead of m. By
squaring the amplitude we retain only terms of order m2

eµ or lower, leading to

Pe→e(p; ∆t) ≈ 1− Re
(
A(2)

e→e(p; ti, tf )
)
. (32)

Explicitly, we obtain

Pe→e(p; ∆t) = 1− 4m2
eµ

[
W 2

p

(ωp,e − ωp,µ)2
sin2

(
(ωp,µ − ωp,e)∆t

2

)

+
Y 2
p

(ωp,e + ωp,µ)2
sin2

(
(ωp,µ + ωp,e)∆t

2

)]
, (33)

where
Y 2
p =

∑
s

(
Y rs
p

)∗
Y rs
p , (34)

and

Yp =
|p|√

4ωp,eωp,µ

(√
ωp,µ +mµ

ωp,e +me
+

√
ωp,e +me

ωp,µ +mµ

)
. (35)

If we now introduce the following notation

|Up| =Wp
mµ −me

ωp,e − ωp,µ

=

√
(ωp,e +me)(ωp,µ +mµ)

4ωp,eωp,µ

(
1 +

|p|2

(ωp,e +me)(ωp,µ +mµ)

)
, (36)

|Vp| = Yp
mµ −me

ωp,e + ωp,µ

=

√
(ωp,e +me)(ωp,µ +mµ)

4ωp,eωp,µ

(
|p|

ωp,e +me
− |p|
ωp,µ +mµ

)
, (37)
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and sin 2θ = 2meµ/(mµ −me), then the survival probability can be rewritten as

Pe→e(p; ∆t) = 1− sin2 2θ

[
|Up|2 sin2

(
(ωp,µ − ωp,e)∆t

2

)
+ |Vp|2 sin2

(
(ωp,µ + ωp,e)∆t

2

)]
.

(38)
Within our approximation, this result coincides with the oscillation probability (2). This is a
remarkable result, as the method employed here differs significantly from the approach in Ref.
[42].

It is also worth noting that we have followed the same computational steps for both chiral and
flavor oscillations. Moreover, the flavor survival probability (33) reduces to the chiral survival
probability (13) in the formal limit me → 0, mµ → 0, and meµ → m. In such limit, the term
proportional to |Up| disappears. Then, the only non-trivial contribution is given by the term
proportional to |Vp|2, which describes fast oscillations.

4. Conclusions
Physical observables, by definition, are quantities that can be measured. Measuring a physical
quantity requires interacting with the system, meaning that the nature of the interaction
determines the relevant observables. In the case of weak interactions, the states with well-
defined flavor and chirality are those that participate in the process, making them the physical
states. For neutrinos, which interact almost exclusively via the weak force, flavor states can
always be considered as the physical neutrino states. Therefore, it is crucial to establish a
proper framework for describing states with definite flavor and chirality in QFT.

In this work, we have reviewed a perturbative approach to chiral and flavor oscillations,
originally discussed in Refs. [44, 45], where chiral and flavor states are unambiguously defined
within the interaction picture. Notably, this approach yields results that non-trivially agree with
the non-perturbative findings reported in Refs. [42, 43]. Furthermore, the comparative analysis
of chiral and flavor oscillations highlights their strong similarities, as the derivations we followed
are nearly identical in both cases. However, in the case of flavor oscillations, diagram (c) in
Fig. 1 provides a non-trivial contribution, while the corresponding diagram (a) does not give a
contribution in the chiral oscillations case. This is the contribution which leads to the standard
flavor oscillation formula [11]. In contrast, diagram (d), and the corresponding diagram (b) for
chiral oscillations, describe rapid oscillations reminiscent of the Zitterbewegung phenomenon [24].

Acknowledgments
L.S. would like to thank A. Lapadula for the graphical support. G.T. would like to thank
FAPESP 2023/06278-2 and CNPq bolsa de produtividade 305731/2023-8 for the financial
support.

References

[1] Lee T D and Yang C N 1956 Phys. Rev. 104(1) 254–258
[2] Wu C S, Ambler E, Hayward R W, Hoppes D D and Hudson R P 1957 Phys. Rev. 105(4) 1413–1415
[3] Weinberg S 1967 Phys. Rev. Lett. 19(21) 1264–1266
[4] Salam A 1968 Conf. Proc. C 680519 367–377
[5] Pal P 2014 An Introductory Course of Particle Physics (CRC Press)
[6] Bahcall J N and Davis R 1976 Science 191 264–267
[7] Gribov V N and Pontecorvo B 1969 Phys. Lett. B 28 493
[8] Bilenky S M and Pontecorvo B 1976 Phys. Lett. B 61 248
[9] Bilenky S M and Pontecorvo B 1976 Lett. Nuovo Cim. 17 569

[10] Bilenky S M and Pontecorvo B 1977 Comments Nucl. Part. Phys. 7 149–152
[11] Bilenky S M and Pontecorvo B 1978 Phys. Rept. 41 225–261
[12] Vogel P, Wen L and Zhang C 2015 Nature Commun. 6 6935



DICE-2024
Journal of Physics: Conference Series 3017 (2025) 012027

IOP Publishing
doi:10.1088/1742-6596/3017/1/012027

8

[13] Aartsen M G et al. (IceCube) 2018 Phys. Rev. Lett. 120 071801
[14] Nakano Y (Super-Kamiokande) 2020 J. Phys. Conf. Ser. 1342 012037
[15] Agafonova N et al. (OPERA) 2021 Sci. Data 8 218
[16] De Leo S and Rotelli P 1998 Int. J. Theor. Phys. 37 2193–2206
[17] Fukugita M and Yanagida T 2003 Physics of Neutrinos: And Applications to Astrophysics Physics and

astronomy online library (Springer)
[18] Bernardini A E and Leo S D 2005 Phys. Rev. D 71 076008
[19] Bernardini A E 2006 J. Phys. G 32 9–22
[20] Bernardini A E 2006 Eur. Phys. J. C 46 113–122
[21] Bernardini A E 2006 J. Phys. A 39 7089
[22] Bernardini A E 2007 Int. J. Theor. Phys. 46 1562
[23] Bernardini A E 2007 Eur. Phys. J. C 50 673–678
[24] Bernardini A E and Guzzo M M 2008 Mod. Phys. Lett. A 23 1141–1150
[25] Bittencourt V A S V, Bernardini A E and Blasone M 2021 Eur. Phys. J. C 81 411
[26] Suekane F 2021 Quantum Oscillations: A simple principle underlying important aspects of physics Lecture

Notes in Physics (Springer International Publishing)
[27] Bittencourt V A S V, Bernardini A E and Blasone M 2022 EPL 139 44002
[28] Ge S F and Pasquini P 2020 Phys. Lett. B 811 135961
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