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Abstract The thermodynamics of black holes is reformulated within the context
of the recently developed formalism of geometrothermodynamics. This reformu-
lation is shown to be invariant with respect to Legendre transformations, and to
allow several equivalent representations. Legendre invariance allows us to explain
a series of contradictory results known in the literature from the use of Wein-
hold’s and Ruppeiner’s thermodynamic metrics for black holes. For the Reissner—
Nordstrom black hole the geometry of the space of equilibrium states is curved,
showing a non trivial thermodynamic interaction, and the curvature contains in-
formation about critical points and phase transitions. On the contrary, for the Kerr
black hole the geometry is flat and does not explain its phase transition structure.

Keywords Black hole thermodynamics, Phase transitions,
Geometrothermodynamics, Thermodynamic metric

1 Introduction

The geometry of thermodynamics has been the subject of moderate research since
the original works by Gibbs [[1]] and Caratheodory [2]. Results have been achieved
in two different approaches. The first one consists in introducing metric struc-
tures on the space of thermodynamic equilibrium states &, whereas the second
group uses the contact structure of the so-called thermodynamic phase space 7.
Weinhold [3; 4] introduced ad hoc on & a metric defined as the Hessian of the in-
ternal thermodynamic energy, where the derivatives are taken with respect to the
extensive thermodynamic variables. Ruppeiner [5] introduced a metric which is
conformally equivalent to Weinhold’s metric, with the inverse of the temperature
as the conformal factor. Results of the application of Ruppeiner’s geometry have
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been reviewed in [6; [7; 185 19; [10]. This approach has found applications also in the
context of thermodynamics of black holes [[L1; 125135145155 [16]].

The second approach, developed specially by Hermann [17]] and Mrugala [18;
19]], uses the natural contact structure of the phase space .7. Extensive and inten-
sive thermodynamic variables are taken together with the thermodynamic poten-
tial to constitute well-defined coordinates on 7. A subspace of 7 is the space of
thermodynamic equilibrium states &, defined by means of a smooth embedding
mapping ¢ : & — 7. This implies that each system possesses its own space
&. On the other hand, on 7 it is always possible to introduce the fundamental
Gibbs 1-form which, when projected on & with the pullback of ¢, generates the
first law of thermodynamics and the conditions for thermodynamic equilibrium.
Furthermore, on .7 it is also possible to consider Riemannian structures [20} 21].

Geometrothermodynamics (GTD) [22; 23] was recently developed as a for-
malism that unifies the contact structure on & with the metric structure on & in
a consistent manner, by considering only Legendre invariant metric structures on
both .7 and &. This last property is important in order to guarantee that the ther-
modynamic characteristics of a system do not depend on the thermodynamic po-
tential used for its description. One simple metric has been used in GTD in order to
reproduce geometrically the non critical and critical behavior of the ideal and van
der Waals gas, respectively. In the present work we present a further application
of GTD in general relativity, namely, we reformulate black hole thermodynamics
and try to reproduce the phase transition structure of black holes by using one of
the simplest metric structures that are included in GTD.

In general relativity, the gravitational field of the most general black hole
is described by the Kerr—Newman [24] solution that corresponds to a rotating,
charged black hole. The discovery by Bekenstein [25] that the behavior of the
horizon area of a black hole resembles the behavior of the entropy of a classi-
cal thermodynamic system initiated an intensive and still ongoing investigation of
what is now called thermodynamics of black holes [26; 27; 28]. Several attempts
have been made in order to describe the thermodynamic behavior of black holes in
terms of metrics defined on & [[12} 13} [145 [15; [16]. In particular, Weinhold’s and
Ruppeiner’s metrics were used to find a direct relationship between curvature sin-
gularities and divergencies of the heat capacity. Unfortunately, the results lead to
completely contradictory statements. For instance, for the Kerr black hole Wein-
hold’s metric predicts no phase transitions at all [13]], whereas Ruppeiner’s met-
ric, with a very specific thermodynamic potential, predicts phase transitions which
are compatible with the results of standard black hole thermodynamics [12]. It is
one of the goals of this work to explain this contradiction by using an invariant
approach. We will conclude that the origin of this inconsistency is due to the fact
that
Weinhold’s and Ruppeiner’s metrics are not Legendre invariant, a property that
makes them inappropriate for describing the geometry of thermodynamic systems.
From the vast number of Legendre invariant metrics which are allowed in the con-
text of GTD we choose probably the simplest one. This choice allows us to find
Legendre invariant generalizations of Weinhold’s and Ruppeiner’s metrics. In the
case of two-dimensional GTD, we apply these Legendre invariant metrics, and
obtain consistent results.
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This paper is organized as follows. In Sect.[2] we briefly review the fundamen-
tals of GTD, and present a simple Legendre invariant metric. In Sect. [3] we apply
GTD to thermodynamics of black holes in general, and find the simplest Legendre
invariant generalizations of Weinhold’s and Ruppeiner’s metrics. In Sects. 4{ and
[5| we analyze the geometry of the Reissner—Nordstrom and Kerr black hole ther-
modynamics, by using Legendre invariant thermodynamic metrics. We show that
in both cases the results are geometrically consistent. We find an agreement with
the results of standard black hole thermodynamics in the case of the Reissner—
Nordstrom solution. However, for Kerr black holes we show that the simplest
Legendre invariant metrics do not reproduce the corresponding phase transition
structure. Section [6] contains a brief analysis of the Fisher—Rao metric. Finally,
Sect.[7]is devoted to discussions of our results and suggestions for further research.
Throughout this paper we use units in whichG=c=k, =h=1.

2 Review of geometrothermodynamics

Consider the (2n+ 1)-dimensional thermodynamic phase space .7 coordinatized
by the thermodynamic potential @, extensive variables £, and intensive variables
I (a=1,...,n). Consider on .7 a non-degenerate metric G = G(Z*), with Z* =
{®,E* I}, and the Gibbs 1-form @ = d® — §,,I°dE®, with §,;, = diag(1,1,...,1).
The set (7,0, G) defines a contact Riemannian manifold [17; 21] if the condi-
tion ® A (d®)" # 0 is satisfied. Moreover, the metric G is Legendre invariant if
its functional dependence on Z# does not change under a Legendre transformation
[29]. The Gibbs 1-form @ is also invariant with respect to Legendre transforma-
tions. Legendre invariance guarantees that the geometric properties of G do not
depend on the thermodynamic potential used in its construction.

The n-dimensional subspace & C .7 determined by the smooth mapping ¢ :
& — 7, that in terms of coordinates reads ¢ : (E?) — (P, E“, I?) with & =
PD(E?), is called the space of equilibrium thermodynamic states if the condition
0*(®) = 0 is satisfied, i.e.,

P

~pa = Oabl”- (1)

d®d = 8, I°dE?,

The first of these equations corresponds to the first law of thermodynamics, whereas
the second one is usually known as the condition for thermodynamic equilibrium
[30]. In the GTD formalism, the last equation also means that the intensive ther-
modynamic variables are dual to the extensive ones. Notice that the mapping ¢ as
defined above implies that the equation @ = &(E“) must be explicitly given. In
standard thermodynamics this is known as the fundamental equation from which
all the equations of state can be derived [17;30]. In this representation, the second
law of thermodynamics is equivalent to the convexity condition on the thermody-
namic potential 9°®/dE*IE" > 0 [30;31].

The thermodynamic potential satisfies the homogeneity condition ®(AE“) =
AB®(E?) for constant parameters A and f3. Using the first law of thermodynamics,
it can easily be shown that this condition leads to the relations

BP(EY) = 8,I°E¢, (1 —B)8upI®dE” + 8,E*dI” =0, (2)
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which are known as Euler’s identity and Gibbs—Duhem relation.

The final ingredient of GTD is a non-degenerate metric structure g on & from
which we demand to be compatible with the metric G on .7. This can be reached
by using the pullback ¢* in such a way that g becomes naturally induced by G as
g = 0*(G). As shown in [23], a Legendre invariant metric G induces a Legendre
invariant metric g. Vice versa, a metric g on & is Legendre invariant only if it
is induced by a Legendre invariant metric G on .7. It is in this sense that one
can show that Weinhold’s and Ruppeiner’s metrics, which are defined on &, are
not Legendre invariant. Nevertheless, there is a vast number of metrics on .7 that
satisfy the Legendre invariance condition. For instance, the metric structure

G = O + (8, E1Y) (8pgdECdI?), 3)
where © is the Gibbs 1-form, is Legendre invariant and induces on & the metric

2%
OEYQE?P

An important feature of this metric is that it is flat for an ideal gas and non-flat
for the van der Waals gas, with curvature singularities at the critical thermody-
namic points [23]]. This is an indication that it can be used as a Legendre invariant
measure of thermodynamic interaction. Although this property is shared by other
metrics on & in the following analysis we will use the specific choice () because
of its simplicity.

Finally, we mention that the geometry of the metric g = ¢*(G) is invariant
with respect to arbitrary diffeomorphisms performed on &. This can be shown by
considering explicitly the components of g in terms of the components of G, and
applying arbitrary Legendre transformations on G. This important property allows
us to consider variational principles in GTD that impose additional conditions on
the metric structures [38]].

g=o dE“dE®. 4)

3 Black hole thermodynamics

Vacuum black holes in Einstein’s theory are completely characterized by the mass
M, angular momentum J, and electric charge Q. Although the statistical origin
is still obscure, black holes possess thermodynamic properties specified through
Hawking’s temperature 7', proportional to the surface gravity on the horizon, and
entropy S proportional to the horizon area [25;27]]. All these parameters are related
by means of the first law of black hole thermodynamics dM = TdS+ QudJ+ ¢dQ
(see, for instance [26]), where 2y is the angular velocity on the horizon, and ¢ is
the electric potential. For a given fundamental equation M = M(S,J, Q) we have
the conditions for thermodynamic equilibrium

oM oM oM
T=%s =%, =%

a8’
Thus, the phase space .7 for black hole thermodynamics is 7-dimensional with
coordinates Z4 = {M,S,J,Q,T,Qy,¢}. The fundamental Gibbs 1-form is given
by @ =dM — TdS — QudJ — ¢dQ. The space of thermodynamic equilibrium

o)
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states & is 3-dimensional with coordinates E* = {S,J,Q}, and is defined by means
of the mapping

oM oM oM
} (6)

(P : {Svij} — {M(S’LQ)’S’J’Q’QS’&J’&Q

The mass M plays the role of thermodynamic potential that depends on the exten-
sive variables S, J and Q. However, Legendre transformations allow us to intro-
duce a set of seven additional thermodynamic potentials which depend on different
combinations of extensive and intensive variables. The complete set of thermody-
namic potentials can be written as

M = M(S,J,0),

My = M\(T,J,Q) =M —TS,

My = My(S,24,0) =M — QylJ,

Mz = M5(S,J,¢) =M - ¢Q,

My = My(T,Qp,0) =M —TS — Qyl, )
(
(
(

Ms = Ms(T,J,¢) =M —TS—¢Q,
Mg = Ms(S,2n,¢9) =M —QpuJ — ¢0,
My = Mo(T,Qu,9) = M — TS — QuJ — 0.

Notice that the mapping ¢ can be defined in each case, independently of the
chosen thermodynamic potential. On the other hand, since we are considering
only Legendre invariant structures on Z and &, the characteristics of the un-
derlying geometry for a given thermodynamic system will be independent of the
thermodynamic potential. This is in agreement with standard thermodynamics.
Consequently, in the mass representation of black hole thermodynamics described
above, we have the freedom of choosing anyone of the potentials M, My, ..., M5,
without affecting the thermodynamic properties of black holes.

In the context of GTD, it is also possible to consider the entropy representation.
In this case, the Gibbs 1-form of the phase space can be chosen as

1 Qy ¢
O =dS— =dM + ——d —dQ. 8
s =dS T +T J+T 0 ®

The space of equilibrium states is then defined by the smooth mapping

@5 :{M,J, 0} — {M,S(M,J,0),J,0,T(M,J,0),2:(M,J,Q),$(M,J,0)},
)
with
1 ads  Qu as ¢ as

T-aw T o T o o

such that @5 (Os) = 0 leads to the first law. In the entropy representation the funda-
mental equation is now given by § = S(M,J, Q), and the second law of thermody-
namics corresponds to the concavity condition of the entropy function. Additional
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representations can easily be analyzed within GTD, and the only object that is
needed in each case is the smooth mapping ¢ which guarantees the existence of
a well-defined space of equilibrium states. Clearly, the thermodynamic properties
of black holes must be independent of the representation.

Now we consider metric structures on &. For black holes, Weinhold’s metric
g" is defined as the Hessian in the mass representation [3; 4], whereas Ruppeiner’s
metric gR is given as minus the Hessian in the entropy representation [3]. From the
analysis given above, it is clear that these metrics must be related by g = T'gR. As
we showed in [23]], the main problem with Weinhold’s and Ruppeiner’s metrics is
that they are not Legendre invariant. In GTD it is possible to derive, in principle,
an infinite number of metrics which preserve Legendre invariance; nevertheless,
according to Eq. , the simplest way to reach the Legendre invariance for g
is to apply a conformal transformation, with the thermodynamic potential as the
conformal factor. Consequently, the simplest Legendre invariant generalization of
Weinhold’s metric can be written in components as

o*M

WdE“dEh, (11)

g=Mg" =M
where E¢ = {S,J,Q}. This Legendre invariant metric can also be written in terms
of the components of Ruppeiner’s metric as

-1 2
5};) AdF“de, (12)

=MTgR=-M
8 & ( IFIQF?

with F¢ = {M,J,Q}. Using the mass representation, in the phase space .7 the
corresponding generating metric structure can be written as [cf. Eq. (3)]

G = (dM —TdS — QudJ — ¢dQ)*
(TS + QuJ + Q) (dTdS +dQpdJ +dodQ). (13)

Notice that to obtain we need to use Euler’s identity for the conformal factor
in front of the second term in , ie., BM =TS+ QuJ+ ¢Q. Thus, g as given
in (11) is determined only up to the multiplicative constant 3 that, obviously, does
not affect its geometry.

In the following sections we will analyze metrics @ and (12) in the case of
2-dimensional GTD with a,b = 1,2, E! = S, and E? will be chosen either as
Q or as J, which corresponds to the Reissner—Nordstrom and Kerr black holes,
respectively.

4 The Reissner—-Nordstrom black hole

The Reissner—Nordstrom solution describes a static black hole with mass M and
electric charge Q. The inner and outer event horizons are situated at r_ and r; so

that the outer horizon areais A = 47z:r%r, where ry =M+ +/M? — Q2. The extremal
black hole corresponds to the value r, = r_ and we suppose that M> > Q2 in order
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to avoid naked singularities. From the horizon area law it follows that the entropy
of the black hole is given by

1 2
SZZA:ﬂ(M—H/Mz—QZ) , (14)
an expression that can be rewritten as

_ 1 2
M—Zm (7Q°+5). (15)

This is the fundamental equation from which, according to Eq. (11)), one easily
calculates the Legendre invariant metric on the space of equilibrium states. Then

1 2 1 2 2 1 1 2
=— S) | < (3Q* — S) dS? — -QdSdQ + =SdQ*|. (16
8= (7Q°+5) 167rS( nQ* —S) 5QdSdQ + =5dQ (16)

The convexity condition is not satisfied in general. Only the term ggp is always
positive definite, whereas gos is positive only for negative values of the total
charge. The component ggg violates the convexity condition if S > 37Q?. The
limiting value S = 37Q” determines the turning point where the second law of
thermodynamics becomes invalid. In terms of the horizons’ radii and for a given
radius r of the outer horizon, this is equivalent to the statement that the convexity
condition is valid only in the interval r_ € [ry/3,r}).
The scalar curvature corresponding to the metric reads

_ 8m2Q*S*(mQ? - 39)
BT Re P57 0

We see that the only curvature singularity occurs when § = 7£Q?. This corresponds
to the value M = Q, i.e., the extremal black hole. We interpret this result as an in-
dication of the limit of applicability of GTD as a geometric model for equilibrium
thermodynamics. This is also in accordance with the intuitive expectation that
naked singularities show the limit of applicability of black hole thermodynamics.

Another interesting point is § = 7£Q?/3, where the scalar curvature vanishes
identically, leading to a flat geometry. At this point the scalar curvature changes its
sign, and it is the only point where this happens. Notice that the value S = 7Q?/3
corresponds to M = 2Q/+/3 or, equivalently, 7, = 3r_ which according to Davies
[28] is exactly the point where the system is undergoing a phase transition.

It is interesting to note that the phase transition point has been analyzed in
other works, using Weinhold’s and Ruppeiner’s metrics, with partially contradic-
tory results. For instance, in [13] at the phase transition point § = £Q?/3 nothing
happens because Ruppeiner’s metric is flat everywhere. On the other hand, in [12]
this point corresponds to a true curvature singularity of Ruppeiner’s geometry
with a different thermodynamic potential. Moreover, in the same work the ex-
tremal black hole is described by a well-behaved metric with zero scalar curvature
that, in principle, can be analytically extended to include the case of a naked sin-
gularity. We interpret these contradictory results as due to the use of metrics that
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are not Legendre invariant. In fact, let us consider the simplest Legendre invari-
ant generalization of Ruppeiner’s metric (IZ) with the fundamental equation (T4).
Then

_ ™ 3 2 2 A2\3/2 2
$= Gr—g7s { [ZM 3MQ? +2(M* — Q) }dM
+20%dMdQ — [M3 (M2 Q2)3/2] a’QZ}. (18)

From the corresponding scalar curvature one can see that it diverges at M = (O,
and changes its sign at M = 2Q/+/3, which coincides with the result obtained by
using the Legendre invariant Weinhold metric given in Eq. (I6). This solves the
incompatibility problem between the results obtained by using geometries which
do not preserve Legendre invariance.

What we learn in this case from the use of Legendre invariant metrics is that
in GTD a phase transition can also be described by a change of sign of the scalar
curvature, passing through a state of flat geometry. Although there is no singu-
lar behavior associated with this phase transition, we believe that the change of
topology that occurs when going from a negative to a positive curvature could
have drastic consequences for the underlying thermodynamics. A more detailed
analysis will be necessary in order to clarify this issue.

5 The Kerr black hole

The Kerr solution describes the gravitational field of rotating black hole with mass
M and angular momentum J. The inner and outer horizons are situated at r_ and

ro, where ro = M £ +/M? — a2. The entropy is calculated as usual in terms of the
area of the horizon

S:%A:2n<M2+ M4—12) (19)

which for the mass representation can be rewritten as

S  wJ?
M= — 4+ —. 20
\/4”+ R (20)

From Eq. (TI) we get the corresponding Legendre invariant metric of the space of
thermodynamic equilibrium states

S 3n2Jt 32 1 )
g = +o5 75 |dS
S? +472J2 54 282 l6n?

(38 +4nJ%) dJdS + dJZ] : 1)

J

8

Unexpectedly, the curvature of this metric vanishes. The same result was obtained
in [14] by using Weinhold’s metric. This is a surprising result because it would

mean that Kerr black holes do not show any statistical thermodynamic interac-
tion. On the other hand, the standard thermodynamics of Kerr black holes is by no
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means trivial and shows a very rich phase transition structure [28]]. Moreover, the
analysis performed in [12] using Ruppeiner’s metric closely reproduces this struc-
ture. This contradictory result is again due to the use of non invariant metrics. In
fact, if we consider in GTD the simplest Legendre invariant generalization of Rup-
peiner’s metric as given in Eq. (I2), we obtain from the fundamental equation
the following metric

2
M4
+ 2M3JdMdJ — 2dJ2}, (22)

whose curvature also vanishes. This coincides with the result obtained by using
the Legendre invariant generalization (2I) of Weinhold’s metric, but it also dras-
tically differs from the result of [12]] where a non zero curvature was obtained for
the pure Ruppeiner metric with a special choice of the thermodynamic potential;
instead of using M, the authors of [12]] define an internal energy which in the no-
tation used here corresponds to the entropy representation of the thermodynamic
potential M given in Eq. (T3). One can easily show that the use of the original
potential M leads to a different metric with non vanishing curvature, and the only
curvature singularity appears at M> = J, i.e., in the extremal black hole limit, a
result that does not reproduce the phase transition structure of the Kerr black hole.
This shows that Ruppeiner’s metric leads to completely different results, depend-
ing on the thermodynamic potential.

The main result of this Section is that Weinhold’s and Ruppeiner’s metrics in
their Legendre invariant generalizations lead to the same result for the Kerr black
hole. Unfortunately, the corresponding geometry in the space of equilibrium states
is flat and does not reproduce the phase transition structure of the black hole.
This is a negative result which calls for a reconsideration of the use of geometric
structures in black hole thermodynamics.

6 The Fisher-Rao metric

In classical statistical mechanics, an alternative approach has been used to ana-
lyze the geometry of thermodynamic systems. The starting point is the probability
density distribution which is given by the Gibbs measure

p(x]0) = exp[—6:;H;(x) —InZ(0)], (23)

where Z(0) is the partition function, H;(x) are Hamiltonian functions and ',
i =1,...,n represent the n parameters characterizing the statistical model under
consideration. It can be shown [32]] that for each value of the parameters the square
root of this density can be associated to a vector in the Hilbert space 7. Conse-
quently, J# contains the state space of the system, and the properties of the statis-
tical system can be described by means of the embedding of p(x|0) in 7. Once
the Hilbert space is considered in the language of projective geometry, it is pos-
sible to generalize this embedding construction to include the cases of quantum
mechanical dynamics of equilibrium states and pure quantum mechanics [33}134].



10 H. Quevedo

The geometry that arises from the embedding turns out to possess a natural Rie-
mannian metric, the Fisher-Rao metric in the classical case or the Fubini-Study
metric in the quantum case.

For the classical Gibbs distribution the Fisher-Rao metric takes the simple
form [35]]

FR _ 2%InZ(6)
20100/

The geometric properties of the manifold described by this metric has been an-
alyzed for different statistical models. In the case of the van der Waals gas the
parameters can be chosen as 8! = 1/T, and 8> = P/T, and the corresponding
Hamiltonian functions are the internal energy U and volume V, respectively, so
that Z(0) is a function of temperature and pressure. The scalar curvature of this
two-dimensional manifold turns out to diverge at the critical points, and the scal-
ing exponent of the curvature near the transition points coincides with that of the
correlation volume [6} [7]]. Furthermore, in the limiting case of an ideal gas, the
curvature vanishes and the manifold is flat. This is exactly the behavior shown by
Ruppeiner’s and Weinhold’s geometry in these particular cases. In fact, it can be
shown [36] that in general both metrics are related to the Fisher—Rao metric by
means of Legendre transformations of the corresponding variables. This explains
why their geometric properties are similar, and indicates that the Fisher—Rao met-
ric is also not Legendre invariant.

To be more specific in the case under consideration in this work, we first men-
tion that, due to its statistical origin, the components of the Fisher—Rao metric
gg-R(G) are usually given in terms of the “inverse” of the thermodynamic vari-
ables: ! = 1/T, 8% = P/T, etc. Since the relationships 8’ = 67(E4) must allow
the inverse transformation, it is easy to show that in the coordinates used here
the Fisher-Rao metric can be written as g'RX = 92InZ(E) /dE“9E®. The partition
function for black holes is given by (see, for instance [37]])

de'de’. (24)

Z=exp —%(M—TS—.QHJ—q)Q) . (25)

It then follows that for the Reissner—Nordstrom black hole Z = exp(—Ms/T) and
for the Kerr black hole Z = exp(—My/T), where the thermodynamic potentials My
and M5 are related to the mass representation we are using here by the Legendre
transformations given in Sect. [3] Consequently, the components of the Fisher—
Rao metric for black holes are essentially given by g"% = —9%(M/T)/dE“JE®.
We now briefly explain how to show that this metric is not Legendre invariant.
According to GTD, there must exist in the thermodynamic phase space .7 a metric
G'R which generates g% by means of the pullback g% = ¢*(G'*). On .7 we
perform an arbitrary Legendre transformation Z4 — Z4 which when acting on G''R
produces the Legendre transformed metric G'R. Then the Legendre transformed
Fisher—Rao metric gF¥ in the space of equilibrium states & is computed by gF'% =
@*(G'R), where @ is the embedding mapping in the new coordinates (for more
details see [23]]). As a result we obtain that the functional dependence of MR is
completely different from that of g©'%; i.e., the Fisher—Rao metric is not Legendre
invariant. Similar results can be obtained by using the original potentials M4 and
Ms.
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The result of this section is that the Fisher—Rao metric for black holes is not
Legendre invariant, and therefore cannot be used to solve the problem of con-
tradictory results following from the application of Weinhold’s and Ruppeiner’s
approaches.

7 Conclusions

In this work we formulated the thermodynamics of general relativistic black holes
in the language of geometrothermodynamics. The general thermodynamic phase
space .7 turns out to be 7-dimensional and it is always possible to introduce a
smooth mapping from the 3-dimensional space of thermodynamic equilibrium
states & to the phase space 7. Different formalisms based on different repre-
sentations, such as the energy or the entropy representation, can easily be han-
dled within GTD. The equivalence between all possible representations is an ob-
vious consequence of the properties of the structures used in GTD. We present
all the thermodynamic potentials that can be derived by means of arbitrary Leg-
endre transformations, starting from the mass representation, and explain why the
geometric properties of a thermodynamic system cannot depend on the chosen
thermodynamic potential. From all Legendre invariant metric structures that can
be introduced on .7 and, consequently, on &, we choose a simple example which
allows us to generalize other metrics used in the literature for investigating the
geometric properties of thermodynamic systems.

We studied two-dimensional GTD in the case of the Reissner—Nordstrom and
Kerr black holes, by using simple Legendre invariant generalizations of Wein-
hold’s and Ruppeiner’s metrics. Our results show that for the thermodynamics
of the Reissner—Nordstrom black hole there exists a Legendre invariant geometry
with non vanishing curvature. There is a true curvature singularity when the black
hole becomes extremal. We interpret this result as indicating the limits of applica-
bility of GTD in the sense that the thermodynamic processes associated with the
black hole becoming extremal must be highly non trivial and related to non equi-
librium thermodynamics, an issue that has not yet been considered within GTD. A
second critical point occurs when M = 2Q/+/3 (i.e., ry = 3r_). At this point the
scalar curvature changes its sign, passing through a state of flat geometry. It also
coincides with a thermodynamic critical point where, according to Davies [28]],
the system is undergoing a phase transition. We propose that in GTD the change
of topology, that happens when the scalar curvature changes its sign, can be asso-
ciated to a drastic change of the thermodynamic properties of the system, like a
phase transition. This question needs to be further analyzed in order to get a more
concrete answer. Our results also solve an incompatibility existing in the literature.
Aman et al. [13] used Ruppeiner’s metric for the thermodynamics of the Reissner—
Nordstrom black hole to show that its geometry has no critical points which could
be related to phase transitions, because it is a flat geometry. On the other hand,
Shen et al. [[12] studied Ruppeiner’s geometry and found a true curvature singu-
larity at ri = 3r_, corresponding to a second order phase transition. We proved
that this contradiction is due to the use of metrics which do not preserve Legendre
invariance. Our invariant generalizations of Weinhold’s and Ruppeiner’s metrics
lead to compatible results and reinforce the prediction of a phase transition.
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Our study of GTD in the case of the Kerr black hole also solves the contra-
diction in the results of Aman et al. [[13]] and Shen et al. [12]]. We proved that the
Legendre invariant generalizations of Weinhold’s and Ruppeiner’s metrics lead to
the result that the underlying geometry is flat. This is a surprising result which does
not coincide with the analysis of standard black hole thermodynamics that predicts
the existence of phase transitions. A flat geometry implies that there is no thermo-
dynamic interaction and, consequently, no phase transitions at all. This is a nega-
tive result which, in our opinion, implies that we should critically reconsider the
application of geometry structures in black hole thermodynamics. However, this
negative result can also be
interpreted as implying that Weinhold’s and Ruppeiner’s metrics, even in their
Legendre invariant version, are not suitable for describing the thermodynamics of
black holes. The statistical origin of the Fisher—Rao metric could be thought to be
an
advantage, when compared with metrics introduced ad hoc. However, we have
seen that Legendre invariance is not a property of this statistical metric.

An intriguing result was obtained by Shen et al. [[12] for the Kerr black hole.
They work in the entropy representation of Ruppeiner’s metric with a different
thermodynamic potential. Instead of using the mass M as an extensive variable,
they consider the potential M, = M — QyJ, and reproduce exactly the phase tran-
sition structure of the Kerr black hole [28]]. Although we have seen that this result
can drastically be changed by using M as thermodynamic potential, it would be
interesting to consider the metric used by Shen et al. as a guide to find a general-
ization that would preserve Legendre invariance.

In GTD there exists, in principle, an infinite number of Legendre invariant
metrics, and there is no reason to believe that all of them should be applicable to
any thermodynamic system. We think that it is necessary to find additional crite-
ria which would serve to select Legendre invariant metrics with certain specific
properties. In this context, the application of variational principles in GTD could
be useful. In fact, the metric induced on & by means of g = ¢*(G) can be written

in components as (a,b=1,...,n, A B=0,...,2n)
07ZA 978
8ab = WWGAB- (26)

Then, we can limit ourselves, for example, to only those metrics g,, which define
an extremal n-dimensional hypersurface on &, i.e., metrics satisfying the “motion
equations” following from the variation & [ \/det (g5 )d"x = 0. This is equivalent
to demanding that the mapping ¢ : & — .7 determines a non linear sigma model.
The resulting geodesic-like equations can be solved for a given fundamental equa-
tion and we obtain as a result the set of Legendre invariant metrics that can be used
to describe the corresponding thermodynamic system. Also, for a given Legendre
invariant metric one can find the set of fundamental equations that satisfy the cor-
responding equations. This task is currently under investigation [38].
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